Science.gov

Sample records for agricultural water conservation

  1. Agricultural Water Conservation via Conservation Tillage and Thermal Infrared

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia water conservation is an issue that involves all citizens. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  2. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...; ] DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program and Cooperative... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... Agricultural Water Enhancement Program Legislative Authority The Agricultural Water Enhancement Program...

  3. Thermal Infrared Imagery for Better Water Conservation in Agricultural Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation is an issue that involves all citizens in Georgia. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  4. TECHNICAL CONCEPTS RELATED TO CONSERVATION OF IRRIGATION AND RAIN WATER IN AGRICULTURAL SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty percent of freshwater withdrawals in the U.S. are for irrigated agriculture, which contributed 55$ billion to the economy in 2002. Increasing diversions of water for urban, environmental, and other uses will likely decrease water available to agriculture. Agricultural water conservation is tou...

  5. Influence of integrated watershed-scale agricultural conservation practices on lake water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed-scale management efforts to improve conservation of water resources in agricultural watersheds depend upon the effectiveness of integrated multiple agricultural best management practices at this scale. This requires large-scale, long-term (>10 y) studies measuring key water quality paramet...

  6. AGRICULTURAL WATER CONSERVATION POLICY IN AN URBANIZING ENVIRONMENT: THE ARIZONA BMP PROGRAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arizona legislature authorized in 2002 an agricultural water conservation program based on best management practices. The program is voluntary and an alternative to one based on allotments that have been in operation since 1980. The program requires the farmers to adopt conservation practices f...

  7. Beyond conservation agriculture

    PubMed Central

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  8. Beyond conservation agriculture.

    PubMed

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  9. Potential of the Conservation Reserve Program to control agricultural surface water pollution

    NASA Astrophysics Data System (ADS)

    Lant, Christopher L.

    1991-07-01

    The Conservation Reserve Program (CRP), initiated by the Conservation Title of the Food Security Act of 1985, is the primary federal program to control nonpointsource pollution in agricultural watersheds of the United States. However, the program is designed primarily to reduce soil erosion rather than to retire croplands in a manner optimal for controlling runoff of sediment and associated pollutants. This study estimates potential enrollment of streamside and floodplain croplands in this ten-year retirement program in order to gauge the potential of the CRP as a water-quality improvement policy. A contingent choice survey design was employed in Fayette County, Illinois, to demonstrate that there is substantial potential for retirement of streamside and floodplain croplands in the CRP. Enrollments in each program climb from less than 6% to over 83% of eligible croplands as the annual rental rate is increased from 20 to 200/acre. Potential retirement of streamside and floodplain croplands declines, however, if tree planting, drainage removal, or a 20-year contract are required. The potential of a CRP-based water-quality program to improve water quality and aquatic ecosystems in agricultural watersheds is thus substantial but constrained by the economic trade-offs that farmers make between crop production and conservation incentives in determining the use of their riparian lands.

  10. CONSERVATION AGRICULTURE: ENVIRONMENTAL BENEFITS OF REDUCED TILLAGE AND SOIL CARBON MANAGEMENT IN WATER LIMITED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural carbon (C) sequestration may be one of the most cost effective ways to slow processes of global warming and enhance plant available water. Numerous environmental benefits and enhanced water use efficiency result from agricultural activities that sequester soil C and contribute to crop p...

  11. Economic impacts on irrigated agriculture of water conservation programs in drought

    NASA Astrophysics Data System (ADS)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  12. The Reduction of Partitioned Wind and Water Erosion by Conservation Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil loss due to wind and water erosion degrades the soil and results in environmental problems downstream and downwind of the source field. Wind and water erosion may both occur to varying extents particularly in semi-arid environments. Soil conservation strategies require information about the p...

  13. Soil and Water Conservation Challenges for Agriculture in the Inland Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450...

  14. [Estimation on value of water and soil conservation of agricultural ecosystems in Xi' an metropolitan, Northwest China].

    PubMed

    Yang, Wen-yan; Zhou, Zhong-xue

    2014-12-01

    With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan. PMID:25876418

  15. Water ponding and catchment runoff as influenced by conservation agriculture in May Zeg-zeg (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Lanckriet, Sil; Nyssen, Jan; Araya, Tesfay; Poesen, Jean; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Haile, Mitiku; Verfaillie, Els; Cornelis, Wim M.

    2013-04-01

    This study evaluates the practice of conservation agriculture (CA) in the May Zeg-zeg catchment (MZZ; 187 ha) in the North Ethiopian Highlands as a soil management technique for reducing soil loss and runoff, and assesses the consequences of future large-scale implementation on soil and hydrology at catchment-level. The study of such practice is important especially under conditions of climate change, since EdGCM (Educational Global Climate Model) simulation predicts by 2040 an increase in precipitation by more than 100 mm yr-1 in the study area. Firstly, field-saturated infiltration rates, together with soil texture and soil organic carbon contents, were measured. Relation with local topography allows to generate a pedotransfer function for field-saturated infiltration rate, and spatial interpolation with Linear Regression Mapping was used to map field-saturated infiltration rates optimally within the catchment. Secondly, on several farmlands, CA was checked against Plain Tillage (PT) for values of field-saturated infiltration rates, soil organic carbon, runoff and soil loss. Results show no significant differences for infiltration rates but significant differences for runoff and soil loss (as measured in the period 2005-2011). Runoff coefficients were 30.4% for PT and 18.8% for CA; soil losses were 35.4 t ha-1 yr-1 for PT and 14.4 t ha-1 yr-1 for CA. Thirdly, all collected information was used to predict future catchment hydrological response for full-implementation of CA under the predicted wetter climate (simulation with EdGCM). Curve Numbers for farmlands with CA were calculated. An area-weighted Curve Number allows the simulation of the 2011 rainy season runoff, predicting a total runoff depth of 23.5 mm under CA and 27.9 mm under PT. Furthermore, the Revised Universal Soil Loss Equation management factor P was calibrated for CA. Results also show the important influence of increased surface roughness on water ponding, modeled with a hydrologic conservation

  16. Farmer Perceptions of Soil and Water Conservation Issues: Implications to Agricultural and Extension Education.

    ERIC Educational Resources Information Center

    Bruening, Thomas; Martin, Robert A.

    1992-01-01

    A survey of 731 Iowa farmers received 432 responses indicating that (1) groundwater and water quality were of greater concern than soil conservation; (2) field demonstrations and county meetings were useful information sources on these issues; and (3) government agencies such as cooperative extension and state universities were useful sources of…

  17. WATER CONSERVATION IN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation is important for agricultural, residential, industrial, and recreational users in all climatic regions, but becomes increasingly important when going from humid to semiarid and arid regions. This report briefly describes techniques that can be used to increase the storage of water...

  18. Water Savings Through Conservation Tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through a partnership with the University of Georgia – College of Agriculture and Environmental Sciences, USDA-Agricultural Research Service, USDA-Natural Resource Conservation Service, Soil and Water Conservation Society and Resource Conservation and Development Councils to name a few, research and...

  19. Optimization of integrated water quality management for agricultural efficiency and environmental conservation.

    PubMed

    Fleifle, Amr; Saavedra, Oliver; Yoshimura, Chihiro; Elzeir, Mohamed; Tawfik, Ahmed

    2014-01-01

    The scarcity of water resources in Egypt has necessitated the use of various types of lower quality water. Agricultural drainage water is considered a strategic reserve for meeting increasing freshwater demands. In this study, a novel model series was applied to a drainage basin in the Nile Delta to optimize integrated water quality management for agriculture and the aquatic environment. The proposed model series includes a waste load allocation model, an export coefficient model, a stream water quality model, and a genetic algorithm. This model series offers an optimized solution for determining the required removal levels of total suspended solids (TSS), the chemical oxygen demand (COD) at point and non-point pollution sources, and the source flows that require treatment to meet a given water quality target. The model series was applied during the summer and winter to the El-Qalaa basin in the western delta of the Nile River. Increased pollutant removal and treated fractions at point and non-point sources reduced violations of the TSS standards from 732.6 to 238.9 mg/L in summer and from 543.1 to 380.9 mg/L in winter. Likewise, violations of the COD standards decreased from 112.4 mg/L to 0 (no violations) in summer and from 91.7 mg/L to no violations in winter. Thus, this model is recommended as a decision support tool for determining a desirable waste load allocation solution from a trade-off curve considering costs and the degree of compliance with water quality standards. PMID:24671393

  20. Of birds, carbon and water: integrating multiple ecosystem service impacts to identify locations for agricultural conservation practice adoption

    EPA Science Inventory

    Human use of the landscape for crop production can degrade ecosystem services. A number of agricultural conservation practices are touted as mitigating these impacts. Many of these practices are encouraged by incentive programs such as the Conservation Reserve Program administere...

  1. Urban conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables are important sources of vitamins and nutrients for human nutrition. United States Department of Agriculture recommends filling half of the food plates with vegetables in every meal. While it is important in promoting good health, access to fresh vegetables is limited especially in urban ...

  2. Measuring the Contribution of Agricultural Conservation Practices to Observed Trends and Recent Condition in Water Quality Indicators in Ohio, USA.

    PubMed

    Miltner, Robert J

    2015-11-01

    Over the last three decades, significant investments made to upgrade wastewater infrastructure and manage pollution from diffuse sources have resulted in measurably improved water quality and biological conditions in Ohio's rivers and streams. Conservation measures to reduce soil loss appear to have contributed significantly to the improvement witnessed over the last two decades and should therefore be continued. Within the most recent timeframe examined, little difference was found in either total phosphorus or suspended sediment concentration in relation to conservation measures, indicating that the environmental benefits of measures targeting soil loss may be approaching an asymptote. Conservation measures targeting livestock and forage management, however, appear to have reduced nitrogen concentrations within the recent time frame. An examination of the interrelationships between habitat quality, conservation measures, and land use indicated that water quality was generally mediated by interactions with stream habitat quality. However, the positive effect of habitat quality was reduced in catchments draining fine-textured soils. The implication of these latter two findings suggest that proscriptively adding natural function to the large network of ditched and maintained conveyances draining agricultural lands would substantially improve water quality, but management at the field level is necessary to minimize phosphorus losses. PMID:26641334

  3. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  4. Integrating Agriculture and Conservation

    USGS Publications Warehouse

    Vandever, Mark W.

    2010-01-01

    The USGS produces the needed science-based information to guide management actions and policy decisions that support wildlife habitat and other environmental services compatible with USDA conservation goals and farm operations. The Policy Analysis and Science Assistance Branch of the Fort Collins Science Center (FORT) has conducted research involving a national landowner survey and numerous short- and long-term evaluations regarding vegetation responses to land management practices. This research helps land and resource managers to make informed decisions and resolve resource management conflicts.

  5. Conservation Agriculture in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture (CA) is a production paradigm that groups reduced tillage, mulching with crop residues or cover crops, and diversified crop rotations, especially those that incorporate leguminous crops. In North America, reduced tillage is the most widely-adopted practice that seeks the ide...

  6. Feasibility of using FGD gypsum to conserve water and reduce erosion from an agricultural soil in Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production in Georgia and the Southeastern U.S. can be limited by water, and supplemental irrigation is often needed to sustain profitable crop production. Increased water retention and soil conservation would efficiently improve water use and reduce irrigation amounts/costs and sedimentation, ...

  7. Agricultural intensification escalates future conservation costs

    PubMed Central

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L.; Koh, Lian Pin; Pascual, Unai

    2013-01-01

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive “slash-and-burn” farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860

  8. Agricultural intensification escalates future conservation costs.

    PubMed

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai

    2013-05-01

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860

  9. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (p<0.05) runoff coefficients averaged over 8 years were 14, 20 and 27% for DER+, TER+ and CT, respectively. Mean soil losses were 4 t ha-1 y-1 in DER+, 13 in TER+ and 18 in CT. Soil water storage during the growing season was constantly higher in CA-based systems compared with CT. A period of at least three years of cropping was required before

  10. Agricultural Conservation Planning Toolbox User's Manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural Conservation Planning Framework (ACPF) comprises an approach for applying concepts of precision conservation to watershed planning in agricultural landscapes. To enable application of this approach, USDA/ARS has developed a set of Geographic Information System (GIS) based software tools...

  11. Water Conservation Resource List.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  12. Energy Conservation in Agriculture. Competency Based Curriculum.

    ERIC Educational Resources Information Center

    Lawrence, Layle D.

    This competency-based energy conservation in agriculture curriculum for grades 11 and 12 is organized into seven modules. Intended for use for individualized or group instruction, the lessons should fit into existing units in courses of study rather than be presented as a single comprehensive energy conservation unit. Each module is based on from…

  13. Effects of conservation practices on fishes, amphibians, and reptiles within agricultural streams and wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices have been traditionally used to manage soil and water resources to improve agricultural production, and now include methods to reduce the environmental impacts of agriculture on streams and wetlands. These practices have been regularly implemented within agricultural watershed...

  14. Urban Water Conservation

    NASA Astrophysics Data System (ADS)

    Moomaw, Ronald L.

    According to its abstract, this book attempts ‘an assessment of various water conservation measures aimed at reducing residential water usage.’ Its intent is to develop a research program whose ‘ultimate goal is to engender a conservation ethic among water users and managers and develop a predictable array of conservation methodologies. …’ Professor Flack indeed has presented an excellent assessment of conservation methodologies, but I believe that the proposed research program is too limited.Following a brief introductory chapter, chapter II presents an extensive review of the water conservation literature published in the 1970's and earlier. It and chapter III, which describes Flack's systematic comparison of the technical, economic, and political aspects of each conservation methodology, are the heart of the book. Chapter IV is a brief discussion and analysis of conservation programs (with examples) that a water utility might adopt. Chapter V is essentially a pilot study of methods of assessing political and social feasibility. Finally, a set of recommendations is presented in chapter VI. All in all, this book is a nice blend of literature review and original research that deals with an important issue.

  15. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  16. Use of real-time and continuous water quality monitoring in Iowa streams to inform conservation strategy in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jones, C. S.; Kim, S. W.; Davis, C. A.

    2015-12-01

    Agricultural watersheds in the Midwestern U.S. are major contributors of nutrients to the Mississippi River Basin and the Gulf of Mexico. Many states within the Upper Mississippi River Basin, including Iowa, are developing nutrient reduction strategies to reduce non-point and point source loads of nitrogen and phosphorous in an effort to reverse degradation of streams and lakes. Quantifying nutrient loads in Iowa and assessing loads transported within Iowa rivers are important components of Iowa's strategy. Nutrient loads estimated with data collected using traditional methods of grab sampling are expensive and have met with limited usefulness to the agricultural community when assessing the effectiveness of implemented conservation practices. New sensor technology is allowing for real-time measurement of nutrient loads in many Iowa rivers. IIHR Hydroscience and Engineering has deployed 22 nitrate-nitrogen sensors in several Iowa rivers to provide accurate measure of nutrient loads. Combined with 17 sensors operated by the USGS, the sensor network captures nutrient transport and loading patterns in rivers across the state. A new Iowa Water Quality Information System (IWQIS) is being developed to display and share the continuous, real-time data. The data reported here will compare and contrast load calculations obtained using continuous monitors with those from a more traditional grab samples. We also will demonstrate how continuous nitrate monitoring informs watershed hydrology and the assessment of conservation practices designed to reduce nutrient loss from farmed fields. Finally, we will establish that the costs of real time continuous monitoring are modest when compared to grab sampling strategies and the costs of implementing conservation on productive lands in the Western Corn Belt of Iowa.

  17. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    NASA Astrophysics Data System (ADS)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland

  18. Water Conservation Measures

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits ofmore » a project.« less

  19. Water Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  20. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be subject to, the regulations for ACP contracts and the ACP program that were contained in the 7 CFR... 7 Agriculture 7 2012-01-01 2012-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION...

  1. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be subject to, the regulations for ACP contracts and the ACP program that were contained in the 7 CFR... 7 Agriculture 7 2014-01-01 2014-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION...

  2. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be subject to, the regulations for ACP contracts and the ACP program that were contained in the 7 CFR... 7 Agriculture 7 2011-01-01 2011-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION...

  3. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... be subject to, the regulations for ACP contracts and the ACP program that were contained in the 7 CFR... 7 Agriculture 7 2013-01-01 2013-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION...

  4. 7 CFR 701.44 - Agricultural Conservation Program (ACP) contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... regulations for ACP contracts and the ACP program that were contained in the 7 CFR, parts 700 to 899, edition... 7 Agriculture 7 2010-01-01 2010-01-01 false Agricultural Conservation Program (ACP) contracts. 701... AGENCY, DEPARTMENT OF AGRICULTURE AGRICULTURAL CONSERVATION PROGRAM EMERGENCY CONSERVATION PROGRAM...

  5. The role of conservation agriculture in sustainable agriculture.

    PubMed

    Hobbs, Peter R; Sayre, Ken; Gupta, Raj

    2008-02-12

    The paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till, NT) and permanent soil cover (mulch) combined with rotations, as a more sustainable cultivation system for the future. Cultivation and tillage play an important role in agriculture. The benefits of tillage in agriculture are explored before introducing conservation tillage (CT), a practice that was borne out of the American dust bowl of the 1930s. The paper then describes the benefits of CA, a suggested improvement on CT, where NT, mulch and rotations significantly improve soil properties and other biotic factors. The paper concludes that CA is a more sustainable and environmentally friendly management system for cultivating crops. Case studies from the rice-wheat areas of the Indo-Gangetic Plains of South Asia and the irrigated maize-wheat systems of Northwest Mexico are used to describe how CA practices have been used in these two environments to raise production sustainably and profitably. Benefits in terms of greenhouse gas emissions and their effect on global warming are also discussed. The paper concludes that agriculture in the next decade will have to sustainably produce more food from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. Promoting and adopting CA management systems can help meet this goal. PMID:17720669

  6. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  7. Water conservation in irrigation can increase water use

    PubMed Central

    Ward, Frank A.; Pulido-Velazquez, Manuel

    2008-01-01

    Climate change, water supply limits, and continued population growth have intensified the search for measures to conserve water in irrigated agriculture, the world's largest water user. Policy measures that encourage adoption of water-conserving irrigation technologies are widely believed to make more water available for cities and the environment. However, little integrated analysis has been conducted to test this hypothesis. This article presents results of an integrated basin-scale analysis linking biophysical, hydrologic, agronomic, economic, policy, and institutional dimensions of the Upper Rio Grande Basin of North America. It analyzes a series of water conservation policies for their effect on water used in irrigation and on water conserved. In contrast to widely-held beliefs, our results show that water conservation subsidies are unlikely to reduce water use under conditions that occur in many river basins. Adoption of more efficient irrigation technologies reduces valuable return flows and limits aquifer recharge. Policies aimed at reducing water applications can actually increase water depletions. Achieving real water savings requires designing institutional, technical, and accounting measures that accurately track and economically reward reduced water depletions. Conservation programs that target reduced water diversions or applications provide no guarantee of saving water. PMID:19015510

  8. Effects of conservation practices on fishes within agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices have been regularly implemented within agricultural watersheds in the United States without documentation of their impacts. The goal of the ARS Conservation Effects Assessment Project Watershed Assessment Study is to quantify the effect of conservation practices within 14 agri...

  9. Water conservation behavior in Australia

    PubMed Central

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2012-01-01

    Ensuring a nation's long term water supply requires the use of both supply-sided approaches such as water augmentation through water recycling, and demand-sided approaches such as water conservation. Conservation behavior can only be increased if the key drivers of such behavior are understood. The aim of this study is to reveal the main drivers from a comprehensive pool of hypothesized factors. An empirical study was conducted with 3094 Australians. Data was analyzed using multivariate linear regression analysis and decision trees to determine which factors best predict self-reported water conservation behavior. Two key factors emerge: high level of pro-environmental behavior; and pro-actively seeking out information about water. A number of less influential factors are also revealed. Public communication strategy implications are derived. PMID:22522412

  10. Water conservation behavior in Australia.

    PubMed

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2012-08-30

    Ensuring a nation's long term water supply requires the use of both supply-sided approaches such as water augmentation through water recycling, and demand-sided approaches such as water conservation. Conservation behavior can only be increased if the key drivers of such behavior are understood. The aim of this study is to reveal the main drivers from a comprehensive pool of hypothesized factors. An empirical study was conducted with 3094 Australians. Data was analyzed using multivariate linear regression analysis and decision trees to determine which factors best predict self-reported water conservation behavior. Two key factors emerge: high level of pro-environmental behavior; and pro-actively seeking out information about water. A number of less influential factors are also revealed. Public communication strategy implications are derived. PMID:22522412

  11. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape. PMID:14753616

  12. Production and conservation results from a decade-long field-scale precision agriculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research is needed that simultaneously evaluates production and conservation outcomes of precision agriculture practices. From over a decade (1993-2003) of yield and soil mapping and water quality assessment, a multi-faceted, “precision agriculture system” (PAS) was developed and initiated in 2004 o...

  13. Effects of agricultural conservation practices on N loads in the Mississippi-Atchafalya River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A modeling framework consisting of a farm-scale model, Agricultural Policy Environmental Extender (APEX); a watershedscale model, Soil and Water Assessment Tool (SWAT); and databases was used in the Conservation Effects Assessment Project to quantify the environmental benefits of conservation practi...

  14. Arizona Conserve Water Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2007

    2007-01-01

    This award-winning, 350-page, full-color book provides a thorough study of Arizona water resources from a water conservation perspective. Its background section contains maps, graphs, diagrams and photos that facilitate the teaching of 15 interactive, multi-disciplinary lessons to K-12 students. In addition, 10 Arizona case studies are highlighted…

  15. Consequences of Not Conserving Water

    NASA Astrophysics Data System (ADS)

    Narayanan, M.; Crawford, L.

    2015-12-01

    The problem of fresh water is not only local, but also global. In certain parts of the world, much needed rain is becoming less frequent, possibly due to the effects of global warming. The resources of clean fresh water on earth are very limited and are reducing every year due to pollution like industrial waste, oil spills, untreated sewage, inefficient irrigation systems, waste and leakage, etc. This is destroying the ecosystem of the entire planet. Of course, in some parts of world there is rain almost throughout the year. Regardless, major problems are still prevalent because of a variety of reasons such as drainage, storage, evaporation, cleanliness, etc. It is all too well known that evapotranspiration contributes to a significant water loss from drainage basins. Most of the citizens of this world are still careless about water usage and are unappreciative of the need for water conservation. This is a very unpleasant fact and needs to change. Cost expenditures for the development of infrastructure to supply water to households and industries are becoming prohibitively expensive. Many parts in this world have extremely dry terrain and rainfall is not as frequent as it should be. As a result, the underground water tables are not replenished properly, thereby turning regions to arid land and deserts. Unless effective irrigation methods are used, potential evapotranspiration may be actually greater than precipitation provided by nature. The soil therefore dries out creating an arid landmass. The earth and its inhabitants can sustain only if creative methods of clean water conservation ideas are effectively implemented. (Co-author: Dr. Mysore Narayanan) References: http://www.epa.gov/oaintrnt/water/http://www.usda.gov/wps/portal/usda/usdahome?navid=conservationhttp://www.ecy.wa.gov/programs/wr/ws/wtrcnsv.htmlhttp://www.sandiego.gov/water/conservation/http://www.swcs.org/http://www.awwa.org/resources-tools/water-knowledge/water-conservation.aspxhttp://www.benefits-of-recycling.com/waterconservationmethods/

  16. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  17. Innovating Conservation Agriculture: The Case of No-Till Cropping

    ERIC Educational Resources Information Center

    Coughenour, C. Milton

    2003-01-01

    The extensive sociological studies of conservation agriculture have provided considerable understanding of farmers' use of conservation practices, but attempts to develop predictive models have failed. Reviews of research findings question the utility of the conceptual and methodological perspectives of prior research. The argument advanced here…

  18. Biodiversity conservation in running waters

    SciTech Connect

    Allan, J.D. ); Flecker, A.S. )

    1993-01-01

    In the concerns about biodiversity conservation, fresh waters have received less attention than tropical forests and oceans. However, running waters harbor a diverse panoply of species, habitats, and ecosystems, including some of the most threatened and many having great value to human society. An overview of the biological diversity of running waters and the state of imperilment is presented. Six major factors that threaten destruction of running water species and ecosystems are discussed: habitat loss and degradation; species invasions; overharvesting; secondary extinctions; chemical and organic pollution; global climate change. General measures for recovery and restoration of running waters conclude the article.

  19. Precision Farming and Conservation Advances Agricultural Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To many, Precision Farming, more formally termed Precision Agriculture, seems like an oxymoron. Yet site-specific management makes sense to an exponentially growing number of farmers. So where is Precision Farming headed? The short answer is that it is being extended from a focus on crop productio...

  20. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Commodity Credit Corporation Agricultural Water Enhancement Program AGENCY: Commodity Credit Corporation and... Agricultural Water Enhancement Program (AWEP) by amending section 1240I of the Food ] Security Act of 1985. The... technical assistance to agricultural producers to implement agricultural water enhancement activities...

  1. Citizens' preferences for the conservation of agricultural genetic resources

    PubMed Central

    Pouta, Eija; Tienhaara, Annika; Ahtiainen, Heini

    2014-01-01

    Evaluation of conservation policies for agricultural genetic resources (AgGR) requires information on the use and non-use values of plant varieties and animal breeds, as well as on the preferences for in situ and ex situ conservation. We conducted a choice experiment to estimate citizens' willingness to pay (WTP) for AgGR conservation programmes in Finland, and used a latent class model to identify heterogeneity in preferences among respondent groups. The findings indicate that citizens have a high interest in the conservation of native breeds and varieties, but also reveal the presence of preference heterogeneity. Five respondent groups could be identified based on latent class modeling: one implying lexicographic preferences, two with reasoned choices, one indicating uncertain support and one with a preference for the current status of conservation. The results emphasize the importance of in situ conservation of native cattle breeds and plant varieties in developing conservation policies. PMID:25566324

  2. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  3. Domestic water conservation potential in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdulrazzak, Mohammed J.; Khan, Muhammad Z. A.

    1990-03-01

    Domestic water conservation in arid climates can result in efficient utilization of existing water supplies. The impacts of conservation measures such as the installation of water-saving devices, water metering and pricing schemes, water rationing and public awareness programs, strict plumbing codes, penalties for wasting water, programs designed to reduce leakage from public water lines and within the home, water-efficient landscaping, economic and ethical incentives are addressed in detail. Cost savings in arid climates, with particular reference to Saudi Arabia, in relation to some conservation techniques, are presented. Water conservation technology and tentative demonstration and implementation of water conservation programs are discussed.

  4. A survey of methods for implementing and documenting water conservation in New York

    USGS Publications Warehouse

    Linsey, Kristin S.; Reynolds, Richard J.

    2013-01-01

    Water conservation methods and best management practices (BMPs) for water conservation are described for major categories of non-drinking-water users, including—but not limited to—industrial, commercial, power-generation, agricultural, and institutional categories. The BMPs were drawn from a literature search of reports published by state agencies, Federal agencies, the U.S. military, colleges and universities, and water-related organizations that have studied and evaluated various water conservation methods in the municipal supply, industrial, commercial, institutional, and agricultural water-use sectors. An annotated bibliography of references pertinent to water conservation and (or) best management practices in water conservation is included.

  5. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity

  6. Shallow-water conservation laws

    NASA Astrophysics Data System (ADS)

    Ostapenko, V. V.

    2015-10-01

    The derivation of basic conservation laws in the shallow-water theory from the multidimensional integral laws of conservation of mass and total momentum describing the plane-parallel flow of an ideal incompressible fluid above a horizontal bottom is proposed. The restrictions on flow parameters arising in this case have the integral form and are much weaker in comparison with the requirement of flow potentiality and the condition of long-wavelength approximation. The last fact substantiates the use of the shallow-water model for the mathematical modeling of a much wider class of wave flows, the parameters of which are not related directly to the restrictions of the long-wavelength approximation.

  7. Water Conservation Education with a Rainfall Simulator.

    ERIC Educational Resources Information Center

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  8. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water...

  9. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water...

  10. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water...

  11. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water...

  12. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water...

  13. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature

    PubMed Central

    Shackelford, Gorm E; Steward, Peter R; German, Richard N; Sait, Steven M; Benton, Tim G

    2015-01-01

    Aim Conservation conflict takes place where food production imposes a cost on wildlife conservation and vice versa. Where does conservation impose the maximum cost on production, by opposing the intensification and expansion of farmland? Where does conservation confer the maximum benefit on wildlife, by buffering and connecting protected areas with a habitable and permeable matrix of crop and non-crop habitat? Our aim was to map the costs and benefits of conservation versus production and thus to propose a conceptual framework for systematic conservation planning in agricultural landscapes. Location World-wide. Methods To quantify these costs and benefits, we used a geographic information system to sample the cropland of the world and map the proportion of non-crop habitat surrounding the cropland, the number of threatened vertebrates with potential to live in or move through the matrix and the yield gap of the cropland. We defined the potential for different types of conservation conflict in terms of interactions between habitat and yield (potential for expansion, intensification, both or neither). We used spatial scan statistics to find ‘hotspots’ of conservation conflict. Results All of the ‘hottest’ hotspots of conservation conflict were in sub-Saharan Africa, which could have impacts on sustainable intensification in this region. Main conclusions Systematic conservation planning could and should be used to identify hotspots of conservation conflict in agricultural landscapes, at multiple scales. The debate between ‘land sharing’ (extensive agriculture that is wildlife friendly) and ‘land sparing’ (intensive agriculture that is less wildlife friendly but also less extensive) could be resolved if sharing and sparing were used as different types of tool for resolving different types of conservation conflict (buffering and connecting protected areas by maintaining matrix quality, in different types of matrix). Therefore, both sharing and sparing

  14. Tillage methods for conserving soil water-Then and now

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of conserving water for producing crop has long been recognized and has become increasingly important because greater food production is needed for the world's increasing population and because of increasing competition for fresh water among agricultural, urban, industrial, and recrea...

  15. Laggards or Leaders: Conservers of Traditional Agricultural Knowledge in Bolivia

    ERIC Educational Resources Information Center

    Gilles, Jere L.; Thomas, Justin L.; Valdivia, Corinne; Yucra, Edwin S.

    2013-01-01

    Many sustainable agricultural practices are based on local and traditional farming knowledge. This article examines the conservation and loss of three traditional practices in the Bolivian Altiplano that agronomic research has shown increase the resiliency of small farmers in the face of climate-related risks. These practices are the use of…

  16. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    PubMed

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation. PMID:23326454

  17. Calapooia watershed, Oregon: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall goals of Assessing Trade-offs Between Crop Production and Ecological Services were to quantify linkages between conservation practices and biophysical responses including water quality and biological indicators, and to develop a model to assess tradeoffs between agricultural practices th...

  18. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    EPA Science Inventory

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  19. 21st Century Water Conservation Principles

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2013-12-01

    report details key priorities for the Agency: Many researchers are of the opinion that applying the principles of free market enterprise to water conservation ideas would result in a more efficient utilization of water supply and distribution everywhere. References: EPA's June 2011 Strategic Sustainability Performance Plan (SSPP) (PDF) (74 pp, 1MB) June 2010 EPA Strategic Sustainability Performance Plan (PDF) (67 pp, 3.8MB) U.S. EPA Policy Statement on Climate-Change Adaptation (PDF) (3pp, 55KB) Narayanan, Mysore. (2008). Hydrology, Water Scarcity and Market Economics. 68th AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 89, No. 53, Fall Meeting Supplement, 2009. H11E - 0801. Postel, Sandra L. The Last Oasis: Facing Water Scarcity. New York: W. W. Norton and Company. 1997. Falkenmark, M.J. and Rockström, J. (2004). Balancing Water For Humans and Nature. Sterling, VA. Earthscan. Giordano, M. (2006) Agricultural Groundwater Use and Rural Livelihoods Journal of Hydrogeology. 14, 310 - 318. Allan, J.A. (2003). Virtual Water. Useful Concept or Misleading Metaphor? Water International. 28, 4-11. Vörsömarty, C.J., Douglas, E.M., Green, P.A. and Revenga, C. 2005. Geospatial Indicators of Energing Water Stress. Ambio, 34. 230-236.

  20. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  1. Biodiversity conservation in agriculture requires a multi-scale approach

    PubMed Central

    Gonthier, David J.; Ennis, Katherine K.; Farinas, Serge; Hsieh, Hsun-Yi; Iverson, Aaron L.; Batáry, Péter; Rudolphi, Jörgen; Tscharntke, Teja; Cardinale, Bradley J.; Perfecto, Ivette

    2014-01-01

    Biodiversity loss—one of the most prominent forms of modern environmental change—has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation. PMID:25100703

  2. Some Interesting Facts about Water and Water Conservation

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  3. Water Conservation : The Struggle Over Definition

    NASA Astrophysics Data System (ADS)

    Baumann, Duane D.; Boland, John J.; Sims, John H.

    1984-04-01

    During the 1970's much attention was focused on the role of water conservation in the planning and management of urban water supplies, and actions to implement water conservation were taken at all levels of government. Yet many policies and programs appear to rely on conceptions of water conservation which confuse supply and demand oriented strategies or which inefficiently conserve water at the expense of other scarce resources. Through an analysis of the underlying concepts and values, a definition of water conservation is reached which is both precise and practical and which provides a sound basis for the development of water conservation policies. Examples drawn from recent field studies illustrate the application of the definition.

  4. Multiple Knowledges for Agricultural Production: Implications for the Development of Conservation Agriculture in Kenya and Uganda

    ERIC Educational Resources Information Center

    Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay

    2014-01-01

    Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…

  5. Climate change impacts on soil and water conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2003 report of the Soil and Water Conservation Society concluded that changes in long-term precipitation may substantial impact runoff and soil erosion. These findings call for a review of current approaches to estimating runoff and soil erosion from agricultural lands, enhancements to soil and wa...

  6. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  7. The value of recycling on water conservation.

    SciTech Connect

    Ludi-Herrera, Katlyn D.

    2013-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  8. Nitrogen in agricultural systems: Implications for conservation policy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is an important agricultural input that is critical for providing food to feed a growing world population. However, the introduction of large amount of reactive nitrogen into the environment has a number of undesirable impacts on water, terrestrial, and atmospheric resources. Careful manage...

  9. TURNING PRECISION AGRICULTURE INFORMATION INTO PRECISION CONSERVATION DECISIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For over a decade (1991-2003), precision agriculture methods were used to intensively monitor crop, soil, and water quality information on a typical claypan-soil field in Missouri. Many field properties were found to vary greatly within this somewhat flat, uniform-looking field, including grain yiel...

  10. Pesticide use and biodiversity conservation in the Amazonian agricultural frontier

    PubMed Central

    Schiesari, Luis; Waichman, Andrea; Brock, Theo; Adams, Cristina; Grillitsch, Britta

    2013-01-01

    Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practices, including pesticide use. Focusing on the Amazonian frontier, we show that producers have varying access to resources, knowledge, control and reward mechanisms to improve land management practices. With poor education and no technical support, pesticide use by smallholders sharply deviated from agronomical recommendations, tending to overutilization of hazardous compounds. By contrast, with higher levels of technical expertise and resources, and aiming at more restrictive markets, large-scale producers adhered more closely to technical recommendations and even voluntarily replaced more hazardous compounds. However, the ecological footprint increased significantly over time because of increased dosage or because formulations that are less toxic to humans may be more toxic to other biodiversity. Frontier regions appear to be unique in terms of the conflicts between production and conservation, and the necessary pesticide risk management and risk reduction can only be achieved through responsibility-sharing by diverse stakeholders, including governmental and intergovernmental organizations, NGOs, financial institutions, pesticide and agricultural industries, producers, academia and consumers. PMID:23610177

  11. Pesticide use and biodiversity conservation in the Amazonian agricultural frontier.

    PubMed

    Schiesari, Luis; Waichman, Andrea; Brock, Theo; Adams, Cristina; Grillitsch, Britta

    2013-06-01

    Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practices, including pesticide use. Focusing on the Amazonian frontier, we show that producers have varying access to resources, knowledge, control and reward mechanisms to improve land management practices. With poor education and no technical support, pesticide use by smallholders sharply deviated from agronomical recommendations, tending to overutilization of hazardous compounds. By contrast, with higher levels of technical expertise and resources, and aiming at more restrictive markets, large-scale producers adhered more closely to technical recommendations and even voluntarily replaced more hazardous compounds. However, the ecological footprint increased significantly over time because of increased dosage or because formulations that are less toxic to humans may be more toxic to other biodiversity. Frontier regions appear to be unique in terms of the conflicts between production and conservation, and the necessary pesticide risk management and risk reduction can only be achieved through responsibility-sharing by diverse stakeholders, including governmental and intergovernmental organizations, NGOs, financial institutions, pesticide and agricultural industries, producers, academia and consumers. PMID:23610177

  12. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  13. Effects of agricultural conservation practices on N loads in the Mississippi-atchafalaya river basin.

    PubMed

    Santhi, C; Arnold, J G; White, M; Di Luzio, M; Kannan, N; Norfleet, L; Atwood, J; Kellogg, R; Wang, X; Williams, J R; Gerik, T

    2014-11-01

    A modeling framework consisting of a farm-scale model, Agricultural Policy Environmental Extender (APEX); a watershed-scale model, Soil and Water Assessment Tool (SWAT); and databases was used in the Conservation Effects Assessment Project to quantify the environmental benefits of conservation practices on cropland. APEX is used to simulate conservation practices on cultivated cropland and Conservation Reserve Program land to assess the edge-of-field water-quality benefits. Flow and pollutant loadings from APEX are input to SWAT. SWAT simulates the remaining noncultivated land and routes flow and loads generated from noncultivated land, point sources, and cropland to the basin outlet. SWAT is used for assessing the effects of practices on local and in-stream water-quality benefits. Each river basin is calibrated and validated for streamflow and loads at multiple gauging stations. The objectives of the current study are to estimate the effects of currently existing and additional conservation practices on total N (TN) loads in the Mississippi-Atchafalaya River Basin (MARB) and draw insights on TN load reductions necessary for reducing the hypoxic zone in the Gulf of Mexico. The effects of conservation practice scenarios on local and in-stream (riverine) water quality are evaluated. Model results indicate that conservation practices currently on cropland have reduced the TN losses to local waters between 20 and 59% in the six river basins within MARB and the TN load discharged to the Gulf by 17%. Further water-quality improvement can be obtained in the MARB with additional conservation treatment. PMID:25602207

  14. Kortright Centre for Conservation: Water Theme.

    ERIC Educational Resources Information Center

    Foster, Allan

    One of a series of four reports on specific conservation themes, this report (on water) is intended to consolidate techniques which will best communicate the legislation, role, objectives, and practices of the Metropolitan Toronto and Region Conservation Authority in land and water management: to retain the physical characteristics of the land in…

  15. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects. PMID:27007730

  16. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  17. Conservation implications of amphibian habitat relationships within channelized agricultural headwater streams in the midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for removing water from agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States. Channelized agricultural headwater s...

  18. Monitoring and APEX modeling of no-till and reduced-till in tile drained agricultural landscapes for water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evaluation of agricultural practices through monitoring and modeling is necessary for the development of more effective conservation programs and policies. No-till and reduced-till are both agricultural conservation practices widely promoted for their proven ability to conserve water and reduce ...

  19. Water conservation--whole effluent toxicity paradox.

    PubMed

    Fort, Douglas J; Meyers, Jeffrey D; Page, Michael W; Hercyk, Neta L

    2013-06-01

    Total dissolved solids (TDS) management in water has become an increasingly important topic as competition for water supply sources and the intensity of use both increase. Regulatory failure of National Pollutant Discharge Elimination System (NPDES) whole effluent toxicity (WET) tests is one of several potential factors in managing TDS concentrations in effluent. Consequently, WET tests have become a de facto concentration standard that sets the limit for the intensity of water use and the amount of water conservation feasibly obtained for a facility. Conflicting regulations dealing with the application of mixing zones and antidegradation policies can prevent water conservation and actually result in the unintended consequence of causing more water use. The impact of TDS on NPDES-required WET tests, conflicting regulations dealing with the application of mixing zones that are counter-productive to water conservation, alternative practices currently being used, and other means of rectifying this paradox are discussed. PMID:23833811

  20. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. PMID:25555206

  1. Water Conservation in Schools and Institutions.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Suggests measures for New Jersey schools to take to decrease building water consumption by 25 per cent during the present state water shortage. Appended is a short list of water conservation instructional materials intended to supplement a bibliography published in the February, 1981 issue of this magazine (pp15-16). (SJL)

  2. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  3. Will farmers save water? A theoretical analysis of groundwater conservation policies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of agricultural irrigation systems has generated significant increases in food production and farm income. However, unplanned and unconstrained groundwater use could also cause serious consequences. To extend the economic life of groundwater, water conservation issues have become the...

  4. Tillage-based water conservation on farms in southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage, particularly no-till, has a significant role to play toward achieving agricultural water conservation goals envisaged in Georgia’s Comprehensive Statewide Water Management Planning Act of 2004. We base this on scientific evidence from across the country and our own research th...

  5. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    USGS Publications Warehouse

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  6. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  7. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  8. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  9. Water-conserving cooling tower treatment

    SciTech Connect

    Mathie, A.J.

    1996-12-31

    Water conservation in cooling towers and evaporative coolers can finally become a reality. Also, fouled closed hot and chilled water systems can be restored to near original efficiency using the same technology. The barrier limiting the traditional water treatment industry from serious involvement in water conservation is the lack of a really good chemical to control scale. Poor scale inhibitors are the reason for a heavy bleed. Minerals concentrated by evaporation is wasted to the sewer while low solids make-up water fills the tower. Water conservation is important because of the increasing usable water shortage, the cost to add infrastructure to deliver increasing amounts of water to accommodate growth and the limitations imposed on disposal to the sewer. Now, due to innovations in chemical treatment, users of cooling towers and evaporative coolers can conserve water. In this presentation the author assumes the audience has some knowledge of traditional water treatment. Except for a few general references to establish common understanding, the author confines his remarks to discussing an advanced technology developed by DIAS, Inc., and the economics of its use.

  10. Water conservation in xerophilic birds.

    PubMed

    Skadhauge, E

    1976-08-01

    Adaptation of birds to dry climates involves decrease in relative evaporative water loss (mechanism unknown); decrease in GFR; and high urine osmolality in the dehydrated state in conjunction with cloacal resorption parameters, which allows the urine to enter the cloaca without a further water loss. The net result of the adaptations is such that the best adapted birds, such as the budgerygah (12) and the zebra finch (13) fed dry seeds alone can live without water. Similar features have been observed also in the best adapted desert rodents (27). Finally, birds tolerate a 7 to 13% increase in plasma osmolality (9). Tucker (28) has calculated that the budgerygah has fuel for 14 h flight; we have calculated that it also has water for 14 h (12) at neutral temperature and humidity. This is better than the Jumbo Jet, which can only fly for 12 h. PMID:977281

  11. Engaging Stakeholders To Define Feasible and Desirable Agricultural Conservation in Western Lake Erie Watersheds.

    PubMed

    Kalcic, Margaret McCahon; Kirchhoff, Christine; Bosch, Nathan; Muenich, Rebecca Logsdon; Murray, Michael; Griffith Gardner, Jacob; Scavia, Donald

    2016-08-01

    Widespread adoption of agricultural conservation measures in Lake Erie's Maumee River watershed may be required to reduce phosphorus loading that drives harmful algal blooms and hypoxia. We engaged agricultural and conservation stakeholders through a survey and workshops to determine which conservation practices to evaluate. We investigated feasible and desirable conservation practices using the Soil and Water Assessment Tool calibrated for streamflow, sediment, and nutrient loading near the Maumee River outlet. We found subsurface placement of phosphorus applications to be the individual practice most influential on March-July dissolved reactive phosphorus (DRP) loading from row croplands. Perennial cover crops and vegetated filter strips were most effective for reducing seasonal total phosphorus (TP) loading. We found that practices effective for reducing TP and DRP load were not always mutually beneficial, culminating in trade-offs among multiple Lake Erie phosphorus management goals. Adoption of practices at levels considered feasible to stakeholders led to nearly reaching TP targets for western Lake Erie on average years; however, adoption of practices at a rate that goes beyond what is currently considered feasible will likely be required to reach the DRP target. PMID:27336855

  12. Barriers to Uptake of Conservation Agriculture in southern Africa: Multi-level Analyses from Malawi

    NASA Astrophysics Data System (ADS)

    Dougill, Andrew; Stringer, Lindsay; Whitfield, Stephen; Wood, Ben; Chinseu, Edna

    2015-04-01

    Conservation agriculture is a key set of actions within the growing body of climate-smart agriculture activities being advocated and rolled out across much of the developing world. Conservation agriculture has purported benefits for environmental quality, food security and the sustained delivery of ecosystem services. In this paper, new multi-level analyses are presented, assessing the current barriers to adoption of conservation agriculture practices in Malawi. Despite significant donor initiatives that have targeted conservation agriculture projects, uptake rates remain low. This paper synthesises studies from across 3 levels in Malawi: i.) national level- drawing on policy analysis, interviews and a multi-stakeholder workshop; ii.) district level - via assessments of development plans and District Office and extension service support, and; iii) local level - through data gained during community / household level studies in Dedza District that have gained significant donor support for conservation agriculture as a component of climate smart agriculture initiatives. The national level multi-stakeholder Conservation Agriculture workshop identified three areas requiring collaborative research and outlined routes for the empowerment of the National Conservation Agriculture Task Force to advance uptake of conservation agriculture and deliver associated benefits in terms of agricultural development, climate adaptation and mitigation. District level analyses highlight that whilst District Development Plans are now checked against climate change adaptation and mitigation criteria, capacity and knowledge limitations exist at the District level, preventing project interventions from being successfully up-scaled. Community level assessments highlight the need for increased community participation at the project-design phase and identify a pressing requirement for conservation agriculture planning processes (in particular those driven by investments in climate

  13. Land Conservation in an Evolving Agricultural Industry: Trade-offs to Consider

    NASA Astrophysics Data System (ADS)

    Baker, J. S.; Murray, B. C.; McCarl, B. A.; Jackson, R. B.

    2008-12-01

    This study analyzes the interactions of land conservation policy with biofuel expansion using an economic model of the U.S. forest and agricultural sectors. The world agricultural industry is changing rapidly under emerging market and policy-based pressures. An important driver in the U.S. is the Renewable Fuels Standard (RFS), which mandates significant expansion in biofuels production (up to 36 billion gallons/year by 2022). Traditional land conservation practices such as the Conservation Reserve Program (CRP) are at risk in this changing agricultural climate, as the opportunity costs of reverting to cropland continue to rise. Large- scale reversion of CRP acreage is likely to lead to substantial losses in soil carbon, biodiversity, soil erosion protection, and water quality. However, given the increased competition for land resources, continued efforts to maintain the CRP could induce land use change (LUC) and agricultural development from even more sensitive ecosystems, including native grasslands and forests. This study uses economic modeling to study CRP reversion and LUC under multiple scenarios, including: 1) Baseline assumptions of growth in world agricultural demand and energy prices, with and without CRP reversion; 2) Implementation of the RFS while maintaining the CRP; and 3) RFS with CRP reversion allowed. The study is done using the FASOMGHG model (Lee, McCarl et al, 2008), which is well suited for this analysis as it: 1) Depicts land use competition between crops, pasture, CRP, and forestry over a 100 year period 2) Contains comprehensive GHG accounting across the sectors, 3) Allows land in the CRP to revert to cultivation at an economically optimal rate as land values increase, and 4) Extensively models biofuel and conventional agricultural production possibilities. Results generated to date show significant reversion to cultivation, even under the baseline (36% of the total CRP stock by 2020). Implementing the RFS further pressures conservation

  14. Monitoring the Effect of Wetland Conservation Practices in an Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the substantial effect of agriculture on the extent and ability of wetlands to function, the U.S. Department of Agriculture (USDA) serves a key role in wetland conservation and restoration. The USDA has implemented several different conservation programs (e.g., the Wetland Reserve Program) wi...

  15. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  16. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  17. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  18. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    PubMed

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. PMID:25463565

  19. Perennial grasses for energy and conservation: Evaluating some ecological agricultural, and economic issues

    SciTech Connect

    Downing, M.; Walsh, M.; McLaughlin, S.

    1995-11-01

    Perennial prairie grasses offer many advantages to the developing biofuels industry. High yielding varieties of native prairie grasses such as switchgrass, which combine lower levels of nutrient demand, diverse geographical growing range, high net energy yields and high soil and water conservation potential indicate that these grasses could and should supplement annual row crops such as corn in developing alternative fuels markets. Favorable net energy returns, increased soil erosion prevention, and a geographically diverse land base that can incorporate energy grasses into conventional farm practices will provide direct benefits to local and regional farm economies and lead to accelerated commercialization of conversion technologies. Displacement of row crops with perennial grasses will have major agricultural, economic, sociologic and cross-market implications. Thus, perennial grass production for biofuels offers significant economic advantages to a national energy strategy which considers both agricultural and environmental issues.

  20. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  1. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture.

    PubMed

    Visioli, Giovanna; Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  2. Glyphosate Resistant Palmer Amaranth - A Threat To Conservation Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate resistant Palmer amaranth is now present in throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity til...

  3. Glyphosate resistant weeds - a threat to conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  4. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  5. Water-Conserving Plant-Growth System

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  6. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  7. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M.

    2013-12-01

    Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008

  8. Water Conservation and Hydrological Transitions in Cities

    NASA Astrophysics Data System (ADS)

    Hornberger, G. M.; Gilligan, J. M.; Hess, D. J.

    2014-12-01

    A 2012 report by the National Research Council, Challenges and Opportunities in the Hydrologic Sciences, called for the development of "translational hydrologic science." Translational research in this context requires knowledge about the communication of science to decision makers and to the public but also improved understanding of the public by the scientists. This kind of knowledge is inherently interdisciplinary because it requires understanding of the complex sociotechnical dimensions of water, policy, and user relations. It is axiomatic that good governance of water resources and water infrastructure requires information about water resources themselves and about the institutions that govern water use. This "socio-hydrologic" or "hydrosociological" knowledge is often characterized by complex dynamics between and among human and natural systems. Water Resources Research has provided a forum for presentation of interdisciplinary research in coupled natural-human systems since its inception 50 years ago. The evolution of ideas presented in the journal provides a basis for framing new work, an example of which is water conservation in cities. In particular, we explore the complex interactions of political, sociodemographic, economic, and hydroclimatological factors in affecting decisions that either advance or retard the development of water conservation policies.

  9. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation

    PubMed Central

    Durán, América P.; Duffy, James P.; Gaston, Kevin J.

    2014-01-01

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation. PMID:25143040

  10. Effects of Conservation Agriculture on Soil Physical Properties and Yield of Lentil in Northern Syria

    NASA Astrophysics Data System (ADS)

    Wahbi, Ammar; Miwak, Hisham; Singh, Raphy

    2014-05-01

    Conservation agriculture (CA) aims to achieve sustainable and profitable agriculture and subsequently improve livelihoods of farmers based on three main components, i.e. minimum or no tillage, retention of crop residues and use of crop rotation. However, to promote CA in semi-arid areas where precipitation is erratic, low, and falls over short periods in winter, its effects on soil and crop yield have to be investigated. The present study was conducted at the main research station of the International Center for Agricultural Research in the Dry Areas (ICARDA), Syria, during the agricultural season of 2010-2011, in the frame of a long term trial (2003-2011), where two treatments; i.e. conservation versus conventional agriculture (replicated twice), and six varieties of lentil (early, medium and late maturity genotypes; 2 each), selected from 100 varieties, were used. Soil samples were taken (before planting and after harvesting), to determine soil bulk density, particle density and total porosity. Aggregate stability was also determined using dry and wet sieving methods for the 0-15 cm soil depth, and the effective diameter of the aggregate was calculated for both treatments of conservation agriculture (CA) and conventional tillage (CT). Soil moisture was monitored in the top soil layer (0-15 cm) using Time Domain Reflectometry (TDR) on a weekly or two weekly-intervals. Soil moisture release curve was done for disturbed, 2 mm dry sieved soil at 0-15, 15-30, 30-45 and 45-60 cm depth using pressure plate chamber. Dry plant production (oven dry at 70°C) was estimated at the harvesting stage, and then threshed to estimate grain yield. CA showed higher (p = 0.001) soil moisture values than CT. The difference in volumetric soil moisture content between CA and CT during the studied period ranged from 20 to 30 %. Volumetric water content was higher for, CA compared with CT, at a given soil water potential especially at the lower pressure; this observation was consistent

  11. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916-2009

    USGS Publications Warehouse

    Jones, C.S.; Schilling, K.E.

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  12. Herbicide and cover crop residue integration for amaranth control in conservation agriculture cotton and implications for resistance management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture practices are threatened by glyphosate-resistant Palmer amaranth. Integrated practices including PRE herbicides and high-residue conservation agriculture systems may decrease Amaranth emergence. Field experiments were conducted from autumn 2006 through cash crop harvest in...

  13. 75 FR 9921 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... Fish and Wildlife Service San Diego County Water Authority Natural Communities Conservation Program... Diego County Water Authority (Water Authority/ Applicant) has applied to us, the U.S. Fish and Wildlife... the Draft Water Authority Natural Communities Conservation Program/Habitat Conservation Plan...

  14. Identifying Potential Recommendation Domains for Conservation Agriculture in Ethiopia, Kenya, and Malawi

    NASA Astrophysics Data System (ADS)

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km2) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5 % of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21 % of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  15. Identifying potential recommendation domains for conservation agriculture in Ethiopia, Kenya, and Malawi.

    PubMed

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km(2)) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5% of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21% of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries. PMID:25331642

  16. Agricultural management options for climate variability and change: conservation tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adapting to climate variability and change can be achieved through a broad range of management alternatives and technological advances. This publication is focused on the use of conservation tillage in crop production systems. The publication outlines ways that conservation tillage can reduce risk r...

  17. Glyphosate-resistant palmer amaranth: a threat to conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage reduces the physical movement of soil to the minimum required for crop establishment and production. Adoption of conservation tillage increased dramatically with the advent of transgenic, glyphosate-resistant crops that permitted in-season, over-the-top use of glyphosate, a broa...

  18. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  19. A Water Conservation Digital Library Using Ontologies

    NASA Astrophysics Data System (ADS)

    Ziemba, Lukasz; Cornejo, Camilo; Beck, Howard

    New technologies are emerging that assist in organizing and retrieving knowledge stored in a variety of forms (books, papers, models, decision support systems, databases), but they can only be evaluated through real world applications. Ontology has been used to manage the Water Conservation Digital Library holding a growing collection of various types of digital resources in the domain of urban water conservation in Florida, USA. The ontology based back-end powers a fully operational web interface, available at http://library.conservefloridawater.org . The system has already demonstrated numerous benefits of the ontology application, including: easier and more precise finding of resources, information sharing and reuse, and proved to effectively facilitate information management.

  20. Spatial dynamics of water management in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Muralidharan, Daya; Knapp, Keith C.

    2009-05-01

    Irrigated agriculture provides 40% of worldwide food supplies but uses large amounts of scarce freshwater and contributes to environmental degradation. At the very core of this problem lie decisions made by irrigators subject to biophysical relations. This research develops a microeconomic model of irrigation management taking into account the dynamics of plant growth over the season, spatial variability in infiltration of applied irrigation water, and fundamental principles from subsurface hydrology. The analysis shows that spatial variability in water infiltration common to traditional irrigation systems increases both applied irrigation water and deep percolation flows by very substantial amounts compared to uniform infiltration. The analysis demonstrates that efficient irrigation management can significantly reduce both applied water and deep percolation at relatively low costs, at least up to a certain level. A long-run analysis of optimal irrigation systems including capital costs indicates that traditional furrow systems are economically efficient over a wide range of water prices and deep percolation costs. Overall, the results indicate that optimal irrigation management can achieve significant resource conservation and pollution control with low loss in agricultural net benefits and without land retirement, investment in capital-intensive systems, or crop switching.

  1. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water...

  2. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water...

  3. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water...

  4. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water...

  5. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water...

  6. Designing impact assessments for evaluating ecological effects of agricultural conservation practices on streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation practices are regularly implemented within agricultural watersheds throughout the United States without evaluating their ecological impacts. Scientific evaluations documenting how habitat and aquatic biota within streams respond to these practices are needed for evaluating the effects o...

  7. Deficit irrigation for reducing agricultural water use.

    PubMed

    Fereres, Elias; Soriano, María Auxiliadora

    2007-01-01

    At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas. PMID:17088360

  8. Impact of the agricultural research service watershed assessment studies on the conservation effects assessment project cropland national assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA initiated the Conservation Effects Assessment Project (CEAP) in 2002 to analyze societal and environmental benefits gained from the increased conservation program funding provided in the 2002 Farm Bill. The Natural Resources Conservation Service (NRCS), Agricultural Research Service (ARS), and...

  9. Effects of Governance on Availability of Land for Agriculture and Conservation in Brazil.

    PubMed

    Sparovek, Gerd; Barretto, Alberto Giaroli de Oliveira Pereira; Matsumoto, Marcelo; Berndes, Göran

    2015-09-01

    The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives. PMID:26241204

  10. Optimal residential water conservation strategies considering related energy in California

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-06-01

    Although most freshwater resources are used in agriculture, residential water use is a much more energy intensive user. Based on this, we analyze the increased willingness to adopt water conservation strategies if energy cost is included in the customers' utility function. Using a Water-Energy-CO2 emissions model for household water end uses and probability distribution functions for parameters affecting water and water-related energy use in 10 different locations in California, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills and costs given both water and energy price shocks. Results can provide an upper bound of household savings for customers with well-behaved preferences, and show greater adoption rates to reduce energy intensive appliances when energy is accounted, resulting in an overall 24% reduction in indoor water use that represents a 30% reduction in water-related energy use and a 53% reduction in household water-related CO2 emissions. Previous use patterns and water and energy rate structures can affect greatly the potential benefits for customers and so their behavior. Given that water and energy are somewhat complementary goods for customers, we use results of the optimization to obtain own-price and cross-price elasticities of residential water use by simulating increases in water and energy prices. While the results are highly influenced by assumptions due to lack of empirical data, the method presented has no precedent in the literature and hopefully will stimulate the collection of additional relevant data.

  11. The Subtropical Grasslands LTAR: balancing agricultural production and conservation goals

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; Boughton, E.; Bernacchi, C.; DeLucia, E. H.; Sparks, J. P.; Silveira, M.; Boughton, R. K.; Swain, H.

    2015-12-01

    Subtropical grazing lands of peninsular Florida have been shaped by a long evolutionary history of lightning ignited fire followed by flooding resulting in a vast treeless prairie region in south-central Florida. In these grassland ecosystems fire return intervals are between 1-3 years. Beginning in the 1500's, Andalusian cattle began grazing in this region and the cattle industry began in earnest in the late 1800s/early 1900s. Today, Florida's prairie region is largely occupied by cow/calf ranch operations and also occupies the Northern Everglades watershed where water quality/quantity issues are at the forefront of environmental concerns. Florida ranches are characterized by a gradient of management intensities, ranging from sown pastures (most intensively managed) to semi-native pastures with a mix of introduced and native grasses, and rangeland (least managed ecosystem). Located at Archbold Biological Station, MacArthur Agro-ecology Research Center, and University of Florida Range Cattle Research Center (www.maerc.org; www.rcrec-ona.ifas.ufl.edu), a primary goal of the Subtropical Grasslands US Department of Agriculture Long-term Agro-Ecosystem Research LTAR is to balance intensification of sown pastures while enhancing management of native systems in a way that maximizes other ecosystem services (regulating, supporting, cultural, biodiversity). Here, we describe our proposed experimental design to compare ecosystem delivery from conventional and aspirational management regimes in sown pastures and native systems. Aspirational management goals are to (i) maximize productivity in sown pastures with a neutral effect on other ecosystem services, and (ii) manage native systems in a way that maximizes regulating, supporting, and biodiversity ecosystem services by utilizing patch burn grazing. Ultimately, we will determine if enhanced production in sown pasture under the aspirational management system can offset any reduction in productivity in semi

  12. Supervised Occupational Experience Record Book for Agricultural Resource Conservation, Environmental Management and Forestry.

    ERIC Educational Resources Information Center

    Nickles, Tom

    The record book was designed to meet the occupational experience recordkeeping requirements of vocational agriculture students enrolled in forestry, environmental management, or agriculture resource conservation programs in Ohio. It provides guidelines and forms for recording on-the-job, in-the-school lab, and occupational experience project data.…

  13. Integrating herbicides in a high-residue cover crop conservation agriculture setting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture systems provide a means to ensure long-term agricultural productivity, protect environmental quality, and reduce inputs into farming systems. Weed control in these systems rely on multiple tactics to achieve effective weed management while limiting chemical inputs. Practic...

  14. Effects of agricultural conservation practices on oxbow lake watersheds in the Mississippi River alluvial plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, agricultural lands are considered to major sources of nonpoint source pollutants such as sediment, pesticides and nutrients in the United States. While conservation practices have been tested for their effectiveness in reducing agricultural related pollutants on test plot scales, they typ...

  15. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    ERIC Educational Resources Information Center

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  16. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  17. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  18. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  19. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  20. Relationships Among Macroinvertebrate Community Variables and Water Quality Parameters in Modified Agricultural Receiving Streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States have been highly modified to receive agricultural drainage. Effective implementation of conservation practices to reduce nutrient and pesticide loadings requires information about the influence of water quality on biotic communities. We evaluate...

  1. Water management, purification, and conservation in arid climates. Volume 3: Water conservation

    SciTech Connect

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three things in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 3 addresses aspects of water conservation and includes rainwater harvesting and wastewater reuse and reclamation.

  2. A Hearing Conservation Program for Wisconsin Youth Working in Agriculture.

    ERIC Educational Resources Information Center

    Knobloch, Mary Jo; Broste, Steven K.

    1998-01-01

    Examined the effects of a multicomponent, four-year hearing-conservation program for farm youth. Researchers conducted pre- and postintervention hearing tests in control and intervention students. Surveys examined family hearing loss, farm work, noise exposure, and hearing-protection device (HPD) utilization. Significantly more intervention…

  3. A planning approach for agricultural watersheds using precision conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This brief article, written for a non-technical audience, discusses a recently-developed approach for watershed planning and nutrient reduction. The approach can help local stakeholders identify conservation practices that are locally preferred and determine how those practices can be distributed ac...

  4. Assessing the extent of conservation tillage in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue (or plant litter) on the soil surface can decrease soil erosion and runoff and improve soil quality. Quantification of crop residue cover is required to evaluate the effectiveness of conservation tillage practices as well as the extent of biofuel harvesting. Remote sensing techniques ca...

  5. The alignment of agricultural and nature conservation policies in the European Union.

    PubMed

    Hodge, Ian; Hauck, Jennifer; Bonn, Aletta

    2015-08-01

    Europe is a region of relatively high population density and productive agriculture subject to substantial government intervention under the Common Agricultural Policy (CAP). Many habitats and species of high conservation interest have been created by the maintenance of agricultural practices over long periods. These practices are often no longer profitable, and nature conservation initiatives require government support to cover the cost for them to be continued. The CAP has been reformed both to reduce production of agricultural commodities at costs in excess of world prices and to establish incentives for landholders to adopt voluntary conservation measures. A separate nature conservation policy has established an extensive series of protected sites (Natura 2000) that has, as yet, failed to halt the loss of biodiversity. Additional broader scale approaches have been advocated for conservation in the wider landscape matrix, including the alignment of agricultural and nature conservation policies, which remains a challenge. Possibilities for alignment include further shifting of funds from general support for farmers toward targeted payments for biodiversity goals at larger scales and adoption of an ecosystem approach. The European response to the competing demands for land resources may offer lessons globally as demands on rural land increase. PMID:25998969

  6. Report of the Public's Comments on the RCA Draft Documents, January-March 1980. [Soil and Water Resources Conservation Act].

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    The Soil and Water Resources Conservation Act of 1977 (RCA) directed the United States Department of Agriculture (USDA) to assess the country's nonfederal soil and water resources and to develop a program to conserve these and related natural resources. During this process, the USDA prepared and circulated for public comment a draft appraisal,…

  7. Muddy Water and American Agriculture: How to Best Control Sedimentation From Agricultural Land?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Stephen B.; Lee, John Gary; Beasley, David B.

    1985-08-01

    The role of agricultural sediment in water quality is well documented. While numerous policies have been advocated and initiated, it still appears to be a significant problem. The present analysis concentrates on the outcome of several policy alternatives in terms of sediment delivery and project costs. These results are obtained by combining social science investigation of probable farmer behavior under a variety of scenarios with a hydrologic simulation model which predicts the sediment delivery with different land uses. This integration of social science behavioral research with the hydrologic response simulation model provides a framework to assess the environmental effectiveness of alternative policies aimed at reducing sedimentation. While the results presented here are preliminary, this approach seems to offer great promise as a tool for federal, state and local conservation agencies in their efforts to efficiently and effectively use their limited resources to reduce soil loss.

  8. Data on four criteria for targeting the placement of conservation buffers in agricultural landscapes.

    PubMed

    Qiu, Zeyuan; Dosskey, Michael G; Kang, Yang

    2016-06-01

    Four criteria are generally used to prioritize agricultural lands for placing conservation buffers. The criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate that capture conservation buffers' benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. This article describes the data used to derive the values of those attributes and a scheme to classify the values in multi-criteria analysis of conservation buffer placement in "Choosing between alternative placement strategies for conservation buffers using borda count" [1]. PMID:27222843

  9. Data on four criteria for targeting the placement of conservation buffers in agricultural landscapes

    PubMed Central

    Qiu, Zeyuan; Dosskey, Michael G.; Kang, Yang

    2016-01-01

    Four criteria are generally used to prioritize agricultural lands for placing conservation buffers. The criteria include soil erodibility, hydrological sensitivity, wildlife habitat, and impervious surface rate that capture conservation buffers’ benefits in reducing soil erosion, controlling runoff generation, enhancing wildlife habitat, and mitigating stormwater impacts, respectively. This article describes the data used to derive the values of those attributes and a scheme to classify the values in multi-criteria analysis of conservation buffer placement in “Choosing between alternative placement strategies for conservation buffers using borda count” [1]. PMID:27222843

  10. Nursery Production Technologies for Enhancing Water Quality Protection and Water Conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The broad objectives of the Floral and Nursery Research Initiative, Nursery Production Technologies for Enhancing Water Quality Protection and Water Conservation project are to develop economically feasible production systems and management practices that promote water conservation and protect water...

  11. Biodiversity conservation and agricultural sustainability: towards a new paradigm of 'ecoagriculture' landscapes.

    PubMed

    Scherr, Sara J; McNeely, Jeffrey A

    2008-02-12

    The dominant late twentieth century model of land use segregated agricultural production from areas managed for biodiversity conservation. This module is no longer adequate in much of the world. The Millennium Ecosystem Assessment confirmed that agriculture has dramatically increased its ecological footprint. Rural communities depend on key components of biodiversity and ecosystem services that are found in non-domestic habitats. Fortunately, agricultural landscapes can be designed and managed to host wild biodiversity of many types, with neutral or even positive effects on agricultural production and livelihoods. Innovative practitioners, scientists and indigenous land managers are adapting, designing and managing diverse types of 'ecoagriculture' landscapes to generate positive co-benefits for production, biodiversity and local people. We assess the potentials and limitations for successful conservation of biodiversity in productive agricultural landscapes, the feasibility of making such approaches financially viable, and the organizational, governance and policy frameworks needed to enable ecoagriculture planning and implementation at a globally significant scale. We conclude that effectively conserving wild biodiversity in agricultural landscapes will require increased research, policy coordination and strategic support to agricultural communities and conservationists. PMID:17652072

  12. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  13. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production. PMID:27344509

  14. Furrow Diking and Conservation Tillage to Conserve Soil and Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production in Georgia is limited. Increased water capture would improve natural water use and reduce supplemental irrigation amounts. We quantified water capturing and erosional characteristics of furrow dike tillage (DT) by comparing infiltration, runoff, and soil loss from a Tifton loamy sand...

  15. Water chemistry responses to hydraulic manipulation of an agricultural wetland

    NASA Astrophysics Data System (ADS)

    Powers, S.; Stanley, E. H.

    2011-12-01

    Small impoundments are often crucial factors for the movement of sediment, organic matter, water-borne nutrients, and toxic materials through river networks. By recent accounting, at least 2.6 million small artificial water bodies exist in the US alone. A large proportion of those structures occur in regions with high intensity of agriculture, such as in the Midwestern grain belt. While small impoundments are aging structures which appear to serve few purposes, some hold ecological and biogeochemical value as artificial wetlands. We documented instantaneous net fluxes of solute (chloride, sulfate, nitrate, ammonium, and soluble reactive phosphorus) through an artificial flow-through wetland in agricultural southern Wisconsin over 6 years which spanned removal of a small dam. Phased dewatering and dam removal ultimately converted the artificial wetland to a canal-like state (increase in mean water velocity from 0.08 to 0.22 m s-1). Mean net flux for chloride across the system averaged nearly 0 g d-1, indicating conservative transport and successful characterization of hydrology. In contrast, net fluxes for other solute forms were altered following loss of the wetland: a persistent net sulfate sink (5-10% of inputs retained), suggestive of sulfate-reducing bacteria, was reduced; seasonal (summer) net sinks for nitrate and ammonium, suggestive of uptake by algae and denitrifying bacteria, were reduced; temporal variability for the net flux of soluble reactive phosphorus was reduced. Overall, loss of the artificial wetland caused by dam removal shifted seasonal and annual net fluxes of biologically available solute toward export. Nutrient retention by artificial wetlands could be important for elemental budgets in regions which have high nutrient loading to surface and ground water.

  16. SOIL AND WATER CONSERVATION POLICY APPROACHES IN NORTH AMERICA, EUROPE, AND AUSTRALIA. (R825761)

    EPA Science Inventory

    Abstract

    Soil and water conservation policies and programs in developed countries in North America, Europe, and Australia are examined in the context of their effectiveness for addressing environmental degradation associated with technology-intensive agricultural syste...

  17. Soil and water conservation advances in the US-Review and assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides a brief summary of soil and water conservation activities in the past and looks to the future in the U.S. The U.S. is divided into seven regions. A summary of each region presents brief descriptions of the region’s extent, climate, soils, agricultural production, and soil and w...

  18. The times they are changing: soil and water conservation in the 21st century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changing climate, increased bio-energy demands, and population growth are anticipated to have significant impacts on soil and water conservation in agricultural watersheds in the United States. Only by looking beyond the traditional approaches of the last century and embracing an expanded view of so...

  19. Prevalence of conservation design in an agriculture-dominated landscape: the case of Northern Indiana.

    PubMed

    Crick, Julie; Prokopy, Linda Stalker

    2009-06-01

    We examined the prevalence of residential development that occurs with consideration of the natural features of the site, known as conservation design, within county-level planning jurisdictions across Northern Indiana. Using data from telephone interviews with representatives of planning departments, jurisdictions were ranked based on reported use of conservation design. Three categories of use emerged from the data: no use, use of individual practices associated with conservation design, and integration of multiple conservation design practices. Qualitative data analysis revealed that conservation design practices were not being used widely and, when used, were often used to fulfill stormwater requirements. Statistical analysis, using data from interviews, spatial data sets, and the U.S. Census Bureau, identified several significant positive predictors of the levels of conservation design use including conversion of forest or agricultural land cover to urban uses and education levels in the jurisdiction. Many of the interviewees noted that agricultural land is perceived to meet open space needs within their counties. Given that agricultural land does not fully meet all ecosystem needs, education about the benefits of other types of open space is suggested. PMID:19224272

  20. Prevalence of Conservation Design in an Agriculture-Dominated Landscape: The Case of Northern Indiana

    NASA Astrophysics Data System (ADS)

    Crick, Julie; Prokopy, Linda Stalker

    2009-06-01

    We examined the prevalence of residential development that occurs with consideration of the natural features of the site, known as conservation design, within county-level planning jurisdictions across Northern Indiana. Using data from telephone interviews with representatives of planning departments, jurisdictions were ranked based on reported use of conservation design. Three categories of use emerged from the data: no use, use of individual practices associated with conservation design, and integration of multiple conservation design practices. Qualitative data analysis revealed that conservation design practices were not being used widely and, when used, were often used to fulfill stormwater requirements. Statistical analysis, using data from interviews, spatial data sets, and the U.S. Census Bureau, identified several significant positive predictors of the levels of conservation design use including conversion of forest or agricultural land cover to urban uses and education levels in the jurisdiction. Many of the interviewees noted that agricultural land is perceived to meet open space needs within their counties. Given that agricultural land does not fully meet all ecosystem needs, education about the benefits of other types of open space is suggested.

  1. Conservation.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  2. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  3. Using changes in agricultural utility to quantify future climate-induced risk to conservation.

    PubMed

    Estes, Lyndon D; Paroz, Lydie-Line; Bradley, Bethany A; Green, Jonathan M H; Hole, David G; Holness, Stephen; Ziv, Guy; Oppenheimer, Michael G; Wilcove, David S

    2014-04-01

    Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. PMID:24372589

  4. Water Conservation with Water Saving Devices, Proceedings of a Conference. Extension Bulletin 421.

    ERIC Educational Resources Information Center

    Shelton, Theodore B., Ed.

    Presented are six papers on water conservation which were presented at a conference in New Jersey. The first two papers present recommendations of the New Jersey Department of Environmental Protection on water conservation and a master plan for New Jersey's water supply needs. The following four papers discuss water conservation with water-saving…

  5. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  6. [Association study between water quality of Chaohu Lake and resources input in agriculture of basin].

    PubMed

    Zhang, Yan; Gao, Xiang; Zhang, Hong

    2012-09-01

    In order to discuss the association between the water quality of Chaohu Lake and the resources input in agriculture of the basin, factors that may affect the lake eutrophication are chosen, such as surplus fertilizer, irrigated area with saved water, agricultural films, water and soil loss control and so on. The methods of correlation analysis and stepwise regression are used. Furthermore, a new method, combined with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, calculating the surplus fertilizer is designed. The results indicate that among various resources input in agriculture of the basin the surplus fertilizer, irrigated area with saved water and agricultural films have a great influence on Chaohu Lake eutrophication. And one year's lag phase between the water quality of Chaohu Lake and the surplus fertilizer is confirmed. Therefore, it is necessary to raise the utilization efficiency of fertilizer, to improve the irrigation way and to decrease the agricultural water consumption in order to conserve resources and to reduce the influence of agricultural production on the water quality of Chaohu Lake. PMID:23243852

  7. Review of domestic water conservation practices in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ouda, Omar K. M.; Shawesh, Ahmad; Al-Olabi, Tareq; Younes, Firas; Al-Waked, Rafat

    2013-12-01

    The Kingdom of Saudi Arabian (KSA) has a substantial water shortage problem where water demand far exceeds water resources sustainable yields. This fact has motivated the Ministry of Water and Electricity (MOWE) to launch a massive water conservation awareness program to enhance water-using efficiency in the country. The MOWE among other water awareness activities has introduced a four-stage program of free distribution of water conservation tools. This research reviewed the domestic water conservation awareness program in Saudi Arabia and assessed the program performance through conducting questionnaire surveys. The latter was designed and implemented in Al-Khobar city in the Eastern Province to measure public awareness regarding water issues. The survey started on April 28, 2012, and continued for 3 weeks. A total of 197 questionnaires were completed. The survey results showed a relatively low awareness among respondents about water shortage problem in the Kingdom. A low percentage of respondents have water conservation tools installed in their houses, but a high percentage is willing to buy and install water conservation tools. The majority of respondents consider the water price low and are willing to pay more for water. The respondents' feedback highlighted the need to improve the current water conservation awareness program.

  8. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  9. Applying statistical causal analyses to agricultural conservation: A case study examining P loss impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating the effect of agricultural conservation practices on reducing nutrient loss using observational data can be confounded by differing crop types and differing management practices. As we may not have the full knowledge of these confounding factors, conventional statistical methods are ofte...

  10. Little River Experimental Watershed, Georgia: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2007, USDA’s Cooperative State Research, Education, and Extension Service (CSREES), now the National Institute of Food and Agriculture (NIFA), and the Natural Resources Conservation Service (NRCS) jointly funded two integrated research and outreach grants to conduct a synthesis of resul...

  11. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia.

    PubMed

    Sparrevik, Magnus; Field, John L; Martinsen, Vegard; Breedveld, Gijs D; Cornelissen, Gerard

    2013-02-01

    Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives. PMID:23272937

  12. Impact of conservation land management practices on soil microbial function in an agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Conservation Reserve Program (CRP) involves removing agricultural land from production and replanting with native vegetation for the purpose of reducing agriculture’s impact on the environment. In 2002, part of the Beasley Lake watershed in the Mississippi Delta was enrolled in CRP. In ad...

  13. Conservation laws for a class of soil water equations

    NASA Astrophysics Data System (ADS)

    Yaşar, Emrullah

    2010-10-01

    In this paper, we consider a class of nonlinear partial differential equations which model soil water infiltration, redistribution and extraction in a bedded soil profile irrigated by a line source drip irrigation system. By using the nonlocal conservation theorem method and the partial Lagrangian approach, conservation laws are presented. It is observed that both approaches lead to the nontrivial and infinite conservation laws.

  14. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  15. The Management Options of Water for the Development of Agriculture in Dry Areas

    NASA Astrophysics Data System (ADS)

    Irshad, M.; Inoue, M.; Ashraf, M.; Al-Busaidi, A.

    The natural resource base of land, water and vegetation in arid and semi arid areas is highly fragile and greatly vulnerable to degradation especially in the developing countries. The demand for water is constantly increasing as a result of population growth and the expansion of agriculture and industry. Fresh water resources are limited in the arid and semi-arid areas whereas the existing water resources are often overused and misused. The lack of water management in the arid areas generated numerous economic, social and ecological issues. Agriculture currently accounts for nearly 70-80% of water consumption in the developing countries. The productivity of water use in agriculture needs to enhance in order both to avoid exacerbating the water crisis and to prevent considerable food shortages. More efficient use of existing water resources and adequate management of soils could prove to be the effective tool for improving arid lands. The technologies, skills and capital resources required to overcome the poor and extreme distribution of water resources through storage and transfer are not available and widely used. As a consequence there is critically low access to water for agriculture, drinking and sanitation and the environment. Poor access to water is among the leading factors hindering sustainable development in semi-arid and arid regions. Conventional irrigation management should be revised to ensure maximum water productivity instead of land productivity for dry farming systems. Under conditions of increasing water scarcity, the key to sustaining rural livelihoods is improving the productivity and reliability of rainfed agriculture by using limited rainfall more productively, through optimal on-farm soil, water and crop management practices that conserve soil moisture and increase water use efficiency. Conserving and augmenting water supplies through rainwater harvesting and precision irrigation provide new opportunity for productive dry land farming

  16. Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?

    NASA Astrophysics Data System (ADS)

    Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA<5 years) and CA during more than 5 years (CA>5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CA<5years). No

  17. Improving Water Quality Using Soil Amendments in Conservation Tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality is a major problem in many parts of the world. Agriculture has been blamed for adverse water quality problems because of the considerable inputs of nutrients and pesticides in high production modern agricultural systems. When runoff occurs both soluble forms and those attached to soi...

  18. Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is possible to map locations in watersheds where various conservation practices should most effectively improve water quality. But methods to precisely place different conservation practices have not been brought into a common framework for watershed planning. This paper proposes and demonstrates...

  19. The Role of Communicative Feedback in Successful Water Conservation Programs

    ERIC Educational Resources Information Center

    Tom, Gail; Tauchus, Gail; Williams, Jared; Tong, Stephanie

    2011-01-01

    The Sacramento County Water Agency has made available 2 water conservation programs to its customers. The Data Logger Program attaches the Meter Master Model 100 EL data logger to the customer's water meter for 1 week and provides a detailed report of water usage from each fixture. The Water Wise House Call Program provides findings and…

  20. Conserving Water: The Untapped Alternative. Worldwatch Paper 67.

    ERIC Educational Resources Information Center

    Postel, Sandra

    This report addresses the global concern of water development and stresses the need for management of the water demand. Investments in water efficiency, recycling, and conservation are recommended over conventional water supply projects for greater cost behefits and production yield. Topic areas include: (1) water use trends in major crop…

  1. EFFECTIVENESS OF SOIL AND WATER CONSERVATION PRACTICES FOR POLLUTION CONTROL

    EPA Science Inventory

    The potential water quality effects and economic implications of soil and water conservation practices (SWCPs) are identified. Method for estimating the effects of SWCPs on pollutant losses from croplands are presented. Mathematical simulation and linear programming models were u...

  2. Conservation Project Shows Substantial Reduction in Home Water Use

    ERIC Educational Resources Information Center

    Sharpe, William E.; Smith, Donald

    1978-01-01

    Describes a water use study-conservation project conducted by the Washington Suburban Sanitary Commission in Maryland. Results show a significant decrease in the amount of water used by home customers over a ten-year period. (Author/MA)

  3. Water conservation lessons learned at a semiconductor manufacturing facility

    SciTech Connect

    McBride, D.

    1997-09-01

    Water conservation is becoming a greater issue with many industries and in different areas of the country. In order to assure success in any conservation program, the affects on the processes the water services should be fully understood. Interactions between different projects must be factored into decisions concerning the conservation program. This paper discusses one such program and some of the considerations that had to be addressed.

  4. IMPROVING WATER AND SOIL QUALITY WITH CONSERVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve the...

  5. NEWLY DEVELOPED TECHNOLOGIES FOR SOIL AND WATER CONSERVATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent discoveries and technological innovations in the field of soil and water conservation can be traced to the works of our predecessors. In this paper, conservation is defined broadly, to include the quality of water lower in watersheds, and is discussed according to contaminants. Within-field s...

  6. Model for quantifying the synergies between farmland biodiversity conservation and water protection at catchment scale.

    PubMed

    Helin, Janne; Hyytiäinen, Kari; Korpela, Eeva-Liisa; Kuussaari, Mikko

    2013-12-15

    This paper studies joint provision of two environmental non-market commodities related to agriculture: biodiversity conservation and water protection. We provide an optimising tool for analysing spatial dependencies of multifunctional agriculture at catchment scale. We show that efficiency gains can be achieved by spatial allocation and choice of the type of vegetation. In particular, inclusion of meadow nectar plants in the founding grass seed mixture of set-asides was found out to be an economically efficient measure to promote biodiversity and water protection on warm, steep slopes. PMID:24201218

  7. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  8. Potential of high residue conservation tillage to enhance water conservation and water use efficiency in corn production in the Southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following the adoption of its first Comprehensive State-wide Water Management Plan in early February 2008, Georgia is on course to drafting regionally-based water development and conservation plans. Conservation tillage-based crop production can be one of the management tools available for achieving...

  9. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  10. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  11. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale; Schwarz, Gregory

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  12. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin. PMID:27243625

  13. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning...

  14. Denitrification of agricultural drainage line water via immobilized denitrification sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. One potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to 1...

  15. Advances in soil and water conservation for the southeastern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the conservation tillage of the recent past becomes the conventional tillage of the day, we look to new advances to make agriculture in the southeast more competitive in the international market, less dependent on high fuel prices, and more compatible with other sectors of the economy. To maintai...

  16. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture.

    PubMed

    Milder, Jeffrey C; Arbuthnot, Margaret; Blackman, Allen; Brooks, Sharon E; Giovannucci, Daniele; Gross, Lee; Kennedy, Elizabeth T; Komives, Kristin; Lambin, Eric F; Lee, Audrey; Meyer, Daniel; Newton, Peter; Phalan, Ben; Schroth, Götz; Semroc, Bambi; Van Rikxoort, Henk; Zrust, Michal

    2015-04-01

    Sustainability standards and certification serve to differentiate and provide market recognition to goods produced in accordance with social and environmental good practices, typically including practices to protect biodiversity. Such standards have seen rapid growth, including in tropical agricultural commodities such as cocoa, coffee, palm oil, soybeans, and tea. Given the role of sustainability standards in influencing land use in hotspots of biodiversity, deforestation, and agricultural intensification, much could be gained from efforts to evaluate and increase the conservation payoff of these schemes. To this end, we devised a systematic approach for monitoring and evaluating the conservation impacts of agricultural sustainability standards and for using the resulting evidence to improve the effectiveness of such standards over time. The approach is oriented around a set of hypotheses and corresponding research questions about how sustainability standards are predicted to deliver conservation benefits. These questions are addressed through data from multiple sources, including basic common information from certification audits; field monitoring of environmental outcomes at a sample of certified sites; and rigorous impact assessment research based on experimental or quasi-experimental methods. Integration of these sources can generate time-series data that are comparable across sites and regions and provide detailed portraits of the effects of sustainability standards. To implement this approach, we propose new collaborations between the conservation research community and the sustainability standards community to develop common indicators and monitoring protocols, foster data sharing and synthesis, and link research and practice more effectively. As the role of sustainability standards in tropical land-use governance continues to evolve, robust evidence on the factors contributing to effectiveness can help to ensure that such standards are designed and

  17. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to inves...

  18. Army Industrial, Landscaping, and Agricultural Water Use

    SciTech Connect

    McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  19. The integrated water conservation program at Sandia National Laboratories

    SciTech Connect

    Rogers, D.

    1997-08-22

    Sandia National Laboratories (SNL), located on Kirkland Air Force Base (KAFB) in Albuquerque, NM, is implementing a comprehensive water conservation program. Because the average rainfall in this metropolitan area of 500,000 is approximately 8 inches per year, conservation of this precious resource is critical to the economic health of the city and state, and the continued operations at SNL/NM. To address this need, SNL/NM is taking a systematic, comprehensive approach to water conservation. The approach is to estimate the water consumption for all of SNL/NM by type of consumption. For each type of water consumption, all cost effective measures for reducing, reclaiming, and/or recycling that usage will be ranked. These water conservation measures range from the simple such as retrofitting plumbing fixtures with low cost devices to reduce water required to flush toilets to the very complex. As an example of the very complex, a Microelectronics Development Laboratory (MDL) lab will implement a near zero water discharge from clean room wet benches. Deionized (DI) water can be sent back to the DI water input generation stream when the DI water is not being used for rinsing wafers. This paper discusses completed, ongoing and proposed projects at SNL/NM to reduce water consumption and recycle water to maximize its use, and how water conservation has resulted in energy savings, reductions in wastewater discharges, reductions in water treatment chemicals, and reduction in hazardous waste. Additionally the paper discusses preparation of SNL/NM`s Water Conservation Plan, and solutions to overcoming programmatic and bureaucratic hurdles to achieve reductions in water use, wastewater discharges, chemical use and energy.

  20. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  1. 7 CFR 633.9 - Conservation plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program...

  2. 7 CFR 633.9 - Conservation plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program participant, with assistance from NRCS and...

  3. 7 CFR 633.9 - Conservation plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program...

  4. 7 CFR 633.9 - Conservation plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program...

  5. 7 CFR 633.9 - Conservation plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program...

  6. Changes in historical Iowa land cover as context for assessing the environmental benefits of current and future conservation efforts on agricultural lands

    USGS Publications Warehouse

    Gallant, Alisa L.; Sadinski, Walt; Roth, Mark F.; Rewa, Charles A.

    2011-01-01

    Conservationists and agriculturists face unprecedented challenges trying to minimize tradeoffs between increasing demands for food, fiber, feed, and biofuels and the resulting loss or reduced values of other ecosystem services, such as those derived from wetlands and biodiversity (Millenium Ecosystem Assessment 2005a, 2005c; Maresch et al. 2008). The Food, Conservation, and Energy Act of 2008 (Pub. L. 110-234, Stat. 923, HR 2419, also known as the 2008 Farm Bill) reauthorized the USDA to provide financial incentives for agricultural producers to reduce environmental impacts via multiple conservation programs. Two prominent programs, the Wetlands Reserve Program (WRP) and the Conservation Reserve Program (CRP), provide incentives for producers to retire environmentally sensitive croplands, minimize erosion, improve water quality, restore wetlands, and provide wildlife habitat (USDA FSA 2008a, 2008b; USDA NRCS 2002). Other conservation programs (e.g., Environmental Quality Incentives Program, Conservation Stewardship Program) provide incentives to implement structural and cultural conservation practices to improve the environmental performance of working agricultural lands. Through its Conservation Effects Assessment Project, USDA is supporting evaluation of the environmental benefits obtained from the public investment in conservation programs and practices to inform decisions on where further investments are warranted (Duriancik et al. 2008; Zinn 1997).

  7. Proceedings of the 30th Southern Conservation Agricultural Systems Conference and the 8th Annual Georgia Conservation Production Systems Training Conference, Tifton, Georgia, July 29-31, 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This 2008 conference to be held at the University of Georgia Tifton Campus Conference Center in Tifton, GA, on 29-31 July 2008, will be a joint effort of the 30th Southern Conservation Agricultural Systems Conference (SCASC) and the 8th Annual Conservation Production Systems Training Conference (CPS...

  8. Maximizing the Wildlife Conservation Value of Road Right-of-Ways in an Agriculturally Dominated Landscape

    PubMed Central

    McCleery, Robert A.; Holdorf, Allison R.; Hubbard, Laura L.; Peer, Brian D.

    2015-01-01

    There has been a growing recognition that the narrow linear strips of uncultivated vegetation that lie between roads and agricultural crops, referred to as roadside right-of-ways or verges, can serve as areas for the conservation of wildlife. The features of right-of-ways that should influence the composition of wildlife communities vary considerably. Our goal was to determine what features of right-of-ways increased the conservation potential of right-of-ways for wildlife in a grassland system dominated by agricultural production. We sampled 100 right-of-ways for birds and 92 right-of-ways for small mammals in McDonough and Warren Counties in west-central Illinois. We found that the sizes of right-of-ways and the amount of traffic on the adjacent roads synergistically worked to influence wildlife communities. On roads with low traffic, avian species richness increased rapidly with increased right-of-way width, while on roads with high traffic, avian richness increased only slightly with increasing right-of-way widths. We found that wider roadside right-of-ways (preferably across the road from equally wide right-of-ways) with thicker and taller vegetation had the greatest conservation value for birds and small mammals. The features that enhanced the conservation value of right-of-ways in our study area were uncommon. Efforts to create or enhance these features for the benefit of wildlife would likely face numerous obstacles. Nonetheless, from a grassland conservation perspective, working with stakeholders to implement specific strategies to enhance these often neglected areas may be an effective complement to purchasing and restoring conservation lands away from roads. PMID:25794180

  9. Maximizing the wildlife conservation value of road right-of-ways in an agriculturally dominated landscape.

    PubMed

    McCleery, Robert A; Holdorf, Allison R; Hubbard, Laura L; Peer, Brian D

    2015-01-01

    There has been a growing recognition that the narrow linear strips of uncultivated vegetation that lie between roads and agricultural crops, referred to as roadside right-of-ways or verges, can serve as areas for the conservation of wildlife. The features of right-of-ways that should influence the composition of wildlife communities vary considerably. Our goal was to determine what features of right-of-ways increased the conservation potential of right-of-ways for wildlife in a grassland system dominated by agricultural production. We sampled 100 right-of-ways for birds and 92 right-of-ways for small mammals in McDonough and Warren Counties in west-central Illinois. We found that the sizes of right-of-ways and the amount of traffic on the adjacent roads synergistically worked to influence wildlife communities. On roads with low traffic, avian species richness increased rapidly with increased right-of-way width, while on roads with high traffic, avian richness increased only slightly with increasing right-of-way widths. We found that wider roadside right-of-ways (preferably across the road from equally wide right-of-ways) with thicker and taller vegetation had the greatest conservation value for birds and small mammals. The features that enhanced the conservation value of right-of-ways in our study area were uncommon. Efforts to create or enhance these features for the benefit of wildlife would likely face numerous obstacles. Nonetheless, from a grassland conservation perspective, working with stakeholders to implement specific strategies to enhance these often neglected areas may be an effective complement to purchasing and restoring conservation lands away from roads. PMID:25794180

  10. Modeling Water Quality Benefits of Conservation Practices

    EPA Science Inventory

    The Future Midwest Landscape (FML) project is part of the U.S. Environmental Protection Agency’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes and streams affect...

  11. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  12. Midwest soil and water conservation: Past, present and future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation was, is, and will continue to provide the foundation for sustainable resource management in the U.S. Corn and Soybean Belt. This chapter briefly reviews the natural resource foundation, settlement patterns, and development of conservation programs in the U.S. Midwest. The...

  13. A GEO Global Agricultural Water Productivity Mapping System

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Pozzi, W.; Miller, N. L.; Fekete, B.; Sheffield, J.; Dumenil-Gates, L.

    2009-12-01

    Agriculture is the main consumer of freshwater, and improved precision and accuracy of the terrestrial water cycle requires a more reliable way of monitoring agricultural water use and agricultural water productivity. Wisser et al 2008 reported that agricultural water consumption over the satellite-determined crop acreage (from AVHRR, SPOT VGT), particularly for India and China (Thenkabail et al 2006) was 30% higher than the commonly used Food and Agricultural Organization country-reported agricultural crop census data. We propose further quantification and clarification of this error through the following methodology: 1) greater accuracy in measuring actual area and precise spatial distribution of irrigated and rainfed cropland areas, along with identification of crop types and cropping intensities; 2) satellite monitoring of actual evapotranspiration (water use) by croplands; 3) reconciling agricultural plot information and evapotranspiration against calculated stores of water and water budgets, as derived from a Global Hydrologic Model Multi-Model Ensemble; and (d) modeling and pin-pointing areas of low and high water productivity (WP) to optimize agricultural water use and thus save large quanta of water. We propose producing global irrigated and rainfed areas at finer scales using Landsat 30 m imagery in fusion with MODIS 250 m imagery using the spectral matching technique (Thenkabail et al 2009). Crop water use (water transpired by the crop) and crop water productivity maps can be prepared for terrestrial areas, by using the surface energy balance model, in which evapotranspiration fraction is provided from Landsat ETM+ and\\or MODIS thermal data, combined with locally derived meteorological data such as wind speed, humidity, incoming radiation, and other surface values to derive turbulent diffusion and finally computing reference evapotranspiration (e.g., Penman-Montieth approach), so that sensible heat flux may be deducted from net radiation to derive

  14. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided. PMID:26995933

  15. Application of the Soil and Water Assessment Tool and Annualized Agricultural Non-Point Source Models in the St. Joseph River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the performance of two water quality models in accordance to specific tasks designated in the USDA Agricultural Research Service Conservation Effects Assessment Project. The Soil and Water Assessment Tool (SWAT) and the Annualized Agricultural Non-Point Source (AnnAGNPS) models ...

  16. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-10-01

    The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  17. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-04-01

    The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  18. WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM

    EPA Science Inventory

    Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...

  19. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes.

    PubMed

    Chandler, Richard B; King, David I; Raudales, Raul; Trubey, Richard; Chandler, Carlin; Chávez, Víctor Julio Arce

    2013-08-01

    Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns. PMID:23551570

  20. A Regional Assessment of the Effects of Conservation Practices on In-stream Water Quality

    NASA Astrophysics Data System (ADS)

    Garcia, A. M.; Alexander, R. B.; Arnold, J.; Norfleet, L.; Robertson, D. M.; White, M.

    2011-12-01

    The Conservation Effects Assessment Program (CEAP), initiated by USDA Natural Resources Conservation Service (NRCS), has the goal of quantifying the environmental benefits of agricultural conservation practices. As part of this effort, detailed farmer surveys were compiled to document the adoption of conservation practices. Survey data showed that up to 38 percent of cropland in the Upper Mississippi River basin is managed to reduce sediment, nutrient and pesticide loads from agricultural activities. The broader effects of these practices on downstream water quality are challenging to quantify. The USDA-NRCS recently reported results of a study that combined farmer surveys with process-based models to deduce the effect of conservation practices on sediment and chemical loads in farm runoff and downstream waters. As a follow-up collaboration, USGS and USDA scientists conducted a semi-empirical assessment of the same suite of practices using the USGS SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling framework. SPARROW is a hybrid statistical and mechanistic stream water quality model of annual conditions that has been used extensively in studies of nutrient sources and delivery. In this assessment, the USDA simulations of the effects of conservation practices on loads in farm runoff were used as an explanatory variable (i.e., change in farm loads per unit area) in a component of an existing a SPARROW model of the Upper Midwest. The model was then re-calibrated and tested to determine whether the USDA estimate of conservation adoption intensity explained a statistically significant proportion of the spatial variability in stream nutrient loads in the Upper Mississippi River basin. The results showed that the suite of conservation practices that NRCS has catalogued as complete nutrient and sediment management are a statistically significant feature in the Midwestern landscape associated with phosphorous runoff and delivery to downstream waters

  1. Water Conservation and Reuse. Instructor Guide. Working for Clean Water: An Information Program for Advisory Committees.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., Middletown. Inst. of State and Regional Affairs.

    Described is a learning session on water conservation intended for citizen advisory groups interested in water quality planning. Topics addressed in this instructor's manual include water conservation needs, benefits, programs, technology, and problems. These materials are components of the Working for Clean Water Project. (Author/WB)

  2. Dynamic edge effects in small mammal communities across a conservation-agricultural interface in Swaziland.

    PubMed

    Hurst, Zachary M; McCleery, Robert A; Collier, Bret A; Fletcher, Robert J; Silvy, Nova J; Taylor, Peter J; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  3. Dynamic Edge Effects in Small Mammal Communities across a Conservation-Agricultural Interface in Swaziland

    PubMed Central

    Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  4. Impact of conservation agriculture on harnessing sustainability and building resilience against land degradation in the northern Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Cornelis, Wim M.; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Nyssen, Jan

    2013-04-01

    compared to CT, specifically at 0-10 cm depth. Aggregate instability index, crack size at harvest, relative water capacity and plastic limit were significantly larger in CT compared to CA treatments. Adoption of improved local practices of DER+ and TER+ planting systems that employ conservation agriculture principles can reduce runoff, soil loss and improve crop yield and soil quality and thus, sustainability in Vertisols. Keywords: Soil resilience, Vertisol, conservation agriculture, field conservation practices, soil quality

  5. Water Wisdom: 23 Stand-Alone Activities on Water Supply and Water Conservation for High School Students. 2nd Edition.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    This water conservation education program for high schools consists of both stand-alone activities and teacher support materials. Lessons are divided into six broad categories: (1) The Water Cycle; (2) Water and Society; (3) Keeping Water Pure; (4) Visualizing Volumes; (5) The Economics of Water Use; and (6) Domestic Water Conservation. The…

  6. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  7. Water Conservation and Nonpoint Source Pollution.

    ERIC Educational Resources Information Center

    Farrell-Poe, Kitt

    This book contains science activities that are designed to make learning and demonstrating nonpoint source pollution concepts exciting and fun. These activities can either be used alone or with an existing water resources education curricula. Activities include: Water Tasting, Acting Out the Hydrologic Cycle, Concentration of Chemical Pollutants…

  8. Integrating agricultural policies and water policies under water supply and climate uncertainty

    NASA Astrophysics Data System (ADS)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  9. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  10. Soil and Water Challenges for Pacific Northwest Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  11. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  12. Energy conservation with chilled-water storage

    SciTech Connect

    Fiorino, D.

    1993-05-01

    Thermal energy storage (TES) is widely recognized as a demand-side management technology for shifting cooling electrical demand from peak daytime periods to off-peak nighttime and weekend periods when utilities have reserve generating capacity. TES has enabled users to significantly reduce their electricity costs by reducing peak demand and taking advantage of lower off-peak usage rates, often with large utility incentive payments and sometimes with reduced capital costs. It has also enabled utilities to reduce peaks and fill valleys, thereby improving system load factors, reducing reliance on peaking units, increasing utilization of base load units and postponing the construction of additional generating units. Because TES has been so strongly categorized as a demand-shifting technology, its potential for energy conservation has received little recognition. And, certainly, there are many existing TES systems that use more electricity than conventional cooling systems and are beneficial only for shifting demand. However, recent advances in the technology have produced more efficient and better integrated TES systems that use less electricity and natural gas than conventional cooling/heating systems. To apprise engineers of thermal energy storage's potential for energy conservation, this article will study the design and operation of a TES system in one industrial retrofit application.

  13. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  14. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  15. A conservation ontology and knowledge base to support delivery of technical assistance to agricultural producers in the united states

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information systems supporting the delivery of conservation technical assistance by the United States Department of Agriculture (USDA) to agricultural producers on working lands have become increasingly complex over the past 25 years. They are constrained by inconsistent coordination of domain knowl...

  16. Using Personal Water Footprints to Identify Consumer Food Choices that Influence the Conservation of Local Water Resources

    NASA Astrophysics Data System (ADS)

    Marrin, D. L.

    2015-12-01

    As the global demand for water and food escalates, the emphasis is on supply side factors rather than demand side factors such as consumers, whose personal water footprints are dominated (>90%) by food. Personal footprints include the water embedded in foods that are produced locally as well as those imported, raising the question of whether local shifts in people's food choices and habits could assist in addressing local water shortages. The current situation in California is interesting in that drought has affected an agriculturally productive region where a substantial portion of its food products are consumed by the state's large population. Unlike most agricultural regions where green water is the primary source of water for crops, California's arid climate demands an enormous volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports many of its food products, enough is consumed in-state so that residents making relatively minor shifts their food choices could save as much local blue water as their implementing more drastic reductions in household water use (comprising <5% of their personal footprint). One of those shifts is reducing the intake of meat and dairy products that account for just under half of a Californian's blue-green water footprint and that require the most water of any food group on both a caloric and gravimetric basis. Another change is wasting less food, which is a shared responsibility among consumers, producers and retailers; however, consumers' actions and preferences ultimately drive much of the waste. Personal water footprints suggest a role for individuals in conserving local water resources that is neither readily obvious nor a major focus of most conservation programs.

  17. Education of Technicians for Water Conservation and Wastewater Control.

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    There is a growing need for supportive personnel with technical preparation in water and wastewater purification and water resource conservation. A curriculum and program guide was developed in 1965-66 by Fayetteville Technical Institute for use by institutions interested in establishing a program to educate technicians. Meeting the need for…

  18. Evaluation of potential water conservation using site-specific irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  19. Conservation of water for washing beef heads at harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop methods to conserve water necessary to cleanse beef heads prior to USDA–FSIS inspection. This was to be accomplished by establishing a baseline for the minimum amount of water necessary to adequately wash a head and application of image analysis to provi...

  20. Economic analysis of water conservation policies in the Texas Panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to declining water availability from the Ogallala Aquifer, management policy alternatives for extending the life of the aquifer to sustain rural economies in the Texas Panhandle are evaluated. The study concludes that water conservation policies for the region significantly impact crop mix, reso...

  1. Water Use Conservation Scenarios for the Mississippi Delta Using an Existing Regional Groundwater Flow Model

    NASA Astrophysics Data System (ADS)

    Barlow, J. R.; Clark, B. R.

    2010-12-01

    The alluvial plain in northwestern Mississippi, locally referred to as the Delta, is a major agricultural area, which contributes significantly to the economy of Mississippi. Land use in this area can be greater than 90 percent agriculture, primarily for growing catfish, corn, cotton, rice, and soybean. Irrigation is needed to smooth out the vagaries of climate and is necessary for the cultivation of rice and for the optimization of corn and soybean. The Mississippi River Valley alluvial (MRVA) aquifer, which underlies the Delta, is the sole source of water for irrigation, and over use of the aquifer has led to water-level declines, particularly in the central region. The Yazoo-Mississippi-Delta Joint Water Management District (YMD), which is responsible for water issues in the 17-county area that makes up the Delta, is directing resources to reduce the use of water through conservation efforts. The U.S. Geological Survey (USGS) recently completed a regional groundwater flow model of the entire Mississippi embayment, including the Mississippi Delta region, to further our understanding of water availability within the embayment system. This model is being used by the USGS to assist YMD in optimizing their conservation efforts by applying various water-use reduction scenarios, either uniformly throughout the Delta, or in focused areas where there have been large groundwater declines in the MRVA aquifer.

  2. Estimating the effects of agricultural conservation practices on phosphorus loads in the Mississippi-Atchafalaya River basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Mississippi-Atchafalaya River basin (MARB) is important in terms of both the national economy and the nutrients discharged to the basin and the Gulf of Mexico. Conservation practices are installed on cropland to reduce the nutrient losses. A recent study by the Conservation Effec...

  3. Reply to discussion of, "Adapting Existing Models to Examine Effects of Agricultural Conservation Programs on Stream Habitat Quality"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual expenditures by the federal government in the US for agricultural conservation increased about 80% with passage of the 2002 Farm Bill. However, environmental benefits of these programs have not been quantified. A national project is underway to estimate the effect of conservation practices on...

  4. 78 FR 2340 - Energy Conservation Program: Test Procedures for Residential Water Heaters and Commercial Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... definition of a ``water heater'' and are, therefore, not covered equipment under EPCA. 75 FR 20112, 20126 and...-prescribed energy conservation standards for residential water heaters. 66 FR 4474. Compliance with the... conservation standards for residential water heaters for a second time. 75 FR 20112. Compliance with...

  5. Climate, water and agriculture in the Tropics

    SciTech Connect

    Jackson, I.J.

    1989-01-01

    The broad view is established with a functional definition of the tropics to include the area lying within the region of the easterly trade winds and its extension to extratropical regions that are affected by tropical phenomena such as the southwest Indian monsoon and hurricanes. In the first five chapters Jackson discusses atmospheric water largely in physical terms-its origin and transport with relation to general circulation patterns and precipitation characteristics such as frequency, duration, and intensity, which are as important as total rainfall in the consideration of runoff, biological productivity, and land utilization. In the remainder of the book water-soil-plant relationships are discussed generally and specifically for selected crops and regions. Popular emotional appears currently decry the destruction of tropical wet forests. Jackson makes it clear that tropical lands exhibit a rich variation in climates and that problems of exploitation rooted in cultures, economics, politics, and population growth cannot be solved by the simple introduction of temperate zone science and technology. This volume is a hybrid between an intermediate level textbook and a review article for the knowledgeable investigator, planner, or administrator, and the values to be found in it will vary with the background and interests of the reader. A reference list of more than 800 titles, perhaps half of them dated in the present decade, is a major asset, especially when coupled with extensive author and subject indexes.

  6. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  7. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  8. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  9. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  10. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation...

  11. Agricultural water consumption decreasing nutrient burden at Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Wang, Xuejun; Zhen, Gengchong; Li, Ying; Zhang, Wei; He, Wei

    2016-02-01

    In this study, we discussed the impacts of human water consumption to the nutrient burden in a river estuary, and used Huanghe River as a case study. The agricultural water consumption from the Huanghe River has significantly decreased the natural water flows, and the amount of water consumption could be almost twice as high as the water entering into the estuary. According to our calculation, agricultural water usage decreased TN outflows by 6.5 × 104 Mg/year and TP outflows by 2.0 × 103 Mg/year. These account for 74% and 77% of the total output loads. It has been widely reported that the majority of the rivers in northern China were severely polluted by nutrients. Its implication on the budget of nutrient in the estuary ecosystem is not well characterized. Our study showed that the discharge of nutrients in the coast waters from polluted rivers was over concerned. Nutrients in the polluted rivers were transported back to the terrestrial systems when water was drawn for human water consumption. The magnitudes of changes in riverine nutrient discharges even exceed the water-sediment regulation trails in the Huanghe River. It has non-negligible impact on estimating the nutrient burden in costal water ecosystem.

  12. Can improved agricultural water use efficiency save India’s groundwater?

    NASA Astrophysics Data System (ADS)

    Fishman, Ram; Devineni, Naresh; Raman, Swaminathan

    2015-08-01

    Irrigated agriculture is placing increasing pressure on finite freshwater resources, especially in developing countries, where water extraction is often unregulated, un-priced and even subsidized. To shift agriculture to a more sustainable use of water without harming the food security and livelihoods of hundreds of millions of smallholders, substantial improvements of water use efficiency will be required. Here, we use detailed hydroclimatic and agricultural data to estimate the potential for the widespread adoption of efficient irrigation technologies to halt the depletion of India’s groundwater resources. Even though we find substantial technical potential for reversing water table declines, we show that the impacts are highly sensitive to assumptions about farmers’ water use decisions. For example, we find that widespread adoption of proven technologies that include drip and sprinkler irrigation has the potential to reduce the amount of excessive extraction of groundwater by two thirds. However, under more realistic assumptions about farmers’ irrigation choices, half of these reductions are lost due to the expansion of irrigated area. Our results suggest that without the introduction of incentives for conservation, much of the potential impact of technology adoption on aquifers may be lost. The analysis provides quantitative input to the debate of incentive versus technology based water policies.

  13. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  14. Energy and Water Conservation Measures for Hanford (2013)

    SciTech Connect

    Reid, Douglas J.; Butner, Ryan S.

    2013-04-01

    Pacific Northwest National Laboratory (PNNL) performed an energy and water evaluation of selected buildings on the Hanford Site during the months of May and June 2012. The audit was performed under the direction of the U.S. Department of Energy, Sustainability Performance Office to identify key energy conservation measures (ECMs) and water conservation measures (WCMs). The evaluations consisted of on-site facility walk-throughs conducted by PNNL staff, interviews with building-operating personnel, and an examination of building designs and layouts. Information on 38 buildings was collected to develop a list of energy and water conservation measures. Table ES.1 is a summary of the ECMs, while table ES.2 is a summary of the WCMs.

  15. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  16. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  17. Cannonsville Reservoir and Town Brook Watersheds: Documenting conservation efforts to protect New York City’s drinking water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cannonsville Reservoir, a Conservation Effects Assessment Project (CEAP) benchmark watershed, is a major component of the unfiltered New York City water supply system. The voluntary, incentive-based Watershed Agricultural Program is a collaborative effort among producers, federal, state, and loc...

  18. Cannonsville Reservoir and Town Brook Watersheds: Documenting Conservation Efforts to Protect New York City’s Drinking Water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cannonsville Reservoir, a Conservation Effects Assessment Project (CEAP) benchmark watershed, is a major component of the unfiltered New York City water supply system. This year, the voluntary, incentive-based Watershed Agricultural Program marks a 15-year history of collaboration among producer...

  19. Low-intensity agricultural landscapes in Transylvania support high butterfly diversity: implications for conservation.

    PubMed

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  20. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America.

    PubMed

    Dotta, G; Phalan, B; Silva, T W; Green, R; Balmford, A

    2016-06-01

    Globally, agriculture is the greatest source of threat to biodiversity, through both ongoing conversion of natural habitat and intensification of existing farmland. Land sparing and land sharing have been suggested as alternative approaches to reconcile this threat with the need for land to produce food. To examine which approach holds most promise for grassland species, we examined how bird population densities changed with farm yield (production per unit area) in the Campos of Brazil and Uruguay. We obtained information on biodiversity and crop yields from 24 sites that differed in agricultural yield. Density-yield functions were fitted for 121 bird species to describe the response of population densities to increasing farm yield, measured in terms of both food energy and profit. We categorized individual species according to how their population changed across the yield gradient as being positively or negatively affected by farming and according to whether the species' total population size was greater under land-sparing, land-sharing, or an intermediate strategy. Irrespective of the yield, most species were negatively affected by farming. Increasing yields reduced densities of approximately 80% of bird species. We estimated land sparing would result in larger populations than other sorts of strategies for 67% to 70% of negatively affected species, given current production levels, including three threatened species. This suggests that increasing yields in some areas while reducing grazing to low levels elsewhere may be the best option for bird conservation in these grasslands. Implementing such an approach would require conservation and production policies to be explicitly linked to support yield increases in farmed areas and concurrently guarantee that larger areas of lightly grazed natural grasslands are set aside for conservation. PMID:26400720

  1. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    PubMed Central

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  2. Managing Delmarva Agricultural Drainage Ditches for Water Quality Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for draining storm and subsurface water from farmland on the Delmarva Peninsula. Ditches are unique ecosystems, having the features of both streams and wetlands. Ditches often provide the only wetland and aquatic habitats on farmland. Ditches carry, store,...

  3. Managing agricultural phosphorus for water quality protection: principles for progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The eutrophication of aquatic systems due to diffuse pollution of agricultural phosphorus (P) is a local, even regional, water quality problem that can be found world-wide. Sustainable management of P requires prudent tempering of agronomic practices, recognizing that additional steps are often requ...

  4. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  5. Multifunctional systems approaches to water management for agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of anthropogenic chemicals on water quality, wildlife, and human health has received increasing attention in recent years. One potential source of anthropogenic compounds is land-based recycling programs which apply municipal wastes (biosolids) to large tracts of agricultural land in lie...

  6. Effects of Agricultural and Conservation Practices on Nutrients Losses from the St. Joseph River Watershed, Northeast Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture has been identified as a primary contributor to nutrients that cause algal blooms in the Gulf of Mexico and Lake Erie. Since 2002, we have been monitoring water quality from agricultural drainage ditches in the St. Joseph River watershed to assess the impacts of agricultural and conserva...

  7. 75 FR 20111 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ..., electric resistance technologies. 74 FR 65852, 65680-81 (Dec. 11, 2009). As the December 2009 NOPR also... conservation standards for residential water heaters (other than tabletop and electric instantaneous models... Rated Storage x Rated Storage Volume in gallons). Volume in gallons). Electric Storage For tanks with...

  8. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  9. Conjunctive use of water resources for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2014-11-01

    The continuous increase in global population and simultaneous decrease in good quality water resources emphasizes the need of using surface water and groundwater resources conjunctively for irrigation. The conjunctive use allows the utilization of poor quality water, which cannot be used as such for the crop production due to its harmful effect on soil and crop health. This paper presents an overview on issues and methods of the conjunctive use of surface water and groundwater resources for sustainable irrigated agriculture. The background of the conjunctive water use and its applications for the management of poor quality water and management of rising watertable are presented. The management of conjunctive water use through the computer-based models is also covered in this review. The advantages and disadvantages of the approach have been described. Conclusions are provided based on this review which could be useful for all the stakeholders.

  10. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  11. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the...

  12. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the...

  13. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the...

  14. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN... Compact § 401.36 Water supply projects—Conservation requirements. Maximum feasible efficiency in the...

  15. Conservation laws and LETKF with 2D Shallow Water Model

    NASA Astrophysics Data System (ADS)

    Zeng, Yuefei; Janjic, Tijana

    2016-04-01

    Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.

  16. Agricultural hydrology and water quality II: Introduction to the featured collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  17. Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model

    NASA Astrophysics Data System (ADS)

    Dong, Cong; Huang, Guohe; Tan, Qian; Cai, Yanpeng

    2014-03-01

    Water resources are fundamental for support of regional development. Effective planning can facilitate sustainable management of water resources to balance socioeconomic development and water conservation. In this research, coupled planning of water resources and agricultural land use was undertaken through the development of an inexact-stochastic programming approach. Such an inexact modeling approach was the integration of interval linear programming and chance-constraint programming methods. It was employed to successfully tackle uncertainty in the form of interval numbers and probabilistic distributions existing in water resource systems. Then it was applied to a typical regional water resource system for demonstrating its applicability and validity through generating efficient system solutions. Based on the process of modeling formulation and result analysis, the developed model could be used for helping identify optimal water resource utilization patterns and the corresponding agricultural land-use schemes in three sub-regions. Furthermore, a number of decision alternatives were generated under multiple water-supply conditions, which could help decision makers identify desired management policies.

  18. APPLICATIONS OF AGRICULTURAL SYSTEM MODELS IN ASSESSING AND MANAGING CONTAMINATION OF THE SOIL-WATER-ATMOSPHERE CONTINUUM IN AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980's, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems that wi...

  19. Application of Agricultural System Models in Assessing and Managing Contamination of Soil-Water-Atmosphere Continuum in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980s, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems th...

  20. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  1. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  2. Managing Water Scarcity: Why Water Conservation Matters to Business

    ERIC Educational Resources Information Center

    Spiwak, Stephen M.

    2013-01-01

    The issue of water scarcity has often hit the headlines in the past several years. Some states have gone to court over water rights and access even as others have agonized over scarce supplies. University presidents and their staff of directors understand that the days of unlimited, inexpensive water are almost over. While it remains inexpensive…

  3. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  4. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  5. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    USGS Publications Warehouse

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  6. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    PubMed Central

    Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868

  7. Conservative water management in the widespread conifer genus Callitris

    PubMed Central

    Brodribb, Timothy J.; Bowman, David M. J. S.; Grierson, Pauline F.; Murphy, Brett P.; Nichols, Scott; Prior, Lynda D.

    2013-01-01

    Water management by woody species encompasses characters involved in seeking, transporting and evaporating water. Examples of adaptation of individual characters to water availability are common, but little is known about the adaptability of whole-plant water management. Here we use plant hydration and growth to examine variation in whole-plant water management characteristics within the conifer genus Callitris. Using four species that cover the environmental extremes in the Australian continent, we compare seasonal patterns of growth and hydration over 2 years to determine the extent to which species exhibit adaptive variation to the local environment. Detailed measurements of gas exchange in one species are used to produce a hydraulic model to predict changes in leaf water potential throughout the year. This same model, when applied to the remaining three species, provided a close representation of the measured patterns of water potential gradient at all sites, suggesting strong conservation in water management, a conclusion supported by carbon and oxygen isotope measurements in Callitris from across the continent. We conclude that despite its large range in terms of rainfall, Callitris has a conservative water management strategy, characterized by a high sensitivity of growth to rainfall and a delayed (anisohydric) closure of stomata during soil drying.

  8. Soil conservation under climate change: use of recovery biomasses on agricultural soil subjected to the passage of agricultural machinery

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Beni, C.; Servadio, P.

    2012-04-01

    Biomass administration is a good practice to preserve the soil fertility in climate change conditions. A test regarding the use of compost derived by wine distillation residues was conducted in the coastal area sited west of Rome, on a sandy soil in continuous cropping with carrot, two cycles per year, with a consequent deep environmental impact. The soil was fertilized with different systems: T = unfertilized soil; F = fertigation 200 kg N ha-1; FC = fertigation 100 kg N ha-1 plus half agronomic dose of compost 4 t ha-1; C2 = double compost dose 16 t ha-1; C4 = quadruple compost dose 32 t ha-1. The functional qualities of the soil, subjected to the passage of agricultural machineries, were determined through the following parameters: bulk density, shear strength, water infiltration rate, organic matter and nitrogen content, cation exchange capacity. At the summer harvest, yield of carrots, their sugar content, firmness and nutrients concentration were determined. The plots only amended (C2 and C4), compared to other treatments, presented lower bulk density (1.36 and 1.28 Mg m-3 respectively), higher shear strength (9 and 8 kPa respectively), as well as increased hydraulic conductivity. In these treatments (C2 and C4), in addition, occurred a higher content of organic matter (0.95 and 1.07% respectively) and nitrogen (0.11 and 0.12% respectively) and increased CEC (541 and 556 respectively) respect to the T treatment that was 521 meq 100g-1. In plots T and F, the organic matter content was reduced at the end of the field test. The yield of carrots increased in FC, C2, and C4, compared to the other treatments. In plots C4, however, morphological changes were induced in approximately 30% of tap-roots, due to the excessive compost dose. In treatments C2 and C4 was observed a reduction of the concentration of Na in the roots, as opposed to the higher concentration of Ca and K and trace elements. The administration of compost has also induced the increase of soluble

  9. Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins.

    PubMed

    Partyka, Melissa L; Bond, Ronald F; Chase, Jennifer A; Kiger, Luana; Atwill, Edward R

    2016-03-01

    Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins. PMID:27065413

  10. Understanding Public Engagement in Water Conservation Behaviors and Knowledge of Water Policy: Promising Hints for Extension

    ERIC Educational Resources Information Center

    Huang, Pei-wen; Lamm, Alexa J.

    2015-01-01

    Sustaining water resources is a primary issue facing Florida Extension. The study reported here identified how experience with water issues and familiarity with water policies affected individuals' engagement in water conservation behaviors. A public opinion survey was conducted online to capture Florida residents' responses. The findings…

  11. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  12. Water demand management in times of drought: What matters for water conservation

    NASA Astrophysics Data System (ADS)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  13. Quantifying the influence of environmental and water conservation attitudes on household end use water consumption.

    PubMed

    Willis, Rachelle M; Stewart, Rodney A; Panuwatwanich, Kriengsak; Williams, Philip R; Hollingsworth, Anna L

    2011-08-01

    Within the research field of urban water demand management, understanding the link between environmental and water conservation attitudes and observed end use water consumption has been limited. Through a mixed method research design incorporating field-based smart metering technology and questionnaire surveys, this paper reveals the relationship between environmental and water conservation attitudes and a domestic water end use break down for 132 detached households located in Gold Coast city, Australia. Using confirmatory factor analysis, attitudinal factors were developed and refined; households were then categorised based on these factors through cluster analysis technique. Results indicated that residents with very positive environmental and water conservation attitudes consumed significantly less water in total and across the behaviourally influenced end uses of shower, clothes washer, irrigation and tap, than those with moderately positive attitudinal concern. The paper concluded with implications for urban water demand management planning, policy and practice. PMID:21486685

  14. Effects of Zero Tillage (No-Till) Conservation Agriculture on soil physical and biological properties and their contributions to sustainability

    NASA Astrophysics Data System (ADS)

    Landers, John N.; Rass, Gerard; de Freitas, Pedro L.; Basch, Gottlieb; González Sanchez, Emilio J.; Tabaglio, Vincenzo; Kassan, Amir; Derpsch, Rolf; Friedrich, Theodor; Giupponi, Luca

    2013-04-01

    Not cultivating soil, rotating crops over the years, and leaving crop residues on the surface in the practice of zero tillage/conservation agriculture (ZT/CA) reverses the historically accelerating degradation of soil organic matter (SOM) and soil structure, while increasing soil biological activity by a factor of 2 to 4. The results of this are many: (a) not cultivating reduces soil compaction, leaving old root holes to facilitate internal drainage, averts the pulverization of soil aggregates and formation of pans, reduces draft power for planting and gives shelter, winter food and nesting sites for fauna, (b) crop residues on the surface practically eliminate wind and water erosion, reduce soil moisture loss through the mulch effect, slow spring warm-up (possibly offset by a lower specific heat demand with less water retention in surface soil) and act as a reserve of organically-compounded nutrients (as they decompose to humus), (c) more SOM means higher available water and nutrient retention, higher biological activity year round (enhancing biological controls), higher levels of water-stable aggregates and a positive carbon sink in incremental SOM. The positive impacts for society are: (i) more and cheaper food, (ii) reduced flood and drought-induced famine risks, (iii) a positive carbon sink in SOM and possible reductions in NO2 emissions, (iv) cleaner water and greater aquifer recharge due to reduced runoff, (v) cleaner air through effective elimination of dust as a product of cultivation (vi) less water pollution and greater aquifer recharge from reduced rainfall runoff, (vii) farm diesel consumption halved, (viii) reduced demand for (tropical) de-forestation, by permitting crop expansion on steeper lands, (ix) increased wildlife populations (skylarks, plovers, partridge and peccaries) and (x) an improved conservation mindset in farmers. It is notable that, in spite of successful practitioners in all European countries, mainstream adoption is still to come

  15. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  16. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  17. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  18. Land-use change affects water recycling in Brazil's last agricultural frontier.

    PubMed

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system. PMID:27028754

  19. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  20. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  1. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  2. Do conservative solutes migrate at average pore-water velocity?

    PubMed

    Rovey, Charles W; Niemann, William L

    2005-01-01

    According to common understanding, the advective velocity of a conservative solute equals the average linear pore-water velocity. Yet direct monitoring indicates that the two velocities may be different in heterogeneous media. For example, at the Camp Dodge, Iowa, site the advective velocity of discrete Cl- plumes was less than one tenth of the average pore-water velocity calculated from Darcy's law using the measured hydraulic gradient, effective porosity, and hydraulic conductivity (K) from large-scale three-dimensional (3D) techniques, e.g., pumping tests. Possibly, this difference reflects the influence of different pore systems, if the K relevant to transient solute flux is influenced more by lower-K heterogeneity than a steady or quasi-steady water flux. To test this idea, tracer tests were conducted under controlled laboratory conditions. Under one-dimensional flow conditions, the advective velocity of discrete conservative solutes equaled the average pore-water velocity determined from volumetric flow rates and Darcy's law. In a larger 3D flow system, however, the same solutes migrated at approximately 65% of the average pore-water velocity. These results, coupled with direct observation of dye tracers and their velocities as they migrated through both homogeneous and heterogeneous sections of the same model, demonstrate that heterogeneity can slow the advective velocity of discrete solute plumes relative to the average pore-water velocity within heterogeneous 3D flow sytems. PMID:15726924

  3. The Importance of Water Conservation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2012-12-01

    The population of United States has more than doubled over the past 50 years. The need for water however, has tripled. The EPA estimates that more than 36 states face water shortage during the forthcoming years. The EPA has prepared a plan for achieving environmental and energy performance. This will be coupled with leadership and accountability. Carbon neutrality is also of prime importance. The objective is to focus on six important, essential areas. 1. Efficient use of already available energy resources. 2. Intelligent water consumption and focusing on water conservation. 3. Expand the use of renewable energy resources. 4. Explore innovative transportation systems and methodologies. 5. Change building codes and promote high performance sustainable buildings. 6. Focus on developing creative environment management systems. Greenhouse gases such as carbon dioxide occur naturally in the atmosphere. Carbon dioxide is also emitted to the atmosphere through a variety of natural processes and also some human activities. However, fluorinated gases are emitted to the atmosphere solely through human activities, because they are created by humans. It is very important to observe that water conservation is probably the most cost-effective way to reduce our demand for water. Furthermore, it is certainly environmentally justifiable. Water conservation also means, less use of water. This in turn, results in less strain on the city sewage treatment plants. This may also imply that one uses less energy for heating water. For example, the city of Los Angeles has grown by more than a million over the past thirty years. Regardless, the city still uses almost the same amount of water even now. The Environmental Protection Agency has a plan called E2PLAN. It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability

  4. Soil-, water-, and energy-conserving tillage - Southern Plains

    SciTech Connect

    Allen, R.R.; Musick, J.T.; Unger, P.W.; Wiese, A.F.

    1981-01-01

    This paper summarizes some conservation cropping systems that have been developed through research. The cropping systems were: dryland wheat-fallow with stubble mulch, dryland wheat-chemical fallow-sorghum, irrigated wheat-chemical fallow-sorghum, irrigated sorghum double-cropped after winter wheat, and irrigated annual sorghum. For these cropping systems, the affect of tillage method upon soil water storage, crop yield, and energy use is discussed. 15 refs.

  5. Climate change and water conservation effects on water availability and vegetation patterns in a stream valley

    NASA Astrophysics Data System (ADS)

    van der Knaap, Yasmijn; de Graaf, Myrjam; van Ek, Remco; Witte, Jan-Philip; Aerts, Rien; Bierkens, Marc; van Bodegom, Peter

    2014-05-01

    Climate change predictions include an increase in global temperature and changes in precipitation patterns at spatial and seasonal scale. The seasonal changes for temperate Europe include a decrease in the amount of precipitation in summer and an increase in winter. This may lead to an increased flooding risk in winter and early spring, while in summer the drought risk is likely to increase. These hydrological changes can have profound effects on vegetation patterns and development, especially for groundwater dependent vegetation. Water conservation measures can be used to combat the potential negative effects of these changes. Conservation measures can include aquifer storage and recovery, damming streams, or creating retention zones for flooding events. The implementation of these measures can contribute to preserving groundwater dependent vegetation patterns. In this study we simulated with an integrated surface- and groundwater model and a climate robust vegetation model, the implementation of water conservation measures in a stream valley catchment in the Netherlands. We modeled the effects on water availability and on vegetation patterns. The conservation measures were simulated for the current climate and for two climate scenarios, with a temperature increase of two degrees Celsius and either an increase or decrease in precipitation. Water tables were increased in stream valley zones, where groundwater dependent vegetation dominates, to ensure suitable abiotic conditions. The results showed that the water conservation measures increased the water table considerably in a future climate, compared to no conservation measures. Groundwater dependent vegetation was positively stimulated with these new hydrological conditions. With these models we successfully tested the effectiveness of the water conservation measures on water availability and vegetation patterns to ameliorate the negative effects of climate change. We therefore argue that water conservation

  6. Agricultural Conservation Practices and Wetland Ecosystem Services in a Wetland-Dominated Landscape: The Piedmont-Coastal Plain Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the wetlands-rich eastern Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the a...

  7. Agricultural Trends and Resource Conservation: Implications and Issues. A Symposium Proceedings (Washington, D.C., November 3-5, 1986).

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of this paper is to highlight some of the most significant trends likely to affect agricultural resource conservation activities, to discuss their significance to policy development and program management and implementation, and to make policy and program recommendations. In November 1986, 25 representatives from academia, farming…

  8. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  9. Associations between conservation practices and ecology: ecological responses of agricultural streams and lakes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Conservation Effects Assessment Program (CEAP) Watershed Assessment Study goals are to quantify the environmental benefits of conservation practices at the watershed scale. Currently, a critical knowledge gap exists in linking conservation practices and their ecological effects on aquatic ecosy...

  10. Influence of herbaceous riparian buffers on physical habitat, water chemistry, and stream communities within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used agricultural conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The ecological impacts of herbaceous riparian buffers on the channelized agricultural headwater streams that are comm...

  11. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.36 Water...

  12. The Effects of Water Conservation Instruction on Seventh-Grade Students.

    ERIC Educational Resources Information Center

    Birch, Sandra K.; Schwaab, Karl E.

    1983-01-01

    Examined effectiveness of water conservation instructional unit in increasing students' (N=843) knowledge of water conservation practices and influencing their attitudes about efficient water use. Also examined assertion that school education programs are effective in promoting water conservation. Overall results indicate the unit was effective on…

  13. Effectiveness of conservation agriculture practices on soil erosion processes in semi-arid areas of Zimbabwe

    NASA Astrophysics Data System (ADS)

    Chikwari, Emmanuel; Mhaka, Luke; Gwandu, Tariro; Chipangura, Tafadzwa; Misi Manyanga, Amos; Sabastian Matsenyengwa, Nyasha; Rabesiranana, Naivo; Mabit, Lionel

    2016-04-01

    - The application of fallout radionuclides (FRNs) in soil erosion and redistribution studies has gained popularity since the late 1980s. In Zimbabwe, soil erosion research was mostly based on conventional methods which included the use of erosion plots for quantitative measurements and erosion models for predicting soil losses. Only limited investigation to explore the possibility of using Caesium-137 (Cs-137) has been reported in the early 1990s for undisturbed and cultivated lands in Zimbabwe. In this study, the Cs-137 technique was applied to assess the impact of soil conservation practices on soil losses and to develop strategies and support effective policies that help farmers in Zimbabwe for sustainable land management. The study was carried out at the Makoholi research station 30 km north of the Masvingo region which is located 260 km south of Harare. The area is semi-arid and the study site comprises coarse loamy sands, gleyic lixisols. The conservation agriculture (CA) practices used within the area since 1988 include (i) direct seeding (DS) with mulch, (ii) CA basins with mulch, and (iii) 18 years direct seeding, left fallow for seven years and turned into conventional tillage since 2012 (DS/F/C). The Cs-137 reference inventory was established at 214 ± 16 Bq/m2. The mean inventories for DS, CA basins and DS/F/C were 195, 190 and 214 Bq/m2 respectively. Using the conversion Mass Balance Model 2 on the Cs-137 data obtained along transects for each of the practices, gross erosion rates were found to be 7.5, 7.3 and 2.6 t/ha/yr for direct seeding, CA basins and the DS/F/C while the net erosion rates were found to be 3.8, 4.6 and 0 t/ha/yr respectively. Sediment delivery ratios were 50%, 63% and 2% in the respective order. These preliminary results showed the effectiveness of DS over CA basins in erosion control. The efficiency of fallowing in controlling excessive soil loss was significant in the plot that started as DS for 18 years but left fallow for 7

  14. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Rosegrant, Mark W.

    2004-08-01

    The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

  15. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production

    PubMed Central

    Odhiambo, Judith A.; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C.; Norton, Jay B.

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha-1 in MT and $149.60 ha-1 in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404

  16. Application of agriculture-developed demographic analysis for the conservation of the Hawaiian alpine wekiu bug.

    PubMed

    Eiben, Jesse; Rubinoff, Daniel

    2014-08-01

    Insects that should be considered for conservation attention are often overlooked because of a lack of data. The detailed information necessary to assess population growth, decline, and maximum range is particularly difficult to acquire for rare and cryptic species. Many of these difficulties can be overcome with the use of life table analyses and heat energy accumulation models common in agriculture. The wekiu bug (Nysius wekiuicola), endemic to the summit of one volcanic mountain in Hawaii, is a rare insect living in an environmentally sensitive alpine stone desert, where field-based population assessments would be inefficient or potentially detrimental to natural and cultural resources. We conducted laboratory experiments with the insects by manipulating rearing temperatures of laboratory colonies and made detailed observations of habitat conditions to develop life tables representing population growth parameters and environmental models for wekiu bug phenology and demographic change. Wekiu bugs developed at temperatures only found in its environment on sunny days and required the thermal buffer found on cinder cones for growth and population increase. Wekiu bugs required approximately 3.5 months to complete one generation. The bug developed optimally from 26 to 30 °C, temperatures that are much higher than the air temperature attains in its elevational range. The developmental temperature range of the species confirmed a physiological reason why the wekiu bug is only found on cinder cones. This physiology information can help guide population monitoring and inform habitat restoration and conservation. The wekiu bug was a candidate for listing under the U.S. Endangered Species Act, and the developmental parameters we quantified were used to determine the species would not be listed as endangered or threatened. The use of developmental threshold experiments, life table analyses, and degree day modeling can directly inform otherwise unobservable habitat needs and

  17. Weed Dynamics during Transition to Conservation Agriculture in Western Kenya Maize Production.

    PubMed

    Odhiambo, Judith A; Norton, Urszula; Ashilenje, Dennis; Omondi, Emmanuel C; Norton, Jay B

    2015-01-01

    Weed competition is a significant problem in maize (Zea mays, L.) production in Sub-Saharan Africa. Better understanding of weed management and costs in maize intercropped with beans (Phaseolus vulgaris, L.) during transition to conservation agricultural systems is needed. Changes in weed population and maize growth were assessed for a period of three years at Bungoma where crops are grown twice per year and at Trans-Nzoia where crops are grown once per year. Treatments included three tillage practices: minimum (MT), no-till (NT) and conventional (CT) applied to three cropping systems: continuous maize/bean intercropping (TYPICAL), maize/bean intercropping with relayed mucuna after bean harvest (RELAY) and maize, bean and mucuna planted in a strip intercropping arrangement (STRIP). Herbicides were used in NT, shallow hand hoeing and herbicides were used in MT and deep hoeing with no herbicides were used in CT. Weed and maize performance in the maize phase of each cropping system were assessed at both locations and costs of weed control were estimated at Manor House only. Weed density of grass and forb species declined significantly under MT and NT at Manor House and of grass species only at Mabanga. The greatest declines of more than 50% were observed as early as within one year of the transition to MT and NT in STRIP and TYPICAL cropping systems at Manor House. Transitioning to conservation based systems resulted in a decline of four out of five most dominant weed species. At the same time, no negative impact of MT or NT on maize growth was observed. Corresponding costs of weed management were reduced by $148.40 ha(-1) in MT and $149.60 ha(-1) in NT compared with CT. In conclusion, farmers can benefit from effective and less expensive weed management alternatives early in the process of transitioning to reduced tillage operations. PMID:26237404

  18. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  19. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  20. Valuing the Environmental Benefits of Urban WaterConservation

    SciTech Connect

    Coughlin, Katie M.; Bolduc, Chris A.; Chan, Peter T.; Dunham-Whitehead, C.; Van Buskirk, R.D.

    2007-05-01

    This report documents a project undertaken for theCalifornia Urban Water Conservation Council (the Council) to create a newmethod of accounting for the diverse environmental benefits of raw watersavings. The environmental benefits (EB) model was designed to providewater utilities with a practical tool that they can use to assign amonetary value to the benefits that may accrue from implementing any ofthe Council-recommended Best Management Practices. The model treats onlyenvironmental services associated directly with water, and is intended tocover miscellaneous impacts that are not currently accounted for in anyother cost-benefit analysis.

  1. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  2. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses

    PubMed Central

    Sayer, Jeffrey; Sunderland, Terry; Ghazoul, Jaboury; Pfund, Jean-Laurent; Sheil, Douglas; Meijaard, Erik; Venter, Michelle; Boedhihartono, Agni Klintuni; Day, Michael; Garcia, Claude; van Oosten, Cora; Buck, Louise E.

    2013-01-01

    “Landscape approaches” seek to provide tools and concepts for allocating and managing land to achieve social, economic, and environmental objectives in areas where agriculture, mining, and other productive land uses compete with environmental and biodiversity goals. Here we synthesize the current consensus on landscape approaches. This is based on published literature and a consensus-building process to define good practice and is validated by a survey of practitioners. We find the landscape approach has been refined in response to increasing societal concerns about environment and development tradeoffs. Notably, there has been a shift from conservation-orientated perspectives toward increasing integration of poverty alleviation goals. We provide 10 summary principles to support implementation of a landscape approach as it is currently interpreted. These principles emphasize adaptive management, stakeholder involvement, and multiple objectives. Various constraints are recognized, with institutional and governance concerns identified as the most severe obstacles to implementation. We discuss how these principles differ from more traditional sectoral and project-based approaches. Although no panacea, we see few alternatives that are likely to address landscape challenges more effectively than an approach circumscribed by the principles outlined here. PMID:23686581

  3. Conservation value of a native forest fragment in a region of extensive agriculture.

    PubMed

    Chiarello

    2000-05-01

    A survey of mammals and birds was carried out in a semi-deciduous forest fragment of 150 ha located in a zone of intensive agriculture in Ribeirão Preto, State of São Paulo, south-eastern Brazil. Line transect sampling was used to census mammals and birds during six days, totalling 27.8 km of trails and 27.8 hours of observation. Twenty mammal species were confirmed in the area (except bats and small mammals), including rare or endangered species, such as the mountain lion (Puma concolor), the maned wolf (Chrysocyon brachyurus), and the ocelot (Leopardus pardalis). The brown capuchin monkey (Cebus apella) and the black-tufted-ear marmoset (Callithrix penicillata) were found frequently, suggesting high population density in the fragment. Regarding the avifauna, 49 bird species were recorded, most of them typical of open areas or forest edges. Some confirmed species, however, are becoming increasingly rare in the region, as for example the muscovy duck (Cairina moschata) and the toco toucan (Ramphastos toco). The results demonstrate that forest fragment of this size are refuges for native fauna in a region dominated almost exclusively by sugar-cane plantations. Besides faunal aspects, the conservation of these fragments is of great importance for the establishment of studies related to species preservation in the long term, including reintroduction and translocation projects, as well as studies related to genetic health of isolated populations. PMID:10959107

  4. Energy-conserving perennial agriculture for marginal land in southern Appalachia. Final technical report

    SciTech Connect

    Williams, G.

    1982-01-30

    USDA economists predict the end of surplus farm production in the US within this decade. More and more marginal land will be cropped to provide feed for the growing world population and to produce energy. Much of this potential cropland in Southern Appalachia is poorly suited to annual crops, such as corn. Perennial crops are much better suited to steep, rocky, and wet sites. Research was undertaken on the theoretical potentials of perennial species with high predicted yields of protein, carbohydrates, or oils. Several candidate staple perennial crops for marginal land in Southern Appalachia were identified, and estimates were made of their yields, energy input requirements, and general suitabilities. Cropping systems incorporating honeylocust, persimmon, mulberry, jujube, and beech were compared with corn cropping systems. It appears that these candidate staple perennials show distinct advantages for energy conservation and environmental preservation. Detailed economic analyses must await actual demonstration trials, but preliminary indications for ethanol conversion systems with honeylocust are encouraging. It is suggested that short-term loans to farmers undertaking this new type of agriculture would be appropriate to solve cash-flow problems.

  5. Projecting Urban Water Demand in California: Effects of Climate, Demographics, Technology, Conservation, and Policy

    NASA Astrophysics Data System (ADS)

    Heberger, M. G.; Christian-Smith, J.

    2010-12-01

    California's growing population is increasingly urban, with 98% of its 38 million people currently living in cities and suburbs. The state has added an estimated 4.5 million people since 2000, with Los Angeles, San Diego, and Sacramento among the 12 fastest-growing cities in the United States. While agriculture continues to use the majority of the state's water supply, urban water demand is growing rapidly and straining available supplies. Warming due to climate change is causing increases in water demand for landscape irrigation and commercial and industrial cooling. We have developed an easy-to-use planning tool to create spatial and temporal forecasts of future urban water demand out to the year 2100. It allows the user to estimate future water demand under a number of scenarios of climate change and demographic change. We use downscaled climate model output to estimate landscape and cooling water demand for each decade from 1950 to 2100 (Maurer and Hidalgo 2007). Planners can use the model to estimate the water-use impacts of urban growth and future land use, as well as water conservation programs and regulations. One may also examine economic effects such as changes in water prices or rate structures. The model includes the effects of building codes, plumbing and appliance standards in bringing about "passive savings" over time. Our modeling work to date suggests that current conservation strategies and efficiency gains already underway in California will increase urban water-use efficiency over the next two decades. While per-capita water use decreases, overall demand is likely to increase due to population growth. Under current policies and trends, statewide urban water demand may increase from 9 million acre-feet in 2005 (11 billion m3) to 12 maf (15 billion m3) in 2050. Implementing aggressive conservation strategies allows for continued population growth without increasing water use. This type of scenario-based planning aids water planners and managers in

  6. LOWER PAYETTE RIVER, IDAHO AGRICULTURE IRRIGATION WATER RETURN STUDY AND GROUND WATER EVALUATION, 1992-1993

    EPA Science Inventory

    This report covers the final 17 miles of the Payette River (17050112) and 32,000 acres of irrigated cropland referred to as the Lower Payette State Agricultural Water Quality Project. An in-depth surface and ground water monitoring effort was initiated in June 1992 and completed...

  7. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  8. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  9. Water Quality Benefits of Constructed Wetlands Integrated Within Agricultural Water Recycling Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been integrated within innovative agricultural water recycling systems, and these systems are now being evaluated at three demonstration sites located in the northwest Ohio portion of the Maumee River Basin (Defiance, Fulton, and Van Wert Counties). The water recycling syst...

  10. 78 FR 41390 - Pershing County Water Conservation District; Notice of Application Tendered for Filing with the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pershing County Water Conservation District; Notice of Application Tendered...: Pershing County Water Conservation District. e. Name of Project: Humboldt River Hydro Power Project....

  11. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-09-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.

  12. Macroinvertebrate assemblages in agricultural, mining, and urban tropical streams: implications for conservation and management.

    PubMed

    Mwedzi, Tongayi; Bere, Taurai; Mangadze, Tinotenda

    2016-06-01

    The study evaluated the response of macroinvertebrate assemblages to changes in water quality in different land-use settings in Manyame catchment, Zimbabwe. Four land-use categories were identified: forested commercial farming, communal farming, Great Dyke mining (GDM) and urban areas. Macroinvertebrate community structure and physicochemical variables data were collected in two seasons from 41 sites following standard methods. Although not environmentally threatening, urban and GDM areas were characterised by higher conductivity, total dissolved solids, salinity, magnesium and hardness. Chlorides, total phosphates, total nitrogen, calcium, potassium and sodium were significantly highest in urban sites whilst dissolved oxygen (DO) was significantly higher in the forested commercial faming and GDM sites. Macroinvertebrate communities followed the observed changes in water quality. Macroinvertebrates in urban sites indicated severe pollution (e.g. Chironomidae) whilst those in forested commercial farming sites and GDM sites indicated relatively clean water (e.g. Notonemouridae). Forested watersheds together with good farm management practices are important in mitigating impacts of urbanisation and agriculture. Strategies that reduce oxygen-depleting substances must be devised to protect the health of Zimbabwean streams. The study affirms the wider applicability of the South African Scoring System in different land uses. PMID:26920532

  13. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico.

    PubMed

    Dendooven, Luc; Gutiérrez-Oliva, Vicente F; Patiño-Zúñiga, Leonardo; Ramírez-Villanueva, Daniel A; Verhulst, Nele; Luna-Guido, Marco; Marsch, Rodolfo; Montes-Molina, Joaquín; Gutiérrez-Miceli, Federico A; Vásquez-Murrieta, Soledad; Govaerts, Bram

    2012-08-01

    In 1991, the 'International Maize and Wheat Improvement Center' (CIMMYT) started a field experiment in the rain fed Mexican highlands to investigate conservation agriculture (CA) as a sustainable alternative for conventional maize production practices (CT). CT techniques, characterized by deep tillage, monoculture and crop residue removal, have deteriorated soil fertility and reduced yields. CA, which combines minimum tillage, crop rotations and residue retention, restores soil fertility and increases yields. Soil organic matter increases in CA compared to CT, but increases in greenhouse gas emissions (GHG) in CA might offset the gains obtained to mitigate global warming. Therefore, CO(2), CH(4) and N(2)O emissions, soil temperature, C and water content were monitored in CA and CT treatments in 2010-2011. The cumulative GHG emitted were similar for CA and CT in both years, but the C content in the 0-60 cm layer was higher in CA (117.7 Mg C ha(-1)) than in CT (69.7 Mg C ha(-1)). The net global warming potential (GWP) of CA (considering soil C sequestration, GHG emissions, fuel use, and fertilizer and seeds production) was -7729 kg CO(2) ha(-1) y(-1) in 2008-2009 and -7892 kg CO(2) ha(-1) y(-1) in 2010-2011, whereas that of CT was 1327 and 1156 kg CO(2) ha(-1) y(-1). It was found that the contribution of CA to GWP was small compared to that of CT. PMID:22687433

  14. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies1

    PubMed Central

    Tsai, Yushiou; Cohen, Sara; Vogel, Richard M

    2011-01-01

    We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields. PMID:22457572

  15. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge. PMID:19934512

  16. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  17. Regional estimates of ecological services derived from U.S. Department of Agriculture conservation programs in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Faulkner, Stephen P.; Baldwin, Michael J.; Barrow, Wylie C.; Waddle, Hardin; Keeland, Bobby D.; Walls, Susan C.; James, Dale; Moorman, Tom

    2010-01-01

    The degree to which these conservation practices can restore ecosystem functions and services is not well known. This project was initiated to quantify existing ecological services derived from USDA conservation practices in the MAV as part of the USDA Conservation Effects Assessment Project, Wetlands Component (CEAP-Wetlands). The U.S. Geological Survey (USGS), in collaboration with the USDA Natural Resources Conservation Service, the USDA Farm Service Agency, the U.S. Fish and Wildlife Service, and Ducks Unlimited, collected data on soils, vegetation, nitrogen cycling, migratory birds, and amphibians from 88 different sites between 2006 and 2008. Results from restored WRP sites were compared to baseline data from active agricultural cropland (AG) to evaluate changes in ecosystem services.

  18. Water availability, water demand, and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Andersson, J. C. M.; Zehnder, A. J. B.; Jewitt, G. P. W.; Yang, H.

    2009-07-01

    Water productivity in smallholder rain-fed agriculture is of key interest for food and livelihood security. A frequently advocated approach to enhance water productivity is to adopt water harvesting and conservation technologies (WH). This study estimates water availability for in situ WH and supplemental water demands (SWD) in smallholder agriculture in the Thukela River Basin, South Africa. It incorporates process dynamics governing runoff generation and crop water demands, an explicit account of the reliability of in situ WH, and uncertainty considerations. The agro-hydrological model SWAT (Soil and Water Assessment Tool) was calibrated and evaluated with the SUFI-2 algorithm against observed crop yield and discharge in the basin. The water availability was based on the generated surface runoff in smallholder areas. The SWD was derived from a scenario where crop water deficits were met from an unlimited external water source. The reliability was calculated as the percentage of years in which the water availability ≥ the SWD. It reflects the risks of failure induced by the temporal variability in these factors. The results show that the smallholder crop water productivity is low in the basin (spatiotemporal median: 0.08-0.22 kg m-3, 95% prediction uncertainty band (95PPU). Water is available for in situ WH (spatiotemporal median: 0-17 mm year-1, 95PPU) which may aid in enhancing the crop water productivity by meeting some of the SWD (spatiotemporal median: 0-113 mm year-1, 95PPU). However, the reliability of in situ WH is highly location specific and overall rather low. Of the 1850 km2 of smallholder lands, 20-28% display a reliability ≥25%, 13-16% a reliability ≥50%, and 4-5% a reliability ≥75% (95PPU). This suggests that the risk of failure of in situ WH is relatively high in many areas of the basin.

  19. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction...

  20. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in... (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  1. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for...

  2. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction...

  3. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction...

  4. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction...

  5. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for...

  6. 75 FR 52010 - Land and Water Conservation Fund Description and Notification, Performance Reports, Agreements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... National Park Service Land and Water Conservation Fund Description and Notification, Performance Reports... copy of the ICR packages free of charge. SUPPLEMENTARY INFORMATION: The Land and Water Conservation... Form Title: Land and Water Conservation Fund Description and Notification Form. OMB Control...

  7. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  8. Phosphorus and water budgets in an agricultural basin.

    PubMed

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas. PMID:24955757

  9. Conservation agriculture practices to enhance soil organic in Lombardy plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Perego, Alessia; Giussani, Andrea; Corsi, Stefano; Tosini, Andrea; Acutis, Marco

    2016-04-01

    It has been demonstrated that conservation agriculture (CA) determines a long-term increase in soil organic carbon (SOC) stock in cropland. The present study aimed to estimate the amount of SOC stored in soil of Lombardy plain (Northern Italy) following the change from tillage agriculture (TA) to CA by using crop ARMOSA crop over 23 years (1989-2011). The territorial analysis was performed at agrarian region scale (AR) after identification of the representative crops rotation and soil types. The land use information were data available at cadastral scale and referred to 5 years (from 2007 to 2011). The meteorological data (i.e. maximum and minimum temperature, precipitation) were measured at 14 monitoring stations. Solar radiation was estimated using the equation of the Bristow and Campbell model (1994). A spatial interpolation method was used to extend the meteorological data throughout the entire plain of the region by employing Thiessen polygon method; the meteorological data of the polygon were assigned to each AR. ARMOSA was parameterized to simulate the two tillage systems. For TA and CA scenario the depth of tillage was limited to 35 and 10 cm, respectively; crop residual incorporation was not simulated under CA. In TA scenario, we used the parameters calibrated and validated by Perego et al.(2013) on a wide dataset collected at six monitoring sites in Lombardy plain. In CA, the rate of C decomposition of humified organic C was assumed to be smaller by 30% in no-tillage than in TA (Oorts et al., 2007). The model results showed a significant improve of SOC (p<0.01) from TA to CA under all the crop rotations with a potential SOC sequestration ranged from 0.1 to 0.48 t C ha-1 y-1. While soil type did not affect significantly the SOC sequestration, crop residue determined relevant increases in SOC. That was particularly evident in grain maize monoculture with or without cover crop. References: Oorts K., Garnier P., Findeling A., Mary B., Richard G., Nicolardot B

  10. Characterisation of areas under irrigated agriculture: mapping and water use

    NASA Astrophysics Data System (ADS)

    Peña Arancibia, Jorge; McVicar, Tim R.; Guerschman, Juan P.; Li, Lingtao T.

    2014-05-01

    The evolution of remote sensing and classification methods has enabled effective mapping, monitoring and management of irrigated agriculture. A random forest classification was implemented using learning samples inferred from Landsat TM/ETM data and monthly time-series of remotely-sensed observations from the MODerate resolution Imaging Spectroradiometer (MODIS). The covariates included in the method characterised: (i) the vegetation phenology via the recurrent and persistent fractions of photosynthetically active radiation (fPARrecandfPARper, respectively); (ii) vegetation water use via estimates of actual evapotranspiration (AET), rainfall (P) and the difference between AET and P . Maps of irrigated areas under different climates and cropping conditions were produced for the whole Murray-Darling Basin (Australia) for the years 2004 to 2010 with 0.96 observed agreement in terms of the Kappa Index (were a value of 1 indicates perfect agreement). An independent comparison of yearly irrigated area estimates and corresponding water use showed a linear relationship with good agreement (R2 >0.7) against available yearly metered water withdrawals and estimates of agricultural yields. A sequential covariate optimisation suggested that the most important predictors included the emergence-senescence period (as determined by the fPARrec and corresponding rates of change) and the AET surplus over P during this period. The latter can be important when determining more opportunistic irrigation practices due to unreliable water supply in areas with otherwise high annual rainfall. The procedure can be implemented to map irrigated areas at the global scale: the MODIS time-series used in the classification methodology are available globally since February 2000 and so are the Landsat archives which can be used to infer learning samples and irrigation practices elsewhere.

  11. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  12. Effect of land tenure and stakeholders attitudes on optimization of conservation practices in agricultural watersheds

    NASA Astrophysics Data System (ADS)

    Piemonti, A. D.; Babbar-Sebens, M.; Luzar, E. J.

    2012-12-01

    Modeled watershed management plans have become valuable tools for evaluating the effectiveness and impacts of conservation practices on hydrologic processes in watersheds. In multi-objective optimization approaches, several studies have focused on maximizing physical, ecological, or economic benefits of practices in a specific location, without considering the relationship between social systems and social attitudes on the overall optimality of the practice at that location. For example, objectives that have been commonly used in spatial optimization of practices are economic costs, sediment loads, nutrient loads and pesticide loads. Though the benefits derived from these objectives are generally oriented towards community preferences, they do not represent attitudes of landowners who might operate their land differently than their neighbors (e.g. farm their own land or rent the land to someone else) and might have different social/personal drivers that motivate them to adopt the practices. In addition, a distribution of such landowners could exist in the watershed, leading to spatially varying preferences to practices. In this study we evaluated the effect of three different land tenure types on the spatial-optimization of conservation practices. To perform the optimization, we used a uniform distribution of land tenure type and a spatially varying distribution of land tenure type. Our results show that for a typical Midwestern agricultural watershed, the most optimal solutions (i.e. highest benefits for minimum economic costs) found were for a uniform distribution of landowners who operate their own land. When a different land-tenure was used for the watershed, the optimized alternatives did not change significantly for nitrates reduction benefits and sediment reduction benefits, but were attained at economic costs much higher than the costs of the landowner who farms her/his own land. For example, landowners who rent to cash-renters would have to spend ~120

  13. New findings and setting the research agenda for soil and water conservation for sustainable land management

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  14. Adoption potential of conservation agriculture practices in sub-Saharan Africa: results from five case studies.

    PubMed

    Ndah, Hycenth Tim; Schuler, Johannes; Uthes, Sandra; Zander, Peter; Traore, Karim; Gama, Mphatso-S; Nyagumbo, Isaiah; Triomphe, Bernard; Sieber, Stefan; Corbeels, Marc

    2014-03-01

    Despite the reported benefits of conservation agriculture (CA), its wider up-scaling in Sub-Saharan Africa (SSA) has remained fairly limited. This paper shows how a newly developed qualitative expert assessment approach for CA adoption (QAToCA) was applied to determine its adoption potential in SSA. CA adoption potential is not a predictor of observed adoption rates. Instead, our aim was to systematically check relevant factors that may be influencing its adoption. QAToCA delivers an assessment of how suitable conditions "and thus the likelihood for CA adoption" are. Results show that the high CA adoption potentials exhibited by the Malawi and Zambia case relate mostly to positive institutional factors. On the other hand, the low adoption potential of the Zimbabwe case, in spite of observed higher estimates, is attributed mainly to unstable and less secured market conditions for CA. In the case of Southern Burkina Faso, the potential for CA adoption is determined to be high, and this assessment deviates from lower observed figures. This is attributed mainly to strong competition of CA and livestock for residues in this region. Lastly, the high adoption potential found in Northern Burkina Faso is explained mainly by the fact that farmers here have no alternative other than to adopt the locally adapted CA system-Zaï farming. Results of this assessment should help promoters of CA in the given regions to reflect on their activities and to eventually adjust or redesign them based on a more explicit understanding of where problems and opportunities are found. PMID:24337194

  15. Adoption Potential of Conservation Agriculture Practices in Sub-Saharan Africa: Results from Five Case Studies

    NASA Astrophysics Data System (ADS)

    Ndah, Hycenth Tim; Schuler, Johannes; Uthes, Sandra; Zander, Peter; Traore, Karim; Gama, Mphatso-S.; Nyagumbo, Isaiah; Triomphe, Bernard; Sieber, Stefan; Corbeels, Marc

    2014-03-01

    Despite the reported benefits of conservation agriculture (CA), its wider up-scaling in Sub-Saharan Africa (SSA) has remained fairly limited. This paper shows how a newly developed qualitative expert assessment approach for CA adoption (QAToCA) was applied to determine its adoption potential in SSA. CA adoption potential is not a predictor of observed adoption rates. Instead, our aim was to systematically check relevant factors that may be influencing its adoption. QAToCA delivers an assessment of how suitable conditions "and thus the likelihood for CA adoption" are. Results show that the high CA adoption potentials exhibited by the Malawi and Zambia case relate mostly to positive institutional factors. On the other hand, the low adoption potential of the Zimbabwe case, in spite of observed higher estimates, is attributed mainly to unstable and less secured market conditions for CA. In the case of Southern Burkina Faso, the potential for CA adoption is determined to be high, and this assessment deviates from lower observed figures. This is attributed mainly to strong competition of CA and livestock for residues in this region. Lastly, the high adoption potential found in Northern Burkina Faso is explained mainly by the fact that farmers here have no alternative other than to adopt the locally adapted CA system—Zaï farming. Results of this assessment should help promoters of CA in the given regions to reflect on their activities and to eventually adjust or redesign them based on a more explicit understanding of where problems and opportunities are found.

  16. Hydrostratigraphy of Tree Island Cores from Water Conservation Area 3

    USGS Publications Warehouse

    McNeill, Donald F.; Cunningham, Kevin J.

    2003-01-01

    Cores and borehole-geophysical logs collected on and around two tree islands in Water Conservation Area 3 have been examined to develop a stratigraphic framework for these ecosystems. Especially important is the potential for the exchange of ground water and surface water within these features. The hydrostratigraphic results from this study document the lithologic nature of the foundation of the tree islands, the distribution of porous intervals, the potential for paleotopographic influence on their formation, and the importance of low-permeability, subaerial-exposure horizons on the vertical exchange of ground water and surface water. Figure 1. Location of Tree Islands 3AS3 and 3BS1. [larger image] Results from this hydrostratigraphic study indicate that subtle differences occur in lithofacies and topography between the on-island and off-island subsurface geologic records. Specifics are described herein. Firstly, at both tree-island sites, the top of the limestone bedrock is slightly elevated beneath the head of the tree islands relative to the off-island core sites and the tail of the tree islands, which suggests that bedrock 'highs' acted as 'seeds' for the development of the tree islands of this study and possibly many others. Secondly, examination of the recovered core and the caliper logs tentatively suggest that the elevated limestone beneath the tree islands may have a preferentially more porous framework relative to limestone beneath the adjacent areas, possibly providing a ground-water-to-surface-water connection that sustains the tree island system. Finally, because the elevation of the top of the limestone bedrock at the head of Tree Island 3AS3 is slightly higher than the surrounding upper surface of the peat, and because the wetland peats have a lower hydraulic conductivity than the limestone bedrock (Miami Limestone and Fort Thompson Formation), it is possible that there is a head difference between surface water of the wetlands and the ground water

  17. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  18. The Bureau of Reclamation's new mandate for irrigation water conservation: Purposes and policy alternatives

    SciTech Connect

    Moore, M.R. )

    1991-02-01

    Although the Bureau of Reclamation adopted a new mission as a water management agency, social purposes of the mission and methods of accomplishing the purposes remain undefined. A broad consensus agrees that a central feature of the agency's management program should be irrigation water conservation. This paper describes three purposes of irrigation water conservation: achieving economic efficiency of water allocation, improving environmental quality of western river systems, and satisfying outstanding Native American water claims. Five policy instruments are described as alternative methods of inducing conservation: quantity-based regulation, price-based regulation, transferable water use permits, conservation subsidies, and decentralization of ownership of Reclamation facilities. Two findings are: (1) price-based regulation may not produce water conservation and (2) conservation policy instruments should be chosen with reference to their ability to achieve the purposes of federal water conservation policy. An example illustrates quantitative effects on farm income of the alternative instruments.

  19. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  20. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  1. Selected References and Aids for Teaching Agricultural Mechanics to Students of Agricultural Education.

    ERIC Educational Resources Information Center

    Mazzucco, April

    The booklet lists references and materials intended for both the student and the teacher of agricultural mechanics. The materials are grouped under nine topics: agricultural shop; metalwork and welding; agricultural machinery; agricultural power; drawing, construction, and maintenance; electricity; water management, soil and water conservation;…

  2. Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector

    SciTech Connect

    Parker, Graham B.; Mcmordie, Katherine; Sullivan, Gregory P.; Elliott, Douglas B.

    2001-08-17

    The Department of Energy's Federal Energy Management Program (FEMP) is considering the development of a technology-specific Super-Energy Saving Performance Contract (ESPC) for water conservation. Prior to the development however, FEMP requires the completion of a market assessment to better understand the water conservation opportunities and the strategies available for capturing them. Thus, this market assessment has been undertaken to evaluate the water conservation opportunities and answer the key questions necessary for FEMP to make recommendations on whether or not to proceed with strategies for water conservation primarily through the development of a water conservation technology-specific performance contract.

  3. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  4. Water conservation in fasting northern elephant seals (Mirounga angustirostris).

    PubMed

    Lester, Christopher W; Costa, Daniel P

    2006-11-01

    Prolonged terrestrial fasting is a key element in the life history of elephant seals. While on land seals typically fast without access to fresh water, and thus must maintain positive water balance by reductions in water loss such that they can subsist primarily on metabolic water production (MWP). The terrestrial apnea demonstrated by seals may reduce respiratory evaporative water loss (REWL) to levels that allow seals to make a net gain of water from MWP. We empirically measured REWL in 13 fasting northern elephant seal pups and determined the effects on water conservation of a breathing mode that incorporates a regular pattern of apneas, of > or =1 min in duration, followed by eupneic recovery, compared with a breathing mode with no apneas longer than 20 s and resembling typical breathing patterns in other mammals (normative breathing). Overall REWL fell 41% from 0.075+/-0.013 g min(-1) (mean +/- s.d.) during normative breathing to 0.044+/-0.006 g min(-1) during apneic breathing. The decline in REWL is attributed to a decrease in overall ventilation rate, made possible by a decline in metabolic rate along with an increase in oxygen extraction that would occur during apneic breathing. Data on the range of ambient humidity conditions at the local breeding site were collected and used to bound the range of environmental conditions used in laboratory measurements. Our data showed that the observed variations in ambient humidity had no significant effect on REWL. A combination of apneic breathing and the complex nasal turbinates allows fasting elephant seals to reduce REWL well below the rate of MWP so that they can maintain water balance during the fast. PMID:17050843

  5. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  6. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  7. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  8. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  9. Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region

    NASA Astrophysics Data System (ADS)

    Al-Ghobari, Hussein M.; Mohammad, Fawzi S.

    2011-12-01

    Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in

  10. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  11. Remote Sensing of Wetland Hydrology: Implications for Water Quality Management in Agricultural Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the substantial effect of agriculture on the ability of wetlands to function, the U.S. Department of Agriculture (USDA) serves a key role in wetland conservation and restoration. In order for the USDA to allocate funds to best manage wetlands, a better understanding of wetland functioning is ...

  12. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  13. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  14. Evaluation of the effects of agricultural conservation practices on sediment yield in the Colusa Basin, California

    NASA Astrophysics Data System (ADS)

    Gatzke, S. E.; Zhang, M.

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of agricultural best management practices (BMPs) on sediment runoff from almond orchards in the lower Colusa Basin Drain watershed in the Sacramento Valley, California. This study used modeling techniques that include varying hydrologic parameters for both upland areas and small channels to quantify the effects of BMPs water quality. The BMPs simulated in this study are commonly used in almond orchards and include strip cropping, cover cropping, vegetative filter strips, grassed waterways and channel stabilization. The effectiveness of each BMP was simulated for an above average, below average and average rainfall year. Comparison of annual total watershed sediment loads for each BMP simulation showed that overall, channel stabilization and grassed waterways, which target in stream sediment erosion and transport, are the most effective BMPs with an estimated respective reduction in sediment load of 18% and 35% for a below average precipitation year, 13% and 26% for an above average precipitation year, and 17% and 30% for an average precipitation year. Simulations of BMPs designed to reduce sediment transport in upland areas, which include strip cropping and vegetative filter strips, estimated a reduction in total annual sediment load of less than 1% at the watershed outlet. These results indicated that in-stream sediment transport is the dominant sediment transport process in this watershed. Implementation of channel stabilization measures or grassed waterways on almond orchards is estimated to result in an annual reduction of total sediment load of 41,874 kg or 72,753 kg of sediment per square kilometer of almond orchard for an above average precipitation year.

  15. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida.

    PubMed

    Lee, Mengshan; Tansel, Berrin

    2013-10-15

    During 2006-2007, Miami-Dade County, Florida, USA, provided incentives for low income and senior residents in single family homes for retrofitting with high efficiency fixtures. The participating residences were retrofitted with high-efficiency toilets, showerheads, and aerators. In 2012, a telephone survey was conducted to evaluate the satisfaction of the participants and the associated effects on water conservation practices. This study evaluates the attitudes and opinions of the participants relative to water use efficiency measures and the actual reduction in water consumption characteristics of the participating households. The participant characteristics were analyzed to identify correlations between the socio-demographic factors, program satisfaction and actual water savings. Approximately 65.5% of the survey respondents reported changes in their water use habits and 76.6% reported noticeable reduction in their water bills. The analyses showed that the satisfaction levels of the participants were closely correlated with the actual water savings. The results also showed that satisfaction level along with water saving potential (i.e., implementation of water efficiency devices) or change of water use habits has provided positive synergistic effect on actual water savings. The majority of the participants surveyed (81.3-89.1%) reported positive attitudes for water conservation incentive program and the benefits of the high efficiency fixtures. PMID:23850763

  16. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  17. A Manual on Conservation of Soil and Water. Appropriate Technologies for Development. R-38.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    In order to keep the land productive, a good conservation program is imperative. The primary purpose of soil and water conservation is to prevent soil erosion and heal its scars. This handbook explains the causes, processes, and consequences of soil erosion and depletion, and describes major soil- and water-conservation measures. This book was…

  18. Turning Minds On and Faucets Off: Water Conservation Education in Jordanian Schools.

    ERIC Educational Resources Information Center

    Middlestadt, Susan; Grieser, Mona; Hernandez, Orlando; Tubaishat, Khulood; Sanchack, Julie; Southwell, Brian; Schwartz, Reva

    2001-01-01

    An evaluation was conducted to measure the impact of a curriculum implemented through the Jordan Water Conservation Education Project. Examines the effect of recommending water conservation at the household level and the impact of using interactive teaching methods to promote conservation behaviors among students and their families. (Author/SAH)

  19. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Clothers Washers Energy Conservation Standards § 431.156 Energy and water...

  20. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Clothers Washers Energy Conservation Standards § 431.156 Energy and water...

  1. 77 FR 35367 - Silt Water Conservancy District; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... November 22 and 28, 2011, the Colorado Water Quality Control Division, the Colorado Division of Water... Energy Regulatory Commission Silt Water Conservancy District; Notice of Application Accepted for Filing.... Date filed: January 5, 2012. d. Applicant: Silt Water Conservancy District. e. Name of Project:...

  2. 7 CFR 764.231 - Conservation loan uses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... timber management, erosion control, or shelter belt purposes; (3) The installation of water conservation... 7 Agriculture 7 2014-01-01 2014-01-01 false Conservation loan uses. 764.231 Section 764.231... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN MAKING Conservation Loan Program § 764.231 Conservation loan uses....

  3. 7 CFR 764.231 - Conservation loan uses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... timber management, erosion control, or shelter belt purposes; (3) The installation of water conservation... 7 Agriculture 7 2013-01-01 2013-01-01 false Conservation loan uses. 764.231 Section 764.231... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN MAKING Conservation Loan Program § 764.231 Conservation loan uses....

  4. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  5. At-grade stabilization structure impact on surface water quality of an agricultural watershed.

    PubMed

    Minks, Kyle R; Ruark, Matthew D; Lowery, Birl; Madison, Fred W; Frame, Dennis; Stuntebeck, Todd D; Komiskey, Matthew J; Kraft, George J

    2015-04-15

    Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters. PMID:25657061

  6. An integrated stochastic approach to the assessment of agricultural water demand and adaptation to water scarcity

    NASA Astrophysics Data System (ADS)

    Foster, T.; Butler, A. P.; McIntyre, N.

    2012-12-01

    Increasing water demands from growing populations coupled with changing water availability, for example due to climate change, are likely to increase water scarcity. Agriculture will be exposed to risk due to the importance of reliable water supplies as an input to crop production. To assess the efficiency of agricultural adaptation options requires a sound understanding of the relationship between crop growth and water application. However, most water resource planning models quantify agricultural water demand using highly simplified, temporally lumped estimated crop-water production functions (CWPFs). Such CWPFs fail to capture the biophysical complexities in crop-water relations and mischaracterise farmers ability to respond to water scarcity. Application of these models in policy analyses will be ineffective and may lead to unsustainable water policies. Crop simulation models provide an alternative means of defining the complex nature of the CWPF. Here we develop a daily water-limited crop model for this purpose. The model is based on the approach used in the FAO's AquaCrop model, balancing biophysical and computational complexities. We further develop the model by incorporating improved simulation routines to calculate the distribution of water through the soil profile. Consequently we obtain a more realistic representation of the soil water balance with concurrent improvements in the prediction of water-limited yield. We introduce a methodology to utilise this model for the generation of stochastic crop-water production functions (SCWPFs). This is achieved by running the model iteratively with both time series of climatic data and variable quantities of irrigation water, employing a realistic rule-based approach to farm irrigation scheduling. This methodology improves the representation of potential crop yields, capturing both the variable effects of water deficits on crop yield and the stochastic nature of the CWPF due to climatic variability. Application to

  7. INTEGRATED CROP-LIVESTOCK SYSTEMS TO CONSERVE SOIL AND WATER RESOURCES IN THE SOUTHEASTERN USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production and natural resource conservation need to be balanced to meet the needs of society. To achieve goals of high agricultural production while protecting the environment, modifications to current production systems are needed. Melding new and existing technologies to achieve th...

  8. Building Better Rural Places: Federal Programs for Sustainable Agriculture, Forestry, Conservation and Community Development.

    ERIC Educational Resources Information Center

    Berton, Valerie; Butler, Jennifer

    This guide is written for those seeking help from federal programs to foster innovative enterprises in agriculture and forestry in the United States. The guide describes program resources in value-added and diversified agriculture and forestry, sustainable land management, and community development. Programs are included based upon whether they…

  9. Impact of conservation agriculture on catchment runoff and soil loss under changing climate conditions in May Zeg-zeg (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Lanckriet, Sil; Araya, Tesfay; Cornelis, Wim; Verfaillie, Els; Poesen, Jean; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Haile, Mitiku; Nyssen, Jan

    2012-12-01

    SummaryThis study evaluates the practice of conservation agriculture (CA) in the May Zeg-zeg catchment (MZZ; 187 ha) in the North Ethiopian Highlands as a soil management technique for reducing soil loss and runoff, and assesses the consequences of future large-scale implementation on soil and hydrology at catchment-level. The study of such practice is important especially under conditions of climate change, since EdGCM (Educational Global Climate Model) simulation predicts by 2040 an increase in precipitation by more than 100 mm yr-1 in the study area. Firstly, field-saturated infiltration rates, together with soil texture and soil organic carbon contents, were measured. The relation with local topography allows to generate a pedotransfer function for field-saturated infiltration rate, and spatial interpolation with Linear Regression Mapping was used to map field-saturated infiltration rates optimally within the catchment. Secondly, on several farmlands, CA was checked against plain tillage (PT) for values of field-saturated infiltration rates, soil organic carbon, runoff and soil loss. Results show no significant differences for infiltration rates but significant differences for runoff and soil loss (as measured in the period 2005-2011). Runoff coefficients were 30.4% for PT and 18.8% for CA; soil losses were 35.4 t ha-1 yr-1 for PT and 14.4 t ha-1 yr-1 for CA. Thirdly, all collected information was used to predict future catchment hydrological response for full-implementation of CA under the predicted wetter climate (simulation with EdGCM). Curve Numbers for farmlands with CA were calculated. An area-weighted Curve Number allows the simulation of the 2011 rainy season runoff, predicting a total runoff depth of 23.5 mm under CA and 27.9 mm under PT. Furthermore, the Revised Universal Soil Loss Equation management factor P was calibrated for CA. Results also show the important influence of increased surface roughness on water ponding, modeled with a hydrologic

  10. The influence of conservation tillage methods on soil water regimes in semi-arid southern Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mupangwa, W.; Twomlow, S.; Walker, S.

    Planting basins and ripper tillage practices are major components of the recently introduced conservation agriculture package that is being extensively promoted for smallholder farming in Zimbabwe. Besides preparing land for crop planting, these two technologies also help in collecting and using rainwater more efficiently in semi-arid areas. The basin tillage is being targeted for households with limited or no access to draught animals while ripping is meant for smallholder farmers with some draught animal power. Trials were established at four farms in Gwanda and Insiza in southern Zimbabwe to determine soil water contributions and runoff water losses from plots under four different tillage treatments. The tillage treatments were hand-dug planting basins, ripping, conventional spring and double ploughing using animal-drawn implements. The initial intention was to measure soil water changes and runoff losses from cropped plots under the four tillage practices. However, due to total crop failure, only soil water and runoff were measured from bare plots between December 2006 and April 2007. Runoff losses were highest under conventional ploughing. Planting basins retained most of the rainwater that fell during each rainfall event. The amount of rainfall received at each farm significantly influenced the volume of runoff water measured. Runoff water volume increased with increase in the amount of rainfall received at each farm. Soil water content was consistently higher under basin tillage than the other three tillage treatments. Significant differences in soil water content were observed across the farms according to soil types from sand to loamy sand. The basin tillage method gives a better control of water losses from the farmers’ fields. The planting basin tillage method has a greater potential for providing soil water to crops than ripper, double and single conventional ploughing practices.

  11. A rainfall simulation experiment on soil and water conservation measures - Undesirable results

    NASA Astrophysics Data System (ADS)

    Hösl, R.; Strauss, P.

    2012-04-01

    Sediment and nutrient inputs from agriculturally used land into surface waters are one of the main problems concerning surface water quality. On-site soil and water conservation measures are getting more and more popular throughout the last decades and a lot of research has been done within this issue. Numerous studies can be found about rainfall simulation experiments with different conservation measures tested like no till, mulching employing different types of soil cover, as well as sub soiling practices. Many studies document a more or less great success in preventing soil erosion and enhancing water quality by implementing no till and mulching techniques on farmland but few studies also indicate higher erosion rates with implementation of conservation tillage practices (Strauss et al., 2003). In May 2011 we conducted a field rainfall simulation experiment in Upper Austria to test 5 different maize cultivation techniques: no till with rough seedbed, no till with fine seedbed, mulching with disc harrow and rotary harrow, mulching with rotary harrow and conventional tillage using plough and rotary harrow. Rough seedbed refers to the seedbed preparation at planting of the cover crops. On every plot except on the conventionally managed one cover crops (a mix of Trifolium alexandrinum, Phacelia, Raphanus sativus and Herpestes) were sown in August 2010. All plots were rained three times with deionised water (<50 μS.cm-1) for one hour with 50mm.h-1 rainfall intensity. Surface runoff and soil erosion were measured. Additionally, soil cover by mulch was measured as well as soil texture, bulk density, penetration resistance, surface roughness and soil water content before and after the simulation. The simulation experiments took place about 2 weeks after seeding of maize in spring 2011. The most effective cultivation techniques for soil prevention expectedly proved to be the no till variants, mean erosion rate was about 0.1 kg.h-1, mean surface runoff was 29 l.h-1

  12. Simulation of water-use conservation scenarios for the Mississippi Delta using an existing regional groundwater flow model

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Clark, Brian R.

    2011-01-01

    The Mississippi River alluvial plain in northwestern Mississippi (referred to as the Delta), once a floodplain to the Mississippi River covered with hardwoods and marshland, is now a highly productive agricultural region of large economic importance to Mississippi. Water for irrigation is supplied primarily by the Mississippi River Valley alluvial aquifer, and although the alluvial aquifer has a large reserve, there is evidence that the current rate of water use from the alluvial aquifer is not sustainable. Using an existing regional groundwater flow model, conservation scenarios were developed for the alluvial aquifer underlying the Delta region in northwestern Mississippi to assess where the implementation of water-use conservation efforts would have the greatest effect on future water availability-either uniformly throughout the Delta, or focused on a cone of depression in the alluvial aquifer underlying the central part of the Delta. Five scenarios were simulated with the Mississippi Embayment Regional Aquifer Study groundwater flow model: (1) a base scenario in which water use remained constant at 2007 rates throughout the entire simulation; (2) a 5-percent 'Delta-wide' conservation scenario in which water use across the Delta was decreased by 5 percent; (3) a 5-percent 'cone-equivalent' conservation scenario in which water use within the area of the cone of depression was decreased by 11 percent (a volume equivalent to the 5-percent Delta-wide conservation scenario); (4) a 25-percent Delta-wide conservation scenario in which water use across the Delta was decreased by 25 percent; and (5) a 25-percent cone-equivalent conservation scenario in which water use within the area of the cone of depression was decreased by 55 percent (a volume equivalent to the 25-percent Delta-wide conservation scenario). The Delta-wide scenarios result in greater average water-level improvements (relative to the base scenario) for the entire Delta area than the cone

  13. Conservation of water for washing beef heads at harvest.

    PubMed

    DeOtte, R E; Spivey, K S; Galloway, H O; Lawrence, T E

    2010-03-01

    The objective of this research was to develop methods to conserve water necessary to cleanse beef heads prior to USDA-FSIS inspection. This was to be accomplished by establishing a baseline for the minimum amount of water necessary to adequately wash a head and application of image analysis to provide an objective measure of head cleaning. Twenty-one beef heads were manually washed during the harvest process. An average 18.75 L (2.49 SD) and a maximum of 23.88 L were required to cleanse the heads to USDA-FSIS standards. Digital images were captured before and after manual washing then evaluated for percentage red saturation using commercially available image analysis software. A decaying exponential curve extracted from these data indicated that as wash water increased beyond 20 L the impact on red saturation decreased. At 4 sigma from the mean of 18.75 L, red saturation is 16.0 percent, at which logistic regression analysis indicates 99.994 percent of heads would be accepted for inspection, or less than 1 head in 15,000 would be rejected. Reducing to 3 sigma would increase red saturation to 27.6 percent, for which 99.730 percent of heads likely would be accepted (less than 1 in 370 would be rejected). PMID:20374798

  14. Environmental effects of agricultural conservation within the Fort Cobb, OK, Reservoir watershed.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to the 2002 Farm Bill, the Conservation Effects Assessment Project (CEAP) was initiated to assess and quantify the effects and benefits of USDA conservation programs. The Fort Cobb Reservoir watershed was selected for inclusion in the national CEAP Watershed Assessment Study because of h...

  15. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. PMID:27241204

  16. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, D.A.

    1994-01-01

    The effects of different agricultural land- management practices on sediment, nutrients, and selected pesticides in surface water, and on nutrients and pesticides in ground water were studied in four small basins in the Piedmont of North Carolina. The basins included two adjacent basins in row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields was farmed using conservation land-management practices, including strip cropping, contour plowing, field borders, and grassed waterways. The other field was farmed using standard land- management practices, including continuous cropping, straight-row plowing, and ungrassed waterways. The sediment yield for the standard land-management basin was 2.3 times that for the conservation land-management basin, 14.1 times that for the mixed land-use basin, and 19.5 times that for the forested basin. Nutrient concentra- tions in surface water from the row-crop and mixed land-use basins were higher than those in surface water for the forested basin. Nutrient concentra- tions in soil water and ground water beneath the row-crop basins were lower than those in surface- water runoff for these basins. The lowest nutrient concentrations measured in the row-crop basins generally were in soil-water samples collected just below the root zone (3-foot depth) and in ground water. No significant differences in pesticide concentrations were identified between the surface-water runoff from the standard land- management basin and that from the conservation land-management basin. Concentrations of the soil pesticides isopropalin and flumetralin were higher in the standard land-management basin than in the conservation land-management basin.

  17. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    NASA Astrophysics Data System (ADS)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  18. An examination of soil and water conservation practices in the paddy fields of Guilan province, Iran.

    PubMed

    Ashoori, Daryoush; Bagheri, Asghar; Allahyari, Mohammad S; Al-Rimawi, Ahmad S

    2016-06-01

    This study examined the use of soil and water conservation (SWC) practices among rice farmers in Iran. A random sample of 400 rice paddy farmers in the Foumanat plain of Guilan province, who use SWC measures, was drawn from a population of 52 thousand farmers. A two-part questionnaire was used to examine the level of utilization of SWC practices and to profile paddy farmers. Internal consistency was demonstrated with a coefficient alpha of 0.76, and the content and face validity of the instrument was confirmed by a panel of soil and water experts. Descriptive and analytical statistics were used to analyze the data. Results of ANOVA indicated that the mean levels of SWC practices vary considerably at the 0.01 level of significance by groups of age, education, non-agricultural income, production costs, yield, cultivated paddies and distance from home to the farm or to the main road. Similarly, significant differences were observed by groups of family size, rice production, ownership of livestock and profits from rice production at 0.05 level. The levels of experience in agriculture and ownership of poultry were found to have no significant effects on SWC practices. PMID:27276379

  19. Differences in Aquatic Communities Between Wetlands Created by an Agricultural Water Recycling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to s...

  20. Food vs. water: the magnitude and range of global tradeoffs in agricultural production and impact

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2013-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  1. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  2. 77 FR 35369 - Silt Water Conservancy District; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... requirements under 18 CFR 4.38(c). On September 1 and 23, and October 28, 2011, the Colorado Water Quality... Energy Regulatory Commission Silt Water Conservancy District; Notice of Application Accepted for Filing.... Date filed: January 5, 2012. d. Applicant: Silt Water Conservancy District. e. Name of Project:...

  3. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and a water factor no greater than: Equipment class Modifiedenergy factor, cu. ft./kWh/cycle... 10 Energy 3 2013-01-01 2013-01-01 false Energy and water conservation standards and effective... Standards § 431.156 Energy and water conservation standards and effective dates. (a) Each commercial...

  4. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and a water factor no greater than: Equipment class Modifiedenergy factor, cu. ft./kWh/cycle... 10 Energy 3 2012-01-01 2012-01-01 false Energy and water conservation standards and effective... Standards § 431.156 Energy and water conservation standards and effective dates. (a) Each commercial...

  5. The Modeling of Time-Varying Stream Water Age Distributions: Preliminary Investigations with Non-Conservative Solutes

    NASA Astrophysics Data System (ADS)

    Wilusz, D. C.; Harman, C. J.; Ball, W. P.

    2014-12-01

    Modeling the dynamics of chemical transport from the landscape to streams is necessary for water quality management. Previous work has shown that estimates of the distribution of water age in streams, the transit time distribution (TTD), can improve prediction of the concentration of conservative tracers (i.e., ones that "follow the water") based on upstream watershed inputs. A major challenge however has been accounting for climate and transport variability when estimating TDDs at the catchment scale. In this regard, Harman (2014, in review) proposed the Omega modeling framework capable of using watershed hydraulic fluxes to approximate the time-varying TTD. The approach was previously applied to the Plynlimon research watershed in Wales to simulate stream concentration dynamics of a conservative tracer (chloride) including 1/f attenuation of the power spectra density. In this study we explore the extent to which TTDs estimated by the Omega model vary with the concentration of non-conservative tracers (i.e., ones whose concentrations are also affected by transformations and interactions with other phases). First we test the hypothesis that the TTD calibrated in Plynlimon can explain a large part of the variation in non-conservative stream water constituents associated with storm flow (acidity, Al, DOC, Fe) and base flow (Ca, Si). While controlling for discharge, we show a correlation between the percentage of water of different ages and constituent concentration. Second, we test the hypothesis that TTDs help explain variation in stream nitrate concentration, which is of particular interest for pollution control but can be highly non-conservative. We compare simulation runs from Plynlimon and the agricultural Choptank watershed in Maryland, USA. Following a top-down approach, we estimate nitrate concentration as if it were a conservative tracer and examine the structure of residuals at different temporal resolutions. Finally, we consider model modifications to

  6. Using water wisely: New, affordable, and essential water conservation practices for facility and home hemodialysis.

    PubMed

    Agar, John W M; Simmonds, Rosemary E; Knight, Richard; Somerville, Christine A

    2009-01-01

    Despite a global focus on resource conservation, most hemodialysis (HD) services still wastefully or ignorantly discard reverse osmosis (R/O) "reject water" (RW) to the sewer. However, an R/O system is producing the highly purified water necessary for dialysis, it rejects any remaining dissolved salts from water already prefiltered through charcoal and sand filters in a high-volume effluent known as RW. Although the RW generated by most R/O systems lies well within globally accepted potable water criteria, it is legally "unacceptable" for drinking. Consequently, despite being extremely high-grade gray water, under current dialysis practices, it is thoughtlessly "lost-to-drain." Most current HD service designs neither specify nor routinely include RW-saving methodology, despite its simplicity and affordability. Since 2006, we have operated several locally designed, simple, cheap, and effective RW collection and distribution systems in our in-center, satellite, and home HD services. All our RW water is now recycled for gray-water use in our hospital, in the community, and at home, a practice that is widely appreciated by our local health service and our community and is an acknowledged lead example of scarce resource conservation. Reject water has sustained local sporting facilities and gardens previously threatened by indefinite closure under our regional endemic local drought conditions. As global water resources come under increasing pressure, we believe that a far more responsible attitude to RW recycling and conservation should be mandated for all new and existing HD services, regardless of country or region. PMID:19210275

  7. Soil and water conservation strategies and impact on sustainable livelihood in Cape Verde - Case study of Ribeira Seca watershed

    NASA Astrophysics Data System (ADS)

    Baptista, I.; Ferreira, A. D.; Tavares, J.; Querido, A. L. E.; Reis, A. E. A.; Geissen, V.; Ritsema, C.; Varela, A.

    2012-04-01

    Cape Verde, located off the coast of Senegal in western Africa, is a volcanic archipelago where a combination of human, climatic, geomorphologic and pedologic factors has led to extensive degradation of the soils. Like other Sahelian countries, Cape Verde has suffered the effects of desertification through the years, threatening the livelihood of the islands population and its fragile environment. In fact, the steep slopes in the ore agricultural islands, together with semi-arid and arid environments, characterized by an irregular and poorly distributed rainy season, with high intensity rainfall events, make dryland production a challenge. To survive in these fragile conditions, the stabilization of the farming systems and the maintenance of sustainable yields have become absolute priorities, making the islands an erosion control laboratory. Soil and water conservation strategies have been a centerpiece of the government's agricultural policies for the last half century. Aiming to maintain the soil in place and the water inside the soil, the successive governments of Cape Verde have implemented a number of soil and water conservation techniques, the most common ones being terraces, half moons, live barriers, contour rock walls, contour furrows and microcatchments, check dams and reforestation with drought resistant species. The soil and water conservation techniques implemented have contributed to the improvement of the economical and environmental conditions of the treated landscape, making crop production possible, consequently, improving the livelihood of the people living on the islands. In this paper, we survey the existing soil and water conservation techniques, analyze their impact on the livelihood condition of the population through a thorough literature review and field monitoring using a semi-quantitative methodology and evaluate their effectiveness and impact on crop yield in the Ribeira Seca watershed. A brief discussion is given on the cost and

  8. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  9. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  10. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  11. Water management, purification, and conservation in arid climates. Volume 2: Water purification

    SciTech Connect

    Goosen, M.F.A.; Shayya, W.H.

    1999-10-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three things in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 2 presents various methods of purifying water, and includes membrane processes and alternative techniques such as solar desalination.

  12. Soil and water conservation planning on the loess plateau in northern China

    NASA Astrophysics Data System (ADS)

    Ritsema, C. J.; Team

    2003-04-01

    The Loess Plateau in Northern China is faced with a continuous loss of land and productivity due to soil erosion. An increasing demand to produce food for the growing population increases the pressure on the land, resulting in an accelerated destruction of forests and grassland. Conscious of the extent and severity of this problem, the government of the P.R. of China promotes a comprehensive approach to control soil erosion, but, there is still no proper method to plan and evaluate the expected effects of the (combined) use of the available measures on forehand. The aims of the present research are to investigate the current situation, and to develop alternative land use and conservation strategies using a participatory planning method which integrates both soil erosion modeling and land evaluation techniques. Prospective alternative land use and conservation measures, resulting from the land evaluation process, will be evaluated on their effects on reducing soil and water losses using the calibrated, GIS-incorporated, physically based soil erosion LISEM model. Based upon model outcome, alternative land use and conservation measures will be refined and optimized in a participatory process. In this process, land users, local authorities and policy makers will be involved in order to reach an optimum situation for the selected watersheds (low soil and water losses, high sustainability). The solutions found in this approach are expected to be supported by the different user groups in the area, which will provide a good basis for a successful implementation after conclusion of the project. Results indicate that soil erosion can be reduced up to 80% depending on measures taken by farmers and the government. The 3-year project, which started at the end of 1997, was funded by the European Union and the Netherlands Ministry of Agriculture, Nature Management and Fisheries. Final results of the project will be presented and discussed in detail.

  13. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2012-01-01 2012-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation...

  14. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2014-01-01 2014-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation...

  15. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2010-01-01 2010-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation...

  16. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2013-01-01 2013-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation...

  17. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  18. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.

    PubMed

    Santhi, C; Kannan, N; White, M; Di Luzio, M; Arnold, J G; Wang, X; Williams, J R

    2014-01-01

    The USDA initiated the Conservation Effects Assessment Project (CEAP) to quantify the environmental benefits of conservation practices at regional and national scales. For this assessment, a sampling and modeling approach is used. This paper provides a technical overview of the modeling approach used in CEAP cropland assessment to estimate the off-site water quality benefits of conservation practices using the Ohio River Basin (ORB) as an example. The modeling approach uses a farm-scale model, Agricultural Policy Environmental Extender (APEX), and a watershed scale model (the Soil and Water Assessment Tool [SWAT]) and databases in the Hydrologic Unit Modeling for the United States system. Databases of land use, soils, land use management, topography, weather, point sources, and atmospheric depositions were developed to derive model inputs. APEX simulates the cultivated cropland, Conserve Reserve Program land, and the practices implemented on them, whereas SWAT simulates the noncultivated land (e.g., pasture, range, urban, and forest) and point sources. Simulation results from APEX are input into SWAT. SWAT routes all sources, including APEX's, to the basin outlet through each eight-digit watershed. Each basin is calibrated for stream flow, sediment, and nutrient loads at multiple gaging sites and turned in for simulating the effects of conservation practice scenarios on water quality. Results indicate that sediment, nitrogen, and phosphorus loads delivered to the Mississippi River from ORB could be reduced by 16, 15, and 23%, respectively, due to current conservation practices. Modeling tools are useful to provide science-based information for assessing existing conservation programs, developing future programs, and developing insights on load reductions necessary for hypoxia in the Gulf of Mexico. PMID:25602551

  19. Use of multispectral Ikonos imagery for discriminating between conventional and conservation agricultural tillage practices

    USGS Publications Warehouse

    Vina, Andres; Peters, Albert J.; Ji, Lei

    2003-01-01

    There is a global concern about the increase in atmospheric concentrations of greenhouse gases. One method being discussed to encourage greenhouse gas mitigation efforts is based on a trading system whereby carbon emitters can buy effective mitigation efforts from farmers implementing conservation tillage practices. These practices sequester carbon from the atmosphere, and such a trading system would require a low-cost and accurate method of verification. Remote sensing technology can offer such a verification technique. This paper is focused on the use of standard image processing procedures applied to a multispectral Ikonos image, to determine whether it is possible to validate that farmers have complied with agreements to implement conservation tillage practices. A principal component analysis (PCA) was performed in order to isolate image variance in cropped fields. Analyses of variance (ANOVA) statistical procedures were used to evaluate the capability of each Ikonos band and each principal component to discriminate between conventional and conservation tillage practices. A logistic regression model was implemented on the principal component most effective in discriminating between conventional and conservation tillage, in order to produce a map of the probability of conventional tillage. The Ikonos imagery, in combination with ground-reference information, proved to be a useful tool for verification of conservation tillage practices.

  20. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  1. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  2. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... these approvals will expire if not renewed. (1) Recordations, Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract Summaries, Control Number 2140-0024 See 78 FR... Surface Transportation Board Recordations, Water Carrier Tariffs, and Agricultural Contract...

  3. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  4. 10 CFR 430.32 - Energy and water conservation standards and their effective dates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... affecting § 430.32, see the List of CFR Sections Affected, which appears in the Finding Aids section of the... effective dates. 430.32 Section 430.32 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION... conservation standards and their effective dates. The energy and water (in the case of faucets,...

  5. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources. PMID:22828292

  6. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  7. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  8. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  9. Soil organic carbon sequestration with conservation agricultural systems in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southeastern USA has approximately 111 million acres (45 Mha) in agricultural production. This extensive land resource has the potential to sequester soil organic C (SOC), especially following historical conversion of land, first from native forest to intensively cultivated cropland and more re...

  10. Introduction to special section – Supporting ecosystem services with conservation agricultural approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystem services are the properties and processes of the natural world that contribute to the well-being of plants, animals, and humans in a holistic and global context. For too long, members of the agricultural community have been solely focused on the provision of food, feed, and fiber. Of cou...

  11. Effects of conservation practices on phosphorus loss reduction from an Indiana agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses from agricultural lands have caused serious eutrophication problems, particularly in Lake Erie. However, techniques that can effectively reduce total and soluble phosphorus losses from croplands and drainage channels can be difficult to implement and gauge. This modeling study was ...

  12. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  13. Reconciling Agricultural Needs with Biodiversity and Carbon Conservation in a Savanna Transformation Frontier

    NASA Astrophysics Data System (ADS)

    Spiegel, M. P.; Estes, L. D.; Caylor, K. K.; Searchinger, T.

    2015-12-01

    Zambia is a major hotspot for agricultural development in the African savannas, which will be targeted for agricultural expansion to relieve food shortages and economic insecurity in the next few decades. Recent scholarship rejects the assumption that the large reserves of arable land in the African savannas could be converted to cropland with low ecological costs. In light of these findings, the selection of land for agricultural expansion must consider not only its potential productivity, but also the increase in greenhouse gas emissions and biodiversity loss that would result from the land conversion. To examine these tradeoffs, we have developed a multi-objective optimization technique to seek scenarios for agricultural development in Zambia that simultaneously achieve production targets and minimize carbon, biodiversity, and economic cost constraints, while factoring in the inter-annual variability in crop production in this highly uncertain climate. Potential production is determined from well-characterized yield potential estimates while robust metrics of biodiversity and high resolution mapping of carbon storage provide fine scale estimates of ecological impact. We draw production targets for individual crops from potential development pathways, primarily export, commodity-crop driven expansion and identify ecologically responsible agricultural development scenarios that are resilient to climate change and meet these demands. In order to achieve a doubling of production of nine key crops, assuming a modest 20% overall increase in yield potential, we find a range of scenarios that use less than 1600 km2 of new land without infringing on any protected areas or exceeding 6.7 million tons of carbon emissions.

  14. Classifying Residents who use Landscape Irrigation: Implications for Encouraging Water Conservation Behavior

    NASA Astrophysics Data System (ADS)

    Warner, Laura A.; Lamm, Alexa J.; Rumble, Joy N.; Martin, Emmett T.; Cantrell, Randall

    2016-08-01

    Large amounts of water applied as urban irrigation can often be reduced substantially without compromising esthetics. Thus, encouraging the adoption of water-saving technologies and practices is critical to preserving water resources, yet difficult to achieve. The research problem addressed in this study is the lack of characterization of residents who use urban irrigation, which hinders the design of effective behavior change programs. This study examined audience segmentation as an approach to encouraging change using current residential landscape practices. K-means cluster analysis identified three meaningful subgroups among residential landscape irrigation users ( N = 1,063): the water considerate majority ( n = 479, 45 %), water savvy conservationists ( n = 378, 36 %), and unconcerned water users ( n = 201, 19 %). An important finding was that normative beliefs, attitudes, and perceived behavioral control characteristics of the subgroups were significantly different with large and medium practical effect sizes. Future water conservation behaviors and perceived importance of water resources were also significantly different among subgroups. The water considerate majority demonstrated capacity to conserve, placed high value on water, and were likely to engage in behavior changes. This article contributes to the literature on individuals who use residential landscape irrigation, an important target audience with potential to conserve water through sustainable irrigation practices and technologies. Findings confirm applicability of the capacity to conserve water to audience segmentation and extend this concept by incorporating perceived value of water resources and likelihood of conservation. The results suggest practical application to promoting residential landscape water conservation behaviors based on important audience characteristics.

  15. Study of an evaluation index system of well-off water conservancy in Yunnan Province

    NASA Astrophysics Data System (ADS)

    Chang, C.; Wen, Z.; Shu, L.; Lu, C.; Gu, S.; Su, J.; He, M.; Xing, K.

    2015-05-01

    To achieve good water conservancy under the well-off society before 2020, the future water conservancy planning is undergoing in Yunnan Province. In this study, by analysing the research results of domestic relevant water evaluation index systems and combining this with the water conservancy construction key of Yunnan Province, an unique evaluation index system was proposed to evaluate the well-off water conservancy level of Yunnan Province. It is composed of three levels which are the target layer, criterion layer and index layer. And the criterion layer includes six systems, namely flood control and drought relief mitigation, reasonable allocation of water resources, highly effective water utilization, water source protection and river health security, water management and securing of water development. The analytic hierarchy process (AHP) was used to determine the weight of each index. According to the present situation of water development and the related water conservancy planning in Yunnan Province, the target value of each index and evaluation standards are put forward for Yunnan Province in 2020. The results show that the evaluation results are consistent with the actual condition of water development in Yunnan Province and can be used to examine the effects of well-off water conservancy planning.

  16. Assessing Conservation Effects on Water Quality in the St. Joseph River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a major contributor to non-point source pollution of streams, rivers and lakes in the United States. In particular, pesticides applied for agricultural crop production can move off-site in runoff and drainage waters, and reach surface drinking water sources. In the northeastern part...

  17. Winter Cereal Termination and Conservation Agriculture Cotton Yield Following Mechanical and Chemical Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An integral component of conservation-tillage systems in cotton is the use of a high-residue winter cover crop; however, managing such cover crops is a challenge. Black oat (Avena strigosa Schreb.), rye (Secale cereale L.), and wheat (Triticum aestivum L.) winter cover crops were established in ear...

  18. Current status and potential of conservation biological control for agriculture in the developing world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation biological control (CBC), often described as the field of biological control with the the greatest potential for use in the developing world, has received only marginal, scattered research attention outside Western Europe or North America. Thus, pesticide overuse remains rampant in many...

  19. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-01

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth. PMID:25289879

  20. Water management, purification, and conservation in arid climates. Volume 1: Water management

    SciTech Connect

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three things in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 1 examines water management problems in detail, along with water problems and water resources in arid climates, and includes chapters that cover aspects of water management. Water purification technology is another key issue. The economics of this technology is becoming more critical in arid areas due to increasing urbanization and industrialization.

  1. Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.

    SciTech Connect

    Montgomery Watson Harza

    2002-12-31

    Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access

  2. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation

    PubMed Central

    de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers’ perceptions of birds’ interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers’ knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas. PMID:27243222

  3. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation.

    PubMed

    Silva-Andrade, Horasa Lima; de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers' perceptions of birds' interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers' knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas. PMID:27243222

  4. MODELING THE IMPACT OF CONSERVATION TILLAGE PRACTICES ON PESTICIDE CONCENTRATIONS IN GROUND AND SURFACE WATERS

    EPA Science Inventory

    To analyze the environmental fate and migration of pesticides applied to croplands as they are affected by conservation tillage practices, pesticide models for leaching, surface water and ground water were selected and an application method was developed. Fourteen different pesti...

  5. Soil water and shallow groundwater relations in an agricultural hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables can contribute water for plant use; therefore, plant-available water includes not only the water stored in the root zone, but also the water moving up from below the root zone. The purpose of this study was to quantify the amount of water moving upward to the root zone. Automate...

  6. Irrigation-dependent wetlands versus instream flow enhancement: economics of water transfers from agriculture to wildlife uses.

    PubMed

    Peck, Dannele E; McLeod, Doanald M; Hewlett, John P; Lovvorn, James R

    2004-12-01

    Irrigated agriculture throughout western North America faces increasing pressure to transfer water to nonagricultural uses, including instream flows for fish and wildlife management. In an important case, increased instream flows are needed in Nebraska's Platte River for recovery of threatened and endangered fish and wildlife species. Irrigated agriculture in the Laramie Basin of southeast Wyoming is a potential water source for the effort to enhance instream flow. However, flood irrigation of hayfields in the Laramie Basin has created many wetlands, both ephemeral and permanent, over the last century. Attempting to increase Platte River instream flows by purchasing water rights or improving irrigation efficiency in the Laramie Basin would transform irrigated agriculture, causing a substantial fraction of the Laramie Basin's wetlands to be lost. A creative solution is needed to prevent the sacrifice of one ecosystem on behalf of another. A rotating short-term water-leasing program is proposed. The program allows Laramie Basin producers to contribute to instream flows while continuing to support local wetlands. Permanent wetland desiccation is prevented and regional environmental water needs are met without impairing local ecological resources. Budget analysis is used to provide an initial cost estimate for acquiring water from agriculture through the short-term leasing program. The proposed approach is more expensive than traditional programs but allows contribution to instream flows without major wetland loss. Short-term leasing is a more efficient approach if benefits from wetlands exceed the difference in cost between the short-term lease program and programs that do not conserve wetlands. PMID:15633027

  7. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  8. The Contribution of Agricultural Trade for Saving Blue Water in Arid Regions

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Biewald, A.; Hoff, H.; Lotze-Campen, H.

    2011-12-01

    Trade can mitigate local water scarcity in water scarce regions, but does not always do so because of economic or other pressures to export water intensive products. To assess impacts of trade on blue and green water use in agriculture, we apply two dynamic, global and spatially explicit models. The vegetation and crop model LPJmL calculates water use and crop productivity. Based on the potential agricultural yield of LPJmL, the economic model MAgPIE_trade produces landuse pattern for the most important agricultural production in 10 economic world regions; bilateral trade is controlled by transport costs and trade barriers. We quantify the trade effect by comparing scenarios with and without trade for current and predicted future climatic conditions. The resulting differences in the spatial patterns (0.5° resolution) of agricultural production from MAgPIE_trade enables the quantification of the amount of goods produced for export. Using the consumptive green and blue water fluxes from LPJmL for each agricultural product, the export of virtual water uses are calculated so that water saving or consumption due to trade can be quantified. Although an interesting result in itself, an estimate for relaxation or intensification of water scarcity by trade is still missing. Here, the water shadow price from MAgPIE_trade as an indicator for water scarcity is related to the actual change in blue water usage. This relation is then taken as an indicator for the efficiency of trade on the local savings of blue water.

  9. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  10. Conservation laws and symmetries of the shallow water system above rough bottom

    NASA Astrophysics Data System (ADS)

    Aksenov, A. V.; Druzhkov, K. P.

    2016-06-01

    The system of one-dimensional shallow water equations above the rough bottom is considered. All its hydrodynamic conservation laws are found, and a group classification is performed. A new conservation law additional to the two basic conservation laws is found. It is shown that the system of shallow water equations can be linearized by a point change of variables only in cases of constant and linear bottom profiles.

  11. The conservation nexus: valuing interdependent water and energy savings in Arizona.

    PubMed

    Bartos, Matthew D; Chester, Mikhail V

    2014-02-18

    Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally. PMID:24460528

  12. RESTORATION OF FAILING ON-SITE WASTEWATER DISPOSAL SYSTEMS USING WATER CONSERVATION

    EPA Science Inventory

    A study was made to determine the ability of existing water conservation hardware to correct malfunctioning on-site wastewater disposal systems resulting from soil clogging and to document, under actual use conditions, possible reduction of wastewater with water conservation hard...

  13. 77 FR 38795 - Dolores Water Conservancy District; Notice of Competing Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Dolores Water Conservancy District; Notice of Competing Preliminary Permit Application Accepted for Filing and Soliciting Comments and Motions To Intervene On May 10, 2012, Dolores Water Conservancy District,...

  14. The Effects of a Water Conservation Instructional Unit on the Values Held by Sixth Grade Students

    ERIC Educational Resources Information Center

    Aird, Andrew; Tomera, Audrey

    1977-01-01

    Sixth grade students were divided into two groups. Students in one group received instruction on water conservation using expository and discovery activities. The students in the control group received none. Results gave evidence that students' values could be changed by this mode of water conservation instruction. (MA)

  15. Energy and Water Conservation Curriculum Development in Irrigation Technology for the Pacific Northwest. Final Report.

    ERIC Educational Resources Information Center

    Peterson, James R.

    This project was conducted to develop curriculum materials for classes in energy and water conservation for the Irrigation Technology Program at Walla Walla Community College. To develop the curriculum, the principal investigator read and analyzed materials on the subjects of water and energy conservation, participated in a short course on drip…

  16. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  17. Sustainability of agriculture under irrigation: Use and management of degraded water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid regions the use of saline and reclaimed waters for irrigation is increasingly necessary. Scarcity of fresh water for agriculture is increased by the water demands of the municipal and industrial sectors. In the majority of these regions there is a rapid decrease in fresh water availability ...

  18. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  19. Suspended sediment control and water quality conservation through riparian vegetation:

    NASA Astrophysics Data System (ADS)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    Soil erosion and Suspended Sediment River are strongly related in the Apennines catchments which are generally characterised by a clayey lithology and impermeable soils and extensive and severe erosion and slope stability problems. In fact the suspended sediment yield represents one of the most reliable tools to assess real basin soil loss (Pavanelli and Pagliarani, 2002; Pavanelli and Rigotti, 2007) from the surface rain erosive features in a mountain watershed, as rills and interrills erosion, gullies, bad-lands (calanchi basins). Suspended sediment yield is known to imply several detrimental consequences: soil losses from agricultural land, worsening of the quality of the water, clogging of water supply filters and reservoir siltation. In addition, suspended sediment yield is also one of the main vector for pollutants and nutrients: various studies have already proved how nitrogen content has been constantly rising in aquifers and surface waters [Böhlke and Denver, 1995]. Finer particles and their aggregates have been proved to be the preferential vehicle for particulate nitrogen [Droppo et al., 1997; Ongley et al., 1992]. In one research [Pavanelli and al. 2006] four Apennines torrents (Gaiana, Sillaro, Savena and Lavino) with mountain basins ranging from 8.7 to 139 Km2 were monitored via automatic sampling devices, the samples of water collected were analysed to characterise suspended solids in terms of their grain size distribution and total nitrogen with respect to the source of eroded area in the catchment. Preliminary results [Pavanelli and al. 2007] seem to show the existence of a direct relationship between nitrogen concentration and finer particle concentration (<20 μm), with the maximum nitrogen loss values being related to factors like the presence of clayey formations, their position within the catchment and the availability of suspended particles. The results seem to indicate hillsides as main sources of suspended sediment to the torrents

  20. Resource Use Among Rural Agricultural Households Near Protected Areas in Vietnam: The Social Costs of Conservation and Implications for Enforcement

    NASA Astrophysics Data System (ADS)

    McElwee, Pamela D.

    2010-01-01

    This article examines the use of forests in a protected area by nearby agriculturalists in central Vietnam. Research indicates that the majority of rural farmers interviewed who lived near a state designated protected area were receiving both subsistence and cash incomes from forest-based activities, primarily from the collection of forest products. However, much of the collection of forest produce was officially illegal, as it occurred in state protected forests, and interdiction efforts were on the increase. Yet, little attention has been paid in Vietnam to the need for income substitution for households who lose access to forest produce as a result of conservation enforcement, particularly in the case of farmers who live near, but not in, protected areas; their resources use has been ‘invisible’ due to a lack of attention and research on the topic. This misunderstanding of the importance of forests to rural farmers has the potential to result in households facing adverse welfare and livelihood outcomes as protected areas boundaries are tightened, and local communities face increased opportunity costs due to stricter conservation enforcement. The article concludes that substitution for loss of income due to conservation activities would best be achieved through carefully targeted interventions to specific high-impact and high-dependency households. Additionally, investments in new sources of wage labor and other low capital-input activities, rather than in agriculture, would likely be of most benefit.

  1. Resource use among rural agricultural households near protected areas in Vietnam: the social costs of conservation and implications for enforcement.

    PubMed

    McElwee, Pamela D

    2010-01-01

    This article examines the use of forests in a protected area by nearby agriculturalists in central Vietnam. Research indicates that the majority of rural farmers interviewed who lived near a state designated protected area were receiving both subsistence and cash incomes from forest-based activities, primarily from the collection of forest products. However, much of the collection of forest produce was officially illegal, as it occurred in state protected forests, and interdiction efforts were on the increase. Yet, little attention has been paid in Vietnam to the need for income substitution for households who lose access to forest produce as a result of conservation enforcement, particularly in the case of farmers who live near, but not in, protected areas; their resources use has been 'invisible' due to a lack of attention and research on the topic. This misunderstanding of the importance of forests to rural farmers has the potential to result in households facing adverse welfare and livelihood outcomes as protected areas boundaries are tightened, and local communities face increased opportunity costs due to stricter conservation enforcement. The article concludes that substitution for loss of income due to conservation activities would best be achieved through carefully targeted interventions to specific high-impact and high-dependency households. Additionally, investments in new sources of wage labor and other low capital-input activities, rather than in agriculture, would likely be of most benefit. PMID:19924473

  2. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-03-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users can increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, such a dynamic allocation process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  3. Ground-water flow beneath levee 35A from conservation area 2B, Broward County, Florida

    USGS Publications Warehouse

    Swayze, L.J.

    1988-01-01

    Conservation Area 2B is an area of recharge for the surficial aquifer system in Broward County. Water stored in the conservation area provides the hydraulic potential for downward flow to the high permeability zone of the Biscayne aquifer. A 5.64 ft head differential (average for the period of record) between water levels in Conservation Area 2B and water levels in the adjacent levee 35A borrow canal causes water to leak into the canal at an average rate of about 0.0022 cu ft per sec per lineal foot of canal and accounts for a loss of 0.013 foot per day of surface water from Conservation Area 2B. Amounts of canal leakage and underflow are constantly changing and are dependent upon the head differential between Conservation Area 2B and the levee 35A borrow canal. (Author 's abstract)

  4. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    processes in the soil have been modelled with simulation model SWAP. The experiment started in 2010 and is ongoing. Data, collected so far show that the plots with controlled drainage (all compared with plots equipped with conventional drainage) conserve more rain water (higher groundwater tables in early spring), lower discharges under average weather conditions and storm events, reduce N-loads and saline seepage to surface waters, enhance denitrification, show a different 'first flush' effect and show similar crop yields. The results of the experiments will contribute to a better understanding of the impact of controlled drainage on complex hydrological en geochemical processes in agricultural clay soils, the interaction between ground- en surface water and its effects on drain water quantity, quality and crop yield.

  5. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Late...

  6. Water-saving techniques in Chinese agriculture: water-saving irrigation and straw mulching for winter wheat

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqiang; Zhu, Zixi; Zheng, Youfei; Fang, Wensong

    2004-01-01

    Based on the relationship between water balance and crop-water, water-saving irrigation model was integrated with monitoring and prediction of soil moisture, forming a system of decision-making of irrigation. It is demonstrated that straw mulching for winter wheat is an effective way to reduce soil evaporation at early stages and increase yield and improve water utilization efficiency. Combination of water-saving irrigation and straw mulching plays an important role in China water-saving agriculture.

  7. Spatial probability of soil water repellency in an abandoned agricultural field in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva

    2015-04-01

    identified the high SWR probabilities in the northeast and central part of the plot, while OK observed mainly in the south-western part of the plot. In conclusion, before predict the spatial probability of SWR it is important to test several methods in order to identify the most accurate. Acknowledgments COST action ES1306 (Connecting European connectivity research). References Blanco-Canqui, H., Lal, R. (2009) Extend of water repellency under long-term no-till soils. Geoderma, 149, 171-180. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Gonzalez-Penaloza, F.A., Cerda, A., Zavala, L.M., Jordan, A., Gimenez-Morera, A., Arcenegui, V. (2012) Do conservative agriculture practices increase soil water repellency? A case study in citrus-croped soils. Soil and Tillage Research, 124, 233-239. Pereira, P., Oliva, M. (2013) Modelling soil water repellency in an abandoned agricultural field, Visnyk Geology, Visnyk Geology 4, 77-80. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surface Process and Landforms, 13, 555-265.

  8. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants. PMID:26887311

  9. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation.

    PubMed

    Shoji, Sadao

    2005-12-01

    A variety of slow release fertilizers, controlled release (availability) fertilizers (CAFs), and stability fertilizers have been developed in response to the serious drawbacks of the conventional fertilizers since the early 1960's. Of these fertilizers, CAFs which are coated with resin are consumed in the largest quantity in the world. Selecting CAFs with higher performance, the author will discuss about: 1) Innovation of agro-technologies for various field crops including new concepts of fertilizer application, 2) high yielding of field crops, 3) enhancing quality and safety of farm products, and 4) controlling the adverse effect of intensive agriculture on the environment. PMID:16512212

  10. Innovative use of controlled availability fertilizers with high performance for intensive agriculture and environmental conservation.

    PubMed

    Shoji, Sadao

    2005-09-01

    A variety of slow release fertilizers, controlled release (availability) fertilizers (CAFs), and stability fertilizers have been developed in response to the serious drawbacks of the conventional fertilizers since the early 1960's. Of these fertilizers, CAFs which are coated with resin are consumed in the largest quantity in the world. Selecting CAFs with higher performance, the author will discuss about: 1) Innovation of agro-technologies for various field crops including new concepts of fertilizer application, 2) high yielding of field crops, 3) enhancing quality and safety of farm products, and 4) controlling the adverse effect of intensive agriculture on the environment. PMID:20549445

  11. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  12. A MODELING-GIS APPROACH FOR THE ASSESSMENT OF SOIL AND GROUND WATER VULNERABILITY TO NONPOINT SOURCE IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Ground water pollution due to agriculture activities is a major source of concern. Vast agricultural lands constitute a nonpoint source for pollutants, such as pesticides and nitrogen fertilizers, which threatens ground water resources and the integrity of aquatic and terrestria...

  13. South America's neoliberal agricultural frontiers: places of environmental sacrifice or conservation opportunity?

    PubMed

    Brannstrom, Christian

    2009-05-01

    Neoliberal agricultural frontiers, defined as export-oriented farming areas motivated more by global demand and land privatization than by government subsidies, present at least two major challenges for environmental researchers: estimating land change and understanding governance types and outcomes. Environmental governance, the "filter" between human and biophysical systems, is considered in terms of two models in light of empirical evidence from a neoliberal frontier in the Brazilian Cerrado (savanna) ecoregion. Land-change analysis indicates that agricultural land uses increased from 12% of the study region in 1986 to 44% in 2000 and 55% in 2005, with a corresponding loss of native Cerrado. A prominent farming organization formed in 1990 has participated in or led several environmental policy initiatives. Evidence of both governance models is found, and dilemmas facing environmental activists and managers, as well as the farming sector, are presented. For organizations representing large commercial farmers, compliance with environmental regulations may be seen as both a cost to be borne by the farming sector and as a means to establish environmental credentials. Suggestions are made for future longitudinal work on compliance, information, agenda-setting, and discursive strategies of nonstate actors in neoliberal frontiers. PMID:19580031

  14. Capacitive Sensors and Breakthrough Curves in Automated Irrigation for Water and Soil Conservation

    NASA Astrophysics Data System (ADS)

    Fahmy Hussein, Mohamed

    2016-04-01

    Shortness of water resources is the dominant criterion that dampens agricultural expansion in Egypt. Ten times population increase was recorded versus twice increase in the cultivated area during the last 100 years. Significant increase in freshwater supply is not expected in the near future. Consequently, a great deal of water-conservation is required to ameliorate water-use efficiency and to protect soils against sodicity under the prevailing arid-zone conditions. Modern irrigation (pivot, drip and sprinkling) was introduced during the last three decades in newly cultivated lands. However, this was done without automated watering. Moreover, dynamic chemical profile data is lacking in the cultivated lands. These current water conditions are behind this work. Two experimental procedures were used for a conjunctive goal of water and soil conservation. The first procedure used the resonance of analog-oscillators (relative permittivity sensors) based on capacitive Frequency Domain Reflectometry, FDR. Commercially available FDR sensors were calibrated for three soil textures, and solenoids were used to automatically turn on and off irrigation pipes in three experimental plots (via low power AC latching-valves on relay solid-state boards connected to sensors; the valve got closed when soil became sufficiently moist near saturation and opened before reaching wilting point as the relay contacts were defined by variable-resistor on board after sensor calibration). This article reports the results of sensor mV readings versus soil-moisture in the linear parts of calibration diagrams, for known moisture contents from wilting point to saturation, fitted as "power-law of dielectric mixing". The results showed close to optimum watering at soil-surface in the nursery beds when the sensors were sampled every 10 minutes to update the relays. This work is planned to extend to different sensors and drippers for soils with field crops / fruit trees to account for aspects of concern

  15. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  16. Transformation Of Arsenic In Agricultural Drainage Water Disposed Into An Evaporation Basin In California, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, a high agricultural production area in USA. The irrigation drainage water contains elevated concentrations of trace elements, including S...

  17. Arsenic Speciation and Accumulation In Evapoconcentrating Waters Of Agricultural Evaporation Basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To sustain agricultural productivity, evaporation basins (or ponds) have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, USA. The drainage water contains elevated concentration of trace elements including sele...

  18. Suspended sediment control and water quality conservation through riparian vegetation:

    NASA Astrophysics Data System (ADS)

    Pavanelli, D.; Cavazza, C.; Correggiari, S.

    2009-04-01

    Soil erosion and Suspended Sediment River are strongly related in the Apennines catchments which are generally characterised by a clayey lithology and impermeable soils and extensive and severe erosion and slope stability problems. In fact the suspended sediment yield represents one of the most reliable tools to assess real basin soil loss (Pavanelli and Pagliarani, 2002; Pavanelli and Rigotti, 2007) from the surface rain erosive features in a mountain watershed, as rills and interrills erosion, gullies, bad-lands (calanchi basins). Suspended sediment yield is known to imply several detrimental consequences: soil losses from agricultural land, worsening of the quality of the water, clogging of water supply filters and reservoir siltation. In addition, suspended sediment yield is also one of the main vector for pollutants and nutrients: various studies have already proved how nitrogen content has been constantly rising in aquifers and surface waters [Böhlke and Denver, 1995]. Finer particles and their aggregates have been proved to be the preferential vehicle for particulate nitrogen [Droppo et al., 1997; Ongley et al., 1992]. In one research [Pavanelli and al. 2006] four Apennines torrents (Gaiana, Sillaro, Savena and Lavino) with mountain basins ranging from 8.7 to 139 Km2 were monitored via automatic sampling devices, the samples of water collected were analysed to characterise suspended solids in terms of their grain size distribution and total nitrogen with respect to the source of eroded area in the catchment. Preliminary results [Pavanelli and al. 2007] seem to show the existence of a direct relationship between nitrogen concentration and finer particle concentration (<20 μm), with the maximum nitrogen loss values being related to factors like the presence of clayey formations, their position within the catchment and the availability of suspended particles. The results seem to indicate hillsides as main sources of suspended sediment to the torrents

  19. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-07-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Continuously adjusting allocation decisions based on the hydrologic status of the system will lead to the temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users. Such a dynamic allocation process will increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, this process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  20. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of