Sample records for agricultural water conservation

  1. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    NASA Astrophysics Data System (ADS)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  2. Evaluation for Water Conservation in Agriculture: Using a Multi-Method Econometric Approach

    NASA Astrophysics Data System (ADS)

    Ramirez, A.; Eaton, D. J.

    2012-12-01

    Since the 1960's, farmers have implemented new irrigation technology to increase crop production and planting acreage. At that time, technology responded to the increasing demand for food due to world population growth. Currently, the problem of decreased water supply threatens to limit agricultural production. Uncertain precipitation patterns, from prolonged droughts to irregular rains, will continue to hamper planting operations, and farmers are further limited by an increased competition for water from rapidly growing urban areas. Irrigation technology promises to reduce water usage while maintaining or increasing farm yields. The challenge for water managers and policy makers is to quantify and redistribute these efficiency gains as a source of 'new water.' Using conservation in farming as a source of 'new water' requires accurately quantifying the efficiency gains of irrigation technology under farmers' actual operations and practices. From a water resource management and policy perspective, the efficiency gains from conservation in farming can be redistributed to municipal, industrial and recreational uses. This paper presents a methodology that water resource managers can use to statistically verify the water savings attributable to conservation technology. The specific conservation technology examined in this study is precision leveling, and the study includes a mixed-methods approach using four different econometric models: Ordinary Least Squares, Fixed Effects, Propensity Score Matching, and Hierarchical Linear Models. These methods are used for ex-post program evaluation where random assignment is not possible, and they could be employed to evaluate agricultural conservation programs, where participation is often self-selected. The principal method taken in this approach is Hierarchical Linear Models (HLM), a useful model for agriculture because it incorporates the hierarchical nature of the data (fields, tenants, and landowners) as well as crop rotation

  3. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification.

    PubMed

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y; Liu, Junguo; Schulin, Rainer

    2018-08-15

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85km 3 y -1 , accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Geomorphological characterization of conservation agriculture

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to

  5. [Estimation on value of water and soil conservation of agricultural ecosystems in Xi' an metropolitan, Northwest China].

    PubMed

    Yang, Wen-yan; Zhou, Zhong-xue

    2014-12-01

    With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.

  6. Beyond conservation agriculture.

    PubMed

    Giller, Ken E; Andersson, Jens A; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture.

  7. Beyond conservation agriculture

    PubMed Central

    Giller, Ken E.; Andersson, Jens A.; Corbeels, Marc; Kirkegaard, John; Mortensen, David; Erenstein, Olaf; Vanlauwe, Bernard

    2015-01-01

    Global support for Conservation Agriculture (CA) as a pathway to Sustainable Intensification is strong. CA revolves around three principles: no-till (or minimal soil disturbance), soil cover, and crop rotation. The benefits arising from the ease of crop management, energy/cost/time savings, and soil and water conservation led to widespread adoption of CA, particularly on large farms in the Americas and Australia, where farmers harness the tools of modern science: highly-sophisticated machines, potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing evidence challenges the claims that CA increases crop yields and builds-up soil carbon although increased stability of crop yields in dry climates is evident. Our analyses suggest pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder farmers in developing countries. We propose a rigorous, context-sensitive approach based on Systems Agronomy to analyze and explore sustainable intensification options, including the potential of CA. There is an urgent need to move beyond dogma and prescriptive approaches to provide soil and crop management options for farmers to enable the Sustainable Intensification of agriculture. PMID:26579139

  8. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    NASA Astrophysics Data System (ADS)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  9. Agricultural intensification escalates future conservation costs.

    PubMed

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L; Koh, Lian Pin; Pascual, Unai

    2013-05-07

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives.

  10. Agricultural intensification escalates future conservation costs

    PubMed Central

    Phelps, Jacob; Carrasco, Luis Roman; Webb, Edward L.; Koh, Lian Pin; Pascual, Unai

    2013-01-01

    The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive “slash-and-burn” farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives. PMID:23589860

  11. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  12. Water and Agricultural-Chemical Transport in a Midwestern, Tile-Drained Watershed: Implications for Conservation Practices

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.; Frey, Jeffrey W.; Wilson, John T.

    2007-01-01

    The study of agricultural chemicals is one of five national priority topics being addressed by the National Water-Quality Assessment (NAWQA) Program in its second decade of studies, which began in 2001. Seven watersheds across the Nation were selected for the NAWQA agricultural-chemical topical study. The watersheds selected represent a range of agricultural settings - with varying crop types and agricultural practices related to tillage, irrigation, artificial drainage, and chemical use - as well as a range of landscapes with different geology, soils, topography, climate, and hydrology (Capel and others, 2004). Chemicals selected for study include nutrients (nitrogen and phosphorus) and about 50 commonly used pesticides. This study design leads to an improved understanding of many factors that can affect the movement of water and chemicals in different agricultural settings. Information from these studies will help with decision making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields (Capel and others, 2004). This Fact Sheet highlights the results of the NAWQA agricultural chemical study in the Leary Weber Ditch Watershed in Hancock County, Indiana. This watershed was selected to represent a tile-drained, corn and soybean, humid area typical in the Midwest.

  13. Water conservation in irrigation can increase water use

    PubMed Central

    Ward, Frank A.; Pulido-Velazquez, Manuel

    2008-01-01

    Climate change, water supply limits, and continued population growth have intensified the search for measures to conserve water in irrigated agriculture, the world's largest water user. Policy measures that encourage adoption of water-conserving irrigation technologies are widely believed to make more water available for cities and the environment. However, little integrated analysis has been conducted to test this hypothesis. This article presents results of an integrated basin-scale analysis linking biophysical, hydrologic, agronomic, economic, policy, and institutional dimensions of the Upper Rio Grande Basin of North America. It analyzes a series of water conservation policies for their effect on water used in irrigation and on water conserved. In contrast to widely-held beliefs, our results show that water conservation subsidies are unlikely to reduce water use under conditions that occur in many river basins. Adoption of more efficient irrigation technologies reduces valuable return flows and limits aquifer recharge. Policies aimed at reducing water applications can actually increase water depletions. Achieving real water savings requires designing institutional, technical, and accounting measures that accurately track and economically reward reduced water depletions. Conservation programs that target reduced water diversions or applications provide no guarantee of saving water. PMID:19015510

  14. Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts

    PubMed Central

    Heathcote, Adam J.; Filstrup, Christopher T.; Downing, John A.

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha−1. Sediment deposition from erosion increased >6-fold, from 149 g m−2 yr−1 in 1850 to 986 g m−2 yr−1 by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm−1 at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation. PMID:23326454

  15. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts.

    PubMed

    Heathcote, Adam J; Filstrup, Christopher T; Downing, John A

    2013-01-01

    Agricultural soil loss and deposition in aquatic ecosystems is a problem that impairs water quality worldwide and is costly to agriculture and food supplies. In the US, for example, billions of dollars have subsidized soil and water conservation practices in agricultural landscapes over the past decades. We used paleolimnological methods to reconstruct trends in sedimentation related to human-induced landscape change in 32 lakes in the intensively agricultural region of the Midwestern United States. Despite erosion control efforts, we found accelerating increases in sediment deposition from erosion; median erosion loss since 1800 has been 15.4 tons ha(-1). Sediment deposition from erosion increased >6-fold, from 149 g m(-2) yr(-1) in 1850 to 986 g m(-2) yr(-1) by 2010. Average time to accumulate one mm of sediment decreased from 631 days before European settlement (ca. 1850) to 59 days mm(-1) at present. Most of this sediment was deposited in the last 50 years and is related to agricultural intensification rather than land clearance or predominance of agricultural lands. In the face of these intensive agricultural practices, traditional soil conservation programs have not decelerated downstream losses. Despite large erosion control subsidies, erosion and declining water quality continue, thus new approaches are needed to mitigate erosion and water degradation.

  16. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  17. A survey of methods for implementing and documenting water conservation in New York

    USGS Publications Warehouse

    Linsey, Kristin S.; Reynolds, Richard J.

    2013-01-01

    Water conservation methods and best management practices (BMPs) for water conservation are described for major categories of non-drinking-water users, including—but not limited to—industrial, commercial, power-generation, agricultural, and institutional categories. The BMPs were drawn from a literature search of reports published by state agencies, Federal agencies, the U.S. military, colleges and universities, and water-related organizations that have studied and evaluated various water conservation methods in the municipal supply, industrial, commercial, institutional, and agricultural water-use sectors. An annotated bibliography of references pertinent to water conservation and (or) best management practices in water conservation is included.

  18. Agricultural Conservation Planning Toolbox User's Manual

    USDA-ARS?s Scientific Manuscript database

    Agricultural Conservation Planning Framework (ACPF) comprises an approach for applying concepts of precision conservation to watershed planning in agricultural landscapes. To enable application of this approach, USDA/ARS has developed a set of Geographic Information System (GIS) based software tools...

  19. Measuring, understanding and implementing (or at least trying) soil and water conservation in agricultural areas in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Jose Alfonso; Burguet, María; Castillo, Carlos; de Luna, Elena; Guzmán, Gema; Lora, Ángel; Lorite, Ignacio; Mora, José; Pérez, Rafael; Soriano, María A.; Taguas, Encarnación V.

    2015-04-01

    Understanding soil erosion processes is the first step for designing and implementing effective soil conservation strategies. In agricultural areas, spatially in arid and semiarid conditions, water conservation is interlinked with soil conservation, and usually need to be addressed simultaneously to achieve success in their use by farmers. This is so for different reasons, but usually because some reduction in runoff is required to prevent soil erosion or to the need to design soil conservation systems that do maintain a favourable water balance for the crop to prevent yield reductions. The team presenting this communication works around both issues in Southern Spain, interconnecting several lines of research with the final objective of contribute to reverse some severe issues relating soil conservation in agricultural areas, mostly on tree crops (olives and vineyards). One of these lines is long-term experiments measuring, runoff and sediment losses at plot and small catchment scale. In these experiments we test the effect of different soil management alternatives on soil and water conservation. We also measured the evolution of soil properties and, in some cases, the evolution of soil moisture as well as nutrient and carbon losses with runoff and sediment. We also tests in these experiments new cover crops, from species better adapted to the rainfall regime of the region to mixes with several species to increase biodiversity. We complement these studies with surveys of soil properties in commercial farms. I some of these farms we follow the introduction by farmers of the cover crop strategies previously developed in our experimental fields. These data are invaluable to elaborate, calibrate and validate different runoff generation, water balance, and water erosion models and hillslope and small catchment scale. This allows us to elaborate regional analysis of the effect of different strategies to soil and water conservation in olive growing areas, and to refine

  20. Farmers' Willingness to Adopt Conservation Agriculture: New Evidence from Lebanon.

    PubMed

    Chalak, Ali; Irani, Alexandra; Chaaban, Jad; Bashour, Issam; Seyfert, Karin; Smoot, Kaitlyn; Abebe, Gumataw Kifle

    2017-10-01

    With increasing food insecurity and climate change, conservation agriculture has emerged as a sustainable alternative to intensive conventional agriculture as a source of food supply. Yet the adoption rate of conservation agriculture is still low. Our paper analyses the factors affecting farmers' willingness to adopt conservation agriculture in Lebanon. The findings show that household characteristics-years of farming and farm size affect conservation agriculture adoption. However, household characteristics alone were insufficient to explain conservation agriculture adoption. We found that farming experience, information sources, frequency of irrigation, and severity of weed infestation in the past, participation in specific trainings, and farmers' perception about the long-term impact of conservation agriculture, were key determinants of conservation agriculture adoption. Our paper encourages policymakers to invest in conservation agriculture to overcome food insecurity and environmental changes affecting food systems in the Middle East. The paper also informs agribusiness firms to view conservation agriculture as a viable alternative to strengthen their business relationship with farmers in arid and semi-arid regions.

  1. Farmers' Willingness to Adopt Conservation Agriculture: New Evidence from Lebanon

    NASA Astrophysics Data System (ADS)

    Chalak, Ali; Irani, Alexandra; Chaaban, Jad; Bashour, Issam; Seyfert, Karin; Smoot, Kaitlyn; Abebe, Gumataw Kifle

    2017-10-01

    With increasing food insecurity and climate change, conservation agriculture has emerged as a sustainable alternative to intensive conventional agriculture as a source of food supply. Yet the adoption rate of conservation agriculture is still low. Our paper analyses the factors affecting farmers' willingness to adopt conservation agriculture in Lebanon. The findings show that household characteristics—years of farming and farm size affect conservation agriculture adoption. However, household characteristics alone were insufficient to explain conservation agriculture adoption. We found that farming experience, information sources, frequency of irrigation, and severity of weed infestation in the past, participation in specific trainings, and farmers' perception about the long-term impact of conservation agriculture, were key determinants of conservation agriculture adoption. Our paper encourages policymakers to invest in conservation agriculture to overcome food insecurity and environmental changes affecting food systems in the Middle East. The paper also informs agribusiness firms to view conservation agriculture as a viable alternative to strengthen their business relationship with farmers in arid and semi-arid regions.

  2. Sustainable agricultural water management across climates

    NASA Astrophysics Data System (ADS)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  3. Water Conservation and Economic Incentives

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2016-12-01

    Water has played a vital role in the progress of human civilization throughout history. Both agriculture based economics as well as industry based economics totally rely upon water for survival and prosperity. Water could be a limiting factor in dictating day-to-day human activities and as such one should learn to live within the limits of available natural resources. Most of the water on this earth is either salty or undrinkable. Only one percent of world's water is available for all the needs of human civilization. This includes human personal household needs, community activities, agriculture, industry, plant and animal life sustenance. The supply of usable fresh water is finite and the per capita consumption of fresh water needs to be reduced in particularly in some selected regions of this world. The United States consumes about 450 billion gallons of water every day. The U.S. daily average of water pumped by public water supply systems is 185 gallons per person. The biggest water gobbler in a household is the lawn. Typically, at least 50% of water consumed by households is used outdoors. Even inside a house, bathroom facilities claim nearly 75% of the water used. Here is a short list of economic Incentives that may help water conservation. (1) Providing rebates, refunds or other economic incentives to those consumers that are willing to change to modern technological methods. Examples include, but not limited to energy efficient washing machines, low-flush toilets and improved shower head designs. (2) Communities should provide economic incentives to limit the type and size of landscaping. (3) Need, necessity and nature of outdoor water use could be restricted whenever possible. (4) Sprinkler ban may be deemed appropriate in extreme cases. (5) Set up hotlines that can help penalize those that ignore water conservation guidelines. (6) Incorporating water conservation monitors. References: http://www.nrdc.org/water/http://www.ecy.wa.gov/programs/wr/ws/wtrcnsv.htmlhttp://www.sscwd.org/tips.html

  4. The challenge of documenting water quality benefits of conservation practices: a review of USDA-ARS's conservation effects assessment project watershed studies.

    PubMed

    Tomer, M D; Locke, M A

    2011-01-01

    The Conservation Effects Assessment Project was established to quantify water quality benefits of conservation practices supported by the U.S. Department of Agriculture (USDA). In 2004, watershed assessment studies were begun in fourteen agricultural watersheds with varying cropping systems, landscapes, climate, and water quality concerns. This paper reviews USDA Agricultural Research Service 'Benchmark' watershed studies and the challenge of identifying water quality benefits in watersheds. Study goals included modeling and field research to assess practices, and evaluation of practice placement in watersheds. Not all goals were met within five years but important lessons were learned. While practices improved water quality, problems persisted in larger watersheds. This dissociation between practice-focused and watershed-scale assessments occurred because: (1) Conservation practices were not targeted at critical sources/pathways of contaminants; (2) Sediment in streams originated more from channel and bank erosion than from soil erosion; (3) Timing lags, historical legacies, and shifting climate combined to mask effects of practice implementation; and (4) Water quality management strategies addressed single contaminants with little regard for trade-offs among contaminants. These lessons could help improve conservation strategies and set water quality goals with realistic timelines. Continued research on agricultural water quality could better integrate modeling and monitoring capabilities, and address ecosystem services.

  5. Effects of agricultural conservation practices on N loads in the Mississippi-Atchafalya River Basin

    USDA-ARS?s Scientific Manuscript database

    A modeling framework consisting of a farm-scale model, Agricultural Policy Environmental Extender (APEX); a watershedscale model, Soil and Water Assessment Tool (SWAT); and databases was used in the Conservation Effects Assessment Project to quantify the environmental benefits of conservation practi...

  6. [Landscape planning approaches for biodiversity conservation in agriculture].

    PubMed

    Liu, Yun-hui; Li, Liang-tao; Yu, Zhen-rong

    2008-11-01

    Biodiversity conservation in agriculture not only relates to the sustainable development of agriculture, but also is an essential part of species conservation. In recent years, the landscape planning approach for biodiversity was highlighted instead of species-focused approach. In this paper, the landscape factors affecting the biodiversity in agriculture were reviewed, and the possible landscape approaches at three different scales for more efficient conservation of biodiversity in agro-landscape were suggested, including: (1) the increase of the proportion of natural or semi-natural habitats in agriculture, diversification of land use or crop pattern, and protection or construction of corridor at landscape level; (2) the establishment of non-cropping elements such as field margin at between-field level; and (3) the application of reasonable crop density, crop distribution pattern and rotation, and intercrop etc. at within-field level. It was suggested that the relevant policies for natural conservation, land use planning, and ecological compensation should be made to apply the landscape approaches for biodiversity conservation at larger scale.

  7. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands

    USDA-ARS?s Scientific Manuscript database

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  8. Agricultural Conservation Planning Framework: 3. Land Use and Field Boundary Database Development and Structure.

    PubMed

    Tomer, Mark D; James, David E; Sandoval-Green, Claudette M J

    2017-05-01

    Conservation planning information is important for identifying options for watershed water quality improvement and can be developed for use at field, farm, and watershed scales. Translation across scales is a key issue impeding progress at watershed scales because watershed improvement goals must be connected with implementation of farm- and field-level conservation practices to demonstrate success. This is particularly true when examining alternatives for "trap and treat" practices implemented at agricultural-field edges to control (or influence) water flows through fields, landscapes, and riparian corridors within agricultural watersheds. We propose that database structures used in developing conservation planning information can achieve translation across conservation-planning scales, and we developed the Agricultural Conservation Planning Framework (ACPF) to enable practical planning applications. The ACPF comprises a planning concept, a database to facilitate field-level and watershed-scale analyses, and an ArcGIS toolbox with Python scripts to identify specific options for placement of conservation practices. This paper appends two prior publications and describes the structure of the ACPF database, which contains land use, crop history, and soils information and is available for download for 6091 HUC12 watersheds located across Iowa, Illinois, Minnesota, and parts of Kansas, Missouri, Nebraska, and Wisconsin and comprises information on 2.74 × 10 agricultural fields (available through /). Sample results examining land use trends across Iowa and Illinois are presented here to demonstrate potential uses of the database. While designed for use with the ACPF toolbox, users are welcome to use the ACPF watershed data in a variety of planning and modeling approaches. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Land Conservation in an Evolving Agricultural Industry: Trade-offs to Consider

    NASA Astrophysics Data System (ADS)

    Baker, J. S.; Murray, B. C.; McCarl, B. A.; Jackson, R. B.

    2008-12-01

    This study analyzes the interactions of land conservation policy with biofuel expansion using an economic model of the U.S. forest and agricultural sectors. The world agricultural industry is changing rapidly under emerging market and policy-based pressures. An important driver in the U.S. is the Renewable Fuels Standard (RFS), which mandates significant expansion in biofuels production (up to 36 billion gallons/year by 2022). Traditional land conservation practices such as the Conservation Reserve Program (CRP) are at risk in this changing agricultural climate, as the opportunity costs of reverting to cropland continue to rise. Large- scale reversion of CRP acreage is likely to lead to substantial losses in soil carbon, biodiversity, soil erosion protection, and water quality. However, given the increased competition for land resources, continued efforts to maintain the CRP could induce land use change (LUC) and agricultural development from even more sensitive ecosystems, including native grasslands and forests. This study uses economic modeling to study CRP reversion and LUC under multiple scenarios, including: 1) Baseline assumptions of growth in world agricultural demand and energy prices, with and without CRP reversion; 2) Implementation of the RFS while maintaining the CRP; and 3) RFS with CRP reversion allowed. The study is done using the FASOMGHG model (Lee, McCarl et al, 2008), which is well suited for this analysis as it: 1) Depicts land use competition between crops, pasture, CRP, and forestry over a 100 year period 2) Contains comprehensive GHG accounting across the sectors, 3) Allows land in the CRP to revert to cultivation at an economically optimal rate as land values increase, and 4) Extensively models biofuel and conventional agricultural production possibilities. Results generated to date show significant reversion to cultivation, even under the baseline (36% of the total CRP stock by 2020). Implementing the RFS further pressures conservation

  10. Economic impacts on irrigated agriculture of water conservation programs in drought

    NASA Astrophysics Data System (ADS)

    Ward, Frank A.

    2014-01-01

    This study analyzes vulnerability, impacts, and adaptability by irrigation to drought.It accounts for economic incentives affecting choices on irrigation technology, crop mix, and water sources.When surface water supplies fall, farmers increase pumping, even when pumping raises production costs.Conservation program subsidies raise the value of food production but can increase crop water depletions.

  11. Examining Thought Processes to Understand the Impact of Water Conservation Messages on Attitude

    ERIC Educational Resources Information Center

    Rumble, Joy N.; Lamm, Alexa J.; Martin, Emmett T.; Warner, Laura A.

    2017-01-01

    Water availability issues have plagued many regions around the world and is viewed as the top issue facing the world. As a result, encouraging water conservation has become a priority for agricultural communicators. Previous research suggests strategically framed messages can impact attitudes about water conservation, but whether this change is a…

  12. Water and Agriculture in the Western U.S.: Conservation, Reallocation, and Markets

    NASA Astrophysics Data System (ADS)

    Lord, William B.

    Water conservation has long been an unqualified good in the western United States. But when westerners have said “conservation,” they have usually meant reservoir storage to prevent water from escaping downstream before it could be diverted and put to beneficial use. They took particular umbrage when the Carter Administration defined it to mean water demand management, a way of avoiding or postponing the construction of reservoirs. To oppose reservoir development in the West most certainly is to defy the conventional wisdom and to court political extinction. It is to brand oneself as daft or disloyal as well.

  13. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  14. The Reduction of Partitioned Wind and Water Erosion by Conservation Agriculture

    USDA-ARS?s Scientific Manuscript database

    Soil loss due to wind and water erosion degrades the soil and results in environmental problems downstream and downwind of the source field. Wind and water erosion may both occur to varying extents particularly in semi-arid environments. Soil conservation strategies require information about the p...

  15. Integrating Federal and State data records to report progress in establishing agricultural conservation practices on Chesapeake Bay farms

    USGS Publications Warehouse

    Hively, W. Dean; Devereux, Olivia H.; Claggett, Peter

    2013-01-01

    In response to the Executive Order for Chesapeake Bay Protection and Restoration (E.O. #13508, May 12, 2009), the U.S. Geological Survey (USGS) took on the task of acquiring and assessing agricultural conservation practice data records for U.S. Department of Agriculture (USDA) programs, and transferred those datasets in aggregated format to State jurisdictional agencies for use in reporting conservation progress to the Chesapeake Bay Program Partnership (CBP Partnership). Under the guidelines and regulations that have been developed to protect and restore water-quality in the Chesapeake Bay, the six State jurisdictions that fall within the Chesapeake Bay watershed are required to report their progress in promoting agricultural conservation practices to the CBP Partnership on an annual basis. The installation and adoption of agricultural best management practices is supported by technical and financial assistance from both Federal and State conservation programs. The farm enrollment data for USDA conservation programs are confidential, but agencies can obtain access to the privacy-protected data if they are established as USDA Conservation Cooperators. The datasets can also be released to the public if they are first aggregated to protect farmer privacy. In 2012, the USGS used its Conservation Cooperator status to obtain implementation data for conservation programs sponsored by the USDA Natural Resources Conservation Service (NRCS) and the USDA Farm Service Agency (FSA) for farms within the Chesapeake Bay watershed. Three jurisdictions (Delaware, Pennsylvania, and West Virginia) used the USGS-provided aggregated dataset to report conservation progress in 2012, whereas the remaining three jurisdictions (Maryland, New York, and Virginia) used jurisdictional Conservation Cooperator Agreements to obtain privacy-protected data directly from the USDA. This report reviews the status of conservation data sharing between the USDA and the various jurisdictions, discusses the

  16. Soil conservation in the 21st century: why we need smart agricultural intensification

    NASA Astrophysics Data System (ADS)

    Govers, Gerard; Merckx, Roel; van Wesemael, Bas; Van Oost, Kristof

    2017-03-01

    Soil erosion severely threatens the soil resource and the sustainability of agriculture. After decades of research, this problem still persists, despite the fact that adequate technical solutions now exist for most situations. This begs the question as to why soil conservation is not more rapidly and more generally implemented. Studies show that the implementation of soil conservation measures depends on a multitude of factors but it is also clear that rapid change in agricultural systems only happens when a clear economic incentive is present for the farmer. Conservation measures are often more or less cost-neutral, which explains why they are often less generally adopted than expected. This needs to be accounted for when developing a strategy on how we may achieve effective soil conservation in the Global South, where agriculture will fundamentally change in the next century. In this paper we argue that smart intensification is a necessary component of such a strategy. Smart intensification will not only allow for soil conservation to be made more economical, but will also allow for significant gains to be made in terms of soil organic carbon storage, water efficiency and biodiversity, while at the same time lowering the overall erosion risk. While smart intensification as such will not lead to adequate soil conservation, it will facilitate it and, at the same time, allow for the farmers of the Global South to be offered a more viable future.

  17. Effectiveness of conservation easements in agricultural regions.

    PubMed

    Braza, Mark

    2017-08-01

    Conservation easements are a standard technique for preventing habitat loss, particularly in agricultural regions with extensive cropland cultivation, yet little is known about their effectiveness. I developed a spatial econometric approach to propensity-score matching and used the approach to estimate the amount of habitat loss prevented by a grassland conservation easement program of the U.S. federal government. I used a spatial autoregressive probit model to predict tract enrollment in the easement program as of 2001 based on tract agricultural suitability, habitat quality, and spatial interactions among neighboring tracts. Using the predicted values from the model, I matched enrolled tracts with similar unenrolled tracts to form a treatment group and a control group. To measure the program's impact on subsequent grassland loss, I estimated cropland cultivation rates for both groups in 2014 with a second spatial probit model. Between 2001 and 2014, approximately 14.9% of control tracts were cultivated and 0.3% of treated tracts were cultivated. Therefore, approximately 14.6% of the protected land would have been cultivated in the absence of the program. My results demonstrate that conservation easements can significantly reduce habitat loss in agricultural regions; however, the enrollment of tracts with low cropland suitability may constrain the amount of habitat loss they prevent. My results also show that spatial econometric models can improve the validity of control groups and thereby strengthen causal inferences about program effectiveness in situations when spatial interactions influence conservation decisions. © 2017 Society for Conservation Biology.

  18. Novel Agricultural Conservation System with Sustained Yield and Decreased Water, Nutrient, Energy, and Carbon Footprints

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Shukla, S.; Holt, N.; Hendricks, G.; Sishodia, R. P.

    2017-12-01

    Fresh fruits and vegetables are conventionally grown in raised bed plasticulture (RBP), a high intensity, high input, and high output production system. In 2016, the fresh market plasticulture industry covered 680,000 ha in the US, producing crops (e.g. tomato, peppers, melons, and strawberries) valued at ten billion dollars. To meet the increasing future demand for fresh fruits and vegetables and sustain the production potential of croplands, a transformation of the conventional food-water-energy nexus is essential. A novel agricultural conservation system, compact bed geometry, has been proposed to shift the paradigm in RBP, sustaining yield and decreasing inputs (e.g. water, nutrients, energy, and carbon). Compact bed geometries fit the shape of the wetting front created when water is applied through drip irrigation on the production soil, creating a taller (23-30 cm) and thinner bed (66-41 cm). Two seasons of tomato (single row) and pepper (double row) production, in the environmentally fragile watershed of the Florida Everglades, highlight the potential impact of compact bed geometry on environmental sustainability in agricultural production. No difference in plant growth or yield was detected, with a reduction of 5-50% in irrigation water, up to 20% less N application, 12% less P, 20% less K, and 5-15% less carbon dioxide emissions. The hydrologic benefits of compact bed geometry include 26% less runoff generation, decreased need for active drainage pumping, and increased residence time for irrigation water within the bed, overall decreasing instances of nutrient leaching. A water related co-benefit observed was a reduction in the occurrences of Phytophthora capsici in pepper, which has the potential to reduce yield by as much as 70%. Non-water co-benefits include up to a 250/ ha reduction in production cost, with the potential to save the industry 200 million dollars annually. This economic benefit has led to rapid industry adoption, with more than 20

  19. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  20. Barriers to Uptake of Conservation Agriculture in southern Africa: Multi-level Analyses from Malawi

    NASA Astrophysics Data System (ADS)

    Dougill, Andrew; Stringer, Lindsay; Whitfield, Stephen; Wood, Ben; Chinseu, Edna

    2015-04-01

    Conservation agriculture is a key set of actions within the growing body of climate-smart agriculture activities being advocated and rolled out across much of the developing world. Conservation agriculture has purported benefits for environmental quality, food security and the sustained delivery of ecosystem services. In this paper, new multi-level analyses are presented, assessing the current barriers to adoption of conservation agriculture practices in Malawi. Despite significant donor initiatives that have targeted conservation agriculture projects, uptake rates remain low. This paper synthesises studies from across 3 levels in Malawi: i.) national level- drawing on policy analysis, interviews and a multi-stakeholder workshop; ii.) district level - via assessments of development plans and District Office and extension service support, and; iii) local level - through data gained during community / household level studies in Dedza District that have gained significant donor support for conservation agriculture as a component of climate smart agriculture initiatives. The national level multi-stakeholder Conservation Agriculture workshop identified three areas requiring collaborative research and outlined routes for the empowerment of the National Conservation Agriculture Task Force to advance uptake of conservation agriculture and deliver associated benefits in terms of agricultural development, climate adaptation and mitigation. District level analyses highlight that whilst District Development Plans are now checked against climate change adaptation and mitigation criteria, capacity and knowledge limitations exist at the District level, preventing project interventions from being successfully up-scaled. Community level assessments highlight the need for increased community participation at the project-design phase and identify a pressing requirement for conservation agriculture planning processes (in particular those driven by investments in climate

  1. Using Home Irrigation Users' Perceptions to Inform Water Conservation Programs

    ERIC Educational Resources Information Center

    Warner, Laura A.; Chaudhary, Anil Kumar; Lamm, Alexa J.; Rumble, Joy N.; Momol, Esen

    2017-01-01

    Targeted agricultural education programs can play a role in solving complex water issues. This article applies importance-performance analysis to examine dimensions of water resources that may inform local water conservation campaigns in the United States. The purpose of this study was to generate a deep understanding of home irrigation users'…

  2. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  3. Of birds, carbon and water: integrating multiple ecosystem service impacts to identify locations for agricultural conservation practice adoption

    EPA Science Inventory

    Human use of the landscape for crop production can degrade ecosystem services. A number of agricultural conservation practices are touted as mitigating these impacts. Many of these practices are encouraged by incentive programs such as the Conservation Reserve Program administere...

  4. Regional effects of agricultural conservation practices on nutrient transport

    Treesearch

    Anna Maria Garcia; Richard B. Alexander; Jeffrey G. Arnold; Lee Norfleet; Mike White; Dale M. Robertson; Gregory Schwarz

    2016-01-01

    The Conservation Effects Assessment Program (CEAP), initiated by USDA Natural Resources Conservation Service (NRCS), has the goal of quantifying the environmental benefits of agricultural conservation practices. As part of this effort, detailed farmer surveyswere compiled to document the adoption of conservation practices. Survey data showed that up to 38...

  5. Ranking agricultural practices on soil water improvements: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Basche, A.; DeLonge, M. S.; Gonzalez, J.

    2016-12-01

    -analysis improves understanding of how alternative management, notably the use of continuous cover in agricultural systems, improves water dynamics. Policies should be designed in a way that allows agricultural producers to prioritize and implement practices that offer greater water conservation while maintaining crop productivity.

  6. The alignment of agricultural and nature conservation policies in the European Union.

    PubMed

    Hodge, Ian; Hauck, Jennifer; Bonn, Aletta

    2015-08-01

    Europe is a region of relatively high population density and productive agriculture subject to substantial government intervention under the Common Agricultural Policy (CAP). Many habitats and species of high conservation interest have been created by the maintenance of agricultural practices over long periods. These practices are often no longer profitable, and nature conservation initiatives require government support to cover the cost for them to be continued. The CAP has been reformed both to reduce production of agricultural commodities at costs in excess of world prices and to establish incentives for landholders to adopt voluntary conservation measures. A separate nature conservation policy has established an extensive series of protected sites (Natura 2000) that has, as yet, failed to halt the loss of biodiversity. Additional broader scale approaches have been advocated for conservation in the wider landscape matrix, including the alignment of agricultural and nature conservation policies, which remains a challenge. Possibilities for alignment include further shifting of funds from general support for farmers toward targeted payments for biodiversity goals at larger scales and adoption of an ecosystem approach. The European response to the competing demands for land resources may offer lessons globally as demands on rural land increase. © 2015 Society for Conservation Biology.

  7. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  8. The Conservation Nexus: Valuing Interdependent Water and Energy Savings in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Chester, M.; Bartos, M.

    2013-12-01

    Energy and water resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially-explicit model of water-energy interdependencies in Arizona, and assesses the potential for co-beneficial conservation programs. Arizona consumes 2.8% of its water demand for thermoelectric power and 8% of its electricity demand for water infrastructure--roughly twice the national average. The interdependent benefits of investments in 7 conservation strategies are assessed. Deployment of irrigation retrofits and new reclaimed water facilities dominate potential water savings, while residential and commercial HVAC improvements dominate energy savings. Water conservation policies have the potential to reduce statewide electricity demand by 1.0-2.9%, satisfying 5-14% of mandated energy-efficiency goals. Likewise, adoption of energy-efficiency measures and renewable generation portfolios can reduce non-agricultural water demand by 2.0-2.6%. These co-benefits of conservation investments are typically not included in conservation plans or benefit-cost analyses. Residential water conservation measures produce significant water and energy savings, but are generally not cost-effective at current water prices. An evaluation of the true cost of water in Arizona would allow future water and energy savings to be compared objectively, and would help policymakers allocate scarce resources to the highest-value conservation measures. Water Transfers between Water Cycle Components in Arizona in 2008 Cumulative embedded energy in water cycle components in Arizona in 2008

  9. Urban Water Conservation

    NASA Astrophysics Data System (ADS)

    Moomaw, Ronald L.

    According to its abstract, this book attempts ‘an assessment of various water conservation measures aimed at reducing residential water usage.’ Its intent is to develop a research program whose ‘ultimate goal is to engender a conservation ethic among water users and managers and develop a predictable array of conservation methodologies. …’ Professor Flack indeed has presented an excellent assessment of conservation methodologies, but I believe that the proposed research program is too limited.Following a brief introductory chapter, chapter II presents an extensive review of the water conservation literature published in the 1970's and earlier. It and chapter III, which describes Flack's systematic comparison of the technical, economic, and political aspects of each conservation methodology, are the heart of the book. Chapter IV is a brief discussion and analysis of conservation programs (with examples) that a water utility might adopt. Chapter V is essentially a pilot study of methods of assessing political and social feasibility. Finally, a set of recommendations is presented in chapter VI. All in all, this book is a nice blend of literature review and original research that deals with an important issue.

  10. Agricultural Intensification in the Brazilian Agricultural-Forest Frontier: Land Use Responses to Development and Conservation Policy

    NASA Astrophysics Data System (ADS)

    Garrett, R.; Koh, I.; le Polain de Waroux, Y.; Lambin, E.; Kastens, J.; Brown, J. C.

    2017-12-01

    Agricultural expansion, extensive cattle ranching, and deforestation remain pressing challenges for sustainable development and climate mitigation throughout South America. In response to these challenges, national and local governments, as well as private and non-governmental actors have developed new forest conservation governance mechanisms. The objective of this study is to better understand how conservation policies interact with supply chain development to influence land use. In particular, we endeavor to understand the timing and spatial patterns of crop and cattle intensification, an understudied phenomenon that is critical to understanding the future of agricultural-forest frontiers and the impacts of conservation policies. We focus on Mato Grosso, the largest soy and cattle producing state in Brazil, which spans the Cerrado and Amazon biomes and has experienced higher levels of deforestation for agricultural expansion than any other state globally over the last decade. Using a newly created spatially explicit data set of land use intensity, supply chain development, and forest policy, we find that agricultural intensification is occurring rapidly in the region, but is only partially driven by changes in conservation policies. The intensification of cattle production is the result of improvements in deforestation monitoring, penalties, and enforcement, and increased land scarcity. Crop intensification, in contrast, preceded increases in conservation restrictions, and is associated with the positive spillovers resulting from agribusiness agglomeration and development. These results suggest that intensification is not a foregone conclusion of increasing forest conservation restrictions, but is highly dependent on wider development processes. A combined effort to direct agribusiness development away from forest regions via tax credits and subsidized credit, when applied in concert with stringent conservation requirements, could help promote intensification

  11. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China.

    PubMed

    Luo, Chunling; Yang, Renxiu; Wang, Yan; Li, Jun; Zhang, Gan; Li, Xiangdong

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil>vegetable soil>paddy soil>natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The (206)Pb/(207)Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices

    NASA Astrophysics Data System (ADS)

    Eanes, Francis R.; Singh, Ajay S.; Bulla, Brian R.; Ranjan, Pranay; Prokopy, Linda S.; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J.

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers ( n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  13. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices.

    PubMed

    Eanes, Francis R; Singh, Ajay S; Bulla, Brian R; Ranjan, Pranay; Prokopy, Linda S; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers (n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  14. Summary of reported agriculture and irrigation water use in Randolph County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Randolph County, Arkansas. The number of withdrawal registrations for Randolph County was 613 (494 groundwater and 119 surface water). Water withdrawals reported during the registration process total 0.08 Mgal/d (0.08 Mgal/d groundwater and none from surface water) for agriculture and 69.48 Mgal/d (53.60 Mgal/d groundwater and 15.88 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 30,530 acres of land to irrigate rice, corn, soybeans, milo, and hay as well as for the agricultural use of animal aquaculture.

  15. Summary of reported agriculture and irrigation water use in Miller County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Miller County, Arkansas. The number of withdrawal registrations for Miller County was 98 (62 groundwater and 36 surface water). Water withdrawals reported during the registration process total 0.06 Mgal/d (0.06 Mgal/d groundwater and none from surface water) for agriculture and 24.74 Mgal/d (5.44 Mgal/d groundwater and 19.30 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 9,872 acres of land to irrigate rice, corn, soybeans, cotton, and sod as well as for the agricultural use of animal aquaculture.

  16. Will farmers save water? A theoretical analysis of groundwater conservation policies

    USDA-ARS?s Scientific Manuscript database

    The development of agricultural irrigation systems has generated significant increases in food production and farm income. However, unplanned and unconstrained groundwater use could also cause serious consequences. To extend the economic life of groundwater, water conservation issues have become the...

  17. Selected References and Aids for Teaching Agricultural Mechanics to Students of Agricultural Education.

    ERIC Educational Resources Information Center

    Mazzucco, April

    The booklet lists references and materials intended for both the student and the teacher of agricultural mechanics. The materials are grouped under nine topics: agricultural shop; metalwork and welding; agricultural machinery; agricultural power; drawing, construction, and maintenance; electricity; water management, soil and water conservation;…

  18. A Regional Assessment of the Effects of Conservation Practices on In-stream Water Quality

    NASA Astrophysics Data System (ADS)

    Garcia, A. M.; Alexander, R. B.; Arnold, J.; Norfleet, L.; Robertson, D. M.; White, M.

    2011-12-01

    The Conservation Effects Assessment Program (CEAP), initiated by USDA Natural Resources Conservation Service (NRCS), has the goal of quantifying the environmental benefits of agricultural conservation practices. As part of this effort, detailed farmer surveys were compiled to document the adoption of conservation practices. Survey data showed that up to 38 percent of cropland in the Upper Mississippi River basin is managed to reduce sediment, nutrient and pesticide loads from agricultural activities. The broader effects of these practices on downstream water quality are challenging to quantify. The USDA-NRCS recently reported results of a study that combined farmer surveys with process-based models to deduce the effect of conservation practices on sediment and chemical loads in farm runoff and downstream waters. As a follow-up collaboration, USGS and USDA scientists conducted a semi-empirical assessment of the same suite of practices using the USGS SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling framework. SPARROW is a hybrid statistical and mechanistic stream water quality model of annual conditions that has been used extensively in studies of nutrient sources and delivery. In this assessment, the USDA simulations of the effects of conservation practices on loads in farm runoff were used as an explanatory variable (i.e., change in farm loads per unit area) in a component of an existing a SPARROW model of the Upper Midwest. The model was then re-calibrated and tested to determine whether the USDA estimate of conservation adoption intensity explained a statistically significant proportion of the spatial variability in stream nutrient loads in the Upper Mississippi River basin. The results showed that the suite of conservation practices that NRCS has catalogued as complete nutrient and sediment management are a statistically significant feature in the Midwestern landscape associated with phosphorous runoff and delivery to downstream waters

  19. 7 CFR 633.9 - Conservation plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Conservation plan. 633.9 Section 633.9 Agriculture... AGRICULTURE LONG TERM CONTRACTING WATER BANK PROGRAM § 633.9 Conservation plan. (a) The program participant... conservation plan for the acreage designated under an agreement. (b) The conservation plan is the basis for the...

  20. Agricultural conservation practices can help mitigate the impact of climate change.

    PubMed

    Wagena, Moges B; Easton, Zachary M

    2018-09-01

    Agricultural conservation practices (CPs) are commonly implemented to reduce diffuse nutrient pollution. Climate change can complicate the development, implementation, and efficiency of agricultural CPs by altering hydrology, nutrient cycling, and erosion. This research quantifies the impact of climate change on hydrology, nutrient cycling, erosion, and the effectiveness of agricultural CP in the Susquehanna River Basin in the Chesapeake Bay Watershed, USA. We develop, calibrate, and test the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model and select four CPs; buffer strips, strip-cropping, no-till, and tile drainage, to test their effectiveness in reducing climate change impacts on water quality. We force the model with six downscaled global climate models (GCMs) for a historic period (1990-2014) and two future scenario periods (2041-2065 and 2075-2099) and quantify the impact of climate change on hydrology, nitrate-N (NO 3 -N), total N (TN), dissolved phosphorus (DP), total phosphorus (TP), and sediment export with and without CPs. We also test prioritizing CP installation on the 30% of agricultural lands that generate the most runoff (e.g., critical source areas-CSAs). Compared against the historical baseline and with no CPs, the ensemble model predictions indicate that climate change results in annual increases in flow (4.5±7.3%), surface runoff (3.5±6.1%), sediment export (28.5±18.2%) and TN export (9.5±5.1%), but decreases in NO 3 -N (12±12.8%), DP (14±11.5), and TP (2.5±7.4%) export. When agricultural CPs are simulated most do not appreciably change the water balance, however, tile drainage and strip-cropping decrease surface runoff, sediment export, and DP/TP, while buffer strips reduce N export. Installing CPs on CSAs results in nearly the same level of performance for most practices and most pollutants. These results suggest that climate change will influence the performance of agricultural CPs and that targeting agricultural

  1. Innovating Conservation Agriculture: The Case of No-Till Cropping

    ERIC Educational Resources Information Center

    Coughenour, C. Milton

    2003-01-01

    The extensive sociological studies of conservation agriculture have provided considerable understanding of farmers' use of conservation practices, but attempts to develop predictive models have failed. Reviews of research findings question the utility of the conceptual and methodological perspectives of prior research. The argument advanced here…

  2. Some Interesting Facts about Water and Water Conservation

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2015-12-01

    The total amount of water in the world today is still the same as it was hundreds of thousands of years ago. Almost 97% of the water that is on this earth is undrinkable. About two percent of world's water is locked in polar ice caps and glaciers. Only one percent of world's water is available for human consumption. Agriculture, livestock farming, irrigation, manufacturing, factories, businesses, commercial establishments, offices, communities and household all have to share this 1% of water that is available. Although we call it drinking water, humans actually drink only about 1% of water that is actually supplied to the household by the utility companies. Inside a leak-proof average American household, about 70% of the water is used in the bathroom and about 20% is utilized in kitchen and laundry. The U.S. daily average consumption of water is about 200 gallons per person. Desalinated water may typically cost about 2,000 - 3000 an acre foot. This is approximately a penny a gallon. An acre-foot or 325,851 gallons is roughly the amount of water a family of five uses in a year. 1.2 trillion gallons of industrial waste, untreated sewage and storm water are dumped into U.S. waters each year. Faster depletion of water supplies is partly due to hotter summers, which mean thirstier people, livestock, plants, trees and shrubs. In addition, hotter summers mean more evaporation from lakes, rivers, reservoirs and irrigated farmland. The median household in the U.S. spends about one of its income on water and sewerage. The human body is about 75% water. Although government agencies have taken necessary steps, water pollution levels continue to rise rapidly. It is becoming more and more difficult to clean up polluted water bodies. Water conservation and preventing water pollution is the responsibility of very human being. References: http://www.nrdc.org/water/http://www.epa.gov/greeningepa/water/http://www.waterboards.ca.gov/water_issues/programs/conservation_portal/

  3. Water Conservation and Water Storage

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  4. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  5. Farmer Perceptions of Soil and Water Conservation Issues: Implications to Agricultural and Extension Education.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; Martin, Robert A.

    A sample of 731 farmers was surveyed to identify perceptions regarding selected soil and water conservation practices. The sample was stratified and proportioned by conservation district to have a representative group of respondents across Iowa. Items on the mailed questionnaire were designed to assess perceptions regarding issues in soil and…

  6. Effects of Governance on Availability of Land for Agriculture and Conservation in Brazil.

    PubMed

    Sparovek, Gerd; Barretto, Alberto Giaroli de Oliveira Pereira; Matsumoto, Marcelo; Berndes, Göran

    2015-09-01

    The 2012 revision of the Brazilian Forest Act changed the relative importance of private and public governance for nature conservation and agricultural production. We present a spatially explicit land-use model for Brazilian agricultural production and nature conservation that considers the spatial distribution of agricultural land suitability, technological and management options, legal command, and control frameworks including the Atlantic Forest Law, the revised Forest Act, and the Amazonian land-titling, "Terra Legal," and also market-driven land use regulations. The model is used to analyze land use allocation under three scenarios with varying priorities among agricultural production and environmental protection objectives. In all scenarios, the legal command and control frameworks were the most important determinants of conservation outcomes, protecting at least 80% of the existing natural vegetation. Situations where such frameworks are not expected to be effective can be identified and targeted for additional conservation (beyond legal requirements) through voluntary actions or self-regulation in response to markets. All scenarios allow for a substantial increase in crop production, using an area 1.5-2.7 times the current cropland area, with much of new cropland occurring on current pastureland. Current public arrangements that promote conservation can, in conjunction with voluntary schemes on private lands where conversion to agriculture is favored, provide important additional nature conservation without conflicting with national agricultural production objectives.

  7. Summary of reported agriculture and irrigation water use in Mississippi County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Mississippi County, Arkansas. The number of withdrawal registrations for Mississippi County was 981 (946 groundwater and 35 surface water). Water withdrawals reported during the registration process total 0.06 Mgal/d (0.01 Mgal/d groundwater and 0.05 Mgal/d surface water) for agriculture and 97.82 Mgal/d (94.16 Mgal/d groundwater and 3.66 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 109,345 acres of land to irrigate rice, corn, soybeans, milo, cotton, hay, vegetables, berries, and sod as well as for the agricultural use of animal aquaculture.

  8. Summary of reported agriculture and irrigation water use in Poinsett County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office of Poinsett County, Arkansas. The number of withdrawal registrations for Poinsett County was 1,826 (1,644 groundwater and 182 surface water). Water withdrawals reported during the registration process total 15.12 Mgal/d (11.76 Mgal/d groundwater and 3.26 Mgal/d surface water) for agriculture and 443.50 Mgal/d (394.22 Mgal/d groundwater and 49.28 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 244,505 acres of land to irrigate rice, corn, soybeans, milo, cotton, and hay as well as for the agricultural uses of animal aquaculture and ducks.

  9. Summary of reported agriculture and irrigation water use in Lincoln County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lincoln County, Arkansas. The number of withdrawal registrations for Lincoln County was 1,167 (868 groundwater and 299 surface water). Water with- drawals reported during the registration process total 3.88 Mgal/d (3.88 Mgal/d groundwater and none from surface water) for agriculture and 114.31 Mgal/d (98.59 Mgal/d groundwater and 15.72 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 81,477 acres of land to irrigate rice, corn, soybeans, milo, cotton and vegetables as well as for the agricultural use of animal aquaculture.

  10. Summary of reported agriculture and irrigation water use in Woodruff County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Woodruff County, Arkansas. The number of withdrawal registrations for Woodruff County was 1,930 (1,755 groundwater and 175 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.91 Mgal/d groundwater and none from surface water) for agriculture and 284.20 Mgal/d (258.13 Mgal/d groundwater and 26.07 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 138,452 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, and vegetables, as well as for the agricultural uses of animal aquaculture and ducks.

  11. Summary of reported agriculture and irrigation water use in Drew County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Drew County, Arkansas. The number of withdrawal registrations for Drew County was 505 (342 groundwater and 163 surface water). Water withdrawals reported during the registration process total 0.32 Mgal/d (0.32 Mgal/d groundwater and none from surface water) for agriculture and 43.04 Mgal/d (37.43 Mgal/d groundwater and 5.61 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 23,775 acres of land to irrigate wheat, rice, corn, soybeans, milo, cash grains, cotton, and hay as well as for the agricultural use of animal aquaculture and catfish.

  12. Summary of reported agriculture and irrigation water use in Greene County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Greene County, Arkansas. The number of withdrawal registrations for Greene County was 1,567 (1,510 groundwater and 57 surface water). Water withdrawals reported during the registration process total 26.69 Mgal/d (23.98 Mgal/d groundwater and 2.71 Mgal/d surface water) for agriculture and 92.46 Mgal/d (91.03 Mgal/d groundwater and 1.43 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 70,947 acres of land to irrigate rice, corn, soybeans, milo, cotton, fruit trees, and sod as well as for the agricultural use of animal aquaculture.

  13. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    PubMed

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. Published by Elsevier Ltd.

  14. An analysis of yield stability in a conservation agriculture system

    USDA-ARS?s Scientific Manuscript database

    Climate models predict increasing growing-season weather variability, with negative consequences for crop production. Maintaining agricultural productivity despite variability in weather (i.e., crop yield stability) will be critical to meeting growing global demand. Conservation agriculture is an ...

  15. Biodiversity conservation in agriculture requires a multi-scale approach.

    PubMed

    Gonthier, David J; Ennis, Katherine K; Farinas, Serge; Hsieh, Hsun-Yi; Iverson, Aaron L; Batáry, Péter; Rudolphi, Jörgen; Tscharntke, Teja; Cardinale, Bradley J; Perfecto, Ivette

    2014-09-22

    Biodiversity loss--one of the most prominent forms of modern environmental change--has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Summary of reported agriculture and irrigation water use in Craighead County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Craighead County, Arkansas. The number of withdrawal registrations for Craighead County was 2,384 (2,187 groundwater and 197 surface water). Water withdrawals reported during the registration process total 1.45 Mgal/d (0.50 Mgal/d groundwater and 0.95 Mgal/d surface water) for agriculture and 287.20 Mgal/d (261.52 Mgal/d groundwater and 25.68 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 168,003 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cotton, hay, vegetables, nuts, and sod as well as for the agricultural uses of animal aquaculture and sports clubs.

  17. Summary of reported agriculture and irrigation water use in Lonoke County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lonoke County, Arkansas. The number of withdrawal registrations for Lonoke County was 3,313 (2,587 groundwater and 726 surface water). Water with drawals reported during the registration process total 61.30 Mgal/d (59.50 Mgal/d groundwater and 1.80 Mgal/d surface water) for agriculture and 300.45 Mgal/d (241.86 Mgal/d groundwater and 58.59 Mgal/d surface water) for irrigation. The registra- tion reports for 1991 indicate that this water was applied to 238,457 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, and sod as well as for the agricultural uses of animal aquaculture, hatcheries, and ducks.

  18. Summary of reported agriculture and irrigation water use in Lee County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Lee County, Arkansas. The number of withdrawal registrations for Lee County was 1,582 (1,533 groundwater and 49 surface water). Water withdrawals reported during the registration process total 3.77 Mgal/d (3.39 Mgal/d groundwater and 0.38 Mgal/d surface water) for agriculture and 169.25 Mgal/d (166.79 Mgal/d groundwater and 2.46 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 97,029 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, and nuts as well as for the agricultural uses of animal aquaculture and ducks.

  19. Summary of reported agriculture and irrigation water use in Pulaski County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Pulaski County, Arkansas. The number of withdrawal registrations for Pulaski County was 291 (170 groundwater and 121 surface water). Water withdrawals reported during the registration process total 0.91 Mgal/d (0.71 Mgal/d groundwater and 0.20 Mgal/d surface water) for agriculture and 37.42 Mgal/d (28.53 Mgal/d groundwater and 8.89 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 28,088 acres of land to irrigate wheat, rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and sod, as well as for the agricultural uses of animal aquaculture, timber, and ducks.

  20. Summary of reported agriculture and irrigation water use in Phillips County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Phillips County, Arkansas. The number of withdrawal registrations for Phillips County was 1,109 (1,103 groundwater and 6 surface water). Water withdrawals reported during the registration process total 0.15 Mgal/d (0.15 Mgal/d groundwater and none from surface water) for agriculture and 123.75 Mgal/d (122.66 Mgal/d groundwater and 1.09 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 96,502 acres of land to irrigate wheat, rice, corn, soybeans, milo, cotton, hay, vegetables, grapes, nuts, fruit trees, and sod, as well as for the agricultural use of animal aquaculture.

  1. Summary of reported agriculture and irrigation water use in Monroe County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Monroe County, Arkansas. The number of withdrawal registrations for Monroe County was 1,886 (1,677 groundwater and 209 surface water). Water withdrawals reported during the registration process total 8.87 Mgal/d (5.75 Mgal/d groundwater and 3.12 Mgal/d surface water) for agriculture and 210.61 Mgal/d (190.99 Mgal/d groundwater and 19.62 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 127,670 acres of land to irrigate rice, sorghum, soybeans, milo, cash grains, cotton, hay, and unknown crops, as well as for agricultural uses of animal aquaculture, minnows, and ducks. {descriptors: *Water use, *Arkansas, *Monroe County, Selective withdrawal, Groundwater, Surface water

  2. Identifying potential recommendation domains for conservation agriculture in Ethiopia, Kenya, and Malawi.

    PubMed

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km(2)) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5% of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21% of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  3. Identifying Potential Recommendation Domains for Conservation Agriculture in Ethiopia, Kenya, and Malawi

    NASA Astrophysics Data System (ADS)

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km2) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5 % of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21 % of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  4. Conservation agriculture in high tunnels: soil health and profit enhancement

    USDA-ARS?s Scientific Manuscript database

    In 2013, through the USDA’s Evans-Allen capacity grant, the high tunnel became an on-farm research laboratory for conservation agriculture. Dr. Manuel R. Reyes, Professor and his research team from the North Carolina Agriculture and Technology State University (NCATSU), Greensboro, North Carolina (1...

  5. 21st Century Water Conservation Principles

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2013-12-01

    report details key priorities for the Agency: Many researchers are of the opinion that applying the principles of free market enterprise to water conservation ideas would result in a more efficient utilization of water supply and distribution everywhere. References: EPA's June 2011 Strategic Sustainability Performance Plan (SSPP) (PDF) (74 pp, 1MB) June 2010 EPA Strategic Sustainability Performance Plan (PDF) (67 pp, 3.8MB) U.S. EPA Policy Statement on Climate-Change Adaptation (PDF) (3pp, 55KB) Narayanan, Mysore. (2008). Hydrology, Water Scarcity and Market Economics. 68th AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 89, No. 53, Fall Meeting Supplement, 2009. H11E - 0801. Postel, Sandra L. The Last Oasis: Facing Water Scarcity. New York: W. W. Norton and Company. 1997. Falkenmark, M.J. and Rockström, J. (2004). Balancing Water For Humans and Nature. Sterling, VA. Earthscan. Giordano, M. (2006) Agricultural Groundwater Use and Rural Livelihoods Journal of Hydrogeology. 14, 310 - 318. Allan, J.A. (2003). Virtual Water. Useful Concept or Misleading Metaphor? Water International. 28, 4-11. Vörsömarty, C.J., Douglas, E.M., Green, P.A. and Revenga, C. 2005. Geospatial Indicators of Energing Water Stress. Ambio, 34. 230-236.

  6. Framework and tools for agricultural landscape assessment relating to water quality protection.

    PubMed

    Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine

    2009-05-01

    While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.

  7. Summary of reported agriculture and irrigation water use in St. Francis County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in St. Francis County, Arkansas. The number of withdrawal registrations for St. Francis County was 1,286 (1,194 groundwater and 92 surface water). Water withdrawals reported during the registration process total 0.14 Mgal/d (0.14 Mgal/d groundwater and none from surface water) for agriculture and 172.48 Mgal/d groundwater and 12.66 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 100,183 acres of land to irrigate rice, soybeans, milo, cotton, and vegetables as well as for the agricultural uses of animal aquaculture and ducks.

  8. Water Conservation Resource List.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  9. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  10. Summary of reported agriculture and irrigation water use in White County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in White County, Arkansas. The number of withdrawal registrations for White County was 1,365 (1,146 groundwater and 219 surface water). Water withdrawals reported during the registration process total 1.37 Mgal/d (0.95 Mgal/d groundwater and 0.42 Mgal/d surface water) for agriculture and 69.91 Mgal/d (43.78 Mgal/d groundwater and 26.13 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was supplied to 46,315 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, hay, vegetables, berries, grapes, fruit trees, sod, and unknown crop as well as for the agricultural uses of animal aquaculture, minnows, ducks, and sport clubs.

  11. Summary of reported agriculture and irrigation water use in Prairie County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Prairie County, Arkansas. The number of withdrawal registrations for Prairie County was 2,187 (1,786 groundwater and 401 surface water). Water with- drawals reported during the registration process total 26.93 Mgal/d (26.84 Mgal/d groundwater and 0.09 Mgal/d surface water) for agriculture and 191.08 Mgal/d (138.79 Mgal/d groundwater and 52.29 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 144,956 acres of land to irrigate rice, corn, soybeans, milo, cash grains, unknown crop, cotton hay, berries, and fruit trees as well as for the agricultural uses of animal aquaculture, minnows, timber, and ducks.

  12. Innovations in Agriculture in Oregon: Farmers Irrigation District Improves Water Quality, Maximizes Water Conservation, and Generates Clean, Renewable Energy

    EPA Pesticide Factsheets

    The Hood River Farmers Irrigation District used $36.2 million in CWSRF loans for a multiple-year endeavor to convert the open canal system to a piped, pressurized irrigation system to maximize water conservation and restore reliable water delivery to crops

  13. Using changes in agricultural utility to quantify future climate-induced risk to conservation.

    PubMed

    Estes, Lyndon D; Paroz, Lydie-Line; Bradley, Bethany A; Green, Jonathan M H; Hole, David G; Holness, Stephen; Ziv, Guy; Oppenheimer, Michael G; Wilcove, David S

    2014-04-01

    Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. © 2013 Society for Conservation Biology.

  14. Nonpoint Source: Agriculture

    EPA Pesticide Factsheets

    Agricultural runoff as a nonpoint source category of pollution. Resouces to learn more a bout conservation practices to reduce water quality impacts from storm water run off and ground water infiltration

  15. Why Do Smallholder Farmers Dis-adopt Conservation Agriculture? Insights from Malawi

    NASA Astrophysics Data System (ADS)

    Chinseu, Edna; Dougill, Andrew; Stringer, Lindsay

    2017-04-01

    International donors and advisory bodies, national governments and non-governmental organisations (NGOs) are all actively promoting conservation agriculture (CA) as a route to sustainable agricultural development, recognising the importance of agriculture to the national economy and livelihoods of rural communities. CA is anchored in 3 principles: i) minimum soil disturbance, ii) continuous soil cover and iii) crop associations. It is advocated on the basis of improving crop yields, income and/or profits; reducing production costs; and conserving soil and water. Despite huge investments made by CA proponents, many farmers only practice CA for a short time. They subsequently dis-adopt (abandon) the seemingly appropriate innovation and revert back to conventional tillage practices. While factors affecting the (initial) adoption of agricultural technologies have been studied extensively, dis-adoption has rarely been investigated. Improving our understanding of dis-adoption of seemingly appropriate and sustainable interventions is vital for long-term sustainable land management, food security and for ensuring sustained impacts of agricultural development project interventions more broadly. This research investigates why smallholder farmers abandon CA practices in Malawi by exploring farmers' experiences of CA and their implications in dis-adoption. A mixed methods approach was used, involving household questionnaire survey and focus group discussions with smallholder farmers. Findings reveal that reasons for dis-adoption are multi-dimensional and multi-layered. While CA proponents are marketing CA as a time saving, labour saving and yield improving technology, many farmers report contrary experiences. Findings also showed that farmers lacked ownership of CA projects and encountered various social challenges, which coupled with unfulfilled expectations, led to dis-adoption. In sub-Saharan Africa, this suggests that there is a need to: (1) market CA as a climate

  16. Agriculture in the Mississippi River Basin; effects on water quality, aquatic biota, and watershed conservation.

    USDA-ARS?s Scientific Manuscript database

    Agriculture has been identified as a potential leading source of nutrients (nitrogen and phosphorus) and sediment enrichment of water bodies within the Mississippi River basin (MRB) and contributes to impaired water quality and biological resources in the MRB and the northern Gulf of Mexico (GOM). T...

  17. 7 CFR 764.231 - Conservation loan uses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... timber management, erosion control, or shelter belt purposes; (3) The installation of water conservation... 7 Agriculture 7 2013-01-01 2013-01-01 false Conservation loan uses. 764.231 Section 764.231... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN MAKING Conservation Loan Program § 764.231 Conservation loan uses. (a...

  18. 7 CFR 764.231 - Conservation loan uses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... timber management, erosion control, or shelter belt purposes; (3) The installation of water conservation... 7 Agriculture 7 2014-01-01 2014-01-01 false Conservation loan uses. 764.231 Section 764.231... AGRICULTURE SPECIAL PROGRAMS DIRECT LOAN MAKING Conservation Loan Program § 764.231 Conservation loan uses. (a...

  19. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water conservation...

  20. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water conservation...

  1. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water conservation...

  2. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water conservation...

  3. 43 CFR 427.1 - Water conservation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water conservation. 427.1 Section 427.1... INTERIOR WATER CONSERVATION RULES AND REGULATIONS § 427.1 Water conservation. (a) In general. The Secretary shall encourage the full consideration and incorporation of prudent and responsible water conservation...

  4. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  5. Sensitivity Analysis in Agent-Based Models of Socio-Ecological Systems: An Example in Agricultural Land Conservation for Lake Water Quality Improvement

    NASA Astrophysics Data System (ADS)

    Ligmann-Zielinska, A.; Kramer, D. B.; Spence Cheruvelil, K.; Soranno, P.

    2012-12-01

    Socio-ecological systems are dynamic and nonlinear. To account for this complexity, we employ agent-based models (ABMs) to study macro-scale phenomena resulting from micro-scale interactions among system components. Because ABMs typically have many parameters, it is challenging to identify which parameters contribute to the emerging macro-scale patterns. In this paper, we address the following question: What is the extent of participation in agricultural land conservation programs given heterogeneous landscape, economic, social, and individual decision making criteria in complex lakesheds? To answer this question, we: [1] built an ABM for our model system; [2] simulated land use change resulting from agent decision making, [3] estimated the uncertainty of the model output, decomposed it and apportioned it to each of the parameters in the model. Our model system is a freshwater socio-ecological system - that of farmland and lake water quality within a region containing a large number of lakes and high proportions of agricultural lands. Our study focuses on examining how agricultural land conversion from active to fallow reduces freshwater nutrient loading and improves water quality. Consequently, our ABM is composed of farmer agents who make decisions related to participation in a government-sponsored Conservation Reserve Program (CRP) managed by the Farm Service Agency (FSA). We also include an FSA agent, who selects enrollment offers made by farmers and announces the signup results leading to land use change. The model is executed in a Monte Carlo simulation framework to generate a distribution of maps of fallow lands that are used for calculating nutrient loading to lakes. What follows is a variance-based sensitivity analysis of the results. We compute sensitivity indices for individual parameters and their combinations, allowing for identification of the most influential as well as the insignificant inputs. In the case study, we observe that farmland

  6. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  7. Conservation Management of Agriculture Land using Geospatial Approach (A Case Study in the Bone Watershed, Gorontalo Province, Indonesia)

    NASA Astrophysics Data System (ADS)

    Maryati, Sri; Eraku, Sunarty; Kasim, Muh

    2018-02-01

    Bone Watershed is one of the major watersheds in Gorontalo Province. Bone watershed has a very important role for the people of Gorontalo Province. The role of Bone Watershed is mainly related to the providing clean water, producing oxygen, controlling flood, providing habitat for endemic flora fauna and other environmental functions. The role of Bone Watershed for the community's economic sector is also very important, the Bone watershed provides livelihood for surrounding communities includes fertile land resources for agriculture and plantations, forest products, and livestock feed. This research is important considering the Bone watershed has limited availability of land for agriculture and the high risk of natural disasters such as floods and landslides. Geospatial data includes topography map, landform map, soil map, integrated with field survey results and soil properties were analized to determine conservation management of agriculture land in the Bone Watershed, Gorontalo Province, Indonesia. The result of this study shows that based on soil properties and physical land characteristics, land use for agriculture should consider appropriate conservation techniques, land capability and respect to local wisdom.

  8. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program... Energy Act of 2008 (2008 Act) established the Agricultural Water Enhancement Program (AWEP) by amending... to implement agricultural water enhancement activities on agricultural land for the purposes of...

  9. Summary of reported agriculture and irrigation water use in northwestern Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following northwestern Arkansas counties: Baxter, Benton, Boone, Carroll, Cleburne, Fulton, Izard, Madison, Marion, Newton, Searcy, Sharp, Stone, Van Buren, and Washington. The number of withdrawal registrations for northwestern Arkansas counties was 106 (16 groundwater and 90 surface water). Water withdrawals reported during the registration process total 41.72 Mgal/d (0.74 Mgal/d groundwater and 40.98 Mgal/d surface water) for agriculture and 3.33 Mgal/d (0.27 Mgal/d groundwater and 3.06 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 3,588 acres of land to irrigate rice, soybeans, cash grains, hay, oats, vegetables, sod, berries, fruit trees, and timber as well as for the agricultural use of animal aquaculture.

  10. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables

  11. Using Personal Water Footprints to Identify Consumer Food Choices that Influence the Conservation of Local Water Resources

    NASA Astrophysics Data System (ADS)

    Marrin, D. L.

    2015-12-01

    As the global demand for water and food escalates, the emphasis is on supply side factors rather than demand side factors such as consumers, whose personal water footprints are dominated (>90%) by food. Personal footprints include the water embedded in foods that are produced locally as well as those imported, raising the question of whether local shifts in people's food choices and habits could assist in addressing local water shortages. The current situation in California is interesting in that drought has affected an agriculturally productive region where a substantial portion of its food products are consumed by the state's large population. Unlike most agricultural regions where green water is the primary source of water for crops, California's arid climate demands an enormous volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports many of its food products, enough is consumed in-state so that residents making relatively minor shifts their food choices could save as much local blue water as their implementing more drastic reductions in household water use (comprising <5% of their personal footprint). One of those shifts is reducing the intake of meat and dairy products that account for just under half of a Californian's blue-green water footprint and that require the most water of any food group on both a caloric and gravimetric basis. Another change is wasting less food, which is a shared responsibility among consumers, producers and retailers; however, consumers' actions and preferences ultimately drive much of the waste. Personal water footprints suggest a role for individuals in conserving local water resources that is neither readily obvious nor a major focus of most conservation programs.

  12. SOIL AND WATER CONSERVATION POLICY APPROACHES IN NORTH AMERICA, EUROPE, AND AUSTRALIA. (R825761)

    EPA Science Inventory

    Abstract

    Soil and water conservation policies and programs in developed countries in North America, Europe, and Australia are examined in the context of their effectiveness for addressing environmental degradation associated with technology-intensive agricultural syste...

  13. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  14. Summary of reported agriculture and irrigation water use in southwestern Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following southwestern Arkansas counties: Bradley, Calhoun, Clark, Cleveland, Columbia, Dallas, Garland, Grant, Hempstead, Hot Spring, Howard, Little River, Montgomery, Nevada, Ouachita, Pike, Polk, Saline, Sevier, and Union. The number of withdrawal registrations for southwestern Arkansas counties was 132 (31 groundwater and 101 surface water). Water withdrawals reported during the registration process total 0.84 Mgal/d (none from groundwater and 0.84 Mgal/d surface water) for agriculture and 14.22 Mgal/d (1.64 Mgal/d groundwater and 12.58 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 8,455 acres of land to irrigate rice, corn, sorghum, soybeans, cotton, cash grains, vegetables, sod, berries, fruit trees, timber, shrubs, and nuts as well as for the agricultural use of animal aquaculture.

  15. Representing Water Scarcity in Future Agricultural Assessments

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  16. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  17. Domestic water conservation potential in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdulrazzak, Mohammed J.; Khan, Muhammad Z. A.

    1990-03-01

    Domestic water conservation in arid climates can result in efficient utilization of existing water supplies. The impacts of conservation measures such as the installation of water-saving devices, water metering and pricing schemes, water rationing and public awareness programs, strict plumbing codes, penalties for wasting water, programs designed to reduce leakage from public water lines and within the home, water-efficient landscaping, economic and ethical incentives are addressed in detail. Cost savings in arid climates, with particular reference to Saudi Arabia, in relation to some conservation techniques, are presented. Water conservation technology and tentative demonstration and implementation of water conservation programs are discussed.

  18. Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers.

    PubMed

    Dougill, Andrew J; Whitfield, Stephen; Stringer, Lindsay C; Vincent, Katharine; Wood, Benjamin T; Chinseu, Edna L; Steward, Peter; Mkwambisi, David D

    2017-06-15

    Conservation agriculture (CA) practices of reduced soil tillage, permanent organic soil coverage and intercropping/crop rotation, are being advocated globally, based on perceived benefits for crop yields, soil carbon storage, weed suppression, reduced soil erosion and improved soil water retention. However, some have questioned their efficacy due to uncertainty around the performance and trade-offs associated with CA practices, and their compatibility with the diverse livelihood strategies and varied agro-ecological conditions across African smallholder systems. This paper assesses the role of key institutions in Malawi in shaping pathways towards more sustainable land management based on CA by outlining their impact on national policy-making and the design and implementation of agricultural development projects. It draws on interviews at national, district and project levels and a multi-stakeholder workshop that mapped the institutional landscape of decision-making for agricultural land management practices. Findings identify knowledge gaps and institutional barriers that influence land management decision-making and constrain CA uptake. We use our findings to set out an integrated roadmap of research needs and policy options aimed at supporting CA as a route to enhanced sustainable land management in Malawi. Findings offer lessons that can inform design, planning and implementation of CA projects, and identify the multi-level institutional support structures required for mainstreaming sustainable land management in sub-Saharan Africa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  20. Summary of reported agriculture and irrigation water use in west-central Arkansas counties, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Offices in the following west-central Arkansas counties: Conway, Crawford, Faulkner, Franklin, Johnson, Logan, Perry, Pope, Scott, Sebastian, and Yell. The number of withdrawal registrations for west-central Arkansas counties was 307 (90 groundwater and 217 surface water). Water withdrawals reported during the registration process total 1.00 Mgal/d (0.15 Mgal/d groundwater and 0.85 Mgal/d surface water) for agriculture and 32.07 Mgal/d (5.67 Mgal/d groundwater and 26.40 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 22,856 acres of land to irrigate rice, corn, sorghum, soybeans, wheat, cash grains, hay, milo, vegetables, sod, berries, grapes, and fruit trees as well as for the agricultural uses of catfish and ducks.

  1. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.

    PubMed

    Lizotte, Richard E; Yasarer, Lindsey M W; Locke, Martin A; Bingner, Ronald L; Knight, Scott S

    2017-03-01

    Watershed-scale management efforts to reduce nutrient loads and improve the conservation of lakes in agricultural watersheds require effective integration of a variety of agricultural conservation best management practices (BMPs). This paper documents watershed-scale assessments of the influence of multiple integrated BMPs on oxbow lake nutrient concentrations in a 625-ha watershed of intensive row-crop agricultural activity during a 14-yr monitoring period (1996-2009). A suite of BMPs within fields and at field edges throughout the watershed and enrollment of 87 ha into the Conservation Reserve Program (CRP) were implemented from 1995 to 2006. Total phosphorus (TP), soluble reactive phosphorus (SRP), ammonium, and nitrate were measured approximately biweekly from 1996 to 2009, and total nitrogen (TN) was measured from 2001 to 2009. Decreases in several lake nutrient concentrations occurred after BMP implementation. Reductions in TP lake concentrations were associated with vegetative buffers and rainfall. No consistent patterns of changes in TN or SRP lake concentrations were observed. Reductions in ammonium lake concentrations were associated with conservation tillage and CRP. Reductions in nitrate lake concentrations were associated with vegetative buffers. Watershed simulations conducted with the AnnAGNPS (Annualized Agricultural Non-Point Source) model with and without BMPs also show a clear reduction in TN and TP loads to the lake after the implementation of BMPs. These results provide direct evidence of how watershed-wide BMPs assist in reducing nutrient loading in aquatic ecosystems and promote a more viable and sustainable lake ecosystem. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water conservation standards. 806.25 Section 806.25 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.25 Water conservation...

  3. Why Do Information Gaps Persist in African Smallholder Agriculture? Perspectives from Farmers Lacking Exposure to Conservation Agriculture

    ERIC Educational Resources Information Center

    Brown, Brendan; Llewellyn, Rick; Nuberg, Ian

    2018-01-01

    Purpose: To explore why substantial agricultural information gaps persist in African smallholder farming communities and how to reduce them. Design/methodology/approach: Using conservation agriculture (CA) as a case study, we deeply explore with 29 smallholder farmers why they are yet to obtain sufficient information to enable practice evaluation.…

  4. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas.

    PubMed

    Veach, Victoria; Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  5. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    PubMed Central

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  6. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  7. Farmer Perceptions of Soil and Water Conservation Issues: Implications to Agricultural and Extension Education.

    ERIC Educational Resources Information Center

    Bruening, Thomas; Martin, Robert A.

    1992-01-01

    A survey of 731 Iowa farmers received 432 responses indicating that (1) groundwater and water quality were of greater concern than soil conservation; (2) field demonstrations and county meetings were useful information sources on these issues; and (3) government agencies such as cooperative extension and state universities were useful sources of…

  8. The Consequences of the FAA not Offering Emergency Agricultural UAS Rules for Water Conservation During the 2012 Drought

    NASA Astrophysics Data System (ADS)

    Darling, R. G.

    2016-12-01

    The FAA's policies for agricultural Unmanned Aerial Systems (UAS) is essential towards preservation and optimization of water use in the parched Western United States. Had FAA applied emergency rules putting farmers on equal-footing with hobbyists for sUAS use at the beginning of the 2012 drought, the Western US could have been able to save approximately 3 Million/AF of water through improved irrigation management. For perspective, Los Angeles city's annual current consumption is 587,000 acre-feet. This study uses various assumptions about developed water use in agriculture and urban areas to determine water use, energy consumption, monetary loss through delay in FAA regulations. If the saved water was added to the ground the energy savings could have been approximately 1.27 Terra-Watt hours, enough energy to power the entire University of California system for 5 years. It remains unclear if new FAA regulations are sufficiently permissive to allow for widespread adoption of sUAS based precision agriculture. Substantial opportunities exist for utilizing UAS traffic management software in rural areas of less crowed airspace: incorporating geofencing and a notification system to operators and air traffic control as an alternative to a difficult examination process.

  9. Water conservation behavior in Australia.

    PubMed

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2012-08-30

    Ensuring a nation's long term water supply requires the use of both supply-sided approaches such as water augmentation through water recycling, and demand-sided approaches such as water conservation. Conservation behavior can only be increased if the key drivers of such behavior are understood. The aim of this study is to reveal the main drivers from a comprehensive pool of hypothesized factors. An empirical study was conducted with 3094 Australians. Data was analyzed using multivariate linear regression analysis and decision trees to determine which factors best predict self-reported water conservation behavior. Two key factors emerge: high level of pro-environmental behavior; and pro-actively seeking out information about water. A number of less influential factors are also revealed. Public communication strategy implications are derived. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Multiobjective hedging rules for flood water conservation

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Zhang, Chi; Cai, Ximing; Li, Yu; Zhou, Huicheng

    2017-03-01

    Flood water conservation can be beneficial for water uses especially in areas with water stress but also can pose additional flood risk. The potential of flood water conservation is affected by many factors, especially decision makers' preference for water conservation and reservoir inflow forecast uncertainty. This paper discusses the individual and joint effects of these two factors on the trade-off between flood control and water conservation, using a multiobjective, two-stage reservoir optimal operation model. It is shown that hedging between current water conservation and future flood control exists only when forecast uncertainty or decision makers' preference is within a certain range, beyond which, hedging is trivial and the multiobjective optimization problem is reduced to a single objective problem with either flood control or water conservation. Different types of hedging rules are identified with different levels of flood water conservation preference, forecast uncertainties, acceptable flood risk, and reservoir storage capacity. Critical values of decision preference (represented by a weight) and inflow forecast uncertainty (represented by standard deviation) are identified. These inform reservoir managers with a feasible range of their preference to water conservation and thresholds of forecast uncertainty, specifying possible water conservation within the thresholds. The analysis also provides inputs for setting up an optimization model by providing the range of objective weights and the choice of hedging rule types. A case study is conducted to illustrate the concepts and analyses.

  11. Water in agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter relatively new regulations in the Food Safety and Modernization Act (FSMA) provide irri...

  12. 7 CFR 764.231 - Conservation loan uses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... not limited to: (1) The installation of conservation structures to address soil, water, and related... shelter belt purposes; (3) The installation of water conservation measures; (4) The installation of waste... 7 Agriculture 7 2012-01-01 2012-01-01 false Conservation loan uses. 764.231 Section 764.231...

  13. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  14. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation

    PubMed Central

    Durán, América P.; Duffy, James P.; Gaston, Kevin J.

    2014-01-01

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation. PMID:25143040

  15. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  16. Water Conservation Education with a Rainfall Simulator.

    ERIC Educational Resources Information Center

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  17. Changes in historical Iowa land cover as context for assessing the environmental benefits of current and future conservation efforts on agricultural lands

    USGS Publications Warehouse

    Gallant, Alisa L.; Sadinski, Walt; Roth, Mark F.; Rewa, Charles A.

    2011-01-01

    Conservationists and agriculturists face unprecedented challenges trying to minimize tradeoffs between increasing demands for food, fiber, feed, and biofuels and the resulting loss or reduced values of other ecosystem services, such as those derived from wetlands and biodiversity (Millenium Ecosystem Assessment 2005a, 2005c; Maresch et al. 2008). The Food, Conservation, and Energy Act of 2008 (Pub. L. 110-234, Stat. 923, HR 2419, also known as the 2008 Farm Bill) reauthorized the USDA to provide financial incentives for agricultural producers to reduce environmental impacts via multiple conservation programs. Two prominent programs, the Wetlands Reserve Program (WRP) and the Conservation Reserve Program (CRP), provide incentives for producers to retire environmentally sensitive croplands, minimize erosion, improve water quality, restore wetlands, and provide wildlife habitat (USDA FSA 2008a, 2008b; USDA NRCS 2002). Other conservation programs (e.g., Environmental Quality Incentives Program, Conservation Stewardship Program) provide incentives to implement structural and cultural conservation practices to improve the environmental performance of working agricultural lands. Through its Conservation Effects Assessment Project, USDA is supporting evaluation of the environmental benefits obtained from the public investment in conservation programs and practices to inform decisions on where further investments are warranted (Duriancik et al. 2008; Zinn 1997).

  18. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2014-01-01 2014-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation practices...

  19. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2013-01-01 2013-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation practices...

  20. 7 CFR 1466.10 - Conservation practices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... practice implementation. (c) A participant will be eligible for payments for water conservation and... 7 Agriculture 10 2012-01-01 2012-01-01 false Conservation practices. 1466.10 Section 1466.10... Contracts and Payments § 1466.10 Conservation practices. (a) NRCS will determine the conservation practices...

  1. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes

    Treesearch

    Richard B. Chandler; David I. King; Raul Raudales; Richard Trubey; Carlin Chandler; Víctor Julio Arce Chávez

    2013-01-01

    Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native...

  2. A spatially explicit representation of conservation agriculture for application in global change studies.

    PubMed

    Prestele, Reinhard; Hirsch, Annette L; Davin, Edouard L; Seneviratne, Sonia I; Verburg, Peter H

    2018-05-10

    Conservation agriculture (CA) is widely promoted as a sustainable agricultural management strategy with the potential to alleviate some of the adverse effects of modern, industrial agriculture such as large-scale soil erosion, nutrient leaching and overexploitation of water resources. Moreover, agricultural land managed under CA is proposed to contribute to climate change mitigation and adaptation through reduced emission of greenhouse gases, increased solar radiation reflection, and the sustainable use of soil and water resources. Due to the lack of official reporting schemes, the amount of agricultural land managed under CA systems is uncertain and spatially explicit information about the distribution of CA required for various modeling studies is missing. Here, we present an approach to downscale present-day national-level estimates of CA to a 5 arcminute regular grid, based on multicriteria analysis. We provide a best estimate of CA distribution and an uncertainty range in the form of a low and high estimate of CA distribution, reflecting the inconsistency in CA definitions. We also design two scenarios of the potential future development of CA combining present-day data and an assessment of the potential for implementation using biophysical and socioeconomic factors. By our estimates, 122-215 Mha or 9%-15% of global arable land is currently managed under CA systems. The lower end of the range represents CA as an integrated system of permanent no-tillage, crop residue management and crop rotations, while the high estimate includes a wider range of areas primarily devoted to temporary no-tillage or reduced tillage operations. Our scenario analysis suggests a future potential of CA in the range of 533-1130 Mha (38%-81% of global arable land). Our estimates can be used in various ecosystem modeling applications and are expected to help identifying more realistic climate mitigation and adaptation potentials of agricultural practices. © 2018 The Authors. Global

  3. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  4. China Report, Agriculture, No. 278.

    DTIC Science & Technology

    1983-11-10

    Radiation Successfully Used in Agriculture (XINHUA, 18 Oct 83) 2 Recent Agricultural Development Strategies (Zhang Lin; JINGJI YANJIU, No 9, 20...ABSTRACTS SOIL CONSERVATION SHUITU BAOCHI TONGBAO [BULLETIN OF SOIL AND WATER CONSERVATION], No 4, Aug 83 28 URBAN STUDIES JINGJI DILI [ECONOMIC...GEOGRAPHY], No 3, Aug 83 31 LAND USE JINGJI DILI [ECONOMIC GEOGRAPHY], No 3, Aug 83 33 CROP ROTATION JINGJI DILI fECONOMIC GEOGRAPHY], No

  5. Water management, purification, and conservation in arid climates. Volume 3: Water conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 3 addresses aspects of water conservation and includes rainwater harvesting and wastewater reuse and reclamation.« less

  6. Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation.

    PubMed

    Durán, América P; Duffy, James P; Gaston, Kevin J

    2014-10-07

    Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. 75 FR 11194 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San... meetings for the San Diego County Water Authority's (Water Authority/Applicant) draft Natural Communities Conservation Plan (NCCP)/Habitat Conservation Plan (HCP) prepared in application to us for an incidental take...

  8. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  9. Multiple Knowledges for Agricultural Production: Implications for the Development of Conservation Agriculture in Kenya and Uganda

    ERIC Educational Resources Information Center

    Moore, Keith M.; Lamb, Jennifer N.; Sikuku, Dominic Ngosia; Ashilenje, Dennis S.; Laker-Ojok, Rita; Norton, Jay

    2014-01-01

    Purpose: This article investigates the extent of multiple knowledges among smallholders and connected non-farm agents around Mount Elgon in Kenya and Uganda in order to build the communicative competence needed to scale up conservation agriculture production systems (CAPS). Design/methodology/approach: Our methodological approach examines local…

  10. Productivity limits and potentials of the principles of conservation agriculture

    USDA-ARS?s Scientific Manuscript database

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions of the future. Conservation agriculture (CA) represents a set of three crop manage...

  11. Land-use change affects water recycling in Brazil's last agricultural frontier.

    PubMed

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system. © 2016 John Wiley & Sons Ltd.

  12. Agricultural water policy reforms in China: a representative look at Zhangye City, Gansu Province, China.

    PubMed

    Akiyama, Tomohiro; Kharrazi, Ali; Li, Jia; Avtar, Ram

    2017-12-07

    Water resources are essential for agricultural production in the grain-producing region of China, and water shortage could significantly affect the production and international trade of agricultural products. China is placing effort in new policies to effectively respond to changes in water resources due to changes in land use/land cover as well as climatic variations. This research investigates the changes in land, water, and the awareness of farmer vis-à-vis the implementation of water-saving policies in Zhangye City, an experimental site for pilot programs of water resources management in China. This research indicates that the water saved through water-saving programs and changes in cropping structure (2.2 × 10 8  m 3  a -1 ) is perhaps lower than the newly increased water withdrawal through corporate-led land reclamation (3.7 × 10 8  m 3  a -1 ). Most critically, the groundwater withdrawal has increased. In addition, our survey suggests that local government is facing a dilemma of water conservation and agricultural development. Therefore, the enforcement of the ban on farmland reclamation and irrigation water quotas in our study area is revealed to be relatively loose. In this vein, the engagement of local stakeholders in water governance is essential for the future sustainable management of water resources.

  13. Agricultural and recreational impacts of the conservation reserve program in rural North Dakota, USA.

    PubMed

    Bangsund, Dean A; Hodur, Nancy M; Leistritz, F Larry

    2004-07-01

    The Conservation Reserve Program (CRP), created in 1985, provides conservation benefits and agricultural supply control through voluntary, long-term retirement of crop land. While the effects of the CRP on the agricultural sector are well understood, the implications of its conservation benefits for rural economies remain largely undocumented. To quantify the effects on rural economies, this study addressed the net economic effects of decreased agricultural activity and increased recreational activity associated with the CRP in six rural areas of North Dakota from 1996 to 2000. Based on the level of economic activity that would have occurred in the absence of the program, net revenues from CRP land if returned to agricultural production in the six study areas were estimated at $50.2 million annually or $37 per acre of land currently enrolled in the CRP. Recreational (hunting) revenues as a result of the CRP in the study areas were estimated at $12.8 million annually or $9.45 per CRP-acre. The net economic effect of the CRP (lost agricultural revenues and gains in recreational expenditures) indicated that several areas of the state are not as economically burdened by the CRP as previous research has suggested. In addition, the net economic effects of the program would appear more favourable if revenues from all CRP-based recreation were included. The degree that recreational revenues offset agricultural losses might be further enhanced by enterprises that capitalize on the economic opportunities associated with expanded recreational activities on CRP lands.

  14. Landuse and agricultural management practice web-service (LAMPS) for agroecosystem modeling and conservation planning

    USDA-ARS?s Scientific Manuscript database

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The USDA Natural Resources Conservation Service is developing a Land Management and Operation Database (LMOD) which contains potential model input, howe...

  15. Water Conservation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  16. Soil carbon and soil respiration in conservation agriculture with vegetables in Siem Reap, Cambodia

    USDA-ARS?s Scientific Manuscript database

    A balance between food production and environmental protection is required to sustainably feed a growing population. The resource saving concept of conservation agriculture aims to achieve this balance through implementing simultaneously three conservation practices; no-till, continuous soil cover, ...

  17. Clean Water State Revolving Fund (CWSRF): Water Conservation

    EPA Pesticide Factsheets

    The CWSRF can provide financial assistance for water conservation projects that reduce the demand for POTW capacity through reduced water consumption (i.e., water efficiency), as well as water reuse and precipitation harvesting.

  18. Laggards or Leaders: Conservers of Traditional Agricultural Knowledge in Bolivia

    ERIC Educational Resources Information Center

    Gilles, Jere L.; Thomas, Justin L.; Valdivia, Corinne; Yucra, Edwin S.

    2013-01-01

    Many sustainable agricultural practices are based on local and traditional farming knowledge. This article examines the conservation and loss of three traditional practices in the Bolivian Altiplano that agronomic research has shown increase the resiliency of small farmers in the face of climate-related risks. These practices are the use of…

  19. Research Capacity for Local Innovation: The Case of Conservation Agriculture in Ethiopia, Malawi and Mozambique

    ERIC Educational Resources Information Center

    Brown, Brendan; Nuberg, Ian; Llewellyn, Rick

    2018-01-01

    Purpose: The limited uptake of improved agricultural practices in Africa raise questions on the functionality of current agricultural research systems. Our purpose is to explore the capacity for local innovation within the research systems of Ethiopia, Malawi and Mozambique. Design/Methodology/Approach: Using Conservation Agriculture (CA) as a…

  20. Analyzing ecological restoration strategies for water and soil conservation

    PubMed Central

    Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; da Rocha, Humberto Ribeiro

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration. PMID:29425214

  1. Analyzing ecological restoration strategies for water and soil conservation.

    PubMed

    Saad, Sandra Isay; Mota da Silva, Jonathan; Silva, Marx Leandro Naves; Guimarães, João Luis Bittencourt; Sousa Júnior, Wilson Cabral; Figueiredo, Ricardo de Oliveira; Rocha, Humberto Ribeiro da

    2018-01-01

    The choice of areas for nature conservation involves the attempt to maximize the benefits, whether by carrying out an economic activity or by the provision of Ecosystem Services. Studies are needed to improve the understanding of the effect of the extent and position along the watershed of restored areas on soil and water conservation. This study aimed to understand how different restoration strategies might reflect in soil conservation and sediment retention. Using InVEST tool, sediment transport was simulated in a small 12 km2 watershed (Posses River, in Southeast Brazil), where one of first Brazilian Payment for Ecosystem Services (PES) projects is being carried out, comparing different hypothetical restoration strategies. With 25% of restoration, sediment export decreased by 78% for riparian restoration, and 27% for the steepest slopes restoration. On the other hand, the decrease in soil loss was lower for riparian restoration, with a 16% decrease, while the steepest slopes restoration reduced it by 21%. This mismatch between the reduction of sediment export and soil loss was explained by the fact that forest not only reduces soil loss locally but also traps sediment arriving from the upper parts of the watershed. While the first mechanism is important to provide soil stability, decreasing the risk of landslip, and to maintain agricultural productivity, the second can improve water quality and decrease the risk of silting, with positive effects on the water reservoirs at the outlet of the watershed. This suggests that Riparian and the Steepest Slopes restoration strategies are complementary in the sense of preventing sediments from reaching the water bodies as well as protecting them at their origin (with the reduction of erosion), so it will be advisable to consider the two types of restoration.

  2. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  3. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  4. Clean Water Act Section 404 and Agriculture

    EPA Pesticide Factsheets

    The U.S. Department of Agriculture (USDA) and EPA have longstanding programs to promote water quality and broader environmental goals identified in both the Agriculture Act of 2014 and the Clean Water Act.

  5. 18 CFR 806.25 - Water conservation standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sources, or both, shall comply with the following requirements: (a) Public water supply. As circumstances warrant, a project sponsor of a public water supply shall: (1) Reduce distribution system losses to a... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water conservation...

  6. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... leak detection and control program; (2) Use of the best practicable water-conserving devices and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

  7. Consequences of Not Conserving Water

    NASA Astrophysics Data System (ADS)

    Narayanan, M.; Crawford, L.

    2015-12-01

    The problem of fresh water is not only local, but also global. In certain parts of the world, much needed rain is becoming less frequent, possibly due to the effects of global warming. The resources of clean fresh water on earth are very limited and are reducing every year due to pollution like industrial waste, oil spills, untreated sewage, inefficient irrigation systems, waste and leakage, etc. This is destroying the ecosystem of the entire planet. Of course, in some parts of world there is rain almost throughout the year. Regardless, major problems are still prevalent because of a variety of reasons such as drainage, storage, evaporation, cleanliness, etc. It is all too well known that evapotranspiration contributes to a significant water loss from drainage basins. Most of the citizens of this world are still careless about water usage and are unappreciative of the need for water conservation. This is a very unpleasant fact and needs to change. Cost expenditures for the development of infrastructure to supply water to households and industries are becoming prohibitively expensive. Many parts in this world have extremely dry terrain and rainfall is not as frequent as it should be. As a result, the underground water tables are not replenished properly, thereby turning regions to arid land and deserts. Unless effective irrigation methods are used, potential evapotranspiration may be actually greater than precipitation provided by nature. The soil therefore dries out creating an arid landmass. The earth and its inhabitants can sustain only if creative methods of clean water conservation ideas are effectively implemented. (Co-author: Dr. Mysore Narayanan) References: http://www.epa.gov/oaintrnt/water/http://www.usda.gov/wps/portal/usda/usdahome?navid=conservationhttp://www.ecy.wa.gov/programs/wr/ws/wtrcnsv.htmlhttp://www.sandiego.gov/water/conservation/http://www.swcs.org/http://www.awwa.org/resources-tools/water-knowledge/water-conservation.aspxhttp://www.benefits-of-recycling.com/waterconservationmethods/

  8. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  9. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  10. Summary of the Georgia Agricultural Water Conservation and Metering Program and evaluation of methods used to collect and analyze irrigation data in the middle and lower Chattahoochee and Flint River basins, 2004-2010

    USGS Publications Warehouse

    Torak, Lynn J.; Painter, Jaime A.

    2011-01-01

    Since receiving jurisdiction from the State Legislature in June 2003 to implement the Georgia Agricultural Water Conservation and Metering Program, the Georgia Soil and Water Conservation Commission (Commission) by year-end 2010 installed more than 10,000 annually read water meters and nearly 200 daily reporting, satellite-transmitted, telemetry sites on irrigation systems located primarily in southern Georgia. More than 3,000 annually reported meters and 50 telemetry sites were installed during 2010 alone. The Commission monitored rates and volumes of agricultural irrigation supplied by groundwater, surface-water, and well-to-pond sources to inform water managers on the patterns and amounts of such water use and to determine effective and efficient resource utilization. Summary analyses of 4 complete years of irrigation data collected from annually read water meters in the middle and lower Chattahoochee and Flint River basins during 2007-2010 indicated that groundwater-supplied fields received slightly more irrigation depth per acre than surface-water-supplied fields. Year 2007 yielded the largest disparity between irrigation depth supplied by groundwater and surface-water sources as farmers responded to severe-to-exceptional drought conditions with increased irrigation. Groundwater sources (wells and well-to-pond systems) outnumbered surface-water sources by a factor of five; each groundwater source applied a third more irrigation volume than surface water; and, total irrigation volume from groundwater exceeded that of surface water by a factor of 6.7. Metered irrigation volume indicated a pattern of low-to-high water use from northwest to southeast that could point to relations between agricultural water use, water-resource potential and availability, soil type, and crop patterns. Normalizing metered irrigation-volume data by factoring out irrigated acres allowed irrigation water use to be expressed as an irrigation depth and nearly eliminated the disparity

  11. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  12. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    NASA Astrophysics Data System (ADS)

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  13. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916-2009

    USGS Publications Warehouse

    Jones, C.S.; Schilling, K.E.

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  14. Water Conservation with Water Saving Devices, Proceedings of a Conference. Extension Bulletin 421.

    ERIC Educational Resources Information Center

    Shelton, Theodore B., Ed.

    Presented are six papers on water conservation which were presented at a conference in New Jersey. The first two papers present recommendations of the New Jersey Department of Environmental Protection on water conservation and a master plan for New Jersey's water supply needs. The following four papers discuss water conservation with water-saving…

  15. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  16. Understanding Predictors of Nutrient Management Practice Diversity in Midwestern Agriculture

    ERIC Educational Resources Information Center

    Bates, Hanna; Arbuckle, J. Gordon, Jr.

    2017-01-01

    Agriculture's negative effect on water quality has become increasingly well documented. Farmers have a range of conservation practices available, yet rate of adoption is not optimal. Extension and other agricultural stakeholders play a key role in promotion of conservation practice adoption. We used survey data to examine relationships between…

  17. Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions

    NASA Astrophysics Data System (ADS)

    Sanfiorenzo, A. R.; Waits, L.; Finegan, B.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Hormel, L.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Sibelet, N.

    2016-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non-traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we examine the coupled social and ecological implications of agricultural intensification Guided by frameworks from political economy, landscape ecology and landscape genetics we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology and genetics analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which increase the genetic structure and reduce the genetic diversity of Symphonia globulifera a forest understory tree species. To offset the effects of agricultural intensification on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  18. Impact of land reclamation and agricultural water regime on the distribution and conservation status of the endangered Dryophytes suweonensis

    PubMed Central

    Kim, Kyungmin; Heo, Kyongman

    2017-01-01

    Knowledge about the distribution and habitat preferences of a species is critical for its conservation. The Suweon Treefrog (Dryophytes suweonensis) is an endangered species endemic to the Republic of Korea. We conducted surveys from 2014 to 2016 at 890 potentially suitable sites across the entire range of the species in South Korea. We then assessed whether D. suweonensis was found in the current and ancestral predicted ranges, reclaimed and protected areas, and how the presence of agricultural floodwater affected its occurrence. Our results describe a 120 km increase in the southernmost known distribution of the species, and the absence of the species at lower latitudes. We then demonstrate a putative constriction on the species ancestral range due to urban encroachment, and provide evidence for a significant increase in its coastal range due to the colonisation of reclaimed land by the species. In addition, we demonstrate that D. suweonensis is present in rice fields that are flooded with water originating from rivers as opposed to being present in rice fields that are irrigated from underground water. Finally, the non-overlap of protected areas and the occurrence of the species shows that only the edge of a single site where D. suweonensis occurs is legally protected. Based on our results and the literature, we suggest the design of a site fitting all the ecological requirements of the species, and suggest the use of such sites to prevent further erosion in the range of D. suweonensis. PMID:29018610

  19. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    PubMed

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... activities anticipated to be addressed and conservation practices to be implemented; 4. The responsibilities... producers to implement approved conservation practices. Producers interested in applying must meet the... producers to implement agreed-to conservation practices in program contracts may not be considered any part...

  1. Trading Water Conservation Credits: A Coordinative Approach for Enhanced Urban Water Reliability

    NASA Astrophysics Data System (ADS)

    Gonzales, P.; Ajami, N. K.

    2016-12-01

    Water utilities in arid and semi-arid regions are increasingly relying on water use efficiency and conservation to extend the availability of supplies. Despite spatial and institutional inter-dependency of many service providers, these demand-side management initiatives have traditionally been tackled by individual utilities operating in a silo. In this study, we introduce a new approach to water conservation that addresses regional synergies—a novel system of tradable water conservation credits. Under the proposed approach, utilities have the flexibility to invest in water conservation measures that are appropriate for their specific service area. When utilities have insufficient capacity for local cost-effective measures, they may opt to purchase credits, contributing to fund subsidies for utilities that do have that capacity and can provide the credits, while the region as whole benefits from more reliable water supplies. While similar programs have been used to address water quality concerns, to our knowledge this is one of the first studies proposing tradable credits for incentivizing water conservation. Through mathematical optimization, this study estimates the potential benefits of a trading program and demonstrates the institutional and economic characteristics needed for such a policy to be viable, including a proposed web platform to facilitate transparent regional planning, data-driven decision-making, and enhanced coordination of utilities. We explore the impacts of defining conservation targets tailored to local realities of utilities, setting credit prices, and different policy configurations. We apply these models to the case study of water utility members of the Bay Area Water Supply and Conservation Agency. Preliminary work shows that the diverse characteristics of these utilities present opportunities for the region to achieve conservation goals while maximizing the benefits to individual utilities through more flexible coordinative efforts.

  2. Secondary Agricultural Education Teachers as Agents of Change in Oklahoma and the Adoption of Precision Agriculture

    ERIC Educational Resources Information Center

    Nickeson, Beth

    2013-01-01

    Research indicates that precision agricultural education (PAE) in Oklahoma affects environmental quality, water conservation, and crop yields. The purpose of this mixed methods study was to explore the nature and perceived effectiveness of PAE in Oklahoma secondary agricultural education classes. The study was framed by the diffusion of…

  3. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  4. The Evaluation of Water Conservation for Municipal and Industrial Water Supply: Illustrative Examples. Water Conservation and Supply Information Transfer and Analysis Program. Revision.

    DTIC Science & Technology

    1981-02-01

    108 NED Project Plan........................................ 108 EQ Project Plan ......................................... 115 Performance of Water...Conservation Proposal: ED Objective ............. 115 50. Atlanta ED Water Conservation Proposal: EQasObjective............. 115 52. Atlanta EQ Water... differential inflation of energy prices, this would provide an annualized energy-related advantageous effect of $655,000/year. Measure A2--Moderate Kit

  5. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability

    PubMed Central

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K.

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer’s net economic benefit. This research assessed the effects over 3 years (2011–2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize–cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs. PMID:27471508

  6. Conservation Agriculture Practices in Rainfed Uplands of India Improve Maize-Based System Productivity and Profitability.

    PubMed

    Pradhan, Aliza; Idol, Travis; Roul, Pravat K

    2016-01-01

    Traditional agriculture in rainfed uplands of India has been experiencing low agricultural productivity as the lands suffer from poor soil fertility, susceptibility to water erosion and other external pressures of development and climate change. A shift toward more sustainable cropping systems such as conservation agriculture production systems (CAPSs) may help in maintaining soil quality as well as improving crop production and farmer's net economic benefit. This research assessed the effects over 3 years (2011-2014) of reduced tillage, intercropping, and cover cropping practices customized for maize-based production systems in upland areas of Odisha, India. The study focused on crop yield, system productivity and profitability through maize equivalent yield and dominance analysis. Results showed that maize grain yield did not differ significantly over time or among CAPS treatments while cowpea yield was considered as an additional yield in intercropping systems. Mustard and horsegram grown in plots after maize cowpea intercropping recorded higher grain yields of 25 and 37%, respectively, as compared to those without intercropping. Overall, the full CAPS implementation, i.e., minimum tillage, maize-cowpea intercropping and mustard residue retention had significantly higher system productivity and net benefits than traditional farmer practices, i.e., conventional tillage, sole maize cropping, and no mustard residue retention. The dominance analysis demonstrated increasing benefits of combining conservation practices that exceeded thresholds for farmer adoption. Given the use of familiar crops and technologies and the magnitude of yield and income improvements, these types of CAPS should be acceptable and attractive for smallholder farmers in the area. This in turn should support a move toward sustainable intensification of crop production to meet future household income and nutritional needs.

  7. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture.

    PubMed

    Milder, Jeffrey C; Arbuthnot, Margaret; Blackman, Allen; Brooks, Sharon E; Giovannucci, Daniele; Gross, Lee; Kennedy, Elizabeth T; Komives, Kristin; Lambin, Eric F; Lee, Audrey; Meyer, Daniel; Newton, Peter; Phalan, Ben; Schroth, Götz; Semroc, Bambi; Van Rikxoort, Henk; Zrust, Michal

    2015-04-01

    Sustainability standards and certification serve to differentiate and provide market recognition to goods produced in accordance with social and environmental good practices, typically including practices to protect biodiversity. Such standards have seen rapid growth, including in tropical agricultural commodities such as cocoa, coffee, palm oil, soybeans, and tea. Given the role of sustainability standards in influencing land use in hotspots of biodiversity, deforestation, and agricultural intensification, much could be gained from efforts to evaluate and increase the conservation payoff of these schemes. To this end, we devised a systematic approach for monitoring and evaluating the conservation impacts of agricultural sustainability standards and for using the resulting evidence to improve the effectiveness of such standards over time. The approach is oriented around a set of hypotheses and corresponding research questions about how sustainability standards are predicted to deliver conservation benefits. These questions are addressed through data from multiple sources, including basic common information from certification audits; field monitoring of environmental outcomes at a sample of certified sites; and rigorous impact assessment research based on experimental or quasi-experimental methods. Integration of these sources can generate time-series data that are comparable across sites and regions and provide detailed portraits of the effects of sustainability standards. To implement this approach, we propose new collaborations between the conservation research community and the sustainability standards community to develop common indicators and monitoring protocols, foster data sharing and synthesis, and link research and practice more effectively. As the role of sustainability standards in tropical land-use governance continues to evolve, robust evidence on the factors contributing to effectiveness can help to ensure that such standards are designed and

  8. AGRICULTURAL CONSERVATION: State Advisory Committees’ Views on How USDA Programs Could Better Address Environmental Concerns

    DTIC Science & Technology

    2002-02-01

    zones, would achieve substantial environmental benefits.3 More recently, a September 2001 USDA report on developing future agricultural policy stated...Food and Agricultural Policy : Taking Stock for the New Century (September 2001). Page 13 GAO-02-295 Agricultural Conservation Recognizing the...Belt and three other states. Enrollment in many other states is very low. Furthermore, USDA’s September 2001 agricultural policy report also notes that

  9. Sustainability of agricultural water use worldwide

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Dalin, C.

    2017-12-01

    Water is a renewable but limited resource. Most human use of freshwater resources is for agriculture, and global water demand for agriculture is increasing because of the growth in food demand, driven by increasing population and changing diets. Hence, measuring the pressure exerted by agriculture on freshwater sources is a key issue. The sustainability of water use depends on the water source renewability rate: the water use is not sustainable (depleting the water storage) where/when it exceeds the renewable freshwater availability. In this study, we explore the sustainability of rain and irrigation water use for the production of nine major crops, globally at a 5'x5' spatial resolution. We split the crop water use into soil moisture (from rainfall) and irrigation, with, for the first time, separating ground- and surface-water sources, which is a key distinction because the renewability of these two water sources can be very different. In order to physically quantify the extent to which crop water use is sustainable, we measure the severity of the source depletion as the number of years required for the hydrological cycle to replenish the water resource used by the annual crop production, namely the Water Debt. This newly developed indicator allows one to compare the depletion level of the three water sources at a certain location for a specific crop. Hence, we mapped, for each crop, the number of years required to replenish the water withdrawn from soil-, surface- and ground-water resources. Each map identifies the hotspots for each water source, highlighting regions and crops that threaten most the water resource. We found that the water debt with soil moisture is heterogeneous in space but always lower than one year indicating a non-surprising sustainability of rain-fed agriculture. Rice and sugarcane make the largest contribution to global soil moisture depletion. Water debt in surface water is particularly high in areas of intense wheat and cotton production

  10. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation standards...

  11. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation standards...

  12. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation standards...

  13. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation standards...

  14. 10 CFR 430.34 - Energy and water conservation standards amendments

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy and water conservation standards amendments 430.34 Section 430.34 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Energy and Water Conservation Standards § 430.34 Energy and water conservation standards...

  15. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  16. Modelling analysis of water and land effects on agricultural development in the Heihe Agricultural Production Area, China

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2017-12-01

    Water and land resources play vital roles in agricultural growth. They not only remarkably support overall economic growth, but may also restrict agricultural development. To document the influence of water and land on agriculture, we examined the "drag effects" of these two resources in limiting agricultural production. In this study, data from eight counties collected during 2000-2012 from the Heihe Agricultural Production Area in Gansu Province were used to analyze the drag effects of water and land resources on agricultural growth. These effects varied largely among the eight counties, which was consistent with the availability of these resources. This study will give scientific support to coordinating development with the availability of water and land resources in agricultural areas of China

  17. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  18. A small-scale land-sparing approach to conserving biological diversity in tropical agricultural landscapes.

    PubMed

    Chandler, Richard B; King, David I; Raudales, Raul; Trubey, Richard; Chandler, Carlin; Chávez, Víctor Julio Arce

    2013-08-01

    Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns. © 2013 Society for Conservation Biology.

  19. Which Advisory System to Support Innovation in Conservation Agriculture? The Case of Madagascar's Lake Alaotra

    ERIC Educational Resources Information Center

    Faure, Guy; Penot, Eric; Rakotondravelo, Jean Chrysostome; Ramahatoraka, Haja Andrisoa; Dugue, Patrick; Toillier, Aurelie

    2013-01-01

    Purpose: To promote sustainable agriculture, various development projects are encouraging farmers around Madagascar's Lake Alaotra to adopt conservation agriculture techniques. This article's objective is to analyze the capacity of a project-funded advisory system to accompany such an innovation and to design and implement an advisory method aimed…

  20. Water demand management in times of drought: What matters for water conservation

    NASA Astrophysics Data System (ADS)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  1. Declining agricultural production in rapidly urbanizing semi-arid regions: policy tradeoffs and sustainability indicators

    NASA Astrophysics Data System (ADS)

    Dozier, André Q.; Arabi, Mazdak; Wostoupal, Benjamin C.; Goemans, Christopher G.; Zhang, Yao; Paustian, Keith

    2017-08-01

    In rapidly urbanizing semi-arid regions, increasing amounts of historically irrigated cropland lies permanently fallowed due to water court policies as agricultural water rights are voluntarily being sold to growing cities. This study develops an integrative framework for assessing the effects of population growth and land use change on agricultural production and evaluating viability of alternative management strategies, including alternative agricultural transfer methods, regional water ownership restrictions, and urban conservation. A partial equilibrium model of a spatially-diverse regional water rights market is built in application of the framework to an exemplary basin. The model represents agricultural producers as profit-maximizing suppliers and municipalities as cost-minimizing consumers of water rights. Results indicate that selling an agricultural water right today is worth up to two times more than 40 years of continued production. All alternative policies that sustain agricultural cropland and crop production decrease total agricultural profitability by diminishing water rights sales revenue, but in doing so, they also decrease municipal water acquisition costs. Defining good indicators and incorporating adequate spatial and temporal detail are critical to properly analyzing policy impacts. To best improve agricultural profit from production and sale of crops, short-term solutions include alternative agricultural transfer methods while long-term solutions incorporate urban conservation.

  2. Pesticide use and biodiversity conservation in the Amazonian agricultural frontier.

    PubMed

    Schiesari, Luis; Waichman, Andrea; Brock, Theo; Adams, Cristina; Grillitsch, Britta

    2013-06-05

    Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practices, including pesticide use. Focusing on the Amazonian frontier, we show that producers have varying access to resources, knowledge, control and reward mechanisms to improve land management practices. With poor education and no technical support, pesticide use by smallholders sharply deviated from agronomical recommendations, tending to overutilization of hazardous compounds. By contrast, with higher levels of technical expertise and resources, and aiming at more restrictive markets, large-scale producers adhered more closely to technical recommendations and even voluntarily replaced more hazardous compounds. However, the ecological footprint increased significantly over time because of increased dosage or because formulations that are less toxic to humans may be more toxic to other biodiversity. Frontier regions appear to be unique in terms of the conflicts between production and conservation, and the necessary pesticide risk management and risk reduction can only be achieved through responsibility-sharing by diverse stakeholders, including governmental and intergovernmental organizations, NGOs, financial institutions, pesticide and agricultural industries, producers, academia and consumers.

  3. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia.

    PubMed

    Sparrevik, Magnus; Field, John L; Martinsen, Vegard; Breedveld, Gijs D; Cornelissen, Gerard

    2013-02-05

    Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.

  4. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the...

  5. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm 3 , of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm 3 during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hydrology and Conservation Ecology

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  7. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (p<0.05) runoff coefficients averaged over 8 years were 14, 20 and 27% for DER+, TER+ and CT, respectively. Mean soil losses were 4 t ha-1 y-1 in DER+, 13 in TER+ and 18 in CT. Soil water storage during the growing season was constantly higher in CA-based systems compared with CT. A period of at least three years of cropping was required before

  8. Impact of the agricultural research service watershed assessment studies on the conservation effects assessment project cropland national assessment

    USDA-ARS?s Scientific Manuscript database

    USDA initiated the Conservation Effects Assessment Project (CEAP) in 2002 to analyze societal and environmental benefits gained from the increased conservation program funding provided in the 2002 Farm Bill. The Natural Resources Conservation Service (NRCS), Agricultural Research Service (ARS), and...

  9. Nitrogen in agricultural systems: Implications for conservation policy

    USDA-ARS?s Scientific Manuscript database

    Nitrogen is an important agricultural input that is critical for providing food to feed a growing world population. However, the introduction of large amount of reactive nitrogen into the environment has a number of undesirable impacts on water, terrestrial, and atmospheric resources. Careful manage...

  10. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont–Coastal Plain region

    Treesearch

    Diane De Steven; Richard Lowrance

    2011-01-01

    In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...

  11. Soil, water and nutrient conservation in mountain farming systems: case-study from the Sikkim Himalaya.

    PubMed

    Sharma, E; Rai, S C; Sharma, R

    2001-02-01

    The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.

  12. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  13. The Effects of Water Conservation Instruction on Seventh-Grade Students.

    ERIC Educational Resources Information Center

    Birch, Sandra K.; Schwaab, Karl E.

    1983-01-01

    Examined effectiveness of water conservation instructional unit in increasing students' (N=843) knowledge of water conservation practices and influencing their attitudes about efficient water use. Also examined assertion that school education programs are effective in promoting water conservation. Overall results indicate the unit was effective on…

  14. Value of irrigation water usage in South Florida agriculture.

    PubMed

    Takatsuka, Yuki; Niekus, Martijn R; Harrington, Julie; Feng, Shuang; Watkins, David; Mirchi, Ali; Nguyen, Huong; Sukop, Michael C

    2018-06-01

    This study estimates economic loss from South Florida croplands when usage of agricultural irrigation water is altered. In South Florida, 78% of the total value of farm products sold is comprised of cropland products. The majority of Florida citrus and sugarcane are produced in the area, and agricultural irrigation was the largest sector of water use in 2010, followed by public water supply. The Florida Department of Environmental Protection announced in December 2012 that traditional sources of fresh groundwater will have difficulty meeting all of the additional demands by 2030. A shortage of water will impose significant damage to the rural and agriculture economy in Florida, which may lead to higher prices and costs for consumers to purchase citrus or other Florida agriculture products. This paper presents a methodology for estimating economic loss when usage of irrigation water is altered, and examines economic values of irrigation water use for South Florida cropland. The efficient allocation of irrigation water across South Florida cropland is also investigated in order to reduce economic cost to the South Florida agricultural sector. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia

    USDA-ARS?s Scientific Manuscript database

    Intensive tillage in many less-developed countries, including Cambodia have caused significant decline in agriculture’s natural resources and sustainability. With limited available data, long-term conventional tillage system (CT) and conservation agriculture system (CA) can affect changes in soil pr...

  16. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    NASA Astrophysics Data System (ADS)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  17. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    NASA Astrophysics Data System (ADS)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  18. Water dynamics and nitrogen balance under different agricultural management practices in the low-lying plain of north-east Italy

    NASA Astrophysics Data System (ADS)

    Camarotto, Carlo; Dal Ferro, Nicola; Piccoli, Ilaria; Polese, Riccardo; Furlan, Lorenzo; Chiarini, Francesca; Berti, Antonio; Morari, Francesco

    2017-04-01

    In the last decades the adoption of sustainable land management practices (e.g. conservation agriculture, use of cover crops) has been largely subsidized by the EU policy in an attempt to combine competitive agricultural production with environmental protection, e.g. reduce nitrogen losses and optimize water management. However, the real environmental benefits of these practices is still questioned since strongly dependent on local pedo-climatic variability. This study aimed to evaluate water and nitrogen balances in sustainable land management systems including conservation agriculture (CA) practices or use of cover crops (CC). The experimental fields, established in 2010, are localized in the low-lying plain of the Veneto Region (NE Italy), characterized by a shallow water table and identified as Nitrate Vulnerable Zone. In March 2016, a total of nine soil-water monitoring stations have been installed in CA, CC and conventional fields. The stations (three per each field) were set up with multi-sensors probes (10 cm, 30 cm and 60 cm depth) for the continuous monitoring of soil electrical conductivity (EC, dS m-1), soil temperature (T, °C) and volumetric water content (WC, m3 m-3). A wireless system in ISM band has been designed to connect the soil-water monitoring stations to a unique access point, where the data were sent to a cloud platform via GSM. Water samples at each station were collected every two weeks using a suction cups (installed at 60 cm depth) and a phreatic wells, which were also used to record the water table level. Climatic data, collected from a weather station located in the experimental field, were combined with soil-water data to estimate water and nitrogen fluxes in the root zone. During the first year, relevant differences in water and nitrogen dynamics were observed between the treatments. It can be hypothesized that the combined effect of undisturbed soil conditions and continuous soil cover were major factors to affect water

  19. Estimating the effects of agricultural conservation practices on phosphorus loads in the Mississippi-Atchafalaya River basin

    USDA-ARS?s Scientific Manuscript database

    Agriculture in the Mississippi-Atchafalaya River basin (MARB) is important in terms of both the national economy and the nutrients discharged to the basin and the Gulf of Mexico. Conservation practices are installed on cropland to reduce the nutrient losses. A recent study by the Conservation Effec...

  20. Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation.

    PubMed

    Egli, Lukas; Meyer, Carsten; Scherber, Christoph; Kreft, Holger; Tscharntke, Teja

    2018-05-01

    Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land-cover and land-use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land-use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land-use planning, implying huge efficiency gains through international cooperation. However, global-scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct "winners and losers" in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land-use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land-use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land-use conflicts, may offer an effective, yet

  1. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  2. 7 CFR 612.6 - Application for water supply forecast service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Application for water supply forecast service. 612.6... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS SNOW SURVEYS AND WATER SUPPLY FORECASTS § 612.6 Application for water supply forecast service. Requests for obtaining water supply forecasts or...

  3. Pesticide use and biodiversity conservation in the Amazonian agricultural frontier

    PubMed Central

    Schiesari, Luis; Waichman, Andrea; Brock, Theo; Adams, Cristina; Grillitsch, Britta

    2013-01-01

    Agricultural frontiers are dynamic environments characterized by the conversion of native habitats to agriculture. Because they are currently concentrated in diverse tropical habitats, agricultural frontiers are areas where the largest number of species is exposed to hazardous land management practices, including pesticide use. Focusing on the Amazonian frontier, we show that producers have varying access to resources, knowledge, control and reward mechanisms to improve land management practices. With poor education and no technical support, pesticide use by smallholders sharply deviated from agronomical recommendations, tending to overutilization of hazardous compounds. By contrast, with higher levels of technical expertise and resources, and aiming at more restrictive markets, large-scale producers adhered more closely to technical recommendations and even voluntarily replaced more hazardous compounds. However, the ecological footprint increased significantly over time because of increased dosage or because formulations that are less toxic to humans may be more toxic to other biodiversity. Frontier regions appear to be unique in terms of the conflicts between production and conservation, and the necessary pesticide risk management and risk reduction can only be achieved through responsibility-sharing by diverse stakeholders, including governmental and intergovernmental organizations, NGOs, financial institutions, pesticide and agricultural industries, producers, academia and consumers. PMID:23610177

  4. Participatory conservation approaches for satoyama, the traditional forest and agricultural landscape of Japan.

    PubMed

    Kobori, Hiromi; Primack, Richard B

    2003-06-01

    The traditional agricultural landscape of Japan, known as satoyama, consists of a mixture of forests, wet rice paddy fields, grasslands, and villages. This landscape supports a great diversity of plant and animal species, many of which are significant to the Japanese culture. The satoyama landscape is currently being rapidly converted to residential and industrial uses in Japan's expanding metropolitan areas, with the local loss of many species. Only 7% of the land in the Yokohama area remains as satoyama. City residents and older farmers have become key participants in programs to protect examples of satoyama. Many urban residents value the experience of participating in agricultural and conservation activities once they are made aware of the threat faced by the satoyama landscape. In one particularly successful program, conservation efforts and fund-raising are linked to "Totoro", an imaginary forest animal featured in a popular animated film.

  5. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  6. Coupled social and ecological outcomes of land use change and agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions.

    NASA Astrophysics Data System (ADS)

    Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.

    2017-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  7. Coupled social and ecological outcomes of land use change and agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions.

    NASA Astrophysics Data System (ADS)

    Sanfiorenzo, A. R.; Shaver, I.; Chain Guadarrama, A.; Cleary, K.; Santiago-Garcia, R.; Finegan, B.; Hormel, L.; Sibelet, N.; Vierling, L. A.; Bosque-Perez, N.; DeClerck, F.; Fagan, M. E.; Waits, L.

    2016-12-01

    Tropical ecosystem conversion to agriculture has caused widespread habitat loss and created fragmented landscapes composed of remnant forest patches embedded in a matrix of agricultural land uses. Non- traditional agricultural export (NTAE) crops such as pineapple are rapidly replacing multiuse landscapes characterized by a diverse matrix of pasture and smallholder crops with intensive, large-scale, monoculture plantations. Using an interdisciplinary approach, we conduct a case study to examine the coupled social and ecological implications of LUCC and agricultural intensification in this region, with larger application to regions experiencing similar patterns. Guided by frameworks from both political and landscape ecology, we: (1) describe the social and economic implications of pineapple expansion, specifically the concentration of land, labor and financial resources, (2) quantify pineapple cultivation's spatial characteristics, and (3) assess the effects of pineapple expansion on surrounding forest ecosystems, on the agricultural matrix and on biodiversity conservation. Our results indicate that pineapple production concentrates land, labor, and financial resources, which has a homogenizing effect on the agricultural economy in the study region. This constrains farm-based livelihoods, with larger implications for food security and agricultural diversity. Landscape ecology analyses further reveal how pineapple production simplifies and homogenizes the agricultural matrix between forest patches, which is likely to have a negative effect on biodiversity. To offset the effects of pineapple expansion on social and environmental systems, we recommend developing landscape level land use planning capacity. Furthermore, agricultural and conservation policy reform is needed to promote landscape heterogeneity and economic diversity within the agricultural sector. Our interdisciplinary research provides a detailed examination of the social and ecological impacts of

  8. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  9. Arizona Conserve Water Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2007

    2007-01-01

    This award-winning, 350-page, full-color book provides a thorough study of Arizona water resources from a water conservation perspective. Its background section contains maps, graphs, diagrams and photos that facilitate the teaching of 15 interactive, multi-disciplinary lessons to K-12 students. In addition, 10 Arizona case studies are highlighted…

  10. Slow reaction of soil structure to conservation agriculture practices in Veneto silty soils (North-Easter Italy)

    NASA Astrophysics Data System (ADS)

    Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco

    2017-04-01

    Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.

  11. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  12. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    NASA Astrophysics Data System (ADS)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  13. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    PubMed

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10 10 and 1.22 × 10 10  Gm 3  yr -1 , respectively, which results in positive virtual water balance of 4.05 × 10 10  Gm 3  yr -1 . Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10 10  Gm 3  yr -1 . The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation.

    PubMed

    Silva-Andrade, Horasa Lima; de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers' perceptions of birds' interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers' knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas.

  15. Do Farmers Using Conventional and Non-Conventional Systems of Agriculture Have Different Perceptions of the Diversity of Wild Birds? Implications for Conservation

    PubMed Central

    de Andrade, Luciano Pires; Muniz, Lauana Souza; Telino-Júnior, Wallace Rodrigues; Albuquerque, Ulysses Paulino; Lyra-Neves, Rachel Maria

    2016-01-01

    Farmers’ perceptions of birds’ interactions with agricultural production systems are fundamental to species conservation efforts. In the present study, we evaluated the perceptions of birds held by farmers who engage in conventional and non-conventional agricultural production processes and the implications of potential differences in these perceptions on species conservation. To accomplish this, data were collected using questionnaires, semi-structured interviews, and other complementary sources of information gathered from 191 farmers in northeastern Brazil. Although some similarities were identified among the farmers in their perceptions and local ecological knowledge (LEK) of birds, differences existed between the conventional and non-conventional farmers in their attitudes toward, conflicts with, and usage of bird species. Compared to the conventional farmers, the non-conventional farmers could identify more bird species, possessed more favorable attitudes toward birds, and engaged in practices more beneficial to the conservation of avifauna. The perceptions that were identified were related to the type of agriculture practiced, and such perceptions may affect the conservation of bird species. Therefore, the adoption of certain agricultural practices has important implications for conservation. Our results indicate the need for investment in public policies, programs and actions that account for farmers’ knowledge and perceptions. Such investments will contribute to the development and adoption of practices supporting wild bird conservation in agricultural areas. PMID:27243222

  16. Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms

    NASA Astrophysics Data System (ADS)

    Malekian, Atefe; Hayati, Dariush; Aarts, Noelle

    2017-01-01

    Conceptions of agricultural water security are conditioned by larger understandings of being and reality. It is still unclear what such understandings mean for perspectives on water security in general and on causes and solutions related to perceived water security risks and problems in agricultural sector in particular. Based on a systematic literature review, three conceptualizations of water security, related to different paradigms, are presented. Also the consequences of such conceptualizations for determining research objectives, research activities, and research outcomes on agricultural water security are discussed. The results showed that agricultural water security from a positivist paradigm referred to tangible and measurable water-related hazards and threats, such as floods and droughts, pollution, and so forth. A constructivist approach to agricultural water security, constituted by a process of interaction and negotiation, pointed at perceptions of water security of farmers and other stakeholders involved in agricultural sector. A critical approach to agricultural water security focused on the processes of securing vulnerable farmers and others from wider political, social, and natural impediments to sufficient water supplies. The conclusions of the study suggest that paradigms, underlying approaches should be expressed, clarified, and related to one another in order to find optimal and complementary ways to study water security issues in agricultural sector.

  17. Use of deuterated water as a conservative artificial ground water tracer

    USGS Publications Warehouse

    Becker, M.W.; Coplen, T.B.

    2001-01-01

    Conservative tracers are necessary to obtain groundwater transport velocities at the field scale. Deuterated water is an effective tracer for this purpose due to its similarity to water, chemical stability, non-reactivity, ease of handling and sampling, relatively neutral buoyancy, and reasonable price. Reliable detection limits of 0.1 mg deuterium/L may be obtained in field tests. A field example is presented in which deuterated water, bromide, and pentafluorobenzoic acid are used as groundwater tracers. Deuterated water appeared to be transported conservatively, producing almost identical breakthrough curves as that of other soluble tracers. ?? Springer-Verlag 2001.

  18. Water Conservation in Schools and Institutions.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Suggests measures for New Jersey schools to take to decrease building water consumption by 25 per cent during the present state water shortage. Appended is a short list of water conservation instructional materials intended to supplement a bibliography published in the February, 1981 issue of this magazine (pp15-16). (SJL)

  19. Navy Water Conservation Guide for Shore Activities.

    DTIC Science & Technology

    1996-07-01

    maintaining the data needed, and completing and reviewing the collection ofinformation . Sendcomments regarding this burden estimate orany otherospectof...Submittal Packages E-1 vi LIST OF FIGURES 1-1 Flowchart Showing the Requirements of Executive Order 12902 for Water Conservation 2 1-2 Roles of DOE, GSA...subsequent year. has its own unique role in imple- menting water conservation. In the An audit can be considered Navy, the Naval Facilities Engineer- current

  20. Assessing the shelf life of cost-efficient conservation plans for species at risk across gradients of agricultural land use.

    PubMed

    Robillard, Cassandra M; Kerr, Jeremy T

    2017-08-01

    High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected-area networks that accomplish targets efficiently. However, land-use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost-efficient conservation plans, we simulated a land-acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land-acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high-priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land-acquisition costs and land-use intensity generally rose over time independent of inflation (24-78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73-13.9%, decreased the range of costs by 19-82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost-effective, even with moderate levels of uncertainty in how to implement restoration goals. © 2016 Society for Conservation Biology.

  1. Implications of changing spatial dynamics of irrigated pasture, California's third largest agricultural water use.

    PubMed

    Shapero, Matthew; Dronova, Iryna; Macaulay, Luke

    2017-12-15

    Irrigated agriculture is practiced on 680 million acres worldwide. Irrigated grazing land is likely a significant portion of that area but estimating an accurate figure has remained problematic. Due to its significant contribution to agricultural water use worldwide, we develop a methodology to remotely sense irrigated pasture using a California case study. Irrigated pasture is the third largest agricultural water use in California, yet its economic returns are low. As pressures mount for the agricultural sector to be more water efficient and for water to be directed towards its most economically valuable uses, there will likely be a reduction in irrigated pasture acreage. A first step in understanding the importance of irrigated pasture in California is establishing a methodology to quantify baseline information about its area, location, and current rate of loss. This study used a novel object-based image analysis and supervised classification on publicly-available, high resolution, remote sensing National Agriculture Imaging Program (NAIP) imagery to develop a highly accurate map of irrigated pasture in a rural county in California's Sierra foothills. Irrigated pasture was found to have decreased by 19% during the ten-year period, 2005-2014, from 4,273 to 3,470 acres. The implications of this loss include potential impacts to wetland-dependent species, groundwater recharge, game species, traditional ranching culture, livestock production, and land conservation. Overall accuracy in classification across years was consistently over 89%. Comparing these results against available measurements of irrigated pasture provided by state and federal agencies reveals that this method significantly improves upon existing metrics and methods of data collection and points to critical needs for new targeted research and monitoring efforts. Broadly, the analysis presented here provides an improved methodology for mapping irrigated pasture that can be extended to provide accurate

  2. Optimal residential water conservation strategies considering related energy in California

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, Alvar; Lund, Jay R.; Pulido-Velazquez, Manuel

    2015-06-01

    Although most freshwater resources are used in agriculture, residential water use is a much more energy intensive user. Based on this, we analyze the increased willingness to adopt water conservation strategies if energy cost is included in the customers' utility function. Using a Water-Energy-CO2 emissions model for household water end uses and probability distribution functions for parameters affecting water and water-related energy use in 10 different locations in California, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills and costs given both water and energy price shocks. Results can provide an upper bound of household savings for customers with well-behaved preferences, and show greater adoption rates to reduce energy intensive appliances when energy is accounted, resulting in an overall 24% reduction in indoor water use that represents a 30% reduction in water-related energy use and a 53% reduction in household water-related CO2 emissions. Previous use patterns and water and energy rate structures can affect greatly the potential benefits for customers and so their behavior. Given that water and energy are somewhat complementary goods for customers, we use results of the optimization to obtain own-price and cross-price elasticities of residential water use by simulating increases in water and energy prices. While the results are highly influenced by assumptions due to lack of empirical data, the method presented has no precedent in the literature and hopefully will stimulate the collection of additional relevant data.

  3. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  4. Soil and water conservation strategies and impact on sustainable livelihood in Cape Verde - Case study of Ribeira Seca watershed

    NASA Astrophysics Data System (ADS)

    Baptista, I.; Ferreira, A. D.; Tavares, J.; Querido, A. L. E.; Reis, A. E. A.; Geissen, V.; Ritsema, C.; Varela, A.

    2012-04-01

    Cape Verde, located off the coast of Senegal in western Africa, is a volcanic archipelago where a combination of human, climatic, geomorphologic and pedologic factors has led to extensive degradation of the soils. Like other Sahelian countries, Cape Verde has suffered the effects of desertification through the years, threatening the livelihood of the islands population and its fragile environment. In fact, the steep slopes in the ore agricultural islands, together with semi-arid and arid environments, characterized by an irregular and poorly distributed rainy season, with high intensity rainfall events, make dryland production a challenge. To survive in these fragile conditions, the stabilization of the farming systems and the maintenance of sustainable yields have become absolute priorities, making the islands an erosion control laboratory. Soil and water conservation strategies have been a centerpiece of the government's agricultural policies for the last half century. Aiming to maintain the soil in place and the water inside the soil, the successive governments of Cape Verde have implemented a number of soil and water conservation techniques, the most common ones being terraces, half moons, live barriers, contour rock walls, contour furrows and microcatchments, check dams and reforestation with drought resistant species. The soil and water conservation techniques implemented have contributed to the improvement of the economical and environmental conditions of the treated landscape, making crop production possible, consequently, improving the livelihood of the people living on the islands. In this paper, we survey the existing soil and water conservation techniques, analyze their impact on the livelihood condition of the population through a thorough literature review and field monitoring using a semi-quantitative methodology and evaluate their effectiveness and impact on crop yield in the Ribeira Seca watershed. A brief discussion is given on the cost and

  5. The Conservation Effects Assessment Project (CEAP): a national scale natural resources and conservation needs assessment and decision support tool

    NASA Astrophysics Data System (ADS)

    Johnson, M.-V. V.; Norfleet, M. L.; Atwood, J. D.; Behrman, K. D.; Kiniry, J. R.; Arnold, J. G.; White, M. J.; Williams, J.

    2015-07-01

    The Conservation Effects Assessment Project (CEAP) was initiated to quantify the impacts of agricultural conservation practices at the watershed, regional, and national scales across the United States. Representative cropland acres in all major U.S. watersheds were surveyed in 2003-2006 as part of the seminal CEAP Cropland National Assessment. Two process-based models, the Agricultural Policy Environmental eXtender(APEX) and the Soil Water Assessment Tool (SWAT), were applied to the survey data to provide a quantitative assessment of current conservation practice impacts, establish a benchmark against which future conservation trends and efforts could be measured, and identify outstanding conservation concerns. The flexibility of these models and the unprecedented amount of data on current conservation practices across the country enabled Cropland CEAP to meet its Congressional mandate of quantifying the value of current conservation practices. It also enabled scientifically grounded exploration of a variety of conservation scenarios, empowering CEAP to not only inform on past successes and additional needs, but to also provide a decision support tool to help guide future policy development and conservation practice decision making. The CEAP effort will repeat the national survey in 2015-2016, enabling CEAP to provide analyses of emergent conservation trends, outstanding needs, and potential costs and benefits of pursuing various treatment scenarios for all agricultural watersheds across the United States.

  6. Optimum Landscape Allocation of Conservation Practices for Water Quality and Ecosystem Service Valuation

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Pennington, D.; Nelson, E.; Mulla, D.; Polasky, S.; Taff, S.

    2012-12-01

    This study links a spatially-explicit biophysical model (SWAT) with an economic model (InVEST) to identify the economically optimum allocation of conservation practices on the landscape. Combining biophysical and economic analysis allows assessment of the benefits and costs of alternative policy choices through consideration of direct costs and benefits as measured by market transactions as well as non-market benefits and costs from changes in environmental conditions that lead to changes in the provision of ecosystem services. When applied to an agricultural watershed located in South-Central Minnesota, this approach showed that: (1) some modest gains (20% improvement, relative to baseline conditions) in water quality can be achieved without diminishing current economic returns, but that (2) more dramatic reductions in sediment and phosphorus required to meet water quality goals (50% reductions in loadings) will require transitioning land from row crops into perennial vegetation. This shift in land cover will result in a reduction in economic returns unless non-market ecosystem services are also valued. Further results showed that traditional best management practices such as conservation tillage and reduced fertilizer application rates are not sufficient to achieve water quality goals by themselves. Finally, if crop prices drop to pre-2007 levels or valuation of ecosystem services increases, then achieving water quality goals can occur with less of an economic impact to the watershed.

  7. Irrigated agriculture and wildlife conservation: conflict on a global scale

    Treesearch

    A. Dennis Lemly; Richard T. Kingsford; Julian R. Thompson

    2000-01-01

    The demand for water to support irrigated agriculture has led to the demise of wetlands and their associated wildlife for decades. This thirst for water is so pervasive that many wetlands considered to be hemispheric reserves for waterbirds have been heavily affected, for example, the California and Nevada wetlands in North America, the Macquarie Marshes in Australia,...

  8. The conservation nexus: valuing interdependent water and energy savings in Arizona.

    PubMed

    Bartos, Matthew D; Chester, Mikhail V

    2014-02-18

    Water and energy resources are intrinsically linked, yet they are managed separately--even in the water-scarce American southwest. This study develops a spatially explicit model of water-energy interdependencies in Arizona and assesses the potential for cobeneficial conservation programs. The interdependent benefits of investments in eight conservation strategies are assessed within the context of legislated renewable energy portfolio and energy efficiency standards. The cobenefits of conservation are found to be significant. Water conservation policies have the potential to reduce statewide electricity demand by 0.82-3.1%, satisfying 4.1-16% of the state's mandated energy-efficiency standard. Adoption of energy-efficiency measures and renewable generation portfolios can reduce nonagricultural water demand by 1.9-15%. These conservation cobenefits are typically not included in conservation plans or benefit-cost analyses. Many cobenefits offer negative costs of saved water and energy, indicating that these measures provide water and energy savings at no net cost. Because ranges of costs and savings for water-energy conservation measures are somewhat uncertain, future studies should investigate the cobenefits of individual conservation strategies in detail. Although this study focuses on Arizona, the analysis can be extended elsewhere as renewable portfolio and energy efficiency standards become more common nationally and internationally.

  9. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  10. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-10-01

    The increased availability of end use measurement studies allows for mechanistic and detailed approaches to estimating household water demand and conservation potential. This study simulates water use in a single-family residential neighborhood using end-water-use parameter probability distributions generated from Monte Carlo sampling. This model represents existing water use conditions in 2010 and is calibrated to 2006-2011 metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in the eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost-effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  11. Household water use and conservation models using Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Cahill, R.; Lund, J. R.; DeOreo, B.; Medellín-Azuara, J.

    2013-04-01

    The increased availability of water end use measurement studies allows for more mechanistic and detailed approaches to estimating household water demand and conservation potential. This study uses, probability distributions for parameters affecting water use estimated from end use studies and randomly sampled in Monte Carlo iterations to simulate water use in a single-family residential neighborhood. This model represents existing conditions and is calibrated to metered data. A two-stage mixed integer optimization model is then developed to estimate the least-cost combination of long- and short-term conservation actions for each household. This least-cost conservation model provides an estimate of the upper bound of reasonable conservation potential for varying pricing and rebate conditions. The models were adapted from previous work in Jordan and are applied to a neighborhood in San Ramon, California in eastern San Francisco Bay Area. The existing conditions model produces seasonal use results very close to the metered data. The least-cost conservation model suggests clothes washer rebates are among most cost-effective rebate programs for indoor uses. Retrofit of faucets and toilets is also cost effective and holds the highest potential for water savings from indoor uses. This mechanistic modeling approach can improve understanding of water demand and estimate cost-effectiveness of water conservation programs.

  12. The Value of Recycling on Water Conservation 2 nd Edition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bales, Shannon Nicole; Ludi-Herrera, Katlyn D.

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, aluminum, copper, plastic, compost, and ceiling tiles. It will discuss the use of water in the process of harvesting, manufacturing, and recycling these materials. The way that water is conserved will be reviewed. From the stand point of SNL, it will discuss the amount of material that has been accumulated from 2012 through 2013 and how much water has been saved by recycling .

  13. Multifunctional Agriculture: Conducting an Ecosystem Service Assessment for an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Wilson, C. G.

    2012-12-01

    To meet the food production demands on a finite area of land for an exponentially growing, global population, intensive agricultural management practices are being used. The implications of this these practices lead to soil degradation, loss of biodiversity, increased greenhouse gas emissions, and decreased water quality depending on the level of conservation practices implemented in a watershed. To offset these negative environmental effects, ecosystem services should be analyzed for possible economic valuation to provide incentives for good land stewardship. In this study a Multifunctional Agriculture (MFA) evaluation in a representative agricultural watershed in Iowa was performed by assessing the ecosystem services of water quality, crop/grain production, carbon sequestration, reduction in carbon dioxide emissions and biodiversity for representative land covers (e.g., corn-soybean rotation, alfalfa, oats, and Conservation Reserve Program, or CRP). The services were analyzed using a geo-spatial platform that simulated carbon dynamics with the biogeochemical model, CENTURY, as well as soil erosion/deposition and surface runoff with the Water Erosion Prediction Project (WEPP). Economic values given to the various services were based on current grain prices, water treatment costs, and hypothetical carbon storage credits. Results showed that crop/grain production for the corn-soybean rotations provided the largest service for the study site, followed by alfalfa. CRP provided the largest decrease in surface water runoff and CO2 emissions, while alfalfa provided the largest form of plant species diversity. The largest sequestration of carbon came from the corn-soybean rotation due to large amounts dead plant material being incorporated into the soil through tillage. Overall the MFA assessment can provide a framework for payment of ecosystem services supplied by agroecosystems which promote more sustainable land management practices.

  14. Simulation of water-use conservation scenarios for the Mississippi Delta using an existing regional groundwater flow model

    USGS Publications Warehouse

    Barlow, Jeannie R.B.; Clark, Brian R.

    2011-01-01

    The Mississippi River alluvial plain in northwestern Mississippi (referred to as the Delta), once a floodplain to the Mississippi River covered with hardwoods and marshland, is now a highly productive agricultural region of large economic importance to Mississippi. Water for irrigation is supplied primarily by the Mississippi River Valley alluvial aquifer, and although the alluvial aquifer has a large reserve, there is evidence that the current rate of water use from the alluvial aquifer is not sustainable. Using an existing regional groundwater flow model, conservation scenarios were developed for the alluvial aquifer underlying the Delta region in northwestern Mississippi to assess where the implementation of water-use conservation efforts would have the greatest effect on future water availability-either uniformly throughout the Delta, or focused on a cone of depression in the alluvial aquifer underlying the central part of the Delta. Five scenarios were simulated with the Mississippi Embayment Regional Aquifer Study groundwater flow model: (1) a base scenario in which water use remained constant at 2007 rates throughout the entire simulation; (2) a 5-percent 'Delta-wide' conservation scenario in which water use across the Delta was decreased by 5 percent; (3) a 5-percent 'cone-equivalent' conservation scenario in which water use within the area of the cone of depression was decreased by 11 percent (a volume equivalent to the 5-percent Delta-wide conservation scenario); (4) a 25-percent Delta-wide conservation scenario in which water use across the Delta was decreased by 25 percent; and (5) a 25-percent cone-equivalent conservation scenario in which water use within the area of the cone of depression was decreased by 55 percent (a volume equivalent to the 25-percent Delta-wide conservation scenario). The Delta-wide scenarios result in greater average water-level improvements (relative to the base scenario) for the entire Delta area than the cone

  15. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies.

    PubMed

    Tsai, Yushiou; Cohen, Sara; Vogel, Richard M

    2011-08-01

    We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields.

  16. Governance and sustainability at a municipal scale: the challenge of water conservation.

    PubMed

    Furlong, Kathryn; Bakker, Karen

    2011-01-01

    Municipal water conservation is increasingly promoted as a key dimension of environmental sustainability at the municipal scale. Progress toward municipal water conservation in Canada has, however, been poor. This paper examines the governance dimension of water conservation, and presents evidence in support of the argument that conservation efforts on the part of water utilities (and sometimes municipalities) are often constrained by factors external to their jurisdiction. To explore these issues, this paper presents a case study of municipal water conservation in Canada. The analysis identifies governance-related barriers to water conservation and explores the relationship between these barriers and broader issues stemming from the multi-scalar, fragmented nature of environmental governance in Canada.

  17. Sustaining the Earth's watersheds, agricultural research data system

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  18. Targeting water and energy conservation using big data

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Pulido-Velazquez, M.; Lund, J. R.

    2016-12-01

    Water conservation is often the most cost effective source of additional water supply for water stressed regions to maintain supply reliability with increasing population and/or demands, or shorter-term droughts. In previous research we demonstrated how including energy savings of conserved water can increase willingness to adopt conservation measures, at the same time that increases energy and GHG emissions savings. But the capacity to save water, energy and GHG emissions depends fundamentally in the economic benefits for customers and utilities. Utilities have traditionally used rebates, subsidies or incentives to enhance water conservation. But the economic benefits originated by these rebates depend on the actual savings of the water, energy and GHG emissions. A crucial issue that is not considered in the financial analysis of these rebates is the heterogeneity in water consumption, resulting in rebating households that actually do not need improvements in certain appliances. Smart meters with end-use disaggregation allow to consider this heterogeneity and to target rebates. By using an optimization approach that minimizes water and energy residential costs—accounting for retrofit costs and individual benefits according to previous levels of consumption—we are able to assess economically optimal rebate programs both for customers and utilities. Three programs are considered: first, same economic incentives are provided to all households and then they do their optimal decisions; second, traditional appliance-focused rebates are assessed; and third, utilities provide only rebates to those households that maximize water, energy or GHG emissions savings. Results show that the most economically efficient options for households are not the best options for utilities, and that traditional appliance-focused rebates are much less optimal than targeted rebates.

  19. Water Wisdom: 23 Stand-Alone Activities on Water Supply and Water Conservation for High School Students. 2nd Edition.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    This water conservation education program for high schools consists of both stand-alone activities and teacher support materials. Lessons are divided into six broad categories: (1) The Water Cycle; (2) Water and Society; (3) Keeping Water Pure; (4) Visualizing Volumes; (5) The Economics of Water Use; and (6) Domestic Water Conservation. The…

  20. Impacts of Personal Experience: Informing Water Conservation Extension Education

    ERIC Educational Resources Information Center

    Huang, Pei-wen; Lamm, Alexa J.

    2017-01-01

    Extension educators have diligently educated the general public about water conservation. Incorporating audiences' personal experience into educational programming is recommended as an approach to effectively enhance audiences' adoption of water conservation practices. To ensure the impact on the audiences and environment, understanding the…

  1. Dynamic Edge Effects in Small Mammal Communities across a Conservation-Agricultural Interface in Swaziland

    PubMed Central

    Hurst, Zachary M.; McCleery, Robert A.; Collier, Bret A.; Fletcher, Robert J.; Silvy, Nova J.; Taylor, Peter J.; Monadjem, Ara

    2013-01-01

    Across the planet, high-intensity farming has transformed native vegetation into monocultures, decreasing biodiversity on a landscape scale. Yet landscape-scale changes to biodiversity and community structure often emerge from processes operating at local scales. One common process that can explain changes in biodiversity and community structure is the creation of abrupt habitat edges, which, in turn, generate edge effects. Such effects, while incredibly common, can be highly variable across space and time; however, we currently lack a general analytical framework that can adequately capture such spatio-temporal variability. We extend previous approaches for estimating edge effects to a non-linear mixed modeling framework that captures such spatio-temporal heterogeneity and apply it to understand how agricultural land-uses alter wildlife communities. We trapped small mammals along a conservation-agriculture land-use interface extending 375 m into sugarcane plantations and conservation land-uses at three sites during dry and wet seasons in Swaziland, Africa. Sugarcane plantations had significant reductions in species richness and heterogeneity, and showed an increase in community similarity, suggesting a more homogenized small mammal community. Furthermore, our modeling framework identified strong variation in edge effects on communities across sites and seasons. Using small mammals as an indicator, intensive agricultural practices appear to create high-density communities of generalist species while isolating interior species in less than 225 m. These results illustrate how agricultural land-use can reduce diversity across the landscape and that effects can be masked or magnified, depending on local conditions. Taken together, our results emphasize the need to create or retain natural habitat features in agricultural mosaics. PMID:24040269

  2. A Systems Framework for Assessing Plumbing Products-Related Water Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Alison; Dunham Whitehead, Camilla; Lutz, James

    2011-12-02

    Reducing the water use of plumbing products—toilets, urinals, faucets, and showerheads —has been a popular conservation measure. Improved technologies have created opportunities for additional conservation in this area. However, plumbing products do not operate in a vacuum. This paper reviews the literature related to plumbing products to determine a systems framework for evaluating future conservation measures using these products. The main framework comprises the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing/sewer infrastructure. This framework for analysis provides a starting point for professionals considering future water conservation measures to evaluate the need for additionalmore » research, collaboration with other standards or codes committees, and attachment of additional metrics to water use efficiency (such as performance).« less

  3. Microbial quality of agricultural water in Central Florida.

    PubMed

    Topalcengiz, Zeynal; Strawn, Laura K; Danyluk, Michelle D

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface

  4. Microbial quality of agricultural water in Central Florida

    PubMed Central

    Topalcengiz, Zeynal; Strawn, Laura K.

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface

  5. Can conservation agriculture reduce the impact of soil erosion in northern Tunisia ?

    NASA Astrophysics Data System (ADS)

    Bahri, Haithem; Annabi, Mohamed; Chibani, Roukaya; Cheick M'Hamed, Hatem; Hermessi, Taoufik

    2016-04-01

    Mediterranean countries are prone to soil erosion, therefore Tunisia, with Mediterranean climate, is threatened by water erosion phenomena. In fact, 3 million ha of land is threatened by erosion, and 50% is seriously affected. Soils under conservation agriculture (CA) have high water infiltration capacities reducing significantly surface runoff and thus soil erosion. This improves the quality of surface water, reduces pollution from soil erosion, and enhances groundwater resources. CA is characterized by three interlinked principles, namely continuous minimum mechanical soil disturbance, permanent organic soil cover and diversification of crop species grown in sequence or associations. Soil aggregate stability was used as an indicator of soil susceptibility to water erosion. Since 1999, In Tunisia CA has been introduced in rainfed cereal areas in order to move towards more sustainable agricultural systems. CA areas increased from 52 ha in 1999 to 15000 ha in 2015. The objective of this paper is to study the effect of CA on soil erosion in northern Tunisia. Soil samples were collected at 10 cm of depth from 6 farmers' fields in northern Tunisia. Conventional tillage (CT), CA during less than 5 years (CA<5 years) and CA during more than 5 years (CA>5 years) have been practiced in each farmers field experiment of wheat crop. Soil aggregate stability was evaluated according to the method described by Le Bissonnais (1996), results were expressed as a mean weight diameter (MWD); higher values of MWD indicate higher aggregate stability. Total organic carbon (TOC) was determined using the wet oxidation method of Walkley-Black. A significant increase in SOC content was observed in CA>5years (1.64 %) compared to CT (0.97 %). This result highlights the importance of CA to improve soil fertility. For aggregate stability, a net increase was observed in CA compared to CT. After 5 years of CA the MWD was increased by 16% (MWD=1.8 mm for CT and MWD=2.1 mm for CA<5years). No

  6. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  7. Water for Agriculture: the Convergence of Sustainability and Safety.

    PubMed

    Markland, Sarah M; Ingram, David; Kniel, Kalmia E; Sharma, Manan

    2017-05-01

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter, the Produce Safety Rule (PSR) in the Food Safety and Modernization Act (FSMA) provide irrigation water standards for application of water to fruits and vegetables consumed raw. These rules for production and use of water will continue to develop and be required as the world experiences aspects of a changing climate including flooding as well as drought conditions. Research continues to assess the use of agricultural water types. The increased use of reclaimed water in the United States as well as for selected irrigation water needs for specific crops may provide increased water availability. The use of surface water can be used in irrigation as well, but several studies have shown the presence of some enteric bacterial pathogens (enterohemorrhagic E. coli , Salmonella spp. and Listeria monocytogenes ) in these waters that may contaminate fruits and vegetables. There have been outbreaks of foodborne illness in the U.S., South America, Europe, and Australia related to the use of contaminated water in fruit and vegetable irrigation or washing. Unreliable water supplies, more stringent microbial water standards, mitigation technologies and expanded uses of reclaimed waters have all increased interest in agricultural water.

  8. A conservation ontology and knowledge base to support delivery of technical assistance to agricultural producers in the united states

    USDA-ARS?s Scientific Manuscript database

    Information systems supporting the delivery of conservation technical assistance by the United States Department of Agriculture (USDA) to agricultural producers on working lands have become increasingly complex over the past 25 years. They are constrained by inconsistent coordination of domain knowl...

  9. An Index-Based Assessment of Agricultural Water Scarcity for Sustainable Water Resource Management

    NASA Astrophysics Data System (ADS)

    Kim, S. E.; Lee, D. K.; Kim, K. S.; Hyun, S.; Kim, Y.

    2017-12-01

    Global precipitation pattern is changing due to climate change, causing drought and water scarcity all around the world. As water is mandatory to all lives, water availability is becoming essential and so is sustainable water resource management. Especially in agriculture, water resource management is crucial, as it is directly connected to the production. However, many studies about water scarcity show limits by focusing on current situation and overlooking future possibilities of water availability. Also, most of the studies about water scarcity use single index or model. To overcome these shortcomings, we assessed agricultural water scarcity considering future climate, using water scarcity indices. We assessed present and future water scarcity using several indices and compared the results derived from each index. The study area of this research is South Korea, as drought is a prominent problem in agricultural sector. Precipitation in Korea is concentrated in summer, causing severe drought in spring and fall. Rainfall density in Korea is increasing with climate change, and sustainable water resource management is inevitable. In this research, we used irrigational demand along with current and future crop production of 2030 and 2050 as water demand. We projected the future (2020-2100) runoff of dams located in Korea as water demand under future scenarios, RCP 4.5 and 8.5. The result showed severe water scarcity in Southern area of Korea both in the present and the future. It was due to increase of water demand and decrease of precipitation. It indicates that the water scarcity gets more intense in the future, and emphasizes the importance of water resource management of the southern part. This research will be valuable in establishing water resource management in agricultural sector for sustainable water availability in the future.

  10. Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions

    PubMed Central

    Pierce, Samuel C.; Kröger, Robert; Pezeshki, Reza

    2012-01-01

    Large tracts of lowlands have been drained to expand extensive agriculture into areas that were historically categorized as wasteland. This expansion in agriculture necessarily coincided with changes in ecosystem structure, biodiversity, and nutrient cycling. These changes have impacted not only the landscapes in which they occurred, but also larger water bodies receiving runoff from drained land. New approaches must append current efforts toward land conservation and restoration, as the continuing impacts to receiving waters is an issue of major environmental concern. One of these approaches is agricultural drainage management. This article reviews how this approach differs from traditional conservation efforts, the specific practices of drainage management and the current state of knowledge on the ecology of drainage ditches. A bottom-up approach is utilized, examining the effects of stochastic hydrology and anthropogenic disturbance on primary production and diversity of primary producers, with special regard given to how management can affect establishment of macrophytes and how macrophytes in agricultural landscapes alter their environment in ways that can serve to mitigate non-point source pollution and promote biodiversity in receiving waters. PMID:24832519

  11. Maximizing the Wildlife Conservation Value of Road Right-of-Ways in an Agriculturally Dominated Landscape

    PubMed Central

    McCleery, Robert A.; Holdorf, Allison R.; Hubbard, Laura L.; Peer, Brian D.

    2015-01-01

    There has been a growing recognition that the narrow linear strips of uncultivated vegetation that lie between roads and agricultural crops, referred to as roadside right-of-ways or verges, can serve as areas for the conservation of wildlife. The features of right-of-ways that should influence the composition of wildlife communities vary considerably. Our goal was to determine what features of right-of-ways increased the conservation potential of right-of-ways for wildlife in a grassland system dominated by agricultural production. We sampled 100 right-of-ways for birds and 92 right-of-ways for small mammals in McDonough and Warren Counties in west-central Illinois. We found that the sizes of right-of-ways and the amount of traffic on the adjacent roads synergistically worked to influence wildlife communities. On roads with low traffic, avian species richness increased rapidly with increased right-of-way width, while on roads with high traffic, avian richness increased only slightly with increasing right-of-way widths. We found that wider roadside right-of-ways (preferably across the road from equally wide right-of-ways) with thicker and taller vegetation had the greatest conservation value for birds and small mammals. The features that enhanced the conservation value of right-of-ways in our study area were uncommon. Efforts to create or enhance these features for the benefit of wildlife would likely face numerous obstacles. Nonetheless, from a grassland conservation perspective, working with stakeholders to implement specific strategies to enhance these often neglected areas may be an effective complement to purchasing and restoring conservation lands away from roads. PMID:25794180

  12. The implications of drought and water conservation on the reuse of municipal wastewater: Recognizing impacts and identifying mitigation possibilities.

    PubMed

    Tran, Quynh K; Jassby, David; Schwabe, Kurt A

    2017-11-01

    As water agencies continue to investigate opportunities to increase resilience and local water supply reliability in the face of drought and rising water scarcity, water conservation strategies and the reuse of treated municipal wastewater are garnering significant attention and adoption. Yet a simple water balance thought experiment illustrates that drought, and the conservation strategies that are often enacted in response to it, both likely limit the role reuse may play in improving local water supply reliability. For instance, as a particular drought progresses and agencies enact water conservation measures to cope with drought, influent flows likely decrease while influent pollution concentrations increase, particularly salinity, which adversely affects wastewater treatment plant (WWTP) costs and effluent quality and flow. Consequently, downstream uses of this effluent, whether to maintain streamflow and quality, groundwater recharge, or irrigation may be impacted. This is unfortunate since reuse is often heralded as a drought-proof mechanism to increase resilience. The objectives of this paper are two-fold. First, we illustrate-using a case study from Southern California during its most recent drought- how drought and water conservation strategies combine to reduce influent flow and quality and, subsequently, effluent flow and quality. Second, we use a recently developed regional water reuse decision support model (RWRM) to highlight cost-effective strategies that can be implemented to mitigate the impacts of drought on effluent water quality. While the solutions we identify cannot increase the flow of influent or effluent coming into or out of a treatment plant, they can improve the value of the remaining effluent in a cost-effective manner that takes into account the characteristics of its demand, whether it be for landscaping, golf courses, agricultural irrigation, or surface water augmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Conservation of Water and Related Land Resources

    NASA Astrophysics Data System (ADS)

    Caldwell, Lynton K.

    1984-04-01

    The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.

  14. Agricultural hydrology and water quality II: Introduction to the featured collection

    USDA-ARS?s Scientific Manuscript database

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  15. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  16. A modeling approach to evaluate the impact of conservation practices on runoff and sediments in Sasumua watershed, Kenya

    USDA-ARS?s Scientific Manuscript database

    Degradation of agricultural watersheds often reduces their capacity to provide vital environmental services such as food production, clean potable water, water bodies for recreation and generation of hydro-electric power. Soil and water conservation practices on agricultural lands can enhance the ca...

  17. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  18. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  19. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  20. Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria

    2011-08-01

    In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. New findings and setting the research agenda for soil and water conservation for sustainable land management

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Argaman, Eli; Gomez, Jose Alfonso; Quinton, John

    2014-05-01

    The session on soil and water conservation for sustainable land management provides insights into the current research producing viable measures for sustainable land management and enhancing the lands role as provider of ecosystem services. The insights into degradation processes are essential for designing and implementing feasible measures to mitigate against degradation of the land resource and adapt to the changing environment. Land degradation occurs due to multiple pressures on the land, such as population growth, land-use and land-cover changes, climate change and over exploitation of resources, often resulting in soil erosion due to water and wind, which occurs in many parts of the world. Understanding the processes of soil erosion by wind and water and the social and economic constraints faced by farmers forms an essential component of integrated land development projects. Soil and water conservation measures are only viable and sustainable if local environmental and socio-economic conditions are taken into account and proper enabling conditions and policies can be achieved. Land degradation increasingly occurs because land use, and farming systems are subject to rapid environmental and socio-economic changes without implementation of appropriate soil and water conservation technologies. Land use and its management are thus inextricably bound up with development; farmers must adapt in order to sustain the quality of their, and their families, lives. In broader perspective, soil and water conservation is needed as regulating ecosystem service and as a tool to enhance food security and biodiversity. Since land degradation occurs in many parts of the world and threatens food production and environmental stability it affects those countries with poorer soils and resilience in the agriculture sector first. Often these are the least developed countries. Therefore the work from researchers from developing countries together with knowledge from other disciplines

  2. Little River Experimental Watershed, Georgia: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    In September 2007, USDA’s Cooperative State Research, Education, and Extension Service (CSREES), now the National Institute of Food and Agriculture (NIFA), and the Natural Resources Conservation Service (NRCS) jointly funded two integrated research and outreach grants to conduct a synthesis of resul...

  3. Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.

    PubMed

    Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo

    2012-01-01

    Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.

  4. Cost of areal reduction of gulf hypoxia through agricultural practice

    USDA-ARS?s Scientific Manuscript database

    A major share of the area of hypoxic growth in the Northern Gulf of Mexico has been attributed to nutrient run-off from agricultural fields, but no estimate is available for the cost of reducing Gulf hypoxic area using agricultural conservation practices. We apply the Soil and Water Assessment Tool ...

  5. Agricultural Applications for Remotely Sensed Evapotranspiration Data in Monitoring Water Use, Water Quality, and Water Security

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Hain, C.; Gao, F.; Yang, Y.; Sun, L.; Dulaney, W.; Sharifi, A.; Holmes, T. R.; Kustas, W. P.

    2016-12-01

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being unsustainably depleted due to over-extraction primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water use, water quality and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  6. The Impacts of Water Conservation Strategies on Water Use: Four Case Studies1

    PubMed Central

    Tsai, Yushiou; Cohen, Sara; Vogel, Richard M

    2011-01-01

    We assessed impacts on water use achieved by implementation of controlled experiments relating to four water conservation strategies in four towns within the Ipswich watershed in Massachusetts. The strategies included (1) installation of weather-sensitive irrigation controller switches (WSICS) in residences and municipal athletic fields; (2) installation of rainwater harvesting systems in residences; (3) two outreach programs: (a) free home indoor water use audits and water fixture retrofit kits and (b) rebates for low-water-demand toilets and washing machines; and (4) soil amendments to improve soil moisture retention at a municipal athletic field. The goals of this study are to summarize the effectiveness of the four water conservation strategies and to introduce nonparametric statistical methods for evaluating the effectiveness of these conservation strategies in reducing water use. It was found that (1) the municipal WSICS significantly reduced water use; (2) residences with high irrigation demand were more likely than low water users to experience a substantial demand decrease when equipped with the WSICS; (3) rainwater harvesting provided substantial rainwater use, but these volumes were small relative to total domestic water use and relative to the natural fluctuations in domestic water use; (4) both the audits/retrofit and rebate programs resulted in significant water savings; and (5) a modeling approach showed potential water savings from soil amendments in ball fields. PMID:22457572

  7. Water Conservation and Reuse. Instructor Guide. Working for Clean Water: An Information Program for Advisory Committees.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., Middletown. Inst. of State and Regional Affairs.

    Described is a learning session on water conservation intended for citizen advisory groups interested in water quality planning. Topics addressed in this instructor's manual include water conservation needs, benefits, programs, technology, and problems. These materials are components of the Working for Clean Water Project. (Author/WB)

  8. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  9. Identification of Conserved Water Sites in Protein Structures for Drug Design.

    PubMed

    Jukič, Marko; Konc, Janez; Gobec, Stanislav; Janežič, Dušanka

    2017-12-26

    Identification of conserved waters in protein structures is a challenging task with applications in molecular docking and protein stability prediction. As an alternative to computationally demanding simulations of proteins in water, experimental cocrystallized waters in the Protein Data Bank (PDB) in combination with a local structure alignment algorithm can be used for reliable prediction of conserved water sites. We developed the ProBiS H2O approach based on the previously developed ProBiS algorithm, which enables identification of conserved water sites in proteins using experimental protein structures from the PDB or a set of custom protein structures available to the user. With a protein structure, a binding site, or an individual water molecule as a query, ProBiS H2O collects similar proteins from the PDB and performs local or binding site-specific superimpositions of the query structure with similar proteins using the ProBiS algorithm. It collects the experimental water molecules from the similar proteins and transposes them to the query protein. Transposed waters are clustered by their mutual proximity, which enables identification of discrete sites in the query protein with high water conservation. ProBiS H2O is a robust and fast new approach that uses existing experimental structural data to identify conserved water sites on the interfaces of protein complexes, for example protein-small molecule interfaces, and elsewhere on the protein structures. It has been successfully validated in several reported proteins in which conserved water molecules were found to play an important role in ligand binding with applications in drug design.

  10. Water Conservation and Hydrological Transitions in Cities

    NASA Astrophysics Data System (ADS)

    Hornberger, G. M.; Gilligan, J. M.; Hess, D. J.

    2014-12-01

    A 2012 report by the National Research Council, Challenges and Opportunities in the Hydrologic Sciences, called for the development of "translational hydrologic science." Translational research in this context requires knowledge about the communication of science to decision makers and to the public but also improved understanding of the public by the scientists. This kind of knowledge is inherently interdisciplinary because it requires understanding of the complex sociotechnical dimensions of water, policy, and user relations. It is axiomatic that good governance of water resources and water infrastructure requires information about water resources themselves and about the institutions that govern water use. This "socio-hydrologic" or "hydrosociological" knowledge is often characterized by complex dynamics between and among human and natural systems. Water Resources Research has provided a forum for presentation of interdisciplinary research in coupled natural-human systems since its inception 50 years ago. The evolution of ideas presented in the journal provides a basis for framing new work, an example of which is water conservation in cities. In particular, we explore the complex interactions of political, sociodemographic, economic, and hydroclimatological factors in affecting decisions that either advance or retard the development of water conservation policies.

  11. A Fuzzy Rule Based Decision Support System for Identifying Location of Water Harvesting Technologies in Rainfed Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Vema, V. K.; Sudheer, K.

    2016-12-01

    Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.

  12. The Mid-Atlantic Regional Wetland Conservation Effects Assessment Project

    Treesearch

    Megan Lang; Greg McCarty; Mark Walbridge; Patrick Hunt; Tom Ducey; Clinton Church; Jarrod Miller; Laurel Kluber; Ali Sadeghi; Martin Rabenhorst; Amir Sharifi; In-Young Yeo; Andrew Baldwin; Margaret Palmer; Tom Fisher; Dan Fenstermaher; Sanchul Lee; Owen McDonough; Metthea Yepsen; Liza McFarland; Anne Gustafson; Rebecca Fox; Chris Palardy; William Effland; Mari-Vaughn Johnson; Judy Denver; Scott Ator; Joseph Mitchell; Dennis Whigham

    2016-01-01

    Wetlands impart many important ecosystem services, including maintenance of water quality, regulation of the climate and hydrological flows, and enhancement of biodiversity through the provision of food and habitat. The conversion of natural lands to agriculture has led to broad scale historic wetland loss, but current US Department of Agriculture conservation programs...

  13. Conserving Water: The Untapped Alternative. Worldwatch Paper 67.

    ERIC Educational Resources Information Center

    Postel, Sandra

    This report addresses the global concern of water development and stresses the need for management of the water demand. Investments in water efficiency, recycling, and conservation are recommended over conventional water supply projects for greater cost behefits and production yield. Topic areas include: (1) water use trends in major crop…

  14. An integrated modeling approach for estimating the water quality benefits of conservation practices at the river basin scale.

    PubMed

    Santhi, C; Kannan, N; White, M; Di Luzio, M; Arnold, J G; Wang, X; Williams, J R

    2014-01-01

    The USDA initiated the Conservation Effects Assessment Project (CEAP) to quantify the environmental benefits of conservation practices at regional and national scales. For this assessment, a sampling and modeling approach is used. This paper provides a technical overview of the modeling approach used in CEAP cropland assessment to estimate the off-site water quality benefits of conservation practices using the Ohio River Basin (ORB) as an example. The modeling approach uses a farm-scale model, Agricultural Policy Environmental Extender (APEX), and a watershed scale model (the Soil and Water Assessment Tool [SWAT]) and databases in the Hydrologic Unit Modeling for the United States system. Databases of land use, soils, land use management, topography, weather, point sources, and atmospheric depositions were developed to derive model inputs. APEX simulates the cultivated cropland, Conserve Reserve Program land, and the practices implemented on them, whereas SWAT simulates the noncultivated land (e.g., pasture, range, urban, and forest) and point sources. Simulation results from APEX are input into SWAT. SWAT routes all sources, including APEX's, to the basin outlet through each eight-digit watershed. Each basin is calibrated for stream flow, sediment, and nutrient loads at multiple gaging sites and turned in for simulating the effects of conservation practice scenarios on water quality. Results indicate that sediment, nitrogen, and phosphorus loads delivered to the Mississippi River from ORB could be reduced by 16, 15, and 23%, respectively, due to current conservation practices. Modeling tools are useful to provide science-based information for assessing existing conservation programs, developing future programs, and developing insights on load reductions necessary for hypoxia in the Gulf of Mexico. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  16. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  17. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  18. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Definition of soil and water conservation... Corporations (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures... for the purpose of soil or water conservation in respect of land used in farming, or for the...

  19. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  20. Irrigated Agriculture and Water Resources in the Western U.S. (Invited)

    NASA Astrophysics Data System (ADS)

    Trout, T. J.

    2013-12-01

    Agriculture in semi-arid areas such as the western U.S. was created by diverting and pumping water from rivers and groundwater. With that water, highly productive irrigated agriculture produces 40% of the crop value and the large majority of the fruits, vegetables, and nuts in the U.S. Irrigation water use and area is declining in the West, due both to overexploitation and increasing competing needs, although productivity continues to increase. The challenges for irrigated agriculture are to maximize productivity per unit of water consumed, minimize negative environmental impacts, and make water available to other needs while sustaining food production and rural economies. Meeting these challenges require both technical and policy advances.

  1. 7 CFR 12.23 - Conservation plans and conservation systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to produce agricultural commodities prior to December 23, 1985, the applicable conservation systems... available conservation technology; cost-effective; and shall not cause undue economic hardship on the person... containing highly erodible cropland which was used to produce an agricultural commodity prior to December 23...

  2. Trade-offs between cattle production and bird conservation in an agricultural frontier of the Gran Chaco of Argentina.

    PubMed

    Mastrangelo, Matias E; Gavin, Michael C

    2012-12-01

    Intensification of food production in tropical landscapes in the absence of land-use planning can pose a major threat to biological diversity. Decisions on whether to spatially integrate or segregate lands for production and conservation depend in part on the functional relations between biological diversity and agricultural productivity. We measured diversity, density, and species composition of birds along a gradient of production intensification on an agricultural frontier of the Argentine Chaco, where dry tropical forests are cleared for cattle production. Bird species diversity in intact forests was higher than in any type of cattle-production system. Bird species richness decreased nonlinearly as cattle yield increased. Intermediate-intensity silvopastoral systems, those in which forest understory is selectively cleared to grow pastures of non-native plants beneath the tree canopy, produced 80% of the mean cattle yield obtained in pastures on cleared areas and were occupied by 70-90% of the number of bird species present in the nearest forest fragments. Densities of >50% of bird species were significantly lower in open pastures than in silvopastoral systems. Therefore, intermediate-intensity silvopastoral systems may have the greatest potential to sustain cattle yield and conserve a large percentage of bird species. However, compared with low-intensity production systems, in which forest structure and extent were intact, intermediate-intensity silvopastoral systems supported significantly fewer forest-restricted bird species and fewer frugivorous birds. These data suggest that the integration of production and conservation through intermediate-intensity silvopastoral systems combined with the protection of forest fragments may be required to maintain cattle yield, bird diversity, and conservation of forest-restricted species in this agricultural frontier. ©2012 Society for Conservation Biology.

  3. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Soil and water conservation expenditures; in... (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for depreciation...

  4. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  5. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  6. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  7. 26 CFR 1.175-1 - Soil and water conservation expenditures; in general.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Soil and water conservation expenditures; in... Corporations (continued) § 1.175-1 Soil and water conservation expenditures; in general. Under section 175, a farmer may deduct his soil or water conservation expenditures which do not give rise to a deduction for...

  8. 26 CFR 1.175-2 - Definition of soil and water conservation expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Definition of soil and water conservation... (continued) § 1.175-2 Definition of soil and water conservation expenditures. (a) Expenditures treated as a... of soil or water conservation in respect of land used in farming, or for the prevention of erosion of...

  9. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Clothers Washers Energy Conservation Standards § 431.156 Energy and water conservation...

  10. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Clothers Washers Energy Conservation Standards § 431.156 Energy and water conservation...

  11. Quantifying the influence of environmental and water conservation attitudes on household end use water consumption.

    PubMed

    Willis, Rachelle M; Stewart, Rodney A; Panuwatwanich, Kriengsak; Williams, Philip R; Hollingsworth, Anna L

    2011-08-01

    Within the research field of urban water demand management, understanding the link between environmental and water conservation attitudes and observed end use water consumption has been limited. Through a mixed method research design incorporating field-based smart metering technology and questionnaire surveys, this paper reveals the relationship between environmental and water conservation attitudes and a domestic water end use break down for 132 detached households located in Gold Coast city, Australia. Using confirmatory factor analysis, attitudinal factors were developed and refined; households were then categorised based on these factors through cluster analysis technique. Results indicated that residents with very positive environmental and water conservation attitudes consumed significantly less water in total and across the behaviourally influenced end uses of shower, clothes washer, irrigation and tap, than those with moderately positive attitudinal concern. The paper concluded with implications for urban water demand management planning, policy and practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    PubMed Central

    Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868

  13. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    USGS Publications Warehouse

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  14. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  15. [Effects of land use changes on soil water conservation in Hainan Island, China].

    PubMed

    Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min

    2017-12-01

    In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.

  16. 75 FR 21981 - Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket Number EE-2006-BT-STD-0129] RIN 1904-AA90 Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters Correction In rule document 2010-7611 beginning on page 20112 in the issue of Friday...

  17. Less water: How will agriculture in Southern Mountain states adapt?

    NASA Astrophysics Data System (ADS)

    Frisvold, George B.; Konyar, Kazim

    2012-05-01

    This study examined how agriculture in six southwestern states might adapt to large reductions in water supplies, using the U.S. Agricultural Resource Model (USARM), a multiregion, multicommodity agricultural sector model. In the simulation, irrigation water supplies were reduced 25% in five Southern Mountain (SM) states and by 5% in California. USARM results were compared to those from a "rationing" model, which assumes no input substitution or changes in water use intensity, relying on land fallowing as the only means of adapting to water scarcity. The rationing model also ignores changes in output prices. Results quantify the importance of economic adjustment mechanisms and changes in output prices. Under the rationing model, SM irrigators lose 65 in net income. Compared to this price exogenous, "land-fallowing only" response, allowing irrigators to change cropping patterns, practice deficit irrigation, and adjust use of other inputs reduced irrigator costs of water shortages to 22 million. Allowing irrigators to pass on price increases to purchasers reduced income losses further, to 15 million. Higher crop prices from reduced production imposed direct losses of 130 million on first purchasers of crops, which include livestock and dairy producers, and cotton gins. SM agriculture, as a whole, was resilient to the water supply shock, with production of high value specialty crops along the Lower Colorado River little affected. Particular crops were vulnerable however. Cotton production and net returns fell substantially, while reductions in water devoted to alfalfa accounted for 57% of regional water reduction.

  18. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants.

  19. Classifying Residents who use Landscape Irrigation: Implications for Encouraging Water Conservation Behavior

    NASA Astrophysics Data System (ADS)

    Warner, Laura A.; Lamm, Alexa J.; Rumble, Joy N.; Martin, Emmett T.; Cantrell, Randall

    2016-08-01

    Large amounts of water applied as urban irrigation can often be reduced substantially without compromising esthetics. Thus, encouraging the adoption of water-saving technologies and practices is critical to preserving water resources, yet difficult to achieve. The research problem addressed in this study is the lack of characterization of residents who use urban irrigation, which hinders the design of effective behavior change programs. This study examined audience segmentation as an approach to encouraging change using current residential landscape practices. K-means cluster analysis identified three meaningful subgroups among residential landscape irrigation users ( N = 1,063): the water considerate majority ( n = 479, 45 %), water savvy conservationists ( n = 378, 36 %), and unconcerned water users ( n = 201, 19 %). An important finding was that normative beliefs, attitudes, and perceived behavioral control characteristics of the subgroups were significantly different with large and medium practical effect sizes. Future water conservation behaviors and perceived importance of water resources were also significantly different among subgroups. The water considerate majority demonstrated capacity to conserve, placed high value on water, and were likely to engage in behavior changes. This article contributes to the literature on individuals who use residential landscape irrigation, an important target audience with potential to conserve water through sustainable irrigation practices and technologies. Findings confirm applicability of the capacity to conserve water to audience segmentation and extend this concept by incorporating perceived value of water resources and likelihood of conservation. The results suggest practical application to promoting residential landscape water conservation behaviors based on important audience characteristics.

  20. Classifying Residents who use Landscape Irrigation: Implications for Encouraging Water Conservation Behavior.

    PubMed

    Warner, Laura A; Lamm, Alexa J; Rumble, Joy N; Martin, Emmett T; Cantrell, Randall

    2016-08-01

    Large amounts of water applied as urban irrigation can often be reduced substantially without compromising esthetics. Thus, encouraging the adoption of water-saving technologies and practices is critical to preserving water resources, yet difficult to achieve. The research problem addressed in this study is the lack of characterization of residents who use urban irrigation, which hinders the design of effective behavior change programs. This study examined audience segmentation as an approach to encouraging change using current residential landscape practices. K-means cluster analysis identified three meaningful subgroups among residential landscape irrigation users (N = 1,063): the water considerate majority (n = 479, 45 %), water savvy conservationists (n = 378, 36 %), and unconcerned water users (n = 201, 19 %). An important finding was that normative beliefs, attitudes, and perceived behavioral control characteristics of the subgroups were significantly different with large and medium practical effect sizes. Future water conservation behaviors and perceived importance of water resources were also significantly different among subgroups. The water considerate majority demonstrated capacity to conserve, placed high value on water, and were likely to engage in behavior changes. This article contributes to the literature on individuals who use residential landscape irrigation, an important target audience with potential to conserve water through sustainable irrigation practices and technologies. Findings confirm applicability of the capacity to conserve water to audience segmentation and extend this concept by incorporating perceived value of water resources and likelihood of conservation. The results suggest practical application to promoting residential landscape water conservation behaviors based on important audience characteristics.

  1. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries AGENCY: Surface Transportation Board, DOT. ACTION: Notice of OMB Approval of..., Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract...

  2. WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM

    EPA Science Inventory

    Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...

  3. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the

  4. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    USDA-ARS?s Scientific Manuscript database

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  5. Soil and Water Conservation for a Better America. A Framework Plan.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Through this framework plan, the Soil Conservation Service (SCS) takes a look ahead to its soil and water conservation mission, a look at its direction and thrust in helping create a desirable America in the decades ahead. The plan attempts to define the nature of soil and water conservation efforts, to put them in perspective, and to present a…

  6. Conservation of peat soils in agricultural use by infiltration of ditch water via submerged drains: results of a case study in the western peat soil area of The Netherlands

    NASA Astrophysics Data System (ADS)

    van den Akker, Jan J. H.; Hendriks, Rob F. A.

    2017-04-01

    About 8% of all soils in The Netherlands are peat soils which almost all drained with ditches and mainly in agricultural use as permanent pasture for dairy farming. The largest part of the peat meadow area is situated in the densely populated western provinces South- and North-Holland and Utrecht and is called the Green Heart and is valued as a historic open landscape. Conservation of these peats soil by raising water levels and converting the peat meadow areas mainly in very extensive grasslands or wet nature proved to be a very costly and slow process due to the strong opposition of farmers and many others who value the open cultural historic landscape and meadow birds. The use of submerged drains seems to be a promising solution acceptable for dairy farmers and effective in diminishing peat oxidation and so the associated subsidence and CO2 emissions. Oxidation of peat soils strongly depends on the depth of groundwater levels in dry periods. In dry periods the groundwater level can be 30 to 50 cm lower than the ditchwater level, which is 30 - 60 cm below soil surface. Infiltration of ditchwater via submerged drain can raise the groundwater level up to the ditchwater level and diminish the oxidation and associated subsidence and CO2 emissions with at least 50%. Since 2003 several pilots with submerged drains are started to check this theoretical reduction and to answer questions raised about water usage and water quality and grass yields and trafficability etcetera. In our presentation we focus on the results of a pilot in South-Holland concerning the hydrological aspects, however, include results from the other pilots to consider the long term aspects such as the reduction of subsidence. The use of submerged drains proves to be promising to reduce peat oxidation and so subsidence and CO2 emissions with at least 50%. Grass yields are more or less equal in parcels with versus parcels without submerged drains. Trafficability in wet periods is better and trampling

  7. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  8. Effects of meteorological droughts on agricultural water resources in southern China

    NASA Astrophysics Data System (ADS)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  9. Aquaculture research at the Conservation Fund Freshwater Institute

    USDA-ARS?s Scientific Manuscript database

    The Conservation Fund Freshwater Institute (TCFFI), working through cooperative agreements with the USDA Agriculture Research Service, has become a global leader in research and development of land-based closed containment water recirculation aquaculture systems (RAS) following three decades of appl...

  10. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  11. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  12. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  13. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-07-14

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  14. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  15. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  16. Hydroeconomic optimization of integrated water management and transfers under stochastic surface water supply

    NASA Astrophysics Data System (ADS)

    Zhu, Tingju; Marques, Guilherme Fernandes; Lund, Jay R.

    2015-05-01

    Efficient reallocation and conjunctive operation of existing water supplies is gaining importance as demands grow, competitions among users intensify, and new supplies become more costly. This paper analyzes the roles and benefits of conjunctive use of surface water and groundwater and market-based water transfers in an integrated regional water system where agricultural and urban water users coordinate supply and demand management based on supply reliability and economic values of water. Agricultural users optimize land and water use for annual and perennial crops to maximize farm income, while urban users choose short-term and long-term water conservation actions to maintain reliability and minimize costs. The temporal order of these decisions is represented in a two-stage optimization that maximizes the net expected benefits of crop production, urban conservation and water management including conjunctive use and water transfers. Long-term decisions are in the first stage and short-term decisions are in a second stage based on probabilities of water availability events. Analytical and numerical analyses are made. Results show that conjunctive use and water transfers can substantially stabilize farmer's income and reduce system costs by reducing expensive urban water conservation or construction. Water transfers can equalize marginal values of water across users, while conjunctive use minimizes water marginal value differences in time. Model results are useful for exploring the integration of different water demands and supplies through water transfers, conjunctive use, and conservation, providing valuable insights for improving system management.

  17. A facile and efficient strategy for the fabrication of porous linseed gum/cellulose superabsorbent hydrogels for water conservation.

    PubMed

    Zhang, Hao; Luan, Qian; Huang, Qingde; Tang, Hu; Huang, Fenghong; Li, Wenlin; Wan, Chuyun; Liu, Changsheng; Xu, Jiqu; Guo, Pingmei; Zhou, Qi

    2017-02-10

    The linseed gum/cellulose composite hydrogels were successfully fabricated by mixing cellulose and linseed gum solutions dissolved in the NaOH/urea aqueous system and cross-linked with epichlorohydrin. The morphology and structure of the composite hydrogels were investigated by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD) and thermogravimetric analysis (TGA). The swelling ratio and water retention properties were investigated. The results revealed that linseed gum mainly contributed to water adsorption, whereas the cellulose acted as a backbone to strengthen the porous structure. This work provided a simple way to prepare cellulose-based superabsorbent hydrogels, which could be potentially applied as an effective water conservation material in agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Water conservation and hydrological transitions in cities in the United States

    NASA Astrophysics Data System (ADS)

    Hornberger, George M.; Hess, David J.; Gilligan, Jonathan

    2015-06-01

    Cities across the world have had to diversify and expand their water supply systems in response to demand growth, groundwater depletion and pollution, and instability and inadequacy of regional surface freshwater sources. In the U.S., these problems plague not only the arid Western cities but increasingly also cities in the Eastern portions of the country. Although cities continue to seek out new sources of water via Promethean projects of long-distance supply systems, desalinization plants, and the recharge of aquifers with surface water, they also pursue water conservation because of its low cost and other benefits. We examine water conservation as a complex sociotechnical system comprising interactions of political, sociodemographic, economic, and hydroclimatological factors. We provide quantitative data on the factors that affect more and less advanced transitions in water conservation regimes, and we show that water stress and other hydrological data can only partially predict the transition. We also provide qualitative case studies to identify institutional and political barriers to more advanced water conservation regimes. This interdisciplinary, mixed methods approach typifies the need for knowledge that informs hydrologists about how their research may or may not be adopted by decision-makers.

  19. Toward sustainable water use in North China Plain - Scenario analysis of water conservation strategies in a changing climate

    NASA Astrophysics Data System (ADS)

    He, X.; Qin, H.; Refsgaard, J. C.; Zheng, C.

    2016-12-01

    North China Plain (NCP), situated in the continental semi-arid climate region, is one of the most densely populated regions in the world, and contributes to over 1/10 of the Gross Domestic Product (GDP) in China. NCP is traditionally a water scarce area where precipitation equals to or less than ET. In recent years, due to rapid population and economic growth, and subsequently significantly larger water demand, the water crisis in this region has deepened. The surface water resources has run dry except for a few canals and reservoirs, and thus the water consumption of NCP is almost entirely dependent on groundwater. It is estimated that the groundwater table has declined at the rate of about 1 m/year in the past decades; therefore, sustainable water use in the NCP is of critical importance. In the present study, we explore the scale of the water scarcity problem in NCP as well as the possible water saving strategies to alleviate the crisis from a modeling approach. Water demand is extremely difficult to estimate due to the lack of actual data. To solve this problem, we use a System Dynamic model, where the resulted data are then used as groundwater pumping in a physically based, distributed and integrated hydrological model. Five scenarios are developed to analyze different water management perspectives: 1) Business as usual, 2) Agricultural water saving, 3) Domestic and industrial water saving, 4) Managed aquifer recharge using water leftover from the South-to-North Water Diversion Project, and 5) a combination of the above mentioned measures. The hydrological model will predict the overall water balance and water at different hydrological components for the period 2020-2050. Under each scenario, our study also accounts for dry, medium, and wet climate conditions. The results indicate if the current tendency continues, groundwater table will keep declining at the rate of about 1 m/year. Each single conservation measure will not be able to solve the water crisis on

  20. Using Perceived Differences in Views of Agricultural Water Use to Inform Practice

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Taylor, Melissa R.; Lamm, Kevan W.

    2016-01-01

    Water use has become increasingly contentious as the population grows and water resources become scarcer. Recent media coverage of agricultural water use has brought negative attention potentially influencing public and decision makers' attitudes towards agriculture. Negative perceptions could result in uninformed decisions being made that impact…

  1. Measuring environmental efficiency of agricultural water use: a Luenberger environmental indicator.

    PubMed

    Azad, Md A S; Ancev, Tihomir

    2014-12-01

    Irrigated agriculture creates substantial environmental pressures by withdrawing large quantities of water, leaving rivers and wetlands empty and unable to support the valuable ecosystems that depend on the water resource. The key challenge facing society is that of balancing water extractions for agricultural production and other uses with provision of appropriate environmental flow to maintain healthy rivers and wetlands. Measuring tradeoffs between economic gain of water use in agriculture and its environmental pressures can contribute to constructing policy instruments for improved water resource management. The aim of this paper is to develop a modelling framework to measure these tradeoffs. Using a new approach - Luenberger environmental indicator - the study derives environmental efficiency scores for various types of irrigation enterprises across seventeen natural resource management regions within the Murray-Darling Basin, Australia. Findings show that there is a substantial variation in environmental performance of irrigation enterprises across the regions. Some enterprises were found to be relatively environmentally efficient in some regions, but they were not efficient in others. The environmental efficiency scores could be used as a guideline for formulating regional policy and strategy to achieve sustainable water use in the agricultural sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources.

  3. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    PubMed Central

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  4. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  5. From Waste to Wealth: Using Produced Water for Agriculture in Colorado

    NASA Astrophysics Data System (ADS)

    Dolan, F.; Hogue, T. S.

    2017-12-01

    According to estimates from the Colorado Water Plan, the state's population may double by 2050. Due to increasing demand, as much as 0.8 million irrigated acres may dry up statewide from agricultural to municipal and industrial transfers. To help mitigate this loss, new sources of water are being explored in Colorado. One such source may be produced water. Oil and gas production in 2016 alone produced over 300 million barrels of produced water. Currently, the most common method of disposal of produced water is deep well injection, which is costly and has been shown to cause induced seismicity. Treating this water to agricultural standards eliminates the need to dispose of this water and provides a new source of water. This research explores which counties in Colorado may be best suited to reusing produced water for agriculture based on a combined index of need, quality of produced water, and quantity of produced water. The volumetric impact of using produced water for agricultural needs is determined for the top six counties. Irrigation demand is obtained using evapotranspiration estimates from a range of methods, including remote sensing products and ground-based observations. The economic feasibility of treating produced water to irrigation standards is also determined using treatment costs found in the literature and disposal costs in each county. Finally, data from the IHS database is used to obtain the ratio between hydraulic fracturing fluid volumes and produced water volumes in each county. The results of this research will aid in the transition between viewing produced water as a waste product and using it as a tool to help secure water for the arid West.

  6. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  7. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  8. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... Standards § 431.156 Energy and water conservation standards and effective dates. Each CCW manufactured on or...

  10. Turning Minds On and Faucets Off: Water Conservation Education in Jordanian Schools.

    ERIC Educational Resources Information Center

    Middlestadt, Susan; Grieser, Mona; Hernandez, Orlando; Tubaishat, Khulood; Sanchack, Julie; Southwell, Brian; Schwartz, Reva

    2001-01-01

    An evaluation was conducted to measure the impact of a curriculum implemented through the Jordan Water Conservation Education Project. Examines the effect of recommending water conservation at the household level and the impact of using interactive teaching methods to promote conservation behaviors among students and their families. (Author/SAH)

  11. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... Standards § 431.156 Energy and water conservation standards and effective dates. (a) Each commercial clothes...

  12. 10 CFR 431.156 - Energy and water conservation standards and effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy and water conservation standards and effective dates. 431.156 Section 431.156 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... Standards § 431.156 Energy and water conservation standards and effective dates. (a) Each commercial clothes...

  13. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  14. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  15. Improvement of Soil and Water Conservation Outdoor Classrooms and Volunteers in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Lin, Y. H.; Huang, K. F.; Chan, H. C.

    2016-12-01

    In order to improve the knowledge and understanding of soil and water conservation, the Soil and Water Conservation Bureau, Taiwan sets up soil and water conservation outdoor classrooms and assigns volunteers for on-site commentating. There are 19 soil and water conservation outdoor classrooms and 483 volunteers. In order to intergate education resource and improve quality, the examination of outdoor classrooms and training of the volunteers were conducted. The training programs aimed to improve the standard of living, promote a general mood of voluntary service, and encourage the public to cultivate the value of hometown-treasuring and the sentiment of people-helping. The service system of volunteers was also organized through the training programs. The assessments of soil and water conservation outdoor classrooms were conducted through the on-site investigations. The improvement suggestions were then put forward according to the characteristics of the classrooms. The improvement contents were compiled for each outdoor classroom and there are five common suggestions depicted as follows: 1. the expectations of internationalization; 2. the issues of land leases; 3. improvement of traffic flow; 4. the format and information of explanation boards should be unified; and 5. the issues of facility maintaining. Key words: Soil and water conserveation, Volunteer, Outdoor classroom.

  16. Agricultural conservation planning framework: 1. Developing multipractice watershed planning scenarios and assessing nutrient reduction potential.

    PubMed

    Tomer, M D; Porter, S A; Boomer, K M B; James, D E; Kostel, J A; Helmers, M J; Isenhart, T M; McLellan, E

    2015-05-01

    Spatial data on soils, land use, and topography, combined with knowledge of conservation effectiveness, can be used to identify alternatives to reduce nutrient discharge from small (hydrologic unit code [HUC]12) watersheds. Databases comprising soil attributes, agricultural land use, and light detection and ranging-derived elevation models were developed for two glaciated midwestern HUC12 watersheds: Iowa's Beaver Creek watershed has an older dissected landscape, and Lime Creek in Illinois is young and less dissected. Subsurface drainage is common in both watersheds. We identified locations for conservation practices, including in-field practices (grassed waterways), edge-of-field practices (nutrient-removal wetlands, saturated buffers), and drainage-water management, by applying terrain analyses, geographic criteria, and cross-classifications to field- and watershed-scale geographic data. Cover crops were randomly distributed to fields without geographic prioritization. A set of alternative planning scenarios was developed to represent a variety of extents of implementation among these practices. The scenarios were assessed for nutrient reduction potential using a spreadsheet approach to calculate the average nutrient-removal efficiency required among the practices included in each scenario to achieve a 40% NO-N reduction. Results were evaluated in the context of the Iowa Nutrient Reduction Strategy, which reviewed nutrient-removal efficiencies of practices and established the 40% NO-N reduction as Iowa's target for Gulf of Mexico hypoxia mitigation by agriculture. In both test watersheds, planning scenarios that could potentially achieve the targeted NO-N reduction but remove <5% of cropland from production were identified. Cover crops and nutrient removal wetlands were common to these scenarios. This approach provides an interim technology to assist local watershed planning and could provide planning scenarios to evaluate using watershed simulation models. A set

  17. Water Wizards: School Program on Water Conservation for Third and Fourth Grade Levels.

    ERIC Educational Resources Information Center

    Massachusetts State Water Resources Authority, Boston.

    Water is precious. It is also easy to take for granted. Many people recognize that water is scarce in desert areas. but it is harder to realize that places like Massachusetts could face a shortage of pure drinking water. This manual provides teachers with curriculum resources to introduce concepts of water supply and water conservation to third…

  18. A Water "Atlas" Exercise with Conservation Students.

    ERIC Educational Resources Information Center

    Wije, Chand

    1992-01-01

    Describes how a water atlas can be used as a tool in conservation courses. Presents a three stage approach to a classroom exercise. Includes textbook study of a significance of water as a resource, student preparation of a list of local and state of Ohio environmental issues, and collection or creation of maps to create an atlas. (DK)

  19. Measuring urban water conservation policies: Toward a comprehensive index

    USGS Publications Warehouse

    Hess, David; Wold, Christopher; Worland, Scott C.; Hornberger, George M.

    2017-01-01

    This article (1) discusses existing efforts to measure water conservation policies (WCPs) in the United States (U.S.); (2) suggests general methodological guidelines for creating robust water conservation indices (WCIs); (3) presents a comprehensive template for coding WCPs; (4) introduces a summary index, the Vanderbilt Water Conservation Index (VWCI), which is derived from 79 WCP observations for 197 cities for the year 2015; and (5) compares the VWCI to WCP data extracted from the 2010 American Water Works Association (AWWA) Water and Wastewater Rates survey. Existing approaches to measuring urban WCPs in U.S. cities are limited because they consider only a portion of WCPs or they are restricted geographically. The VWCI consists of a more comprehensive set of 79 observations classified as residential, commercial/industrial, billing structure, drought plan, or general. Our comparison of the VWCI and AWWA survey responses indicate reasonable agreement (ρ = 0.76) between the two WCIs for 98 cities where the data overlap. The correlation suggests the AWWA survey responses can provide fairly robust longitudinal WCP information, but we argue the measurement of WCPs is still in its infancy, and our approach suggests strategies for improving existing methods.

  20. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  1. 76 FR 22785 - Wetland Conservation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Wetland Conservation AGENCY: Office of the Secretary, United States Department of Agriculture (USDA..., U.S. Department of Agriculture, Natural Resources Conservation Service, Room 6819, South Building, P... recordkeeping requirements subject to the Paperwork Reduction Act. Background Existing wetland conservation...

  2. Predicting compliance with an information-based residential outdoor water conservation program

    NASA Astrophysics Data System (ADS)

    Landon, Adam C.; Kyle, Gerard T.; Kaiser, Ronald A.

    2016-05-01

    Residential water conservation initiatives often involve some form of education or persuasion intended to change the attitudes and behaviors of residential consumers. However, the ability of these instruments to change attitudes toward conservation and their efficacy in affecting water use remains poorly understood. In this investigation the authors examine consumer attitudes toward complying with a persuasive water conservation program, the extent to which those attitudes predict compliance, and the influence of environmental contextual factors on outdoor water use. Results indicate that the persuasive program was successful in developing positive attitudes toward compliance, and that those attitudes predict water use. However, attitudinal variables explain a relatively small proportion of the variance in objectively measured water use behavior. Recommendations for policy are made stressing the importance of understanding both the effects of attitudes and environmental contextual factors in behavior change initiatives in the municipal water sector.

  3. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  4. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  5. 7 CFR 701.153 - Debris removal and water for livestock.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Debris removal and water for livestock. 701.153 Section 701.153 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Conservation Program § 701.153 Debris removal and water for livestock. Subject to the other eligibility...

  6. Analytical Bibliography for Water Supply and Conservation Techniques.

    DTIC Science & Technology

    1982-01-01

    effective due to rapidly increasing costs of water and wastewater services from centralized systems. The report may be used as a primary reference for...conservation kit. Each kit contained a toilet water dam, a plastic shower-head restrictor, and a packet of vegetable dye tablets to detect leaks from toilet...water in the 50 sub-basins of the North Atlantic Region (NAR) of the United States. The water-flow requirements (water demands) were disintegrated by

  7. Conservation biogeography of the Cerrado's wild edible plants under climate change: Linking biotic stability with agricultural expansion.

    PubMed

    de Oliveira, Guilherme; Lima-Ribeiro, Matheus Souza; Terribile, Levi Carina; Dobrovolski, Ricardo; Telles, Mariana Pires de Campos; Diniz-Filho, José Alexandre Felizola

    2015-06-01

    REMISE OF THE STUDY: Wild edible plants (WEPs) have an important cultural and economic role in human population worldwide. Human impacts are quickly converting natural habitats in agricultural, cattle ranch, and urbanized lands, putting native species on peril of risk of extinction, including some WEPs. Moreover, global climate changes also can pose another threat to species persistency. Here, we established conservation priorities for the Cerrado, a neotropical region in South America with high levels of plant endemism and vulnerability, aiming to assure long-term persistency of 16 most important WEPs. We evaluated these conservation priorities using a conservation biogeography framework using ecological patterns and process at a biogeographical scale to deal with species conservation features. We built ecological niche models for 16 WEPs from Cerrado in the neotropics using climate models for preindustrial, past (Last Glacial Maximum) and future (year 2080) time periods to establish climatically stable areas through time, finding refugias for these WEPs. We used a spatial prioritization algorithm based on the spatial pattern of irreplaceability across the neotropics, aiming to ensure the persistence of at least 25% of range size in climatically stable areas for each WEP, using agricultural models as constraints. The Southeast Cerrado was the most biotically stable and irreplaceable region for the WEPs compared with other areas across the neotropics. Our findings strongly suggest that the Southeast Cerrado should be considered a conservation priority, with new protected areas to be sustainably managed and restored, to guarantee the supply of cultural and ecosystem services provided from the Cerrado's WEPs. © 2015 Botanical Society of America, Inc.

  8. Effects of meteorological droughts on agricultural water resources in southern China

    Treesearch

    Houquan Lu; Yihua Wu; Yijun Li; Yongqiang Liu

    2017-01-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the...

  9. Establishing conservation buffers using precision information

    Treesearch

    Mike G. Dosskey; Dean E. Eisenhauer; Matthew J. Helmers

    2005-01-01

    Conservation buffers, such as filter strips and riparian forest buffers, are widely prescribed to improve and protect water quality in agricultural landscapes. These buffers intercept field runoff and retain some of its pollutant load before it reaches a waterway. A buffer typically is designed to have uniform width along a field margin and to intercept runoff that...

  10. 7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii) Wetland restoration and protection, and (iv) Wildlife habitat development and protection, (v) Or other... production flexibility contract, which is authorized by the Agricultural Marketing and Transition Act of 1996...

  11. 7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii) Wetland restoration and protection, and (iv) Wildlife habitat development and protection, (v) Or other... production flexibility contract, which is authorized by the Agricultural Marketing and Transition Act of 1996...

  12. 7 CFR 1468.4 - Establishing Conservation Farm Option (CFO) pilot project areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Conservation of soil, water, and related natural resources, (ii) Water quality protection or improvement, (iii) Wetland restoration and protection, and (iv) Wildlife habitat development and protection, (v) Or other... production flexibility contract, which is authorized by the Agricultural Marketing and Transition Act of 1996...

  13. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanlon, Edward; Capece, John

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agriculturalmore » land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.« less

  14. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    PubMed

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Low-Intensity Agricultural Landscapes in Transylvania Support High Butterfly Diversity: Implications for Conservation

    PubMed Central

    Loos, Jacqueline; Dorresteijn, Ine; Hanspach, Jan; Fust, Pascal; Rakosy, László; Fischer, Joern

    2014-01-01

    European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide

  16. Bridging the Divide: Challenges and Opportunities for Public Sector Agricultural Professionals Working with Amish and Mennonite Producers on Conservation.

    PubMed

    Brock, Caroline; Ulrich-Schad, Jessica D; Prokopy, Linda

    2018-05-01

    As Amish and Old Order and Conservative Mennonite (i.e., Plain) farmers increase their presence in the agricultural sector, it is crucial for public sector agricultural professionals to effectively work with them to mediate nonpoint source pollution and address issues like the hypoxic zone in the Gulf of Mexico. However, there is a dearth of research on how public sector agricultural professionals can better work with Plain producers on environmental management. There are also few training resources for those working with this key, yet hard to reach, population. Additionally, due to their religious doctrines, Plain communities strive to live apart from the "world" and may be discouraged from working with government entities and attending non-Plain people events. This study analyzes interview data from 23 Amish farmers in one region of Indiana and 18 public sector agricultural professionals from a variety of backgrounds and geographies in areas of the U.S. with heavy Plain populations. Public sector agricultural professionals identified some key agronomic challenges on Plain farms related to issues like poor pasture and manure management as well as socio-cultural challenges such as restrictions on electronic and phone communication. Educators should design outreach strategies that take into consideration that faith convictions and conservation concerns may vary greatly based on the specificities of the particular Plain church group. By better understanding this population and how to work with them, public sector agricultural professionals can more effectively work towards addressing environmental problems with this under-served group.

  17. Best Practices for Water Conservation and Efficiency as an Alternative for Water Supply Expansion

    EPA Pesticide Factsheets

    EPA released a document that provides water conservation and efficiency best practices for evaluating water supply projects. The document can help water utilities and federal and state governments carry out assessments of the potential for future

  18. Soil conservation applications with C-band SAR

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Brown, R. J.; Naunheimer, J.; Bedard, D.

    1992-01-01

    Soil conservation programs are becoming more important as the growing human population exerts greater pressure on this non-renewable resource. Indeed, soil degradation affects approximately 10 percent of Canada's agricultural land with an estimated loss of 6,000 hectares of topsoil annually from Ontario farmland alone. Soil loss not only affects agricultural productivity but also decreases water quality and can lead to siltation problems. Thus, there is a growing demand for soil conservation programs and a need to develop an effective monitoring system. Topography and soil type information can easily be handled within a geographic information system (GIS). Information about vegetative cover type and surface roughness, which both experience considerable temporal change, can be obtained from remote sensing techniques. For further development of the technology to produce an operational soil conservation monitoring system, an experiment was conducted in Oxford County, Ontario which investigated the separability of fall surface cover type using C-band Synthetic Aperture Radar (SAR) data.

  19. Intra-EU agricultural trade, virtual water flows and policy implications.

    PubMed

    Antonelli, M; Tamea, S; Yang, H

    2017-06-01

    The development of approaches to tackle the European Union (EU) water-related challenges and shift towards sustainable water management and use is one of the main objectives of Horizon 2020, the EU strategy to lead a smart, sustainable and inclusive growth. The EU is an increasingly water challenged area and is a major agricultural trader. As agricultural trade entails an exchange of water embodied in goods as a factor of production, this study investigates the region's water-food-trade nexus by analysing intra-regional virtual water trade (VWT) in agricultural products. The analysed period (1993-2011) comprises the enactment of the Water Framework Directive (WFD) in the year 2000. Aspects of the VWT that are relevant for the WFD are explored. The EU is a net importer of virtual water (VW) from the rest of the world, but intra-regional VWT represents 46% of total imports and 75% of total exports. Five countries account for 60% of total VW imports (Germany, France, Italy, The Netherlands, Belgium) and 65% of total VW exports (The Netherlands, France, Germany, Belgium and Spain). Intra-EU VWT more than doubled over the period considered, while trade with extra-EU countries did not show such a marked trend. In the same period, blue VWT increased significantly within the region and net import from the rest of the world slightly decreased. Water scarce countries, such as Spain and Italy, are major exporters of blue water in the region. The traded volumes of VW have been increasing almost monotonically over the years, and with a substantial increase after 2000. The overall trend in changes in VWT does not seem to be in accordance with the WFD goals. This study demonstrated that VWT analyses can help evaluate intertwining effects of water, agriculture and trade policies which are often made separately in respective sectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes

    USDA-ARS?s Scientific Manuscript database

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  1. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    USGS Publications Warehouse

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  2. Improving Water Quality With Conservation Buffers

    NASA Astrophysics Data System (ADS)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  3. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored

  4. Arid Green Infrastructure for Water Control and Conservation ...

    EPA Pesticide Factsheets

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  5. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the event of a drought or other water shortage condition. Contingency plans of public authorities or... including emergency conservation measures to be instituted in the event of a drought or other water shortage...

  6. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the event of a drought or other water shortage condition. Contingency plans of public authorities or... including emergency conservation measures to be instituted in the event of a drought or other water shortage...

  7. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the event of a drought or other water shortage condition. Contingency plans of public authorities or... including emergency conservation measures to be instituted in the event of a drought or other water shortage...

  8. At-grade stabilization structure impact on surface water quality of an agricultural watershed.

    PubMed

    Minks, Kyle R; Ruark, Matthew D; Lowery, Birl; Madison, Fred W; Frame, Dennis; Stuntebeck, Todd D; Komiskey, Matthew J; Kraft, George J

    2015-04-15

    Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Agricultural Energy Practices. Agriculture Energy.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with agricultural energy practices. Its objective is for the student to be able to discuss energy use and conservation of resources in the production of agricultural products. Some topics covered are basic uses of direct energy in…

  10. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  11. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  12. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    USGS Publications Warehouse

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  13. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America.

    PubMed

    Dotta, G; Phalan, B; Silva, T W; Green, R; Balmford, A

    2016-06-01

    Globally, agriculture is the greatest source of threat to biodiversity, through both ongoing conversion of natural habitat and intensification of existing farmland. Land sparing and land sharing have been suggested as alternative approaches to reconcile this threat with the need for land to produce food. To examine which approach holds most promise for grassland species, we examined how bird population densities changed with farm yield (production per unit area) in the Campos of Brazil and Uruguay. We obtained information on biodiversity and crop yields from 24 sites that differed in agricultural yield. Density-yield functions were fitted for 121 bird species to describe the response of population densities to increasing farm yield, measured in terms of both food energy and profit. We categorized individual species according to how their population changed across the yield gradient as being positively or negatively affected by farming and according to whether the species' total population size was greater under land-sparing, land-sharing, or an intermediate strategy. Irrespective of the yield, most species were negatively affected by farming. Increasing yields reduced densities of approximately 80% of bird species. We estimated land sparing would result in larger populations than other sorts of strategies for 67% to 70% of negatively affected species, given current production levels, including three threatened species. This suggests that increasing yields in some areas while reducing grazing to low levels elsewhere may be the best option for bird conservation in these grasslands. Implementing such an approach would require conservation and production policies to be explicitly linked to support yield increases in farmed areas and concurrently guarantee that larger areas of lightly grazed natural grasslands are set aside for conservation. © 2015 Society for Conservation Biology.

  14. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  15. Structurally conserved water molecules in ribonuclease T1.

    PubMed

    Malin, R; Zielenkiewicz, P; Saenger, W

    1991-03-15

    In the high resolution (1.7-1.9 A) crystal structures of ribonuclease T1 (RNase T1) in complex with guanosine, guanosine 2'-phosphate, guanylyl 2',5'-guanosine, and vanadate, there are 30 water sites in nearly identical (+/- 1 A) positions that are considered conserved. One water is tightly bound to Asp76(O delta), Thr93(O gamma), Cys6(O), and Asn9(N); another bridges two loops by hydrogen-bonding to Tyr68(O eta) and to Ser35(N), Asn36(N); a loop structure is stabilized by two waters coordinated to Gly31(O) and His27(N delta), and by water bound to cis-Pro39(O). Most notable is a hydrogen-bonded chain of 10 water molecules. Waters 1-5 of this chain are inaccessible to solvent, are anchored at Trp59(N), and stitch together the loop formed by segments 60-68; waters 5-8 coordinate to Ca2+, and waters 9 and 10 hydrogen-bond to N-terminal side chains of the alpha-helix. The water chain and two conserved water molecules are bound to amino acids adjacent to the active site residues His40, Glu58, Arg77, and His92; they are probably involved in maintaining their spatial orientation required for catalysis. Water sites must be considered in genetic engineering; the mutation Trp59Tyr, which probably influences the 10-water chain, doubles the catalytic activity of RNase T1.

  16. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  17. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a

  18. Sociohydrological Impacts of Water Conservation Under Anthropogenic Drought in Austin, TX (USA)

    NASA Astrophysics Data System (ADS)

    Breyer, Betsy; Zipper, Samuel C.; Qiu, Jiangxiao

    2018-04-01

    Municipal water providers increasingly respond to drought by implementing outdoor water use restrictions to reduce urban water withdrawals and maintain water availability. However, restricting urban outdoor water use to support watershed-scale drought resilience may generate unanticipated cross-scale interactions, for example, by altering drought response and recovery in urban vegetation or urban streamflow. Despite this, urban water conservation is rarely conceptualized or modeled as endogenous to the water cycle. Here we investigate cross-scale interactions among urban water conservation and water availability, water use, and sociohydrological response in Austin, TX (USA) during a recent anthropogenic (human-influenced) drought. Multiscalar statistical analyses demonstrated that outdoor water conservation for reservoir management at the municipal scale produced responses that can cascade both "upward" from the city to the watershed (e.g., decoupling streamflow patterns upstream and downstream of Austin at the watershed scale) and "downward" to exert heterogeneous effects within the city (e.g., redistributing water along a socioeconomic gradient at submunicipal scales, with effects on terrestrial and aquatic ecosystems). We suggest that adapting to anthropogenic drought through irrigation curtailment requires sustained engagement between hydrology and social sciences to integrate socioeconomic status and political feedbacks within and among irrigator groups into the water cycle. Findings from this cross-disciplinary study highlight the importance of a multiscalar and spatially explicit perspectives in urban sociohydrology research to uncover how water conservation as adaptation to anthropogenic drought links hydrological processes with issues of socioeconomic inequality and spatiotemporal scale in the Anthropocene.

  19. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  20. Smart Water Conservation System for Irrigated Landscape

    DTIC Science & Technology

    2016-05-01

    purple pipe indicating reuse water) and properly labeled “not for human consumption”; • Do not connect rainwater overflow discharge to sanitary sewer...Report Smart Water Conservation System 75 May 2016 Condensate Capture If redirecting condensate from sanitary sewer, ensure sewer gases are managed...the spring/early summer to determine optimum irrigation safety factor. Irrigate at night or early morning. Set soak and cycle for clay soils. ET

  1. Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis

    NASA Astrophysics Data System (ADS)

    Nikouei, Alireza; Zibaei, Mansour; Ward, Frank A.

    2012-09-01

    SummaryPreserving natural wetlands is a growing challenge as the world faces increased demand for water. Drought, climate change and growing demands by users aggravate the issue. The conflict between irrigated agriculture and wetland services presents a classic case of competition. This paper examines an institutional mechanism that offers an incentive to farmers to adopt water conservation measures, which in turn could reduce overall water use in irrigated agriculture within a selected basin. Reduced water demands could provide the additional water needed for wetland preservation. We present an analytical empirical model implemented through the development of an integrated basin framework, in which least-cost measures for securing environmental flows to sustain wetlands are examined for the Zayandeh-Rud River Basin of central Iran. To test this idea, two policies - one with and one without an incentive - are analyzed: (a) reduced agricultural diversions without a water conservation subsidy, and (b) reduced agricultural diversions with a water conservation subsidy. The policies are evaluated against a background of two alternative water supply scenarios over a 10-year period. Results reveal that a water conservation subsidy can provide incentives for farmers to shift out of flood irrigation and bring more land into production by adopting water-saving irrigation technologies. The policy increases crop yields, raises profitability of farming, and increases the shadow price of water. Although the conservation subsidy policy incurs a financial cost to the taxpayer, it could be politically and economically attractive for both irrigators and environmental stakeholders. Results open the door for further examination of policy measures to preserve wetlands.

  2. Regional estimates of ecological services derived from U.S. Department of Agriculture conservation programs in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Faulkner, Stephen P.; Baldwin, Michael J.; Barrow, Wylie C.; Waddle, Hardin; Keeland, Bobby D.; Walls, Susan C.; James, Dale; Moorman, Tom

    2010-01-01

    The degree to which these conservation practices can restore ecosystem functions and services is not well known. This project was initiated to quantify existing ecological services derived from USDA conservation practices in the MAV as part of the USDA Conservation Effects Assessment Project, Wetlands Component (CEAP-Wetlands). The U.S. Geological Survey (USGS), in collaboration with the USDA Natural Resources Conservation Service, the USDA Farm Service Agency, the U.S. Fish and Wildlife Service, and Ducks Unlimited, collected data on soils, vegetation, nitrogen cycling, migratory birds, and amphibians from 88 different sites between 2006 and 2008. Results from restored WRP sites were compared to baseline data from active agricultural cropland (AG) to evaluate changes in ecosystem services.

  3. Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation.

    PubMed

    Medellín-Azuara, Josué; Harou, Julien J; Howitt, Richard E

    2010-11-01

    Given the high proportion of water used for agriculture in certain regions, the economic value of agricultural water can be an important tool for water management and policy development. This value is quantified using economic demand curves for irrigation water. Such demand functions show the incremental contribution of water to agricultural production. Water demand curves are estimated using econometric or optimisation techniques. Calibrated agricultural optimisation models allow the derivation of demand curves using smaller datasets than econometric models. This paper introduces these subject areas then explores the effect of spatial aggregation (upscaling) on the valuation of water for irrigated agriculture. A case study from the Rio Grande-Rio Bravo Basin in North Mexico investigates differences in valuation at farm and regional aggregated levels under four scenarios: technological change, warm-dry climate change, changes in agricultural commodity prices, and water costs for agriculture. The scenarios consider changes due to external shocks or new policies. Positive mathematical programming (PMP), a calibrated optimisation method, is the deductive valuation method used. An exponential cost function is compared to the quadratic cost functions typically used in PMP. Results indicate that the economic value of water at the farm level and the regionally aggregated level are similar, but that the variability and distributional effects of each scenario are affected by aggregation. Moderately aggregated agricultural production models are effective at capturing average-farm adaptation to policy changes and external shocks. Farm-level models best reveal the distribution of scenario impacts. Copyright © 2009 Elsevier B.V. All rights reserved.

  4. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.

    PubMed

    Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S

    2003-10-01

    The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the

  6. A hybrid Bayesian network approach for trade-offs between environmental flows and agricultural water using dynamic discretization

    NASA Astrophysics Data System (ADS)

    Xue, Jie; Gui, Dongwei; Lei, Jiaqiang; Sun, Huaiwei; Zeng, Fanjiang; Feng, Xinlong

    2017-12-01

    Agriculture and the eco-environment are increasingly competing for water. The extension of intensive farmland for ensuring food security has resulted in excessive water exploitation by agriculture. Consequently, this has led to a lack of water supply in natural ecosystems. This paper proposes a trade-off framework to coordinate the water-use conflict between agriculture and the eco-environment, based on economic compensation for irrigation stakeholders. A hybrid Bayesian network (HBN) is developed to implement the framework, including: (a) agricultural water shortage assessments after meeting environmental flows; (b) water-use tradeoff analysis between agricultural irrigation and environmental flows using the HBN; and (c) quantification of the agricultural economic compensation for different irrigation stakeholders. The constructed HBN is computed by dynamic discretization, which is a more robust and accurate propagation algorithm than general static discretization. A case study of the Qira oasis area in Northwest China demonstrates that the water trade-off based on economic compensation depends on the available water supply and environmental flows at different levels. Agricultural irrigation water extracted for grain crops should be preferentially guaranteed to ensure food security, in spite of higher economic compensation in other cash crops' irrigation for water coordination. Updating water-saving engineering and adopting drip irrigation technology in agricultural facilities after satisfying environmental flows would greatly relieve agricultural water shortage and save the economic compensation for different irrigation stakeholders. The approach in this study can be easily applied in water-stressed areas worldwide for dealing with water competition.

  7. Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan.

    PubMed

    Ahmed, Toqeer; Scholz, Miklas; Al-Faraj, Furat; Niaz, Wajeeha

    2016-10-27

    Water-related impacts due to change in climatic conditions ranging from water scarcity to intense floods and storms are increasing in developing countries like Pakistan. Water quality and waterborne diseases like hepatitis, cholera, typhoid, malaria and dengue fever are increasing due to chaotic urbanization, industrialization, poor hygienic conditions, and inappropriate water management. The morbidity rate is high due to lack of health care facilities, especially in developing countries. Organizations linked to the Government of Pakistan (e.g., Ministry of Environment, Ministry of Climate Change, Planning and Development, Ministry of Forest, Irrigation and Public Health, Pakistan Meteorological Department, National Disaster Management, Pakistan Agricultural Research Centre, Pakistan Council for Research in Water Resources, and Global Change Impact Study Centre), United Nation organizations, provincial government departments, non-governmental organizations (e.g., Global Facility and Disaster Reduction), research centers linked to universities, and international organizations (International Institute for Sustainable Development, Food and Agriculture, Global Climate Fund and World Bank) are trying to reduce the water-related impacts of climate change, but due to lack of public awareness and health care infrastructure, the death rate is steadily increasing. This paper critically reviews the scientific studies and reports both at national and at international level benefiting generalists concerned with environmental and public health challenges. The article underlines the urgent need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health. Novel solutions and bioremediation methods have been presented to control environmental pollution and to promote awareness among the scientific community. The focus is on diverse strategies to handle

  8. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins

    NASA Astrophysics Data System (ADS)

    Poornima, C. S.; Dean, P. M.

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of `binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  9. Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region

    NASA Astrophysics Data System (ADS)

    Al-Ghobari, Hussein M.; Mohammad, Fawzi S.

    2011-12-01

    Intelligent irrigation technologies have been developed in recent years to apply irrigation to turf and landscape plants. These technologies are an evapotranspiration (ET)-based irrigation controller, which calculates ET for local microclimate. Then, the controller creates a program for loading and communicating automatically with drip or sprinkler system controllers. The main objective of this study was to evaluate the effectiveness of the new ET sensors in ability to irrigate agricultural crops and to conserve water use for crop in arid climatic conditions. This paper presents the case for water conservation using intelligent irrigation system (IIS) application technology. The IIS for automating irrigation scheduling was implemented and tested with sprinkle and drip irrigation systems to irrigate wheat and tomato crops. Another irrigation scheduling system was also installed and operated as another treatment, which is based on weather data that retrieved from an automatic weather station. This irrigation control system was running in parallel to the former system (IIS) to be control experiments for comparison purposes. However, this article discusses the implementation of IIS, its installation, testing and calibration of various components. The experiments conducted for one growing season 2009-2010 and the results were represented and discussed herein. Data from all plots were analyzed, which were including soil water status, water consumption, and crop yield. The initial results indicate that up to 25% water saving by intelligent irrigation compared to control method, while maintaining competing yield. Results show that the crop evapotranspiration values for control experiments were higher than that of ET-System in consistent trend during whole growth season. The analysis points out that the values of the two treatments were somewhat close to each other's only in the initial development stages. Generally, the ET-System, with some modification was precise in

  10. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-04

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth.

  11. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Agricultural Green And Blue Water Uses And Their Impact on the Water System in China

    NASA Astrophysics Data System (ADS)

    Mu, M.; Tang, Q.; Cai, X.

    2016-12-01

    Both agricultural green and blue water uses in China were estimated using the H08 global hydrological model. The blue water use here refers to the water withdrawn for irrigation in irrigated croplands from rivers, reservoirs and aquifers. The green water use refers to precipitation directly supplied to croplands and natural ecosystems. The H08 model was used to trace water sources of crop water use. Total evapotranspiration of varied crops, namely barley, corn, rice, soy, and wheat, was divided into blue and green water resources based on their origins. Model results indicated that in southern China, green water, representing 78% of crop water use, was found to be a dominant component in the total crop water use, whereas in northern China, blue water occupied about half (52%) of total crop water use. The Mann-Kendall test was utilized to analyze the trends of water uses. At the national level, green water use experienced a significant decrease during 1981-2000 and then a significant increase in 2001-2010, while blue water use experienced a slight increase during 1981-2000 and then a significant decrease in 2001-2010. Monthly mean green and blue water uses at the national level showed that the demand for blue water reached peak during May, although the peak came earlier or later in some individual basins. Some variables including green and blue water uses were mapped to observe nonnegligible spatial heterogeneity. Impact analysis showed that almost one third of runoff volumes was withdrawn as agricultural blue water in most arid and semi-arid river basins during crop growing season (generally from March to August in China), suggesting that water demand for food production has imposed great pressure on blue water resources in these regions. The situation got worse if the study period was narrowed to one certain month, when river channels in some basins, e.g. Hai River basin, would run dry if the demand for irrigation was fully satisfied. Our research provides insight

  13. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  14. Climate risks to agriculture in Amazon arc-of-deforestation create incentives to conserve local forests

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Fleck, L. C.; Cohn, A.; Abrahão, G. M.; Brando, P. M.; Coe, M. T.; Fu, R.; Lawrence, D.; Pires, G. F.; Pousa, R.; Soares, B. Filh

    2017-12-01

    Intensification of agriculture is a necessary condition for sustainably meeting global food demands without increasing deforestation. In southern Amazonia, a region that produces 7% of the world's soybeans, double cropping has become the preferred system for the intensification of agriculture, which is essentially rainfed. Rainy season is shortening in the region, due to climate change, and is predicted to become shorter in the future. The climate risks are worsened by the region's land use change. This increases the climate risk and even threat the intensive double-cropping agriculture that is currently practiced in that region, with potential perverse consequences to everyone. Repeated or widespread climate-driven crop failure could prompt a return to the single cropping system or even cropland abandonment. A shift to single cropping could decrease the agriculture output in this critical region, push up global food prices and heighten incentives to convert regional ecosystems to agricultural land. Further agricultural expansion into ecosystems would increase climate change. The more forest lost, the higher the climate risk will be, due to climate feedbacks from deforestation itself, triggering a spiraling decline of the rainforests and rainfall over southern Amazonia and other critical agricultural regions known to depend on the forests of Amazonia for rainfall. We show that there are economic and social reasons to preserve the forests, and it is in the best interest of the agribusiness, local governments and people, to conserve the remaining forests. The adaptation and mitigation needs, and policies to reconcile production and protection while mitigating supply chains risks are also discussed.

  15. Studies by the U.S. Geological Survey on sources, transport, and fate of agricultural chemicals

    USGS Publications Warehouse

    Capel, Paul D.; Hamilton, Pixie A.; Erwin, Martha L.

    2004-01-01

    Information from these studies will help with decision-making related to chemical use, conservation, and other farming practices that are used to reduce runoff of agricultural chemicals and sediment from fields. This information also will benefit the U.S. Environmental Protection Agency, the Department of Agriculture, local and regional water managers, and agricultural chemical manufacturers who are involved in managing chemical use and pesticide registration.

  16. 77 FR 2975 - Roosevelt Water Conservation District; Notice of Termination of Exemption by Implied Surrender...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    .... Project No.: 11572-001. c. Date Initiated: January 9, 2012. d. Exemptee: Roosevelt Water Conservation District. e. Name and Location of Project: The Roosevelt Water Conservation District Conduit Hydropower..., Roosevelt Water Conservation District, 2344 S. Higley Road, Gilbert, AZ 82595-4794, (480) 988-9586. [[Page...

  17. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  18. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  19. Climate change, water, and agriculture: a study of two contrasting regions

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.; Zhang, X.

    2009-12-01

    We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on

  20. Evaluation of potential water conservation using site-specific irrigation

    USDA-ARS?s Scientific Manuscript database

    With the advent of site-specific variable-rate irrigation (VRI) systems, irrigation can be spatially managed within sub-field-sized zones. Spatial irrigation management can optimize spatial water use efficiency and may conserve water. Spatial VRI systems are currently being managed by consultants ...

  1. Extending the Concept of Precision Conservation to Restoration of Rivers and Streams

    USDA-ARS?s Scientific Manuscript database

    Comprehensive water quality management in watersheds involves management of upland and riparian environments. Efforts to optimize environmental performance of agriculture through field-scale precision conservation should be complemented with riparian restorations to enhance capacities to assimilate ...

  2. Water footprint as an indicator of agricultural productivity in African countries

    NASA Astrophysics Data System (ADS)

    Chico Zamanillo, Daniel; Zhang, Guoping; Mathews, Ruth

    2017-04-01

    Sub-Saharan Africa is one of the regions with the largest scope for improved agricultural development that would contribute to global food security while respecting environmental boundaries. More importantly, undernourishment is a challenge for many African countries and needs to be addressed to achieve the 2030 Agenda for Sustainable Development. This study was conducted to support the Netherlands Ministry of Foreign Affair's Inclusive Green Growth aim of increasing water use efficiency by 25% in Dutch financed projects. A water footprint profile was developed for 7 Sub-Saharan countries; Benin, Ethiopia, Ghana, Kenya, Mali, Mozambique and Rwanda. The profiles provide an overview of water use from the perspective of the goods produced within the country, the consumption of goods, in particular agricultural crops, whether these goods are produced domestically or imported from other countries and the level of blue water scarcity experienced in the country. Across all countries, key food crops such as maize, and sorghum have low water productivity relative to the global water footprint benchmark. Export crops such as tea in Kenya or cocoa in Ghana show a good performance over global production. Furthermore, the water footprint of crops over the period 2006-2013 was compared to data from the period 1996-2005. Changes in yield and the resulting changes in the water footprint were assessed for both food and export crops. Yields in food crops improved in some countries, and in some years, but not consistently across all countries and years. The greatest gains in water productivity were in key export crops. The results provide insights into whether improvements have been made in water productivity in recent years and through comparison with the global water footprint benchmark, remaining opportunities for further gains in water productivity were identified. Going forward, policies that will enhance further improvement in water productivity and support greater food and

  3. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  4. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  5. Rapid Assessment of Ecosystem Services Provided by Two Mineral Extraction Sites Restored for Nature Conservation in an Agricultural Landscape in Eastern England

    PubMed Central

    Blaen, Phillip J.; Jia, Li; Peh, Kelvin S.-H.; Field, Rob H.; Balmford, Andrew; MacDonald, Michael A.; Bradbury, Richard B.

    2015-01-01

    Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being. PMID:25894293

  6. Rapid assessment of ecosystem services provided by two mineral extraction sites restored for nature conservation in an agricultural landscape in eastern England.

    PubMed

    Blaen, Phillip J; Jia, Li; Peh, Kelvin S-H; Field, Rob H; Balmford, Andrew; MacDonald, Michael A; Bradbury, Richard B

    2015-01-01

    Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being.

  7. Optimization of Water Resources and Agricultural Activities for Economic Benefit in Colorado

    NASA Astrophysics Data System (ADS)

    LIM, J.; Lall, U.

    2017-12-01

    The limited water resources available for irrigation are a key constraint for the important agricultural sector of Colorado's economy. As climate change and groundwater depletion reshape these resources, it is essential to understand the economic potential of water resources under different agricultural production practices. This study uses a linear programming optimization at the county spatial scale and annual temporal scales to study the optimal allocation of water withdrawal and crop choices. The model, AWASH, reflects streamflow constraints between different extraction points, six field crops, and a distinct irrigation decision for maize and wheat. The optimized decision variables, under different environmental, social, economic, and physical constraints, provide long-term solutions for ground and surface water distribution and for land use decisions so that the state can generate the maximum net revenue. Colorado, one of the largest agricultural producers, is tested as a case study and the sensitivity on water price and on climate variability is explored.

  8. Conservative water management in the widespread conifer genus Callitris

    PubMed Central

    Brodribb, Timothy J.; Bowman, David M. J. S.; Grierson, Pauline F.; Murphy, Brett P.; Nichols, Scott; Prior, Lynda D.

    2013-01-01

    Water management by woody species encompasses characters involved in seeking, transporting and evaporating water. Examples of adaptation of individual characters to water availability are common, but little is known about the adaptability of whole-plant water management. Here we use plant hydration and growth to examine variation in whole-plant water management characteristics within the conifer genus Callitris. Using four species that cover the environmental extremes in the Australian continent, we compare seasonal patterns of growth and hydration over 2 years to determine the extent to which species exhibit adaptive variation to the local environment. Detailed measurements of gas exchange in one species are used to produce a hydraulic model to predict changes in leaf water potential throughout the year. This same model, when applied to the remaining three species, provided a close representation of the measured patterns of water potential gradient at all sites, suggesting strong conservation in water management, a conclusion supported by carbon and oxygen isotope measurements in Callitris from across the continent. We conclude that despite its large range in terms of rainfall, Callitris has a conservative water management strategy, characterized by a high sensitivity of growth to rainfall and a delayed (anisohydric) closure of stomata during soil drying.

  9. The Role of Communicative Feedback in Successful Water Conservation Programs

    ERIC Educational Resources Information Center

    Tom, Gail; Tauchus, Gail; Williams, Jared; Tong, Stephanie

    2011-01-01

    The Sacramento County Water Agency has made available 2 water conservation programs to its customers. The Data Logger Program attaches the Meter Master Model 100 EL data logger to the customer's water meter for 1 week and provides a detailed report of water usage from each fixture. The Water Wise House Call Program provides findings and…

  10. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    NASA Astrophysics Data System (ADS)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  11. Historical perspectives and recommendations for revision of Agricultural Handbook 296

    USDA-ARS?s Scientific Manuscript database

    Major Land Resource Areas (MLRAs) are designed to support the development and coordination of soil and water conservation programs by the NRCS, with the primary document describing MLRA being Agricultural Handbook #296 (1965, 1978, 1981, and 2006). While the most recent edition of the handbook was r...

  12. Evaluating the effect of conservation motivations on residential water demand.

    PubMed

    Maas, Alexander; Goemans, Christopher; Manning, Dale; Kroll, Stephan; Arabi, Mazdak; Rodriguez-McGoffin, Mariana

    2017-07-01

    Utilities and water suppliers in the southwestern United States have used education and conservation programs over the past two decades in an attempt to ameliorate the pressures of increasing water scarcity. This paper builds on a long history of water demand and environmental psychology literature and attempts to answer a simple question: do households primarily motivated by environmental and social (E&S) considerations consume water differently than households motivated primarily by cost and convenience (C&C)? We find that E&S consumers use less water than C&C consumers on average. We also find that there is no statistical difference between E&S and C&C consumers in their consumption responses to changing prices, temperature, and precipitation. This implies that targeting future conservation efforts to self-reported consumer groups may not improve policy effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    NASA Astrophysics Data System (ADS)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  14. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    NASA Astrophysics Data System (ADS)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  15. Public versus private: does it matter for water conservation? Insights from California.

    PubMed

    Kallis, Giorgos; Ray, Isha; Fulton, Julian; McMahon, James E

    2010-01-01

    This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California's history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California's public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private.

  16. Public Versus Private: Does It Matter for Water Conservation? Insights from California

    NASA Astrophysics Data System (ADS)

    Kallis, Giorgos; Ray, Isha; Fulton, Julian; McMahon, James E.

    2010-01-01

    This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California’s history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California’s public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private.

  17. Consuming the forest in an environment of crisis: nature tourism, forest conservation and neoliberal agriculture in south India.

    PubMed

    Münster, Daniel; Münster, Ursula

    2012-01-01

    This article engages ethnographically with the neoliberalization of nature in the spheres of tourism, conservation and agriculture. Drawing on a case study of Wayanad district, Kerala, the article explores a number of themes. First, it shows how a boom in domestic nature tourism is currently transforming Wayanad into a landscape for tourist consumption. Second, it examines how tourism in Wayanad articulates with projects of neoliberalizing forest and wildlife conservation and with their contestations by subaltern groups. Third, it argues that the contemporary commodification of nature in tourism and conservation is intimately related to earlier processes of commodifying nature in agrarian capitalism. Since independence, forest land has been violently appropriated for intensive cash-cropping. Capitalist agrarian change has transformed land into a (fictitious) commodity and produced a fragile and contested frontier of agriculture and wildlife. When agrarian capitalism reached its ecological limits and entered a crisis of accumulation, farming became increasingly speculative, exploring new modes of accumulation in out-of-state ginger cultivation. In this scenario nature and wildlife tourism emerges as a new prospect for accumulation in a post-agrarian economy. The neoliberalization of nature in Wayanad, the authors argue, is a process driven less by new modes of regulation than by the agrarian crisis and new modes of speculative farming.

  18. Community Based Educational Model on Water Conservation Program

    NASA Astrophysics Data System (ADS)

    Sudiajeng, L.; Parwita, I. G. L.; Wiraga, I. W.; Mudhina, M.

    2018-01-01

    The previous research showed that there were indicators of water crisis in the northern and eastern part of Denpasar city and most of coastal area experienced on seawater intrusion. The recommended water conservation programs were rainwater harvesting and educate the community to develop a water saving and environmentally conscious culture. This research was conducted to built the community based educational model on water conservation program through ergonomics SHIP approach which placed the human aspect as the first consideration, besides the economic and technically aspects. The stakeholders involved in the program started from the problem analyses to the implementation and the maintenance as well. The model was built through three main steps, included determination of accepted design; building the recharge wells by involving local communities; guidance and assistance in developing a water saving and environmentally conscious culture for early childhood, elementary and junior high school students, community and industry. The program was implemented based on the “TRIHITA KARANA” concept, which means the relationship between human to God, human-to-human, and human to environment. Through the development of the model, it is expected to grow a sense of belonging and awareness from the community to maintain the sustainability of the program.

  19. 7 CFR 1469.8 - Conservation practices and activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Conservation practices and activities. 1469.8 Section 1469.8 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION SECURITY PROGRAM...

  20. Agricultural Trends and Resource Conservation: Implications and Issues. A Symposium Proceedings (Washington, D.C., November 3-5, 1986).

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of this paper is to highlight some of the most significant trends likely to affect agricultural resource conservation activities, to discuss their significance to policy development and program management and implementation, and to make policy and program recommendations. In November 1986, 25 representatives from academia, farming…

  1. Agricultural fields, Khartoum, Sudan, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This herringbone pattern of irrigated agricultural fields near Khartoum, Sudan (14.5N, 33.5E) is very distinctive in both size and shape. The region contains thousands of these rectangular fields bounded by canals which carry water from both the White and Blue Nile Rivers. A crop rotation system is used so that some fields are in cotton, millit, sorghum or fallow to conserve moisture and control weeds and insects. See also STS049-96-003.

  2. Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan

    PubMed Central

    Ahmed, Toqeer; Scholz, Miklas; Al-Faraj, Furat; Niaz, Wajeeha

    2016-01-01

    Water-related impacts due to change in climatic conditions ranging from water scarcity to intense floods and storms are increasing in developing countries like Pakistan. Water quality and waterborne diseases like hepatitis, cholera, typhoid, malaria and dengue fever are increasing due to chaotic urbanization, industrialization, poor hygienic conditions, and inappropriate water management. The morbidity rate is high due to lack of health care facilities, especially in developing countries. Organizations linked to the Government of Pakistan (e.g., Ministry of Environment, Ministry of Climate Change, Planning and Development, Ministry of Forest, Irrigation and Public Health, Pakistan Meteorological Department, National Disaster Management, Pakistan Agricultural Research Centre, Pakistan Council for Research in Water Resources, and Global Change Impact Study Centre), United Nation organizations, provincial government departments, non-governmental organizations (e.g., Global Facility and Disaster Reduction), research centers linked to universities, and international organizations (International Institute for Sustainable Development, Food and Agriculture, Global Climate Fund and World Bank) are trying to reduce the water-related impacts of climate change, but due to lack of public awareness and health care infrastructure, the death rate is steadily increasing. This paper critically reviews the scientific studies and reports both at national and at international level benefiting generalists concerned with environmental and public health challenges. The article underlines the urgent need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health. Novel solutions and bioremediation methods have been presented to control environmental pollution and to promote awareness among the scientific community. The focus is on diverse strategies to handle

  3. [Challenges and countermeasures for water conservancy combined with schistosomiasis prevention and control in China in new era].

    PubMed

    Jia-Sheng, Wang; Jin-You, Lu; Feng-Yang, Min; Kong-Xian, Zhu

    2017-04-27

    The spread of schistosomiasis seriously threaten the health of people and hinder the economic and social development in China. The water conservancy combined with schistosomiasis prevention and control effectively controlled the spread of schistosomiasis by controlling the spread of Oncomelania hupensis , the only intermediate host of Schistosoma japonicum . This paper reviews the evolution of the strategy of schistosomiasis prevention and control in China and points out the historical role of water conservancy combined with schistosomiasis prevention and control. Furthermore, this article analyzes the problems and challenges of water conservancy combined with schistosomiasis prevention and control in the new period. In response to the challenges, the new strategy of water conservancy combined with schistosomiasis prevention and control is put forward, including: developing the research of the new strategy of water conservancy combined with schistosomiasis prevention and control, enhancing the research of water conservancy technology combined with schistosomiasis prevention and control, improving the efficiency and applicability of water conservancy projects combined with schistosomiasis prevention and control, strengthening the guidance of water conservancy technology combined with schistosomiasis prevention and control, and perfecting the evaluation system.

  4. The Importance of Water Conservation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2012-12-01

    The population of United States has more than doubled over the past 50 years. The need for water however, has tripled. The EPA estimates that more than 36 states face water shortage during the forthcoming years. The EPA has prepared a plan for achieving environmental and energy performance. This will be coupled with leadership and accountability. Carbon neutrality is also of prime importance. The objective is to focus on six important, essential areas. 1. Efficient use of already available energy resources. 2. Intelligent water consumption and focusing on water conservation. 3. Expand the use of renewable energy resources. 4. Explore innovative transportation systems and methodologies. 5. Change building codes and promote high performance sustainable buildings. 6. Focus on developing creative environment management systems. Greenhouse gases such as carbon dioxide occur naturally in the atmosphere. Carbon dioxide is also emitted to the atmosphere through a variety of natural processes and also some human activities. However, fluorinated gases are emitted to the atmosphere solely through human activities, because they are created by humans. It is very important to observe that water conservation is probably the most cost-effective way to reduce our demand for water. Furthermore, it is certainly environmentally justifiable. Water conservation also means, less use of water. This in turn, results in less strain on the city sewage treatment plants. This may also imply that one uses less energy for heating water. For example, the city of Los Angeles has grown by more than a million over the past thirty years. Regardless, the city still uses almost the same amount of water even now. The Environmental Protection Agency has a plan called E2PLAN. It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability

  5. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  6. Variable-Volume Flushing (V-VF) device for water conservation in toilets

    NASA Technical Reports Server (NTRS)

    Jasper, Louis J., Jr.

    1993-01-01

    Thirty five percent of residential indoor water used is flushed down the toilet. Five out of six flushes are for liquid waste only, which requires only a fraction of the water needed for solid waste. Designers of current low-flush toilets (3.5-gal. flush) and ultra-low-flush toilets (1.5-gal. flush) did not consider the vastly reduced amount of water needed to flush liquid waste versus solid waste. Consequently, these toilets are less practical than desired and can be improved upon for water conservation. This paper describes a variable-volume flushing (V-VF) device that is more reliable than the currently used flushing devices (it will not leak), is simple, more economical, and more water conserving (allowing one to choose the amount of water to use for flushing solid and liquid waste).

  7. Agricultural land use and water quality in the upper St. Joseph River basin, Michigan

    USGS Publications Warehouse

    Cummings, T. Ray

    1978-01-01

    Land use in the upper St. Joseph River basin of south-central Michigan is primarily agricultural. In the 144-square-mile area, the chemical and physical characteristics of water are determined by the climate and soils, as well as by land conservation practices. Municipal waste discharges affect water quality at some locations, as do the larger lakes and ponds. Data indicate that mean discharge from the basin is 135 cubic feet per second. About half this flow is contributed to the St. Joseph River by three major tributaries: Beebe Creek (36 cubic feet per second); Sand Creek (24 cubic feet per second); and Soap Creek (13 cubic feet per second). Runoff from 21 drainage areas delineated for the investigation ranged from 0.22 to 4.07 cubic feet per second per square mile; both the higher and lower values are largely the result of naturally occurring inter- and intrabasin transfers of water.Suspended-sediment concentrations are low throughout the basin, rarely exceeding 100 milligrams per liter. Mean concentrations at four daily sampling stations on the major tributaries and on the St. Joseph River ranged from 9.7 milligrams per liter to 38 milligrams per liter. The maximum sediment yield was 182 pounds per acre per year. Deposition of sediment in five of the 21 areas resulted in a net loss of sediment transported, and thus “negative” yields.Nitrogen and phosphorus concentrations do not vary greatly from site to site. Mean concentrations of total nitrogen at downstream sites on Beebe, Sand, and Soap Creeks, and on the St. Joseph River ranged from 1.5 to 1.8 milligrams per liter. About 90 percent of all nitrogen, and 66 percent of all phosphorus, is transported in solution. Land used principally for agriculture has a mean total nitrogen yield of 4.9 pounds per acre per year and a mean total phosphorus yield of 0.13 pounds per year. A comparison of total nitrogen and total phosphorus yields with type of agricultural use showed few relationships; nitrogen yield

  8. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity

    NASA Astrophysics Data System (ADS)

    Burchfield, E. K.; Gilligan, J. M.

    2016-12-01

    Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.

  10. Drops of energy: conserving urban water to reduce greenhouse gas emissions.

    PubMed

    Zhou, Yuanchun; Zhang, Bing; Wang, Haikun; Bi, Jun

    2013-10-01

    Water and energy are two essential resources of modern civilization and are inherently linked. Indeed, the optimization of the water supply system would reduce energy demands and greenhouse gas emissions in the municipal water sector. This research measured the climatic cobenefit of water conservation based on a water flow analysis. The results showed that the estimated energy consumption of the total water system in Changzhou, China, reached approximately 10% of the city's total energy consumption, whereas the industrial sector was found to be more energy intensive than other sectors within the entire water system, accounting for nearly 70% of the total energy use of the water system. In addition, four sustainable water management scenarios would bring the cobenefit of reducing the total energy use of the water system by 13.9%, and 77% of the energy savings through water conservation was indirect. To promote sustainable water management and reduce greenhouse gas emissions, China would require its water price system, both for freshwater and recycled water, to be reformed.

  11. Division of Agriculture

    Science.gov Websites

    Department of Natural Resources logo, color scheme Department of Natural Resources Division of Agriculture Search Search DNR's site DNR State of Alaska Toggle main menu visibility Agriculture Home Programs Asset Disposals Alaska Caps Progam Board of Agriculture & Conservation Farm To School Program Grants

  12. Conservation of water for washing beef heads at harvest

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to develop methods to conserve water necessary to cleanse beef heads prior to USDA–FSIS inspection. This was to be accomplished by establishing a baseline for the minimum amount of water necessary to adequately wash a head and application of image analysis to provi...

  13. Education of Technicians for Water Conservation and Wastewater Control.

    ERIC Educational Resources Information Center

    Brooking, Walter J.

    There is a growing need for supportive personnel with technical preparation in water and wastewater purification and water resource conservation. A curriculum and program guide was developed in 1965-66 by Fayetteville Technical Institute for use by institutions interested in establishing a program to educate technicians. Meeting the need for…

  14. A Manual on Conservation of Soil and Water. Appropriate Technologies for Development. R-38.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    In order to keep the land productive, a good conservation program is imperative. The primary purpose of soil and water conservation is to prevent soil erosion and heal its scars. This handbook explains the causes, processes, and consequences of soil erosion and depletion, and describes major soil- and water-conservation measures. This book was…

  15. Evaluation of the precision agricultural landscape modeling system (PALMS) in the semiarid Texas southern high plains

    USDA-ARS?s Scientific Manuscript database

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  16. Evaluation of the Precision Agricultural Landscape Modeling System (PALMS) in the Semiarid Texas Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    Accurate models to simulate the soil water balance in semiarid cropping systems are needed to evaluate management practices for soil and water conservation in both irrigated and dryland production systems. The objective of this study was to evaluate the application of the Precision Agricultural Land...

  17. Understanding Public Engagement in Water Conservation Behaviors and Knowledge of Water Policy: Promising Hints for Extension

    ERIC Educational Resources Information Center

    Huang, Pei-wen; Lamm, Alexa J.

    2015-01-01

    Sustaining water resources is a primary issue facing Florida Extension. The study reported here identified how experience with water issues and familiarity with water policies affected individuals' engagement in water conservation behaviors. A public opinion survey was conducted online to capture Florida residents' responses. The findings…

  18. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  19. Design handbook : energy efficiency and water conservation in NAS facilities

    DOT National Transportation Integrated Search

    1997-09-30

    This handbook was created to provide definitive energy efficiency and water conservation design criteria for the design of NAS facilities. FAA-HDBK-001 provides implementation strategies and tools to comply with E.O. 12902, Energy and Water Conservat...

  20. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  1. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USDA-ARS?s Scientific Manuscript database

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to inves...

  2. Merriam's kangaroo rats (Dipodomys merriami) voluntarily select temperatures that conserve energy rather than water.

    PubMed

    Banta, Marilyn R

    2003-01-01

    Desert endotherms such as Merriam's kangaroo rat (Dipodomys merriami) use both behavioral and physiological means to conserve energy and water. The energy and water needs of kangaroo rats are affected by their thermal environment. Animals that choose temperatures within their thermoneutral zone (TNZ) minimize energy expenditure but may impair water balance because the ratio of water loss to water gain is high. At temperatures below the TNZ, water balance may be improved because animals generate more oxidative water and reduce evaporative water loss; however, they must also increase energy expenditure to maintain a normal body temperature. Hence, it is not possible for kangaroo rats to choose thermal environments that simultaneously minimize energy expenditure and increase water conservation. I used a thermal gradient to test whether water stress, energy stress, simultaneous water and energy stress, or no water/energy stress affected the thermal environment selected by D. merriami. During the night (i.e., active phase), animals in all four treatments chose temperatures near the bottom of their TNZ. During the day (i.e., inactive phase), animals in all four treatments settled at temperatures near the top of their TNZ. Thus, kangaroo rats chose thermal environments that minimized energy requirements, not water requirements. Because kangaroo rats have evolved high water use efficiency, energy conservation may be more important than water conservation to the fitness of extant kangaroo rats.

  3. Funding Water Reuse and Conservation Projects with the Clean Water State Revolving Fund

    EPA Pesticide Factsheets

    This fact sheet demonstrates how the CWSRF provides assistance to eligible recipients for projects promoting water reuse and conservation. It highlights successful projects for these communities in California, Virginia and Texas.

  4. EFFECTIVENESS OF SOIL AND WATER CONSERVATION PRACTICES FOR POLLUTION CONTROL

    EPA Science Inventory

    The potential water quality effects and economic implications of soil and water conservation practices (SWCPs) are identified. Method for estimating the effects of SWCPs on pollutant losses from croplands are presented. Mathematical simulation and linear programming models were u...

  5. Criterion I: Soil and water conservation on rangelands [Chapter 2

    Treesearch

    Michael G. (Sherm) Karl; Paul T. Tueller; Gerald E. Schuman; Mark R. Vinson; James L. Fogg; Ronald W. Shafer; David A. Pyke; D. Terrance Booth; Steven J. Borchard; William G. Ypsilantis; Richard H. Barrett

    2010-01-01

    The Sustainable Rangelands Roundtable (SRR) has explicitly included conservation and maintenance of soil and water resources as a criterion of rangeland sustainability. Within the soil/water criterion, 10 indicators ­ five soil-based and five water-based - were developed through the expert opinions of rangeland scientists, rangeland management agency personnel, non-...

  6. Batch test screening of industrial product/byproduct filter materials for agricultural drainage water treatment

    USDA-ARS?s Scientific Manuscript database

    Filter treatment may be a viable means for removing the nitrate, phosphate, and pesticides discharged with agricultural drainage waters that cause adverse environmental impacts within the U.S. on local, regional, and national scales. Laboratory batch test screening for agricultural drainage water ...

  7. Residential Water Conservation in a Noncrisis Setting: Results of a New Jersey Experiment

    NASA Astrophysics Data System (ADS)

    Palmini, Dennis J.; Shelton, Theodore B.

    1982-08-01

    East Brunswick Township, New Jersey, conducted a water conservation program in 1980 by distributing to 564 households free packets of water-saving devices purchased with municipal funds. The program was not a response to a current water supply crisis, and appeals for cooperation were based on the private economic benefits of water conservation. Statistical procedures were developed to measure the proportions of households installing each of the devices distributed, water savings and program costs. Two-thirds of the households receiving the packets installed at least one device. Average annual water savings per home receiving a packet were estimated at 5010 gallons (18.96 kl). Amortized over ten years at a 10% discount rate, the program cost was approximately 35 cents per 1000 gallons of water saved (9.2 cents per kl). The East Brunswick results compare well to the results obtained from similar conservation programs in a pair of California communities during the 1976-1977 drought.

  8. Literature review of giant gartersnake (Thamnophis gigas) biology and conservation

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2015-08-03

    This report reviews the available literature on giant gartersnakes (Thamnophis gigas) to compile existing information on this species and identify knowledge gaps that, if addressed, would help to inform conservation efforts for giant gartersnakes.  Giant gartersnakes comprise a species of semi-aquatic snake precinctive to wetlands in the Central Valley of California.  The diversion of surface water and conversion of wetlands to agricultural and other land uses resulted in the loss of more than 90 percent of natural giant gartersnake habitats.  Because of this habitat loss, giant gartersnakes are now listed by the United States and California Endangered Species Acts as Threatened.  Most extant populations occur in the rice-growing regions of the Sacramento Valley, which comprises the northern portion of the giant gartersnake’s former range.  The huge demand for water in California for agriculture, industry, recreation, and other human consumption, combined with periodic severe drought, places remaining giant gartersnake habitats at increased risk of degradation and loss.  This literature review summarizes the available information on giant gartersnake distribution, habitat relations, behavior, demography, and other aspects of its biology relevant to conservation.  This information is then compiled into a graphical conceptual model that indicates the importance of different aspects of giant gartersnake biology for maintaining positive population growth, and identifies those areas for which important information relevant for conservation is lacking.  Directing research efforts toward these aspects of giant gartersnake ecology will likely result in improvements to conserving this unique species while meeting the high demands for water in California.

  9. Precision agriculture and soil and water management in cranberry production

    USDA-ARS?s Scientific Manuscript database

    Recent research on soil and water management of cranberry farms is presented in a special issue in Canadian Journal of Soil Science. The special issue (“Precision Agriculture and Soil Water Management in Cranberry Production”) consists of ten articles that include field, laboratory, and modeling stu...

  10. Eco-hydrological Responses to Soil and Water Conservation in the Jinghe River Basin

    NASA Astrophysics Data System (ADS)

    Peng, H.; Jia, Y.; Qiu, Y.

    2011-12-01

    The Jinghe River Basin is one of the most serious soil erosion areas in the Loess Plateau. Many measures of soil and water conservation were applied in the basin. Terrestrial ecosystem model BIOME-BGC and distributed hydrological model WEP-L were used to build eco-hydrological model and verified by field observation and literature values. The model was applied in the Jinghe River Basin to analyze eco-hydrological responses under the scenarios of vegetation type change due to soil and water conservation polices. Four scenarios were set under the measures of conversion of cropland to forest, forestation on bare land, forestation on slope wasteland and planting grass on bare land. Analysis results show that the soil and water conservation has significant effects on runoff and the carbon cycle in the Jinghe River Basin: the average annual runoff would decrease and the average annual NPP and carbon storage would increase. Key words: soil and water conservation; conversion of cropland to forest; eco-hydrology response; the Jinghe River Basin

  11. Removal of metal ions from contaminated water using agricultural residues

    Treesearch

    Roger M. Rowell

    2006-01-01

    As the world population grows, there is a growing awareness that our environment is getting more polluted. Clean water is becoming a critical issue for many parts of the world for human, animal and agricultural use. Filtration systems to clean our air and water are a growing industry. There are many approaches to removing contaminates from our water supply ranging from...

  12. Pasture intensification is insufficient to relieve pressure on conservation priority areas in open agricultural markets.

    PubMed

    Kreidenweis, Ulrich; Humpenöder, Florian; Kehoe, Laura; Kuemmerle, Tobias; Bodirsky, Benjamin Leon; Lotze-Campen, Hermann; Popp, Alexander

    2018-04-17

    Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land-use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land-use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land-use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land-use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region-specific trade positions. In regions with a high involvement in international trade, area-based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively. © 2018 John Wiley

  13. A Socio-Hydrological Model of the Voluntary Urban Water Conservation Behavior during Droughts

    NASA Astrophysics Data System (ADS)

    Sangwan, N.; Eisma, J. A.; Sung, K.; Yu, D. J.

    2016-12-01

    Several cities across the globe are increasingly struggling to meet the water demands of their population. By 2050, nearly 160 million urban dwellers are likely to face perennial water shortage due to ever rising population numbers and climate change. As observed once again during recent drought in California, voluntary water conservation is a key approach for managing urban water availability during periods of constrained supply. It relies on behavioral adaptation that is critical for long-term reductions in water use and building drought resilient communities. Strong interdependencies between human group behavior and regional hydrology in this context entail that the two components be coupled together in a socio-hydrology model to fully understand the dynamics of urban water systems. This work proposes a conceptual framework for one such model and simulates the dynamics of a voluntary conservation program in Marin Municipal Water District, California using dynamic systems modeling approach. Through this model, we plan to assess the effects of different social factors (such as social concern and conformist tendencies) and climato-hydrological conditions (viz. storage levels and weather forecast) on the trajectory of a voluntary conservation program. Our preliminary results have indicated several `tipping points' which can be capitalized on by policy makers to boost conservation at low social costs.

  14. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  15. Teaching Soil and Water Conservation: A Classroom and Field Guide.

    ERIC Educational Resources Information Center

    Foster, Albert B.; Fox, Adrian C.

    Compiled in this booklet are 22 activities designed to develop awareness of the importance of conservation and the wise use of soil and moisture on croplands, grasslands, and woodlands. They have been selected by Soil Conservation Service (SCS) personnel and consultants to show that the way we manage our basic natural resources, soil and water,…

  16. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  17. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production. Copyright © 2014. Published by Elsevier B.V.

  18. Role of Sectoral Transformation in Evolution of Water Management in Agricultural Catchments: A Socio-hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Roobavannan, Mahendran; Kandasamy, Jaya; Pande, Saket; Vigneswaran, Saravanamuthu; Sivapalan, Murugesu

    2017-04-01

    Sustainable development in society depends on an understanding of how communities interact with the natural system and how they co-evolve in time. Increasingly the livelihood and future viability of agricultural communities are being threatened by competition for water between food production and the environment. This study focused on this water-agriculture-environment nexus as it played out in the Murrumbidgee River Basin, Australia, and how co-evolution of society and water management occurred. Over 100 years of agricultural development the Murrumbidgee Basin has experienced a "pendulum swing" in terms of water allocation entirely to agriculture production at the expense of the environment, and eventually to the reallocation of water back to the environment. This pendulum swing has been attributed to a combination of increased national wealth, reduced share of agriculture in the national GDP, and to increased environment awareness of environmental degradation. Environment awareness depends on the structure of the economy, education, and socio-politic structure. As the basin economy develops accompanied by sectoral transformation, basin production becomes increasingly dependent on the industry sector. A loss of economic dependence on agriculture leads to a lower emphasis on the need to allocate water to agriculture. Society's value and preference turns around and is motivated towards the protection of the ecosystem. We hypothesize that in the competition of water use between economic livelihood and environment well being of society, economic diversification pushed the balance in towards the environment. In order to test this hypothesis, we developed a coupled socio-hydrologic model, which explicitly considers bi-directional feedbacks between human and water systems to explore how the competition for water played out in the Murrumbidgee. We demonstrate this by linking the dynamics of the economy of the whole (agriculture and industry) to community sentiment for the

  19. Soil and Water Conservation Activities for Scouts.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    The purpose of the learning activities outlined in this booklet is to help Scouts understand some conservation principles which hopefully will lead to the development of an attitude of concern for the environment and a commitment to help with the task of using and managing soil, water, and other natural resources for long range needs as well as…

  20. Weed control in conservation agriculture

    USDA-ARS?s Scientific Manuscript database

    Prior to the introduction of the selective herbicide, 2,4-D (2,4-dichlorophenoxyacetic acid), in the 1940’s, weed control in agricultural crops was primarily achieved through mechanical cultivation of the soil. Since that time, an increasing number of highly efficacious herbicide options, paired wi...

  1. Glyphosate resistant weeds - a threat to conservation agriculture

    USDA-ARS?s Scientific Manuscript database

    Glyphosate-resistant weeds are now present throughout the Southeast. Hundreds of thousands of conservation tillage cotton acres, some currently under USDA Natural Resources Conservation Service (NRCS) conservation program contracts, are at risk of being converted to higher-intensity tillage systems....

  2. Water conservation benefits of urban heat mitigation.

    PubMed

    Vahmani, Pouya; Jones, Andrew D

    2017-10-20

    Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we use a suite of satellite-supported regional climate simulations in California to show that broad implementation of cool roofs, a heat mitigation strategy, not only results in significant cooling, but can also meaningfully decrease outdoor water consumption by reducing evaporative and irrigation water demands. Irrigation water consumption across the major metropolitan areas is reduced by up to 9% and irrigation water savings per capita range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings are found to be the highest in Los Angeles county, reaching about 83 million gallons per day. Cool roofs are a valuable solution for addressing the adaptation and mitigation challenges faced by multiple sectors in California.

  3. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    USGS Publications Warehouse

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    humid environments. However, runoff did not increase with slope in the arid environment as was observed in the humid environment. In both environments, clayey soils exhibited the greatest amount of runoff and sediment yields while sandy soils had greater recharge and lessor runoff and sediment yield. Scenarios simulating the effects of the timing and type of tillage practice showed that no-till, conservation, and contouring tillages reduced sediment yields and, with the exception of no-till, runoff in both environments. Changes in land cover and crop type simulated the changes between the evapotransporative potential and surface roughness imparted by specific vegetations. Substantial differences in water budgets and sediment yields were observed between most agricultural crops and the natural covers selected for each environment: scrub and prairie grass for the arid environment and forest and prairie grass for the humid environment. Finally, a group of simulations was performed to model selected agricultural management practices. Among the selected practices subsurface drainage and strip cropping exhibited the largest shifts in water budgets and sediment yields. The practice of crop rotation (corn/soybean) and cover cropping (corn/rye) were predicted to increase sediment yields from a field planted as conventional corn.

  4. Agricultural reuse of municipal wastewater through an integral water reclamation management.

    PubMed

    Intriago, Juan Carlo; López-Gálvez, Francisco; Allende, Ana; Vivaldi, Gaetano Alessandro; Camposeo, Salvatore; Nicolás Nicolás, Emilio; Alarcón, Juan José; Pedrero Salcedo, Francisco

    2018-05-01

    The DESERT-prototype, a state-of-the-art compact combination of water treatment technologies based on filtration and solar-based renewable energy, was employed to reclaim water for agricultural irrigation. Water reclaimed through the DESERT-prototype (PW) from a secondary effluent of a wastewater treatment plant, as well as conventional irrigation water (CW) and the secondary effluent (SW) itself, were employed to cultivate baby romaine lettuces in a greenhouse in Murcia (Spain), by means of drip and sprinkler irrigation methods, thus establishing six treatments. Assessments of physicochemical and microbiological quality of irrigation water, as well as agronomic and microbiological quality of crops from all treatments, showed that results associated to PW complied in all cases with relevant standards and guidelines. In contrast, results linked to SW and CW presented certain non-compliance cases of water and crop microbiological quality. These assessments lead to conclude that the DESERT-prototype is an appropriate technology for safe water reclamation oriented to agricultural production, that can be complemented by a proper irrigation method in reaching safety targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  6. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  7. Integrating Agriculture and Conservation

    USGS Publications Warehouse

    Vandever, Mark W.

    2010-01-01

    The USGS produces the needed science-based information to guide management actions and policy decisions that support wildlife habitat and other environmental services compatible with USDA conservation goals and farm operations. The Policy Analysis and Science Assistance Branch of the Fort Collins Science Center (FORT) has conducted research involving a national landowner survey and numerous short- and long-term evaluations regarding vegetation responses to land management practices. This research helps land and resource managers to make informed decisions and resolve resource management conflicts.

  8. Assessment of conservation practices in the Fort Cobb Reservoir watershed, southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.

    2011-01-01

    The Fort Cobb Reservoir watershed encompasses about 813 square kilometers of rural farm land in Caddo, Custer, and Washita Counties in southwestern Oklahoma. The Fort Cobb Reservoir and six stream segments were identified on the Oklahoma 1998 303(d) list as not supporting designated beneficial uses because of impairment by nutrients, suspended solids, sedimentation, pesticides, and unknown toxicity. As a result, State and Federal agencies, in collaboration with conservation districts and landowners, started conservation efforts in 2001 to decrease erosion and transport of sediments and nutrients to the reservoir and improve water quality in tributaries. The U.S. Department of Agriculture selected the Fort Cobb Reservoir watershed in 2003 as 1 of 14 benchmark watersheds under the Conservation Effectiveness Assessment Project with the objective of quantifying the environmental benefits derived from agricultural conservation programs in reducing inflows of sediments and phosphorus to the reservoir. In November 2004, the Biologic, Geographic, Geologic, and Water Disciplines of the U.S. Geological Survey, in collaboration with the Agricultural Research Service, Grazinglands Research Laboratory in El Reno, Oklahoma, began an interdisciplinary investigation to produce an integrated publication to complement this program. This publication is a compilation of 10 report chapters describing land uses, soils, geology, climate, and water quality in streams and the reservoir through results of field and remote sensing investigations from 2004 to 2007. The investigations indicated that targeting best-management practices to small intermittent streams draining to the reservoir and to the Cobb Creek subwatershed may effectively augment efforts to improve eutrophic to hypereutrophic conditions that continue to affect the reservoir. The three major streams flowing into the reservoir contribute nutrients causing eutrophication, but minor streams draining cultivated fields near the

  9. The Conservation Effects Assessment Project (CEAP): The U.S. experience in determining a national scale natural resource and conservation needs assessment

    USDA-ARS?s Scientific Manuscript database

    The Conservation Effects Assessment Project (CEAP) was initiated to establish a scientific understanding of the impacts of agricultural conservation practices at the watershed scale, to quantify agricultural conservation practice benefits at the national and regional scales, and to identify outstand...

  10. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida.

    PubMed

    Lee, Mengshan; Tansel, Berrin

    2013-10-15

    During 2006-2007, Miami-Dade County, Florida, USA, provided incentives for low income and senior residents in single family homes for retrofitting with high efficiency fixtures. The participating residences were retrofitted with high-efficiency toilets, showerheads, and aerators. In 2012, a telephone survey was conducted to evaluate the satisfaction of the participants and the associated effects on water conservation practices. This study evaluates the attitudes and opinions of the participants relative to water use efficiency measures and the actual reduction in water consumption characteristics of the participating households. The participant characteristics were analyzed to identify correlations between the socio-demographic factors, program satisfaction and actual water savings. Approximately 65.5% of the survey respondents reported changes in their water use habits and 76.6% reported noticeable reduction in their water bills. The analyses showed that the satisfaction levels of the participants were closely correlated with the actual water savings. The results also showed that satisfaction level along with water saving potential (i.e., implementation of water efficiency devices) or change of water use habits has provided positive synergistic effect on actual water savings. The majority of the participants surveyed (81.3-89.1%) reported positive attitudes for water conservation incentive program and the benefits of the high efficiency fixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Speciation of Cu and Zn in drainage water from agricultural soils.

    PubMed

    Aldrich, Annette P; Kistler, David; Sigg, Laura

    2002-11-15

    Inputs of copper and zinc from agricultural soils into the aquatic system were investigated in this study, because of their heavy agricultural usage as feed additives and components of fertilizers and fungicides. As the mobility and bioavailability of these metals are affected by their speciation, the lipophilic, colloidal and organic fractions were determined in drainage water from a loamy and a humic soil treated with fungicides or manure. This study therefore investigates the impact of agricultural activity on a natural environment and furthers our understanding of the mobility of metals in agricultural soils and aquatic pollution in rural areas. Marked increases in the total dissolved metal concentrations were observed in the drainage water during rain events with up to 0.3 microM Cu and 0.26 microM Zn depending on the intensity of the rainfall and soil type. The mobile metal fractions were of a small molecular size (<10 kD) and mainly hydrophilic. Lipophilic complexes originating from a dithiocarbamate (DTC) fungicide could not be observed in the drainage water; however, small amounts of lipophilic metal complexes may be of natural origin. Cu was organically complexed to > 99.9% by abundant organic ligands (log K 10.5-11.0). About 50% of dissolved Zn were electrochemically labile, and the other 50% were complexed by strong organic ligands (log K 8.2-8.6). Therefore very little free metal species were found suggesting a low bioavailability of these metals in the drainage water even at elevated metal concentrations.

  12. Evaluation of water conservation capacity of loess plateau typical mountain ecosystems based on InVEST model simulation

    NASA Astrophysics Data System (ADS)

    Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing

    2017-06-01

    With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.

  13. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  14. 7 CFR 1467.20 - Market-based conservation initiatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Market-based conservation initiatives. 1467.20 Section 1467.20 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT....20 Market-based conservation initiatives. (a) Acceptance and use of contributions. Section 1241(e) of...

  15. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

    NASA Astrophysics Data System (ADS)

    Lathuillière, Michael J.; Coe, Michael T.; Johnson, Mark S.

    2016-06-01

    The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green-blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

  16. Cooperative Drought Adaptation: Integrating Infrastructure Development, Conservation, and Water Transfers into Adaptive Policy Pathways

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.; Reed, P. M.; Herman, J. D.

    2015-12-01

    Water supply policies that integrate portfolios of short-term management decisions with long-term infrastructure development enable utilities to adapt to a range of future scenarios. An effective mix of short-term management actions can augment existing infrastructure, potentially forestalling new development. Likewise, coordinated expansion of infrastructure such as regional interconnections and shared treatment capacity can increase the effectiveness of some management actions like water transfers. Highly adaptable decision pathways that mix long-term infrastructure options and short-term management actions require decision triggers capable of incorporating the impact of these time-evolving decisions on growing water supply needs. Here, we adapt risk-based triggers to sequence a set of potential infrastructure options in combination with utility-specific conservation actions and inter-utility water transfers. Individual infrastructure pathways can be augmented with conservation or water transfers to reduce the cost of meeting utility objectives, but they can also include cooperatively developed, shared infrastructure that expands regional capacity to transfer water. This analysis explores the role of cooperation among four water utilities in the 'Research Triangle' region of North Carolina by formulating three distinct categories of adaptive policy pathways: independent action (utility-specific conservation and supply infrastructure only), weak cooperation (utility-specific conservation and infrastructure development with regional transfers), and strong cooperation (utility specific conservation and jointly developed of regional infrastructure that supports transfers). Results suggest that strong cooperation aids the utilities in meeting their individual objections at substantially lower costs and with fewer irreversible infrastructure options.

  17. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  18. Avian foods, foraging and habitat conservation in world rice fields

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (<30 cm) water, thereby attracting different guilds of birds. Grain not collected during harvest (i.e. waste rice) is typically the most abundant potential food of birds in rice fields, with estimates of seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  19. Energy and Water: Conservation Suggestions for California's Elementary and Secondary Schools.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    This publication contains conservation suggestions for schools in California to save water and energy. Contents include: (1) a list of sources of additional energy education assistance and materials; (2) a discussion of energy conservation in schools including HVAC system operations, lighting and building design; (3) a summary outline of actions…

  20. Reanalysis of Water, Land Use, and Production Data for Assessing China's Agricultural Resources

    NASA Astrophysics Data System (ADS)

    Smith, T.; Pan, J.; McLaughlin, D.

    2016-12-01

    Quantitative data about water availability, crop evapotranspiration (ET), agricultural land use, and production are needed at high temporal and spatial resolutions to develop sustainable water and agricultural plan and policies. However, large-scale high-resolution measured data can be susceptible to errors, physically inconsistent, or incomplete. Reanalysis provides a way to develop improved physically consistent estimates of both measured and hidden variables. The reanalysis approach described here uses a least-squares technique constrained by water balances and crop water requirements to assimilate many possibly redundant data sources to yield estimates of water, land use, and food production variables that are physically consistent while minimizing differences from measured data. As an example, this methodology is applied in China, where food demand is expected to increase but land and water resources could constrain further increases in food production. Hydrologic fluxes, crop ET, agricultural land use, yields, and food production are characterized at 0.5o by 0.5o resolution for a nominal year around the year 2000 for 22 different crop groups. The reanalysis approach provides useful information for resource management and policy, both in China and around the world.