Science.gov

Sample records for agricultural water consumption

  1. Agricultural water consumption decreasing nutrient burden at Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Wang, Xuejun; Zhen, Gengchong; Li, Ying; Zhang, Wei; He, Wei

    2016-02-01

    In this study, we discussed the impacts of human water consumption to the nutrient burden in a river estuary, and used Huanghe River as a case study. The agricultural water consumption from the Huanghe River has significantly decreased the natural water flows, and the amount of water consumption could be almost twice as high as the water entering into the estuary. According to our calculation, agricultural water usage decreased TN outflows by 6.5 × 104 Mg/year and TP outflows by 2.0 × 103 Mg/year. These account for 74% and 77% of the total output loads. It has been widely reported that the majority of the rivers in northern China were severely polluted by nutrients. Its implication on the budget of nutrient in the estuary ecosystem is not well characterized. Our study showed that the discharge of nutrients in the coast waters from polluted rivers was over concerned. Nutrients in the polluted rivers were transported back to the terrestrial systems when water was drawn for human water consumption. The magnitudes of changes in riverine nutrient discharges even exceed the water-sediment regulation trails in the Huanghe River. It has non-negligible impact on estimating the nutrient burden in costal water ecosystem.

  2. Estimating the Agricultural Water Consumption of the Yellow River Basin Based on Remote Sensing data

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2015-12-01

    Water shortage for agricultural water use is a major problem in the Yellow River Basin. This research uses NDVI value, meteorological data, supervised classification in remote sensing image classification and actual statistical data to estimate and verify the wheat and maize distribution and their water demand in the Yellow River Basin. The validation of the estimate method is performed by comparing the distribution of CIESIN statistic data for 1990. To obtain the accurate water demand, the study used and compared two methods of calculating the total water demand. The first one is to make the crop water requirement per unit area multiply by estimated crops total area of the basin. The second one is to sum the calculated water demand of each province. The research found that the remote sensing data can be used to estimate the crop area, while it overestimates the water consumption by both of the two methods.

  3. Projected water consumption in future global agriculture: scenarios and related impacts.

    PubMed

    Pfister, Stephan; Bayer, Peter; Koehler, Annette; Hellweg, Stefanie

    2011-09-15

    Global stress on water and land resources is increasing as a consequence of population growth and higher caloric food demand. Many terrestrial ecosystems have already massively been degraded for providing agricultural land, and water scarcity related to irrigation has damaged water dependent ecosystems. Coping with the food and biomass demand of an increased population, while minimizing the impacts of crop production, is therefore a massive upcoming challenge. In this context, we developed four strategies to deliver the biotic output for feeding mankind in 2050. Expansion on suitable and intensification of existing areas are compared to assess associated environmental impacts, including irrigation demand, water stress under climate change, and the productivity of the occupied land. Based on the agricultural production pattern and impacts of the strategies we identified the trade-offs between land and water use. Intensification in regions currently under deficit irrigation can increase agricultural output by up to 30%. However, intensified crop production causes enormous water stress in many locations and might not be a viable solution. Furthermore, intensification alone will not be able to meet future food demand: additionally, a reduction of waste by 50% along the food supply chain or expansion of agricultural land is required for satisfying current per-capita meat and bioenergy consumption. Suitable areas for such expansion are mainly located in Africa, followed by South America. The increased land stress is of smaller concern than the water stress modeled for the intensification case. Therefore, a combination of waste reduction with expansion on suitable pastures generally results as the best option, along with some intensification on selected areas. Our results suggested that minimizing environmental impacts requires fundamental changes in agricultural systems and international cooperation, by producing crops where it is most environmentally efficient and not

  4. Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap Province, Turkmenistan

    NASA Astrophysics Data System (ADS)

    Thevs, Niels; Ovezmuradov, Kurban

    2013-04-01

    The Amu Darya is the main water source for whole Turkmenistan, but also for the regions Khorezm and Karakalpakistan in Uzbekistan. Due to the arid climate in the Amu Darya river basin, agriculture depends on irrigation with river water being the major source of water. Also the natural ecosystems depend on river water. Until end of the 1970s, the Amu Darya flew into the Aral Sea and, together with the Syr Darya, sustained its water level. From the 1960s until today the area under irrigation has been strongly enlarged. During Soviet Union times, mainly cotton was planted on the newly reclaimed land. After independence, new land was reclaimed, in order to grow wheat. In the course of this land reclamation, the downstream section of the Amu Darya, i.e. in Karakalpakistan faces severe water shortage. Today, the Amu Darya only occasionally reaches the previous shore line of the Aral Sea. Against this background, it is necessary that water consumption along the Amu Darya is limited and water is used efficiently, in order to ensure water supply for downstream water users. The province Lebap in Turkmenistan is located at the middle reaches of the Amu Darya. Thus, it is an example of an administrative unit, which consumes water from the Amu Darya and which should release a sufficient amount of water downstream. Furthermore, Lebap harbours one of the last near-natural riparian forests of Central Asia, i.e. the Amu Darya State Reserve, which also is a water consumer. Therefore, we estimate the water consumption of agriculture (cotton, wheat, rice, and house gardens) and the natural ecosystems within Lebap Province. Water consumption refers to the actual evapo-transpiration. We use Landsat ETM and TM satellite images, in order to produce maps of the actual evapo-transpiration. Afterwards, a land cover map is laid over the ETa maps, in order to retrieve the ETa of the different crops and natural ecosystems. These results are compared with the water norms and quotas given for

  5. Estimation of Agricultural Water Consumption from Meteorological and Yield Data: A Case Study of Hebei, North China

    PubMed Central

    Yuan, Zaijian; Shen, Yanjun

    2013-01-01

    Over-exploitation of groundwater resources for irrigated grain production in Hebei province threatens national grain food security. The objective of this study was to quantify agricultural water consumption (AWC) and irrigation water consumption in this region. A methodology to estimate AWC was developed based on Penman-Monteith method using meteorological station data (1984–2008) and existing actual ET (2002–2008) data which estimated from MODIS satellite data through a remote sensing ET model. The validation of the model using the experimental plots (50 m2) data observed from the Luancheng Agro-ecosystem Experimental Station, Chinese Academy of Sciences, showed the average deviation of the model was −3.7% for non-rainfed plots. The total AWC and irrigation water (mainly groundwater) consumption for Hebei province from 1984–2008 were then estimated as 864 km3 and 139 km3, respectively. In addition, we found the AWC has significantly increased during the past 25 years except for a few counties located in mountainous regions. Estimations of net groundwater consumption for grain food production within the plain area of Hebei province in the past 25 years accounted for 113 km3 which could cause average groundwater decrease of 7.4 m over the plain. The integration of meteorological and satellite data allows us to extend estimation of actual ET beyond the record available from satellite data, and the approach could be applicable in other regions globally where similar data are available. PMID:23516537

  6. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    PubMed

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-error<30%. In terms of magnitude, the results were as accurate as or better than those of more traditional (i.e., using areas that fluctuate based on water resource availability and prescribed crop factors) irrigation modelling. The RS

  7. Development of a complete Landsat evapotranspiration and energy balance archive to support agricultural consumptive water use reporting and prediction in the Central Valley, CA

    NASA Astrophysics Data System (ADS)

    Vitale, A.; Morton, C.; Huntington, J. L.; Melton, F. S.; Guzman, A.; McEvoy, D.

    2015-12-01

    Mapping evapotranspiration (ET) from agricultural areas in California's Central Valley is critical for understanding historical consumptive use of surface and groundwater. In addition, long histories of ET maps provide valuable training information for predictive studies of surface and groundwater demands. During times of drought, groundwater is commonly pumped to supplement reduced surface water supplies in the Central Valley. Due to the lack of extensive groundwater pumping records, mapping consumptive use using satellite imagery is an efficient and robust way for estimating agricultural consumptive use and assessing drought impacts. To this end, we have developed and implemented an algorithm for automated calibration of the METRIC remotely sensed surface energy balance model on NASA's Earth Exchange (NEX) to estimate ET at the field scale. Using automated calibration techniques on the NEX has allowed for the creation of spatially explicit historical ET estimates for the Landsat archive dating from 1984 to the near present. Further, our use of spatial NLDAS and CIMIS weather data, and spatial soil water balance simulations within the NEX METRIC workflow, has helped overcome challenges of time integration between satellite image dates. This historical and near present time archive of agricultural water consumption for the Central Valley will be an extremely useful dataset for water use and drought impact reporting, and predictive analyses of groundwater demands.

  8. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  9. Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Gerten, Dieter; Krause, Michael; Lucht, Wolfgang; Cramer, Wolfgang

    2013-03-01

    In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries’ capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries.

  10. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  11. Municipal water consumption forecast accuracy

    NASA Astrophysics Data System (ADS)

    Fullerton, Thomas M.; Molina, Angel L.

    2010-06-01

    Municipal water consumption planning is an active area of research because of infrastructure construction and maintenance costs, supply constraints, and water quality assurance. In spite of that, relatively few water forecast accuracy assessments have been completed to date, although some internal documentation may exist as part of the proprietary "grey literature." This study utilizes a data set of previously published municipal consumption forecasts to partially fill that gap in the empirical water economics literature. Previously published municipal water econometric forecasts for three public utilities are examined for predictive accuracy against two random walk benchmarks commonly used in regional analyses. Descriptive metrics used to quantify forecast accuracy include root-mean-square error and Theil inequality statistics. Formal statistical assessments are completed using four-pronged error differential regression F tests. Similar to studies for other metropolitan econometric forecasts in areas with similar demographic and labor market characteristics, model predictive performances for the municipal water aggregates in this effort are mixed for each of the municipalities included in the sample. Given the competitiveness of the benchmarks, analysts should employ care when utilizing econometric forecasts of municipal water consumption for planning purposes, comparing them to recent historical observations and trends to insure reliability. Comparative results using data from other markets, including regions facing differing labor and demographic conditions, would also be helpful.

  12. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  13. Global energy consumption for direct water use

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.

    2015-12-01

    Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.

  14. An assessment of the (210)Po ingestion dose due to the consumption of agricultural, marine, fresh water and forest foodstuffs in Gudalore (India).

    PubMed

    Sivakumar, R

    2014-11-01

    The activity concentration of (210)Po in cereals, pulses, food materials of animal origin, vegetables and spices collected from Gudalore (India) has been estimated by radiochemical method. The activity concentration of (210)Po in cereals is found to vary from 124 to 604 mBq kg(-1). Raw rice registered the highest mean activity 504 ± 61 mBq kg(-1). In pulses (210)Po activity concentration varies from 42 to 320 mBq kg(-1) and the highest activity is found in black lentil with the average value of 172 ± 38 mBq kg(-1). Leafy vegetables registered the highest (210)Po activity concentration (662-7336 mBq kg(-1)) and are followed by tuber vegetables (390-1269 mBq kg(-1)) and then by other vegetables (75-595 mBq kg(-1)). The higher concentration of (210)Po observed in leafy vegetables may be attributed to the dry deposition of (210)Po and other daughter products of (222)Rn on large leaf surfaces from the air. Among animal products fish of marine origin registered the highest (210)Po activity concentration 36,850-48,964 mBq kg(-1). The mean (210)Po activity concentration in coffee has been estimated as 7500 mBq kg(-1). The activity concentration of (210)Po in leaf and bark of tree Cinnamom zeylanicum, a popular spice, is found to vary from 3500 to 11,100 mBq kg(-1) and 1600-3400 mBq kg(-1). The consumption of marine and fresh water fish contribute 60.7% (506.1 μSv y(-1)) to the total ingestion dose received. Cereals being consumed in a large scale, contribute 23.4% (194.9 μSv y(-1)) of the total ingestion dose received. The contribution from spices and leafy vegetables consumed is 5.8% (48.1 μSv y(-1)) and 6.5% (54.3 μSv y(-1)), respectively. The remaining 3.6% (30.0 μSv y(-1)) contribution to the total ingestion dose comes from other food materials and vegetables. PMID:25036917

  15. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Commodity Credit Corporation Agricultural Water Enhancement Program AGENCY: Commodity Credit Corporation and... Agricultural Water Enhancement Program (AWEP) by amending section 1240I of the Food ] Security Act of 1985. The... technical assistance to agricultural producers to implement agricultural water enhancement activities...

  16. Triple dividends of water consumption charges in South Africa

    NASA Astrophysics Data System (ADS)

    Letsoalo, Anthony; Blignaut, James; de Wet, Theuns; de Wit, Martin; Hess, Sebastiaan; Tol, Richard S. J.; van Heerden, Jan

    2007-05-01

    The South African government is exploring ways to address water scarcity problems by introducing a water resource management charge on the quantity of water used in sectors such as irrigated agriculture, mining, and forestry. It is expected that a more efficient water allocation, lower use, and a positive impact on poverty can be achieved. This paper reports on the validity of these claims by applying a computable general equilibrium model to analyze the triple dividend of water consumption charges in South Africa: reduced water use, more rapid economic growth, and a more equal income distribution. It is shown that an appropriate budget-neutral combination of water charges, particularly on irrigated agriculture and coal mining, and reduced indirect taxes, particularly on food, would yield triple dividends, that is, less water use, more growth, and less poverty.

  17. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided. PMID:26995933

  18. Deficit irrigation for reducing agricultural water use.

    PubMed

    Fereres, Elias; Soriano, María Auxiliadora

    2007-01-01

    At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas. PMID:17088360

  19. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  20. Water Consumption for Biofuel Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Fingerman, K. R.; Torn, M. S.

    2008-12-01

    Water use may prove to be a central issue in the global and local development of the biofuel industry. While most literature on biofuel water use only considers the biorefinery phase, we studied water consumption for biofuel feedstock cultivation in major feedstock-producing regions of the United States. Using a spatially explicit Penman-Monteith model informed by field-level eddy covariance measurements, distributed climate data, and land use figures, we estimated water consumption and net water use for a number of scenarios of feedstock, location, and refining processes for biofuel development. We find that in California, for example, average water consumption for biofuels from different feedstocks ranges from about 900 to over 1500 gallons per gallon of fuel produced. Cellulosic feedstocks are found to be less water-intensive on average. Furthermore, we find feedstock cultivation to account for more than 99% of the life-cycle embedded water for fuels in California. In some regions and for some feedstock options, a shift to biofuel feedstock cultivation would reduce the strain on water resources, while in others we project it would greatly increase water demand. We are expanding this analysis to better capture both base-line ET from natural systems and ET of some of the less-studied cellulosic feedstocks, as well as to incorporate other regions in the U.S. and internationally. Thus far, we conclude that while water demand for processing is important for plant location and pollution, water consumption for feedstock growth may be (along with land resources) the limiting factor for bioenergy production in many regions.

  1. Integrating agricultural policies and water policies under water supply and climate uncertainty

    NASA Astrophysics Data System (ADS)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  2. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.

    PubMed

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-09-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat. PMID:27262784

  3. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  4. Biogenic carbon fluxes from global agricultural production and consumption

    NASA Astrophysics Data System (ADS)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  5. Human water consumption intensifies hydrological drought worldwide

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Van Beek, L. P.; Wanders, N.; Bierkens, M. F.

    2012-12-01

    Over the past decades, human water consumption has more than doubled, and reduced streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological droughts, i.e. the occurrence of anomalously low streamflow. Here, we quantify over the period 1960-2010 the impact of human water consumption on the intensity and frequency of hydrological droughts worldwide. We simulated streamflow by the global hydrological and water resources model PCR-GLOBWB at a 0.5 degree spatial resolution, and reduced the amount of streamflow with different levels of human water consumption over the period 1960-2010. We applied the commonly used variable threshold level method to identify below-normal water availability as the onset of hydrological droughts. We then standardized the deficit volume dividing relative to the threshold level to express the intensity of drought conditions to normal streamflow conditions. The results show that human water consumption substantially reduced local and downstream streamflow in many regions of the world. This subsequently intensified hydrological droughts regionally by 10-500%. Irrigation is responsible for the intensification of hydrological droughts over western and central U.S., southern Europe, Asia, and southeastern Australia, whereas the impact of industrial and households' consumption on the intensification is considerably larger over eastern U.S., and western and central Europe. The results also show that drought frequency increased by more than 27% compared to pristine or natural condition as a result of human water consumption. The intensification of drought frequency is most severe over Asia, but also substantial over North America and Europe. Importantly, global population under severe hydrological droughts considerably increased from 0.7 billion in 1960 to 2.2 billion in 2010 due to rapid population growth. As a limited validation exercise, we compared simulated deficit

  6. Food vs. water: the magnitude and range of global tradeoffs in agricultural production and impact

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2013-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  7. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  8. Water consumption patterns as a basis for water demand modeling

    NASA Astrophysics Data System (ADS)

    Avni, Noa; Fishbain, Barak; Shamir, Uri

    2015-10-01

    Future water demand is a main consideration in water system management. Consequently, water demand models (WDMs) have evolved in past decades, identifying principal demand-generating factors and modeling their influence on water demand. Regional water systems serve consumers of various types (e.g., municipalities, farmers, industrial regions) and consumption patterns. Thus, one of the challenges in regional water demand modeling is the heterogeneity of the consumers served by the water system. When a high-resolution, regional WDM is desired, accounting for this heterogeneity becomes all the more important. This paper presents a novel approach to regional water demand modeling. The two-step approach includes aggregating the data set into groups of consumers having similar consumption characteristics, and developing a WDM for each homogeneous group. The development of WDMs is widely applied in the literature and thus, the focus of this paper is to discuss the first step of data aggregation. The research hypothesis is that water consumption records in their original or transformed form can provide a basis for aggregating the data set into groups of consumers with similar consumption characteristics. This paper presents a methodology for water consumption data clustering by comparing several data representation methods (termed Feature Vectors): monthly normalized average, monthly consumption coefficient of variation, a combination of the monthly average and monthly variation, and the autocorrelation coefficients of the consumption time series. Clustering using solely normalized monthly average provided homogeneous and distinct clusters with respect to monthly consumption, which succeed in capturing different consumer characteristics (water use, geographical location) that were not specified a-priori. Clustering using the monthly coefficient of variation provided different, yet homogeneous clusters, clustering consumers characterized by similar variation trends that

  9. Global consumptive water use for crop production: The importance of green water and virtual water

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Zehnder, Alexander J. B.; Yang, Hong

    2009-05-01

    Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a-1 for the period 1998-2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

  10. Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation

    NASA Astrophysics Data System (ADS)

    Anderson, Ray G.; Lo, Min-Hui; Famiglietti, James S.

    2012-08-01

    Estimates of consumptive use of surface water by agriculture are vital for assessing food security, managing water rights, and evaluating anthropogenic impacts on regional hydrology. However, reliable, current, and public data on consumptive use can be difficult to obtain, particularly in international and less developed basins. We combine remotely-sensed precipitation and satellite observations of evapotranspiration and groundwater depletion to estimate surface water consumption by irrigated agriculture in California's Central Valley for the 2004-09 water years. We validated our technique against measured consumption data determined from streamflow observations and water export data in the Central Valley. Mean satellite-derived surface water consumption was 291.0 ± 32.4 mm/year while measured surface water consumption was 308.1 ± 6.5 mm/year. The results show the potential for remotely-sensed hydrologic data to independently observe irrigated agriculture's surface water consumption in contested or unmonitored basins. Improvements in the precision and spatial resolution of satellite precipitation, evapotranspiration and gravimetric groundwater observations are needed to reduce the uncertainty in this method and to allow its use on smaller basins and at shorter time scales.

  11. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects. PMID:27007730

  12. Analysis of Water Consumption Changes during two Decades

    NASA Astrophysics Data System (ADS)

    Rimeika, Mindaugas

    2013-11-01

    Water consumption depends on the consumers' habits, industrial companies and the nature of the activity, as well as on public users. Water consumption in Lithuania has decreased by more than three times over the past two decades. This was influenced by the changed consumers' habits, implemented water metering and increased water prices. But it has been analyzed little, how the dynamics of water consumption has been changing. This article examines the dynamics of water consumption variation over 20 years in one of Vilnius district. Variations of water consumption are analyzed in the article and the obtained results are compared with the parameters in the legal acts. Water consumption per night was analyzed in the article also, as these values could be fast and reliable assessment of water losses in network. The analysis of night water consumption was conducted and the recommended norm of night water consumption indicated.

  13. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  14. An accounting system for water and consumptive use along the Colorado River, Hoover Dam to Mexico

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Raymond, Lee H.

    1996-01-01

    An accounting system for estimating and distributing consumptive use of water by vegetation to water users was developed for the Colorado River to meet the requirements of a U.S. Supreme Court decree and used with data from calendar year 1984. The system is based on a water-budget method to estimate total consumptive use by vegetation which is apportioned to agricultural users by using percentages of total evapotranspiration by vegetation estimated from digital-image analysis of satellite data.

  15. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  16. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  17. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  18. A GEO Global Agricultural Water Productivity Mapping System

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Pozzi, W.; Miller, N. L.; Fekete, B.; Sheffield, J.; Dumenil-Gates, L.

    2009-12-01

    Agriculture is the main consumer of freshwater, and improved precision and accuracy of the terrestrial water cycle requires a more reliable way of monitoring agricultural water use and agricultural water productivity. Wisser et al 2008 reported that agricultural water consumption over the satellite-determined crop acreage (from AVHRR, SPOT VGT), particularly for India and China (Thenkabail et al 2006) was 30% higher than the commonly used Food and Agricultural Organization country-reported agricultural crop census data. We propose further quantification and clarification of this error through the following methodology: 1) greater accuracy in measuring actual area and precise spatial distribution of irrigated and rainfed cropland areas, along with identification of crop types and cropping intensities; 2) satellite monitoring of actual evapotranspiration (water use) by croplands; 3) reconciling agricultural plot information and evapotranspiration against calculated stores of water and water budgets, as derived from a Global Hydrologic Model Multi-Model Ensemble; and (d) modeling and pin-pointing areas of low and high water productivity (WP) to optimize agricultural water use and thus save large quanta of water. We propose producing global irrigated and rainfed areas at finer scales using Landsat 30 m imagery in fusion with MODIS 250 m imagery using the spectral matching technique (Thenkabail et al 2009). Crop water use (water transpired by the crop) and crop water productivity maps can be prepared for terrestrial areas, by using the surface energy balance model, in which evapotranspiration fraction is provided from Landsat ETM+ and\\or MODIS thermal data, combined with locally derived meteorological data such as wind speed, humidity, incoming radiation, and other surface values to derive turbulent diffusion and finally computing reference evapotranspiration (e.g., Penman-Montieth approach), so that sensible heat flux may be deducted from net radiation to derive

  19. Water temperature impacts water consumption by range cattle in winter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  20. Minimizing water consumption when producing hydropower

    NASA Astrophysics Data System (ADS)

    Leon, A. S.

    2015-12-01

    In 2007, hydropower accounted for only 16% of the world electricity production, with other renewable sources totaling 3%. Thus, it is not surprising that when alternatives are evaluated for new energy developments, there is strong impulse for fossil fuel or nuclear energy as opposed to renewable sources. However, as hydropower schemes are often part of a multipurpose water resources development project, they can often help to finance other components of the project. In addition, hydropower systems and their associated dams and reservoirs provide human well-being benefits, such as flood control and irrigation, and societal benefits such as increased recreational activities and improved navigation. Furthermore, hydropower due to its associated reservoir storage, can provide flexibility and reliability for energy production in integrated energy systems. The storage capability of hydropower systems act as a regulating mechanism by which other intermittent and variable renewable energy sources (wind, wave, solar) can play a larger role in providing electricity of commercial quality. Minimizing water consumption for producing hydropower is critical given that overuse of water for energy production may result in a shortage of water for other purposes such as irrigation, navigation or fish passage. This paper presents a dimensional analysis for finding optimal flow discharge and optimal penstock diameter when designing impulse and reaction water turbines for hydropower systems. The objective of this analysis is to provide general insights for minimizing water consumption when producing hydropower. This analysis is based on the geometric and hydraulic characteristics of the penstock, the total hydraulic head and the desired power production. As part of this analysis, various dimensionless relationships between power production, flow discharge and head losses were derived. These relationships were used to withdraw general insights on determining optimal flow discharge and

  1. Range Cattle Winter Water Consumption in Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water consumption and DMI may interact to alter range cow productivity. Furthermore, environmental conditions and water temperature may influence water consumption. Therefore, the objective of this study was to determine influences of water and air temperature on quantity and pattern of water intake...

  2. Agricultural Exports and the Environment: A Cross-National Study of Fertilizer and Pesticide Consumption

    ERIC Educational Resources Information Center

    Longo, Stefano; York, Richard

    2008-01-01

    The mass consumption of agrochemicals, including manufactured fertilizers and pesticides, by industrialized agricultural systems worldwide threatens human health and the health of ecosystems. The production of these agricultural inputs is a highly energy- and capital-intensive process, and their application contributes to a variety of direct and…

  3. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  4. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  5. How have agricultural policies influenced caloric consumption in the United States?

    PubMed

    Rickard, Bradley J; Okrent, Abigail M; Alston, Julian M

    2013-03-01

    Many commentators have speculated that agricultural policies have contributed to increased obesity rates in the United States, yet such claims are often made without any analysis of the complex links between real-world farm commodity support programs, prices and consumption of foods, and caloric intake. This article carefully studies the effects of US agricultural policies on prices and quantities of 10 agricultural commodities and nine food categories in the United States over time. Using a detailed multimarket model, we simulate the counterfactual removal of measures of support applied to US agricultural commodities in 1992, 1997, and 2002 and quantify the effects on US food consumption and caloric intake. To parameterize the simulations, we calculate three alternative measures of consumer support (the implicit consumer subsidy from policies that support producers) for the 10 agricultural commodities using information about government expenditures on agricultural commodities from various sources. Our results indicate that-holding all other policies constant-removing US subsidies on grains and oilseeds in the three periods would have caused caloric consumption to decrease minimally whereas removal of all US agricultural policies (including barriers against imports of sugar and dairy products) would have caused total caloric intake to increase. Our results also indicate that the influence of agricultural policies on caloric intake has diminished over time. PMID:22331635

  6. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  7. Range Cattle Winter Water Consumption in Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water consumption and DMI has been found to be positively correlated and may interact to alter range cow productivity. Environmental conditions can have a significant influence on water consumption during the winter. The objective of this study was to determine influences of water and air temperatur...

  8. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-01

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth. PMID:25289879

  9. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2012-03-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (2210-3080 kg km-2 yr-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (2560 kg km-2 yr-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<530 kg km-2 yr-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer

  10. The Contribution of Agricultural Trade for Saving Blue Water in Arid Regions

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Biewald, A.; Hoff, H.; Lotze-Campen, H.

    2011-12-01

    Trade can mitigate local water scarcity in water scarce regions, but does not always do so because of economic or other pressures to export water intensive products. To assess impacts of trade on blue and green water use in agriculture, we apply two dynamic, global and spatially explicit models. The vegetation and crop model LPJmL calculates water use and crop productivity. Based on the potential agricultural yield of LPJmL, the economic model MAgPIE_trade produces landuse pattern for the most important agricultural production in 10 economic world regions; bilateral trade is controlled by transport costs and trade barriers. We quantify the trade effect by comparing scenarios with and without trade for current and predicted future climatic conditions. The resulting differences in the spatial patterns (0.5° resolution) of agricultural production from MAgPIE_trade enables the quantification of the amount of goods produced for export. Using the consumptive green and blue water fluxes from LPJmL for each agricultural product, the export of virtual water uses are calculated so that water saving or consumption due to trade can be quantified. Although an interesting result in itself, an estimate for relaxation or intensification of water scarcity by trade is still missing. Here, the water shadow price from MAgPIE_trade as an indicator for water scarcity is related to the actual change in blue water usage. This relation is then taken as an indicator for the efficiency of trade on the local savings of blue water.

  11. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  12. Impact of Climate Change on Water Resources in Lebanon - a Look Crop Water Consumptive Use

    NASA Astrophysics Data System (ADS)

    Farajalla, N. F.

    2009-04-01

    Potential climate change impacts on Lebanon could be harsh as a result of increased temperature which could eventually lead to loss of vegetative cover. Rising temperatures in a range of 1.8-4.0 oC as projected by the Intergovernmental Climate Change IPCC in 2007 would lead to a reduction in the snow cap of mountainous areas in Lebanon. This would result in increased surface runoff and reduced recharge of groundwater. The objective of this study is to assess the impact of climate change on water resources in Lebanon by delving into plant consumptive use of water at different vegetation scales using the CROPWAT model (FAO, 1992). Baseline climatic data (temperature, humidity, wind speed and daily sunshine) based on available 30 years data series (1956-2002) were used. The paper will evaluate the sensitivity of evapotranspiration to climate change by determining crop water requirement under scenarios of varying temperature and relative humidity. CROPWAT will be used to analyze the water consumption by plants in two differently sized watersheds with a variety of vegetative covers (forest, shrub, agricultural, etc.) and in different agroclimatic regions - namely Wadi Barsa lying on the coastal strip and Wadi Charbine located inland. The work is on-going and it is expected that by the time of presentation at the conference the authors will be able to present results indicating whether available precipitation will be sufficient for maintaining groundcover and agricultural crops in the two agroclimatic regions of Lebanon.

  13. Incorporating water consumption into crop water footprint: A case study of China's South-North Water Diversion Project.

    PubMed

    Wei, Yuhang; Tang, Deshan; Ding, Yifan; Agoramoorthy, Govindasamy

    2016-03-01

    The crop water footprint (WF) indicates the consumption of water for a crop during the planting period, mainly through evapotranspiration. However, as irrigated agriculture accounts for nearly 25% of the global agriculture water usage, evaluation of WF during transportation becomes essential to improve the efficiency of irrigated agriculture. This study aims at building an improved WF model to understand how much WF is produced due to water diversion and how much crop WF increases during the transfer. The proposed model is then used to calculate the WF of four major crops in five provinces along China's South-North Water Transfer Project in two steps. First, the WF of the water transfer project (WFeng) is assessed in a supply chain analysis method. Second, a WF allocation model is built to distribute the project WF for each crop/province. The results show that the evaporation and seepage are the main sources of WFeng. Out of five provinces, two namely Tianjin and Hebei present higher WFblue and WF increase. A positive correlation between water diversion distance and crop WF increase is noted. Among the four crops, cotton presents higher WFblue and WF increase. The crops with higher WFblue tend to be more strongly influenced by the water diversion project, due to high irrigation water dependency. This analysis may expand the WF concept from an evaporation-related term to a term reflecting crop biological processes and water consumption by artificial irrigation projects. Thus, it may serve as an indicator for optimizing future objectives and strategies associated to water resource planning in China and elsewhere. PMID:26760279

  14. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  15. 77 FR 66909 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  16. 77 FR 16317 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  17. 78 FR 17281 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  18. 76 FR 66117 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION..., described below, receiving approval for the consumptive use of water pursuant to the Commission's...

  19. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  20. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...; ] DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program and Cooperative... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... Agricultural Water Enhancement Program Legislative Authority The Agricultural Water Enhancement Program...

  1. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... 100 pounds of ice (kWh/100 lbs ice) and the condenser water use in gallons per 100 pounds of ice...

  2. Reduced energy consumption evaporator for use in desalting impaired waters. Technical completion report (Final)

    SciTech Connect

    Tleimat, B.W.; Tleimat, M.C.

    1995-06-01

    The basic objective of this program is to demonstrate significant savings in energy consumption by the use of the wiped film rotating disk (WFRD) evaporator in a five-effect vapor compression distillation (MEVCD) system to recover the maximum amount of water from agricultural drainage water and other impaired waters. Tests were conducted using a 10,000 ppm aqueous solution of sodium sulfate and sodium chloride to simulate the composition of agricultural drainage water in the San Joaquin Valley, California. The feed was concentrated by a factor ranging from 15 to 20 resulting in a blowdown salinity of 150,000 to 200,000 ppm. The results showed the presence of dissolved salts has significant influence on energy consumption by the compressor of a commercial 60,000 gal/day VCD unit tested at Los Banos, California.

  3. Triple dividends of water consumption charges in South Africa - article no. W05412

    SciTech Connect

    Letsoalo, A.; Blignaut, J.; de Wet, T.; de Wit, M.; Hess, S.; Tol, R.S.J.; van Heerden, J.

    2007-05-15

    The South African government is exploring ways to address water scarcity problems by introducing a water resource management charge on the quantity of water used in sectors such as irrigated agriculture, mining, and forestry. It is expected that a more efficient water allocation, lower use, and a positive impact on poverty can be achieved. This paper reports on the validity of these claims by applying a computable general equilibrium model to analyze the triple dividend of water consumption charges in South Africa: reduced water use, more rapid economic growth, and a more equal income distribution. It is shown that an appropriate budget-neutral combination of water charges, particularly on irrigated agriculture and coal mining, and reduced indirect taxes, particularly on food, would yield triple dividends, that is, less water use, more growth, and less poverty.

  4. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-03-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users can increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, such a dynamic allocation process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  5. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2011-09-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.65 to 38.3 ha) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ yr stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (22.1-30.8 kg ha-1 a-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (25.6 kg ha-1 a-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<5.3 kg ha-1 a-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2+ + Mg2)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions

  6. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  7. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  8. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  9. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... EQUIPMENT Automatic Commercial Ice Makers Test Procedures § 431.134 Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. (a) Scope....

  10. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption

    PubMed Central

    Novotny, Thomas E; Bialous, Stella Aguinaga; Burt, Lindsay; Curtis, Clifton; Luiza da Costa, Vera; Iqtidar, Silvae Usman; Liu, Yuchen; Pujari, Sameer

    2015-01-01

    Abstract The health consequences of tobacco use are well known, but less recognized are the significant environmental impacts of tobacco production and use. The environmental impacts of tobacco include tobacco growing and curing; product manufacturing and distribution; product consumption; and post-consumption waste. The World Health Organization’s Framework Convention on Tobacco Control addresses environmental concerns in Articles 17 and 18, which primarily apply to tobacco agriculture. Article 5.3 calls for protection from policy interference by the tobacco industry regarding the environmental harms of tobacco production and use. We detail the environmental impacts of the tobacco life-cycle and suggest policy responses. PMID:26668440

  11. 77 FR 55893 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... INFORMATION: This notice lists the projects, described below, being rescinded for the consumptive use of...

  12. 77 FR 59240 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the Susquehanna River...

  13. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  14. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge. PMID:19934512

  15. Consumptive Water Use for U.S. Power Production: Preprint

    SciTech Connect

    Torcellini, P.; Long, N.; Judkoff, R.

    2003-11-01

    Evaporative cooling systems have been criticized for their water use and acclaimed for their low energy consumption, especially when compared to typical cooling systems. In order to determine the overall effectiveness of cooling systems, both water and energy need to be considered; however, there must be a metric to compare the amount of energy used at the site to the amount of water used at the power plant. A study of power plants and their respective water consumption was completed to effectively analyze evaporative cooling systems.

  16. Water footprints of cities - indicators for sustainable consumption and production

    NASA Astrophysics Data System (ADS)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2014-01-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  17. Natural flow and water consumption in the Milk River basin, Montana and Alberta, Canada

    USGS Publications Warehouse

    Thompson, R.E.

    1986-01-01

    A study was conducted to determine the differences between natural and nonnatural Milk River streamflow, to delineate and quantify the types and effects of water consumption on streamflow, and to refine the current computation procedure into one which computes and apportions natural flow. Water consumption consists principally of irrigated agriculture, municipal use, and evapotranspiration. Mean daily water consumption by irrigation ranged from 10 cu ft/sec to 26 cu ft/sec in the Canada part and from 6 cu ft/sec to 41 cu ft/sec in the US part. Two Canadian municipalities consume about 320 acre-ft and one US municipality consumes about 20 acre-ft yearly. Evaporation from the water surface comprises 80% 0 90% of the flow reduction in the Milk River attributed to total evapotranspiration. The current water-budget approach for computing natural flow of the Milk River where it reenters the US was refined into an interim procedure which includes allowances for man-induced consumption and a method for apportioning computed natural flow between the US and Canada. The refined procedure is considered interim because further study of flow routing, tributary inflow, and man-induced consumption is needed before a more accurate procedure for computing natural flow can be developed. (Author 's abstract)

  18. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  19. Consumptive water use associated with food waste: case study of fresh mango in Australia

    NASA Astrophysics Data System (ADS)

    Ridoutt, B. G.; Juliano, P.; Sanguansri, P.; Sellahewa, J.

    2009-07-01

    In many parts of the world, freshwater is already a scarce and overexploited natural resource, raising concerns about global food security and damage to freshwater ecosystems. This situation is expected to intensify with the FAO estimating that world food production must double by 2050. Food chains must therefore become much more efficient in terms of consumptive water use. For the small and geographically well-defined Australian mango industry, having an average annual production of 44 692 t of marketable fresh fruit, the average virtual water content (sum of green, blue and gray water) at orchard gate was 2298 l kg-1. However, due to wastage in the distribution and consumption stages of the product life cycle, the average virtual water content of one kg of Australian-grown fresh mango consumed by an Australian household was 5218 l. This latter figure compares to an Australian-equivalent water footprint of 217 l kg-1, which is the volume of direct water use by an Australian household having an equivalent potential to contribute to water scarcity. Nationally, distribution and consumption waste in the food chain of Australian-grown fresh mango to Australian households represented an annual waste of 26.7 Gl of green water and 16.6 Gl of blue water. These findings suggest that interventions to reduce food chain waste will likely have as great or even greater impact on freshwater resource availability as other water use efficiency measures in agriculture and food production.

  20. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-07-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Continuously adjusting allocation decisions based on the hydrologic status of the system will lead to the temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users. Such a dynamic allocation process will increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, this process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  1. [Association study between water quality of Chaohu Lake and resources input in agriculture of basin].

    PubMed

    Zhang, Yan; Gao, Xiang; Zhang, Hong

    2012-09-01

    In order to discuss the association between the water quality of Chaohu Lake and the resources input in agriculture of the basin, factors that may affect the lake eutrophication are chosen, such as surplus fertilizer, irrigated area with saved water, agricultural films, water and soil loss control and so on. The methods of correlation analysis and stepwise regression are used. Furthermore, a new method, combined with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, calculating the surplus fertilizer is designed. The results indicate that among various resources input in agriculture of the basin the surplus fertilizer, irrigated area with saved water and agricultural films have a great influence on Chaohu Lake eutrophication. And one year's lag phase between the water quality of Chaohu Lake and the surplus fertilizer is confirmed. Therefore, it is necessary to raise the utilization efficiency of fertilizer, to improve the irrigation way and to decrease the agricultural water consumption in order to conserve resources and to reduce the influence of agricultural production on the water quality of Chaohu Lake. PMID:23243852

  2. Water consumption in Iron Age, Roman, and Early Medieval Croatia.

    PubMed

    Lightfoot, E; Slaus, M; O'Connell, T C

    2014-08-01

    Patterns of water consumption by past human populations are rarely considered, yet drinking behavior is socially mediated and access to water sources is often socially controlled. Oxygen isotope analysis of archeological human remains is commonly used to identify migrants in the archeological record, but it can also be used to consider water itself, as this technique documents water consumption rather than migration directly. Here, we report an oxygen isotope study of humans and animals from coastal regions of Croatia in the Iron Age, Roman, and Early Medieval periods. The results show that while faunal values have little diachronic variation, the human data vary through time, and there are wide ranges of values within each period. Our interpretation is that this is not solely a result of mobility, but that human behavior can and did lead to human oxygen isotope ratios that are different from that expected from consumption of local precipitation. PMID:24888560

  3. 78 FR 27471 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e)...

  4. 78 FR 27470 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  5. 77 FR 55891 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  6. 77 FR 55892 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  7. 77 FR 34455 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION... water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(f) for the...

  8. Water Consumption Estimates of the Biodiesel Process in the US

    EPA Science Inventory

    As a renewable alternative to petroleum diesel, biodiesel has been widely used in the US and around the world. Along with the rapid development of the biodiesel industry, its potential impact on water resources should also be evaluated. This study investigates water consumption f...

  9. Consumptive Water Use and Crop Coefficients of Irrigated Sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In semi-arid environments, the use of irrigation is necessary for sunflower production to reach its maximum potential. The aim of this study was to quantify the consumptive water use and crop coefficients of irrigated sunflower (Helianthus annuus L.) without soil water limitations during two growing...

  10. ALEXI analysis of water consumption in the Nile Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing can be used to generate diagnostic estimates of evapotranspiration (ET) that provide information regarding consumptive water use across landscapes. These satellite-based assessments can be a valuable complement to prognostic simulations of basin-scale water budgets, providing an inde...

  11. Consumptive water use in the production of ethanonl and petroleum gasoline.

    SciTech Connect

    Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

    2009-01-30

    The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

  12. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  13. Consumptive Water Use for U.S. Power Production

    SciTech Connect

    Torcellini, P.; Long, N.; Judkoff, R.

    2003-12-01

    A study of power plants and their respective water consumption was completed to effectively analyze evaporative cooling systems. This technical paper will aid the High Performance Buildings Research Program by providing a metric in determining water efficiency in building cooling systems. Further analysis is planned to determine the overall water efficiency of evaporative cooling systems compared to conventional direct expansion systems and chiller systems with cooling towers.

  14. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  15. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    PubMed

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life. PMID:24499870

  16. Water footprints of cities - indicators for sustainable consumption and production

    NASA Astrophysics Data System (ADS)

    Hoff, H.; Döll, P.; Fader, M.; Gerten, D.; Hauser, S.; Siebert, S.

    2013-02-01

    Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We have further developed the existing water footprint methodology by globally resolving virtual water flows and import and source regions at 5 arc minutes spatial resolution, and by assessing local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2% and 0.5%, respectively, roughly equal to local drinking water abstractions of these cities. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.

  17. Addressing Water Consumption of Evaporative Coolers with Greywater

    SciTech Connect

    Sahai, Rashmi; Shah, Nihar; Phadke, Amol

    2012-07-01

    Evaporative coolers (ECs) provide significant gains in energy efficiency compared to vapor compression air conditioners, but simultaneously have significant onsite water demand. This can be a major barrier to deployment in areas of the world with hot and arid climates. To address this concern, this study determined where in the world evaporative cooling is suitable, the water consumption of ECs in these cities, and the potential that greywater can be used reduce the consumption of potable water in ECs. ECs covered 69percent of the cities where room air conditioners are may be deployed, based on comfort conditions alone. The average water consumption due to ECs was found to be 400 L/household/day in the United States and Australia, with the potential for greywater to provide 50percent this amount. In the rest of the world, the average water consumption was 250 L/household/day, with the potential for greywater to supply 80percent of this amount. Home size was the main factor that contributed to this difference. In the Mediterranean, the Middle East, Northern India, and the Midwestern and Southwestern United States alkalinity levels are high and water used for bleeding will likely contribute significantly to EC water consumption. Although technically feasible, upfront costs for household GW systems are currently high. In both developed and developing parts of the world, however, a direct EC and GW system is cost competitive with conventional vapor compression air conditioners. Moreover, in regions of the world that face problems of water scarcity the benefits can substantially outweigh the costs.

  18. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  19. 78 FR 11947 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River Basin.... SUPPLEMENTARY INFORMATION: This notice lists the projects, described below, receiving approval for...

  20. 78 FR 2315 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River Basin.... SUPPLEMENTARY INFORMATION: This notice lists the projects, described below, receiving approval for...

  1. 76 FR 53526 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River...

  2. 77 FR 59239 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River...

  3. 76 FR 42159 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River...

  4. 77 FR 21143 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River...

  5. 78 FR 15402 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna River...

  6. 77 FR 25010 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule by the Susquehanna ] River...

  7. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  8. Remotely Sensed Estimates of Evapotranspiration in Agricultural Areas of Northwestern Nevada: Drought, Reliance, and Water Transfers

    NASA Astrophysics Data System (ADS)

    Bromley, Matthew

    The arid landscape of northwestern Nevada is punctuated by agricultural communities that rely on water primarily supplied by the diversion of surface waters and secondarily by groundwater resources. Annual precipitation in the form of winter snowfall largely determines the amount of surface water that is available for irrigation for the following agricultural growing season. During years of insufficient surface water supplies, particular basins can use groundwater in order to meet irrigation needs. The amount of water used to irrigate agricultural land is influenced by land use changes, such as fallowing, and water right transfers from irrigation to municipal use. To evaluate agricultural water consumption with respect to variations in weather, water supply, and land use changes, monthly estimates of evapotranspiration (ET) were derived from Landsat multispectral optical and thermal imagery over a eleven-year period (2001 to 2011) and compared to variations in weather, water supply, and land use across four hydrographic areas in northwestern Nevada. Monthly ET was estimated using a land surface energy balance model, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), using Landsat 5 and Landsat 7 imagery combined with local atmospheric water demand estimates. Estimates of net ET were created by subtracting monthly precipitation from METRIC-derived ET, and seasonal estimates were generated by combining monthly ET for April-October (the regional agricultural growing season). Results highlight that a range of geographic, climatic, hydrographic, and anthropogenic factors influence ET. Hydrographic areas such as Mason Valley have the ability to mitigate deficiencies in surface water supplies by pumping supplemental groundwater, thereby resulting in low annual variability in ET. Conversely, the community of Lovelock has access to limited upstream surface water storage and is restricted by groundwater that is saline and unsuitable for

  9. The Management Options of Water for the Development of Agriculture in Dry Areas

    NASA Astrophysics Data System (ADS)

    Irshad, M.; Inoue, M.; Ashraf, M.; Al-Busaidi, A.

    The natural resource base of land, water and vegetation in arid and semi arid areas is highly fragile and greatly vulnerable to degradation especially in the developing countries. The demand for water is constantly increasing as a result of population growth and the expansion of agriculture and industry. Fresh water resources are limited in the arid and semi-arid areas whereas the existing water resources are often overused and misused. The lack of water management in the arid areas generated numerous economic, social and ecological issues. Agriculture currently accounts for nearly 70-80% of water consumption in the developing countries. The productivity of water use in agriculture needs to enhance in order both to avoid exacerbating the water crisis and to prevent considerable food shortages. More efficient use of existing water resources and adequate management of soils could prove to be the effective tool for improving arid lands. The technologies, skills and capital resources required to overcome the poor and extreme distribution of water resources through storage and transfer are not available and widely used. As a consequence there is critically low access to water for agriculture, drinking and sanitation and the environment. Poor access to water is among the leading factors hindering sustainable development in semi-arid and arid regions. Conventional irrigation management should be revised to ensure maximum water productivity instead of land productivity for dry farming systems. Under conditions of increasing water scarcity, the key to sustaining rural livelihoods is improving the productivity and reliability of rainfed agriculture by using limited rainfall more productively, through optimal on-farm soil, water and crop management practices that conserve soil moisture and increase water use efficiency. Conserving and augmenting water supplies through rainwater harvesting and precision irrigation provide new opportunity for productive dry land farming

  10. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  11. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  12. Linking carbon stock change from land-use change to consumption of agricultural products: Alternative perspectives.

    PubMed

    Goh, Chun Sheng; Wicke, Birka; Faaij, André; Bird, David Neil; Schwaiger, Hannes; Junginger, Martin

    2016-11-01

    Agricultural expansion driven by growing demand has been a key driver for carbon stock change as a consequence of land-use change (CSC-LUC). However, its relative role compared to non-agricultural and non-productive drivers, as well as propagating effects were not clearly addressed. This study contributed to this subject by providing alternative perspectives in addressing these missing links. A method was developed to allocate historical CSC-LUC to agricultural expansions by land classes (products), trade, and end use. The analysis for 1995-2010 leads to three key trends: (i) agricultural land degradation and abandonment is found to be a major (albeit indirect) driver for CSC-LUC, (ii) CSC-LUC is spurred by the growth of cross-border trade, (iii) non-food use (excluding liquid biofuels) has emerged as a significant contributor of CSC-LUC in the 2000's. In addition, the study demonstrated that exact values of CSC-LUC at a single spatio-temporal point may change significantly with different methodological settings. For example, CSC-LUC allocated to 'permanent oil crops' changed from 0.53 Pg C (billion tonne C) of carbon stock gain to 0.11 Pg C of carbon stock loss when spatial boundaries were changed from global to regional. Instead of comparing exact values for accounting purpose, key messages for policymaking were drawn from the main trends. Firstly, climate change mitigation efforts pursued through a territorial perspective may ignore indirect effects elsewhere triggered through trade linkages. Policies targeting specific commodities or types of consumption are also unable to quantitatively address indirect CSC-LUC effects because the quantification changes with different arbitrary methodological settings. Instead, it is recommended that mobilising non-productive or under-utilised lands for productive use should be targeted as a key solution to avoid direct and indirect CSC-LUC. PMID:27543749

  13. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Standards for consumptive uses of water. 806.22 Section 806.22 Conservation of Power and Water Resources SUSQUEHANNA RIVER... for consumptive uses of water. (a) The project sponsors of all consumptive water uses subject...

  14. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Standards for consumptive uses of water. 806.22 Section 806.22 Conservation of Power and Water Resources SUSQUEHANNA RIVER... for consumptive uses of water. (a) The project sponsors of all consumptive water uses subject...

  15. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Standards for consumptive uses of water. 806.22 Section 806.22 Conservation of Power and Water Resources SUSQUEHANNA RIVER... for consumptive uses of water. (a) The project sponsors of all consumptive water uses subject...

  16. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Standards for consumptive uses of water. 806.22 Section 806.22 Conservation of Power and Water Resources SUSQUEHANNA RIVER... for consumptive uses of water. (a) The project sponsors of all consumptive water uses subject...

  17. Denitrification of agricultural drainage line water via immobilized denitrification sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. One potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to 1...

  18. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    PubMed

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-01

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe. PMID:22390631

  19. Army Industrial, Landscaping, and Agricultural Water Use

    SciTech Connect

    McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  20. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    population under hunger and poverty. In light of these threats and opportunities facing the global food system, the proposed study takes a long-term perspective and addresses the main medium and long- term drivers of agricultural markets using the International Model for Policy Analysis of Agricultural Commodities and Trade developed by the Environment and Production Technology Division of IFPRI to project future production, consumption, and trade of key agricultural commodities. The main objective of the study is to analyze the link between energy and agricultural markets, focusing on the "new" role of agriculture as a supplier of energy for transportation through biofuels, and the subsequent impact on land use and demand for water from the agricultural sector. In this context, this study incorporates various scenarios of future energy demand and energy price impacts on global agricultural markets (food prices and food security), water use implications (irrigation water consumption by agricultural sector), and land use implications (changes in national and global crop area). The scenarios are designed to understand the impact of energy prices on biofuel production, cost of production for agricultural crops, conversion of rainfed area to irrigated area, and necessary levels of crop productivity growth to counter these effects.

  1. Data-driven behavioural modelling of residential water consumption to inform water demand management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Cominola, Andrea; Alshaf, Ahmad; Castelletti, Andrea; Anda, Martin

    2016-04-01

    The continuous expansion of urban areas worldwide is expected to highly increase residential water demand over the next few years, ultimately challenging the distribution and supply of drinking water. Several studies have recently demonstrated that actions focused only on the water supply side of the problem (e.g., augmenting existing water supply infrastructure) will likely fail to meet future demands, thus calling for the concurrent deployment of effective water demand management strategies (WDMS) to pursue water savings and conservation. However, to be effective WDMS do require a substantial understanding of water consumers' behaviors and consumption patterns at different spatial and temporal resolutions. Retrieving information on users' behaviors, as well as their explanatory and/or causal factors, is key to spot potential areas for targeting water saving efforts and to design user-tailored WDMS, such as education campaigns and personalized recommendations. In this work, we contribute a data-driven approach to identify household water users' consumption behavioural profiles and model their water use habits. State-of-the-art clustering methods are coupled with big data machine learning techniques with the aim of extracting dominant behaviors from a set of water consumption data collected at the household scale. This allows identifying heterogeneous groups of consumers from the studied sample and characterizing them with respect to several consumption features. Our approach is validated onto a real-world household water consumption dataset associated with a variety of demographic and psychographic user data and household attributes, collected in nine towns of the Pilbara and Kimberley Regions of Western Australia. Results show the effectiveness of the proposed method in capturing the influence of candidate determinants on residential water consumption profiles and in attaining sufficiently accurate predictions of users' consumption behaviors, ultimately providing

  2. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  3. Agricultural Water Conservation via Conservation Tillage and Thermal Infrared

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia water conservation is an issue that involves all citizens. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  4. Thermal Infrared Imagery for Better Water Conservation in Agricultural Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation is an issue that involves all citizens in Georgia. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  5. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L.

    2007-01-01

    [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ???90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (???1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs. Copyright 2007 by the American Geophysical Union.

  6. [Risks associated with unrestricted consumption of alkaline-reduced water].

    PubMed

    Henry, Marc; Chambron, Jacques

    2014-01-01

    Consumption of alkaline reduced water produced by domestic electrolysis devices was approved in Japan in 1965 by the Minister of Health, Work and Wellbeing, for the treatment of gastrointestinal disorders. Today, these devices are also freely available in France. The commercial information provided with the devices recommends the consumption of 1 to 1.5 liters per day, not only for gastrointestinal disorders but also for numerous other illnesses such as diabetes, cancer and inflammation. Academic research on this subject has been undergoing in Japan since 1990, and has established that the active ingredient is dissolved dihydrogen, which eliminates the free radical HO· in vivo. It has also been shown that electrode degradation during use of the devices releases highly reactive platinum nanoparticles, the toxicity of which is unknown. The authors of this report recommend alerting the French health authorities to the uncontrolled availability of these devices that generate drug substances and should therefore be subject to regulatory requirements. PMID:26753412

  7. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  8. Todayʼs virtual water consumption and trade under future water scarcity

    NASA Astrophysics Data System (ADS)

    Orlowsky, B.; Hoekstra, A. Y.; Gudmundsson, L.; Seneviratne, Sonia I.

    2014-07-01

    The populations of most nations consume products of both domestic and foreign origin, importing together with the products the water which is expended abroad for their production (termed ‘virtual water’). Therefore, any investigation of the sustainability of present-day water consumption under future climate change needs to consider the effects of potentially reduced water availability both on domestic water resources and on the trades of virtual water. Here we use combinations of Global Climate and Global Impact Models from the ISI-MIP ensemble to derive patterns of future water availability under the RCP2.6 and RCP8.5 greenhouse gas (GHG) concentrations scenarios. We assess the effects of reduced water availability in these scenarios on national water consumptions and virtual water trades through a simple accounting scheme based on the water footprint concept. We thereby identify countries where the water footprint within the country area is reduced due to a reduced within-area water availability, most prominently in the Mediterranean and some African countries. National water consumption in countries such as Russia, which are non-water scarce by themselves, can be affected through reduced imports from water scarce countries. We find overall stronger effects of the higher GHG concentrations scenario, although the model range of climate projections for single GHG concentrations scenarios is in itself larger than the differences induced by the GHG concentrations scenarios. Our results highlight that, for both investigated GHG concentration scenarios, the current water consumption and virtual water trades cannot be sustained into the future due to the projected patterns of reduced water availability.

  9. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test methods for the measurement of energy consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Automatic Commercial Ice Makers...

  10. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    NASA Astrophysics Data System (ADS)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  11. Climate, water and agriculture in the Tropics

    SciTech Connect

    Jackson, I.J.

    1989-01-01

    The broad view is established with a functional definition of the tropics to include the area lying within the region of the easterly trade winds and its extension to extratropical regions that are affected by tropical phenomena such as the southwest Indian monsoon and hurricanes. In the first five chapters Jackson discusses atmospheric water largely in physical terms-its origin and transport with relation to general circulation patterns and precipitation characteristics such as frequency, duration, and intensity, which are as important as total rainfall in the consideration of runoff, biological productivity, and land utilization. In the remainder of the book water-soil-plant relationships are discussed generally and specifically for selected crops and regions. Popular emotional appears currently decry the destruction of tropical wet forests. Jackson makes it clear that tropical lands exhibit a rich variation in climates and that problems of exploitation rooted in cultures, economics, politics, and population growth cannot be solved by the simple introduction of temperate zone science and technology. This volume is a hybrid between an intermediate level textbook and a review article for the knowledgeable investigator, planner, or administrator, and the values to be found in it will vary with the background and interests of the reader. A reference list of more than 800 titles, perhaps half of them dated in the present decade, is a major asset, especially when coupled with extensive author and subject indexes.

  12. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  13. Domestic hot water consumption of the developed and developing communities in South Africa

    SciTech Connect

    Meyer, J.P.

    1999-07-01

    Domestic hot water consumption for five different types of dwellings in the developed and developing communities of the Johannesburg Metropolitan Area, South Africa, are determined with measurements over a period of one year (1996) in more than 770 dwellings. The hot water consumption was taken monthly with the exception of 310 dwellings where the measurements were logged, resulting in hourly hot water consumptions. The results of the two types of measurements are presented: first, hot water consumption per person per day for the different months of a year; second, hourly hot water consumption per person per day as a function of winter weekdays.

  14. Water Use in Los Angeles, California: Consumption Patterns, Ecosystem Response and Impact on Regional Water Budgets

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.

    2014-12-01

    The City of Los Angeles relies heavily on external water sources, primarily the Eastern Sierra, Northern California and the Colorado River, and approximately 90% of the City's water supply is snowpack dependent. In recent years, water conservation measures have been implemented in response to regional drought, which include a tiered pricing structure and watering restrictions. As a result of implemented conservation policies, Los Angeles reported the lowest water consumption per capita per day in 2011 among cities over 1 million people in the U.S. This presentation will highlight our ongoing work to better understand the coupling between humans, ecosystems and water across the City of Los Angeles, especially during the recent drought period. Our work is unique in that we integrate social, ecological, and hydrologic data, including ten years of residential water consumption data for the entire city of Los Angeles, extensive groundwater well data, socio-economic information and remote sensing to evaluate relationships as well as spatial and temporal patterns. Developed statistical models demonstrated that Single-Family Residential (SFR) water use across the City is primarily driven by household income, landscape greenness, water rates and water volume allocation,, with higher consumption rates in the northern, warmer and more affluent parts, and lower consumption rates in the less affluent neighborhoods near Downtown. Landscape use also varies greatly across the city, averaging 50% of total SFR. Our evaluation of conservation efforts shows that the combination of mandatory watering restrictions and price increase led to a water reduction of 23%, while voluntary restrictions led to only a 6% reduction in water use. Relationships of water use to ecosystems (greenness) and groundwater variability were also evaluated and will be highlighted. Our ultimate goal is to improve predictions of human-water interactions in order to drive policy change and guide future demand

  15. Water consumption by nuclear powerplants and some hydrological implications

    USGS Publications Warehouse

    Giusti, Ennio V.; Meyer, E.L.

    1977-01-01

    Published data show that estimated water consumption varies with the cooling system adopted, being least in once-through cooling (about 18 cubic feet per second per 1,000 megawatts electrical) and greatest in closed cooling with mechanical draft towers (about 30 cubic feet per second per 1,000 megawatts electrical). When freshwater is used at this magnitude, water-resources economy may be affected in a given region. The critical need for cooling water at all times by the nuclear powerplant industry, coupled with the knowledge that water withdrawal in the basin will generally increase with time and will be at a maximum during low-flow periods, indicates a need for reexamination of the design low flow currently adopted and the methods used to estimate it. The amount of power generated, the name of the cooling water source, and the cooling method adopted for all nuclear powerplants projected to be in operation by 1985 in the United States are tabulated and the estimated annual evaporation at each powerplant site is shown on a map of the conterminous United States. Another map is presented that shows all nuclear powerplants located on river sites as well as stream reaches in the United States where the 7-day, 10-year low flow is at least 300 cubic feet per second or where this amount of flow can be developed with storage. (Woodard-USGS)

  16. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  17. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. PMID:25555206

  18. Simulating Irrigation Requirements And Water Withdrawals: The Role Of Agricultural Irrigation In Basin Hydrology And Non-Sustainable Water Use

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Douglas, E. M.; Schumann, A. H.; Vörösmarty, C. J.

    2006-05-01

    The development of irrigation can cause drastic alterations of the water cycle both through changed evaporation patterns, water abstractions, and (in the case of paddy rice), increased percolation rates. The interactions of irrigation development and large-scale water cycles have traditionally not been accounted for in macroscale hydrological models. We use a modified version an existing water balance model (the WBM model) to explicitly consider the effects of irrigation on regional and continental water cycles. The irrigation module is based on the FAO-CROPWAT approach and uses a daily soil moisture balance to simulate crop consumptive water use. Time series of irrigated areas and the distribution of crops and cropping patterns are derived from a combination of remotely sensed data and national and sub-national statistics. An assessment is made of (1) how irrigation water is supplied and (2) how much of this water is abstracted in excess of the renewable water supply in the basin considering different time horizons. Using different scenarios of water availability and irrigation water demand, the response of irrigation water use to water supply and the potential threats to food security are investigated. Case studies in a few river basins that are heavily influenced by irrigated agriculture and that represent different regions of the world will be presented.

  19. Managing Delmarva Agricultural Drainage Ditches for Water Quality Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for draining storm and subsurface water from farmland on the Delmarva Peninsula. Ditches are unique ecosystems, having the features of both streams and wetlands. Ditches often provide the only wetland and aquatic habitats on farmland. Ditches carry, store,...

  20. Managing agricultural phosphorus for water quality protection: principles for progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The eutrophication of aquatic systems due to diffuse pollution of agricultural phosphorus (P) is a local, even regional, water quality problem that can be found world-wide. Sustainable management of P requires prudent tempering of agronomic practices, recognizing that additional steps are often requ...

  1. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  2. Multifunctional systems approaches to water management for agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of anthropogenic chemicals on water quality, wildlife, and human health has received increasing attention in recent years. One potential source of anthropogenic compounds is land-based recycling programs which apply municipal wastes (biosolids) to large tracts of agricultural land in lie...

  3. Conjunctive use of water resources for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2014-11-01

    The continuous increase in global population and simultaneous decrease in good quality water resources emphasizes the need of using surface water and groundwater resources conjunctively for irrigation. The conjunctive use allows the utilization of poor quality water, which cannot be used as such for the crop production due to its harmful effect on soil and crop health. This paper presents an overview on issues and methods of the conjunctive use of surface water and groundwater resources for sustainable irrigated agriculture. The background of the conjunctive water use and its applications for the management of poor quality water and management of rising watertable are presented. The management of conjunctive water use through the computer-based models is also covered in this review. The advantages and disadvantages of the approach have been described. Conclusions are provided based on this review which could be useful for all the stakeholders.

  4. Coupled Sensing of Hunger and Thirst Signals Balances Sugar and Water Consumption.

    PubMed

    Jourjine, Nicholas; Mullaney, Brendan C; Mann, Kevin; Scott, Kristin

    2016-08-11

    Hunger and thirst are ancient homeostatic drives for food and water consumption. Although molecular and neural mechanisms underlying these drives are currently being uncovered, less is known about how hunger and thirst interact. Here, we use molecular genetic, behavioral, and anatomical studies in Drosophila to identify four neurons that modulate food and water consumption. Activation of these neurons promotes sugar consumption and restricts water consumption, whereas inactivation promotes water consumption and restricts sugar consumption. By calcium imaging studies, we show that these neurons are directly regulated by a hormone signal of nutrient levels and by osmolality. Finally, we identify a hormone receptor and an osmolality-sensitive ion channel that underlie this regulation. Thus, a small population of neurons senses internal signals of nutrient and water availability to balance sugar and water consumption. Our results suggest an elegant mechanism by which interoceptive neurons oppositely regulate homeostatic drives to eat and drink. PMID:27477513

  5. Modeling studies of water consumption for transportation fuel options: Hawaii, US-48

    NASA Astrophysics Data System (ADS)

    King, C. W.; Webber, M. E.

    2011-12-01

    There are now major drivers to move from petroleum transportation: moving to low-carbon transport life cycles for climate change mitigation, fuel diversity to reduce reliance on imported oil, and economic concerns regarding the relatively high price of oil ( $100/barrel) and the resulting impact on discretionary income. Unfortunately many transportation fuel alternatives also have some environmental impacts, particularly with regard to water consumption and biodiversity. In this presentation we will discuss the water and energy sustainability struggle ongoing in Hawai'i on the island of Maui with a brief history and discussion of energy and water modeling scenarios. The vast majority of surface water on Maui is diverted via man-made ditches for irrigation on sugar cane plantations. Maui currently allocates between 250 and 300 million gallons per day (Mgal/d) of irrigation water for sugarcane cultivation each day, and it is likely that the island could support a biofuel-focused sugarcane plantation by shifting production focus from raw sugar to ethanol. However, future water availability is likely to be less than existing water availability because Maui is growing, more water is being reserved for environmental purposes, and precipitation levels are on decline for the past two decades and some expect this trend to continue. While Maui residents cannot control precipitation patterns, they can control the levels of increased requirements for instream flow in Maui's streams. The Hawaii State Commission on Water Resource Management (CWRM) sets instream flow standards, and choosing not to restore instream flow could have what many locals consider negative environmental and cultural impacts that must be weighed against the effects of reducing surface water availability for agriculture. Instream flow standards that reduce legal withdrawals for streams that supply irrigation water would reduce the amount of surface water available for biofuel crop irrigation. Environmental

  6. Agricultural hydrology and water quality II: Introduction to the featured collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  7. 18 CFR 806.22 - Standards for consumptive uses of water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Standards for consumptive uses of water. 806.22 Section 806.22 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION REVIEW AND APPROVAL OF PROJECTS Standards for Review and Approval § 806.22 Standards for consumptive uses of water. (a) The...

  8. Evaluation for sustainable agriculture water use from River, Reservoirs and Groundwater in the 20th century

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Yamada, H.; Hanasaki, N.; Kanae, S.

    2011-12-01

    High water stress due to economic growth and climate change (ex. global warming) will be falling into 2 billion people to 4 billion people in the future. Agricultural water use accounting for about 70% of global water consumption might continue to increase due to production of foods and biofuels occurred by population growth in the future. In particular, water demand, food and biofuel production have an inextricable link. It is very important to evaluate these relationship for sustainable water use from past to the future. In this study, we focused on the objective to assess the impact of water withdrawal from various sources (stream flow, medium-sized reservoirs and nonrenewable nonlocal blue water) in the 20th century by considering irrigation area and climate change. Irrigation water withdrawal is the most important water use sector accounting for about 90% of total water withdrawal. First, we make the global spatial database of equipped irrigation area change and medium-sized reservoirs capacity. Then, water withdrawal from each sources for 50 years from 1950 to 2000 were simulated in global-scale at a resolution of 1.0 degree x 1.0 degree using an integrated global water resources model (hereafter, the H08 model). The H08 model can simulate both natural or anthropogenic water flow and anthropogenic water withdrawals. For comparison with our results, distribution of agricultural, industrial and domestic water withdrawals from 1950 to 2000 were estimated by distributing the country-based withdrawal data from AQUASTAT with irrigation area, urban population and total population, respectively. Groundwater withdrawal was then estimated by distributing the country-based withdrawal data based on statistical data from WRI, IGRAC and AQUASTAT with the total water withdrawal. As a result, agricultural water withdrawal change from nonrenewable nonlocal blue water during the past 50 years agreed well with the observed groundwater abstraction based on statistical data. In

  9. APPLICATIONS OF AGRICULTURAL SYSTEM MODELS IN ASSESSING AND MANAGING CONTAMINATION OF THE SOIL-WATER-ATMOSPHERE CONTINUUM IN AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980's, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems that wi...

  10. Application of Agricultural System Models in Assessing and Managing Contamination of Soil-Water-Atmosphere Continuum in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980s, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems th...

  11. Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows.

    PubMed

    Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció

    2013-01-01

    This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration. PMID:24094293

  12. 75 FR 71177 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... notice lists the projects, described ] below, receiving approval for the consumptive use of...

  13. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  14. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  15. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  16. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  17. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  18. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    NASA Astrophysics Data System (ADS)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  19. Water consumption and water-saving characteristics of a ground cover rice production system

    NASA Astrophysics Data System (ADS)

    Jin, Xinxin; Zuo, Qiang; Ma, Wenwen; Li, Sen; Shi, Jianchu; Tao, Yueyue; Zhang, Yanan; Liu, Yang; Liu, Xiaofei; Lin, Shan; Ben-Gal, Alon

    2016-09-01

    The ground cover rice production system (GCRPS) offers a potentially water-saving alternative to the traditional paddy rice production system (TPRPS) by furrow irrigating mulched soil beds and maintaining soils under predominately unsaturated conditions. The guiding hypothesis of this study was that a GCRPS would decrease both physiological and non-physiological water consumption of rice compared to a TPRPS while either maintaining or enhancing production. This was tested in a two-year field experiment with three treatments (TPRPS, GCRPSsat keeping root zone average soil water content near saturated, and GCRPS80% keeping root zone average soil water content as 80-100% of field water capacity) and a greenhouse experiment with four treatments (TPRPS, GCRPSsat, GCRPSfwc keeping root zone average soil water content close to field water capacity, and GCRPS80%). The water-saving characteristics of GCRPS were analyzed as a function of the measured soil water conditions, plant parameters regarding growth and production, and water input and consumption. In the field experiment, significant reduction in both physiological and non-physiological water consumption under GCRPS lead to savings in irrigation water of ∼61-84% and reduction in total input water of ∼35-47%. Compared to TPRPS, deep drainage was reduced ∼72-88%, evaporation was lessened ∼83-89% and transpiration was limited ∼6-10% under GCRPS. In addition to saving water, plant growth and grain yield were enhanced under GCRPS due to increased soil temperature in the root zone. Therefore, water use efficiencies (WUEs), based on transpiration, irrigation and total input water, were respectively improved as much as 27%, 609% and 110% under GCRPS. Increased yield attributed to up to ∼19%, decreased deep drainage accounted for ∼75%, decreased evaporation accounted for ∼14% and reduced transpiration for ∼5% of the enhancement in WUE of input water under GCRPS, while increased runoff and water storage had

  20. Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture.

    PubMed Central

    Rockström, Johan

    2003-01-01

    This paper quantifies the eco-hydrological challenge up until 2050 of producing food in balance with goods and services generated by water-dependent ecosystems in nature. Particular focus is given to the savannah zone, covering 40% of the land area in the world, where water scarcity constitutes a serious constraint to sustainable development. The analysis indicates an urgent need for a new green revolution, which focuses on upgrading rain-fed agriculture. Water requirements to produce adequate diets for humans are shown to be relatively generic irrespective of hydro-climate, amounting to a global average of 1,300 m(3) cap(-1) yr(-1). Present food production requires an estimated 6,800 km(3) yr(-1) of consumptive green water (5,000 km(3) yr(-1) in rain-fed agriculture and 1,800 km(3) yr(-1) from irrigated crops). Without considering water productivity gains, an additional 5,800 km(3) yr(-1) of water is needed to feed a growing population in 2,050 and eradicate malnutrition. It is shown that the bulk of this water will be used in rain-fed agriculture. A dynamic analysis of water productivity and management options indicates that large 'crop per drop' improvements can be achieved at the farm level. Vapour shift in favour of productive green water flow as crop transpiration could result in relative water savings of 500 km(3) yr(-1) in semi-arid rain-fed agriculture. PMID:14728794

  1. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  2. Impact of the New U.S. Department of Agriculture School Meal Standards on Food Selection, Consumption, and Waste

    PubMed Central

    Cohen, Juliana F.W.; Richardson, Scott; Parker, Ellen; Catalano, Paul J.; Rimm, Eric B.

    2014-01-01

    Background The U.S Department of Agriculture (USDA) recently made substantial changes to the school meal standards. The media and public outcry have suggested that this has led to substantially more food waste. Purpose School meal selection, consumption, and waste were assessed before and after implementation of the new school meal standards. Methods Plate waste data was collected in 4 schools in an urban, low-income school district. Logistic regression and mixed-model ANOVA were used to estimate the differences in selection and consumption of school meals before (fall 2011) and after implementation (fall 2012) of the new standards among 1030 elementary and middle school children. Analyses were conducted in 2013. Results After the new standards were implemented, fruit selection increased by 23.0%, and entrée and vegetable selection remained unchanged. Additionally, post-implementation entrée consumption increased by 15.6%, vegetable consumption increased by 16.2%, and fruit consumption remained the same. Milk selection and consumption decreased owing to an unrelated milk policy change. Conclusions While food waste levels were substantial both pre- and post-implementation, the new guidelines have positively impacted school meal selection and consumption. Despite the increased vegetable portion size requirement, consumption increased and led to significantly more cups of vegetables consumed. Significantly more students selected a fruit, while the overall percentage of fruit consumed remained the same, resulting in more students consuming fruits. Contrary to media reports, these results suggest that the new school meal standards have improved students’ overall diet quality. Legislation to weaken the standards is not warranted. PMID:24650841

  3. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  4. Quantifying the influence of environmental and water conservation attitudes on household end use water consumption.

    PubMed

    Willis, Rachelle M; Stewart, Rodney A; Panuwatwanich, Kriengsak; Williams, Philip R; Hollingsworth, Anna L

    2011-08-01

    Within the research field of urban water demand management, understanding the link between environmental and water conservation attitudes and observed end use water consumption has been limited. Through a mixed method research design incorporating field-based smart metering technology and questionnaire surveys, this paper reveals the relationship between environmental and water conservation attitudes and a domestic water end use break down for 132 detached households located in Gold Coast city, Australia. Using confirmatory factor analysis, attitudinal factors were developed and refined; households were then categorised based on these factors through cluster analysis technique. Results indicated that residents with very positive environmental and water conservation attitudes consumed significantly less water in total and across the behaviourally influenced end uses of shower, clothes washer, irrigation and tap, than those with moderately positive attitudinal concern. The paper concluded with implications for urban water demand management planning, policy and practice. PMID:21486685

  5. Estimated agricultural ground-water pumpage in parts of Fresno, Kings, and Madera Counties, San Joaquin Valley, California, 1974-77

    USGS Publications Warehouse

    Mitten, Hugh T.

    1978-01-01

    Agricultural ground-water pumpage data are presented for 1974-77 for the area on the west side of the San Joaquin Valley in parts of Fresno, Kings, and Madera Counties, Calif., which has approximately the boundaries of the Westlands Water District. The method of estimating pumpage was based on electric-power consumption at the agricultual wells. (Woodard-USGS)

  6. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    PubMed

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin. PMID

  7. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... total water energy consumption per cycle for the normal cycle as defined in section 1.6 of Appendix C to... kilowatt-hours as provided by the Secretary, and (B) The product of the per-cycle water energy consumption for gas-heated or oil-heated water in BTU per cycle, determined according to 4.1.4 of appendix...

  8. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  9. Spatial dynamics of water management in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Muralidharan, Daya; Knapp, Keith C.

    2009-05-01

    Irrigated agriculture provides 40% of worldwide food supplies but uses large amounts of scarce freshwater and contributes to environmental degradation. At the very core of this problem lie decisions made by irrigators subject to biophysical relations. This research develops a microeconomic model of irrigation management taking into account the dynamics of plant growth over the season, spatial variability in infiltration of applied irrigation water, and fundamental principles from subsurface hydrology. The analysis shows that spatial variability in water infiltration common to traditional irrigation systems increases both applied irrigation water and deep percolation flows by very substantial amounts compared to uniform infiltration. The analysis demonstrates that efficient irrigation management can significantly reduce both applied water and deep percolation at relatively low costs, at least up to a certain level. A long-run analysis of optimal irrigation systems including capital costs indicates that traditional furrow systems are economically efficient over a wide range of water prices and deep percolation costs. Overall, the results indicate that optimal irrigation management can achieve significant resource conservation and pollution control with low loss in agricultural net benefits and without land retirement, investment in capital-intensive systems, or crop switching.

  10. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  11. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  12. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  13. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.

    PubMed

    Liu, Jing; Sun, Shikun; Wu, Pute; Wang, Yubao; Zhao, Xining

    2015-02-01

    The integration of water footprints and virtual water flows allows the mapping of the links between production, trade, and consumption and could potentially help to alleviate water scarcity and improve water management. We evaluated the water footprints and virtual water flows of crop production, consumption, and trade and their influencing factors in the Hetao irrigation district in China for 1960-2010. The water footprint of crop production and the export of virtual water fluctuated but tended to increase during this period and were influenced mainly by agricultural factors such as crop yield, irrigation efficiency, and area sown. The water footprint of crop consumption and the import of virtual water increased during 1960-1979 and decreased during 1980-2010 and were influenced by socio-economic factors such as total population, the retail-price index, and the proportion of the population in urban areas. Most of the water footprint of production was exported to other areas, which added to the pressure on local water systems. The import of virtual water led to a saving of water for the Hetao irrigation district, while its share of the water footprint of consumption has decreased significantly since 1977. An increase in irrigation efficiency can alleviate water scarcity, and its application should be coupled with measures that constrain the continued expansion of agriculture. Full-cost pricing of irrigation water was an effective policy tool for its management. Re-shaping regional water-production and water-trade nexuses by changing crop structures could provide alternative opportunities for addressing the problems of local water scarcity, but the trade-offs involved should first be assessed. PMID:25461115

  14. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  15. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Rosegrant, Mark W.

    2004-08-01

    The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

  16. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  17. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  18. TECHNICAL CONCEPTS RELATED TO CONSERVATION OF IRRIGATION AND RAIN WATER IN AGRICULTURAL SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty percent of freshwater withdrawals in the U.S. are for irrigated agriculture, which contributed 55$ billion to the economy in 2002. Increasing diversions of water for urban, environmental, and other uses will likely decrease water available to agriculture. Agricultural water conservation is tou...

  19. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Knox, Jerry W.; Ozdogan, Mutlu; Gumma, Murali Krishna; Congalton, Russell G.; Wu, Zhuoting; Milesi, Cristina; Finkral, Alex; Marshall, Mike; Mariotto, Isabella; You, Songcai; Giri, Chandra; Nagler, Pamela

    2012-01-01

    of changing dietary consumption patterns, a changing climate and the growing scarcity of water and land (Beddington, 2010). The impact from these changes wi ll affect the viability of both dryland subsistence and irrigated commodity food production (Knox, et al., 2010a). Since climate is a primary determinant of agricultural productivity, any changes will influence not only crop yields, but also the hydrologic balances, and supplies of inputs to managed farming systems as well as potentially shifting the geographic location for specific crops . Unless concerted and collective action is taken, society risks worldwide food shortages, scarcity of water resources and insufficient energy. This has the potential to unleash public unrest, cross-border conflicts and migration as people flee the worst-affected regions to seck refuge in "safe havens", a situation that Beddington described as the "perfect storm" (2010).

  20. Oxygen consumption and evaporative water loss in infants with congenital heart disease.

    PubMed Central

    Kennaird, D L

    1976-01-01

    The relation between environmental temperature, heat production, oxygen consumption, and evaporative water loss was studied in 67 infants with congenital heart disease. The majority of the cyanosed infants had a low minimum oxygen consumption, a low evaporative water loss, and a diminished metabolic response to cold stress. Minimum oxygen consumption and evaporative water loss rose in 6 of these infants after the construction of a surgical shunt. Many of the ill acyanotic infants had an abnormally high minimum oxygen consumption, and those in cardiac failure often continued to sweat in an environment below the thermoneutral temperature zone. PMID:942228

  1. Harmonisation of food consumption data format for dietary exposure assessments of chemicals analysed in raw agricultural commodities.

    PubMed

    Boon, Polly E; Ruprich, Jiri; Petersen, Annette; Moussavian, Shahnaz; Debegnach, Francesca; van Klaveren, Jacob D

    2009-12-01

    In this paper, we present an approach to format national food consumption data at raw agricultural commodity (RAC) level. In this way, the data is both formatted in a harmonised way given the comparability of RACs between countries, and suitable to assess the dietary exposure to chemicals analysed in RACs at a European level. In this approach, consumption data needs to be converted to edible part of RAC (e-RAC) level using a RAC conversion database. To subsequently use this data in exposure assessments, both e-RACs and RACs analysed in chemical control programmes should be classified via a uniform system. Furthermore, chemical concentrations in RACs may need to be converted to e-RAC level using processing factors. To illustrate the use of this approach, we describe how the Dutch RAC conversion database was used to convert consumption data of four national consumption surveys to e-RAC level, and the use of the FAO/WHO Codex Classification system of Foods and Animal Feeds to harmonise the classification. We demonstrate that this approach works well for pesticides and glycoalkaloids, and is an essential step forward in the harmonisation of risk assessment procedures within Europe when addressing chemicals analysed in RACs by all national food control systems. PMID:19682531

  2. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control.

    PubMed

    Murakami, Shinnosuke; Goto, Yasuaki; Ito, Kyo; Hayasaka, Shinya; Kurihara, Shigeo; Soga, Tomoyoshi; Tomita, Masaru; Fukuda, Shinji

    2015-01-01

    Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition. PMID:26798400

  3. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control

    PubMed Central

    Murakami, Shinnosuke; Goto, Yasuaki; Ito, Kyo; Hayasaka, Shinya; Kurihara, Shigeo; Soga, Tomoyoshi; Tomita, Masaru; Fukuda, Shinji

    2015-01-01

    Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition. PMID:26798400

  4. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  5. Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey

    NASA Astrophysics Data System (ADS)

    Yurdusev, Mehmet Ali; Firat, Mahmut

    2009-02-01

    SummaryIn this study, an adaptive neuro fuzzy inference system (ANFIS) is used to forecast monthly water use from several socio-economic and climatic factors including average monthly water bill, population, number of households, gross national product, monthly average temperature observed, monthly total rainfall, monthly average humidity observed and inflation rate. Water consumption modeling in this way will be more consistent than doing it using a single variable as more effective parameter could be incorporated. The ANFIS system is applied to modeling monthly water consumptions of Izmir, Turkey. The results indicated that ANFIS can be successfully applied for monthly water consumption modeling.

  6. Demographic, agricultural products, and food consumption data for a collective farm in Oranoe District, Ivankov District, Kiev Region, Ukraine

    SciTech Connect

    Ryabov, I N; Davidenko, G M; Templeton, W L; ,

    1992-07-01

    This report provides some demographic, agricultural and food consumption data for the collective farms ( Kybisheva,'' composed of three villages) in the Oranoe Department, District of Ivankov, Kiev Region. This area is situated approximately 15 km south of the Chernobyl 30-km Exclusion Zone. The levels of {sup 137}Cs are approximately 5--10 curies/km{sup 2}. This data was collected by the Integrated Radioecological Expedition to Chernobyl of the Russian Academy of Sciences as part of the co-operative studies on environmental radiation dose assessment conducted under the US/USSR Joint Co-operative Committee on Civilian Nuclear Reactor Safety (JCCCNRS) established in 1989.

  7. 75 FR 23837 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... lists the projects, described below, receiving approval for the consumptive use of water pursuant to...

  8. 75 FR 4901 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... notice lists the projects, described below, receiving approval for the consumptive use of water...

  9. 76 FR 33019 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... lists the projects, described below, receiving approval for the consumptive use of water pursuant to...

  10. 76 FR 50536 - Projects Approved or Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin... projects, described below, receiving approval or rescission for the consumptive use of water pursuant...

  11. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Test procedures for the measurement of energy and water consumption. 430.23 Section 430.23 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures § 430.23 Test procedures for the measurement of energy and water consumption. Link to an...

  12. 10 CFR 430.23 - Test procedures for the measurement of energy and water consumption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Test procedures for the measurement of energy and water consumption. 430.23 Section 430.23 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures § 430.23 Test procedures for the measurement of energy and water consumption. When the test...

  13. Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina

    NASA Astrophysics Data System (ADS)

    Contreras, Sergio; Jobbágy, Esteban G.; Villagra, Pablo E.; Nosetto, Marcelo D.; Puigdefábregas, Juan

    2011-01-01

    SummaryBesides precipitation inputs, evapotranspiration of irrigated and natural oases, i.e. riparian and phreatophytic ecosystems, of rain-shadow deserts is strongly influenced by lateral water inputs supplied by mountain rivers and foothill-recharged aquifers. A better understanding of these supplies and their imprint on the water consumption of those inflow dependent ecosystems (IDEs) across arid regions is critical to manage agricultural outputs and ecosystem conservation, and the hydrological trade-offs that emerge among them. Actual operative satellite and physically-based algorithms able to map evapotranspiration (ET) rates at regional scales still fail when they are applied in ungauged regions because of their high parameterization and meteorological data requirements. We introduce an ecological and satellite-based approach to explore the impacts of external water supplies on arid ecosystems, focusing on the Central Monte desert and its water supplies from the Andean Cordillera, in Argentina. Mean annual precipitation (MAP) and the Enhanced Vegetation Index (EVI) from MODIS imagery, used as a surrogate of ET, were the input variables of our empirical model. Two related biophysical indexes were generated for the whole territory of interest based on a MAP-EVI regional function calibrated for the region: the EVI Anomaly (i.e. deviation from a reference with similar MAP) and the ET Anomaly (i.e. additional water consumption besides MAP). These indexes allowed us to identify IDEs and to quantify the impact of remote lateral inflows as well as local constrains on the water balance of rangelands, and irrigated and natural oases. The performance of this satellite-based approach was evaluated through comparisons with independent ET estimates based on plot (known crop coefficients) and basin (measured water budgets) scale approaches. Relative errors in the 2-18% range at plot and basin scale are in agreement with those uncertainties reported by other satellite and

  14. LOWER PAYETTE RIVER, IDAHO AGRICULTURE IRRIGATION WATER RETURN STUDY AND GROUND WATER EVALUATION, 1992-1993

    EPA Science Inventory

    This report covers the final 17 miles of the Payette River (17050112) and 32,000 acres of irrigated cropland referred to as the Lower Payette State Agricultural Water Quality Project. An in-depth surface and ground water monitoring effort was initiated in June 1992 and completed...

  15. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  16. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  17. Water Quality Benefits of Constructed Wetlands Integrated Within Agricultural Water Recycling Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been integrated within innovative agricultural water recycling systems, and these systems are now being evaluated at three demonstration sites located in the northwest Ohio portion of the Maumee River Basin (Defiance, Fulton, and Van Wert Counties). The water recycling syst...

  18. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-09-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.

  19. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  20. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  1. Changes in water and sugar-containing beverage consumption and body weight outcomes in children.

    PubMed

    Muckelbauer, Rebecca; Gortmaker, Steven L; Libuda, Lars; Kersting, Mathilde; Clausen, Kerstin; Adelberger, Bettina; Müller-Nordhorn, Jacqueline

    2016-06-01

    An intervention study showed that promoting water consumption in schoolchildren prevented overweight, but a mechanism linking water consumption to overweight was not substantiated. We investigated whether increased water consumption replaced sugar-containing beverages and whether changes in water or sugar-containing beverages influenced body weight outcomes. In a secondary analysis of the intervention study in Germany, we analysed combined longitudinal data from the intervention and control groups. Body weight and height were measured and beverage consumption was self-reported by a 24-h recall questionnaire at the beginning and end of the school year 2006/2007. The effect of a change in water consumption on change in sugar-containing beverage (soft drinks and juices) consumption, change in BMI (kg/m2) and prevalence of overweight and obesity at follow-up was analysed using regression analyses. Of 3220 enroled children, 1987 children (mean age 8·3 (sd 0·7) years) from thirty-two schools were analysed. Increased water consumption by 1 glass/d was associated with a reduced consumption of sugar-containing beverages by 0·12 glasses/d (95 % CI -0·16, -0·08) but was not associated with changes in BMI (P=0·63). Increased consumption of sugar-containing beverages by 1 glass/d was associated with an increased BMI by 0·02 (95 % CI 0·00, 0·03) kg/m2 and increased prevalence of obesity (OR 1·22; 95 % CI 1·04, 1·44) but not with overweight (P=0·83). In conclusion, an increase in water consumption can replace sugar-containing beverages. As sugar-containing beverages were associated with weight gain, this replacement might explain the prevention of obesity through the promotion of water consumption. PMID:27040694

  2. 77 FR 4859 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ...: Gamble Pad A, ABR- 201110013, Gamble Township, Lycoming County, Pa.; Consumptive Use of up to 4.000 mgd...: November 30, 2011. 71. Inflection Energy, LLC, Pad ID: Stunner 1V, ABR- 201111037, Gamble and...

  3. Determinants of residential water consumption: Evidence and analysis from a 10-country household survey

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Ward, Michael B.; To, Hang; Kompas, Tom

    2011-08-01

    Household survey data for 10 countries are used to quantify and test the importance of price and nonprice factors on residential water demand and investigate complementarities between household water-saving behaviors and the average volumetric price of water. Results show (1) the average volumetric price of water is an important predictor of differences in residential consumption in models that include household characteristics, water-saving devices, attitudinal characteristics and environmental concerns as explanatory variables; (2) of all water-saving devices, only a low volume/dual-flush toilet has a statistically significant and negative effect on water consumption; and (3) environmental concerns have a statistically significant effect on some self-reported water-saving behaviors. While price-based approaches are espoused to promote economic efficiency, our findings stress that volumetric water pricing is also one of the most effective policy levers available to regulate household water consumption.

  4. Accounting for Consumptive Use of Lower Colorado River Water in Arizona, California, Nevada, and Utah

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Wilson, Richard P.

    1994-01-01

    In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal

  5. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  6. Phosphorus and water budgets in an agricultural basin.

    PubMed

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas. PMID:24955757

  7. Water chemistry responses to hydraulic manipulation of an agricultural wetland

    NASA Astrophysics Data System (ADS)

    Powers, S.; Stanley, E. H.

    2011-12-01

    Small impoundments are often crucial factors for the movement of sediment, organic matter, water-borne nutrients, and toxic materials through river networks. By recent accounting, at least 2.6 million small artificial water bodies exist in the US alone. A large proportion of those structures occur in regions with high intensity of agriculture, such as in the Midwestern grain belt. While small impoundments are aging structures which appear to serve few purposes, some hold ecological and biogeochemical value as artificial wetlands. We documented instantaneous net fluxes of solute (chloride, sulfate, nitrate, ammonium, and soluble reactive phosphorus) through an artificial flow-through wetland in agricultural southern Wisconsin over 6 years which spanned removal of a small dam. Phased dewatering and dam removal ultimately converted the artificial wetland to a canal-like state (increase in mean water velocity from 0.08 to 0.22 m s-1). Mean net flux for chloride across the system averaged nearly 0 g d-1, indicating conservative transport and successful characterization of hydrology. In contrast, net fluxes for other solute forms were altered following loss of the wetland: a persistent net sulfate sink (5-10% of inputs retained), suggestive of sulfate-reducing bacteria, was reduced; seasonal (summer) net sinks for nitrate and ammonium, suggestive of uptake by algae and denitrifying bacteria, were reduced; temporal variability for the net flux of soluble reactive phosphorus was reduced. Overall, loss of the artificial wetland caused by dam removal shifted seasonal and annual net fluxes of biologically available solute toward export. Nutrient retention by artificial wetlands could be important for elemental budgets in regions which have high nutrient loading to surface and ground water.

  8. Characterisation of areas under irrigated agriculture: mapping and water use

    NASA Astrophysics Data System (ADS)

    Peña Arancibia, Jorge; McVicar, Tim R.; Guerschman, Juan P.; Li, Lingtao T.

    2014-05-01

    The evolution of remote sensing and classification methods has enabled effective mapping, monitoring and management of irrigated agriculture. A random forest classification was implemented using learning samples inferred from Landsat TM/ETM data and monthly time-series of remotely-sensed observations from the MODerate resolution Imaging Spectroradiometer (MODIS). The covariates included in the method characterised: (i) the vegetation phenology via the recurrent and persistent fractions of photosynthetically active radiation (fPARrecandfPARper, respectively); (ii) vegetation water use via estimates of actual evapotranspiration (AET), rainfall (P) and the difference between AET and P . Maps of irrigated areas under different climates and cropping conditions were produced for the whole Murray-Darling Basin (Australia) for the years 2004 to 2010 with 0.96 observed agreement in terms of the Kappa Index (were a value of 1 indicates perfect agreement). An independent comparison of yearly irrigated area estimates and corresponding water use showed a linear relationship with good agreement (R2 >0.7) against available yearly metered water withdrawals and estimates of agricultural yields. A sequential covariate optimisation suggested that the most important predictors included the emergence-senescence period (as determined by the fPARrec and corresponding rates of change) and the AET surplus over P during this period. The latter can be important when determining more opportunistic irrigation practices due to unreliable water supply in areas with otherwise high annual rainfall. The procedure can be implemented to map irrigated areas at the global scale: the MODIS time-series used in the classification methodology are available globally since February 2000 and so are the Landsat archives which can be used to infer learning samples and irrigation practices elsewhere.

  9. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  10. A preliminary appraisal of the impact of agriculture on ground-water availability in Southwest Georgia

    USGS Publications Warehouse

    Pollard, L.D.; Grantham, R.G.; Blanchard, H.E.

    1978-01-01

    Irrigated acreage in the 20-county study area in southwest Georgia increased from 130,000 acres in 1976 to 261,000 in 1977. Acreage irrigated entirely by ground water increased 85 percent for the same period. The largest quantity of ground water used for irrigation was in the Dougherty Plain district, where 92 percent of supplemental irrigation water comes from wells. The total amount of water pumped for irrigation in the Dougherty Plain in 1977 was more than 42 billion gallons, 30 billion gallons more than in 1976. There were no detectable concentrations of selected organic compounds and trace metals used in agricultural chemicals above the recommended limits for public consumption in 19 wells sampled for chemical analyses. Although nitrate concentrations were not above the recommended limits for drinking water, the presence of nitrate in amounts ranging from 0.3 to 7.8 milligrams per liter in wells in the Dougherty Plain possibly indicate the downward movement of soluble nitrate, a byproduct of fertilizer, into the ground-water reservoir. (Woodard-USGS)

  11. Muddy Water and American Agriculture: How to Best Control Sedimentation From Agricultural Land?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Stephen B.; Lee, John Gary; Beasley, David B.

    1985-08-01

    The role of agricultural sediment in water quality is well documented. While numerous policies have been advocated and initiated, it still appears to be a significant problem. The present analysis concentrates on the outcome of several policy alternatives in terms of sediment delivery and project costs. These results are obtained by combining social science investigation of probable farmer behavior under a variety of scenarios with a hydrologic simulation model which predicts the sediment delivery with different land uses. This integration of social science behavioral research with the hydrologic response simulation model provides a framework to assess the environmental effectiveness of alternative policies aimed at reducing sedimentation. While the results presented here are preliminary, this approach seems to offer great promise as a tool for federal, state and local conservation agencies in their efforts to efficiently and effectively use their limited resources to reduce soil loss.

  12. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  13. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  14. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade

    NASA Astrophysics Data System (ADS)

    Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W.

    2011-01-01

    The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the blue (irrigation water) and green (precipitation water) virtual water content, i.e. the inverse of water productivity, for 11 of the world's major crop types. Based on these, we also quantify the water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints, which is needed due to the different sources and opportunity costs of these two water pools, shows that green water globally dominates both the internal and external WFP (84% of the global WFP and 94% of the external WFP rely on green water). Accordingly, some of the major exporters of the crops considered here (e.g. Argentina, Canada) export mainly green virtual water, but traditional rice exporters such as India and Pakistan mainly export blue virtual water. The external WFPs are found to be relatively small (6% of the total global blue WFP, 16% of the total global green WFP). Nevertheless, current trade saves significant water volumes and land areas (~263 km3 and ~41 Mha, respectively, equivalent to 5% of the sowing area of the crops considered here and 3.5% of the annual precipitation on this area). Linking the proportions of external to internal blue/green WFP with the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above average WFPs. Thus, countries with high levels of per capita water consumption

  15. Biogenic carbon fluxes from global agricultural production and consumption: Gridded, annual estimates of net ecosystem carbon exchange

    NASA Astrophysics Data System (ADS)

    Wolf, J.; West, T. O.; le Page, Y.; Thomson, A. M.

    2014-12-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate globally consistent bottom-up estimates for carbon monitoring and model input. We quantify agricultural carbon fluxes associated with annual (starting in 1961) crop net primary productivity (NPP), harvested biomass, and human and livestock consumption and emissions, with estimates of uncertainty, by applying region- and species-specific carbon parameters to annual crop, livestock, food and trade inventory data, and generate downscaled, gridded (0.05 degree resolution) representations of these fluxes. In 2011, global crop NPP was 5.25 ± 0.46 Pg carbon (excluding root exudates), of which 2.05 ± 0.051 Pg carbon was harvested as primary crops; an additional 0.54 Pg of crop residue carbon was collected for livestock fodder. In 2011, total livestock feed intake was 2.42 ± 0.21 Pg carbon, of which 2.31 ± 0.21 Pg carbon was emitted as carbon dioxide and 0.072 ± 0.005 Pg carbon was emitted as methane. We estimate that livestock grazed 1.18 Pg carbon from non-crop lands in 2011, representing 48.5 % of global total feed intake. In 2009, the latest available data year, we estimate global human food intake (excluding seafood and orchard fruits and nuts) at 0.52 ± 0.03 Pg carbon, with an additional 0.24 ± 0.01 Pg carbon of food supply chain losses. Trends in production and consumption of agricultural carbon between 1961 and recent years, such as increasing dominance of oilcrops and decreasing percent contribution of pasturage to total livestock feed intake, are discussed, and accounting of all agricultural carbon was done for the years 2005 and 2009. Gridded at 0.05 degree resolution, these quantities represent local uptake and release of agricultural biogenic carbon (e.g. biomass production and removal, residue and manure inputs to soils) and may be used with other gridded data to help estimate current and future changes in soil organic carbon.

  16. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  17. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  18. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  19. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  20. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  1. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  2. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  3. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  4. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  5. Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Reza; Akhond-Ali, Ali-Mohammad; Roozbahani, Abbas; Fattahi, Rouhollah

    2016-06-01

    Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025-2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  6. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  7. Modeling Stochastic Energy and Water Consumption to Manage Residential Water Uses

    NASA Astrophysics Data System (ADS)

    Abdallah, A. M.; Rosenberg, D. E.; Water; Energy Conservation

    2011-12-01

    Water energy linkages have received growing attention from the water and energy utilities as utilities recognize that collaborative efforts can implement more effective conservation and efficiency improvement programs at lower cost with less effort. To date, limited energy-water household data has allowed only deterministic analysis for average, representative households and required coarse assumptions - like the water heater (the primary energy use in a home apart from heating and cooling) be a single end use. Here, we use recent available disaggregated hot and cold water household end-use data to estimate water and energy consumption for toilet, shower, faucet, dishwasher, laundry machine, leaks, and other household uses and savings from appliance retrofits. The disaggregated hot water and bulk water end-use data was previously collected by the USEPA for 96 single family households in Seattle WA and Oakland CA, and Tampa FL between the period from 2000 and 2003 for two weeks before and four weeks after each household was retrofitted with water efficient appliances. Using the disaggregated data, we developed a stochastic model that represents factors that influence water use for each appliance: behavioral (use frequency and duration), demographical (household size), and technological (use volume or flowrate). We also include stochastic factors that govern energy to heat hot water: hot water fraction (percentage of hot water volume to total water volume used in a certain end-use event), heater water intake and dispense temperatures, and energy source for the heater (gas, electric, etc). From the empirical household end-use data, we derive stochastic probability distributions for each water and energy factor where each distribution represents the range and likelihood of values that the factor may take. The uncertainty of the stochastic water and energy factors is propagated using Monte Carlo simulations to calculate the composite probability distribution for water

  8. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  9. Withdrawal and consumption of water by thermoelectric power plants in the United States, 2010

    USGS Publications Warehouse

    Diehl, Timothy H.; Harris, Melissa A.

    2014-01-01

    An analysis of 2005 and 2010 EIA-reported water use indicated that withdrawal and consumption declined 18 percent and 34 percent, respectively. Alternative water types (types other than freshwater) accounted for approximately 25 percent of all withdrawals in 2010, most of which occurred at plants with once-through cooling systems using saline and brackish tidal waters. Differences among withdrawal and consumption coefficients based on EIA-reported water use for 2005 and 2010 and heat-budget model results for 2010 reveal opportunities for improving consistency and accuracy of reporting of water-use information at the plant scale.

  10. Growing water scarcity in agriculture: future challenge to global water security.

    PubMed

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems. PMID:24080619

  11. 10 CFR Appendix T to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Water Closets and Urinals

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Water Consumption of... Appendix T to Subpart B of Part 430—Uniform Test Method for Measuring the Water Consumption of Water... previous step. The final water consumption value shall be rounded to one decimal place. b. The...

  12. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  13. An integrated stochastic approach to the assessment of agricultural water demand and adaptation to water scarcity

    NASA Astrophysics Data System (ADS)

    Foster, T.; Butler, A. P.; McIntyre, N.

    2012-12-01

    Increasing water demands from growing populations coupled with changing water availability, for example due to climate change, are likely to increase water scarcity. Agriculture will be exposed to risk due to the importance of reliable water supplies as an input to crop production. To assess the efficiency of agricultural adaptation options requires a sound understanding of the relationship between crop growth and water application. However, most water resource planning models quantify agricultural water demand using highly simplified, temporally lumped estimated crop-water production functions (CWPFs). Such CWPFs fail to capture the biophysical complexities in crop-water relations and mischaracterise farmers ability to respond to water scarcity. Application of these models in policy analyses will be ineffective and may lead to unsustainable water policies. Crop simulation models provide an alternative means of defining the complex nature of the CWPF. Here we develop a daily water-limited crop model for this purpose. The model is based on the approach used in the FAO's AquaCrop model, balancing biophysical and computational complexities. We further develop the model by incorporating improved simulation routines to calculate the distribution of water through the soil profile. Consequently we obtain a more realistic representation of the soil water balance with concurrent improvements in the prediction of water-limited yield. We introduce a methodology to utilise this model for the generation of stochastic crop-water production functions (SCWPFs). This is achieved by running the model iteratively with both time series of climatic data and variable quantities of irrigation water, employing a realistic rule-based approach to farm irrigation scheduling. This methodology improves the representation of potential crop yields, capturing both the variable effects of water deficits on crop yield and the stochastic nature of the CWPF due to climatic variability. Application to

  14. On eco-efficient technologies to minimize industrial water consumption

    NASA Astrophysics Data System (ADS)

    Amiri, Mohammad C.; Mohammadifard, Hossein; Ghaffari, Ghasem

    2016-07-01

    Purpose - Water scarcity will further stress on available water systems and decrease the security of water in many areas. Therefore, innovative methods to minimize industrial water usage and waste production are of paramount importance in the process of extending fresh water resources and happen to be the main life support systems in many arid regions of the world. This paper demonstrates that there are good opportunities for many industries to save water and decrease waste water in softening process by substituting traditional with echo-friendly methods. The patented puffing method is an eco-efficient and viable technology for water saving and waste reduction in lime softening process. Design/methodology/approach - Lime softening process (LSP) is a very sensitive process to chemical reactions. In addition, optimal monitoring not only results in minimizing sludge that must be disposed of but also it reduces the operating costs of water conditioning. Weakness of the current (regular) control of LSP based on chemical analysis has been demonstrated experimentally and compared with the eco-efficient puffing method. Findings - This paper demonstrates that there is a good opportunity for many industries to save water and decrease waste water in softening process by substituting traditional method with puffing method, a patented eco-efficient technology. Originality/value - Details of the required innovative works to minimize industrial water usage and waste production are outlined in this paper. Employing the novel puffing method for monitoring of lime softening process results in saving a considerable amount of water while reducing chemical sludge.

  15. Paper versus plastic, water versus carbon and sustainable agriculture in the US

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2011-12-01

    It is increasingly recognized that food and energy security are inextricably linked to climate and climate change, resulting in the so-called climate, energy, food nexus, with the water cycle at its hub. The ability to provide sufficient and consistent energy and food for this generation, while not depleting soil, climate and water resources for future generations involves interconnected feedbacks along the paths of this wheel. In the US corn belt, for example, agricultural water management in the form of subsurface drainage lowers the regional water table to enhance crop production, while at the same time providing a conduit for the more efficient export of nitrate-nitrogen to the Gulf of Mexico and increasing rates of decomposition and subsidence in organic-rich soils. The use of control structures to regulate drainage water has the potential to reduce nitrate and carbon dioxide losses, while at the same time increasing the emissions of other greenhouse gases. Increased biofuels production offers the potential to increase domestic energy security, but at the cost of increased water demand and threats to food security. Just as budding US consumer environmentalists of the last decade struggled with the question of paper versus plastic for bagging their groceries, today's informed consumers are being asked to tacitly choose between water and carbon. The local foods movement encourages consumption of locally-produced foods as a means of reducing carbon emissions associated with food transportation, among other perceived benefits. At the same time, the concept of virtual water trade recognizes that importing the water embedded in production in the form of food can balance a local water deficit. Taking into account the virtual water of food production and carbon emissions of food transportation, the spatial arrangement of the current US crop portfolio minimizes neither water nor carbon footprints. Changes in crop distribution result in trade-offs between the per capita

  16. Conceptual Model Linking Land Use to Human Consumption in the Agriculture Sector

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Bounoua, L.; Imhoff, M. L.; Karpman, K. J.

    2007-12-01

    Human activities are profoundly influenced by weather and climate. Agriculture is the most extensive and important uses of land, and is particularly sensitive to climate variability. In this talk we will present a conceptual model that seeks to integrate human appropriation of terrestrial net primary production (HANPP) with socio- economic models to explore the influence of commodities markets on land use decisions. Focusing on a single commodity as a building block, we explore the methodological and data requirements of the model, presenting the impact of precipitation, temperature, population and land use on food prices through a carbon-based calculation of supply and demand. We demonstrate the critical importance of accurate and temporally varying land use maps for models that integrate the social and biophysical spheres and show the mechanistic sensitivity of land use to change in the supply and demand ratio.

  17. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2012-12-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The water factors presented may be useful in modeling and policy analyses where reliable power plant level data are not available. Major findings of the report include: water withdrawal and consumption factors vary greatly across and within fuel technologies, and water factors show greater agreement when organized according to cooling technologies as opposed to fuel technologies; a transition to a less carbon-intensive electricity sector could result in either an increase or a decrease in water use, depending on the choice of technologies and cooling systems employed; concentrating solar power technologies and coal facilities with carbon capture and sequestration capabilities have the highest water consumption values when using a recirculating cooling system; and non-thermal renewables, such as photovoltaics and wind, have the lowest water consumption factors. Improved power plant data and further studies into the water requirements of energy technologies in different climatic regions would facilitate greater resolution in analyses of water impacts of future energy and economic scenarios. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

  18. Estimating Monthly Water Withdrawals, Return Flow, and Consumptive Use in the Great Lakes Basin

    USGS Publications Warehouse

    Shaffer, Kimberly H.; Stenback, Rosemary S.

    2010-01-01

    Water-resource managers and planners require water-withdrawal, return-flow, and consumptive-use data to understand how anthropogenic (human) water use affects the hydrologic system. Water models like MODFLOW and GSFLOW use calculations and input values (including water-withdrawal and return flow data) to simulate and predict the effects of water use on aquifer and stream conditions. Accurate assessments of consumptive use, interbasin transfer, and areas that are on public supply or sewer are essential in estimating the withdrawal and return-flow data needed for the models. As the applicability of a model to real situations depends on accurate input data, limited or poor water-use data hampers the ability of modelers to simulate and predict hydrologic conditions. Substantial differences exist among the many agencies nationwide that are responsible for compiling water-use data including what data are collected, how the data are organized, how often the data are collected, quality assurance, required level of accuracy, and when data are released to the public. This poster presents water-use information and estimation methods summarized from recent U.S. Geological Survey (USGS) reports with the intent to assist water-resource managers and planners who need estimates of monthly water withdrawals, return flows, and consumptive use. This poster lists references used in Shaffer (2009) for water withdrawals, consumptive use, and return flows. Monthly percent of annual withdrawals and monthly consumptive-use coefficients are used to compute monthly water withdrawals, consumptive use, and return flow for the Great Lakes Basin.

  19. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    PubMed

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway. PMID:24066845

  20. Water consumption from hydropower plants - review of published estimates and an assessment of the concept

    NASA Astrophysics Data System (ADS)

    Bakken, T. H.; Killingtveit, Å.; Engeland, K.; Alfredsen, K.; Harby, A.

    2013-10-01

    Since the report from IPCC on renewable energy (IPCC, 2012) was published; more studies on water consumption from hydropower have become available. The newly published studies do not, however, contribute to a more consistent picture on what the "true" water consumption from hydropower plants is. The dominant calculation method is the gross evaporation from the reservoirs divided by the annual power production, which appears to be an over-simplistic calculation method that possibly produces a biased picture of the water consumption of hydropower plants. This review paper shows that the water footprint of hydropower is used synonymously with water consumption, based on gross evaporation rates. This paper also documents and discusses several methodological problems when applying this simplified approach (gross evaporation divided by annual power production) for the estimation of water consumption from hydropower projects. A number of short-comings are identified, including the lack of clarity regarding the setting of proper system boundaries in space and time. The methodology of attributing the water losses to the various uses in multi-purpose reservoirs is not developed. Furthermore, a correct and fair methodology for handling water consumption in reservoirs based on natural lakes is needed, as it appears meaningless that all the evaporation losses from a close-to-natural lake should be attributed to the hydropower production. It also appears problematic that the concept is not related to the impact the water consumption will have on the local water resources, as high water consumption values might not be problematic per se. Finally, it appears to be a paradox that a reservoir might be accorded a very high water consumption/footprint and still be the most feasible measure to improve the availability of water in a region. We argue that reservoirs are not always the problem; rather they may contribute to the solution of the problems of water scarcity. The authors

  1. Water consumption from hydropower plants - review of published estimates and an assessment of the concept

    NASA Astrophysics Data System (ADS)

    Bakken, T. H.; Killingtveit, Å.; Engeland, K.; Alfredsen, K.; Harby, A.

    2013-06-01

    Since the report from IPCC on renewable energy (IPCC, 2012) was published; more studies on water consumption from hydropower have become available. The newly published studies do not, however, contribute to a more consistent picture on what the "true" water consumption from hydropower plants is. The dominant calculation method is the gross evaporation from the reservoirs divided by the annual power production, which appears to be an over-simplistic calculation method that possibly produces a biased picture of the water consumption of hydropower plants. This review paper shows that the water footprint of hydropower is used synonymously to water consumption, based on gross evaporation rates. This paper also documents and discusses several methodological problems when applying this simplified approach (gross evaporation divided by annual power production) for the estimation of water consumption from hydropower projects. A number of short-comings are identified, including the lack of clarity regarding the setting of proper system boundaries in space and time. The methodology of attributing the water losses to the various uses in multi-purpose reservoirs is not developed. Furthermore, a correct and fair methodology for handling water consumption in reservoirs based on natural lakes is needed, as it appears meaningless that all the evaporation losses from a close to natural lake should be attributed to the hydropower production. It also appears problematic that the concept is not related to the impact the water consumption will have on the local water resources, as high water consumption values might not be problematic per se. Finally, it appears to be a paradox that a reservoir might be accorded a very high water consumption/footprint and still be the most feasible measure to improve the availability of water in a region. We argue that reservoirs are not always the problem; rather they may contribute to the solution of the problems of water scarcity. The authors

  2. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  3. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. PMID:27241204

  4. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions. PMID:21574555

  5. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  6. Factors Influencing Water Consumption in Multifamily Housing in Tempe Arizona

    NASA Astrophysics Data System (ADS)

    Wentz, E. A.

    2012-12-01

    Central to the "Smart Growth" movement is that compact development reduces vehicle miles traveled, carbon emissions, and water use. Empirical efforts to evaluate compact development have examined residential densities, but have not distinguished decreasing lot sizes from multifamily apartments as mechanisms for compact development. Efforts to link design features to water use have emphasized single-family at the expense of multifamily housing. This study isolates the determinants of water use in large (>50) unit apartment complexes in the city of Tempe, Arizona. In July 2007, per-bedroom water use increased with pool area, dishwashers, in-unit laundry facilities, and irrigated landscaping. We explain nearly 50% of the variation in water use with these variables. These results inform public policy for reducing water use in multifamily housing structures, suggesting strategies to construct and market "green" apartment units.

  7. Water consumption information and other hydrologic retrievals from the proposed NASA HyspIRI mission

    NASA Astrophysics Data System (ADS)

    Allen, R. G.; Anderson, M. C.; Hook, S. J.

    2010-12-01

    The HyspIRI mission (hyperspectral-infrared imager) is a proposed NASA mission recommended in 2007 by the National Research Council. HyspIRI will provide optical hyperspectral imaging at 380-2500 nm (VSWIR) in 210 bands with a repeat frequency of 19 days at 60-m spatial resolution, 150 km swath width and 7 bands of infrared (TIR) in the range of 7.5-12 micrometer with 60 m spatial resolution with a repeat frequency of 5 days. A pointing capability is possible for frequent and high-resolution imaging of critical events, such as volcanoes, wildfires, and droughts. The requirements for volcano-eruption prediction are high thermal sensitivity of about 0.1 K. The VSWIR and TIR data will be used for a wide variety of studies primarily in the Carbon Cycle and Ecosystem and Earth Surface focus areas. The TIR bands will provide high fidelity information for retrieving evapotranspiration (ET) for a wide range of surface covers using a broad spectrum of surface energy balance algorithms, many of which are already developed. Global mapping of ET at 60 m resolution will provide water consumption information for narrow riparian systems, individual agricultural fields and wetlands. It will enable addressing how consumptive use of global freshwater supplies is responding to changes in climate and demand, and the implications for sustainable management of water resources. The hyperspectral VSWIR will enable identification of plant species, densities and architecture, providing high fidelity information regarding seasonal expressions and cycles of terrestrial and aquatic ecosystems and functional groups, including how these are being altered by changes in climate, land use, and disturbance. Better identification of vegetation cover amounts will allow better partitioning of evaporation from soil from transpiration from foliage. When coupled with estimated potential ET based on vegetation amounts, retrieved ET can be converted into relative soil moisture over the vertical depth of

  8. Differences in Aquatic Communities Between Wetlands Created by an Agricultural Water Recycling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to s...

  9. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  10. Deficit irrigation of peach trees to reduce water consumption

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  11. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    Changes in global population, food consumption and climate lead to a food security challenge for the future. Water resources, agricultural productivity and the relationships between them will to a large extent dictate how we address this challenge. Although food security is a global issue, impacts of climate change on water resources and agricultural productivity, as well as viability of adaptation strategies, are location specific; e.g., it is important to consider the regional regulatory environment. Our work focuses on the Columbia River basin (CRB) of the Pacific Northwest US. The water resources of the CRB are heavily managed to meet competing demands. There also exists a legal system for individuals/groups to obtain rights to use the publicly owned water resources, and the possibility of curtailing (i.e., restricting) some of these water rights in times of shortage. It is important to include an approximation of this water resource regulation and water rights curtailment process in modeling water availability and impacts of water shortages on agricultural production. The overarching objective of this work is to apply an integrated hydrologic-crop-water management modeling framework over the CRB to characterize the impacts of climate change on irrigation water demands, irrigation water availability, water shortages, and associated impacts in the 2030s. Results indicate that climate change has both positive and negative effects on agricultural production in the CRB and this varies by region and crop type. Certain watersheds that are already water stressed are projected to experience increasing stress in the future. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not necessarily translate into an increased negative effect on yields; some crops are projected to increase in yield despite curtailment. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops

  12. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  13. Dependence of national consumption on unsustainable blue water footprints: A global overview

    NASA Astrophysics Data System (ADS)

    Hoekstra, A. Y. Y.; Mekonnen, M. M.

    2014-12-01

    The water footprint of consumers in a country is generally partly in other countries. For example, 10% of the water footprint of Chinese consumers is outside China; in the US this is 20%, and in the UK even 75%. National consumption thus always depends, partly, on water resources outside the national territory. Earlier research has resulted in global water footprint maps for all countries in the world, showing for each country where in the world water resources are being consumed and polluted in relation to consumption within the country considered. Recent research shows at a high spatial and temporal resolution level in which catchments in the world, the blue water footprint exceeds the maximum sustainable blue water footprint. The current study overlays the global water footprint maps per country with the global map showing locations of unsustainable water use in order to estimate, per country, the dependence of national consumption on unsustainable water footprints. Countries are ranked according to their fraction of their water footprint that is unsustainable and an in-depth analysis of the implications of this dependence is carried out for the top-10 of the list. The in-depth analysis explores which commodities are behind the unsustainable parts of a country's water footprint, where these footprints are located and what options a country has to reduce its dependence on unsustainable water use.

  14. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  15. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  16. [Expert's opinion on recommendations for water and other beverages consumption in elderly?].

    PubMed

    Bień, Barbara; Jarosz, Agnieszka; de Latour, Teresa; Mastalerz-Migas, Agnieszka; Marczewski, Krzysztof; Okręglicka, Katarzyna; Ponikowska, Irena; Woy-Wojciechowski, Jerzy; Ziółkowska, Anna

    2014-01-01

    The article encloses definition of water role and its body requirement, review of water balance and management in older persons regarding characteristic of this age group and concomitant disorders. Based on current literature and expert's opinion the recommendations for water consumption were expressed with estimation of insufficient apply and oversupply, evaluation of hydration state, domestic water sources in diet with accent on influence of proper hydration on comfort and good health. PMID:25764788

  17. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  18. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    NASA Astrophysics Data System (ADS)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  19. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  20. Influence of integrated watershed-scale agricultural conservation practices on lake water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed-scale management efforts to improve conservation of water resources in agricultural watersheds depend upon the effectiveness of integrated multiple agricultural best management practices at this scale. This requires large-scale, long-term (>10 y) studies measuring key water quality paramet...

  1. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... these approvals will expire if not renewed. (1) Recordations, Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract Summaries, Control Number 2140-0024 See 78 FR... Surface Transportation Board Recordations, Water Carrier Tariffs, and Agricultural Contract...

  2. CONSERVATION AGRICULTURE: ENVIRONMENTAL BENEFITS OF REDUCED TILLAGE AND SOIL CARBON MANAGEMENT IN WATER LIMITED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural carbon (C) sequestration may be one of the most cost effective ways to slow processes of global warming and enhance plant available water. Numerous environmental benefits and enhanced water use efficiency result from agricultural activities that sequester soil C and contribute to crop p...

  3. Change of water consumption and its potential influential factors in Shanghai: A cross-sectional study

    PubMed Central

    2012-01-01

    Background Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents’ drinking water choices. Methods We conducted a cross-sectional survey to investigate residents’ water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. Results The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one’s health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Conclusions Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai. PMID:22708830

  4. Changes in Children's Consumption of Tomatoes through a School Lunch Programme Developed by Agricultural High-School Students

    ERIC Educational Resources Information Center

    Ishikawa, Midori; Kubota, Nozomi; Kudo, Keita; Meadows, Martin; Umezawa, Atsuko; Ota, Toru

    2013-01-01

    Objective: The purpose of the study was to discover whether tomato consumption in elementary- and middle-school students could be increased through a school lunch programme developed by agricultural high-school students acting as peer educators. Design: The high-school lunch programme included the process of growing tomatoes and providing a…

  5. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  6. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources. PMID:22828292

  7. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  8. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  9. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  10. Demographic factors associated with perceptions about water safety and tap water consumption among adults in Santa Clara County, California, 2011.

    PubMed

    van Erp, Brianna; Webber, Whitney L; Stoddard, Pamela; Shah, Roshni; Martin, Lori; Broderick, Bonnie; Induni, Marta

    2014-01-01

    The objective of this study was to examine differences in tap water consumption and perceptions of bottle versus tap water safety for Hispanics and non-Hispanic whites, as well as associations with other demographic characteristics. Data are from the Santa Clara County, California, Dietary Practices Survey (2011; N = 306). We used logistic regression to examine associations between demographic characteristics and 1) perceptions that bottled water is safer than tap and 2) primarily consuming tap water. Hispanics were less likely than non-Hispanic whites to primarily drink tap water (OR = 0.33; 95% CI, 0.11-0.99), although there was no significant difference in perceptions that bottled water is safer between these groups (OR = 0.50; 95% CI, 0.11-2.27). Hispanics may be an important population for interventions promoting tap water consumption. PMID:24921901

  11. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  12. A thirst for power: A global analysis of water consumption for energy production

    NASA Astrophysics Data System (ADS)

    Spang, Edward

    Producing energy resources requires significant quantities of freshwater. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. A number of reports exist that specify water consumption by discrete energy production technologies. This research synthesizes and expands this previous work by examining the global distribution of water consumption intensity of national-level energy portfolios. By defining and calculating indicators to quantify the relative water use intensity of national energy systems, it was possible to highlight potentially problematic areas of high water use intensity while also providing examples of water-efficient energy production. The results of the research show a high variability in the national water consumption of energy production (WCEP) for the 158 countries that were assessed. However, looking across the indicators for WCEP internationally, the countries that were heavily producing fossil fuel or biofuels demonstrated the greatest intensity of energy-based water consumption. The economic imperative to develop fossil fuels drives high water consumption in countries that already lack sufficient water supplies. Meanwhile, biofuels require so much water over their lifecycle per unit of produced energy that any modest commitment to producing biofuels has significant water consumption ramifications for the country. While these results are based on a comprehensive review of available data, future research in this area could be significantly enhanced through better data and widespread adoption of consistent reporting mechanisms. Additional opportunities to expand the field include increasing the resolution of the study regions, tracking these indicators over time, and exploring innovative policy approaches to managing national WCEP effectively. For nations facing the greatest limitations in the availability of local water and energy

  13. Water withdrawal and consumption reduction analysis for electrical energy generation system

    NASA Astrophysics Data System (ADS)

    Nouri, Narjes

    There is an increasing concern over shrinking water resources. Water use in the energy sector primarily occurs in electricity generation. Anticipating scarcer supplies, the value of water is undoubtedly on the rise and design, implementation, and utilization of water saving mechanisms in energy generation systems are becoming inevitable. Most power plants generate power by boiling water to produce steam to spin electricity-generating turbines. Large quantities of water are often used to cool the steam in these plants. As a consequence, most fossil-based power plants in addition to consuming water, impact the water resources by raising the temperature of water withdrawn for cooling. A comprehensive study is conducted in this thesis to analyze and quantify water withdrawals and consumption of various electricity generation sources such as coal, natural gas, renewable sources, etc. Electricity generation for the state of California is studied and presented as California is facing a serious drought problem affecting more than 30 million people. Integrated planning for the interleaved energy and water sectors is essential for both water and energy savings. A linear model is developed to minimize the water consumption while considering several limitations and restrictions. California has planned to shut down some of its hydro and nuclear plants due to environmental concerns. Studies have been performed for various electricity generation and water saving scenarios including no-hydro and no-nuclear plant and the results are presented. Modifications to proposed different scenarios have been applied and discussed to meet the practical and reliability constraints.

  14. Oxygen consumption in the water column and sediments of the northern Gulf of Mexico hypoxic zone

    NASA Astrophysics Data System (ADS)

    McCarthy, Mark J.; Carini, Stephen A.; Liu, Zhanfei; Ostrom, Nathaniel E.; Gardner, Wayne S.

    2013-05-01

    Hypoxia is a global problem resulting from excessive nutrient inputs to coastal regions, but the biogeochemical mechanisms of hypoxia development are not well understood. The primary location of oxygen consumption (i.e., sediments versus water column) is still debated and may depend on the analytical approach used. In this study, oxygen respiration was measured using incubations combined with membrane inlet mass spectrometry in sediments, water overlying sediments, and the water column in the Gulf of Mexico hypoxic zone. Water column respiration ranged from 0.09 to 4.42 μmol O2 l-1 h-1 (mean = 0.77 ± 0.07 (standard error)) and was significantly higher shortly after two hurricanes. Overlying water respiration ranged from 0.31 to 2.46 μmol O2 l-1 h-1 (mean = 0.70 ± 0.09) and accounted for 3.7 ± 0.8% of total below-pycnocline respiration. Sediment oxygen consumption, measured using a continuous-flow incubation technique, was lowest after the two hurricanes and ranged from 408 to 1800 μmol O2 m-2 h-1 (mean = 834 ± 83.8 μmol O2 m-2 h-1). Sediments accounted for 25 ± 5.3% of total below-pycnocline respiration, and sediment oxygen consumption was related negatively to ambient bottom-water oxygen concentration. This negative relationship contradicts previous literature and suggests that high sediment oxygen consumption is driven by abundant, fresh organic material and regulates bottom-water oxygen concentration, rather than the common assumption that bottom-water oxygen concentration determines sediment oxygen consumption. The results from this study suggest that storms and mixing events may lead to conditions suitable for hypoxia redevelopment in as little as two days after disturbances, with the water column playing a critical role in system hypoxia development and maintenance.

  15. Soil water and shallow groundwater relations in an agricultural hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables can contribute water for plant use; therefore, plant-available water includes not only the water stored in the root zone, but also the water moving up from below the root zone. The purpose of this study was to quantify the amount of water moving upward to the root zone. Automate...

  16. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  17. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants. PMID:26887311

  18. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  19. Future U.S. water consumption : The role of energy production.

    SciTech Connect

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  20. Sustainability of agriculture under irrigation: Use and management of degraded water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid regions the use of saline and reclaimed waters for irrigation is increasingly necessary. Scarcity of fresh water for agriculture is increased by the water demands of the municipal and industrial sectors. In the majority of these regions there is a rapid decrease in fresh water availability ...

  1. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  2. Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques.

    PubMed

    Ameur, Meriem; Hamzaoui-Azaza, Fadoua; Gueddari, Moncef

    2016-10-01

    In Tunisia, the water resources are limited, partially renewable and unequally distributed between the wet north and the dry south of the country. The Sminja aquifer in Zaghouan city is located in north-east of Tunisia, between latitudes 36°38' and 36°47' and longitudes 9°95' and 10°12'. This aquifer is used to satisfy the population needs for their domestic purposes and agricultural activities. Water analyses results are expressed by many methods, among which are geochemical methods combined with the geographic information system (GIS) (all schematic presentations of the diagram software (Piper, Riverside, Wilcox…), which can be used to assess the suitability of the Sminja aquifer groundwater for human consumption and irrigation purposes. A total of 23 wells were sampled in January 2013, and the concentrations of major cations (Na(+), Ca(2+), Mg(2+) and K(+)), major anions (Cl(-), SO4 (2-) and HCO3 (-)), electrical conductivity and total dissolved solids were analysed. In the Sminja groundwater, the order of the cations dominance was Na > Ca > Mg > K and that of the anions was Cl > HCO3 > SO4. All of the analysed samples of the study area exceed chemical values recommended by the World Health Organisation guidelines and Tunisian Standards (NT.09.14) for potability but with different percentages. The aquifer spatial distribution of saturation indices reveals that all groundwater samples are under-saturated with gypsum, halite and anhydrite and are over-saturated with respect to calcite and dolomite based on water quality evaluation parameters for irrigation purposes; here, 87 % of samples in Sminja aquifer groundwater are suitable, whereas 13 % are unsuitable for irrigation uses. PMID:26537591

  3. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Late...

  4. Water-saving techniques in Chinese agriculture: water-saving irrigation and straw mulching for winter wheat

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqiang; Zhu, Zixi; Zheng, Youfei; Fang, Wensong

    2004-01-01

    Based on the relationship between water balance and crop-water, water-saving irrigation model was integrated with monitoring and prediction of soil moisture, forming a system of decision-making of irrigation. It is demonstrated that straw mulching for winter wheat is an effective way to reduce soil evaporation at early stages and increase yield and improve water utilization efficiency. Combination of water-saving irrigation and straw mulching plays an important role in China water-saving agriculture.

  5. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Water Consumption of... Appendix S to Subpart B of Part 430—Uniform Test Method for Measuring the Water Consumption of Faucets and... water flow rate for faucets, expressed in gallons per minute (gpm) and liters per minute (L/min),...

  6. 10 CFR Appendix S to Subpart B of... - Uniform Test Method for Measuring the Water Consumption of Faucets and Showerheads

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Water Consumption of... Appendix S to Subpart B of Part 430—Uniform Test Method for Measuring the Water Consumption of Faucets and... water flow rate for faucets, expressed in gallons per minute (gpm) and liters per minute (L/min),...

  7. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  8. Minimization of water consumption under uncertainty for a pulverized coal power plant.

    PubMed

    Salazar, Juan M; Zitney, Stephen E; Diwekar, Urmila M

    2011-05-15

    Coal-fired power plants are large water consumers. Water consumption in thermoelectric generation is strongly associated with evaporation losses and makeup streams on cooling and contaminant removal systems. Thus, minimization of water consumption requires optimal operating conditions and parameters, while fulfilling the environmental constraints. Several uncertainties affect the operation of the plants, and this work studies those associated with weather. Air conditions (temperature and humidity) were included as uncertain factors for pulverized coal (PC) power plants. Optimization under uncertainty for these large-scale complex processes with black-box models cannot be solved with conventional stochastic programming algorithms because of the large computational expense. Employment of the novel better optimization of nonlinear uncertain systems (BONUS) algorithm, dramatically decreased the computational requirements of the stochastic optimization. Operating conditions including reactor temperatures and pressures; reactant ratios and conditions; and steam flow rates and conditions were calculated to obtain the minimum water consumption under the above-mentioned uncertainties. Reductions of up to 6.3% in water consumption were obtained for the fall season when process variables were set to optimal values. Additionally, the proposed methodology allowed the analysis of other performance parameters like gas emissions and cycle efficiency which were also improved. PMID:21517062

  9. Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis

    NASA Astrophysics Data System (ADS)

    Toyoda, Sakae; Yano, Midori; Nishimura, Sei-Ichi; Akiyama, Hiroko; Hayakawa, Atsushi; Koba, Keisuke; Sudo, Shigeto; Yagi, Kazuyuki; Makabe, Akiko; Tobari, Yoshifumi; Ogawa, Nanako O.; Ohkouchi, Naohiko; Yamada, Keita; Yoshida, Naohiro

    2011-06-01

    Isotopomer ratios of N2O (bulk nitrogen and oxygen isotope ratios, δ15Nbulk and δ18O, and intramolecular 15N site preference, SP) are useful parameters that characterize sources of this greenhouse gas and also provide insight into production and consumption mechanisms. We measured isotopomer ratios of N2O emitted from typical Japanese agricultural soils (Fluvisols and Andisols) planted with rice, wheat, soybean, and vegetables, and treated with synthetic (urea or ammonium) and organic (poultry manure) fertilizers. The results were analyzed using a previously reported isotopomeric N2O signature produced by nitrifying/denitrifying bacteria and a characteristic relationship between δ15Nbulk and SP during N2O reduction by denitrifying bacteria. Relative contributions from nitrification (hydroxylamine oxidation) and denitrification (nitrite reduction) to gross N2O production deduced from the analysis depended on soil type and fertilizer. The contribution from nitrification was relatively high (40%-70%) in Andisols amended with synthetic ammonium fertilizer, while denitrification was dominant (50%-90%) in the same soils amended with poultry manure during the period when N2O production occurred in the surface layer. This information on production processes is in accordance with that obtained from flux/concentration analysis of N2O and soil inorganic nitrogen. However, isotopomer analysis further revealed that partial reduction of N2O was pronounced in high-bulk density, alluvial soil (Fluvisol) compared to low-bulk density, volcanic ash soil (Andisol), and that the observed difference in N2O flux between normal and pelleted manure could have resulted from a similar mechanism with different rates of gross production and gross consumption. The isotopomeric analysis is based on data from pure culture bacteria and would be improved by further studies on in situ biological processes in soils including those by fungi. When flux/concentration-weighted average isotopomer

  10. A MODELING-GIS APPROACH FOR THE ASSESSMENT OF SOIL AND GROUND WATER VULNERABILITY TO NONPOINT SOURCE IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Ground water pollution due to agriculture activities is a major source of concern. Vast agricultural lands constitute a nonpoint source for pollutants, such as pesticides and nitrogen fertilizers, which threatens ground water resources and the integrity of aquatic and terrestria...

  11. ANALYSIS ON EFFLUENT WATER QUALITY AND ELECTRICITY CONSUMPTION AFTER INTRODUCING ADVANCED SEWAGE TREATMENT

    NASA Astrophysics Data System (ADS)

    Shiojiri, Yasuo; Maekawa, Shunich

    We analyze effluent water quality and electricity consumption after in troducing advanced treatment in sewage treatment plant. We define 'advanced treatment ratio' as volume of treated water through advanced treatment processes divided by total volume of treated water in plant. Advanced treatment ratio represents degree of introducing advanced treatment. We build two types of equation. One represents relation between effluent water quality and advanced treatment ratio, the other between electricity consumption and advanced treatment ratio. Each equation is fitted by least squares on 808 samples: 8 fiscal years operation data of 101 plants working in Kanagawa, Tokyo, Saitama and Chiba areas, and coefficient of advanced treatment ratio is estimated. The result is as follows. (1) After introducing advanced treatment aimed at nitrogen removal, T-N in effluent water decreases by 51.3% and electricity consum ption increases by 52.2%. (2) After introducing advanced treatment aimed at phosphorus removal, T-P in effluent water decreases by 27.8%. Using the above result, we try prioritizing 71 plants in Tokyo Bay watershed about raising advanced treatment ratio, so that, in total, pollutant in effluent water decreases with minimized increase of electricity consumption.

  12. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  13. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  14. Transformation Of Arsenic In Agricultural Drainage Water Disposed Into An Evaporation Basin In California, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, a high agricultural production area in USA. The irrigation drainage water contains elevated concentrations of trace elements, including S...

  15. Arsenic Speciation and Accumulation In Evapoconcentrating Waters Of Agricultural Evaporation Basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To sustain agricultural productivity, evaporation basins (or ponds) have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, USA. The drainage water contains elevated concentration of trace elements including sele...

  16. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana

    PubMed Central

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A.; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-01-01

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012−2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision. PMID:27005650

  17. Effects of Sachet Water Consumption on Exposure to Microbe-Contaminated Drinking Water: Household Survey Evidence from Ghana.

    PubMed

    Wright, Jim; Dzodzomenyo, Mawuli; Wardrop, Nicola A; Johnston, Richard; Hill, Allan; Aryeetey, Genevieve; Adanu, Richard

    2016-03-01

    There remain few nationally representative studies of drinking water quality at the point of consumption in developing countries. This study aimed to examine factors associated with E. coli contamination in Ghana. It drew on a nationally representative household survey, the 2012-2013 Living Standards Survey 6, which incorporated a novel water quality module. E. coli contamination in 3096 point-of-consumption samples was examined using multinomial regression. Surface water use was the strongest risk factor for high E. coli contamination (relative risk ratio (RRR) = 32.3, p < 0.001), whilst packaged (sachet or bottled) water use had the greatest protective effect (RRR = 0.06, p < 0.001), compared to water piped to premises. E. coli contamination followed plausible patterns with digit preference (tendency to report values ending in zero) in bacteria counts. The analysis suggests packaged drinking water use provides some protection against point-of-consumption E. coli contamination and may therefore benefit public health. It also suggests viable water quality data can be collected alongside household surveys, but field protocols require further revision. PMID:27005650

  18. 77 FR 234 - Rule Concerning Disclosures Regarding Energy Consumption and Water Use of Certain Home Appliances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ... CFR Part 305 RIN 3084-AB03 Rule Concerning Disclosures Regarding Energy Consumption and Water Use of... FR 72872) solicited comments on possible disclosures for heating and cooling equipment to help... involve overlapping issues. DOE's comment period ends February 6, 2012. \\1\\ 76 FR 76328 (Dec. 7, 2011)....

  19. 75 FR 51155 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... the Susquehanna River Basin Commission during the period set forth in DATES. DATES: June 1,...

  20. 76 FR 21092 - Notice of Projects Approved or Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... From the Federal Register Online via the Government Publishing Office ] SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River... projects approved or rescinded by rule by the Susquehanna River Basin Commission during the period...

  1. 75 FR 62176 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... the Susquehanna River Basin Commission during the period set forth in DATES. DATES: August 1,...

  2. 75 FR 22172 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... the Susquehanna River Basin Commission during the period set forth in DATES. DATES: January 1,...

  3. 76 FR 20802 - Projects Approved or Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin... Susquehanna River Basin Commission during the period set forth in DATES. DATES: January 1, 2011,...

  4. 75 FR 31508 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... the Susquehanna River Basin Commission during the period set forth in DATES. DATES: April 1,...

  5. 75 FR 52049 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... the Susquehanna River Basin Commission during the period set forth in DATES. DATES: July 1,...

  6. 75 FR 38591 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... From the Federal Register Online via the Government Publishing Office SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin... the Susquehanna River Basin Commission during the period set forth in DATES. DATES: May 1,...

  7. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  8. Hotel water consumption at a seasonal mass tourist destination. The case of the island of Mallorca.

    PubMed

    Deyà Tortella, Bartolomé; Tirado, Dolores

    2011-10-01

    While it is true that tourism is one of the main driving forces behind economic growth in several world regions, it is also true that tourism can have serious negative environmental impacts, especially with regard to water resources. The tourist water demand can generate big problems of sustainability, mainly in those regions where water is scarce, as occurs in most coastal and small island destinations where a large part of world tourism is concentrated. Given the shortage of literature on the subject, further research into the tourist water demand is required, with particular attention to the hotel sector, since hotels are the most popular option for tourists, displaying higher levels of water consumption. The main purpose of this study is to develop a model to analyse hotel water consumption at a mature sun and sand destination with a strong seasonal pattern and scarcity of water; characteristics shared by some of the world's main tourist destinations. Our model includes a set of different hotel variables associated with physical, seasonal and management-related factors and it improves on the capacity to explain water consumption at such destinations. Following a hierarchical regression methodology, the model is empirically tested through a survey distributed to managers of a representative sample of hotels on the island of Mallorca. From the obtained results, interesting recommendations can be made for both hotel managers and policy makers. Among these, it should be highlighted that the strategic move contemplated by many mature destinations towards a higher quality, low-season model could have significant negative effects in terms of the sustainability of water resources. Our results also conclude that managerial decisions, like the system of accommodation that is offered (i.e. the proliferation of the "all-inclusive" formula, both at mature and new destinations), could give rise to the same negative effect. Development of water saving initiatives (usually

  9. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  10. Simulations of Limited-Water Irrigation Management Options for Corn in Dryland Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diminishing land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. To produce more for every drop of water used in agriculture, it is important to develop location specific alternate agronomic practices vis-à-vis...

  11. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  12. Grasses for biofuels: A low water-use alternative for cold desert agriculture?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid regions, reductions in the amount of available agricultural water are fueling interest in alternative, low water-use crops. Perennial grasses have potential as low water-use biofuel crops. However, little is known about which perennial grasses can produce high quantity, high quality yields w...

  13. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  14. Overcoming agricultural pollution of water: The challenge of integrating agricultural and environmental policies in the European union. World Bank technical paper

    SciTech Connect

    Scheierling, S.M.

    1995-04-01

    In an effort to address the particular policy challenges posed by the agriculture/water quality dilemma, this study, focuses on the experience of the European Community (EC), where high levels of nitrate, phosphate, and pesticides in surface and groundwater are a source of increasing concern. Agricultural and water quality-related environmental policies at EC level, as well as national level, are examined, and new policy approaches that try to integrate agricultural and environmental considerations are discussed. This study thus provides insights into policy options for controlling agricultural water pollution, which might be useful in other parts of the world.

  15. Life-cycle Energy Consumption of Urban Water System in Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, W.; Liu, H.

    2015-12-01

    Within rapid urbanization and industrialization, Shenzhen, the first special economic zone in China, has been facing serious water shortage. More than 80% of water demand in Shenzhen, i.e., about 1.6 billion m3/yr, is satisfied by water diversion projects. A lot of energy has been used to extract, clean, store and transmit these water. In this paper, energy consumption of urban water system in Shenzhen, China was investigated from a life cycle perspective, and the water system can be divided into five subsystems, i.e., water diversion, water production & supply, household water use, sewage treatment and water reuse. Industrial water use was not considered here, because industrial production processes were so varied. The results showed that water diversion subsystem in Shenzhen consumed electricity of about 0.839 billion kWh/yr (0.53 kWh/m3), water production & supply subsystem about 1.241 billion kWh/yr (0.64 kWh/m3), household water use subsystem about 6.57 billion kWh/yr (9.65 kWh/m3) sewage treatment subsystem about 0.449 billion kWh/yr (0.29 kWh/m3) and water reuse treatment subsystem about 0.013 billion kWh/yr (0.33kWh/m3). So the human-related water system in Shenzhen consumes electricity of about 9.113 billion kWh/yr in total, accounting for about 11.0% of all the electricity use in Shenzhen. Among this, household water use subsystem consumed up to 72.1% of all electricity used in urban water system, followed by water production & supply subsystem (13.6%), water diversion subsystem (9.2%) and sewage treatment and reuse subsystem (5.1%). Unit energy consumption of sewage treatment and reuse subsystem was much less than that of water diversion subsystem, indicating local sewage resource development was advantageous on saving energy to water diversion from a long distance. Further, it implied that the best way to save energy in urban water system is to save portable water, since both water production and household use require to consume much energy.

  16. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production. PMID:27344509

  17. Income-based projections of water footprint of food consumption in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur

    2013-11-01

    Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.

  18. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. PMID:26033746

  19. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: long-term water quality database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Pasture Systems and Watershed Management Research Unit (PSWMRU) has developed a long-term water quality database to support water quality research within the 7.3 km**2 WE-38 experimental watershed in east-central Pennsyl...

  20. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    SciTech Connect

    Elcock, D.

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  1. Life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well.

    PubMed

    Jiang, Mohan; Hendrickson, Chris T; VanBriesen, Jeanne M

    2014-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input-output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20,000 m(3) (with a range from 6700 to 33,000 m(3)) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300-3000 kg N-eq eutrophication potential, 900-23,000 kg 2,4D-eq freshwater ecotoxicity potential, 0-370 kg benzene-eq carcinogenic potential, and 2800-71,000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well wastewater is

  2. Life Cycle Water Consumption and Wastewater Generation Impacts of a Marcellus Shale Gas Well

    PubMed Central

    2013-01-01

    This study estimates the life cycle water consumption and wastewater generation impacts of a Marcellus shale gas well from its construction to end of life. Direct water consumption at the well site was assessed by analysis of data from approximately 500 individual well completion reports collected in 2010 by the Pennsylvania Department of Conservation and Natural Resources. Indirect water consumption for supply chain production at each life cycle stage of the well was estimated using the economic input–output life cycle assessment (EIO-LCA) method. Life cycle direct and indirect water quality pollution impacts were assessed and compared using the tool for the reduction and assessment of chemical and other environmental impacts (TRACI). Wastewater treatment cost was proposed as an additional indicator for water quality pollution impacts from shale gas well wastewater. Four water management scenarios for Marcellus shale well wastewater were assessed: current conditions in Pennsylvania; complete discharge; direct reuse and desalination; and complete desalination. The results show that under the current conditions, an average Marcellus shale gas well consumes 20 000 m3 (with a range from 6700 to 33 000 m3) of freshwater per well over its life cycle excluding final gas utilization, with 65% direct water consumption at the well site and 35% indirect water consumption across the supply chain production. If all flowback and produced water is released into the environment without treatment, direct wastewater from a Marcellus shale gas well is estimated to have 300–3000 kg N-eq eutrophication potential, 900–23 000 kg 2,4D-eq freshwater ecotoxicity potential, 0–370 kg benzene-eq carcinogenic potential, and 2800–71 000 MT toluene-eq noncarcinogenic potential. The potential toxicity of the chemicals in the wastewater from the well site exceeds those associated with supply chain production, except for carcinogenic effects. If all the Marcellus shale well

  3. ANN modeling of water consumption in the lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad Ali; Karami, Hassan; Mahdipour, Maryam

    Due to importance of the quantity of water loss in the life cycle of lead-acid batteries, water consumption tests were performed on 72 lead-acid batteries with low antimony grid alloy at different charge voltages and temperatures. Weight loss of batteries was measured during a period of 10 days. The behavior of batteries in different charge voltages and temperatures were modeled by artificial neural networks (ANNs) using MATLAB 7 media. Four temperatures were used in the training set, out of which three were used in prediction set and one in validation set. The network was trained by training and prediction data sets, and then was used for predicting water consumption in all three temperatures of prediction set. Finally, the network obtained was verified while being used in predicting water loss in defined temperatures of validation set. To achieve a better evaluation of the model ability, three models with different validation temperatures were used (model 1 = 50 °C, model 2 = 60 °C and model 3 = 70 °C). There was a good agreement between predicted and experimental results at prediction and validation sets for all the models. Mean prediction errors in modeling charge voltage-temperature-time behavior in the water consumption quantity for models 1-3 were below 0.99%, 0.03%, and 0.76%, respectively. The model can be simply used by inexpert operators working in lead-acid battery industry.

  4. Risk assessment of agricultural pesticides in water, sediment, and fish from Owan River, Edo State, Nigeria.

    PubMed

    Ogbeide, Ozekeke; Tongo, Isioma; Ezemonye, Lawrence

    2015-10-01

    The distribution of pesticides in water, sediments, Clarias gariepinus, and Tilapia zilli from the Owan River was investigated to evaluate the pollution status and potential hazard in the river system. A total of 16 pesticides were analyzed using gas chromatography (GC) equipped with electron capture detector (ECD). The concentration of pesticide residues ranged from ND to 0.43 μg/l for water samples, 0.82 to 2.14 μg/kg/dw for sediment, 0.04 to 2.34 μg/kg/ww for C. gariepinus, and 0.02 to 1.73 μg/kg/ww for T. zilli. High concentrations of organochlorine pesticides, specifically benzenehexachloride (α-BHC, γ-BHC, and β-BHC) observed in all environmental media, are an indication of the current illegal use of banned pesticides for agricultural activities in the region. Analysis of data showed a strong correlation (r (2) = 0.7) between total organic carbon (TOC) and total pesticide residues in sediment samples. Meanwhile, risk quotient estimates for heptachlor epoxide, dieldrin, endrin, dichlorodiphenyltrichloroethane (4,4'-DDT), endosulfan I, endosulfan II, endosulfan aldehyde, and phosphomethylglycine showed potential risk to aquatic organism under observed mean concentrations (risk quotient (RQ) ≥ 1). Estimated average daily intake (EADI) for organochlorine pesticides (γ-BHC, heptachlor epoxide, aldrin, dieldrin, and endrin) was above their respective acceptable average daily intake (ADI), while hazard quotient for each of these pesticides was above the unity value (1). This indicates that there is a potential cancer risk for the local residents with life time consumption of pesticide-contaminated fish. PMID:26423632

  5. Statistical modeling of daily urban water consumption in Hong Kong: Trend, changing patterns, and forecast

    NASA Astrophysics Data System (ADS)

    Wong, Jefferson See; Zhang, Qiang; Chen, Yongqin David

    2010-03-01

    This study attempted to address statistical properties and forecast of daily urban water consumption in Hong Kong from 1990 to 2007. A statistical model was formulated to differentiate the effects of five factors on water use, i.e., trend, seasonality, climatic regression, calendar effect, and autoregression. The postulate of the statistical model is that total water use is made up of base, seasonal, and calendrical water use. Daily urban water consumption in Hong Kong from 1990 to 2001 was modeled and the developed statistical model explains 83% of the variance with six factors: trend (8%), seasonality (27%), climatic regression (2%), day-of-the-week effect (17%), holiday effect (17%), and autoregression (12%). The model was further validated using an independent data set from 2002 to 2007, yielding a R2 of 76%. The results indicated good performance of the developed statistical model in depicting the temporal variations of the urban water use in Hong Kong, offering an improved insight into urban utilization of water resources and acting as the theoretical support for effective urban water resource management in Hong Kong under the changing environment.

  6. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas

    PubMed Central

    2014-01-01

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH’s, aldrin, dicofol, DDT and its derivatives, α,β endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

  7. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  8. Forensic Hydrogeography: Assessing Arsenic Contamination in Drinking Water, Livestock, and Agricultural Wells in Harney County, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Smitherman, L. L.

    2014-12-01

    This study investigates the relationship between elevated arsenic levels in groundwater and the regional geography within the Harney Basin in Eastern Oregon. There are multiple aquifers within this region used for public consumption, livestock production, and agriculture. Initial observations by the United States Geological Survey and independent residential water quality assessments have identified some wells containing arsenic concentrations an order of magnitude greater than the United States Environmental Protection Agency's Maximum Contaminant Level of 10 parts per billion for drinking water. However, these data are inadequate to characterize the spatial extent of arsenic contamination throughout the basin; it remains unclear which aquifers are contaminated. The basin contains a geology comprised of tuffaceous sedimentary rocks and basalt formations with extensive faulting. Productive wells range in depth from 6 to 240 meters. The present study examines the spatial extent and seasonal variation of arsenic concentrations due to changing water levels stemming from agricultural pumping. These data will aid in the development of a regional model of arsenic contamination throughout the basin.

  9. Impact of agriculture on surface water in Ireland Part I. General

    NASA Astrophysics Data System (ADS)

    Toner, Paul F.

    1986-02-01

    The inland freshwaters of Ireland are generally of good quality, a condition at least partly attributable to the relatively small population and industrial base, which are mainly located in coastal areas. The wastes generated by agricultural activities greatly exceed those resulting from domestic and industrial activities. However, the bulk of these agricultural wastes are attributable to grazing livestock and are not likely to lead to pollution of waters. The disposal of manure slurries from intensive rearing operations and silage making are the main agricultural operations which have been implicated in pollution incidents, e.g., fish kills and lake eutrophication. Contamination of surface waters with nitrate and pesticides is not a significant problem at this stage, which reflects the relatively low usage of artificial fertilizers and biocides in Ireland. It is suggested that, in the long term, the main effect of agriculture on Irish surface waters will be eutrophication.

  10. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. PMID:26994788

  11. Irrigated Agriculture and Water Resources in the Western U.S. (Invited)

    NASA Astrophysics Data System (ADS)

    Trout, T. J.

    2013-12-01

    Agriculture in semi-arid areas such as the western U.S. was created by diverting and pumping water from rivers and groundwater. With that water, highly productive irrigated agriculture produces 40% of the crop value and the large majority of the fruits, vegetables, and nuts in the U.S. Irrigation water use and area is declining in the West, due both to overexploitation and increasing competing needs, although productivity continues to increase. The challenges for irrigated agriculture are to maximize productivity per unit of water consumed, minimize negative environmental impacts, and make water available to other needs while sustaining food production and rural economies. Meeting these challenges require both technical and policy advances.

  12. Using activated biochars to treat well water in agricultural communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dibromochloropropane (1,2-dibromo-3-chloropropane or DBCP) is regulated by the U.S. Environmental Protection Agency under the National Primary Drinking Water Regulations to a maximum of 0.2 µg/L (0.2 ppb) in drinking water. DBCP was primarily used as an unclassified nematicide for vegetables and per...

  13. Soil and Water Challenges for Pacific Northwest Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  14. ET mapping for agricultural water management: present status and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an essential component of the water balance. Remote sensing based agrometeorological models are presently most suited for estimating crop water use at both field and regional scales. Numerous ET algorithms have been developed to make use of remote sensing data acquired by ...

  15. Agricultural water and energy use in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Masiyandima, M. C.; Sow, A.

    2015-12-01

    Assessment of the productivity of irrigation water is important measuring the performance of irrigation schemes especially in water scarce areas. Equally important for performance is the energy cost of providing water for irrigation. Sahel irrigation schemes are dependent on pumping water from rivers into a network of gravity operated channels. In the Senegal River valley in Senegal the cost of pumping water and for irrigation has been estimated to be 20-25% of total rice production costs. Irrigation schemes in the valley are characterized by low water productivity. We analysed rice production, irrigation water use and energy use for supplying irrigation water at Pont Gendarme, Ndiawar and Ngallenka MCA irrigation schemes in the Senegal River valley. For the 2013 rainfall season the mean yield ranged between 6 and 8t ha-1. Dry season yield ranged between 1.7 and 6.8t ha-1. Energy use for irrigation in the Ndiawar irrigation scheme was 8kg MJ-1 and 6.4kg MJ-1 in the 2013 and 2014 rainfall seasons respectively. In 2014 (rainfall season) energy productivity of irrigation water was 8.5, 8.0 and 16.4 kg MJ-1 at Ngallenka MCA, Ndiawar and Pont Gendarme respectively. Dry season (2014) energy productivity at Ndiawar and Pont Gendarme was 3.4 and 11.2kg MJ-1 respectively. Productivity of irrigation water was similar for all schemes (0.37kg m-3 at Pont Gendarme, 0.42kg m-3 at Ngallenka MCA, and 0.41kg m-3 Ndiawar). Energy use for the supply of irrigation water in the rainfall season ranged from 403 to 1,002MJ ha-1. Dry season irrigation energy use was 589MJ ha-1 Pont Gendarme and 331MJ ha-1 at Ndiawar. Reducing water use in these schemes through better water management will result in lower production costs and increased margins for the farmers. The observations from 2013 - 2014 highlight the importance of using both water and energy productivity to assess performance of irrigation schemes.

  16. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  17. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect

    Wu, M.; Peng, J.

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  18. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  19. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  20. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  1. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  2. Encouraging Consumption of Water in School and Child Care Settings: Access, Challenges, and Strategies for Improvement

    PubMed Central

    Hampton, Karla E.

    2011-01-01

    Children and adolescents are not consuming enough water, instead opting for sugar-sweetened beverages (sodas, sports and energy drinks, milks, coffees, and fruit-flavored drinks with added sugars), 100% fruit juice, and other beverages. Drinking sufficient amounts of water can lead to improved weight status, reduced dental caries, and improved cognition among children and adolescents. Because children spend most of their day at school and in child care, ensuring that safe, potable drinking water is available in these settings is a fundamental public health measure. We sought to identify challenges that limit access to drinking water; opportunities, including promising practices, to increase drinking water availability and consumption; and future research, policy efforts, and funding needed in this area. PMID:21680941

  3. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  4. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  5. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  6. Simultaneous concentration of bovine viruses and agricultural zoonotic bacteria from water using sodocalcic glass wool filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...

  7. Implementation and monitoring measures to reduce agricultural impacts on water quality: US experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  8. Restoring abandoned agricultural lands in cold desert shrublands: tradeoffs between water availability and invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of abandoned agricultural lands to create sustainable ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or su...

  9. Implementation and monitoring to reduce agricultural impacts on water quality: US experiance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  10. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  11. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas. PMID:24004382

  12. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies. PMID:27105414

  13. Modeling water outflow from tile-drained agricultural fields.

    PubMed

    Kuzmanovski, Vladimir; Trajanov, Aneta; Leprince, Florence; Džeroski, Sašo; Debeljak, Marko

    2015-02-01

    The estimation of the pollution risk of surface and ground water with plant protection products applied on fields depends highly on the reliable prediction of the water outflows over (surface runoff) and through (discharge through sub-surface drainage systems) the soil. In previous studies, water movement through the soil has been simulated mainly using physically-based models. The most frequently used models for predicting soil water movement are MACRO, HYDRUS-1D/2D and Root Zone Water Quality Model. However, these models are difficult to apply to a small portion of land due to the information required about the soil and climate, which are difficult to obtain for each plot separately. In this paper, we focus on improving the performance and applicability of water outflow modeling by using a modeling approach based on machine learning techniques. It allows us to overcome the major drawbacks of physically-based models e.g., the complexity and difficulty of obtaining the information necessary for the calibration and the validation, by learning models from data collected from experimental fields that are representative for a wider area (region). We evaluate the proposed approach on data obtained from the La Jaillière experimental site, located in Western France. This experimental site represents one of the ten scenarios contained in the MACRO system. Our study focuses on two types of water outflows: discharge through sub-surface drainage systems and surface runoff. The results show that the proposed modeling approach successfully extracts knowledge from the collected data, avoiding the need to provide the information for calibration and validation of physically-based models. In addition, we compare the overall performance of the learned models with the performance of existing models MACRO and RZWQM. The comparison shows overall improvement in the prediction of discharge through sub-surface drainage systems, and partial improvement in the prediction of the surface

  14. Analysis of economic impacts of climate change on agricultural water management in Europe

    NASA Astrophysics Data System (ADS)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  15. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China.

    PubMed

    Song, Guobao; Li, Mingjing; Semakula, Henry Musoke; Zhang, Shushen

    2015-10-01

    Strategies for reducing food waste and developing sustainable diets require information about the impacts of consumption behavior and waste generation on climatic, water, and land resources. We quantified the carbon, water, and ecological footprints of 17,110 family members of Chinese households, covering 1935 types of foods, by combining survey data with available life-cycle assessment data sets. We also summarized the patterns of both food consumption and waste generation and analyzed the factors influencing the observed trends. The average person wasted (consumed) 16 (415) kg of food at home annually, equivalent to 40 (1080) kg CO2e, 18 (673) m(3), and 173 (4956) gm(2) for the carbon, water and ecological footprints, respectively. The generation of food waste was highly correlated with consumption for various food groups. For example, vegetables, rice, and wheat were consumed the most and accounted for the most waste. In addition to the three plant-derived food groups, pork and aquatic products also contributed greatly to embedded footprints. The data obtained in this study could be used for assessing national food security or the carrying capacity of resources. PMID:26011615

  16. The energy-water nexus: are there tradeoffs between residential energy and water consumption in arid cities?

    PubMed

    Ruddell, Darren M; Dixon, P Grady

    2014-09-01

    Water scarcity, energy consumption, and air temperature regulation are three critical resource and environmental challenges linked to urban population growth. While appliance efficiency continues to increase, today's homes are larger and residents are using more energy-consuming devices. Recent research has often described the energy-water nexus as a "tradeoff" between energy and water due to reduced temperatures resulting from irrigated vegetation. Accordingly, some arid cities have implemented landscape-conversion programs that encourage homeowners to convert their yards from grass (mesic) to drought-tolerant (xeric) landscapes to help conserve water resources. We investigated these relationships in Phoenix, Arizona by examining energy and water data for the summer months of June-September 2005 while temperature variability was analyzed from a local heat wave. Results show parallel consumption patterns with energy and water use strongly correlated and newer homes using more of both. The counterintuitive findings show that "drought-resistant" models may not be beneficial for community health, environment, or economics and that this issue is further complicated by socio-economic variables. PMID:24146303

  17. The energy-water nexus: are there tradeoffs between residential energy and water consumption in arid cities?

    NASA Astrophysics Data System (ADS)

    Ruddell, Darren M.; Dixon, P. Grady

    2014-09-01

    Water scarcity, energy consumption, and air temperature regulation are three critical resource and environmental challenges linked to urban population growth. While appliance efficiency continues to increase, today's homes are larger and residents are using more energy-consuming devices. Recent research has often described the energy-water nexus as a "tradeoff" between energy and water due to reduced temperatures resulting from irrigated vegetation. Accordingly, some arid cities have implemented landscape-conversion programs that encourage homeowners to convert their yards from grass (mesic) to drought-tolerant (xeric) landscapes to help conserve water resources. We investigated these relationships in Phoenix, Arizona by examining energy and water data for the summer months of June-September 2005 while temperature variability was analyzed from a local heat wave. Results show parallel consumption patterns with energy and water use strongly correlated and newer homes using more of both. The counterintuitive findings show that "drought-resistant" models may not be beneficial for community health, environment, or economics and that this issue is further complicated by socio-economic variables.

  18. LAS VEGAS VALLEY WATER BUDGET: RELATIONSHIP OF DISTRIBUTION, CONSUMPTIVE USE, AND RECHARGE TO SHALLOW GROUND WATER

    EPA Science Inventory

    Estimates of quantity and geographic distribution of recharge to the shallow ground-water zone from water use return flows in Las Vegas Valley were made for the years 1973, 1965, 1958, 1950, and 1943 as part of a broader study on the impact of water and land use on ground-water q...

  19. Price elasticity reconsidered: Panel estimation of an agricultural water demand function

    NASA Astrophysics Data System (ADS)

    Schoengold, Karina; Sunding, David L.; Moreno, Georgina

    2006-09-01

    Using panel data from a period of water rate reform, this paper estimates the price elasticity of irrigation water demand. Price elasticity is decomposed into the direct effect of water management and the indirect effect of water price on choice of output and irrigation technology. The model is estimated using an instrumental variables strategy to account for the endogeneity of technology and output choices in the water demand equation. Estimation results indicate that the price elasticity of agricultural water demand is -0.79, which is greater than that found in previous studies.

  20. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  1. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  2. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  3. Reducing consumption in periods of acute scarcity: the case of water

    SciTech Connect

    Berk, R.A.; Cooley, T.F.; LaCivita, C.J.; Parker, S.; Sredl, K.; Brewer, M.

    1980-06-01

    This paper examines the impact of water conservation efforts in four California communities selected in part because of the range of conservation programs launched. The analysis will rest on 8 years of monthly data aggregated to the community level and will employ both Box-Jenkins (1976) procedures and techniques for pooled cross-sectional and time-series data (Kmenta, 1971, pp. 508 to 517). Theory will be drawn from social psychology and microeconomics; the former used to characterize certain shifts in the demand curve for water, the latter used to explain changes in consumption as a function of exogenous changes in price.

  4. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  5. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  6. Selection criteria for water disinfection techniques in agricultural practices.

    PubMed

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain. PMID:24279431

  7. Optimizing the use of limited water in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 92% of freshwater withdrawals in Uzbekistan are used for irrigation, whereas in the United States, freshwater withdrawls account for about 33% of the total use. In Uzbekistan, most of the water suitable for irrigation has already been allocated. In the United States, groundwater depletion and ...

  8. 10 CFR Appendix E to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Water Heaters

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Water Heaters E Appendix E to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Appendix E to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of Water Heaters 1. Definitions 1.1Cut-in means the time when or water temperature at which a water heater...

  9. Plain Water and Sugar-Sweetened Beverage Consumption in Relation to Energy and Nutrient Intake at Full-Service Restaurants

    PubMed Central

    An, Ruopeng

    2016-01-01

    Background: Drinking plain water, such as tap or bottled water, provides hydration and satiety without adding calories. We examined plain water and sugar-sweetened beverage (SSB) consumption in relation to energy and nutrient intake at full-service restaurants. Methods: Data came from the 2005–2012 National Health and Nutrition Examination Survey, comprising a nationally-representative sample of 2900 adults who reported full-service restaurant consumption in 24-h dietary recalls. Linear regressions were performed to examine the differences in daily energy and nutrient intake at full-service restaurants by plain water and SSB consumption status, adjusting for individual characteristics and sampling design. Results: Over 18% of U.S. adults had full-service restaurant consumption on any given day. Among full-service restaurant consumers, 16.7% consumed SSBs, 2.6% consumed plain water but no SSBs, and the remaining 80.7% consumed neither beverage at the restaurant. Compared to onsite SSB consumption, plain water but no SSB consumption was associated with reduced daily total energy intake at full-service restaurants by 443.4 kcal, added sugar intake by 58.2 g, saturated fat intake by 4.4 g, and sodium intake by 616.8 mg, respectively. Conclusion: Replacing SSBs with plain water consumption could be an effective strategy to balance energy/nutrient intake and prevent overconsumption at full-service restaurant setting. PMID:27153083

  10. Consumptive use and resulting leach-field water budget of a mountain residence

    USGS Publications Warehouse

    Stannard, David; Paul, William T.; Laws, Roy; Poeter, Eileen P.

    2010-01-01

    Consumptive use of water in a dispersed rural community has important implications for maximum housing density and its effects on sustainability of groundwater withdrawals. Recent rapid growth in Colorado, USA has stressed groundwater supplies in some areas, thereby increasing scrutiny of approximate methods developed there more than 30 years ago to estimate consumptive use that are still used today. A foothills residence was studied during a 2-year period to estimate direct and indirect water losses. Direct losses are those from evaporation inside the home, plus any outdoor use. Indirect loss is evapotranspiration (ET) from the residential leach-field in excess of ET from the immediately surrounding terrain. Direct losses were 18.7% of water supply to the home, substantially larger than estimated historically in Colorado. A new approach was developed to estimate indirect loss, using chamber methods together with the Penman–Monteith model. Indirect loss was only 0.9% of water supply, but this value probably was anomalously low due to a recurring leach-field malfunction. Resulting drainage beneath the leach-field was 80.4% of water supply. Guidelines are given to apply the same methodology at other sites and combine results with a survey of leach-fields in an area to obtain more realistic average values of ET losses.

  11. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  12. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  13. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  14. Urban food consumption and associated water resources: The example of Dutch cities.

    PubMed

    Vanham, D; Mak, T N; Gawlik, B M

    2016-09-15

    Full self-sufficiency in cities is a major concern. Cities import resources for food, water and energy security. They are however key to global sustainability, as they concentrate a rapidly increasing and urbanising population (or number of consumers). In this paper, we analysed the dependency of urban inhabitants on the resource water for food consumption, by means of Dutch cities. We found that in extremely urbanised municipalities like Amsterdam and Rotterdam, people eat more meat and cereals and less potatoes than in other Dutch municipalities. Their current water footprint (WF) related to food consumption is therefore higher (3245l/cap/day) than in strongly urbanised cities (3126l/cap/day). Dutch urban citizens who eat too many animal products, crop oils and sugar can reduce their WF (with 29 to 32%) by shifting to a healthier diet. Recommended less meat consumption has the largest impact on the total WF reduction. A shift to a pesco-vegetarian or vegetarian diet would require even less water resources, where the WF can be reduced by 36 to 39% and 40 to 42% respectively. Dutch cities such as Amsterdam have always scored very high in international sustainability rankings for cities, partly due to a long history in integrated (urban) water management in the Netherlands. We argue that such existing rankings only show a certain - undoubtedly very important - part of urban environmental sustainability. To communicate the full picture to citizens, stakeholders and policy makers, indicators on external resource usage need to be employed. The fact that external resource dependency can be altered through changing dietary behaviour should be communicated. PMID:27173841

  15. Increasing the potential of agricultural water harvesting in Africa

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Kirkby, Mike; Woldearegay, Kifle

    2014-05-01

    The WAHARA project aims to increase the potential of water harvesting in Africa. The WAHARA project draws on expertise and field data from four study sites in Ethiopia, Tunisia, Burkina Faso and Zambia. The project is transdisciplinary working closely with stakeholders to ensure that the water harvesting technologies selected and tested meet their needs. The effectiveness of WH technologies will be assessed under different environmental and socio-economic conditions. Each study site offers a number of WH technologies and aim to trial technologies from other study sites. The results from the study sites will inform the adaptation of the PESERA model and the potential of WH for the whole of Africa This presentation highlights the climate range in which the field trials are being carried out and the technologies being trialed in northern Ethiopia. Conceptual models for each technology are considered and incorporated into the PESERA model. The model is applied for the study site with both field based and catchment based technologies being assessed. The transferability and potential of individual and combined technologies will be considered across climate gradients and soil type for Africa. A quick assessment tool has been developed and offers an initial assessment of water harvesting potential. The tool can be used to quickly assess which kinds of WHT could be used in specific areas in Africa and is available to interested parties.

  16. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  17. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production. PMID:25193824

  18. Relation of nitrate concentrations in water to agricultural land use and soil type in Dakota County, Minnesota, 1990

    USGS Publications Warehouse

    Almendinger, James Edward

    1991-01-01

    Nitrate is commonly found in ground water in agricultural areas throughout the Midwest. The emphasis of this report is to relate differences in nitrate concentrations in ground water to agricultural land use and soil type. In addition, nitrate concentrations in streams, shallow ground water near the water table, and deeper ground water from 10 to 30 feet below the water table are tabulated for selected sites in Dakota County.

  19. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  20. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  1. Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water

    PubMed Central

    Almeida, Denise Milleo; Prestes, Rosilene Aparecida; da Fonseca, Adriel Ferreira; Woiciechowski, Adenise L.; Wosiacki, Gilvan

    2013-01-01

    The objective of this work is to verifying the consume of the minerals K, Na, Fe, Mg, P, S-SO4−2, B, N Total Kjedahl (NTK), NO3−-N, and NH4+-N in the production of bacterial cellulose by Acetobacter xylinum, according to the medium and the manner of cultivation. The fermentative process was in ripe and green coconut water. K and Na were determined by flame emission photometry, Mg and Fe by atomic absorption spectrophotometry, P by molecular absorption spectrophotometry, S-SO4−2 by barium sulphate turbidimetry, B by Azomethin-H method, NTK by Kjeldahl method, N-NO3− and N-NH4+ by vapor distillation with magnesium oxide and Devarda’s alloy, respectively. In Fermentation of ripe coconut water there were higher consumption of K (69%), Fe (84,3%), P (97,4%), S-SO2−2 (64,9%), B (56,1%), N-NO3− (94,7%) and N-NH4+ (95,2%), whereas coconut water of green fruit the most consumed ions were Na (94,5%), Mg (67,7%) and NTK (56,6%). The cultivation under agitation showed higher mineral consumption. The higher bacterial cellulose production, 6 g.L−1, was verified in the coconut water fermentative in ripe fruit, added KH2PO4, FeSO4 and NaH2PO4 kept under agitation. PMID:24159306

  2. How Will Climate Change Impact Water Consumption for Rice Irrigation in Southern Brazil?

    NASA Astrophysics Data System (ADS)

    dos Santos, T. V.; Twine, T. E.

    2015-12-01

    Globally, agricultural water use accounts for most of the water that is withdrawn from surface water and groundwater. Rice, one of the world's leading food crops, requires that fields be continuously flooded to obtain optimal yields. High air temperature and consecutive rainless days in rice-growing areas can significantly reduce rice yields, leading to food scarcity. Climate change is expected to affect water demand for rice via changes in rainfall regime, soil water balance, and evapotranspiration. Higher temperatures and increased variability of precipitation are predicted to increase water demand and could potentially require more irrigation in lowland rice-growing areas. In this study we present the first results from model simulations in which we integrated a rice model into the Agro-IBIS dynamic ecosystem model. We predict the impact of climate change on the water use requirement of rice production in southern Brazil and evaluate changes in irrigation needed to meet minimum water demand to sustain current yields. Brazil is the 9th top rice producer in the world, and southern Brazil accounts for about 80% of the national production. The Agro-IBIS model was driven with historic weather data provided by CRU (1961-90) and with two future climate scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for 2015-2100 - Representative Concentration Pathways 4.5 (RCP45) and 8.5 (RCP85). On an hourly time step, Agro-IBIS accounts for gains (precipitation) and losses (evaporation, transpiration, infiltration and runoff) of water in each grid cell, and uses rules to irrigate in order to maintain a specific height of standing water on the field. Simulated historic and future amounts of irrigated water needed to maintain this water height will be evaluated to predict future water demand for rice production in southern Brazil.

  3. Potential drawbacks associated with agricultural irrigation with treated wastewaters from desalinated water origin and possible remedies.

    PubMed

    Lahav, Ori; Kochva, Malka; Tarchitzky, Jorge

    2010-01-01

    Over 90% of the water supplied in the coastal region in Israel in 2013 (600 Mm(3) y(-1)) will be from desalination plants. The wastewater generated from this water (>400 Mm(3) y(-1)) is planned, after proper treatment, to be reused for agricultural irrigation, making this low-salinity water the main agricultural-sector future water source. In this respect both the Mg(2 + ) concentration and the Sodium Adsorption Ratio value of the water are of concern. We show that the typical Na(+) concentration addition to wastewater (between approximately 100 and approximately 165 mg L(-1)) is much higher than the combined addition of Ca(2 + ) and Mg(2 + ) (between 0 and several mg L(-1)). Since desalinated water is typically supplied with low Ca(2 + ) and Mg(2 + ) concentrations ( approximately 35 and 0 mg L(-1) respectively), the treated wastewater is characterized by very low Mg(2 + ) concentrations, low salinity and very high SAR values, typically >6 and up to 10 (meq L(-1))(0.5). SAR values can be lowered by adding either Ca(2 + ) or Mg(2 + ) to desalinated water. Adding Mg(2 + ) is preferable from both health (minimizing cardiovascular disease hazards) and agriculture (inexpensive Mg fertilization) aspects. The low cost of Mg(2 + ) addition at the post-treatment stage of desalination plants corroborates the request for Mg(2 + ) addition in regions where treated wastewater from desalinated water origin is planned to be reused for irrigation. PMID:20453317

  4. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.

    PubMed

    Wang, Ranran; Zimmerman, Julie

    2016-05-17

    As the fifth global water footprint assessment, this study enhanced previous estimates of national blue water consumption (including fresh surface and groundwater) and main economic activities with (1) improved spatial and sectoral resolution and (2) quantified the impacts of virtual water trade on water use and water stress at both the national and basin level. In 2007, 1194 Gm(3) of blue water was consumed globally for human purposes. The consuming (producing) of primary and manufactured goods and services from the sectors of "Primary Crops and Livestock", "Primary Energy and Minerals", "Processed Food and Beverages", "Non-food Manufactured Products", "Electricity", "Commercial and Public Services", and "Households" accounted for 33% (91%), ∼ 0% (1%), 37% (<1%), 13% (1%), 1% (2%), 15% (3%), and 2% (2%) of the world's total blue water consumption, respectively. The considerable differences in sectoral water consumption accounted for by the two perspectives (consumption- vs production-based) highlight the significance of the water consumed indirectly, upstream in the supply chain (i.e., > 70% of total blue water consumption) while offering additional insights into the water implications of critical interconnected economic activities, such as the water-energy nexus. With 145 Gm(3) (12%) of the blue water consumption embedded in the goods and services traded internationally, 89 countries analyzed were net blue water importers at the national level. On the basin level, the impacts of virtual water trade on water stress were statistically significant for basins across the world and within 104 countries; virtual water trade mitigated water stress for the basins within 85 of the 104 countries, including all of those where there are moderate and greater water stress countrywide (except Italy). PMID:27101068

  5. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  6. Estimation of the daily water consumption by maize under Atlantic climatic conditions (A Coruña, NW Spain) using Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Vidal-Vázquez, Eva

    2010-05-01

    Climatic variables, such as rainfall, solar radiation, temperature and relative humidity, present a high spatio-temporal variability. Thus, they are inadequate indicators of soil water content in the root-influenced zone and/or soil water consumption by plants, which are essential parameters for assessing water availability. An interesting alternative to the estimation of these parameters is quantifying soil water dynamics using Frequency Domain Reflectometry (FDR). This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to quantify the soil moisture dynamics in the root-influenced zone and to assess the daily water consumption by the crop. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from July to October 2009 in a field devoted to maize (Zea mays, L.). The soil of this site is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. Evapotranspiration was estimated according to the Penman-Monteith equation using meteorological data from a station located in the experimental site. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied site following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (0-60 cm depth were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were performed on days with slight or no rainfall. The estimated

  7. Possible treatments for arsenic removal in Latin American waters for human consumption.

    PubMed

    Litter, Marta I; Morgada, Maria E; Bundschuh, Jochen

    2010-05-01

    Considering the toxic effects of arsenic, the World Health Organization recommends a maximum concentration of 10 microg L(-1) of arsenic in drinking water. Latin American populations present severe health problems due to consumption of waters with high arsenic contents. The physicochemical properties of surface and groundwaters are different from those of other more studied regions of the planet, and the problem is still publicly unknown. Methods for arsenic removal suitable to be applied in Latin American waters are here summarized and commented. Conventional technologies (oxidation, coagulation-coprecipitation, adsorption, reverse osmosis, use of ion exchangers) are described, but emphasis is made in emergent decentralized economical methods as the use of inexpensive natural adsorbents, solar light technologies or biological treatments, as essential to palliate the situation in poor, isolated and dispersed populations of Latin American regions. PMID:20189697

  8. Local flow regulation and irrigation raise global human water consumption and footprint.

    PubMed

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-01

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km(3)/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km(3)/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling. PMID:26785489

  9. Local flow regulation and irrigation raise global human water consumption and footprint

    NASA Astrophysics Data System (ADS)

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-01

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km3/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km3/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling.

  10. Development of urban water consumption models for the City of Los Angeles

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2011-12-01

    water use patterns across the City. The performance of the linear regression model is being tested and compared with other algorithm-based simulations for improved modeling of urban water consumption in the region. Ultimately, projects results will contribute to the implementation of sustainable strategies targeted to specific urban areas for a growing population under uncertain climate variability.

  11. Phosphorus release from agriculture to surface waters: past, present and future in China.

    PubMed

    Chen, M; Chen, J

    2008-01-01

    So far, there is no clear picture at national level regarding the severity, spatial distribution, trend and driving forces of phosphorus (P) release from agriculture to surface waters in China, which presents a major obstacle for surface water quality management and relevant policy-making. By applying a proposed Activity-Unit-Balance (AUB) methodology, this paper retrospects and prospects phosphorus release from agricultural activities to surface waters from 1978 to 2050 in China. Modelling results reveal that P load from agriculture has increased 3.4 times during 1978-2005 and will increase by 1.8 times during 2005-2050. Although major contribution factors are mineral fertiliser application (MFA) and livestock feeding activities (LFAs), LFAs will be the single largest source of increased total P load in the next decades. Most importantly, agricultural pollution in China is spatially overlapped with industrial and domestic pollution, and regions in the southeast to "Heihe-Tengchong" line have to be confronted with an austere challenge to control and manage industrial and domestic pollution as well as pollution from agriculture at present and in future. PMID:18495999

  12. The economics of daily consumption controlling food- and water-reinforced responding1

    PubMed Central

    Hursh, Steven R.

    1978-01-01

    In the first experiment, two rhesus monkeys earned their entire ration of food and water during daily sessions with no provisions to ensure constant daily intakes. Two variable-interval schedules of food presentations were concurrent with one variable-interval schedule of water presentations; the maximum rate of food presentations arranged by one food schedule was varied. As the rate of food presentations was increased, the absolute level of responding on the two food schedules combined decreased, while responding on the water schedule increased. The preference for the variable food schedule compared to the other food schedule approximately matched the proportion of reinforcers obtained from it. The preference for the variable food schedule compared to the water schedule did not match, but greatly decreased, as the proportion of reinforcers from the food schedule increased. When Experiment I was replicated, with provisions to ensure constant daily intakes of food and water (Experiment II), the absolute response rates under the two food schedules combined and under the water schedule no longer changed with increases in the rate of food during the sessions. On the other hand, choice between the two food schedules remained proportional to the distribution of obtained food pellets. These results were interpreted as indicating that behavior to obtain nonsubstitutable commodities, such as food and water, is strongly controlled by the economic conditions of daily consumption, while choice between substitutable commodities is independent of these factors. PMID:16812071

  13. Impact of climate change on the water cycle of agricultural landscapes in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Witte, Irene; Ingwersen, Joachim; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    For agricultural production and life in general, water is a necessity. To ensure food and drinking water security in the future an understanding of the impact of climate change on the water cycle is indispensable. The objective of this PhD research is to assess how higher temperatures, higher atmospheric CO2 concentration and changing precipitation patterns will alter the water cycle of agricultural landscapes in Southwest Germany. As representative key characteristics data evaluation will focus on water use efficiency (WUE) and groundwater recharge. The main research question is whether the positive effect of elevated atmospheric CO2 on WUE will be overcompensated by a decrease in net primary production due to warming and to altered seasonal water availability caused by higher rainfall variability. Elevated atmospheric CO2 stimulates plant growth and improves WUE, whereas higher temperatures are expected to reduce net primary production and groundwater recharge. Another research question referring to groundwater recharge is whether groundwater recharge will increase in winter and decrease in summer in Southwest Germany. Changed groundwater recharge directly affects drinking water supply and is an indicator for possible temporary water shortages in agricultural production. A multi-model ensemble composed of 16 combinations of four crop growth models, two water regime models and two nitrogen models will be calibrated and validated against sets of field data. Field data will be provided by FOR 1965 from 2009-2015 for the Kraichgau region and the Swabian Alb, two contrasting areas with regard to climate and agricultural intensity. By using a multi model ensemble uncertainties in predictions due to different model structures (epistemic uncertainty) can be quantified. The uncertainty related to the randomness of inputs and parameters, the so-called aleatory uncertainty, will be additionally assessed for each of the 16 models. Hence, a more reliable range of future

  14. Effects of controlled agricultural practices on water quality in the Minnesota sand-plain aquifer

    USGS Publications Warehouse

    Anderson, H.W., Jr.; Stoner, J.D.

    1989-01-01

    Recent studies of Minnesota's sand plains indicate that ground-water chemistry is related to agricultural practices. Surficial sand-plain aquifers cover 8,000,000 acres of Minnesota and are a major source of water for domestic use, irrigation, and some municipal systems. The sand-plain aquifers consist of sand and gravel deposits that are from 20 to greater than 100 feet thick and are covered by a thin sandy loam that generally is less than 2 feet thick. Sand-plain aquifers are recharged by the downward percolation of precipitation through the soil root zone and the unsaturated zone in the sand to the water table. The water table is the upper surface of the zone of saturation and forms the top of the sand-plain aquifer. Sand-plain aquifers are susceptible to contamination by agricultural chemicals (fertilizers and pesticides), if downward-percolating recharge water contains these chemicals. The concentrations of nitrate, pesticides, and some other chemical constituents fluctuate seasonally and differ with depth below the water table (Anderson, 1989). Despite the availability of water-quality data for about 260 wells that were collected during previous studies in three U.S. Geological Survey (USGS) project areas in Minnesota, it is not known how concentrations of agricultural chemicals in ground water relate to the rate and timing of fertilizer and pesticide application or to the tillage practices used. Field-scale research is needed to determine the effects of different farming practices on the concentrations of nitrate, pesticides, and other agricultural chemicals in ground water in the unsaturated and saturated zones.

  15. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation.

    PubMed

    Sorlini, Sabrina; Gialdini, Francesca; Biasibetti, Michela; Collivignarelli, Carlo

    2014-05-01

    Disinfection is the last treatment stage of a Drinking Water Treatment Plant (DWTP) and is carried out to maintain a residual concentration of disinfectant in the water distribution system. Chlorine dioxide (ClO2) is a widely used chemical employed for this purpose. The aim of this work was to evaluate the influence of several treatments on chlorine dioxide consumption and on chlorite and chlorate formation in the final oxidation/disinfection stage. A number of tests was performed at laboratory scale employing water samples collected from the DWTP of Cremona (Italy). The following processes were studied: oxidation with potassium permanganate, chlorine dioxide and sodium hypochlorite, coagulation/flocculation with ferric chloride and aluminum sulfate, filtration and adsorption onto activated carbon. The results showed that the chlorine dioxide demand is high if sodium hypochlorite or potassium permanganate are employed in pre-oxidation. On the other hand, chlorine dioxide leads to the highest production of chlorite and chlorate. The coagulation/flocculation process after pre-oxidation shows that chlorine dioxide demand decreases if potassium permanganate is employed as an oxidant, both with ferric chloride and aluminum sulfate. Therefore, the combination of these processes leads to a lower production of chlorite and chlorate. Aluminum sulfate is preferable in terms of the chlorine dioxide demand reduction and minimization of the chlorite and chlorate formation. Activated carbon is the most effective solution as it reduced the chlorine dioxide consumption by about 50% and the DBP formation by about 20-40%. PMID:24534637

  16. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters

    NASA Astrophysics Data System (ADS)

    Takeda, Shigenobu

    1998-06-01

    The major nutrients (nitrate, phosphate and silicate) needed for phytoplankton growth are abundant in the surface waters of the subarctic Pacific, equatorial Pacific and Southern oceans, but this growth is limited by the availability of iron. Under iron-deficient conditions, phytoplankton exhibit reduced uptake of nitrate and lower cellular levels of carbon, nitrogen and phosphorus. Here I describe seawater and culture experiments which show that iron limitation can also affect the ratio of consumed silicate to nitrate and phosphate. In iron-limited waters from all three of the aforementioned environments, addition of iron to phytoplankton assemblages in incubation bottles halved the silicate:nitrate and silicate:phosphate consumption ratios, in spite of the preferential growth of diatoms (silica-shelled phytoplankton). The nutrient consumption ratios of the phytoplankton assemblage from the Southern Ocean were similar to those of an iron-deficient laboratory culture of Antarctic diatoms, which exhibit increased cellular silicon or decreased cellular nitrogen and phosphorus in response to iron limitation. Iron limitation therefore increases the export of biogenic silicon, relative to nitrogen and phosphorus, from the surface to deeper waters. These findings suggest how the sedimentary records of carbon and silicon deposition in the glacial Southern Ocean can be consistent with the idea that changes in productivity, and thus in drawdown of atmospheric CO2, during the last glaciation were stimulated by changes in iron inputs from atmospheric dust.

  17. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  18. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    PubMed

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process. PMID:24663224

  19. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  20. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  1. Nutrient content at the sediment-water interface of tile-fed agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive network of tile drains present in the Midwest USA accelerate losses of nutrients to receiving ditches, rivers and eventually to the Gulf of Mexico. Nutrient inputs from agricultural watersheds and their role in affecting water quality have received increased attention recently; however, be...

  2. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost...

  3. RESEARCH NEEDS TO SUSTAIN AGRICULTURE ON THE HIGH PLAINS WITH LIMITED IRRIGATION WATER SUPPLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated agriculture in the West is facing declining water supplies. Many aquifers are being pumped at non-sustainable rates. Increasing realization of the inter-connectivity of surface and groundwater supplies are resulting in legal restrictions on groundwater use. Downstream (or upstream) user...

  4. Annual precipitation and effects of runoff-nutrient from agricultural watersheds on water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining surface water quality from agricultural nonpoint sources is of great concern across the Platte river basin in Nebraska. Recent changes in the earth climate create abrupt changes in domestic weather (i.e., precipitation, temperature, etc.) which can alter the impact of these nonpoint source...

  5. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  6. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  7. AGRICULTURAL WATER CONSERVATION POLICY IN AN URBANIZING ENVIRONMENT: THE ARIZONA BMP PROGRAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arizona legislature authorized in 2002 an agricultural water conservation program based on best management practices. The program is voluntary and an alternative to one based on allotments that have been in operation since 1980. The program requires the farmers to adopt conservation practices f...

  8. On-site denitrification beds could reduce indirect greenhouse gas emissions from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) laden agricultural drainage waters are non-point sources of indirect nitrous oxide (N2O) emissions, which represent a significant fraction of total N2O emissions in the USA. On-site denitrification beds filled with woodchips were used to reduce NO3- under carbon rich anaerobic conditi...

  9. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  10. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  11. Determining agricultural land use scenarios in a mesoscale Bavarian watershed for modelling future water quality

    NASA Astrophysics Data System (ADS)

    Mehdi, B. B.; Ludwig, R.; Lehner, B.

    2012-06-01

    Land use scenarios are of primordial importance when implementing a hydrological model for the purpose of determining the future quality of water in a watershed. This paper provides the background for researching potential agricultural land use changes that may take place in a mesoscale watershed, for water quality research, and describes why studying the farm scale is important. An on-going study in Bavaria examining the local drivers of change in land use is described.

  12. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R.R.; Roach, F.; Gollehon, N.R.; Creel, B.J.

    1981-07-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict for water now used by the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. In the Green River Basin, we found that Duchesne and Uintah Counties, Utah, would experience the greatest economic impacts when agricultural water supplies were reduced by 50%. In the Upper Yellowstone River Basin, Treasure and Rosebud Counties, Montana, would experience the greatest total income and employment reductions when water supplies were reduced less than or equal to 40%. When these supplies were reduced by more than 40%, Stillwater, Carbon, Yellowstone, and Big Horn Counties, Montana, would experience the greatest reductions.

  13. Can improved agricultural water use efficiency save India’s groundwater?

    NASA Astrophysics Data System (ADS)

    Fishman, Ram; Devineni, Naresh; Raman, Swaminathan

    2015-08-01

    Irrigated agriculture is placing increasing pressure on finite freshwater resources, especially in developing countries, where water extraction is often unregulated, un-priced and even subsidized. To shift agriculture to a more sustainable use of water without harming the food security and livelihoods of hundreds of millions of smallholders, substantial improvements of water use efficiency will be required. Here, we use detailed hydroclimatic and agricultural data to estimate the potential for the widespread adoption of efficient irrigation technologies to halt the depletion of India’s groundwater resources. Even though we find substantial technical potential for reversing water table declines, we show that the impacts are highly sensitive to assumptions about farmers’ water use decisions. For example, we find that widespread adoption of proven technologies that include drip and sprinkler irrigation has the potential to reduce the amount of excessive extraction of groundwater by two thirds. However, under more realistic assumptions about farmers’ irrigation choices, half of these reductions are lost due to the expansion of irrigated area. Our results suggest that without the introduction of incentives for conservation, much of the potential impact of technology adoption on aquifers may be lost. The analysis provides quantitative input to the debate of incentive versus technology based water policies.

  14. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  15. Modeling the transfer of land and water from agricultural to urban uses in the Middle Rio Grande Basin, New Mexico.

    SciTech Connect

    Jarratt, Janet; Passell, Howard David; Kelly, Susan; Malczynski, Leonard A.; Chermak, Janie; Van Bloeman Waanders, Paul; McNamara, Laura A.; Tidwell, Vincent Carroll; Pallachula, Kiran; Turnley, Jessica Glicken; Kobos, Peter Holmes; Newman, Gretchen Carr

    2004-11-01

    Social and ecological scientists emphasize that effective natural resource management depends in part on understanding the dynamic relationship between the physical and non-physical process associated with resource consumption. In this case, the physical processes include hydrological, climatological and ecological dynamics, and the non-physical process include social, economic and cultural dynamics among humans who do the resource consumption. This project represents a case study aimed at modeling coupled social and physical processes in a single decision support system. In central New Mexico, individual land use decisions over the past five decades have resulted in the gradual transformation of the Middle Rio Grande Valley from a primarily rural agricultural landscape to a largely urban one. In the arid southwestern U.S., the aggregate impact of individual decisions about land use is uniquely important to understand, because scarce hydrological resources will likely limit the viability of resulting growth and development trajectories. This decision support tool is intended to help planners in the area look forward in their efforts to create a collectively defined 'desired' social landscape in the Middle Rio Grande. Our research question explored the ways in which socio-cultural values impact decisions regarding that landscape and associated land use. Because of the constraints hydrological resources place on land use, we first assumed that water use, as embodied in water rights, was a reasonable surrogate for land use. We thought that modeling the movement of water rights over time and across water source types (surface and ground) would provide planners with insight into the possibilities for certain types of decisions regarding social landscapes, and the impact those same decisions would have on those landscapes. We found that water rights transfer data in New Mexico is too incomplete and inaccurate to use as the basis for the model. Furthermore, because of its

  16. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  17. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2015-10-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  18. Identifying spatial and seasonal patterns of river water quality in a semiarid irrigated agricultural Mediterranean basin.

    PubMed

    Darwiche-Criado, Nadia; Jiménez, Juan José; Comín, Francisco A; Sorando, Ricardo; Sánchez-Pérez, José Miguel

    2015-12-01

    A detailed understanding of the study area is essential to achieve key information and optimize the monitoring, analysis, and evaluation of water quality of natural ecosystems that have been highly transformed into agricultural areas. Using classification techniques like the hierarchical cluster analysis (CA) and partial triadic analysis (PTA), we assessed the sources of water pollution and the seasonal influence of human activities in water composition in a river basin from northeastern Spain. The results suggested that a strong connection existed between water quality and the seasonality of the human activities. The CA showed the spatial relationship between water chemistry and the adjacent land uses. The PTA associated the analyzed variables to their pollutant source. Electrical conductivity (EC), Cl(-), SO4(2-)-S, Na(+), and Mg(2+) ions were related with agricultural sources, whereas NH4(+)-N, PT, and PO4(3-)-P were linked with urban polluted sites. Concentration of NO3(-)-N was associated with urban land use. Differences in water composition according to the irrigation intensity were also found during the irrigation season. The statistical tools used in this work, especially the PTA, allowed us to jointly analyze the spatial and seasonal components of water pollutant trends. We obtained a more comprehensive knowledge of water quality patterns in the study area, which will be essential when taking measures to minimize the effects of water pollution. PMID:26429137

  19. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  20. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  1. Carbon, land, and water footprint accounts for the European Union: consumption, production, and displacements through international trade.

    PubMed

    Steen-Olsen, Kjartan; Weinzettel, Jan; Cranston, Gemma; Ercin, A Ertug; Hertwich, Edgar G

    2012-10-16

    A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater). PMID:23013466

  2. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  3. Predictive model for chloroform during disinfection of water for consumption, city of Montevideo.

    PubMed

    Gomez Camponovo, Mariana; Seoane Muniz, Gustavo; Rothenberg, Stephen J; Umpiérrez Vazquez, Eleuterio; Achkar Borras, Marcel

    2014-10-01

    The objective of this study was to predict chloroform formation resulting from the process of disinfecting water, particularly trihalomethane which is most frequently produced. A statistical model was used which included repeated measurements of water parameters used for monitoring water quality at 51 sites covering the municipal water system of Montevideo. Samples were taken considering different seasons from June 2009 to July 2011 in Montevideo. Total samples (n = 330) were analytically studied using the headspace-gas chromatography method coupled with mass spectrometry. Chloroform was the dependent variable and the covariables were pH, temperature, free chlorine, and total chlorine. A Tobit analysis with an unstructured correlation matrix was performed, and a significant interaction was found between pH and free chlorine for the prediction of chloroform formation. We concluded that parameters for the continuous control of water quality for consumption can be used to predict the levels of chloroform that may be present. Given the large measurement to variability found in the repeated measurements, the use of averages that include more than one season is not recommended to determine the degree of compliance with acceptable levels established by norms. PMID:24981876

  4. Factors Affecting Domestic Water Consumption in Rural Households upon Access to Improved Water Supply: Insights from the Wei River Basin, China

    PubMed Central

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J.

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education). PMID:23977190

  5. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    PubMed

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education). PMID:23977190

  6. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  7. Impact of agriculture on surface water in Ireland Part II. Prospects for the future

    NASA Astrophysics Data System (ADS)

    Sherwood, Marie

    1986-02-01

    Agricultural activity is estimated to be responsible for only 6% (8 km) of the total length (135 km) of seriously polluted river channel, but for over 30% (294 km) of the slightly or moderately polluted length (963 km) of channel recorded to date in the state. This article examines the present sources and causes of pollution from agricultural wastes, and speculates on the likely direction of future trends. The most common sources of surface water pollution are animal manures, silage effluent, runoff from land following spreading, and fertilizers.

  8. Modeling Household Water Consumption in a Hydro-Institutional System - The Case of Jordan

    NASA Astrophysics Data System (ADS)

    Klassert, C. J. A.; Gawel, E.; Klauer, B.; Sigel, K.

    2014-12-01

    Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 CM per year significantly below the absolute scarcity threshold of 500 CM, and strong population growth, especially due to the Syrian refugee crisis. This poses a severe challenge to the already strained institutions in the Jordanian water sector. The Stanford-led G8 Belmont Forum project "Integrated Analysis of Freshwater Resources Sustainability in Jordan" aims at analyzing the potential role of water sector institutions in the pursuit of a sustainable freshwater system performance. In order to do so, the project develops a coupled hydrological and agent-based model, allowing for the exploration of physical as well as socio-economic and institutional scenarios for Jordan's water sector. The part of this integrated model in focus here is the representation of household behavior in Jordan's densely populated capital Amman. Amman's piped water supply is highly intermittent, which also affects its potability. Therefore, Amman's citizens rely on various decentralized modes of supply, depending on their socio-economic characteristics. These include water storage in roof-top and basement tanks, private tanker supply, and the purchase of bottled water. Capturing this combination of centralized and decentralized supply modes is important for an adequate representation of water consumption behavior: Firstly, it will affect the impacts of supply-side and demand-side policies, such as reductions of non-revenue water (including illegal abstractions), the introduction of continuous supply, support for storage enhancements, and water tariff reforms. Secondly, it is also necessary to differentiate the impacts of any policy on the different socio-economic groups in Amman. In order to capture the above aspects of water supply, our model is based on the tiered supply curve approach, developed by Srinivasan et al. in 2011 to model a similar situation in Chennai, India

  9. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  10. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  11. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. PMID:23998504

  12. Feasibility of Using a Community-Supported Agriculture Program to Improve Fruit and Vegetable Inventories and Consumption in an Underresourced Urban Community

    PubMed Central

    Dupuis, Janae; Fish, Caitlin; D’Agostino, Ralph B.

    2013-01-01

    Introduction Direct-to-consumer marketing efforts, such as community-supported agriculture (CSA), have been proposed as a solution for disparities in fruit and vegetable consumption. Evaluations of such efforts have been limited. The objective of this study was to test the feasibility of a CSA intervention to increase household inventory of fruits and vegetables and fruit and vegetable consumption of residents of an underresourced community. Methods For this randomized, controlled feasibility study, we recruited 50 low-income women with children. Intervention (n = 25) participants were offered 5 educational sessions and a box of fresh produce for 16 weeks; control participants were not offered the sessions nor were they included in the produce delivery. We collected data on participants’ home inventory of fruits and vegetables and on their consumption of fruits and vegetables at baseline (May 2012) and postintervention (August and September 2012). Results Of 55 potential participants, 50 were enrolled and 44 were reached for follow-up. We observed a significant increase in the number of foods in the household inventory of fruits and vegetables in the intervention group compared with the control group. The intervention group reported greater increases in fruit and vegetable consumption; however, these did not reach significance. Intervention participants picked up produce 9.2 (standard deviation = 4.58) of 16 weeks; challenges included transportation and work schedules. Most participants (20 of 21) expressed interest in continued participation; all stated a willingness to pay $10 per week, and some were willing to pay as much as $25 per week. Conclusion CSA is a feasible approach for providing fresh fruits and vegetables to an underresourced community. Future studies should evaluate the impact of such a program in a larger sample and should take additional steps to facilitate participation. PMID:23948337

  13. Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model

    NASA Astrophysics Data System (ADS)

    Dong, Cong; Huang, Guohe; Tan, Qian; Cai, Yanpeng

    2014-03-01

    Water resources are fundamental for support of regional development. Effective planning can facilitate sustainable management of water resources to balance socioeconomic development and water conservation. In this research, coupled planning of water resources and agricultural land use was undertaken through the development of an inexact-stochastic programming approach. Such an inexact modeling approach was the integration of interval linear programming and chance-constraint programming methods. It was employed to successfully tackle uncertainty in the form of interval numbers and probabilistic distributions existing in water resource systems. Then it was applied to a typical regional water resource system for demonstrating its applicability and validity through generating efficient system solutions. Based on the process of modeling formulation and result analysis, the developed model could be used for helping identify optimal water resource utilization patterns and the corresponding agricultural land-use schemes in three sub-regions. Furthermore, a number of decision alternatives were generated under multiple water-supply conditions, which could help decision makers identify desired management policies.

  14. Relative Contributions of Habitat and Water Quality to the Integrity of Fish Communities in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of agricultural drainage ditches focuses on removing water from agricultural fields and ignores the potential impacts of these hydrological and geomorphological modifications on the water quality and aquatic biota. There is a need to identify methods of incorporating environmental conside...

  15. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  16. Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier.

    PubMed

    Bell, Andrew Reid; Lemos, Maria Carmen; Scavia, Donald

    2010-11-15

    In the Amazonian agricultural frontier, pasture for cattle ranching is an important and potentially hazardous form of land use because of sediment erosion as pastures degrade. This relationship between ranching, sediment load, and water quality is likely to further exacerbate environmental impacts, particularly in the context of climate change. We examine the role that river basin councils (RBCs) - a water governance option of Brazil's 1997 National Water Act - might play in managing this nonpoint-source pollution in the Amazônian state of Rondônia. We implement a simple coupled rancher-water system model to compare two potential governance options: a bulk water cleanup charge (BWC) implemented by RBCs and a land-use fine (LUF) for failing to maintain riparian buffers. We find no significant advantage of BWC over LUF in reducing sediment loading while keeping ranching profitable, under a changing climate. We also fail to find in Rondônia the important stake in water issues that has driven water reform elsewhere in Brazil. Moreover, the comparative success of reforestation programs suggests these programs may, in fact, have the potential to manage nonpoint-source agricultural pollution in the region. PMID:20961050

  17. Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins.

    PubMed

    Partyka, Melissa L; Bond, Ronald F; Chase, Jennifer A; Kiger, Luana; Atwill, Edward R

    2016-03-01

    Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins. PMID:27065413

  18. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    NASA Astrophysics Data System (ADS)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  19. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley

    NASA Astrophysics Data System (ADS)

    Harrison, John; Matson, Pamela

    2003-09-01

    Although nitrous oxide (N2O) emission from agricultural runoff is thought to constitute a globally important source of this greenhouse gas, N2O flux from polluted aquatic systems is poorly understood and scarcely reported, especially in low-latitude (0°-30°) regions where rapid agricultural intensification is occurring. We measured N2O emissions, dissolved N2O concentrations, and factors likely to control rates of N2O production in drainage canals receiving agricultural and mixed agricultural/urban inputs from the intensively farmed Yaqui Valley of Sonora, Mexico. Average per-area N2O flux in both purely agricultural and mixed urban/agricultural drainage systems (16.5 ng N2O-N cm-2 hr-1) was high compared to other fresh water fluxes, and extreme values ranged up to 244.6 ng N2O-N cm-2 hr-1. These extremely high N2O fluxes occurred during green algae blooms, when organic carbon, nitrogen, and oxygen concentrations were high, and only in canals receiving pig-farm and urban inputs, suggesting an important link between land-use and N2O emissions. N2O concentrations and fluxes correlated significantly with water column concentrations of nitrate, particulate organic carbon and nitrogen, ammonium, and chlorophyll a, and a multiple linear regression model including ammonium, dissolved organic carbon, and particulate organic carbon was the best predictor of [N2O] (r2 = 52%). Despite high per-area N2O fluxes, our estimate of regional N2O emission from surface drainage (20,869 kg N2O-N yr-1; 0.046% of N-fertilizer inputs) was low compared to values predicted by algorithms used in global budgets.

  20. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  1. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    PubMed

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  2. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    PubMed Central

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  3. Modelling the economic consequences of the EU Water Framework Directive for Dutch agriculture.

    PubMed

    Helming, John; Reinhard, Stijn

    2009-10-01

    The EU Water Framework Directive (WFD) requires member states to take measures to ensure that bodies of water will be in good chemical and ecological condition by 2015. Important measures to achieve this goal include reducing emissions of nitrogen (N) and phosphate (P(2)O(5)) from manure and mineral fertilizers into the environment. In regions with a high livestock density, this measure is expected to affect agricultural production and income. To quantify these effects, an environmental economic model is required that can assess alternatives capable of reducing N and P(2)O(5) potential emissions to water. In this paper, we develop a model that is capable of analysing changes in potential emissions to water of N and P(2)O(5) and apply it to the Netherlands, a country with large nutrient emissions. Compared to a 2015 reference scenario based on current efforts to reduce nutrient emissions, we found that the WFD measures will increase regional transport and export of manure and reduce the number of animals in the Netherlands. Fodder adjustments (defined as lower N and P(2)O(5) input in purchased fodder) to decrease nutrient excretion in manure were a less attractive option than amongst others export, transportation of manure to another region, land use changes or reduction of the number of livestock. Compared to the reference scenario in 2015, total agricultural income will decrease by about 81.5 million euros per year (about 49 euros /ha per year), although the effects will differ among parts of the Netherlands and agricultural sectors. The average predicted decrease in N emissions from agricultural sites, vulnerable to leaching into bodies of water will be almost 20% or approximately 14.7 kg N/ha per year. The reduction in N emissions to air from animal sheds, manure storage systems, application of animal manure and mineral fertilisers to the crops and grazing animals equals 6.5% or 5 kg ammonia (NH(3)) per hectare. PMID:19716645

  4. Dissolved Organic Carbon as a Drinking Water Constituent of Concern in California Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Bachand, P. A.; Deverel, S.; Kendall, C.

    2007-12-01

    Dissolved organic carbon (DOC) from the breakdown of plant and animal material is a concern for drinking water quality in California due to the potential formation of carcinogenic byproducts during disinfection. Agricultural DOC loading to surface water is a significant concern, but the sources and reactivity in agricultural runoff remains poorly understood. Here we present data on DOC dynamics in surface water from the Willow Slough watershed, a 425\\- km2 agricultural catchment in the Sacramento Valley, California. Samples collected weekly during 2006 and 2007 were analyzed for DOC concentration, optical properties (UV absorbance and fluorescence), 13C\\- DOC isotopes, and trihalomethane formation potential (a regulated disinfection byproduct formed during chlorination). DOC concentrations at the watershed mouth ranged from 2 to 4 mg/L during winter and spring, with a clear increase in DOC concentrations to more than 7 mg L following the onset of summer irrigation. The 13C\\- DOC values revealed a large range (-19 to -27 ‰), with lowest values during winter baseflow and higher values during summer and winter storms. Spectral slopes also varied seasonally (0.012 to 0.020), with steeper slopes during winter baseflow. Both isotopic and optical data provide evidence for algal\\- derived DOC during the winter baseflow and terrestrial sources during winter storms and summer irrigation. Total THM formation potential was higher in winter than summer, and is strongly correlated to DOC concentrations in surface waters (r2 = 0.87). In contrast to the total THM formation potential, the specific THM formation potential (e.g., total THM normalized to DOC) decreased during the summer irrigation season, suggesting a change in reactivity related to DOC source or degradation. Additional data from plant leachates and ground water will be discussed, as well as the implications of watershed management on DOC dynamics and reactivity in agriculturally-dominated landscapes.

  5. Land-use change affects water recycling in Brazil's last agricultural frontier.

    PubMed

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system. PMID:27028754

  6. Water governance, agricultural development and community-level resilience to climate change

    NASA Astrophysics Data System (ADS)

    Evans, T.; Cox, M.; McCord, P.; Caylor, K. K.; Washington-Ottombre, C.; Soderberg, K.; Sadri, S.

    2012-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial research focuses on agricultural decision-making and practices to assess current and future demand for water based on crop types and irrigation practices. Equally important is the role of environmental governance as expressed through institutions which, in case the case of water systems, are the rules implemented to allocate water resources across different user groups. In water-limited environments, institutions play a critical role in addressing the challenges posed by water demand exceeding water supply. A pressing global concern is whether institutions that evolved over the last several decades are well suited to meet potential future water demands in the context of climate change and increasing rates of water abstraction. A related question is whether social and cultural conditions enable adaptive governance that can modify institutions to different water availability scenarios. In order to assess cross-scale resilience of households and communities reliant on irrigated agriculture to climate change, methodological tools are needed to characterize these issues of "institutional fit" and institutional change. We have developed a framework for characterizing institutional dynamics as a platform for the cross-site analysis of human-water governance. To demonstrate the utility of this framework we present a coding process applying this framework to irrigation schemes in Kenya. We present findings from research on rural agriculturalists in Kenya investigating irrigation practices and institutions designed to allocate water across communities. Initial indications are that current institutional regimes are suitable for current hydrological

  7. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.

    2016-08-01

    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.

  8. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  9. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    NASA Astrophysics Data System (ADS)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-05-01

    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  10. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    USGS Publications Warehouse

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  11. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014

    PubMed Central

    Makonin, Stephen; Ellert, Bradley; Bajić, Ivan V.; Popowich, Fred

    2016-01-01

    With the cost of consuming resources increasing (both economically and ecologically), homeowners need to find ways to curb consumption. The Almanac of Minutely Power dataset Version 2 (AMPds2) has been released to help computational sustainability researchers, power and energy engineers, building scientists and technologists, utility companies, and eco-feedback researchers test their models, systems, algorithms, or prototypes on real house data. In the vast majority of cases, real-world datasets lead to more accurate models and algorithms. AMPds2 is the first dataset to capture all three main types of consumption (electricity, water, and natural gas) over a long period of time (2 years) and provide 11 measurement characteristics for electricity. No other such datasets from Canada exist. Each meter has 730 days of captured data. We also include environmental and utility billing data for cost analysis. AMPds2 data has been pre-cleaned to provide for consistent and comparable accuracy results amongst different researchers and machine learning algorithms. PMID:27271937

  12. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014.

    PubMed

    Makonin, Stephen; Ellert, Bradley; Bajić, Ivan V; Popowich, Fred

    2016-01-01

    With the cost of consuming resources increasing (both economically and ecologically), homeowners need to find ways to curb consumption. The Almanac of Minutely Power dataset Version 2 (AMPds2) has been released to help computational sustainability researchers, power and energy engineers, building scientists and technologists, utility companies, and eco-feedback researchers test their models, systems, algorithms, or prototypes on real house data. In the vast majority of cases, real-world datasets lead to more accurate models and algorithms. AMPds2 is the first dataset to capture all three main types of consumption (electricity, water, and natural gas) over a long period of time (2 years) and provide 11 measurement characteristics for electricity. No other such datasets from Canada exist. Each meter has 730 days of captured data. We also include environmental and utility billing data for cost analysis. AMPds2 data has been pre-cleaned to provide for consistent and comparable accuracy results amongst different researchers and machine learning algorithms. PMID:27271937

  13. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  14. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  15. Irrigation Water Supply and Management in the Central High Plains: Can Agriculture Compete for a Limited Resource?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The era of expanding irrigated agriculture in the central high plains has come to an end, and we are likely entering a period of contraction. Contraction has begun in Colorado where the state estimates that current consumptive use exceeds sustainable supplies by about 10%. Groundwater pumping has ...

  16. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    NASA Astrophysics Data System (ADS)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  17. Estimated demand for agricultural water for irrigation use in New Jersey, 1990

    USGS Publications Warehouse

    Titus, E.O.; Clawges, R.M.; Qualls, C.L.

    1990-01-01

    As part of an effort to determine if an adequate supply of agricultural water for irrigation use will be available to farmers, the U.S. Geological Survey prepared preliminary estimates of demand for agricultural water for irrigation use for the year 1990 on the basis of six possible scenarios. These scenarios incorporate normal and drought climatic conditions and three alternative estimates of the total acreage of farmland that may be irrigated in 1990. Preliminary estimates of water demand based on soil-moisture deficits were made using methods for calculating climatic water budgets. These estimates ranged from 3.0 billion gal/growing season (May through September), under normal climatic conditions and a 2% annual decline in irrigated acreage since 1984, to 28. 9 billion gal/growing season, under drought conditions and a 2% annual increase in irrigated acreage since 1984. Preliminary estimates of water demand made for the 1986 growing season reasonably approximate reported water use for that period. (USGS)

  18. Water flowing north of the border: export agriculture and water politics in a rural community in Baja California.

    PubMed

    Zlolniski, Christian

    2011-01-01

    Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right. PMID:22171411

  19. Water and energy footprint of irrigated agriculture in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  20. Consumption of blood, renal function and utilization of free water by the vampire bat, Desmodus rotundus.

    PubMed

    Busch, C

    1988-01-01

    1. Captive vampires consume blood to an average of 59.5% of their body weight in a period no longer than 30 min. 2. Fluid consumption by the vampire is mainly dependent on the presence of plasma in fluid. 3. Ingestion of blood is accompanied and followed by diuresis, urine flow attained a peak 20-25 min after feeding. 4. Urine osmolality increased with time after feeding. Vampires concentrate urea in urine to 2630 mmol/l but cannot concentrate electrolytes beyond 453 mmol/l. 5. Inorganic salts other than sodium chloride never contribute more than 9% to the total osmotic activity. 6. Na to Cl ratio and concentration of non-nitrogenous organic acids increase with urine osmolality. 7. Vampires drink free water if available. PMID:2900098

  1. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re

  2. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  3. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  4. Assessment of suspended matter transport in a large agricultural catchment using the MOHID water modelling system

    NASA Astrophysics Data System (ADS)

    David, Bailly; David, Brito; Chantha, Oeurng; Ramiro, Neves; Sabine, Sauvage; Sánchez-Pérez, José-Miguel

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for impaired water quality, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, metals and other adsorbed toxic substances). The dynamic of pollutants adsorbed on sediment and associated with particulate organic carbon, from land areas into stream network arises mainly from erosion and sedimentation processes. It is known that up to 90% of suspended sediment is transported during flood event and therefore quick flood events have a major impact on pollutant transport. This study - part of the EU AguaFlash (http://www.aguaflash-sudoe.eu/) project - examined and quantified suspended sediment dynamics from catchment to river (erosion, transport, deposition on hillside and in the river). Semi-distributed, physics-based watershed or reservoir models are generally used to simulate sediment dynamics. One of the limitations of this kind of modelling is that transport along agricultural field and the possibility of deposition of suspended sediments in hillslopes are not considered. Consequently, all sediments eroded are assumed to be accumulated in the river and the sediment and associated pollutant dynamics are over- or under-estimated. In our approach, the mechanistic physics-based water modelling system MOHID (http://www.mohid.com) was used to quantify soil erosion and sediment transport processes at the local and macroscopic scale. This paper present the erosion and transport mathematical model and modelling strategy used and compares our initial results with filed data obtained on an 1100 km² intensive agricultural catchment (Save catchment, South-west France) during 2007-2009 and with simulation data produced using SWAT (Soil and Water Assessment Tool, 2005 version). The contribution of the MOHID model compared with that of the semi-distributed SWAT model is discussed. Keywords: Erosion, suspended sediment, transport

  5. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John

    Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydrological functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity ( WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage capacity) can help differentiate storage-type-RWH systems from “conventional dams”. The Agricultural Production Simulator Model (APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m -3 up to 2.3 kg m -3 on average) by mitigating ISDS.

  6. Estimated water withdrawals, water use, and water consumption in Illinois, Indiana, Iowa, Kentucky, Michigan, Missouri, and Wisconsin, 1950-95

    USGS Publications Warehouse

    Kay, Robert T.

    2002-01-01

    From 1950 through 1995, the U.S. Geological Survey tabulated water withdrawals throughout the United States, including the northcentral States of Illinois, Indiana, Iowa, Kentucky, Michigan, Missouri, and Wisconsin. During this period, total water withdrawals increased in each of the north-central States by at least a factor of two. Illinois led the north-central States in total withdrawals, withdrawals from surface water and, typically, withdrawals from ground water. Per capita withdrawals were largest in Indiana or Illinois, however, the disparity in per capita withdrawals in the north-central States decreased from 1950 through 1995. Surface water was the source of 75 to 95 percent of all water withdrawals in the north-central States and consistently accounted for over 90 percent of total withdrawals in Illinois. From 1950 through 1995, the magnitude of increase in withdrawals from surface water was lower in Illinois than in most of the other north-central States, even though surface-water withdrawals in Illinois increased from about 9,000 to 19,000 million gallons per day. Total water withdrawals from ground water in Illinois have decreased by about 150 million gallons per day since 1975. From 1950 through 1995, from 68 to 86 percent of the total water withdrawals in Illinois were for generation of thermoelectric power; this percentage is higher than for the other north-central States and has increased since 1970. Approximately 12 percent of water withdrawals in Illinois are for municipal water supply, which was consistent with the other north-central States. Ten percent or less of the water withdrawn in the north-central States is estimated to have been consumed.

  7. Design and merit of a river-aquifer model for optimal use of agricultural water

    NASA Astrophysics Data System (ADS)

    Morel-seytoux, H. J.; Daly, C. J.; Illangasekare, T.; Bazaraa, A.

    1981-05-01

    A stream-aquifer model was needed to assess the impact of alternate strategies of management for maximum beneficial agricultural use of water. The design of the model is discussed in detail in this paper. The design of a model specific to a particular area of the South Platte river basin in eastern Colorado was complex. The complexity resulted from the size of the system, from the need to simulate the system both at an operational time scale (week) and at a long-term planning horizon (10 yr.) and from the administration of a complicated water rights structure.

  8. Stochastic and recursive calibration for operational, large-scale, agricultural land and water use management models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Kimball, J. S.; Jencso, K. G.

    2015-12-01

    Managing the impact of climatic cycles on agricultural production, on land allocation, and on the state of active and projected water sources is challenging. This is because in addition to the uncertainties associated with climate projections, it is difficult to anticipate how farmers will respond to climatic change or to economic and policy incentives. Some sophisticated decision support systems available to water managers consider farmers' adaptive behavior but they are data intensive and difficult to apply operationally over large regions. Satellite-based observational technologies, in conjunction with models and assimilation methods, create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents at seasonal scales.We present an integrated modeling framework that can be driven by satellite remote sensing to enable robust regional assessment and prediction of climatic and policy impacts on agricultural production, water resources, and management decisions. The core of this framework is a widely used model of agricultural production and resource allocation adapted to be used in conjunction with remote sensing inputs to quantify the amount of land and water farmers allocate for each crop they choose to grow on a seasonal basis in response to reduced or enhanced access to water due to climatic or policy restrictions. A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration as a proxy for water use that can be estimated from high spatial resolution satellite remote sensing. The data assimilation framework blends new and old information to avoid over-calibration to the specific conditions of a single year and permits the updating of parameters to track gradual changes in the agricultural system.This integrated framework provides an operational means of monitoring and forecasting what crops will be grown

  9. Calculation: Values and Consumption Rates of Locally Produced Food and Tap Water for the Receptor of Interest

    SciTech Connect

    J. Bland

    2000-07-31

    This calculation produces standard statistical data on the consumption of locally produced food and tap water. The results of this calculation provide input parameters for the GENII-S (Leigh et al. 1993) computer code to support calculation of Biosphere Dose Conversion Factors (BDCF) for the nominal performance (groundwater contamination) scenario and the volcanic eruption (contamination of soil by volcanic ash deposition) scenario. The requirement and parameters for these data are identified in ''Identification Of The Critical Group (Consumption Of Locally Produced Food And Tap Water)'' (CRWMS M&O 2000a). This calculation is performed in accordance with the ''Development Plan for Calculation: Values and Consumption Rates of Locally Produced Food and Tap Water for the Receptor of Interest'' (CRWMS M&O 2000b).

  10. Determining behavioral factors for interventions to increase safe water consumption: a cross-sectional field study in rural Ethiopia.

    PubMed

    Huber, Alexandra Claudia; Mosler, Hans-Joachim

    2013-01-01

    In developing countries, the lack of safe water options leads to many health risks. In the Ethiopian Rift Valley, most water sources are contaminated with an excess of fluoride. The consumption of fluoride-contaminated water leads to dental and skeletal fluorosis. The article presents an approach to designing community interventions based on evidence from quantitative data. After installing a community filter, a baseline study was conducted in 211 households to survey the acceptance and usage of the filter. To identify important psychological factors that lead to health behavior change, the Risk, Attitude, Norm, Ability, Self-regulation (RANAS) model was taken into account. Descriptive statistics were calculated for behavioral determinants, and their influence on consumption was analyzed with a linear regression. For every behavioral factor, an intervention potential (IP) was calculated. It was found that perceived distance, factual knowledge, commitment, and taste strongly influenced participants' consumption behavior and therefore should be tackled for interventions. PMID:22775759

  11. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  12. Analysis of the research and development effort in the private sector to reduce energy consumption in irrigated agriculture

    SciTech Connect

    Rogers, E.A.; Cone, B.W.

    1980-09-01

    Manufacturers of irrigation equipment perform research and development in an effort to improve or maintain their position in a very competitive market. The market forces and conditions that create the intense competition and provide incentive for invention are described. Particular emphasis is placed on the market force of increased energy costs, but the analysis is developed from the perspective that energy is but one of many inputs to agricultural production. The analysis is based upon published literature, patent activity profiles, microeconomic theory, and conversations with many representatives of the irrigation industry. The published literature provides an understanding of the historical development of irrigation technology, a description of the industry's structure, and various data, which were important for the quantitative analyses. The patent activity profiles, obtained from the US Patent Office, provided details of patent activity within the irrigation industry over the past decade. Microeconomic theory was used to estimate industry-wide research and development expenditures on energy-conserving products. The results of these analyses were then compared with the insights gained from conversations with the industry representatives.

  13. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000

    PubMed Central

    Haberl, Helmut; Kastner, Thomas; Schaffartzik, Anke; Ludwiczek, Nikolaus; Erb, Karl-Heinz

    2012-01-01

    Global trade of biomass-related products is growing exponentially, resulting in increasing ‘teleconnections’ between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The ‘embodied human appropriation of NPP’ (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism. PMID:23576842

  14. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  15. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  16. An appraisal of policies and institutional frameworks impacting on smallholder agricultural water management in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nyagumbo, I.; Rurinda, J.

    Policies and institutional frameworks associated with and / or impacting on agricultural water management (AWM) in smallholder farming systems in Zimbabwe were analyzed through literature reviews, feedback from stakeholder workshops, key informant interviews and evaluation of policy impacts on implemented case study projects/programmes. The study showed that Zimbabwe has gone a long way towards developing a water management policy addressing both equity and access, through the Water and ZINWA of 1998. However, lack of incentives for improving efficient management and utilization of water resources once water has reached the farm gate was apparent, apart from punitive economic instruments levied on usage of increased volumes of water. For example, the new water reforms of 1998 penalized water savers through loss of any unused water in their permits to other users. In addition, the ability of smallholder farmers to access water for irrigation or other purposes was influenced by macro and micro-economic policies such as Economic Structural and Adjustment Programme (ESAP), Zimbabwe Programme for Economic and Social Transformation (ZIMPREST), prevailing monetary and fiscal policies, as well as the Land and Agrarian Reform policies. For instance, the implementation of ESAP from 1991 to 95 resulted in a decline in government support to management of communal irrigation schemes, and as a result only gravity-fed schemes survived. Also AWM projects/programmes that were in progress were prematurely terminated. While considerable emphasis was placed on rehabilitation of irrigation infrastructure since the fast track land reform in 1998, the policies remained rather silent on strategies for water management in rainfed systems. The piecemeal nature and fragmentation of policies and institutional frameworks scattered across government ministries and sectors were complex and created difficulties for smallholder farmers to access water resources. Poor policy implementation

  17. Hydrogeology and potential effects of changes in water use, Carson Desert agricultural area, Churchill County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.

    1996-01-01

    Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.

  18. Analysis of Household Electricity Consumption Patterns and Economy of Water Heating Shifting and Saving Bulbs

    NASA Astrophysics Data System (ADS)

    Rosin, Argo; Moller, Taavi; Lehtla, Madis; Hoimoja, Hardi

    2010-01-01

    This article analyses household electricity consumption based on an object in Estonia. Energy consumption of workday and holiday by loads (including high and low tariff energy consumption) is discussed. The final part describes the evaluation of profitability of common investments of consumption shifting and replacing inefficient devices with more efficient ones. Additionally it describes shifting problems and shifting equipment profitability in real-time tariff system.

  19. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea.

    PubMed

    Lee, Sunggyu; Jeong, Woochang; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2016-10-15

    Organophosphate flame retardants (OPFRs) have been widely used as flame retardants and plasticizers in commercial products. Limited data are available on the occurrence and exposure of OPFRs via drinking water consumption. In this study, 127 drinking water samples were collected from tap water, purified water (tap water that is passed through in-house filters) and bottled water from major cities in Korea in 2014. The total concentrations of OPFRs (ΣOPFR) in all of the samples ranged from below the method detection limit (MDL) to 1660 (median: 48.7) ng/L. The predominant OPFR compounds in drinking water were tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroethyl) phosphate (TCPP), and tris(2-butoxyethyl) phosphate (TBEP). Significant differences were observed in the levels of TCPP, TBEP and ΣOPFR among various types of drinking water. TCPP is introduced in the drinking water during the water purification process. Regional differences existed in the levels and patterns of OPFRs in water samples, which indicated the existence of diverse sources of these contaminants. Purified water was a significant contributor to the total OPFR intake by humans. The estimated daily intake of OPFRs was lower than the tentative oral reference dose (RfD) values. In comparison with exposure of OPFRs via dust ingestion, water consumption was a significant source of chlorinated PFRs (99% for TCEP and 34% for TCPP to the total intakes) for Koreans. PMID:27450356

  20. The challenge of climate change in Spain: Water resources, agriculture and land

    NASA Astrophysics Data System (ADS)

    Vargas-Amelin, Elisa; Pindado, Pablo

    2014-10-01

    Climate change effects are becoming evident worldwide, but some water scarce regions present higher vulnerability. Spain, located in the Mediterranean region, is expected for instance to be highly vulnerable given its unbalanced distribution between water resources availability and existing demands. This article presents an introduction to the main threats of climate change mainly on water resources, but it also assesses effects in interlinked areas such as agriculture, soil and land management. Contents focus on measures and initiatives promoted by the central government and address efforts to establish multi-sectoral coordinating bodies, specific adaptation plans and measures for the different sectors. The article highlights some political aspects, such as the complexity of involved competent authorities in water and land management, the need to strengthen public participation and the conflicts arising from the defence of regional interests. It also makes a link to current EU policies; summarises foreseeable problems derived from climate change effects, and provides some recommendations in the different areas covered.

  1. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  2. Water consumption increases weight loss during a hypocaloric diet intervention in middle-aged and older adults.

    PubMed

    Dennis, Elizabeth A; Dengo, Ana Laura; Comber, Dana L; Flack, Kyle D; Savla, Jyoti; Davy, Kevin P; Davy, Brenda M

    2010-02-01

    Water consumption acutely reduces meal energy intake (EI) among middle-aged and older adults. Our objectives were to determine if premeal water consumption facilitates weight loss among overweight/obese middle-aged and older adults, and to determine if the ability of premeal water consumption to reduce meal EI is sustained after a 12-week period of increased water consumption. Adults (n = 48; 55-75 years, BMI 25-40 kg/m(2)) were assigned to one of two groups: (i) hypocaloric diet + 500 ml water prior to each daily meal (water group), or (ii) hypocaloric diet alone (nonwater group). At baseline and week 12, each participant underwent two ad libitum test meals: (i) no preload (NP), and (ii) 500 ml water preload (WP). Meal EI was assessed at each test meal and body weight was assessed weekly for 12 weeks. Weight loss was ~2 kg greater in the water group than in the nonwater group, and the water group (beta = -0.87, P < 0.001) showed a 44% greater decline in weight over the 12 weeks than the nonwater group (beta = -0.60, P < 0.001). Test meal EI was lower in the WP than NP condition at baseline, but not at week 12 (baseline: WP 498 +/- 25 kcal, NP 541 +/- 27 kcal, P = 0.009; 12-week: WP 480 +/- 25 kcal, NP 506 +/- 25 kcal, P = 0.069). Thus, when combined with a hypocaloric diet, consuming 500 ml water prior to each main meal leads to greater weight loss than a hypocaloric diet alone in middle-aged and older adults. This may be due in part to an acute reductio