Science.gov

Sample records for agricultural water demands

  1. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  2. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  3. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  4. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  5. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  6. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  7. An integrated stochastic approach to the assessment of agricultural water demand and adaptation to water scarcity

    NASA Astrophysics Data System (ADS)

    Foster, T.; Butler, A. P.; McIntyre, N.

    2012-12-01

    Increasing water demands from growing populations coupled with changing water availability, for example due to climate change, are likely to increase water scarcity. Agriculture will be exposed to risk due to the importance of reliable water supplies as an input to crop production. To assess the efficiency of agricultural adaptation options requires a sound understanding of the relationship between crop growth and water application. However, most water resource planning models quantify agricultural water demand using highly simplified, temporally lumped estimated crop-water production functions (CWPFs). Such CWPFs fail to capture the biophysical complexities in crop-water relations and mischaracterise farmers ability to respond to water scarcity. Application of these models in policy analyses will be ineffective and may lead to unsustainable water policies. Crop simulation models provide an alternative means of defining the complex nature of the CWPF. Here we develop a daily water-limited crop model for this purpose. The model is based on the approach used in the FAO's AquaCrop model, balancing biophysical and computational complexities. We further develop the model by incorporating improved simulation routines to calculate the distribution of water through the soil profile. Consequently we obtain a more realistic representation of the soil water balance with concurrent improvements in the prediction of water-limited yield. We introduce a methodology to utilise this model for the generation of stochastic crop-water production functions (SCWPFs). This is achieved by running the model iteratively with both time series of climatic data and variable quantities of irrigation water, employing a realistic rule-based approach to farm irrigation scheduling. This methodology improves the representation of potential crop yields, capturing both the variable effects of water deficits on crop yield and the stochastic nature of the CWPF due to climatic variability. Application to

  8. Price elasticity reconsidered: Panel estimation of an agricultural water demand function

    NASA Astrophysics Data System (ADS)

    Schoengold, Karina; Sunding, David L.; Moreno, Georgina

    2006-09-01

    Using panel data from a period of water rate reform, this paper estimates the price elasticity of irrigation water demand. Price elasticity is decomposed into the direct effect of water management and the indirect effect of water price on choice of output and irrigation technology. The model is estimated using an instrumental variables strategy to account for the endogeneity of technology and output choices in the water demand equation. Estimation results indicate that the price elasticity of agricultural water demand is -0.79, which is greater than that found in previous studies.

  9. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  10. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  11. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  12. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  13. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  14. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  15. Dew as an Adaptation Measure to Meet Agricultural and Reforestation Water Demand in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Tomaszkiewicz, Marlene; Abou Najm, Majdi; Alameddine, Ibrahim; El Fadel, Mutasem

    2014-05-01

    Dew harvesting, believed to be an ancient technique, has recently re-emerged as a viable and sustainable water resource. Nightly yields are relatively low, yet non-negligible, and dew events occur more frequently than rainfall promoting its effectiveness, particularly in arid and semi-arid regions. In this study, we demonstrate how dew can be harvested and subsequently used for small-scale irrigation to meet agricultural and reforestation water demand. Polyethylene dew harvesting systems were constructed and placed in the field. Dew was harvested as a result of the radiative cooling during the night, thus allowing dew formation under conditions of high humidity. Condensed dew formed upon the planar surface was collected by gravity. Water demand for selected crops and trees within a pilot study area (Lebanon) was estimated using a deficit irrigation model. Simulations of water demand requirements of various plants and surfaces were performed and compared to dew volumes to assess the ability of the system to meet all or in part the plant water demands across seasons. Data from the polyethylene low-cost dew condensers have shown that within the pilot study, average nightly dew yields were 0.1 L m-2 of condensing surface with a maximum yield of 0.4 L m-2. Dew events occurred generally more frequently than precipitation events, with an estimated 40% of nights producing dew condensate. This translates to 50 mm of equivalent rainfall on average (during dew nights), with a maximum of 200 mm in one night, if one assumes using drip irrigation over a seedling within a 20 cm2 area. Using a simple deficit irrigation model, it was demonstrated that crops such as the tomato plant, which typically has a growing season during the dry summer, can potentially be irrigated solely by dew, thus eliminating the need for traditional irrigation sources. Similarly, young tree seedlings, such as the cedar tree, can depend upon dew as a primary water resource. Moreover, based on similar

  16. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Shen, Yanjun

    2016-09-01

    The water resources in the arid region of northwestern China, which are impacted by climate change, tend to be more unstable, and the environment and ecosystems will suffer from severe water shortage. In this paper, potential future climate trends were predicted based on CMIP5 simulations in this region. The water availability and agricultural water demand under future climate change scenarios were estimated. Impacted by increases in temperature, the irrigation water demand will increase by 4.27-6.15 billion m3 in this region over the next 60 years, compared to the demand of 32.75 billion m3 during 1971-2000. However, the annual runoff will only increase by 4.8-8.5 billion m3, which is equivalent to or even less than the increased irrigation water demand. In fact, the increased demand for industrial, domestic and ecological water were not considered here. Thus, the water supply/demand contradiction will result in more severe water shortages in the future. According to a comparison with simulated irrigation water demand under three adaptation strategy scenarios, we should take effective measures such as improving the efficiency of irrigation water utilization, reducing crop planting areas and adjusting crop planting structures to alleviate the impacts of future climate changes and human activities on the water supply and water use in this region.

  17. Future agricultural water demand under climate change: regional variability and uncertainties arising from CMIP5 climate projections

    NASA Astrophysics Data System (ADS)

    Schewe, J.; Wada, Y.; Wisser, D.

    2012-12-01

    The agricultural sector (irrigation and livestock) uses by far the largest amount of water among all sectors and is responsible for 70% of the global water withdrawal. At a country scale, irrigation water withdrawal often exceeds 90% of the total water used in many of emerging and developing countries such as India, Pakistan, Iran and Mexico, sustaining much of food production and the livelihood of millions of people. The livestock sector generally accounts less than 1-2% of total water withdrawal, yet exceeds 10-30% of the total water used in many of the African countries. Future agricultural water demand is, however, subject to large uncertainties due to anticipated climate change, i.e. warming temperature and changing precipitation variability, in various regions of the world. Here, we use a global hydrological and water resources model to quantify the impact of climate change on regional irrigation and livestock water demand, and the resulting uncertainties arsing from newly available CMIP5 climate projections obtained through Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; http://www.isi-mip.org/). Irrigation water requirement per unit crop area is estimated by simulating daily soil water balance with crop-related data. Livestock water demand is calculated by combining livestock densities with their drinking water requirements that is a function of air temperature. The results of the ensemble mean show that global irrigation and livestock water demand increased by ~6% and ~12% by 2050 respectively primarily due to higher evaporative demand as a result of increased temperature. At a regional scale, agricultural water demand decreased over some parts of Europe (e.g., Italy, Germany) and Southeast Asia (e.g., the Philippines, Malaysia), but increased over South Asia, the U.S., the Middle East and Africa. However, the projections are highly uncertain over many parts of the world. The results of the ensemble projections in agricultural water demand

  18. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010.

    PubMed

    Drastig, Katrin; Prochnow, Annette; Libra, Judy; Koch, Hagen; Rolinski, Susanne

    2016-11-01

    Irrigation water demand (IWD) is increasing worldwide, including in regions such as Germany that are characterized with low precipitation levels, yet grow water-demanding crops such as sugar beets, potatoes, and vegetables. This study aimed to calculate and analyze the spatial and temporal changes in the IWD of four crops-spring barley, oat, winter wheat, and potato-between 1902 and 2010 in Germany by using the modeling software AgroHyd Farmmodel. Climatic conditions in Germany continued to change over the investigation period, with an increase in temperature of 0.01K/yr and an increase in precipitation of 1mm/yr. Nevertheless, no significant increasing or decreasing trend in IWD was noted in the analysis. The IWD for the investigated crops in the area of the current "Federal Republic of Germany" over the 109years was 112mm/yr, varying between 100 and 127mm/yr. Changes in cropping pattern and cultivated area over the last century caused large differences in the IWD calculated for each administrative district. The mean annual IWD of over the study period (which was divided into 4 parts) varied between 13,455Mm(3)/yr in the earliest period (1902-1919) and 4717Mm(3)/yr in the latest period (1990-2010). Policy and management measures to adapt to climate change are currently being debated in Germany. The presented results suggest that the effects of the choice of crops (in this case, changes in cropping pattern in the German nation states) had a stronger influence on regional water resources than those of climate variability. Thus, the influence of climate change on water resources is relativized which brings an important input into the debate.

  19. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010.

    PubMed

    Drastig, Katrin; Prochnow, Annette; Libra, Judy; Koch, Hagen; Rolinski, Susanne

    2016-11-01

    Irrigation water demand (IWD) is increasing worldwide, including in regions such as Germany that are characterized with low precipitation levels, yet grow water-demanding crops such as sugar beets, potatoes, and vegetables. This study aimed to calculate and analyze the spatial and temporal changes in the IWD of four crops-spring barley, oat, winter wheat, and potato-between 1902 and 2010 in Germany by using the modeling software AgroHyd Farmmodel. Climatic conditions in Germany continued to change over the investigation period, with an increase in temperature of 0.01K/yr and an increase in precipitation of 1mm/yr. Nevertheless, no significant increasing or decreasing trend in IWD was noted in the analysis. The IWD for the investigated crops in the area of the current "Federal Republic of Germany" over the 109years was 112mm/yr, varying between 100 and 127mm/yr. Changes in cropping pattern and cultivated area over the last century caused large differences in the IWD calculated for each administrative district. The mean annual IWD of over the study period (which was divided into 4 parts) varied between 13,455Mm(3)/yr in the earliest period (1902-1919) and 4717Mm(3)/yr in the latest period (1990-2010). Policy and management measures to adapt to climate change are currently being debated in Germany. The presented results suggest that the effects of the choice of crops (in this case, changes in cropping pattern in the German nation states) had a stronger influence on regional water resources than those of climate variability. Thus, the influence of climate change on water resources is relativized which brings an important input into the debate. PMID:27395071

  20. MAJOR AGRICULTURAL MIGRANT LABOR DEMAND AREAS.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC.

    DEPICTED ARE 12 CHARTS OF MAJOR CROP PRODUCTION CENTERS IN THE UNITED STATES WHICH DEMAND THE LABOR OF MIGRATORY FARM WORKERS THROUGHOUT THE YEAR. EACH CHART ILLUSTRATES THE AREAS OF AGRICULTURAL MIGRANT LABOR DEMAND FOR ONE MONTH OF THE YEAR. THE PURPOSE IS TO ACQUAINT THE PUBLIC WITH THE COMPLEXITY OF PLACING AND SCHEDULING MIGRATORY WORKERS…

  1. Application of stakeholder-based and modelling approaches for supporting robust adaptation decision making under future climatic uncertainty and changing urban-agricultural water demand

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David

    2016-04-01

    Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing

  2. Agricultural Irrigation Demand Response Estimation Tool

    SciTech Connect

    Olsen, Daniel

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the value of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.

  3. Changes of water demand - possible adaptation of agricultural crops and management options to improve water use efficiency in the Marchfeld area

    NASA Astrophysics Data System (ADS)

    Thaler, S.; Eitzinger, J.; Dubrovsky, M.; Trnka, M.

    2009-04-01

    The main objective of this study was to determine the vulnerability of current agricultural cropping systems in the Marchfeld region to climate change. The investigation area Marchfeld is located in the north-eastern (NE) part of Austria and is characterized by a semi-arid climate with low annual rainfall. It is one of the driest regions in the country, but also one of the main field crop production areas. The soil conditions in Marchfeld demonstrate a significant spatial variability, which include soils with low to moderate water-storage capacities. Higher temperatures in the next decades imply higher evaporation and consequently higher water demand for the crops. The phenological development rates of the cultivars will accelerate and an increase of heat stress as well as drought stress can be expected. These points influence intense the water balance and subsequently the yield of the crops in the investigation area. In order to improve water use efficiency under those changing conditions, a shift of average sowing dates and an adjustment of tillage were analyzed. The DSSAT cropping system model was applied for winter wheat and spring barley to assess potential yield under climate scenarios for NE Austria. The scenarios were carried out with ECHAM5, HadCM3 and NCAR PCM global circulation models (GCMs) for present conditions (reference period 1961-1990) and 2035's (2021-2050), based on SRES-A1B emission scenarios. Yield model simulations were done for all defined scenarios (climate, management, crop) and different soil classes. The simulations contain the CO2 fertilizing effect, rain fed farming, adapted sowing date and contemporary crops without consideration of potential profit cuts caused by pest or diseases. Simulation results indicate that climate change will force a delay of the sowing date for winter wheat of maximal 14 days in October. In case of spring barley, climate change allows an earlier sowing date in spring (up to 14 days). Both crops show a

  4. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  5. A novel approach for examining future US domestic water demand

    EPA Science Inventory

    Costs of repairing and expanding aging infrastructure and competing demands for water from other sectors such as industry and agriculture are stretching policy makers’ abilities to meet essential domestic drinking water needs for future generations. Using Bayesian statistic...

  6. Water demands in Kansas, 1944-84

    USGS Publications Warehouse

    Kenny, J.F.

    1986-01-01

    The State of Kansas has administered water rights according to an appropriations doctrine since 1945. Water rights are issued by the Kansas State Board of Agriculture, Division of Water Resources, for eight categories of beneficial use. Water rights data and limited information on reported water use are stored on a computerized State data base; the U.S. Geological Survey cooperates with the State on maintenance of this system. This report analyzes trends in appropriations from 1944-84 for surface and groundwater for three major categories of use: irrigation, public supply, and industry. Demands for water, represented by these appropriations, are compared for three geographic areas within the State. These areas correspond to general patterns of water availability, population, and enterprises. As of 1984, 87% of the water appropriated for the three major types of use was for irrigation; most of this demand was for groundwater in the western one-third of the State. Seventy-five percent of the water demands in the central one-third of Kansas were met by groundwater; appropriations for irrigation represent the largest demand on water supplies in this area but must compete with appropriations for public supply and industry. Demands for surface water have increased substantially only in the eastern part of the State for industrial use and public supplies. The most prominent trends in water rights permit activity were related to climatic fluctuations, particularly the drought of the 1950's, legislative changes in the 1970 's requiring permits, and growth of urban populations in the central and eastern areas of the State. Analysis of trends in water appropriations can be useful in understanding the water issues facing Kansas in the future. (Author 's abstract)

  7. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  8. Agriculture and water quality. Agriculture Information Bulletin

    SciTech Connect

    Crowder, B.M.; Ribaudo, M.O.; Young, C.E.

    1988-08-01

    Agriculture generates byproducts that may contribute to the contamination of the Nation's water supply. Any effective regulations to ban or restrict agricultural-chemical or land-use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface waterways in runoff; some leach through soil into ground water. Because surface-water systems and ground water systems are interrelated, farm-management practices need to focus on water quality in both systems. Modifying farm-management practices may raise production costs in some areas. Farmers can reduce runoff losses by reducing input use, implementing soil-conservation practices, and changing land use. Also at issue is who should pay for improving water quality.

  9. China's rising hydropower demand challenges water sector.

    PubMed

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  10. China's rising hydropower demand challenges water sector.

    PubMed

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  11. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  12. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services. PMID:26147156

  13. Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity.

    PubMed

    Bryan, Brett A; Crossman, Neville D; Nolan, Martin; Li, Jing; Navarro, Javier; Connor, Jeffery D

    2015-11-01

    Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade-offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services.

  14. Competences in Demand within the Spanish Agricultural Engineering Sector

    ERIC Educational Resources Information Center

    Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis

    2014-01-01

    The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural…

  15. Future land-use related water demand in California

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  16. Future land-use related water demand in California

    NASA Astrophysics Data System (ADS)

    Wilson, Tamara S.; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-05-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  17. Competences in demand within the Spanish agricultural engineering sector

    NASA Astrophysics Data System (ADS)

    Perdigones, Alicia; Valera, Diego Luis; Moreda, Guillermo Pedro; García, Jose Luis

    2014-09-01

    The Rural Engineering Department (Technical University of Madrid) ran three competence surveys during the 2006-2007 and 2007-2008 academic years and evaluated: (1) the competences gained by agricultural engineer's degree and agricultural technical engineer's degree students (360 respondents); (2) the competences demanded by agricultural employers (50 farming sector employers); (3) competences required by farming sector professionals and former students (70 professionals). The surveys show significant differences between what competences agricultural employers require of graduates and the competences they acquire during their agricultural engineering degree courses. Recruiters are looking for generic competences such as the ability to coordinate groups and place less importance on knowledge of engineering, biology, applied economics and legislation. Of the computer-related competences, those most in demand by sector professionals were related to the use of Microsoft Office/Excel (used by 79% of professionals). Surveys were used to redesign some subjects of the degrees.

  18. Global food demand and the sustainable intensification of agriculture.

    PubMed

    Tilman, David; Balzer, Christian; Hill, Jason; Befort, Belinda L

    2011-12-13

    Global food demand is increasing rapidly, as are the environmental impacts of agricultural expansion. Here, we project global demand for crop production in 2050 and evaluate the environmental impacts of alternative ways that this demand might be met. We find that per capita demand for crops, when measured as caloric or protein content of all crops combined, has been a similarly increasing function of per capita real income since 1960. This relationship forecasts a 100-110% increase in global crop demand from 2005 to 2050. Quantitative assessments show that the environmental impacts of meeting this demand depend on how global agriculture expands. If current trends of greater agricultural intensification in richer nations and greater land clearing (extensification) in poorer nations were to continue, ~1 billion ha of land would be cleared globally by 2050, with CO(2)-C equivalent greenhouse gas emissions reaching ~3 Gt y(-1) and N use ~250 Mt y(-1) by then. In contrast, if 2050 crop demand was met by moderate intensification focused on existing croplands of underyielding nations, adaptation and transfer of high-yielding technologies to these croplands, and global technological improvements, our analyses forecast land clearing of only ~0.2 billion ha, greenhouse gas emissions of ~1 Gt y(-1), and global N use of ~225 Mt y(-1). Efficient management practices could substantially lower nitrogen use. Attainment of high yields on existing croplands of underyielding nations is of great importance if global crop demand is to be met with minimal environmental impacts.

  19. Agricultural use of water.

    PubMed

    Collett, J R

    1980-07-28

    Irrigation for agricultural purposes is one of the essential claims on available water resources. Those resources have not been adequately utilized in many countries for a variety of reasons. Where finance has been allocated to irrigation schemes, the schemes have tended to be large-scale, and the performance often disappointing. Alternatively, small-scale irrigation schemes, while receiving less support and encouragement, can often be more effective. For both large-scale and small-scale irrigation schemes, the responses of individual farmers and village communities are critical factors. More technologies need to be developed that are adapted to local needs, resources and aspirations within the context of current socio-economic practices. Obviously, the wider the range of technologies available, the more likely it will be that the technology most appropriate to existing conditions will be identified and used.

  20. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  1. Demanded competences in the agricultural engineering sector in Spain

    NASA Astrophysics Data System (ADS)

    Perdigones, A.; García, J. L.; Benavente, R. M.; Tarquis, A. M.

    2009-04-01

    An engineering education should prepare students, i.e., emerging engineers, to use problem-solving processes that combine creativity and imagination with rigour and discipline. The emphasis on training engineers may be best placed on answering the needs of industry; indeed, many proposals are now being made to try to reduce the gap between the educational and industrial communities. Training in the use of certain skills or competences may be one way of better preparing engineering undergraduates for eventual employment in industry. However, industry's needs in this respect must first be known. The aim of this work was to determine which skills are used by practising agricultural engineers with the aim of incorporating training in their use into our department's teaching curriculum. Three surveys were undertaken to determine which skills are demanded by agricultural engineers in their professional activities in Spain. Surveys were carried out by the Department of Rural Engineering, Technical University of Madrid (Spain), analysing two related degrees (agricultural engineer with a duration of the study plan of three and five years, respectively) during the courses 2006/07 and 2007/08. The first survey determined the competences acquired by the students along their academic studies (371 students interviewed). The second survey determined the skills demanded by the enterprises of the agricultural sector (50 enterprises interviewed). The third survey determined the skills demanded by the agricultural engineers working in the sector (70 engineers interviewed), specifically asking about the computer programs used by practising agricultural engineers. Surveys showed important differences between the competences demanded by the enterprises and the competences acquired by the students at the university. Enterprises mainly demanded general competences (team working, time organizing, and skills with computer programs) and were less interested in specific technical skills

  2. Household water demand and welfare loss for future Europe

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; Lanzanova, Denis; de Roo, Ad

    2015-04-01

    Matching the availability of water to its demand in Europe is a major challenge for the future due to expected economic and demographic developments and climate change. This means there is a growing need to estimate future water demand and to optimize the water allocation to all end users to counteract welfare loss. At the European scale it is currently not possible to assess the impact of social and economic changes on future water demand or to prioritize water allocation amongst different sectors based on economic damage without extensive use of assumptions and generalizations. Indeed, our review of existing regional optimization models for Europe reveals that the social-economic component of the water use system needs to be improved by complementing them with detailed water use estimates and cost/benefit functions in order to determine the optimal situation. Our study contributes to closing this knowledge gap for the European household sector by quantifying future water demand and the effect of water pricing, as well as providing a method for the calculation of monetary damage due to unmet demand at the highest spatial resolution possible. We used a water demand function approach in which household water consumption depends upon some exogenous drivers including water price, household income, population and household characteristics and climate conditions. For each European country, the annual water consumption per capita was calculated at regional level (NUTS3) and subsequently disaggregated to five kilometer grid level based on a population density map. In order to produce estimates of water demand, the evolution of the explanatory variables of the water demand functions and population density map were simulated until 2050 based on related variables such as GDP and demographic projections. The results of this study will be integrated into the JRC hydro-economic modelling framework for an assessment of the Water-Agriculture-Energy-Ecosystems Nexus.

  3. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  4. Short-term municipal water demand forecasting

    NASA Astrophysics Data System (ADS)

    Bougadis, John; Adamowski, Kaz; Diduch, Roman

    2005-01-01

    Water demand forecasts are needed for the design, operation and management of urban water supply systems. In this study, the relative performance of regression, time series analysis and artificial neural network (ANN) models are investigated for short-term peak water demand forecasting. The significance of climatic variables (rainfall and maximum air temperature, in addition to past water demand) on water demand management is also investigated.Numerical analysis was performed on data from the city of Ottawa, Ontario, Canada. The existing water supply infrastructure will not be able to meet the demand for projected population growth; thus, a study is needed to determine the effect of peak water demand management on the sizing and staging of facilities for developing an expansion strategy. Three different ANNs and regression models and seven time-series models have been developed and compared. The ANN models consistently outperformed the regression and time-series models developed in this study. It has been found that water demand on a weekly basis is more significantly correlated with the rainfall amount than the occurrence of rainfall. Copyright

  5. Historical patterns and drivers of global crop water demand.

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.; Sheffield, J.

    2015-12-01

    With climate change expected to subject staple crops in major growing regions to increased heat exposure, a critical question for agriculture and global food security is the degree to which crop water demand is also likely to change. Recent work has explored the relationship between extreme temperatures and crop water demand, finding that vapor pressure deficit (VPD), through its dependence on both temperature and humidity, provides a very good meteorological predictor of water stress. However, assessing crop water demand solely through atmospheric conditions ignores the roles of radiation and transpiration efficiency, which are increased through elevated CO2. We provide a 60-year global assessment of crop water demand in the world's major growing areas, comparing trends and drivers across key growing regions. We find that an atmospheric-based demand measure can differ significantly from that of a crop-specific sink-based approach that incorporates radiation and CO2 effects, sometimes enough to reverse the sign of historical trends. We also find that these changes differ significantly by region, and that multi-decadal trends can mask large decadal swings. To our knowledge, our work is the first to use global meteorological datasets in a global analysis of crop water demand, and should serve as a valuable reference for future work examining the interaction of hydrological, temperature, and CO2 changes on crop yields.

  6. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon

  7. Modeling water demand when households have multiple sources of water

    NASA Astrophysics Data System (ADS)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.

    2014-07-01

    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  8. Assessment of water availability and demand in Lake Guiers , Senegal.

    NASA Astrophysics Data System (ADS)

    Sambou, D.; Weihrauch, D.; Hellwing, V.; Diekkrüger, B.; Höllermann, B.; Gaye, A. T.

    2015-12-01

    Assessment of water availability and demand in Lake Guiers, SenegalWater resources are critical to economic growth and social development. In most African countries, supply of drinking water to satisfy population needs is a key issue because of population growth and climate and land use change. During the last three decades, increasing population, changing patterns of water demand, and concentration of population and economic activities in urban areas has pressurize Senegal's freshwater resources. To overcome this deficit, Senegal turned, to the exploitation of the Lake Guiers. It is the sole water reservoir which can be used extensively as a stable freshwater. Its water is use for irrigating crops and sugar refinery and as a drinking water resource for urban centres, including Dakar, the capital city of Senegal, as well as for the local population and animal herds. To ensure sustainability, a greater understanding of Lake Guiers's water resources and effective management of its use will be required. In this study we developed and quantified future water situation (water availability and demand) in Lake Guiers under scenarios of climate change and population growth until 2050, using the water management model WEAP (Water Evaluation And Planning system). The results show that the pressure on Lake Guiers's water resources will increase, leading to greater competition between agriculture and municipal demand site. Decreasing inflows due to climate change will aggravate this situation. WEAP results offer basis to assister lake Guiers water resources manager for an efficient long-term planning and management. Keywords: climate change, population growth , IWRM, Lake Guiers, Senegal

  9. Accounting for Water Insecurity in Modeling Domestic Water Demand

    NASA Astrophysics Data System (ADS)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.

    2013-12-01

    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  10. Water Quality Significance of Wetlands Receiving Agricultural Drainage

    NASA Astrophysics Data System (ADS)

    Stringfellow, W.; Sharon, B.; Engelage, S.; Hanlon, J.; Graham, J.; Burks, R.

    2007-12-01

    The San Joaquin Valley is one of the most productive agricultural regions in the world and this productivity is heavily dependent on irrigated agricultural. An inevitable consequence of irrigated agricultural is the generation of return-flows conveyed down-gradient in agricultural drains that eventually discharge to surface waters. Agricultural drainage often has poor water quality characteristics, but demand for water in California is high and agricultural drainage is often diverted for secondary use, including the maintenance of ponds and wetlands. Additionally, agricultural drainage often discharges into riparian wetlands, rather than into the open river channel. In this study we tested the hypothesis that wetlands were mitigating or buffering the impact of agricultural drainage and that discharge of agricultural drainage into wetland buffer zones would provide water quality benefits. Water samples were collected at wetland, agricultural, and mixed drainages in the San Joaquin River basin and analyzed for a broad array of physical and chemical water quality parameters, including nutrients and organic carbon. At selected wetlands, input-output studies were conducted to determine wetland specific water quality effects. The water quality of drainages influenced by wetlands was compared to drainages that were predominantly influenced by other types of land-use. Wetland influenced drainages are more likely to have higher DOC concentrations that other drainages, including agricultural and mixed urban-agricultural drains. Wetland dominated drainages had lower nitrates than agricultural drainages and studies of individual wetlands demonstrated that wetlands remove soluble phosphate and nitrate, but produce DOC and biochemical oxygen demand (BOD). Overall land use in a drainage was a less significant determinant of water quality than soil type and the presence or absence of wetlands. The specific trihalomethane formation potential (THMFP) of the DOC from wetland

  11. Greywater reuse: A strategy for water demand management in Harare?

    NASA Astrophysics Data System (ADS)

    Madungwe, Emaculate; Sakuringwa, Saniso

    Greywater is wastewater from baths, sinks and washing machines, accounting for about 60% of the outflow from homes. It contains little pathogens and 90% less nitrogen than toilet water, so does not require the same treatment process. With the increasing demand for freshwater, its use may reduce irrigation water needs, increasing its availability of freshwater for other primary uses. Agriculture is the main water consumer in Africa, which cannot be compromised due to its role in domestic food security and export supplies. The purpose of this paper is to demonstrate findings of the research done on benefits of greywater reuse in some countries, applicable to African countries. In Australia, greywater reuse has reduced freshwater demand, strain on wastewater treatment plants and energy consumption. Aquifer recharge has improved due to increased infiltration flows from greywater uses. In Lebanon, greywater is a valuable resource for encouraging plant growth from nutrients that may otherwise have been wasted. Palestine shares similar climate and water scarcity conditions with most arid sub-Saharan African countries, yet utilizes grey water in production of crops and citrus fruits. Thus use of grey water should be possible in African cities such as Harare, where nearly two thirds of the population rely on agriculture for livelihoods. The problem of blue green algae in sewerage ponds and water reservoirs is significantly reduced by household reuse of grey water in Mexico. Water savings are increased and expenses reduced, as illustrated by the reduction in consumption of municipality freshwater supplies in South African urban areas. Rural communities and schools in Namibia and Egypt have raised funds from grey water reuse in banana plantations. A possible constraint to this strategy could be the unavailability of appropriate technology for primary treatment of grey water before reuse. This strategy may pose health risks where water quality tests are unknown or unavailable

  12. Chlorine demand of Savannah River water

    SciTech Connect

    Wilde, E.W.

    1989-01-01

    Savannah River water used for cooling SRS reactors was tested for chlorine demand and the rate of decay for both free and total residual chlorine on seven quarterly dates between 1986 and 1988. Test conditions included chlorine dosages of 1, 3, and 5 mg/l and a variety of contact times ranging from less than 1 minute to one day. Statistically significant differences were detected in the chlorine demand for the seven dates; however, there was no discernible seasonality to the variation. The chlorine demand, amount of combined residual chlorine formed and the persistence of total residual chlorine following a dose of 5 mg/l was significantly greater on one of the seven sampling dates (February, 1988) compared to all of the other dates. These differences could not be attributed to water temperature, pH, ammonia nitrogen concentration, or the amount of rainfall prior to or during the collection of the cooling water. Except as noted above, dissipation of chlorine was similar among the sampling dates. Most reactions of available chlorine with other constituents in the cooking water occurred in the first minute of contact, although measurable total chlorine residuals generally persisted for 24 hours after the dose had been administered. The results of this study indicate that, with occasional exceptions, a chlorine dose of between 3 and 5 mg/l will provide a free chlorine residual of 1 mg/l in Savannah River water. 14 refs., 3 figs., 4 tabs.

  13. China’s rising hydropower demand challenges water sector

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-07-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr-1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  14. China’s rising hydropower demand challenges water sector

    PubMed Central

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  15. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    PubMed

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  16. Water demands for expanding energy development

    USGS Publications Warehouse

    Davis, G.H.; Wood, Leonard A.

    1974-01-01

    Water is used in producing energy for mining and reclamation of mined lands, onsite processing, transportation, refining, and conversion of fuels to other forms of energy. In the East, South, Midwest, and along the seacoasts, most water problems are related to pollution rather than to water supply. West of about the 100th meridian, however, runoff is generally less than potential diversions, and energy industries must compete with other water users. Water demands for extraction of coal, oil shale, uranium, and oil and gas are modest, although large quantities of water are used in secondary recovery operations for oil. The only significant use of water for energy transportation, aside from in-stream navigation use, is for slurry lines. Substantial quantities of water are required in the retorting and the disposal of spent oil shale. The conversion of coal to synthetic gas or oil or to electric power and the generation of electric power with nuclear energy require large quantities of water, mostly for cooling. Withdrawals for cooling of thermal-electric plants is by far the largest category of water use in energy industry, totaling about 170 billion gallons (644 million m3) per day in 1970. Water availability will dictate the location and design of energy-conversion facilities, especially in water deficient areas of the West.

  17. A National Study of the Supply and Demand for Teachers of Vocational Agriculture in 1980.

    ERIC Educational Resources Information Center

    Craig, David G.

    A national study (the sixteenth annual study of its kind) examined the supply and demand for teachers of vocational agriculture in 1980. To obtain data pertaining to supply and demand for vocational agriculture teachers, researchers mailed questionnaires and follow-up letters and made telephone calls to all institutions preparing teachers in…

  18. Designing and Implementing a Computerized Information Management System for Employment Demand Data in Agriculture/Agribusiness.

    ERIC Educational Resources Information Center

    Berkey, Arthur L.; Cooper, Gloria S.

    Planning for educational programs in agriculture/agribusiness demands knowledge of future employment demand for various occupations. At present, a functional and comprehensive occupational information system for agriculture/agribusiness does not exist. Systems that do exist, such as the Occupational Information System (OIS) and the Dictionary of…

  19. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  20. The Development of a Web-service-based On-demand Global Agriculture Drought Information System

    NASA Astrophysics Data System (ADS)

    Deng, M.; Di, L.; Han, W.; Yagci, A.; Peng, C.

    2011-12-01

    data, biophysical characteristics of the environment, and time-series weather data. The trained algorithm establishes a per-pixel model to produce on-demand drought prediction at ~1km or higher spatial resolution. The Phase-I system implementation is concentrated on NDVI-based drought monitoring to demonstrate the concept and feasibility. In phase I, 30-year calibrated global weekly NDVI composites from AVHRR and MODIS are used to establish the baseline and dynamics of vegetation conditions for each co-registered pixel. Multiple NDVI-based agricultural drought indices, such as vegetation condition index (VCI), have been computed from the baseline and dynamics for drought monitoring. GADMFS is a contributing component of Global Earth Observation System of Systems (GEOSS) to serve the GEOSS societal benefit area of agriculture and water. The phase-I implementation shows that open and interoperable drought related data services and processing services from this system have significantly increased the accessibility of remote sensing based agriculture drought information to the world-wide users. Such a system will also increase the utilization of drought indices related applications and researches in the GEOSS community.

  1. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  2. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  3. Back-casting global water stress: Reconstruction of past water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P.; Bierkens, M. F.

    2010-12-01

    Water scarcity, caused by an existing regional imbalance of water availability and water demand, poses a serious environmental issue to the global society. Since the late 1990s, several studies have quantified blue water stress at the global scale by using the global hydrological models to simulate blue water availability (i.e., surface freshwater in rivers, lakes and reservoirs) which is confronted against water demand to compute water stress. While these assessments have identified regions suffering from current water stress and vulnerable to future water scarcity due to the effects of the climate change and prone to frequent droughts (e.g., Australia, Central and West USA, India, North-East China, Pakistan), the development of past water stress with the influences of population and economic growth and expanding irrigated area has not yet been quantified, which might give an important implication for the future assessment of water stress. Here, we developed a method to reconstruct past water demand from agricultural (i.e., irrigation and livestock), industrial and domestic (i.e., households and municipalities) sector over the period 1960 to 2001, which was used to contrast transient effects in its development against climate variability in the severity of water stress. Agricultural water demand was estimated based on past extents of irrigated area and livestock densities. We developed a simple algorithm to approximate the past economic development based on GDP, energy and household consumption and electricity production, which was subsequently used together with population numbers to estimate industrial and domestic water demand. Desalinated water use and groundwater abstraction were additionally calculated over the same period, the latter being proportional to water demand. Various annual country statistics were used but resulted estimates were gridded at a spatial resolution of 0.5° and disaggregated into a monthly temporal scale as it can be expected that

  4. Trend analysis in a Brazilian watershed with high water demand

    NASA Astrophysics Data System (ADS)

    Groppo, Juliano; Cristaldo, Mariana; Pellegrino, Giampaollo

    2015-04-01

    In recent decades the development of urban, industrial and agricultural activities, has led to a significant increase in water demand and decrease in both water quantity and quality in worldwide. The "Paracatu Watershed" is located in Southeast Brazil, one of most developed region in Brazil. The irrigation is the main water use with more than 70% of total demand and the watershed already suffers with water availability and conflicts tend to increase. Trends analysis is an important for the environmental diagnosis in watersheds, allowing evaluate how water bodies are responding through the years the growing anthropogenic interventions. In this studied we analyzed the 6 streamflow and 12 rainfall stations of the "Paracatu Watershed", in the period from 1965 to 2011. The Mann Kendall and Pettitt test were used to trends analysis and abrupt changes in the mean, respectively. The methodology is divided in graphical analysis and application of trend tests, where initially an exploratory analysis of data is performed, followed by confirmation through statistical tests. The results showed negative trend but non-significant (95%) and non-significant abrupt change in rainfall and streamflow (minimum, maximum and mean). Despite no significant trends, the population and irrigation growth plus climate changes tends to decrease the water availability in the watershed. This watershed already suffer from the water problem, and if to keep increasing consumption in the watershed for urban supply and irrigation plus the possible impacts of climatic changes, without prior and appropriate planning, which can be obtained, the population could suffer more problems regarding of water in the future. The solutions must be proposed to help the watershed, with use crop resistant to decrease the irrigation and increase the efficiency of irrigation and population awareness. Appropriate planning and polices are essential to ensure water for future.

  5. Water use trends and demand projections in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael

    1998-01-01

    The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020

  6. Optimal demand reponse to water pricing policies under limited water supply in irrigation: a case study

    NASA Astrophysics Data System (ADS)

    Grießbach, Ulkrike; Stange, Peter; Schuetze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with the higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local stochastic water demand functions are used which are derived from optimized agronomic response on farms scale. These functions take into account different soil types, crops, stochastically generated climate scenarios considering different economic conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed and applied for a case study in Saxony which helps to evaluate combined water supply and demand management policies on a regional level.

  7. Tapping Alternatives: The Benefits of Managing Urban Water Demands.

    ERIC Educational Resources Information Center

    Dziegielewski, Benedykt; Baumann, Duane D.

    1992-01-01

    Presents the California plan for water demand management. Water conservation techniques are used to balance demand with supply. Discusses the implementation process: (1) water-use and service area analysis; (2) water-use forecasts; (3) benefit-cost analysis; (4) and development of a long-term water management plan. (17 references) (MCO)

  8. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  9. Competence Challenges of Demand-Led Agricultural Research and Extension in Uganda

    ERIC Educational Resources Information Center

    Kibwika, P.; Wals, A. E. J.; Nassuna-Musoke, M. G.

    2009-01-01

    Governments and development agencies in Sub-Saharan Africa are experimenting alternative approaches within the innovation systems paradigm to enhance relevance of agricultural research and extension to the poverty eradication agenda. Uganda, for example, has recently shifted from the supply driven to demand-led agricultural research and extension.…

  10. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  11. Facing Water Scarcity in Jordan: Reuse, Demand Reduction, Energy and Transboundary Approaches to Assure Future Water Supplies

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.

    2001-05-01

    Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with

  12. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects. PMID:27007730

  13. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  14. Disaggregating residential water demand for improved forecasts and decision making

    NASA Astrophysics Data System (ADS)

    Woodard, G.; Brookshire, D.; Chermak, J.; Krause, K.; Roach, J.; Stewart, S.; Tidwell, V.

    2003-04-01

    Residential water demand is the product of population and per capita demand. Estimates of per capita demand often are based on econometric models of demand, usually based on time series data of demand aggregated at the water provider level. Various studies have examined the impact of such factors as water pricing, weather, and income, with many other factors and details of water demand remaining unclear. Impacts of water conservation programs often are estimated using simplistic engineering calculations. Partly as a result of this, policy discussions regarding water demand management often focus on water pricing, water conservation, and growth control. Projecting water demand is often a straight-forward, if fairly uncertain process of forecasting population and per capita demand rates. SAHRA researchers are developing improved forecasts of residential water demand by disaggregating demand to the level of individuals, households, and specific water uses. Research results based on high-resolution water meter loggers, household-level surveys, economic experiments and recent census data suggest that changes in wealth, household composition, and individual behavior may affect demand more than changes in population or the stock of landscape plants, water-using appliances and fixtures, generally considered the primary determinants of demand. Aging populations and lower fertility rates are dramatically reducing household size, thereby increasing the number of households and residences for a given population. Recent prosperity and low interest rates have raised home ownership rates to unprecented levels. These two trends are leading to increased per capita outdoor water demand. Conservation programs have succeeded in certain areas, such as promoting drought-tolerant native landscaping, but have failed in other areas, such as increasing irrigation efficiency or curbing swimming pool water usage. Individual behavior often is more important than the household's stock of water

  15. Evaluating Water Demand Using Agent-Based Modeling

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  16. Transformative optimisation of agricultural land use to meet future food demands.

    PubMed

    Koh, Lian Pin; Koellner, Thomas; Ghazoul, Jaboury

    2013-01-01

    The human population is expected to reach ∼9 billion by 2050. The ensuing demands for water, food and energy would intensify land-use conflicts and exacerbate environmental impacts. Therefore we urgently need to reconcile our growing consumptive needs with environmental protection. Here, we explore the potential of a land-use optimisation strategy to increase global agricultural production on two major groups of crops: cereals and oilseeds. We implemented a spatially-explicit computer simulation model across 173 countries based on the following algorithm: on any cropland, always produce the most productive crop given all other crops currently being produced locally and the site-specific biophysical, economic and technological constraints to production. Globally, this strategy resulted in net increases in annual production of cereal and oilseed crops from 1.9 billion to 2.9 billion tons (46%), and from 427 million to 481 million tons (13%), respectively, without any change in total land area harvested for cereals or oilseeds. This thought experiment demonstrates that, in theory, more optimal use of existing farmlands could help meet future crop demands. In practice there might be cultural, social and institutional barriers that limit the full realisation of this theoretical potential. Nevertheless, these constraints have to be weighed against the consequences of not producing enough food, particularly in regions already facing food shortages.

  17. On-demand separation of oil-water mixtures.

    PubMed

    Kwon, Gibum; Kota, Arun K; Li, Yongxin; Sohani, Ameya; Mabry, Joseph M; Tuteja, Anish

    2012-07-17

    In this work, the first-ever membrane-based single unit operation that enables gravity driven, on-demand separation of various oil-water mixtures is developed. Using this methodology, the on-demand separation of free oil and water, oil-in-water emulsions, and water-in-oil emulsions is demonstrated, with ≥99.9% separation efficiency. A scaled-up apparatus to separate larger quantities (several liters) of oil-water emulsions is also developed. PMID:22689385

  18. Assessing the potential for using wetlands as intermediary storages to conjunctively maintain ecological values and support agricultural demands.

    PubMed

    Ning, Nathan S P; Watkins, Susanne C; Gawne, Ben; Nielsen, Daryl L

    2012-09-30

    Water sharing to meet both agricultural and environmental demands is a critical issue affecting the health of many floodplain river systems around the world. This study explored the potential for using wetlands as temporary off-river storages to conjunctively maintain ecological values and support agricultural demands by assessing the effects of artificial drawdown on wetland aquatic plant communities. An initial experiment was undertaken in outdoor mesocosms in which four different treatments were compared over a 131 day duration: (1) natural drawdown where the water was left to drawdown naturally via evaporation; (2) partial drawdown where approximately half of the volume of water was pumped out after 42 days; (3) stepped drawdown where approximately half of the volume of water pumped out after 42 days, and then the remaining volume of water was pumped out after 117 days; and (4) total drawdown where all of the of water was pumped out after 117 days. A complementary field study was subsequently undertaken where two wetlands were left to drawdown naturally and two were partially drawn down artificially (i.e. had approximately half of their volume removed by pumping). Results from both of these studies indicated that neither aquatic plant abundance nor taxon richness were adversely affected by partial drawdown. Rather, both studies showed that aquatic plant communities subjected to a partial drawdown treatment became more species rich and diverse than communities subjected to a natural drawdown treatment. This suggests that it may be possible to use wetlands as intermediary storages for the dual purposes of maintaining ecological values and supporting agricultural demands.

  19. Agricultural water pollution control: An interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Miller, Watkins W.; Ching, Chauncey T. K.; Yanagida, John F.; Jakus, Paul

    1985-01-01

    Regulation and control of agricultural water pollution is unique and difficult to accomplish. Water quality standards are often proposed without adequate consideration of the overall economic impact on agricultural production. This article illustrates how economists and physical scientists can cooperate to develop appropriate control strategies for agricultural water pollution. Data provided by physical scientists and economists are used in a linear programming model to describe salt discharge as a function of water management, production levels, and an associated effluent charge. Four water management activities were chosen on the basis of different costs of production (including a parametrically varied effluent charge), water requirements, alfalfa yields, and levels of salt discharge. Results indicate that when the effluent charge is low (<0.20/metric ton salt discharged), maximum production with maximum salt discharge is most profitable. As the effluent charge is increased (0.20 0.40/metric ton salt discharged), it becomes progressively less profitable to produce alfalfa at maximum levels of pollutant discharge. When the effluent charge is >0.40/metric ton salt discharged, alfalfa production is no longer economically feasible. An important aspect of this approach is that it permits policy makers to identify explicitly the relationship between the environmental standard and the effect on agricultural production.

  20. Modeling the current and future capacity of water resources to meet water demands in the Ebro basin

    NASA Astrophysics Data System (ADS)

    Milano, Marianne; Ruelland, Denis; Dezetter, Alain; Fabre, Julie; Ardoin-Bardin, Sandra; Servat, Eric

    2013-09-01

    Worldwide studies have shown that the Mediterranean region is one of the most vulnerable areas to water crisis. The region is characterized by limited and unequally distributed water resources and increasing water demands. The Ebro catchment (85,000 km2, Spain) is representative of this context. Since the late 1970s, a negative trend in river discharge has been observed, attributed to a decrease in mean precipitation, and a rise in mean temperature and in water consumption. Finally, over 230 storage dams regulate river discharge. In this context, an integrated water resources modeling framework was developed to evaluate the current and future capacity of water resources to meet domestic and agricultural water demands as well as environmental flow requirements. The approach was driven by a conceptual rainfall-runoff model generating water supplies and by a demand driven storage dam model. The approach defines current pressures on water resources and evaluates future changes in water allocation in the medium term under climatic and water use scenarios, considering changes in population and in irrigated areas. Currently, water demands in the Ebro catchment are satisfied. In 2050, water resources are projected to decrease by 15-35% during spring and summer, leading to growing competition among users and severe water shortages for irrigated agriculture. This study provides an original approach to identify the most vulnerable regions to water use conflicts. It also highlights the interest of integrated modeling for complete analysis of the ability of water resources to meet water demands in complex change scenarios as a support for decision making.

  1. Can Agriculture meet the Global Food Demands for a Food Secure World?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global food demands are projected to significantly increase over the next 35 years to feed the projected population of 9 billion; however, there are questions about the ability of agriculture to produce these quantities of food. These concerns rise from the projected trends in grains and oilseeds an...

  2. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  3. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  4. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  5. Pan-European household and industrial water demand: regional relevant estimations

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Sustainable water management is of high importance to provide adequate quality and quantity of water to European households, industries and agriculture. Especially since demographic, economic and climate changes are expected to increase competition for water between these sectors in the future. A shortage of water implies a reduction in welfare of households or damage to economic sectors. This socio-economic component should be incorporated into the decision-making process when developing water allocation schemes, requiring detailed water use information and cost/benefit functions. We now present the results of our study which is focused at providing regionally relevant pan-European water demand and cost-benefit estimations for the household and industry sector. We gathered consistent data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water use and water prices across Europe. The use of homogeneous data allowed us to compare regions and analyze spatial patterns. We applied econometric methods to determine the main determinants of water demand and make a monetary valuation of water for both the domestic and industry sector. This monetary valuation is important to allow water allocation based on economic damage estimates. We also attempted to estimate how population growth, as well as socio-economic and climatic changes impact future water demand up to 2050 using a homogeneous method for all countries. European projections for the identified major drivers of water demand were used to simulate future conditions. Subsequently, water demand functions were applied to estimate future water use and potential economic damage caused by water shortages. We present our results while also providing some estimation of the uncertainty of our predictions.

  6. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  7. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  8. Simulations of Limited-Water Irrigation Management Options for Corn in Dryland Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diminishing land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. To produce more for every drop of water used in agriculture, it is important to develop location specific alternate agronomic practices vis-à-vis...

  9. Water supply and demand in an energy supply model

    SciTech Connect

    Abbey, D; Loose, V

    1980-12-01

    This report describes a tool for water and energy-related policy analysis, the development of a water supply and demand sector in a linear programming model of energy supply in the United States. The model allows adjustments in the input mix and plant siting in response to water scarcity. Thus, on the demand side energy conversion facilities can substitute more costly dry cooling systems for conventional evaporative systems. On the supply side groundwater and water purchased from irrigators are available as more costly alternatives to unappropriated surface water. Water supply data is developed for 30 regions in 10 Western states. Preliminary results for a 1990 energy demand scenario suggest that, at this level of spatial analysis, water availability plays a minor role in plant siting. Future policy applications of the modeling system are discussed including the evaluation of alternative patterns of synthetic fuels development.

  10. A future Demand Side Management (DSM) opportunity for utility as variable renewable penetrate scale up using agriculture.

    NASA Astrophysics Data System (ADS)

    Ines, A.; Bhattacharjee, A.; Modi, V.; Robertson, A. W.; Lall, U.; Kocaman Ayse, S.; Chaudhary, S.; Kumar, A.; Ganapathy, A.; Kumar, A.; Mishra, V.

    2015-12-01

    Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as smart metering, incentive based schemes, payments for turning off loads or rescheduling loads. Usually, the goal of demand side management is to encourage the consumer to use less power during periods of peak demand, or to move the time of energy use to off-peak times. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need for investments in networks and/or power plants for meeting peak demands. Electricity use can vary dramatically on short and medium time frames, and the pricing system may not reflect the instantaneous cost as additional higher-cost that are brought on-line. In addition, the capacity or willingness of electricity consumers to adjust to prices by altering elasticity of demand may be low, particularly over short time frames. In the scenario of Indian grid setup, the retail customers do not follow real-time pricing and it is difficult to incentivize the utility companies for continuing the peak demand supply. A question for the future is how deeper penetration of renewable will be handled? This is a challenging problem since one has to deal with high variability, while managing loss of load probabilities. In the case of managing the peak demand using agriculture, in the future as smart metering matures with automatic turn on/off for a pump, it will become possible to provide an ensured amount of water or energy to the farmer while keeping the grid energized for 24 hours. Supply scenarios will include the possibility of much larger penetration of solar and wind into the grid. While, in absolute terms these sources are small contributors, their role will inevitably grow but DSM using agriculture could help reduce the capital cost. The other option is of advancing or delaying pump operating cycle even by several hours, will still ensure

  11. MODEL FOR INSTANTANEOUS RESIDENTIAL WATER DEMANDS

    EPA Science Inventory

    Residential wateer use is visualized as a customer-server interaction often encountered in queueing theory. Individual customers are assumed to arrive according to a nonhomogeneous Poisson process, then engage water servers for random lengths of time. Busy servers are assumed t...

  12. Flow based vs. demand based energy-water modelling

    NASA Astrophysics Data System (ADS)

    Rozos, Evangelos; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Koukouvinos, Antonios; Makropoulos, Christos

    2015-04-01

    The water flow in hydro-power generation systems is often used downstream to cover other type of demands like irrigation and water supply. However, the typical case is that the energy demand (operation of hydro-power plant) and the water demand do not coincide. Furthermore, the water inflow into a reservoir is a stochastic process. Things become more complicated if renewable resources (wind-turbines or photovoltaic panels) are included into the system. For this reason, the assessment and optimization of the operation of hydro-power systems are challenging tasks that require computer modelling. This modelling should not only simulate the water budget of the reservoirs and the energy production/consumption (pumped-storage), but should also take into account the constraints imposed by the natural or artificial water network using a flow routing algorithm. HYDRONOMEAS, for example, uses an elegant mathematical approach (digraph) to calculate the flow in a water network based on: the demands (input timeseries), the water availability (simulated) and the capacity of the transmission components (properties of channels, rivers, pipes, etc.). The input timeseries of demand should be estimated by another model and linked to the corresponding network nodes. A model that could be used to estimate these timeseries is UWOT. UWOT is a bottom up urban water cycle model that simulates the generation, aggregation and routing of water demand signals. In this study, we explore the potentials of UWOT in simulating the operation of complex hydrosystems that include energy generation. The evident advantage of this approach is the use of a single model instead of one for estimation of demands and another for the system simulation. An application of UWOT in a large scale system is attempted in mainland Greece in an area extending over 130×170 km². The challenges, the peculiarities and the advantages of this approach are examined and critically discussed.

  13. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  14. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe.

    PubMed

    Breeze, Tom D; Vaissière, Bernard E; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C; Pärtel, Meelis; Zobel, Martin; Potts, Simon G

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. PMID:24421873

  15. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe.

    PubMed

    Breeze, Tom D; Vaissière, Bernard E; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C; Pärtel, Meelis; Zobel, Martin; Potts, Simon G

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.

  16. Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe

    PubMed Central

    Breeze, Tom D.; Vaissière, Bernard E.; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C.; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C.; Pärtel, Meelis; Zobel, Martin; Potts, Simon G.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. PMID:24421873

  17. Estimating the Agricultural Water Consumption of the Yellow River Basin Based on Remote Sensing data

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2015-12-01

    Water shortage for agricultural water use is a major problem in the Yellow River Basin. This research uses NDVI value, meteorological data, supervised classification in remote sensing image classification and actual statistical data to estimate and verify the wheat and maize distribution and their water demand in the Yellow River Basin. The validation of the estimate method is performed by comparing the distribution of CIESIN statistic data for 1990. To obtain the accurate water demand, the study used and compared two methods of calculating the total water demand. The first one is to make the crop water requirement per unit area multiply by estimated crops total area of the basin. The second one is to sum the calculated water demand of each province. The research found that the remote sensing data can be used to estimate the crop area, while it overestimates the water consumption by both of the two methods.

  18. Ground water security and drought in Africa: linking availability, access, and demand.

    PubMed

    Calow, Roger C; Macdonald, Alan M; Nicol, Alan L; Robins, Nick S

    2010-01-01

    Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water-based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.

  19. New coal plant technologies will demand more water

    SciTech Connect

    Peltier, R.; Shuster, E.; McNemar, A.; Stiegel, G.J.; Murphy, J.

    2008-04-15

    Population shifts, growing electricity demand, and greater competition for water resources have heightened interest in the link between energy and water. The US Energy Information Administration projects a 22% increase in US installed generating capacity by 2030. Of the 259 GE of new capacity expected to have come on-line by then, more than 192 GW will be thermoelectric and thus require some water for cooling. Our challenge will become balancing people's needs for power and for water. 1 ref., 7 figs.

  20. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  1. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...; ] DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program and Cooperative... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... Agricultural Water Enhancement Program Legislative Authority The Agricultural Water Enhancement Program...

  2. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  3. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  4. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  5. Projecting Urban Water Demand in California: Effects of Climate, Demographics, Technology, Conservation, and Policy

    NASA Astrophysics Data System (ADS)

    Heberger, M. G.; Christian-Smith, J.

    2010-12-01

    California's growing population is increasingly urban, with 98% of its 38 million people currently living in cities and suburbs. The state has added an estimated 4.5 million people since 2000, with Los Angeles, San Diego, and Sacramento among the 12 fastest-growing cities in the United States. While agriculture continues to use the majority of the state's water supply, urban water demand is growing rapidly and straining available supplies. Warming due to climate change is causing increases in water demand for landscape irrigation and commercial and industrial cooling. We have developed an easy-to-use planning tool to create spatial and temporal forecasts of future urban water demand out to the year 2100. It allows the user to estimate future water demand under a number of scenarios of climate change and demographic change. We use downscaled climate model output to estimate landscape and cooling water demand for each decade from 1950 to 2100 (Maurer and Hidalgo 2007). Planners can use the model to estimate the water-use impacts of urban growth and future land use, as well as water conservation programs and regulations. One may also examine economic effects such as changes in water prices or rate structures. The model includes the effects of building codes, plumbing and appliance standards in bringing about "passive savings" over time. Our modeling work to date suggests that current conservation strategies and efficiency gains already underway in California will increase urban water-use efficiency over the next two decades. While per-capita water use decreases, overall demand is likely to increase due to population growth. Under current policies and trends, statewide urban water demand may increase from 9 million acre-feet in 2005 (11 billion m3) to 12 maf (15 billion m3) in 2050. Implementing aggressive conservation strategies allows for continued population growth without increasing water use. This type of scenario-based planning aids water planners and managers in

  6. Deficit irrigation for reducing agricultural water use.

    PubMed

    Fereres, Elias; Soriano, María Auxiliadora

    2007-01-01

    At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas. PMID:17088360

  7. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies

  8. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  9. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  10. Water use demand in the Crans-Montana-Sierre region (Switzerland)

    NASA Astrophysics Data System (ADS)

    Bonriposi, M.; Reynard, E.

    2012-04-01

    Crans-Montana-Sierre is an Alpine touristic region located in the driest area of Switzerland (Rhone River Valley, Canton of Valais), with both winter (ski) and summer (e.g. golf) tourist activities. Climate change as well as societal and economic development will in future significantly modify the supply and consumption of water and, consequently, may fuel conflicts of interest. Within the framework of the MontanAqua project (www.montanaqua.ch), we are researching more sustainable water management options based on the co-ordination and adaptation of water demand to water availability under changing biophysical and socioeconomic conditions. This work intends to quantify current water uses in the area and consider future scenarios (around 2050). We have focused upon the temporal and spatial characteristics of resource demand, in order to estimate the spatial footprint of water use (drinking water, hydropower production, irrigation and artificial snowmaking), in terms of system, infrastructure, and organisation of supply. We have then quantified these as precisely as possible (at the monthly temporal scale and at the municipality spatial scale). When the quantity of water was not measurable for practical reasons or for lack of data, as for the case for irrigation or snowmaking, an alternative approach was applied. Instead of quantifying how much water was used, the stress was put on the water needs for irrigating agricultural land or on the optimal meteorological conditions necessary to produce artificial snow. A huge summer peak and a smaller winter peak characterize the current regional water consumption estimation. The summer peak is mainly caused by irrigation and secondly by drinking water demand. The winter peak is essentially due to drinking water and snowmaking. Other consumption peaks exist at the municipality scale but they cannot be observed at the regional scale. The results show a major variation in water demand between the 11 concerned municipalities and

  11. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  12. Development of Ensemble Model Based Water Demand Forecasting Model

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop

    2014-05-01

    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  13. Controlling residential water demand in Qatar: an assessment.

    PubMed

    Al-Mohannadi, Hassan I; Hunt, Chris O; Wood, Adrian P

    2003-08-01

    Qatar has serious water resource problems, following rapid socioeconomic development and massive population increase. Municipal water provision depends on costly and unsustainable desalination. There is little regulation. Native Qataris do not pay a water tariff and migrants pay a subsidized price--approximately one third of the cost of production--so there is little awareness of the true cost of water and use is profligate. This paper discusses trends in water use and identifies issues underlying sustainable water use in Qatar. A questionnaire of respondents chosen to represent Qatari social groups measured awareness and attitudes to water. The results show that previous efforts to control water demand in Qatar, using awareness campaigns, legal restrictions and tariffs, have been ineffectual. The questionnaire evaluated reactions to possible measures to limit uses by raising awareness, using legal restrictions and raising tariffs. From this, a number of policy changes can be suggested, to bring Qatar's water industry towards sustainability.

  14. Graduates of Higher Education in the Food and Agricultural Sciences: An Analysis of Supply/Demand Relationships. Volume I--Agriculture, Natural Resources, and Veterinary Medicine.

    ERIC Educational Resources Information Center

    Coulter, Kyle Jane, Ed.; Stanton, Marge, Ed.

    Information on the current and projected supply of and demand for graduates of higher education in the food and agricultural sciences is presented, based on federal data bases. The supply data are aggregated by 11 educational clusters, and employment demand data are aggregated by eight occupational clusters. Analysis reveals imbalances in the…

  15. Chicago's water market: Dynamics of demand, prices and scarcity rents

    USGS Publications Warehouse

    Ipe, V.C.; Bhagwat, S.B.

    2002-01-01

    Chicago and its suburbs are experiencing an increasing demand for water from a growing population and economy and may experience water scarcity in the near future. The Chicago metropolitan area has nearly depleted its groundwater resources to a point where interstate conflicts with Wisconsin could accompany an increased reliance on those sources. Further, the withdrawals from Lake Michigan is limited by the Supreme Court decree. The growing demand and indications of possible scarcity suggest a need to reexamine the pricing policies and the dynamics of demand. The study analyses the demand for water and develops estimates of scarcity rents for water in Chicago. The price and income elasticities computed at the means are -0.002 and 0.0002 respectively. The estimated scarcity rents ranges from $0.98 to $1.17 per thousand gallons. The results indicate that the current prices do not fully account for the scarcity rents and suggest a current rate with in the range $1.53 to $1.72 per thousand gallons.

  16. Water-Resources Manpower: Supply and Demand Patterns to 1980.

    ERIC Educational Resources Information Center

    Lewis, James E.

    Relating the supply of scientific manpower to the educational potential of the general population and the productive capacity of the educational system, this study disaggregates independent projections of scientific manpower supply and demand to yield projections for water resources manpower. This supply of engineers, natural scientists, and…

  17. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  18. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  19. SUPPLY AND DEMAND FOR TEACHERS OF VOCATIONAL AGRICULTURE IN THE UNITED STATES FOR THE 1966-1967 SCHOOL YEAR.

    ERIC Educational Resources Information Center

    WOODIN, RALPH J.

    AS PART OF A CONTINUING STUDY BY THE RECRUITMENT COMMITTEE OF THE AMERICAN VOCATIONAL ASSOCIATION AGRICULTURAL EDUCATION DIVISION, DATA WERE COLLECTED BY QUESTIONNAIRES FROM HEAD STATE SUPERVISORS IN 49 STATES AND TEACHER EDUCATORS IN 76 INSTITUTIONS ON THE 1966-67 SUPPLY AND DEMAND FOR VOCATIONAL AGRICULTURE TEACHERS. THE EXTENT OF THE SHORTAGE…

  20. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  1. A Study of Employment Demand for Agriculture and Agribusiness in New York State. Phase I Final Report.

    ERIC Educational Resources Information Center

    Berkey, Arthur L.; And Others

    Phase 1 of a two-phase study on employment demand in Agriculture/Agribusiness for New York State focused on data collection. Four objectives were to (1) compile a preliminary listing of current occupations by industry emphasizing grade levels, (2) review cross-coding systems for employment demand data, (3) develop a preliminary system for periodic…

  2. Projected water consumption in future global agriculture: scenarios and related impacts.

    PubMed

    Pfister, Stephan; Bayer, Peter; Koehler, Annette; Hellweg, Stefanie

    2011-09-15

    Global stress on water and land resources is increasing as a consequence of population growth and higher caloric food demand. Many terrestrial ecosystems have already massively been degraded for providing agricultural land, and water scarcity related to irrigation has damaged water dependent ecosystems. Coping with the food and biomass demand of an increased population, while minimizing the impacts of crop production, is therefore a massive upcoming challenge. In this context, we developed four strategies to deliver the biotic output for feeding mankind in 2050. Expansion on suitable and intensification of existing areas are compared to assess associated environmental impacts, including irrigation demand, water stress under climate change, and the productivity of the occupied land. Based on the agricultural production pattern and impacts of the strategies we identified the trade-offs between land and water use. Intensification in regions currently under deficit irrigation can increase agricultural output by up to 30%. However, intensified crop production causes enormous water stress in many locations and might not be a viable solution. Furthermore, intensification alone will not be able to meet future food demand: additionally, a reduction of waste by 50% along the food supply chain or expansion of agricultural land is required for satisfying current per-capita meat and bioenergy consumption. Suitable areas for such expansion are mainly located in Africa, followed by South America. The increased land stress is of smaller concern than the water stress modeled for the intensification case. Therefore, a combination of waste reduction with expansion on suitable pastures generally results as the best option, along with some intensification on selected areas. Our results suggested that minimizing environmental impacts requires fundamental changes in agricultural systems and international cooperation, by producing crops where it is most environmentally efficient and not

  3. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-08-01

    During the past decades, human water use more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water scarcity considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which is subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes and reservoirs by means of the global hydrological model PCR-GLOBWB. The results show a drastic increase in the global population living under water-stressed conditions (i.e., moderate to high water stress) due to the growing water demand, primarily for irrigation, which more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27 % of the global population were under water-stressed conditions for 1960. This number increased to 2.6 billion or 43 % for 2000. Our results indicate that increased water demand is the decisive factor for the heightened water stress, enhancing the intensity of water stress up to 200 %, while climate variability is often the main determinant of onsets for extreme events, i.e. major droughts. However, our results also suggest that in several emerging and developing economies (e.g., India, Turkey, Romania and Cuba) some of the past observed droughts were anthropogenically driven due to increased water demand rather than being climate-induced. In those countries, it can be seen

  4. Residential water demand with endogenous pricing: The Canadian Case

    NASA Astrophysics Data System (ADS)

    Reynaud, Arnaud; Renzetti, Steven; Villeneuve, Michel

    2005-11-01

    In this paper, we show that the rate structure endogeneity may result in a misspecification of the residential water demand function. We propose to solve this endogeneity problem by estimating a probabilistic model describing how water rates are chosen by local communities. This model is estimated on a sample of Canadian local communities. We first show that the pricing structure choice reflects efficiency considerations, equity concerns, and, in some cases, a strategy of price discrimination across consumers by Canadian communities. Hence estimating the residential water demand without taking into account the pricing structures' endogeneity leads to a biased estimation of price and income elasticities. We also demonstrate that the pricing structure per se plays a significant role in influencing price responsiveness of Canadian residential consumers.

  5. Surface and Groundwater Contribution in Convening with High Crop Water Demand in Indus Basin

    NASA Astrophysics Data System (ADS)

    Hafeez, Mohsin; Ullah, Kaleem; Hanjra, Munir Ahmad; Ullah Bodla, Habib; Niaz Ahmad, Rai

    2010-05-01

    The water resources of the Indus Basin, Pakistan are mostly exploited, however the demand for water is on a permanent rise due to population growth and associated urbanization and industrialization process. Owing to rapidly increasing population, the available surface water resources are not able to cope up with people's needs. The cropping intensities and cropping patterns have changed for meeting the increased demand of food and fiber in the Indus Basin of Pakistan. Cumulative effect of all sources water i.e rainfall, irrigation and groundwater resulted in the high cropping intensities in the Basin. Presently rainfall, surface irrigation and river supplies have been unsuccessful to convene irrigation water requirements in most areas. Such conditions due to high cropping intensities in water scarce areas have diverted pressure on groundwater, which has inconsistent potential across the Indus Basin both in terms of quality and quantity. Farmers are over exploiting the groundwater to meet the high crop water demand in addition to surface water supplies. The number of private tubewells has increased more than four-fold in the last 25 years. This increasing trend of tubewell installation in the basin, along with the uncontrolled groundwater abstraction has started showing aquifer stress in most of the areas. In some parts, especially along the tail of canal systems, water levels are showing a steady rate of decline and hence - the mining of aquifer storage. Fresh groundwater areas have higher tubewell density as compared to saline groundwater zones. Even in fresh groundwater areas, uncontrolled groundwater abstraction has shown sign of groundwater quality deterioration. Under such aquifer stress conditions, there is a need to understand groundwater usage for sustainable irrigated agriculture on long term basis. In this paper the contribution of groundwater in the irrigated agriculture of Lower Chenb Canal (LCC) East, Punjab, Pakistan is explored using a nodal network

  6. Water supply and demand in Sedgwick County, Kansas

    USGS Publications Warehouse

    Bevans, Hugh E.

    1989-01-01

    Water supplies in Sedgwick County, Kansas, are derived from surface--and groundwater resources. During 1985, public supply, irrigation, and self-supplied industry required 38% of the 56 ,500 acre-ft of appropriated surface water and 57% of the 187 ,800 acre-ft of appropriated groundwater. If the historic (1920-80) annual population growth rate (2.8%) continues, the 126,100 acre ft of water appropriated for public-water supplies should meet demand until 2015. The quantity of potentially available water supplies was estimated by summing those resources having less than 1.00 mg/L dissolved solids. Surface water resources that meet this criterion are the Little Arkansas and Ninnescah Rivers and Cheney Reservoir. Subtracting legislated minimum streamflows for the rivers from their mean annual streamflow volumes leaves 532,000 acre-ft, which combined with the annual sustained yield of Cheney Reservoir (40,000 acre-ft) provides an estimated 572,000 acre-ft of surface water annually. Groundwater that meets the criterion was estimated by summing the annual precipitation recharge available to unconsolidated deposits in the county (78,400 acre-ft) and in the Harvey County part of the Wichita well field (13,000 acre-ft). Although more groundwater is available, withdrawals exceeding annual precipitation recharge would cause water level declines. Because less than 4% of the potentially available surface water was used for supplies in 1985 and because about 120% of the groundwater recharge was used, surface water resources have a greater potential for meeting future water use demands. (USGS)

  7. The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand

    NASA Astrophysics Data System (ADS)

    Cooter, Ellen Jean

    The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the

  8. Water demand studies. [central and southern California regions

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.; Estes, J. E.; Churchman, C. W.; Johnson, C. W.; Huning, J. R.; Rozelle, K.; Hamilton, J.; Washburn, G.; Tinney, L. R.; Thaman, R. R.

    1973-01-01

    The areas of focus of the Santa Barbara and Riverside groups in conducting water demand studies are the central and southern California regional test sites, respectively. Within each test site, sub-areas have been selected for use in the making of detailed investigations. Within each of these sub-areas an in-depth evaluation is being made as to the capability of remote sensing systems to provide pertinent data relative to water demand phenomena. These more limited sub-areas are: (1) Kern County and the San Joaquin Basin; (2) Chino-Riverside Basin; and (3) the Imperial Valley. Rational for the selection of these subareas included the following: Much of the previous remote sensing research had been conducted in these areas and therefore a great deal of remote sensing imagery and pertinent ground truth for the areas was already available.

  9. Electric Water Heater Modeling and Control Strategies for Demand Response

    SciTech Connect

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.; Mayhorn, Ebony T.; Zhang, Yu; Samaan, Nader A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency support following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid

  10. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...

  11. [Research on the virtual water composition and virtual water trade for agriculture in Beijing].

    PubMed

    Wang, Hong-rui; Wang, Yan; Wang, Jun-hong; Dong, Yan-yan; Han, Zhao-xing

    2007-12-01

    Based on the irrigation norm of typical district and county, and revised by the isoline map of Chinese crops water demand, the change of crops program was analyzed as well as the agricultural water use and its GDP benefits. Then the virtual water was calculated for years. At last, the input-output method was used to calculate the trade of virtual water in Beijing. As the results, the virtual water for cereal crops has been decreasing in Beijing, from 1.832 x 10(9) m3 in 1990 to 4.283 x 10(8) m3 in 2004. Otherwise the virtual water for technical crops has been increasing, which is from 9.06 x 10(8) m3 in 1990 to 1.492 x 10(9) m3 in 2004. On the whole, the virtual water for crops has been decreasing in Beijing. From the angle of primary products Beijing is a virtual water importing area. Virtual water importing of annual average is 2.37 x 10(8) m3, which is about 5.93% of the total water of Beijing. Virtual water has been an important supplement of local real water of Beijing.

  12. Predicting the impact of water demand and river flow regulation over riparian vegetation through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, A.; Pons, C.; Frances, F.

    2013-12-01

    The vegetation of the riversides is a main part of the complex riparian ecosystems and has an important role maintaining the fluvial ecosystems. Biotic and abiotic interactions between the river and the riverbank are essential for the subsistence and the development of both ecosystems. In semi-arid Mediterranean areas, the riparian vegetation growth and distribution is especially controlled by the water accessibility, determining the limit between the lush riparian bands and the sparse upland. Human intervention can alter the river hydrology determining the riparian vegetation wellbeing and its distribution and, in consequence, affecting both riparian and fluvial ecosystems. Predictive models are necessary decision support tools for adequate river management and restoration initiatives. In this context, the RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation. RibAV is able to reproduce the vegetation performance on the riverside allowing the scenarios analysis in terms of vegetation distribution and wellbeing. In this research several flow regulation and water demand scenarios are proposed and the impacts over three plant functional types (PFTs) are analyzed. The PFTs group the herbaceous riparian plants, the woody riparian plants and the terrestrial vegetation. The study site is the Terde reach at the Mijares River, a 539m length reach located in a semi-arid Mediterranean area in Spain. The scenarios represent river flow alterations required to attend different human demands. These demands encompass different seasonality, magnitude and location. The seasonality is represented as hydroelectric (constant all over the year), urban (increased during the summer period) and agricultural demands (monthly seasonality). The magnitude is varied considering the 20%, the 40% and the 80% of the mean daily flow. Two locations are considered, upstream or downstream the study site. To attend the demands located

  13. Looking at the spatial and temporal distribution of global water availability and demand

    NASA Astrophysics Data System (ADS)

    Burek, Peter; Satoh, Yusuke; Wada, Yoshihide; Floerke, Martina; Eisner, Stefanie; Hanasaki, Naota; Wiberg, David

    2016-04-01

    The human water demand for agriculture, industry, energy and domestic is less than ten per cent of the global freshwater production of around 54,000 km3 per year. Water is distributed unequally in time and space. Not a new insight, but when we zoom in and look at country and regional level and monthly time scale the global picture is dispatching into areas and periods of water abundance and water scarcity, which we can quantify. This study uses the multi-model approach of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to build up a consistent set of global water scenarios based on Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs) for the IIASA Water Futures and Solutions Initiative (WFaS). The WFaS "fast-track" assessment applies three water scenarios based on feasible combinations of two different RCPs and three SSPs, then five different hydrological models are used to estimate water availability and three water use models to estimate water demand from different sectors. Results are shown as indicators for e.g. water stress and water dependency between countries for present time and for future projections up to 2050. The alterations to previous studies are the multi-model approach and the finer temporal monthly scale, showing the temporal and spatial diversity of water demand and availability. One example scenario is based on the combination of SSP2 and RCP6.0. While in 2010 17 countries out of 249 facing severe water stress on an annual basis, the number is likely to increase up to 26 countries by 2050. Looking at the monthly time dimension 51 countries with altogether 3.8 billion people are under severe water stress in at least one month in 2010. This will rise up to 57 countries and 4.9 billion people by 2050. Main driver of this development will be the rising water demand of a growing population and to a lesser extend the changing distribution of water availability. Model biases are inevitable in

  14. A Water Demand Management Strategy For The Namibian Tourism Sector

    NASA Astrophysics Data System (ADS)

    Schachtschneider, K.; Winter, K.

    The arid conditions of Namibia are forcing its decision-makers to resort to new wa- ter resource management approaches, including Water Demand Management (WDM). When Namibia achieved its independence from South Africa 1990, a new opportunity arose to rewrite certain restrictive laws and policies in order to bring about redress, development and transformation. The new Water Policy is one example in which the mindset is changed from a supply to a demand oriented water management ap- proach. Legal support for WDM within the new Water Act is a critical component that will support the implementation of WDM in all economic sectors, such as agri- culture, mining and tourism. It is argued that an appropriate WDM strategy should be designed specifically for each sector, once the typical water use patterns in a sec- tor are understood and key water resource managers at all levels are identified. The Namibian tourism sector is geographically dispersed and control over its operations is compounded by the fact that it is frequently located in extremely remote areas that are arid and ecologically sensitive. In general, WDM is rarely practised, because it is not yet supported by law and there are currently no institutional arrangements to con- trol water use in this geographically dispersed industrial sector through which WDM could be enforced either through metering and/or payments. Managers of tourist en- terprises undertake most of the water management themselves, and have been identi- fied as being crucial to the implementation of WDM strategies. A study of six tourist facilities determined the willingness and motivation of these managers to undertake various WDM initiatives. The study identified three factors which appear to influence the actions of managers, namely external controls, economics and company ethics. It is recommended that a tourism sector WDM strategy should focus on these three factors in order to transform the WDM aims and objectives on the policy level into

  15. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    the own-price elasticity of demand for irrigation water can be derived. To illustrate the method, the values of the marginal product of water deployed in the Musi catchment in India are used to determine an own-price elasticity of demand for irrigation water which has some positive value to producers of approximately -0.64. For water that is most highly valued, the elasticity was found to be highly elastic at -2.12, while less valued water used in agriculture was far more inelastic at -0.44. Finally, for almost 36% of water deployed in the catchment the elasticity was logically determined to be perfectly elastic.

  16. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  17. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  18. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  19. Wind increases "evaporative demand" but reduces plant water requirements

    NASA Astrophysics Data System (ADS)

    Schymanski, S. J.; Or, D.

    2015-12-01

    Transpiration is commonly conceptualised as a fraction of some potential rate, determined by stomatal or canopy resistance. Therefore, so-called "atmospheric evaporative demand" or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. An increase in potential evaporation (e.g. due to climate change) is generally believed to cause increased transpiration and/or vegetation water stress, aggravating drought effects. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at the leaf scale. In fact, in a range of field measurements, we found that water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, enabling plants to conserve water during photosynthesis. We estimate that the observed global decrease in terrestrial near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric carbon dioxide concentrations. We conclude that trends in wind speed and atmospheric carbon dioxide concentrations have to be considered explicitly for the estimation of drought effects on

  20. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  1. Hard water problems and soft water paths: The "supply versus demand" conundrum

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2012-12-01

    Water problems are complex, interdisciplinary, and have profound effects on human and ecosystem health and well-being. And they are classic "hard" problems. Good science is necessary to solve these problems, but it is rarely sufficient. One of these hard problems is that of "perception" and "frame" - traditional water planners and managers frame freshwater as a "supply" problem, i.e., how can we access and deliver sufficient quantities of water of suitable quality, to satisfy perceived demand. In recent years, however, as water scarcity in different regions has increased due to growing populations and expanding economies, "peak water" limits (including peak renewable, non-renewable, and ecological limits) have started to constrain development of traditional "supply" options (Figure 1). That has led to new thinking about the other side of the equation: what is meant by water "demand" and can demand management tools and approaches offer a way to solve water problems. The "soft path for water" addresses this issue of water demand directly, but implementing demand-side solutions faces serious barriers. This talk will expound on the soft path approach and its potential to overcome some of the gridlock and stagnation in current water policy debates, with examples from both developed and developing countries, and different economic sectors.umulative global reservoir storage (major reservoirs) from 1900 to 2010, showing leveling off of traditional supply expansion. Data from the GRanD database.

  2. Population momentum and the demand on land and water resources

    PubMed Central

    Fischer, G.; Heilig, G. K.

    1997-01-01

    Future world population growth is fuelled by two components: the demographic momentum, which is built into the age composition of current populations, and changes in reproductive behaviour and mortality of generations yet to come. This paper investigates, by major world regions and countries, what we know about population growth, what can be projected with reasonable certainty, and what is pure speculation. The exposition sets a frame for analysing demographic driving forces that are expected to increase human demand and pressures on land and water resources. These have been contrasted with current resource assessments of regional availability and use of land, in particular with estimates of remaining land with cultivation potential. In establishing a balance between availabilty of land resources and projected needs, the paper distinguishes regions with limited land and water resources and high population pressure from areas with abundant resources and low or moderate demographic demand. Overall, it is estimated that two-thirds of the remaining balance of land with rainfed cultivation potential is currently covered by various forest ecosystems and wetlands. The respective percentages by region vary between 23% in Southern Africa to 89% in South-Eastern Asia. For Latin America and Asia the estimated share of the balance of land with cultivation potential under forest and wetland ecosystems is about 70%, in Africa this is about 60%. If these were to be preserved, the remaining balance of land with some potential for rainfed crop cultivation would amount to some 550 million hectares. The regions which will experience the largest difficulties in meeting future demand for land resources and water, or alternatively have to cope with much increased dependency on external supplies, include foremost Western Asia, South-Central Asia, and Northern Africa. A large stress on resources is to be expected also in many countries of Eastern, Western and Southern Africa

  3. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  4. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  5. Irrigation water demand: A meta-analysis of price elasticities

    NASA Astrophysics Data System (ADS)

    Scheierling, Susanne M.; Loomis, John B.; Young, Robert A.

    2006-01-01

    Metaregression models are estimated to investigate sources of variation in empirical estimates of the price elasticity of irrigation water demand. Elasticity estimates are drawn from 24 studies reported in the United States since 1963, including mathematical programming, field experiments, and econometric studies. The mean price elasticity is 0.48. Long-run elasticities, those that are most useful for policy purposes, are likely larger than the mean estimate. Empirical results suggest that estimates may be more elastic if they are derived from mathematical programming or econometric studies and calculated at a higher irrigation water price. Less elastic estimates are found to be derived from models based on field experiments and in the presence of high-valued crops.

  6. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  7. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  8. Water demand management in Yemen and Jordan: addressing power and interests.

    PubMed

    Zeitoun, Mark; Allan, Tony; Al Aulaqi, Nasser; Jabarin, Amer; Laamrani, Hammou

    2012-01-01

    This paper investigates the extent to which entrenched interests of stakeholder groups both maintain water use practice, and may be confronted. The focus is on the agricultural sectors of Yemen and Jordan, where water resource policymakers face resistance in their attempts to reduce water use to environmentally sustainable levels through implementation of water demand management (WDM) activities. Some farmers in both countries that have invested in irrigated production of high-value crops (such as qat and bananas) benefit from a political economy that encourages increased rather than reduced water consumption. The resultant over-exploitation of water resources affects groups in unequal measures. Stakeholder analysis demonstrates that the more ‘powerful’ groups (chiefly the large landowners and the political elites, as well as the ministries of irrigation over which they exert influence) are generally opposed to reform in water use, while the proponents of WDM (e.g. water resource managers, environmental ministries and NGOs, and the international donor community) are found to have minimal influence over water use policy and decisionmaking. Efforts and ideas attempted by this latter group to challenge the status quo are classified here as either (a) influencing or (b) challenging the power asymmetry, and the merits and limits of both approaches are discussed. The interpretation of evidence suggests current practice is likely to endure, but may be more effectively challenged if a long-term approach is taken with an awareness of opportunities generated by windows of opportunity and the participation of ‘overlap groups’. PMID:22413173

  9. Water demand management in Yemen and Jordan: addressing power and interests.

    PubMed

    Zeitoun, Mark; Allan, Tony; Al Aulaqi, Nasser; Jabarin, Amer; Laamrani, Hammou

    2012-01-01

    This paper investigates the extent to which entrenched interests of stakeholder groups both maintain water use practice, and may be confronted. The focus is on the agricultural sectors of Yemen and Jordan, where water resource policymakers face resistance in their attempts to reduce water use to environmentally sustainable levels through implementation of water demand management (WDM) activities. Some farmers in both countries that have invested in irrigated production of high-value crops (such as qat and bananas) benefit from a political economy that encourages increased rather than reduced water consumption. The resultant over-exploitation of water resources affects groups in unequal measures. Stakeholder analysis demonstrates that the more ‘powerful’ groups (chiefly the large landowners and the political elites, as well as the ministries of irrigation over which they exert influence) are generally opposed to reform in water use, while the proponents of WDM (e.g. water resource managers, environmental ministries and NGOs, and the international donor community) are found to have minimal influence over water use policy and decisionmaking. Efforts and ideas attempted by this latter group to challenge the status quo are classified here as either (a) influencing or (b) challenging the power asymmetry, and the merits and limits of both approaches are discussed. The interpretation of evidence suggests current practice is likely to endure, but may be more effectively challenged if a long-term approach is taken with an awareness of opportunities generated by windows of opportunity and the participation of ‘overlap groups’.

  10. Operationalizing Demand-Driven Agricultural Research: Institutional Influences in a Public and Private System of Research Planning in the Netherlands

    ERIC Educational Resources Information Center

    Klerkx, Laurens; Leeuwis, Cees

    2009-01-01

    The trend towards demand-driven agricultural research has focused attention on the inclusion of farmers in research planning. Theoretically, this should enhance ownership and increase the applicability of research. However, in practice, several tensions emerge with regard to the operationalization of such "user-driven research planning systems",…

  11. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  12. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  13. Impact of water quality on chlorine demand of corroding copper.

    PubMed

    Lytle, Darren A; Liggett, Jennifer

    2016-04-01

    Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals. PMID:26826646

  14. High Resolution Map of Water Supply and Demand for North East United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2012-12-01

    Accurate estimates of water supply and demand are crucial elements in water resources management and modeling. As part of our NSF-funded EaSM effort to build a Northeast Regional Earth System Model (NE-RESM) as a framework to improve our understanding and capacity to forecast the implications of planning decisions on the region's environment, ecosystem services, energy and economic systems through the 21st century, we are producing a high resolution map (3' x 3' lat/long) of estimated water supply and use for the north east region of United States. Focusing on water demand, results from this study enables us to quantify how demand sources affect the hydrology and thermal-chemical water pollution across the region. In an attempt to generate this 3-minute resolution map in which each grid cell has a specific estimated monthly domestic, agriculture, thermoelectric and industrial water use. Estimated Use of Water in the United States in 2005 (Kenny et al., 2009) is being coupled to high resolution land cover and land use, irrigation, power plant and population data sets. In addition to water demands, we tried to improve estimates of water supply from the WBM model by improving the way it controls discharge from reservoirs. Reservoirs are key characteristics of the modern hydrologic system, with a particular impact on altering the natural stream flow, thermal characteristics, and biogeochemical fluxes of rivers. Depending on dam characteristics, watershed characteristics and the purpose of building a dam, each reservoir has a specific optimum operating rule. It means that literally 84,000 dams in the National Inventory of Dams potentially follow 84,000 different sets of rules for storing and releasing water which must somehow be accounted for in our modeling exercise. In reality, there is no comprehensive observational dataset depicting these operating rules. Thus, we will simulate these rules. Our perspective is not to find the optimum operating rule per se but to find

  15. Analysis of economic impacts of climate change on agricultural water management in Europe

    NASA Astrophysics Data System (ADS)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  16. Resilience building and water demand management for drought mitigation

    NASA Astrophysics Data System (ADS)

    Rockström, Johan

    Doughts resulting in complete crop failure are common in Eastern and Southern Africa. We are at present experiencing a regional crisis, where crop failures related to drought are threatening the lives of millions of people in several countries in Southern Africa. A major challenge is to seek ways of mitigating and coping with droughts in small-holder farming systems, particularly in semi-arid regions which are most hardly hit by the effects of drought. An entry-point for drought mitigation is to build water resilience of present rainfed farming systems. The water balance is a good starting point to assess the options. As has been argued for decades, the term drought is very debated, and the boundaries between droughts being politically and biophysically defined is not sharp. Often crop failures and social suffering are blamed on drought, while in reality the causes are more complex than only a decline in rainfall. A challenge is to find management strategies to deal with the unreliable and extremely variable rainfall in savannah environments. In this paper examples of small-scale management practices to mitigate drought in semi-arid rainfed farming are presented. Focus is on water harvesting systems for supplemental irrigation. It is shown that with relatively simple and cheap means it is possible to build resilience to deal with water scarcity in semi-arid farming systems. If such measures are combined with efforts of maximising plant water availability and plant water uptake capacity, there are good chances of mitigating certain droughts. Conservation tillage systems have proven to maximise rainfall infiltration and storage of water in the soil, enabling even crops lacking supplemental irrigation to bridge severe dry spells. Interestingly, building resilience in rainfed farming systems is also a means of water demand management. More crop is produced per drop of water in resilient farming systems, which reduces the amount of water needed to produce food. Despite

  17. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  18. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  19. Meeting multiple demands: Water transaction opportunities for environmental benefits promoting adaptation to climate change

    NASA Astrophysics Data System (ADS)

    McCoy, Amy

    2015-04-01

    In arid regions, the challenge of balancing water use among a diversity of sectors expands in lock step with conditions of water stress that are exacerbated by climate variability, prolonged drought, and growing water-use demands. The elusiveness of achieving a sustainable balance under conditions of environmental change in the southwestern United States is evidenced by reductions in both overall water availability and freshwater ecosystem health, as well as by recent projections of shortages on the Colorado River within the next five years. The water sustainability challenge in this region, as well as drylands throughout the world, can therefore be viewed through the lens of water stress, a condition wherein demands on land and water -- including the needs of freshwater ecosystems -- exceed reliable supplies, and the full range of water needs cannot be met without tradeoffs across multiple uses. Water stress influences not only ecosystems, but a region's economy, land management, quality of life, and cultural heritage -- each of which requires water to thrive. With respect to promoting successful adaptation to climate change, achieving full water sustainability would allow for water to be successfully divided among water users -- including municipalities, agriculture, and freshwater ecosystems -- at a level that meets the goals of water users and the governing body. Over the last ten to fifteen years, the use of transactional approaches in the western U.S., Mexico, and Australia has proven to be a viable management tool for achieving stream flow and shallow aquifer restoration. By broad definition, environmental water transactions are an equitable and adaptable tool that brings diverse stakeholders to the table to facilitate a fair-market exchange of rights to use water in a manner that benefits both water users and the environment. This talk will present a basic framework of necessary stakeholder engagement, hydrologic conditions, enabling laws and policies

  20. Developing a demand model integrating end uses of water (DMEUW): structure and process of integration.

    PubMed

    Sarker, R C; Gato-Trinidad, S

    2015-01-01

    The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption. PMID:25746644

  1. The Management Options of Water for the Development of Agriculture in Dry Areas

    NASA Astrophysics Data System (ADS)

    Irshad, M.; Inoue, M.; Ashraf, M.; Al-Busaidi, A.

    The natural resource base of land, water and vegetation in arid and semi arid areas is highly fragile and greatly vulnerable to degradation especially in the developing countries. The demand for water is constantly increasing as a result of population growth and the expansion of agriculture and industry. Fresh water resources are limited in the arid and semi-arid areas whereas the existing water resources are often overused and misused. The lack of water management in the arid areas generated numerous economic, social and ecological issues. Agriculture currently accounts for nearly 70-80% of water consumption in the developing countries. The productivity of water use in agriculture needs to enhance in order both to avoid exacerbating the water crisis and to prevent considerable food shortages. More efficient use of existing water resources and adequate management of soils could prove to be the effective tool for improving arid lands. The technologies, skills and capital resources required to overcome the poor and extreme distribution of water resources through storage and transfer are not available and widely used. As a consequence there is critically low access to water for agriculture, drinking and sanitation and the environment. Poor access to water is among the leading factors hindering sustainable development in semi-arid and arid regions. Conventional irrigation management should be revised to ensure maximum water productivity instead of land productivity for dry farming systems. Under conditions of increasing water scarcity, the key to sustaining rural livelihoods is improving the productivity and reliability of rainfed agriculture by using limited rainfall more productively, through optimal on-farm soil, water and crop management practices that conserve soil moisture and increase water use efficiency. Conserving and augmenting water supplies through rainwater harvesting and precision irrigation provide new opportunity for productive dry land farming

  2. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  3. Improving World Agricultural Supply and Demand Estimates by Integrating NASA Remote Sensing Soil Moisture Data into USDA World Agricultural Outlook Board Decision Making Environment

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; de Jeu, R. A.; Doraiswamy, P. C.; Kempler, S. J.; Shannon, H. D.

    2009-12-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by developing monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main objective of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE. Soil moisture is a primary data gap at WAOB. Soil moisture data, generated by the Land Parameter Retrieval Model (LPRM, developed by NASA GSFC and Vrije Universiteit Amsterdam) and customized to WAOB's requirements, will be directly integrated into GLADSE, as well as indirectly by first being integrated into USDA Agricultural Research Service (ARS)'s Environmental Policy Integrated Climate (EPIC) crop model. The LPRM-enhanced EPIC will be validated using three major agricultural regions important to WAOB and then integrated into GLADSE. Project benchmarking will be based on retrospective analyses of WAOB's analog year comparisons. The latter are between a given year and historical years with similar weather patterns. WAOB is the focal point for economic intelligence within the USDA. Thus, improving WAOB's agricultural estimates by integrating NASA satellite observations and model outputs will visibly demonstrate the value of NASA resources and maximize the societal benefits of NASA investments.

  4. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  5. Army industrial, landscaping, and agricultural water use

    SciTech Connect

    Stoughton, Kate McMordie; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  6. Satellite Mapping of Agricultural Water Requirements in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Guzman, A.; Hiatt, S.; Post, K.; Adhikari, D.; Rosevelt, C.; Keefauver, S.; Miller, G.; Michaelis, A.; Votava, P.; Temesgen, B.; Frame, K.; Nemani, R. R.

    2013-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The Satellite Irrigation Management Support (SIMS) framework utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations from the California Irrigation Management Information System to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We also summarize results from ongoing studies to quantify the benefits of using satellite data to enhance ET-based irrigation management in terms of total applied water, crop yield, and nitrate leaching.

  7. Workshop 7 (synthesis): trade-offs in water for food and environmental security--urban/agricultural trade-off.

    PubMed

    Rahman, Ausaf-ur; Kadi, Mohammad Ait; Rockström, Johan

    2002-01-01

    Severe stresses are being generated by increasing demand for competing water uses, above all between agriculture and urban needs. Amongst potential solutions considered, two dominated the workshop: virtual water and water reuse. Virtual water implies indirect water use: water-poor countries importing food rather than attempting self-sufficiency and thereby keeping their real water resources for economically more beneficial uses. There are serious political and economic risks associated; one proposed solution is an international virtual water trading council. Improved forms of water reuse, particularly use of treated urban wastewater for irrigation, can maximise the use made of limited supply.

  8. Improving the local relevance of large scale water demand predictions: the way forward

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; Reynaud, Arnaud; de Roo, Ad

    2016-04-01

    Securing adequate availability of fresh water is of vital importance for socio-economic development of present and future Europe. Due to strong heterogeneity in climate conditions, some regions receive an abundant supply of water, where other areas almost completely depend on limited river discharge from upstream catchments. Furthermore, water demand differs greatly between regions due to differences in population density and local presence of intensive water using industries and agriculture. This results in many situations all across Europe where competition between water users translates into relative scarcity and economic damage. Additionally it is expected that inter-related economic and demographic developments, as well as climate change are to only further increase the need for efficient management of our water resources in the future. Successful policy making for such complex problems requires a good understanding of the system and reliable forecasting of conditions. The extent and complexity of the water use system however, stands in high contrast with the poor state of available data and lack of reliable predictions for this multi-disciplinary topic. Although the matching of available water to its demand is a European-wide problem, the amount of data with pan-European coverage is limited and usually with a national resolution at best. This is hindering researchers and policy makers because it usually makes large scale water demand predictions little relevant due to the strong regional heterogenic nature of the problem. We present in our study a first attempt of European-wide water demand predictions based on consistent regional data and econometric methods for the household and industry sector. We gathered data on water consumption, water prices and other relevant variables at the highest spatial detail available from national statistical offices and other organizational bodies. This database provides the most detailed up to date picture of present water

  9. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  10. Impact of climate change on evaluation of future water demand in the Euphrates and Aleppo basin, Syria

    NASA Astrophysics Data System (ADS)

    Alazzy, A. A.; Lü, H.; Zhu, Y.

    2014-09-01

    Syria is one of the Middle Eastern countries that suffer from scarcity in water resources availability, which affects the growth and development of economic activities. In this research, the Water Evaluation and Planning (WEAP) model is applied to evaluate future water demand in the Euphrates and Aleppo basin (EAB), Syria, by taking into account the climate change that may affect water demand in the domestic, industrial, and agricultural sectors until 2050. The climate change projections of temperature and precipitation were assessed using a new version of the MAGICC/SCENGEN tool with two greenhouse gas emissions scenarios (A2 and B2) of the Intergovernmental Panel on Climate Change (IPCC). Based on the results of IPCC (A2, B2) scenarios projections, the EAB basin is likely to face a decrease in precipitation amount by 21 % according to A2 and by 12 % according to B2, while temperature would increase by about 2.5 °C according to A2 and by 2 °C according to B2. Within the three scenarios adopted in this research: (1) available technology development; (2) increasing treated wastewater in agriculture and industry sectors; (3) and two combined scenarios, the results of the simulation demonstrated that the proposed scenarios are effective for reducing stressors on EAB's water resources, but are not sustainable to bridge the gap between demand-supply by the year 2050, which leads to the deterioration of the available water resources.

  11. Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya.

    PubMed

    Sima, Laura C; Kelner-Levine, Evan; Eckelman, Matthew J; McCarty, Kathleen M; Elimelech, Menachem

    2013-03-01

    In rapidly growing urban areas of developing countries, infrastructure has not been able to cope with population growth. Informal water businesses fulfill unmet water supply needs, yet little is understood about this sector. This paper presents data gathered from quantitative interviews with informal water business operators (n=260) in Kisumu, Kenya, collected during the dry season. Sales volume, location, resource use, and cost were analyzed by using material flow accounting and spatial analysis tools. Estimates show that over 76% of the city's water is consumed by less than 10% of the population who have water piped into their dwellings. The remainder of the population relies on a combination of water sources, including water purchased directly from kiosks (1.5 million m(3) per day) and delivered by hand-drawn water-carts (0.75 million m(3) per day). Energy audits were performed to compare energy use among various water sources in the city. Water delivery by truck is the highest per cubic meter energy demand (35 MJ/m(3)), while the city's tap water has the highest energy use overall (21,000 MJ/day). We group kiosks by neighborhood and compare sales volume and cost with neighborhood-level population data. Contrary to popular belief, we do not find evidence of price gouging; the lowest prices are charged in the highest-demand low-income area. We also see that the informal sector is sensitive to demand, as the number of private boreholes that serve as community water collection points are much larger where demand is greatest.

  12. Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya

    PubMed Central

    Sima, Laura C.; Kelner-Levine, Evan; Eckelman, Matthew J.; McCarty, Kathleen M.; Elimelech, Menachem

    2013-01-01

    In rapidly growing urban areas of developing countries, infrastructure has not been able to cope with population growth. Informal water businesses fulfill unmet water supply needs, yet little is understood about this sector. This paper presents data gathered from quantitative interviews with informal water business operators (n=260) in Kisumu, Kenya, collected during the dry season. Sales volume, location, resource use, and cost were analyzed by using material flow accounting and spatial analysis tools. Estimates show that over 76% of the city's water is consumed by less than 10% of the population who have water piped into their dwellings. The remainder of the population relies on a combination of water sources, including water purchased directly from kiosks (1.5 million m3 per day) and delivered by hand-drawn water-carts (0.75 million m3 per day). Energy audits were performed to compare energy use among various water sources in the city. Water delivery by truck is the highest per cubic meter energy demand (35 MJ/m3), while the city's tap water has the highest energy use overall (21,000 MJ/day). We group kiosks by neighborhood and compare sales volume and cost with neighborhood-level population data. Contrary to popular belief, we do not find evidence of price gouging; the lowest prices are charged in the highest-demand low-income area. We also see that the informal sector is sensitive to demand, as the number of private boreholes that serve as community water collection points are much larger where demand is greatest. PMID:23543887

  13. Substitutions between Water and other Agricultural Inputs - An Empirical Analysis

    NASA Astrophysics Data System (ADS)

    Cai, X.; You, J.

    2005-12-01

    Increasing concerns about water availability, environmental water requirement and water quality have led to an increased importance of quantitative assessments of the substitution between water and other agricultural inputs at the margin for agricultural and environmental policy analysis. This paper explores the potential substitutions between water and other agricultural inputs in irrigated agriculture through an empirical study. The study include (1) an analysis based on a crop production function for net substitution at the crop field and farm levels; and (2) a numerical study for gross substitution in the context of water allocation in river basins thorough an integrated hydrologic-economic river basin model. Along with the empirical analysis and numerical illustrations, we discuss several theoretical issues relevant to substitutions between water and other inputs, such as (1) selection of indicators of elasticity of substitution, depending on farmers' concerns on yield, production, or profit; (2) appropriateness of net or gross substitution analysis, which is relevant to the spatial scale of the analysis (field, district or region), as well as farmers' concerns; and (3) output impact of substitutions. Water is both a natural resource and an economic input, and the constraints on water include those from both physical and socio-economic aspects. Therefore, the output impact of the substitution between water and other inputs should be extended from a pure economic concept to the context of integrated hydrologic-economic systems.

  14. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  15. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  16. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  17. Improving Spatial Resolution of Agricultural Water Use Estimation Using ALOS AVNIR-2 Imagery

    NASA Astrophysics Data System (ADS)

    Alexandridis, T. K.; Chemin, Y.; Cherif, I.; Tsakoumis, G.; Galanis, G.; Arampatzis, G.; Zalidis, G. C.; Silleos, N. G.; Stavrinos, E.

    2008-11-01

    Estimating agricultural water use is an issue of primary importance in the Mediterranean. At the same time, several advanced algorithms have been developed, which couple Earth Observation data in thermal, visible and near-infrared wavelengths with a few meteorological measurements to provide a close approximation to the actual water use. However, due to the detailed cropping pattern of the Greek agricultural landscape, higher resolution satellite imagery is necessary, a demand which may not be met by the available thermal infrared imagery (Landsat 5 TM and Terra/ASTER). This study investigates the contribution of ALOS AVNIR-2 images to estimate agricultural water consumption in high spatial resolution. Two methods were tested, the Surface Energy Balance Algorithm for Land and the remote sensing crop coefficient method. The results were compared against similar products derived with Terra/MODIS and Landsat TM images, used as reference. Comparisons were based on a pixel level, with a random dataset for pixel to pixel comparison and on a canal command area level, with statistical comparison of the water use estimations. Merging of the two datasets was based on the modified Brovey technique, which has the advantage of maintaining the original values, but redistributes them in a higher resolution space. Concluding, ALOS AVNIR-2 significantly underestimated agricultural water use with the crop coefficient method, but was successful in providing the element of high spatial detail to the MODIS derived result, proving to be a useful input in modelling water use of irrigated Greek basins.

  18. Data-driven behavioural modelling of residential water consumption to inform water demand management strategies

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Cominola, Andrea; Alshaf, Ahmad; Castelletti, Andrea; Anda, Martin

    2016-04-01

    The continuous expansion of urban areas worldwide is expected to highly increase residential water demand over the next few years, ultimately challenging the distribution and supply of drinking water. Several studies have recently demonstrated that actions focused only on the water supply side of the problem (e.g., augmenting existing water supply infrastructure) will likely fail to meet future demands, thus calling for the concurrent deployment of effective water demand management strategies (WDMS) to pursue water savings and conservation. However, to be effective WDMS do require a substantial understanding of water consumers' behaviors and consumption patterns at different spatial and temporal resolutions. Retrieving information on users' behaviors, as well as their explanatory and/or causal factors, is key to spot potential areas for targeting water saving efforts and to design user-tailored WDMS, such as education campaigns and personalized recommendations. In this work, we contribute a data-driven approach to identify household water users' consumption behavioural profiles and model their water use habits. State-of-the-art clustering methods are coupled with big data machine learning techniques with the aim of extracting dominant behaviors from a set of water consumption data collected at the household scale. This allows identifying heterogeneous groups of consumers from the studied sample and characterizing them with respect to several consumption features. Our approach is validated onto a real-world household water consumption dataset associated with a variety of demographic and psychographic user data and household attributes, collected in nine towns of the Pilbara and Kimberley Regions of Western Australia. Results show the effectiveness of the proposed method in capturing the influence of candidate determinants on residential water consumption profiles and in attaining sufficiently accurate predictions of users' consumption behaviors, ultimately providing

  19. Water governance, agricultural development and community-level resilience to climate change

    NASA Astrophysics Data System (ADS)

    Evans, T.; Cox, M.; McCord, P.; Caylor, K. K.; Washington-Ottombre, C.; Soderberg, K.; Sadri, S.

    2012-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial research focuses on agricultural decision-making and practices to assess current and future demand for water based on crop types and irrigation practices. Equally important is the role of environmental governance as expressed through institutions which, in case the case of water systems, are the rules implemented to allocate water resources across different user groups. In water-limited environments, institutions play a critical role in addressing the challenges posed by water demand exceeding water supply. A pressing global concern is whether institutions that evolved over the last several decades are well suited to meet potential future water demands in the context of climate change and increasing rates of water abstraction. A related question is whether social and cultural conditions enable adaptive governance that can modify institutions to different water availability scenarios. In order to assess cross-scale resilience of households and communities reliant on irrigated agriculture to climate change, methodological tools are needed to characterize these issues of "institutional fit" and institutional change. We have developed a framework for characterizing institutional dynamics as a platform for the cross-site analysis of human-water governance. To demonstrate the utility of this framework we present a coding process applying this framework to irrigation schemes in Kenya. We present findings from research on rural agriculturalists in Kenya investigating irrigation practices and institutions designed to allocate water across communities. Initial indications are that current institutional regimes are suitable for current hydrological

  20. Climate change, water, and agriculture: a study of two contrasting regions

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.; Zhang, X.

    2009-12-01

    We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on

  1. Agricultural Water Conservation via Conservation Tillage and Thermal Infrared

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia water conservation is an issue that involves all citizens. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  2. Thermal Infrared Imagery for Better Water Conservation in Agricultural Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation is an issue that involves all citizens in Georgia. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  3. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  4. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    PubMed

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-16

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

  5. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    PubMed

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  6. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    PubMed Central

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  7. Integrating agricultural policies and water policies under water supply and climate uncertainty

    NASA Astrophysics Data System (ADS)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  8. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  9. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  10. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  11. Remotely Sensed Estimates of Evapotranspiration in Agricultural Areas of Northwestern Nevada: Drought, Reliance, and Water Transfers

    NASA Astrophysics Data System (ADS)

    Bromley, Matthew

    The arid landscape of northwestern Nevada is punctuated by agricultural communities that rely on water primarily supplied by the diversion of surface waters and secondarily by groundwater resources. Annual precipitation in the form of winter snowfall largely determines the amount of surface water that is available for irrigation for the following agricultural growing season. During years of insufficient surface water supplies, particular basins can use groundwater in order to meet irrigation needs. The amount of water used to irrigate agricultural land is influenced by land use changes, such as fallowing, and water right transfers from irrigation to municipal use. To evaluate agricultural water consumption with respect to variations in weather, water supply, and land use changes, monthly estimates of evapotranspiration (ET) were derived from Landsat multispectral optical and thermal imagery over a eleven-year period (2001 to 2011) and compared to variations in weather, water supply, and land use across four hydrographic areas in northwestern Nevada. Monthly ET was estimated using a land surface energy balance model, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), using Landsat 5 and Landsat 7 imagery combined with local atmospheric water demand estimates. Estimates of net ET were created by subtracting monthly precipitation from METRIC-derived ET, and seasonal estimates were generated by combining monthly ET for April-October (the regional agricultural growing season). Results highlight that a range of geographic, climatic, hydrographic, and anthropogenic factors influence ET. Hydrographic areas such as Mason Valley have the ability to mitigate deficiencies in surface water supplies by pumping supplemental groundwater, thereby resulting in low annual variability in ET. Conversely, the community of Lovelock has access to limited upstream surface water storage and is restricted by groundwater that is saline and unsuitable for

  12. Water demand management in times of drought: What matters for water conservation

    NASA Astrophysics Data System (ADS)

    Maggioni, Elena

    2015-01-01

    Southern California is subject to long droughts and short wet spells. Its water agencies have put in place voluntary, mandatory, and market-based conservation strategies since the 1980s. By analyzing water agencies' data between 2006 and 2010, this research studies whether rebates for water efficient fixtures, water rates, or water ordinances have been effective, and tests whether structural characteristics of water agencies have affected the policy outcome. It finds that mandates to curb outdoor water uses are correlated with reductions in residential per capita water usage, while water rates and subsidies for water saving devices are not. It also confirms that size is a significant policy implementation factor. In a policy perspective, the transition from a water supply to a water demand management-oriented strategy appears guided by mandates and by contextual factors such as the economic cycle and the weather that occur outside the water governance system. Three factors could improve the conservation effort: using prices as a conservation tool, not only as a cost recovering instrument; investing in water efficient tools only when they provide significant water savings; supporting smaller agencies in order to give them opportunities to implement conservation strategies more effectively or to help them consolidate.

  13. Water availability, use, and estimated future water demand in the upper Duck River basin, middle Tennessee

    USGS Publications Warehouse

    Hutson, S.S.

    1993-01-01

    The Duck River in Tennessee supplied about 18.9 Mgal of water/d to Tullahoma, Manchester, Lewisburg, Columbia, and other cities. Municipal water use increased to 20.9 Mgal/d in 1990; projections indicate increases in demand for the next 25 yr. Socioeconomic and water use data from the basin for 1989 were used to calibrate the water use models within the Institute for Water Resources Municipal and Industrial Needs (IWR-MAIN) System. The models were used to estimate future water use demand in the basin for the years 1995, 2000, and 2015. Projections showed demands of about 24.3 Mgal/d in 1995; 28.3 Mgal/d in 2000; and 39.0 Mgal/d in 2015. Increases in withdrawals from the Duck River downstream from Shelbyville could reduce the minimum flow at Columbia from 119 to 83.8 cu feet/s. The study also included an overview of the potential for developing groundwater resources in the area. Statistical analyses of yields to 5,938 wells showed that the highest yields are in Coffee County, but 75 percent of the wells in Coffee County produced less than 30 gal/m. However, measurements of streamflow losses along tributaries to the Duck River suggest that the potential for development of groundwater does exist at specific sites.

  14. Water transfers, agriculture, and groundwater management: a dynamic economic analysis.

    PubMed

    Knapp, Keith C; Weinberg, Marca; Howitt, Richard; Posnikoff, Judith F

    2003-04-01

    Water transfers from agricultural to urban and environmental uses will likely become increasingly common worldwide. Many agricultural areas rely heavily on underlying groundwater aquifers. Out-of-basin surface water transfers will increase aquifer withdrawals while reducing recharge, thereby altering the evolution of the agricultural production/groundwater aquifer system over time. An empirical analysis is conducted for a representative region in California. Transfers via involuntary surface water cutbacks tilt the extraction schedule and lower water table levels and net benefits over time. The effects are large for the water table but more modest for the other variables. Break-even prices are calculated for voluntary quantity contract transfers at the district level. These prices differ considerably from what might be calculated under a static analysis which ignores water table dynamics. Canal-lining implies that districts may gain in the short-run but lose over time if all the reduction in conveyance losses is transferred outside the district. Water markets imply an evolving quantity of exported flows over time and a reduction in basin net benefits under common property usage. Most aquifers underlying major agricultural regions are currently unregulated. Out-of-basin surface water transfers increase stress on the aquifer and management benefits can increase substantially in percentage terms but overall continue to remain small. Conversely, we find that economically efficient management can mitigate some of the adverse consequences of transfers, but not in many circumstances or by much. Management significantly reduced the water table impacts of cutbacks but not annual net benefit impacts. Neither the break-even prices nor the canal-lining impacts were altered by much. The most significant difference is that regional water users gain from water markets under efficient management.

  15. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  16. Estimating household water demand using revealed and contingent behaviors: Evidence from Vietnam

    NASA Astrophysics Data System (ADS)

    Cheesman, Jeremy; Bennett, Jeff; Son, Tran Vo Hung

    2008-11-01

    This article estimates the water demand of households using (1) municipal water exclusively and (2) municipal water and household well water in the capital city of Dak Lak Province in Vietnam. Household water demands are estimated using a panel data set formed by pooling household records of metered municipal water consumption and their stated preferences for water consumption contingent on hypothetical water prices. Estimates show that households using municipal water exclusively have very price inelastic demand. Households using municipal and household well water have more price elastic, but still inelastic, simultaneous water demand and treat municipal water and household well water as substitutes. Household water consumption is influenced by household water storage and supply infrastructure, income, and socioeconomic attributes. The demand estimates are used to forecast municipal water consumption by households in Buon Ma Thuot following an increase to the municipal water tariff to forecast the municipal water supply company's revenue stream following a tariff increase and to estimate the consumer surplus loss resulting from municipal water supply shortages.

  17. Household demand for water in Sweden with implications of a potential tax on water use

    NASA Astrophysics Data System (ADS)

    HöGlund, Lena

    1999-12-01

    The purpose of this paper is to estimate empirically the effects of a water tax on water use and on the size and stability of the tax revenues. A tax exceeding value-added tax can be motivated on efficiency grounds when there are environmental external costs of water use and when water is a scarce resource. A household demand function for water is estimated using community level data for 282 (out of 286) Swedish communities studied annually over the period 1980-1992. Static and dynamic demand functions are estimated using panel data methods. The results show a long-run price elasticity of -0.10 in marginal price models and -0.20 in average price models. The findings imply that a tax of 1 Swedish Kronor (SEK) m-3 of water used (corresponding to a 5% increase in the mean average price) would generate ˜600 million SEK in tax revenues per year when levied on all households in Sweden. The water consumption would, however, only be reduced by ˜1%.

  18. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  19. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  20. Estimation of Soil Type Effects on Water Demand for Cultivated Wheat Fields Using RS and GIS

    NASA Astrophysics Data System (ADS)

    Ozcan, O.; Musaoglu, N.; Ormeci, C.; Seker, D. Z.

    2011-12-01

    The loss of water by evaporation as both transpiration from plants and evaporation from the underlying soil is an important factor in water resources and hydrological studies and for estimating irrigation water requirements when planning, designing, and scheduling irrigation systems, especially in arid and semi-arid conditions such as the large regions of South-Eastern Anatolia in Turkey. Improved irrigation water management requires accurate scheduling of irrigations which in turn requires an accurate calculation of daily crop evapotranspiration. Components of a satellite-based system for estimating the crop water requirements of the study area have been combined, applied, and tested against field data. Calculated reference crop evapotranspiration and crop coefficients provide a practical method for estimating actual crop evapotranspiration (Et) throughout a growing season. The aim of the study is to determine the relationship between different soil groups and water demands in different cultivated wheat fields by estimating actual crop evapotranspiration of wheat crop by using Remote Sensing and Geographical Information System (GIS) techniques. Data used in this study have been obtained from real-time monitoring areas for wheat in the area of South-Eastern Anatolia region (Turkey), describing crop growth stages with leaf area index (LAI). In the study, the SPOT 5 images for different months of growing season were used to determine the Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) for areas under wheat crop. The relationship between vegetation indices and crop coefficients (Kc) of wheat for corresponding months were developed and crop coefficients were generated for each month of wheat crop season. A spectral crop coefficient for wheat that applies over a wide range of agricultural soil reflectance, obtained from SAVI provides to estimate the amount of water removed by the crop from the active root zone. Daily reference

  1. System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts.

    PubMed

    Qi, Cheng; Chang, Ni-Bin

    2011-06-01

    Accurate prediction of municipal water demand is critically important to water utilities in fast-growing urban regions for drinking water system planning, design, and water utility asset management. Achieving the desired prediction accuracy is challenging, however, because the forecasting model must simultaneously consider a variety of factors associated with climate changes, economic development, population growth and migration, and even consumer behavioral patterns. Traditional forecasting models such as multivariate regression and time series analysis, as well as advanced modeling techniques (e.g., expert systems and artificial neural networks), are often applied for either short- or long-term water demand projections, yet few can adequately manage the dynamics of a water supply system because of the limitations in modeling structures. Potential challenges also arise from a lack of long and continuous historical records of water demand and its dependent variables. The objectives of this study were to (1) thoroughly review water demand forecasting models over the past five decades, and (2) propose a new system dynamics model to reflect the intrinsic relationship between water demand and macroeconomic environment using out-of-sample estimation for long-term municipal water demand forecasts in a fast-growing urban region. This system dynamics model is based on a coupled modeling structure that takes into account the interactions among economic and social dimensions, offering a realistic platform for practical use. Practical implementation of this water demand forecasting tool was assessed by using a case study under the most recent alternate fluctuations of economic boom and downturn environments.

  2. Low-flow appliances and household water demand: an evaluation of demand-side management policy in Albuquerque, New Mexico.

    PubMed

    Price, James I; Chermak, Janie M; Felardo, Jeff

    2014-01-15

    Residential rebate programs for low-flow water devices have become increasingly popular as a means of reducing urban water demand. Although program specifics vary, low-flow rebates are available in most U.S. metropolitan areas, as well as in many smaller municipalities. Despite their popularity, few statistical analyses have been conducted regarding the effects of low-flow rebates on household water use. In this paper, we consider the effects of rebates from the Albuquerque Bernalillo County Water Utility Authority (ABCWUA). Using panel regression techniques with a database of rebate recipients, we estimate the marginal effects of various low-flow devices on household water demand. Results indicate a negative correlation between household water use and the presence of most low-flow devices, after controlling for water price and weather conditions. Low-flow toilets have the greatest impact on water use, while low-flow washing machines, dishwashers, showerheads, and xeriscape have smaller but significant effects. In contrast, air conditioning systems, hot water recirculators, and rain barrels have no significant impact on water use. We also test for possible rebound effects (i.e. whether low-flow appliances become less-effective over time due to poor rates of retention or behavioral changes) and compare the cost effectiveness of each rebate using levelised-costs. We find no evidence of rebound effects and substantial variation in levelised-costs, with low-flow showerheads being the most cost-effective device under the current ABCWUA rebate program. The latter result suggests that water providers can improve the efficiency of rebate programs by targeting the most cost-effective devices.

  3. Water demands for electricity generation in the U.S.: Modeling different scenarios for the water–energy nexus

    SciTech Connect

    Liu, Lu; Hejazi, Mohamad I.; Patel, Pralit L.; Kyle, G. Page; Davies, Evan; Zhou, Yuyu; Clarke, Leon E.; Edmonds, James A.

    2015-05-01

    Water withdrawal for electricity generation in the United States accounts for approximately half the total freshwater withdrawal. With steadily growing electricity demands, a changing climate, and limited water supplies in many water-scarce states, meeting future energy and water demands poses a significant socio-economic challenge. Employing an integrated modeling approach that can capture the energy-water interactions at regional and national scales is essential to improve our understanding of the key drivers that govern those interactions and the role of national policies. In this study, the Global Change Assessment Model (GCAM), a technologically-detailed integrated model of the economy, energy, agriculture and land use, water, and climate systems, was extended to model the electricity and water systems at the state level in the U.S. (GCAM-USA). GCAM-USA was employed to estimate future state-level electricity generation and consumption, and their associated water withdrawals and consumption under a set of six scenarios with extensive details on the generation fuel portfolio, cooling technology mix, and their associated water use intensities. Six scenarios of future water demands of the U.S. electric-sector were explored to investigate the implications of socioeconomics development and growing electricity demands, climate mitigation policy, the transition of cooling systems, electricity trade, and water saving technologies. Our findings include: 1) decreasing water withdrawals and substantially increasing water consumption from both climate mitigation and the conversion from open-loop to closed-loop cooling systems; 2) open trading of electricity benefiting energy scarce yet demand intensive states; 3) within state variability under different driving forces while across state homogeneity under certain driving force ; 4) a clear trade-off between water consumption and withdrawal for the electricity sector in the U.S. The paper discusses this withdrawal

  4. Water and energy footprint of irrigated agriculture in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  5. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  6. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  7. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  8. Development of a Demand Sensitive Drought Index and its Application for Agriculture over the Conterminous United States.

    NASA Astrophysics Data System (ADS)

    Etienne, E.; Devineni, N.; Khanbilvardi, R.; Lall, U.

    2015-12-01

    A new drought index is introduced that explicitly considers both water supply and demand. It can be applied to aggregate demand over a geographical region, or for disaggregated demand related to a specific crop or use. Consequently, it is more directly related than existing indices, to potential drought impacts on different segments of society, and is also suitable to use as an index for drought insurance programs targeted at farmers growing specific crops. An application of the index is presented for the drought characterization at the county level for the aggregate demand of eight major field crops in the conterminous United States. Two resiliency metrics are developed and applied with the drought index time series. In addition, a clustering algorithm is applied to the onset times and severity of the worst historical droughts in each county, to identify the spatial structure of drought, relative to the cropping patterns in each county. The geographic relationship of drought severity, drought recovery relative to duration, and resilience to drought is identified, and related to attributes of precipitation and also cropping intensity, thus distinguishing the relative importance of water supply and demand in determining potential drought outcomes.

  9. Development of a Demand Sensitive Drought Index and its application for agriculture over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Etienne, Elius; Devineni, Naresh; Khanbilvardi, Reza; Lall, Upmanu

    2016-03-01

    A new drought index is introduced that explicitly considers both water supply and demand. It can be applied to aggregate demand over a geographical region, or for disaggregated demand related to a specific crop or use. Consequently, it is more directly related than existing indices, to potential drought impacts on different segments of society, and is also suitable to use as an index for drought insurance programs targeted at farmers growing specific crops. An application of the index is presented for the drought characterization at the county level for the aggregate demand of eight major field crops in the conterminous United States. Two resiliency metrics are developed and applied with the drought index time series. In addition, a clustering algorithm is applied to the onset times and severity of the worst historical droughts in each county, to identify the spatial structure of drought, relative to the cropping patterns in each county. The geographic relationship of drought severity, drought recovery relative to duration, and resilience to drought is identified, and related to attributes of precipitation and also cropping intensity, thus distinguishing the relative importance of water supply and demand in determining potential drought outcomes.

  10. A new model for long-term global water demand projection

    NASA Astrophysics Data System (ADS)

    Chen, J.; Xing, B.; Shi, H.; Zhang, B.

    2015-12-01

    Rational projection of water demand is critically important to the future development of society. Achieving the desired accuracy for long-term water demand projection (WDP) is challenging due to the complex and uncertain relationships between water demand and various socio-economic indicators. At the same time, traditional forecasting methods, such as multivariate statistical analysis and time series analysis methods, are not adequate for long-term WDP because of the limitations in modelling structures. In this study, a five-staged WDP model is proposed and applied to the global WDPs. The hypothesis for the new model is that water demand is related to socio-economic development level. From the historic data in the Western Europe and United States, the five stages of water demand can be clearly observed. These stages are marked by evident change in water demand trend, and are categorized by the per capita GDP at that stage. The proposed WDP model is then validated with historic water consumption data in United Kingdom and Hong Kong, and the proposed model can explain the historic water consumption well. The developed five-staged WDP model is applied to the WDPs in Hong Kong and Pearl River Basin. Further, using the newly developed water consumption algorithm, this study investigates the global future water demand.

  11. Agricultural hydrology and water quality II: Introduction to the featured collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  12. Sectoral Vulnerabilities to Changing Water Resources: Current and Future Tradeoffs between Supply and Demand in the Conterminous U.S

    NASA Astrophysics Data System (ADS)

    Meldrum, J.; Averyt, K.; Caldwell, P.; Sun, G.; Huber-lee, A. T.; McNulty, S.

    2012-12-01

    Assessing the sustainability of human activities depends, in part, on the availability of water supplies to meet the demands of those activities. Thermoelectric cooling, agriculture, and municipal uses all compete for water supplies, but each sector differs in its characteristic ratio of water consumption versus withdrawals. This creates different implications for contributing to water supply stress and, conversely, vulnerabilities within each sector to changing water supplies. In this study, we use two measures of water stress, relating to water withdrawals and to water consumption, and calculate the role of each of these three sectors in contributing to the two different measures. We estimate water stress with an enhanced version of the Water Supply Stress Index (WaSSI), calculating the ratio of water demand to water supply at the 8-digit Hydrologic Unit Code (HUC) scale (Sun et al. 2008, 2011; Caldwell et al. 2011). Current water supplies are based on an integrated water balance and flow routing model of the conterminous United States, which accounts for surface water supply, groundwater supply, and major return flows. Future supplies are based on simulated regional changes in streamflow in 2050 from an ensemble of 12 climate models (Milly et al. 2005). We estimate water demands separately for agriculture, municipal uses, and thermoelectric cooling, with the first two based on Kenny et al. (2005) and the last on the approach of Averyt et al. (2011). We find substantial regional variation not only in the overall WaSSI for withdrawals and consumption but also in contribution of the three water use sectors to that total. Results suggest that the relative vulnerabilities of different sectors of human activity to water supply stress vary spatially and that policies for alleviating that stress must consider the specific, regional context of the tradeoffs between competing water demands. Ref's: Averyt, K., Fisher, J., Huber-Lee, A., Lewis, A., Macknick, J., Madden, N

  13. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-07-14

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  14. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  15. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  16. Economic concepts to address future water supply-demand imbalances in Iran, Morocco and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hellegers, Petra; Immerzeel, Walter; Droogers, Peter

    2013-10-01

    In Middle East and North Africa (MENA) countries, renewable groundwater and surface water supply are limited while demand for water is growing rapidly. Climate change is expected to increase water demand even further. The main aim of this paper is to evaluate the water supply-demand imbalances in Iran, Morocco and Saudi Arabia in 2040-2050 under dry, average and wet climate change projections and to show on the basis of the marginal cost and marginal value of water the optimum mix of supply-side and demand-side adjustments to address the imbalance. A hydrological model has been used to estimate the water supply-demand imbalance. Water supply and demand curves have been used to explore for which (marginal value of) water usage the marginal cost of supply-enhancement becomes too expensive. The results indicate that in the future in all cases, except in Iran under the wet climate projection, the quantity of water demanded has to be reduced considerably to address the imbalance, which is indeed what is currently happening already.

  17. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  18. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales.

  19. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  20. The challenge of climate change in Spain: Water resources, agriculture and land

    NASA Astrophysics Data System (ADS)

    Vargas-Amelin, Elisa; Pindado, Pablo

    2014-10-01

    Climate change effects are becoming evident worldwide, but some water scarce regions present higher vulnerability. Spain, located in the Mediterranean region, is expected for instance to be highly vulnerable given its unbalanced distribution between water resources availability and existing demands. This article presents an introduction to the main threats of climate change mainly on water resources, but it also assesses effects in interlinked areas such as agriculture, soil and land management. Contents focus on measures and initiatives promoted by the central government and address efforts to establish multi-sectoral coordinating bodies, specific adaptation plans and measures for the different sectors. The article highlights some political aspects, such as the complexity of involved competent authorities in water and land management, the need to strengthen public participation and the conflicts arising from the defence of regional interests. It also makes a link to current EU policies; summarises foreseeable problems derived from climate change effects, and provides some recommendations in the different areas covered.

  1. Evaluation for sustainable agriculture water use from River, Reservoirs and Groundwater in the 20th century

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Yamada, H.; Hanasaki, N.; Kanae, S.

    2011-12-01

    High water stress due to economic growth and climate change (ex. global warming) will be falling into 2 billion people to 4 billion people in the future. Agricultural water use accounting for about 70% of global water consumption might continue to increase due to production of foods and biofuels occurred by population growth in the future. In particular, water demand, food and biofuel production have an inextricable link. It is very important to evaluate these relationship for sustainable water use from past to the future. In this study, we focused on the objective to assess the impact of water withdrawal from various sources (stream flow, medium-sized reservoirs and nonrenewable nonlocal blue water) in the 20th century by considering irrigation area and climate change. Irrigation water withdrawal is the most important water use sector accounting for about 90% of total water withdrawal. First, we make the global spatial database of equipped irrigation area change and medium-sized reservoirs capacity. Then, water withdrawal from each sources for 50 years from 1950 to 2000 were simulated in global-scale at a resolution of 1.0 degree x 1.0 degree using an integrated global water resources model (hereafter, the H08 model). The H08 model can simulate both natural or anthropogenic water flow and anthropogenic water withdrawals. For comparison with our results, distribution of agricultural, industrial and domestic water withdrawals from 1950 to 2000 were estimated by distributing the country-based withdrawal data from AQUASTAT with irrigation area, urban population and total population, respectively. Groundwater withdrawal was then estimated by distributing the country-based withdrawal data based on statistical data from WRI, IGRAC and AQUASTAT with the total water withdrawal. As a result, agricultural water withdrawal change from nonrenewable nonlocal blue water during the past 50 years agreed well with the observed groundwater abstraction based on statistical data. In

  2. Responses to changing multiple-use demands: New directions for water resource planning and management

    SciTech Connect

    Sale, M.J.; Wadlington, R.O.

    1994-06-01

    Abstracts of papers from the American Water Resources Association Spring Symposium are presented in this text. Topics discussed include: multiple-use demands on water resources; water quality; recreational water activities; management of water resources are described for the Tennessee, Missouri, Columbia, and Sacramento-San Joaquin Rivers; wetlands and drainage; erosion control; environmental transport of pollutants; multiobjective optimization; flood management; ground water assessment; and ground water issues. Individual papers are catalogued separately.

  3. Optimizing Virtual Land and Water Resources Flow Through Global Trade to Meet World Food and Biofuel Demand

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2013-12-01

    Biofuels is booming in recent years due to its potential contributions to energy sustainability, environmental improvement and economic opportunities. Production of biofuels not only competes for land and water with food production, but also directly pushes up food prices when crops such as maize and sugarcane are used as biofuels feedstock. Meanwhile, international trade of agricultural commodities exports and imports water and land resources in a virtual form among different regions, balances overall water and land demands and resource endowment, and provides a promising solution to the increasingly severe food-energy competition. This study investigates how to optimize water and land resources uses for overall welfare at global scale in the framework of 'virtual resources'. In contrast to partial equilibrium models that usually simulate trades year-by-year, this optimization model explores the ideal world where malnourishment is minimized with optimal resources uses and trade flows. Comparing the optimal production and trade patterns with historical data can provide meaningful implications regarding how to utilize water and land resources more efficiently and how the trade flows would be changed for overall welfare at global scale. Valuable insights are obtained in terms of the interactions among food, water and bioenergy systems. A global hydro-economic optimization model is developed, integrating agricultural production, market demands (food, feed, fuel and other), and resource and environmental constraints. Preliminary results show that with the 'free market' mechanism and land as well as water resources use optimization, the malnourished population can be reduced by as much as 65%, compared to the 2000 historical value. Expected results include: 1) optimal trade paths to achieve global malnourishment minimization, 2) how water and land resources constrain local supply, 3) how policy affects the trade pattern as well as resource uses. Furthermore, impacts of

  4. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  5. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    NASA Astrophysics Data System (ADS)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  6. The relationship between irrigation water demand and drought in the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wang, Weihao; Peng, Shaoming; Jiang, Guiqin; Wu, Jian

    2016-10-01

    In order to organize water for drought resistance reasonably, we need to study the relationship between irrigation water demand and meteorological drought in quantitative way. We chose five typical irrigation districts including the Qingtongxia irrigation district, Yellow River irrigation districts of Inner Mongolia in the upper reaches of the Yellow River, the Fen river irrigation district and the Wei river irrigation district in the middle reaches of the Yellow River and the irrigation districts in the lower reaches of the Yellow River as research area. Based on the hydrology, meteorology, groundwater and crop parameters materials from 1956 to 2010 in the Yellow River basin, we selected reconnaissance drought index (RDI) to analyze occurrence and evolution regularity of drought in the five typical irrigation districts, and calculated the corresponding irrigation water demand by using crop water balance equation. The relationship of drought and irrigation water demand in each typical irrigation district was studied by using grey correlation analysis and relevant analysis method, and the quantitative relationship between irrigation water demand and RDI was established in each typical irrigation district. The results showed that the RDI can be applied to evaluate the meteorological drought in the typical irrigation districts of the Yellow River basin. There is significant correlation between the irrigation water demand and RDI, and the grey correlation degree and correlation coefficient increased with increasing crops available effective rainfall. The irrigation water demand of irrigation districts in the upstream, middle and downstream of the Yellow River basin presented different response degrees to drought. The irrigation water demand increased 105 million m3 with the drought increasing one grade (RDI decreasing 0.5) in the Qingtongxia irrigation district and Yellow River irrigation districts of Inner Mongolia. The irrigation water demand increased 219 million m3

  7. Water stress as a trigger of demand change: exploring the implications for drought planning

    NASA Astrophysics Data System (ADS)

    Garcia, M. E.; Islam, S.; Portney, K. E.

    2015-12-01

    Drought in the Anthropocene is a function of both supply and demand. Despite its importance, demand is typically incorporated into planning models exogenously using a single scenario of demand change over time. Alternatively, demand is incorporated endogenously in hydro-economic models based on the assumption of rationality. However, actors are constrained by limited information and information processing capabilities, casting doubt on the rationality assumption. Though the risk of water shortage changes incrementally with demand growth and hydrologic change, significant shifts in management are punctuated and often linked to periods of stress. The observation of lasting decreases in per capita demands in a number of cities during periods of water stress prompts an alternate hypothesis: the occurrence of water stress increases the tendency of cities to promote and enforce efficient technologies and behaviors and the tendency of users to adopt them. We show the relevance of this hypothesis by building a model of a hypothetical surface water system to answer the following question: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? The model links the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). Under SOP, demand is fulfilled unless available supply drops below demand; under HP, water releases are reduced in anticipation of a deficit to decrease the risk of a large shortfall. The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result per capita demand decrease during periods of water stress are more frequent but less drastic and the additive effect of small adjustments decreases the tendency of the system to overshoot available supplies.

  8. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  9. Scenarios of Global Municipal Water-Use Demand Projections over the 21st Century

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav; Davies, Evan; Eom, Jiyong

    2013-03-06

    This paper establishes three future projections of global municipal water use to the end of the 21st century: A reference business-as usual (BAU) scenario, a High Technological Improvement (High Tech) scenario and a Low Technological Improvement (Low Tech) scenario. A global municipal water demand model is constructed using global water use statistics at the country-scale, calibrated to the base year of 2005, and simulated to the end of the 21st century. Since the constructed water demand model hinges on socioeconomic variables (population, income), water price, and end-use technology and efficiency improvement rates, projections of those input variables are adopted to characterize the uncertainty in future water demand estimates. The water demand model is linked to the Global Change Assessment Model (GCAM), a global change integrated assessment model. Under the reference scenario, the global total water withdrawal increases from 466 km3/year in 2005 to 941 km3/year in 2100,while withdrawals in the high and low tech scenarios are 321 km3/ year and 2000 km3/ year, respectively. This wide range (321-2000 km3/ year) indicates the level of uncertainty associated with such projections. The simulated global municipal demand projections are most sensitive to population and income projections, then to end-use technology and efficiency projections, and finally to water price. Thus, using water price alone as a policy measure to reduce municipal water use may substantiate the share of municipal water price of people’s annual incomes.

  10. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  11. Optimization of integrated water quality management for agricultural efficiency and environmental conservation.

    PubMed

    Fleifle, Amr; Saavedra, Oliver; Yoshimura, Chihiro; Elzeir, Mohamed; Tawfik, Ahmed

    2014-01-01

    The scarcity of water resources in Egypt has necessitated the use of various types of lower quality water. Agricultural drainage water is considered a strategic reserve for meeting increasing freshwater demands. In this study, a novel model series was applied to a drainage basin in the Nile Delta to optimize integrated water quality management for agriculture and the aquatic environment. The proposed model series includes a waste load allocation model, an export coefficient model, a stream water quality model, and a genetic algorithm. This model series offers an optimized solution for determining the required removal levels of total suspended solids (TSS), the chemical oxygen demand (COD) at point and non-point pollution sources, and the source flows that require treatment to meet a given water quality target. The model series was applied during the summer and winter to the El-Qalaa basin in the western delta of the Nile River. Increased pollutant removal and treated fractions at point and non-point sources reduced violations of the TSS standards from 732.6 to 238.9 mg/L in summer and from 543.1 to 380.9 mg/L in winter. Likewise, violations of the COD standards decreased from 112.4 mg/L to 0 (no violations) in summer and from 91.7 mg/L to no violations in winter. Thus, this model is recommended as a decision support tool for determining a desirable waste load allocation solution from a trade-off curve considering costs and the degree of compliance with water quality standards.

  12. Water availability and demand in West Africa in the 21st century: impacts of climate change and population growth

    NASA Astrophysics Data System (ADS)

    Wisser, Dominik; Oyerinde, Ganiyu; Ibrahim, Moussa; Ibrahim, Boubacar

    2014-05-01

    The countries in West Africa are highly dependent on rainfed agriculture. Changes in the magnitude and timing of precipitation will affect the agricultural output and the economies as a whole. Irrigation is increasingly being considered an important adaptation option to help improve food security of the population that is expected to double in less than 50 years. West Africa is one of the regions where general circulation models (GCM) show the highest disagreements in the direction of future trends of precipitation, making assessments of water availability and the potential for irrigation a difficult task. We use output from a set of dynamically downscaled climate data sets from regional climate modes (RCM) from the CORDEX CMIP5 collection to drive WBMplus, a macroscale hydrological model and simultaneously calculate water demand (livestock, domestic, and irrigation) and availability for a set of land use, and socio economic scenarios around the 2050's for river basins in the ten countries participating in the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) project. Contrary to earlier results from GCMs, the set of RCMs suggest a consistent increase (~5-10%) in annual precipitation for a majority of the land area in West Africa that translates to slight increases in river flow under natural conditions for most river basins and a opportunities for increasing irrigation during the dry season. However, water demand is projected to more than double for livestock and domestic needs as a result of population growth. Demand for irrigation will rise sharply if irrigation is expanded from the current area (representing less than 3% of all croplands in the region), closer to its potential which is multiple times higher than the existing area. The pressures on water resources in the region will therefore be dominated by pressures arising from increased demand rather than changes in the availability of water and can potentially lead to

  13. Energy development scenarios and water demands and supplies: an overview

    USGS Publications Warehouse

    Kilpatrick, F.A.

    1977-01-01

    On the basis of average mean annual flows, ample water exists in the upper Missouri River basin for energy development. The lack of storage and diversion works upstream as well as State compacts preclude the ready use of this surplus water. These surplus flows are impounded in mainstream reservoirs on the Missouri downstream from coal mining areas but could be transported back at some expense for use in Wyoming and North Dakota. There are limited water supplies available for the development of coal and oil shale industries in the upper Colorado River Basin. Fortunately oil shale mining, retorting and reclamation do not require as much water as coal conversion; in-situ oil shale retorting would seem to be particularly desirable in the light of reduced water consumption. Existing patterns of energy production, transport, and conversion suggest that more of the coal to be mined out West is apt to be transmitted to existing load centers rather than converted to electricity or gas in the water-short West. Scenarios of development of the West 's fossil fuels may be overestimating the need for water since they have assumed that major conversion industries would develop in the West. Transport of coal to existing users will require all means of coal movement including unit trains, barges, and coal slurry pipelines. The latter is considered more desirable than the development of conversion industries in the West when overall water consumption is considered. (Woodard-USGS)

  14. CHARACTERIZING PIPE WALL DEMAND: IMPLICATIONS FOR WATER QUALITY MODELING

    EPA Science Inventory

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical or microbiological in nature. Perhaps one of the most serious aspects of water qua...

  15. Impact of Water Quality on Chlorine Demand of Corroding Copper

    EPA Science Inventory

    Copper is the most widely used material in drinking water premise plumbing systems. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect ag...

  16. Long-term fluctuations of water resources availability and its implications for a sustainable management of arid agricultural coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Schütze, Niels

    2015-04-01

    Freshwater scarcity and ongoing population growth associated with increasing water demands are major challenges for water management in coastal arid regions. Excessive use of groundwater for irrigation in agriculture puts those regions at risk of saltwater intrusion which limits agricultural opportunities. Additionally, some arid regions are characterised by a cyclic climate in which longer periods of dry years are followed by longer periods of wet years. This results also in long-term fluctuations of groundwater replenishment rates and water resources availability which may reach the same order of magnitude like long-term average values. Therefore, these long-term fluctuations should be considered for water resources management planning and operation. In order to evaluate their impact a simulation-based integrated water management system for coastal arid regions is used. The management system couples a groundwater module, assessing the water resources availability, and an agricultural module, controlling irrigation and cultivation within an optimisation module which allow for multi-objective optimisation of the water management regarding profitable and sustainable water resources and agricultural management on farm and regional scale. To achieve a fast and robust operation of the water management system, surrogate models are used which emulate the behaviour of physically based process models and a hierarchical optimisation scheme is applied. The water management system is driven by different scenarios of the water resources availability which were generated by using time series analyses and modelling of local groundwater replenishment rates. An application is performed for the south Batinah coastal region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Several scenarios of water resources availability are used to compare long-term and adaptive

  17. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    PubMed

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    2016-01-01

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes. PMID:27642830

  18. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    PubMed

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    2016-01-01

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.

  19. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    NASA Astrophysics Data System (ADS)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  20. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and

  1. Climate Change Impacts and Adaptation on Water Resources and Agricultural Diversity of the Upper Rio Grande Watershed

    NASA Astrophysics Data System (ADS)

    Rouhi Rad, M.; Hurd, B. H.

    2012-12-01

    Climate change can alter the balance of the water resources systems. It can both change the amount and the timing of the streamflow available in a basin and the amount of water consumed at the end point due to higher temperatures. These changes in the supply and demand sides can result in a different allocation of water and different price for water in basin scale based on economic principles. In a previous study Hurd and Coonrod (2012) modeled the impacts of climate change on the water related economic activities of the Rio Grande. In their study they assumed an aggregated benefit function for the agricultural sector. In another study on the Rio Grande Brinegar and Ward (2009) modeled the agricultural diversity of the Rio Grande within the framework of a hydro-economic model. This study builds upon and extends the previous studies by developing a model that can more carefully assess the role of adaptation in agriculture. Specially, the current study adds quadratic production functions for each crop. These production functions add a major benefit to the modeling of the hydro-economic system, namely that of adding diversity and expanded resolution to the agricultural sector. Using this production function the model includes both land and water as independent variables in the agricultural sector and, therefore this extension of the model has more flexibility to represent adaptive responses to climatic changes by including the capacity to change the crop mix and acreages as well as the water applied i.e. the capacity to deficit irrigate. The results of this study show that the agricultural sector can lose nearly a third of its water and more than 30% of its net economic benefits as a result of possible climate changes. It also shows as the climate become drier and population grows then economic forces will encourage agriculture to move towards more beneficial crops and reduce total acreage and in some cases applied water.

  2. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  3. Green and blue water demand from large-scale land acquisitions in Africa

    PubMed Central

    Johansson, Emma Li; Fader, Marianela; Seaquist, Jonathan W.; Nicholas, Kimberly A.

    2016-01-01

    In the last decade, more than 22 million ha of land have been contracted to large-scale land acquisitions in Africa, leading to increased pressures, competition, and conflicts over freshwater resources. Currently, 3% of contracted land is in production, for which we model site-specific water demands to indicate where freshwater appropriation might pose high socioenvironmental challenges. We use the dynamic global vegetation model Lund–Potsdam–Jena managed Land to simulate green (precipitation stored in soils and consumed by plants through evapotranspiration) and blue (extracted from rivers, lakes, aquifers, and dams) water demand and crop yields for seven irrigation scenarios, and compare these data with two baseline scenarios of staple crops representing previous water demand. We find that most land acquisitions are planted with crops that demand large volumes of water (>9,000 m3⋅ha−1) like sugarcane, jatropha, and eucalyptus, and that staple crops have lower water requirements (<7,000 m3⋅ha−1). Blue water demand varies with irrigation system, crop choice, and climate. Even if the most efficient irrigation systems were implemented, 18% of the land acquisitions, totaling 91,000 ha, would still require more than 50% of water from blue water sources. These hotspots indicate areas at risk for transgressing regional constraints for freshwater use as a result of overconsumption of blue water, where socioenvironmental systems might face increased conflicts and tensions over water resources. PMID:27671634

  4. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  5. Multiple-Use Site Demand Analysis: An Application to the Boundary Waters Canoe Area Wilderness.

    ERIC Educational Resources Information Center

    Peterson, George L.; And Others

    1982-01-01

    A single-site, multiple-use model for analyzing trip demand is derived from a multiple site regional model based on utility maximizing choice theory. The model is used to analyze and compare trips to the Boundary Waters Canoe Area Wilderness for several types of use. Travel cost elasticities of demand are compared and discussed. (Authors/JN)

  6. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  7. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  8. Improving water use in agriculture. Experiences in the Middle East and North Africa

    SciTech Connect

    Tuijl, W.V.

    1993-08-01

    As water becomes more scarce, many countries are under pressure to conserve water, especially in the agricultural sector. This paper examines strategies that save water in river basins, irrigation projects, and on farms throughout the Middle East and North Africa. Countries elsewhere can use these suggestions in their own water conservation strategies. Improved surface irrigation techniques and micro-irrigation systems are evaluated. These systems use sprinkler, drip/trickle, or micro-spray methods. The author reviews the preliminary work that is needed to install modern irrigation technologies. He describes the role that governments must play to improve the infrastructure and institutions that affect water use. He also provides detailed case studies of efficient irrigation practices in Cyprus, Israel, and Jordan. These case studies describe the conditions that made better irrigation technology a necessity. They look at ways to plan for development, management, and utilization of water in the face of growing demand. Key topics include how to oversee water rights, adopt essential land reforms, and install a graduated system of water pricing and allocation. The study also recommends projects in water conservation and research.

  9. Analytical optimization of demand management strategies across all urban water use sectors

    NASA Astrophysics Data System (ADS)

    Friedman, Kenneth; Heaney, James P.; Morales, Miguel; Palenchar, John

    2014-07-01

    An effective urban water demand management program can greatly influence both peak and average demand and therefore long-term water supply and infrastructure planning. Although a theoretical framework for evaluating residential indoor demand management has been well established, little has been done to evaluate other water use sectors such as residential irrigation in a compatible manner for integrating these results into an overall solution. This paper presents a systematic procedure to evaluate the optimal blend of single family residential irrigation demand management strategies to achieve a specified goal based on performance functions derived from parcel level tax assessor's data linked to customer level monthly water billing data. This framework is then generalized to apply to any urban water sector, as exponential functions can be fit to all resulting cumulative water savings functions. Two alternative formulations are presented: maximize net benefits, or minimize total costs subject to satisfying a target water savings. Explicit analytical solutions are presented for both formulations based on appropriate exponential best fits of performance functions. A direct result of this solution is the dual variable which represents the marginal cost of water saved at a specified target water savings goal. A case study of 16,303 single family irrigators in Gainesville Regional Utilities utilizing high quality tax assessor and monthly billing data along with parcel level GIS data provide an illustrative example of these techniques. Spatial clustering of targeted homes can be easily performed in GIS to identify priority demand management areas.

  10. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss

  11. Managing ground-water contamination from agricultural nitrates

    SciTech Connect

    Halstead, J.M.

    1989-01-01

    Ground-water contamination from agricultural nitrates poses potential adverse health effects to a large segment of the rural population of the United States. Contamination is especially prevalent in livestock intensive areas, which produce large quantities of animal waste with substantial nitrogen content. In this study, potential management strategies for reducing nitrate contamination of ground water from agricultural sources were examined using an economic-physical model of representative dairy farm in Rockingham County, Virginia. A mixed-integer programming model with stochastic constraints on nitrate loading to ground water and silage production was used. Results of the model indicate that substantial reductions in current nitrate loadings are possible with relatively minor impacts on farmers' net returns through the use of currently practiced approaches of cost sharing for manure storage facility construction and nutrient management planning. Study results indicate that a wide range of policy options exist for reducing nitrate loading to ground water; these reductions, while varying in cost, do no appear to come at the expense of eliminating the economic viability of the county dairy sector.

  12. Satellite mapping of crop water demand in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface delivery of irrigation water in the San Joaquin Valley is becoming increasingly restricted due to urbanization and environmental regulation, and the strain is projected to worsen under most climate change scenarios. Remote sensing technology offers the potential to monitor crop evapotranspi...

  13. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.; Pratt, Richard M.; Chassin, Forrest S.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated to a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).

  14. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  15. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  16. Simulating long-term past changes in the balance between water demand and availability and assessing their main drivers at the river basin management scale

    NASA Astrophysics Data System (ADS)

    Fabre, J.; Ruelland, D.; Dezetter, A.; Grouillet, B.

    2014-11-01

    The aim of this study was to assess the balance between water demand and availability and its spatial and temporal variability from 1971 to 2009 in the Herault (2500 km2, France) and the Ebro (85 000 km2, Spain) catchments. Natural streamflow was evaluated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Herault basin and to 11 major dams in the Ebro basin. Urban water demand was estimated from population and monthly unit water consumption data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Finally, a series of indicators comparing water supply and water demand at strategic resource and demand nodes were computed at a 10 day time step. Variations in water stress in each catchment over the past 40 years were successfully modeled, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Observed changes in discharge were explained by separating human and hydro-climatic pressures on water resources: respectively 20 and 3% of the decrease in the Ebro and the Herault discharges were linked to human-induced changes. Although key areas of the Herault basin were shown to be highly sensitive to hydro-climatic variability, the balance between water uses and availability in the Ebro basin appears to be more critical, owing to high agricultural pressure on water resources. The proposed modeling framework is currently being used to assess water stress under climatic and socio-economic prospective scenarios. Further research will investigate the effectiveness of adaptation policies aimed at maintaining the balance between water use and availability.

  17. Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Reza; Akhond-Ali, Ali-Mohammad; Roozbahani, Abbas; Fattahi, Rouhollah

    2016-06-01

    Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025-2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  18. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  19. Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Chen, Z. M.; Zeng, L.; Qiao, H.; Chen, B.

    2016-03-01

    With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water withdrawals by Chinese industry and investigates demand-driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water-saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.

  20. Climate change impacts on water yields and demands in south-western Australia

    NASA Astrophysics Data System (ADS)

    McFarlane, Don; Stone, Roy; Martens, Sasha; Thomas, Jonathan; Silberstein, Richard; Ali, Riasat; Hodgson, Geoff

    2012-12-01

    SummaryA climate shift in the mid 1970s reduced rainfalls in south-western Australia by 10-15% and inflows into reservoirs that supply the city of Perth (population 1.8 m) by more than half. The region has a Mediterranean climate, similar to other areas in the world experiencing reductions in rainfall and rises in temperatures. Rainfall-runoff modelling has indicated that streamflows may reduce by a further quarter by 2030 or by half if a dry future climate is experienced. Groundwater levels on the coastal plain in south-western Australia have fallen since the mid 1970s where unconfined aquifers are covered with perennial vegetation, including under the main water supply aquifer for Perth. Modelled projections are that groundwater levels in most areas will continue to fall through to 2030 under most future climate scenarios. Projected streamflows and groundwater levels indicate reduced water availability but these need to be converted to projected water yields, i.e. the amount of water that can be diverted for consumptive use. This paper reports how projections of future streamflow and groundwater levels were used to estimate 2030 divertible water yields for a 62,500 km2 area in south-western Australia. These yields were then compared with estimates of water demands in 2030 to identify areas of water surplus and deficit under clearly defined assumptions. The methods used to define future yields are based on sets of rules that could be varied by water managers if desired. Surface water yields are estimated to decrease by about 24% (possible range of -4% to -49%) which is similar to the projected reduction in runoff (-25% with a range of -7% to -42%). Groundwater yields are projected to fall by only about 2% (range of +2% to -7%) because of reductions in evapotranspiration and drainage losses as watertables fall where groundwater levels are close to the surface. In addition, recharge remains relatively high under cleared areas used for non-irrigated agriculture. In

  1. Retrospective Analog Year Analyses Using NASA Satellite Precipitation and Soil Moisture Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan; Mladenova, Iliana; Fang, Fan

    2010-01-01

    A primary goal of the U.S. Department of Agriculture (USDA) is to expand markets for U.S. agricultural products and support global economic development. The USDA World Agricultural Outlook Board (WAOB) supports this goal by coordinating monthly World Agricultural Supply and Demand Estimates (WASDE) for the U.S. and major foreign producing countries. Because weather has a significant impact on crop progress, conditions, and production, WAOB prepares frequent agricultural weather assessments, in a GIS-based, Global Agricultural Decision Support Environment (GLADSE). The main goal of this project, thus, is to improve WAOB's estimates by integrating NASA remote sensing soil moisture observations and research results into GLADSE (See diagram below). Soil moisture is currently a primary data gap at WAOB.

  2. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  3. Crop-specific seasonal estimates of irrigation water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  4. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  5. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-09-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.

  6. A case study of ethanol water demand during industrial phase in Brazil

    NASA Astrophysics Data System (ADS)

    Hernandes, T.; Scarpare, F. V.; Guarenghi, M.; Pereira, T.; Galdos, M. V.

    2012-12-01

    Thayse A. D. Hernandesb, Fábio V. Scarparea, Marjorie M. Guarenghib, Tássia P. Pereirab, Marcelo V. Galdosa a Laboratório Nacional de Ciência e Tecnologia do Bioetanol - CTBE/CNPEM, Caixa Postal 6170, 13083-970 Campinas, São Paulo, Brazil, E-mail: fabio.scarpare@bioetanol.org.br b Faculdade de Engenharia Mecânica, Unicamp, Cidade Universitária "Zeferino Vaz", CEP 13083-860, Campinas, SP, Brazil In São Paulo State, the water resources have being used by sugarcane industry responsibly, through high reuse rates that may reach 95% during industrial process. The average amount of catchment water stays around 2.0 m3 Mg 1 of industrial sugarcane stalk. However, in some modern mills which use higher technical level of closed water circuit, the standard goal for sugarcane industry, 1.0 m3 Mg 1 can be reached. In some regions where the uptake water for industrial segment is high as in São Paulo State, water use assessment is desired for sustainable ethanol production. Thus, two regions in São Paulo State with two plants each were taken as a case study aiming to assess ethanol water demand during the industrial phase. Araraquara was the first study region where the water demand was classified as in critical condition in 2010 according to the Water and Electrical Energy Department of São Paulo State (DAEE). The industrial activities were responsible for 50% of the water catchment. Araçatuba was the second study region where water demand was classified as being of concern (DAEE) due to high percentage of catchment water for industrial activities, around 90%. Data regarding the amount of millable cane processed, days of the plant operation, ratio of cane used for ethanol production in 2010/2011 season were used for direct water demand estimation considering different water catchment scenarios of 2.0, 1.0 and 0.7 (technological development prediction scenario) m3 Mg-1 of millable cane. For indirect water demand estimation, data regarding installed capacity of each

  7. Estimated Use of Water in the Upper Duck River Watershed, Central Tennessee, and Water-Demand Projections through 2030

    USGS Publications Warehouse

    Hutson, Susan S.

    2008-01-01

    Future municipal water demand was estimated for the Bedford, Coffee, Marshall, and Maury-southern Williamson water-service areas in the upper Duck River watershed in central Tennessee through 2030. The Duck River, a primary source of municipal water, provided a total of 24.3 million gallons per day (Mgal/d) or 92 percent of the total water use in the study area during 2000. Municipal water use increased 46 percent from 1981 to 2000 (from 18.0 to 26.3 Mgal/d). Water demand for municipal use is expected to continue to increase through 2030 because of the recent intensive and anticipated growth in the residential and commercial sectors. Constant-rate models were used to estimate future municipal water demand. Data on residential and nonresidential billing accounts and estimates of public use and losses were used to calibrate the models. Two watershed scenarios for each water-supply system that depends on the Duck River for supply were simulated. Scenario 1 considered monthly water demand during typical weather conditions as represented by monthly per account use during 2003 and a rate of growth in customer accounts from 1999 to 2003. Results showed that total municipal water use could increase about 104 percent to 51 Mgal/d by 2030, residential water use could increase about 140 percent to 24 Mgal/d, nonresidential water use could increase about 110 percent to 17 Mgal/d, and public use and losses could increase about 83 percent to 11 Mgal/d. Scenario 2 considered monthly water demand during drought conditions as represented by monthly per account use during 2000 and recent growth in customer accounts from 1999 to 2003 or, for selected water-supply systems, an increasing rate of growth. Results showed that total municipal water use could increase about 120 percent to 55 Mgal/d, residential water use could increase about 160 percent to 26 Mgal/d, nonresidential water use could increase about 122 percent to 18 Mgal/d, and public use and losses could double and increase

  8. Techniques for water demand analysis and forecasting: Puerto Rico, a case study

    USGS Publications Warehouse

    Attanasi, E.D.; Close, E.R.; Lopez, M.A.

    1975-01-01

    The rapid economic growth of the Commonwealth-of Puerto Rico since 1947 has brought public pressure on Government agencies for rapid development of public water supply and waste treatment facilities. Since 1945 the Puerto Rico Aqueduct and Sewer Authority has had the responsibility for planning, developing and operating water supply and waste treatment facilities on a municipal basis. The purpose of this study was to develop operational techniques whereby a planning agency, such as the Puerto Rico Aqueduct and Sewer Authority, could project the temporal and spatial distribution of .future water demands. This report is part of a 2-year cooperative study between the U.S. Geological Survey and the Environmental Quality Board of the Commonwealth of Puerto Rico, for the development of systems analysis techniques for use in water resources planning. While the Commonwealth was assisted in the development of techniques to facilitate ongoing planning, the U.S. Geological Survey attempted to gain insights in order to better interface its data collection efforts with the planning process. The report reviews the institutional structure associated with water resources planning for the Commonwealth. A brief description of alternative water demand forecasting procedures is presented and specific techniques and analyses of Puerto Rico demand data are discussed. Water demand models for a specific area of Puerto Rico are then developed. These models provide a framework for making several sets of water demand forecasts based on alternative economic and demographic assumptions. In the second part of this report, the historical impact of water resources investment on regional economic development is analyzed and related to water demand .forecasting. Conclusions and future data needs are in the last section.

  9. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  10. Residential solar hot water: Determinants of demand in New Hampshire

    NASA Astrophysics Data System (ADS)

    Downes, Mary A.

    As New Hampshire pursues public policy goals embedded in the Renewable Portfolio Standard, the Regional Greenhouse Gas Initiative, the Climate Action Plan, and other legislation and documentation, many advocates and policy makers are looking for reductions in fossil fuel use in the residential sector. This paper analyzes the results of a survey of New Hampshire residents undertaken in the autumn of 2009 regarding attitudes toward energy policy, and willingness to invest in renewable energy. Regarding residential solar hot water, the survey finds that the price at which half of New Hampshire homeowners would consider purchasing such a system is $5536. Seriousness of commitment is also tested, showing significant barriers to follow-through. These barriers and potential means of overcoming them are examined, based on concepts from economics and related fields. The paper concludes with recommendations for further research.

  11. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  12. Water chemistry responses to hydraulic manipulation of an agricultural wetland

    NASA Astrophysics Data System (ADS)

    Powers, S.; Stanley, E. H.

    2011-12-01

    Small impoundments are often crucial factors for the movement of sediment, organic matter, water-borne nutrients, and toxic materials through river networks. By recent accounting, at least 2.6 million small artificial water bodies exist in the US alone. A large proportion of those structures occur in regions with high intensity of agriculture, such as in the Midwestern grain belt. While small impoundments are aging structures which appear to serve few purposes, some hold ecological and biogeochemical value as artificial wetlands. We documented instantaneous net fluxes of solute (chloride, sulfate, nitrate, ammonium, and soluble reactive phosphorus) through an artificial flow-through wetland in agricultural southern Wisconsin over 6 years which spanned removal of a small dam. Phased dewatering and dam removal ultimately converted the artificial wetland to a canal-like state (increase in mean water velocity from 0.08 to 0.22 m s-1). Mean net flux for chloride across the system averaged nearly 0 g d-1, indicating conservative transport and successful characterization of hydrology. In contrast, net fluxes for other solute forms were altered following loss of the wetland: a persistent net sulfate sink (5-10% of inputs retained), suggestive of sulfate-reducing bacteria, was reduced; seasonal (summer) net sinks for nitrate and ammonium, suggestive of uptake by algae and denitrifying bacteria, were reduced; temporal variability for the net flux of soluble reactive phosphorus was reduced. Overall, loss of the artificial wetland caused by dam removal shifted seasonal and annual net fluxes of biologically available solute toward export. Nutrient retention by artificial wetlands could be important for elemental budgets in regions which have high nutrient loading to surface and ground water.

  13. Simulating past changes in the balance between water demand and availability and assessing their main drivers at the river basin scale

    NASA Astrophysics Data System (ADS)

    Fabre, J.; Ruelland, D.; Dezetter, A.; Grouillet, B.

    2015-03-01

    In this study we present an integrative modeling framework aimed at assessing the balance between water demand and availability and its spatial and temporal variability over long time periods. The model was developed and tested over the period 1971-2009 in the Hérault (2500 km2, France) and the Ebro (85 000 km2, Spain) catchments. Natural streamflow was simulated using a conceptual hydrological model. The regulation of river flow was accounted for through a widely applicable demand-driven reservoir management model applied to the largest dam in the Hérault Basin and to 11 major dams in the Ebro Basin. Urban water demand was estimated from population and monthly unit water demand data. Water demand for irrigation was computed from irrigated area, crop and soil data, and climatic forcing. Water shortage was assessed at a 10-day time step by comparing water demand and availability through indicators calculated at strategic resource and demand nodes. The outcome of this study is twofold. First, we were able to correctly simulate variations in influenced streamflow, reservoir levels and water shortage between 1971 and 2009 in both basins, taking into account climatic and anthropogenic pressures and changes in water management strategies over time. Second, we provided information not available through simple data analysis on the influence of withdrawals and consumptive use on streamflow and on the drivers of imbalance between demand and availability. Observed past variations in discharge were explained by separating anthropogenic and climatic pressures in our simulations: 3% (20%) of the decrease in the Hérault (Ebro) discharge were linked to anthropogenic changes. Although key areas of the Hérault Basin were shown to be highly sensitive to hydro-climatic variability, the balance between water demand and availability in the Ebro Basin appears to be more critical, owing to high agricultural pressure on water resources. The modeling framework developed and tested in

  14. Look Who's Talking. Explaining Water-Related Information Sharing and Demand for Action Among Ugandan Villagers

    NASA Astrophysics Data System (ADS)

    Holvoet, Nathalie; Dewachter, Sara; Molenaers, Nadia

    2016-11-01

    Many national water policies propagate community-based participatory approaches to overcome weaknesses in supply-driven rural water provision, operation, and maintenance. Citizen involvement is thought to stimulate bottom-up accountability and broaden the information base, which may enrich design and implementation processes and foster improved water accessibility and sustainability. Practices on the ground, however, are embedded in socio-political realities which mediate possible beneficial effects of participatory approaches. This paper builds on full social network data collected in a Ugandan village to study the social and political reality of two distinct levels of participation, i.e. local information sharing among citizens and a more active appeal to fellow citizens to improve water services. We use Logistic Regression Quadratic Assignment Procedure to explore what type of actor and network traits influence information sharing and whether the same factors are in play in the demand for action to remedy water-related problems. Whereas social aspects (social support relations) and homophily (using the same water source, the same gender) play an important role in information sharing, it is the educational level, in particular, of the villager who is called upon that is important when villagers demand action. Our findings also demonstrate that those most in need of safe water do not mobilize their information sharing ties to demand for action. This indicates that building local water policies and practice exclusively on locally existing demand for action may fail to capture the needs of the most deprived citizens.

  15. Determination of Biochemical Oxygen Demand of Area Waters: A Bioassay Procedure for Environmental Monitoring

    ERIC Educational Resources Information Center

    Riehl, Matthew

    2012-01-01

    A graphical method for determining the 5-day biochemical oxygen demand (BOD5) for a body of water is described. In this bioassay, students collect a sample of water from a designated site, transport it to the laboratory, and evaluate the amount of oxygen consumed by naturally occurring bacteria during a 5-day incubation period. An accuracy check,…

  16. Price impact on urban residential water demand: A dynamic panel data approach

    NASA Astrophysics Data System (ADS)

    ArbuéS, Fernando; BarberáN, Ramón; Villanúa, Inmaculada

    2004-11-01

    In this paper, we formulate and estimate a model of residential water demand with the aim of evaluating the potential of pricing policies as a mechanism for managing residential water. The proposed econometric model offers a new perspective on urban water demand analysis by combining microlevel data with a dynamic panel data estimation procedure. The empirical application suggests that residential users are more responsive to a lagged average price specification. Another result of the estimated model is that price is a moderately effective tool in reducing residential water demand within the present range of prices, with the estimated values for income elasticity and "elasticity of consumption with respect to family size" reinforcing this conclusion.

  17. A summary view of water supply and demand in the San Francisco Bay Region, California

    USGS Publications Warehouse

    Rantz, Saul E.

    1972-01-01

    This report presents a summary view of the water-supply situation in the nine counties that comprise the San Francisco Bay region, California, and thereby provides water data, based on 1970 conditions, that are needed for regional planning. For the purpose of this study the nine-county region has been divided into 15 subregions on the basis of hydrologic and economic considerations. Firm water supply is tabulated for each subregion by source--ground water, surface water, and imported water. Water demand in 1970 is tabulated for each subregion by type of use or demand--public supply, rural self-supply, irrigation, self-supplied industrial water and thermoelectric power generation. The San Francisco Bay region is dependent to a large degree on imported water. Under 1970 conditions of development, the firm water supply is 2.2 million acre-feet per year; of that quantity, almost 1 million acre-feet per year is imported water. The water demand in 1970 was 1.9 million acre-feet, about half of which was consumed. Under 1970 conditions of water development and use, a series of dry years would probably necessitate some curtailment of irrigation activities in four of the subregions, where the bulk of the demands i for irrigation water. Under those same conditions there is generally ample water for municipal and industrial use throughout the region, except in eastern Marin County where the firm municipal supple does not exceed the 1970 demand for municipal and industrial water. Although the firm water supply of the San Francisco Bay region, including imported water, is generally adequate to meet present needs, supplemental supply will be required to meet increased demand in the future. The expansion of existing surface-water facilities and the construction of new surface-water projects, now considered feasible, could provide a combined firm supplemental yield of slightly more than 1 million acre-feet per year, almost three-fourths of which would be available for import by

  18. Muddy Water and American Agriculture: How to Best Control Sedimentation From Agricultural Land?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Stephen B.; Lee, John Gary; Beasley, David B.

    1985-08-01

    The role of agricultural sediment in water quality is well documented. While numerous policies have been advocated and initiated, it still appears to be a significant problem. The present analysis concentrates on the outcome of several policy alternatives in terms of sediment delivery and project costs. These results are obtained by combining social science investigation of probable farmer behavior under a variety of scenarios with a hydrologic simulation model which predicts the sediment delivery with different land uses. This integration of social science behavioral research with the hydrologic response simulation model provides a framework to assess the environmental effectiveness of alternative policies aimed at reducing sedimentation. While the results presented here are preliminary, this approach seems to offer great promise as a tool for federal, state and local conservation agencies in their efforts to efficiently and effectively use their limited resources to reduce soil loss.

  19. Seasonal variation in biological oxygen demand levels in the main stem of the Fraser River, British Columbia and an agriculturally impacted tributary

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Fraser, H.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Voss, B. M.; Marcotte, D.; Fanslau, J.; Epp, A.; Bennett, M.; Hanson-Carson, J.; Luymes, R.

    2012-12-01

    The Fraser River basin is one of British Columbia's most diverse and valuable ecosystems. Water levels and temperatures along the Fraser are seasonally variable, with high flow during the spring freshet and low flow during winter months. In the Fraser River, dissolved oxygen (DO) concentrations impact many aquatic species. Biological oxygen demand (BOD) measures the amount of oxygen consumed by bacteria during the decomposition of organic matter and is an indicator of water quality in freshwater environments. We compared BOD, DO, and pH during winter (November 2011) and summer (July 2012) in the main stem of the Fraser River at Fort Langley and a tributary in an agricultural area of the Fraser Valley, Nathan Creek. In November the BOD of the main stem of the Fraser River was 2.36 mg/L, pH 7.26, and DO 9.13 mg/L. BOD and DO of Nathan Creek was not significantly lower at 1.68 mg/L and DO 8.28 mg/L, however, the pH was significantly lower (p=0.001) at 6.75. In July, the Fraser River had significantly higher BOD levels than in winter at 4.43 mg/L, but no significant change in pH and DO. Nathan Creek BOD was significantly higher than it was in winter and higher than the main stem at 7.34 mg/L, with no significant change in pH and DO. There were strong seasonal differences in BOD in the Fraser River and Nathan Creek, with the highest levels seen in July. The higher BOD seen in Nathan Creek in July may be an indication of agricultural impact. Although all BOD values fell in the range of 1-8 mg/L and are considered to be relatively unpolluted.

  20. Evaluating multiple indices of agricultural water use efficiency and productivity to improve comparisons between sites and trends

    NASA Astrophysics Data System (ADS)

    Levy, M. C.

    2012-12-01

    Approximately 70% of global available freshwater supplies are used in the agricultural sector. Increased demands for water to meet growing population food requirements, and expected changes in the reliability of freshwater supplies due to climate change, threaten the sustainability of water supplies worldwide - not only on farms, but in connected cities and industries. Researchers concerned with agricultural water use sustainability use a variety of theoretical and empirical measures of efficiency and productivity to gain insight into the sustainability of agricultural water use. However, definitions of measures, or indices, vary between different natural and political boundaries, across regions, states and nations and between their respective research, industry, and environmental groups. Index development responds to local data availability and local agendas, and there is debate about the validity of various indices. However, real differences in empirical index measures are not well-understood across the multiple disciplines that study agricultural water use, including engineering and hydrology, agronomy, climate and soil sciences, and economics. Nevertheless reliable, accessible, and generalizable indices are required for planners and policymakers to promote sustainable water use systems. This study synthesizes a set of water use efficiency and productivity indices based on academic, industry and government literature in California and Australia, two locations with similarly water-stressed and valuable agricultural industries under pressure to achieve optimal water use efficiency and productivity. Empirical data at the irrigation district level from the California San Joaquin Valley and Murray Darling Basin states of Victoria and New South Wales in Australia are used to compute indices that estimate efficiency, yield productivity, and economic productivity of agricultural water use. Multiple index estimates of same time-series data demonstrate historical spread

  1. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  2. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  3. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  4. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  5. Agricultural phosphorus, water quality, and poultry production: are they compatible?

    PubMed

    Sharpley, A

    1999-05-01

    With the concentration of poultry production and increase in operation size in several regions of the U.S., more manure is applied to agricultural land. This application of manure has resulted in more P being added than crops require, an accumulation in soil P, and increased potential for P loss in surface runoff. This situation has been exacerbated by manure management being N-based. Increased outputs of P to fresh waters can accelerate eutrophication, which impairs water use and can lead to fish kills and toxic algal blooms. As a result, information is needed on the effect of poultry production on the fate of P in agricultural systems so that compatible production and water quality goals can be met. Overall, these goals will be met by focusing on ways to increase P use-efficiency by attempting to balance inputs of P in feed and fertilizer into a watershed with output in crop and livestock. This will involve refining feed rations, using feed additives to increase P absorption by the animal, moving manure from surplus to deficit areas, finding alternative uses for manure, and targeting conservation practices, such as reduced tillage, buffer strips, and cover crops, to critical areas of P export from a watershed. These critical areas are where high P soils coincide with parts of the landscape where surface runoff and erosion potential is high. Development of management systems that address both production and environmental concerns must consider the socioeconomic and political impacts of any management changes on both rural and urban communities, and of the mechanisms by which change can be achieved in a diverse and dispersed community of land users. PMID:10228962

  6. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    SciTech Connect

    Granderson, Jessica; Dudley, Junqiao Han; Kiliccote, Sila; Piette, Mary Ann

    2009-10-08

    The University of California at Merced is a unique campus that has benefited from intensive efforts to maximize energy efficiency, and has participated in a demand response program for the past two years. Campus demand response evaluations are often difficult because of the complexities introduced by central heating and cooling, non-coincident and diverse building loads, and existence of a single electrical meter for the entire campus. At the University of California at Merced, a two million gallon chilled water storage system is charged daily during off-peak price periods and used to flatten the load profile during peak demand periods. This makes demand response more subtle and challenges typical evaluation protocols. The goal of this research is to study demand response savings in the presence of storage systems in a campus setting. First, University of California at Merced summer electric loads are characterized; second, its participation in two demand response events is detailed. In each event a set of strategies were pre-programmed into the campus control system to enable semi-automated response. Finally, demand savings results are applied to the utility's DR incentives structure to calculate the financial savings under various DR programs and tariffs. A key conclusion to this research is that there is significant demand reduction using a zone temperature set point change event with the full off peak storage cooling in use.

  7. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  8. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower

  9. Development of a Demand Sensitive Drought Index and Its Forecasting for Climate Adaptation and Water Management over the Continental United States

    NASA Astrophysics Data System (ADS)

    Etienne, E.; Khanbilvardi, R.; Devineni, N.

    2014-12-01

    Drought has cascading effects on the environment, economy and society. Seasonal water deficits resulting from natural variability in rainfall coupled with increased demands have severe implications for the adequacy of water storage in both surface and groundwater stores. Managers need better estimates of potential shortfalls in supply due to droughts of varying severity and duration. While global and national drought indicators exist, none directly connect existing or projected water demand to the potential deficit during the drought. They are essentially supply based. However, the temporal patterns of both demand and supply ultimately determine the stress or impact. Consequently, assessment of risk for various sectorial operations could be much better informed if appropriate stress indices were developed for drought conditions relative to current and projected demands, and their likelihood assessed for future climate scenarios. The present research addresses this methodological gap by (1) developing new drought indices that consider both water supply and current or projected sectorial demands, and (2) developing insights into the large-scale climatic drivers for forecasting drought onset, duration and severity up to one season ahead for climate informed adaptive risk assessment and long-term planning. We present an application at a county level for the conterminous United States considering more than 60 years of rainfall data as the renewable supply, and water demand patterns for 3 sectors (agricultural, industrial, and domestic use). The demand data are available at the county level. Consequently, we use the county rather than river basins as the unit of analysis. The county is also a spatial resolution consistent with political decision making. The index is useful for indicating whether small or large surface storage will suffice, or whether the extent of groundwater storage or external transfers, or changes in demand are needed to achieve a sustainable solution.

  10. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  11. The current California drought through EDDI's eyes: early warning and monitoring of agricultural and hydrologic drought with the new Evaporative Demand Drought Index.

    NASA Astrophysics Data System (ADS)

    Hobbins, M.; McEvoy, D.; Huntington, J. L.; Wood, A. W.; Morton, C.; Verdin, J. P.

    2015-12-01

    We have developed a physically based, multi-scalar drought index—the Evaporative Demand Drought Index (EDDI)—to improve treatment of evaporative dynamics in drought monitoring. Existing popular drought indices—such as the Palmer Drought Severity Index that informs much of the US Drought Monitor (USDM)—have primarily relyied on precipitation and temperature (T) to represent hydroclimatic anomalies, leaving evaporative demand (E0) most often derived from poorly performing T-based parameterizations then used to derive actual evapotranspiration (ET) from LSMs. Instead, EDDI leverages the inter-relations of E0 and ET, measuring E0's physical response to surface drying anomalies due to two distinct land surface/atmosphere interactions: (i) in sustained drought, limited moisture availability forces E0 and ET into a complementary relation, whereby ET declines as E0 increases; and (ii) in "flash" droughts, E0 increases due to increasing advection or radiation. E0's rise in response to both drought types suggests EDDI's robustness as a monitor and leading indicator of drought. To drive EDDI, we use for E0 daily reference ET from the ASCE Standardized Reference ET equation forced by North American Land Data Assimilation System drivers. EDDI is derived by aggregating E0 anomalies from its long-term mean across a period of interest and normalizing them to a Z-score. Positive EDDI indicates drier than normal conditions (and so drought). We use the current historic California drought as a test-case in which to examine EDDI's performance in monitoring agricultural and hydrologic drought. We observe drought development and decompose the behavior of drought's evaporative drivers during in-drought intensification periods and wetting events. EDDI's performance as a drought leading indicator with respect to the USDM is tested in important agricultural regions. Comparing streamflow from several USGS gauges in the Sierra Nevada to EDDI, we find that EDDI tracks most major

  12. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    Changes in global population, food consumption and climate lead to a food security challenge for the future. Water resources, agricultural productivity and the relationships between them will to a large extent dictate how we address this challenge. Although food security is a global issue, impacts of climate change on water resources and agricultural productivity, as well as viability of adaptation strategies, are location specific; e.g., it is important to consider the regional regulatory environment. Our work focuses on the Columbia River basin (CRB) of the Pacific Northwest US. The water resources of the CRB are heavily managed to meet competing demands. There also exists a legal system for individuals/groups to obtain rights to use the publicly owned water resources, and the possibility of curtailing (i.e., restricting) some of these water rights in times of shortage. It is important to include an approximation of this water resource regulation and water rights curtailment process in modeling water availability and impacts of water shortages on agricultural production. The overarching objective of this work is to apply an integrated hydrologic-crop-water management modeling framework over the CRB to characterize the impacts of climate change on irrigation water demands, irrigation water availability, water shortages, and associated impacts in the 2030s. Results indicate that climate change has both positive and negative effects on agricultural production in the CRB and this varies by region and crop type. Certain watersheds that are already water stressed are projected to experience increasing stress in the future. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not necessarily translate into an increased negative effect on yields; some crops are projected to increase in yield despite curtailment. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops

  13. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. PMID:27070382

  14. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    PubMed

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development.

  15. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  16. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  17. Risk-Cost-Benefit Analysis Of Atrazine In Drinking Water From Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Aklilu, T. A.; Jagath, K. J.; Arthur, C. J.

    2004-12-01

    This study provides a new methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector and a more holistic insight to pesticide management issues. Regression models are developed to predict the stream atrazine concentrations and finished water atrazine concentration at high-risk community water supplies in the US using surface water. The predicted finished water atrazine concentrations are then used in health risk assessment. The computed health risks are compared with the total surplus in the US corn market for different atrazine application rates using the demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums (preferences) for chemical-free to reduced chemical corn provided interesting results on the potential for future pesticide and land use management. This is an interdisciplinary work that has attempted to integrate and consider the interaction between weed sciences, economics, water quality, human health risk and human reaction to changes in different pesticide use scenarios. The results showed that this methodology provides a scientific framework for future decision-making and policy evaluation in pesticide management, especially when better regional and national data are available.

  18. Dynamic simulation of connections between population, water resources, agriculture, and energy: Towards a global synthesis

    NASA Astrophysics Data System (ADS)

    Roach, J. D.; Tidwell, V. C.; Passell, H. D.

    2011-12-01

    During the past decade, scientists at Sandia National Laboratories have been attempting to integrate multi-disciplinary issues associated with human demands for water resources, agriculture, and energy, and the interconnections inherent in these into a common modeling framework. A variety of models have been created, each focusing specifically on certain aspects of the population - water - food - energy question, and each at a different geographic scale. The modeling of these dimensions of human resource use involves quantification of supply of and demand for the resources through time in order to gain some insight into sensitivities of the system to different model parameters. These models have been used to evaluate policy options in real time in an interactive setting. This presentation will summarize the localized efforts that have been made to this point, and propose a framework for a simulation tool to evaluate all four dimensions in a global context. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.

    PubMed

    Falloon, Pete; Betts, Richard

    2010-11-01

    We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate

  20. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  1. An experimental test of voluntary strategies to promote urban water demand management.

    PubMed

    Fielding, Kelly S; Spinks, Anneliese; Russell, Sally; McCrea, Rod; Stewart, Rodney; Gardner, John

    2013-01-15

    In light of the current and future threats to global water security the current research focuses on trialing interventions to promote urban water conservation. We report an experimental study designed to test the long-term impact of three different interventions on household water consumption in South East Queensland. Participants from 221 households were recruited and completed an initial survey, and their houses were fitted with smart water meters which measured total water usage at 5 s intervals. Households were allocated into one of four conditions: a control group and three interventions groups (water saving information alone, information plus a descriptive norm manipulation, and information plus tailored end-user feedback). The study is the first to use smart water metering technology as a tool for behaviour change as well as a way to test the effectiveness of demand management interventions. Growth curve modelling revealed that compared to the control, the three intervention groups all showed reduced levels of household consumption (an average reduction of 11.3 L per person per day) over the course of the interventions, and for some months afterwards. All interventions led to significant water savings, but long-term household usage data showed that in all cases, the reduction in water use resulting from the interventions eventually dissipated, with water consumption returning to pre-intervention levels after approximately 12 months. Implications for water demand management programs are discussed.

  2. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  3. Estimating the Value of Water Quality Improvements in a Recreational Demand Framework

    NASA Astrophysics Data System (ADS)

    Bockstael, Nancy E.; Hanemann, W. Michael; Kling, Catherine L.

    1987-05-01

    With the advent of Executive Order 12291, policymakers involved in water quality regulation are increasingly interested in assessing the benefits of their programs. Several methods for valuing water quality improvements using recreational demand models have been developed by economists, most of which depend on observing recreationists visiting an array of sites with varying water quality and costs of access. In this paper, three general types of models are described: systems of demands, discrete choice models, and the hedonic travel cost approach; the latter two models are demonstrated using a common data set on water quality and swimming behavior in the Boston area. The models are contrasted and their relative usefulness in answering policy questions explored.

  4. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  5. Economic analysis of the water demand in the hotels and restaurants sector: Shadow prices and elasticities

    NASA Astrophysics Data System (ADS)

    Angulo, Ana; Atwi, Majed; Barberán, Ramón; Mur, Jesús

    2014-08-01

    Despite the growing economic importance of tourism, and its impact on relative water shortage, little is known about the role that water plays in the productive process of hotels and restaurants and, therefore, the possible implications of water demand management policy for this sector. This study aims to fill this gap. It is based on the microdata of 676 firms in the sector, operating in the city of Zaragoza (Spain) for a 12 year period. Based on the Translog cost function, we estimate the shadow price of water in the short run and, from a long-run perspective, its direct price elasticity, its cross elasticities relative to labor, capital, and supplies, and its elasticity with respect to the level of output. The results obtained show that water provides sector firms returns that are on average higher than its price, although in the case of hotels the margin is really narrow. This situation provides policy makers with a margin for applying price increases without affecting the sector's viability, with some caution in the case of hotels. Water demand elasticity equals -0.38 in the case of hotels, but it is not significant in the case of restaurants and bar-cafes; hence, only in hotels is there potential for influencing water use patterns, encouraging the resource's conservation through pricing policy. Moreover, capital is a substitutive factor of water, and the elasticity of water with respect to output is 0.40, all of which should also be considered by policy makers in water resource management.

  6. Paper versus plastic, water versus carbon and sustainable agriculture in the US

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2011-12-01

    It is increasingly recognized that food and energy security are inextricably linked to climate and climate change, resulting in the so-called climate, energy, food nexus, with the water cycle at its hub. The ability to provide sufficient and consistent energy and food for this generation, while not depleting soil, climate and water resources for future generations involves interconnected feedbacks along the paths of this wheel. In the US corn belt, for example, agricultural water management in the form of subsurface drainage lowers the regional water table to enhance crop production, while at the same time providing a conduit for the more efficient export of nitrate-nitrogen to the Gulf of Mexico and increasing rates of decomposition and subsidence in organic-rich soils. The use of control structures to regulate drainage water has the potential to reduce nitrate and carbon dioxide losses, while at the same time increasing the emissions of other greenhouse gases. Increased biofuels production offers the potential to increase domestic energy security, but at the cost of increased water demand and threats to food security. Just as budding US consumer environmentalists of the last decade struggled with the question of paper versus plastic for bagging their groceries, today's informed consumers are being asked to tacitly choose between water and carbon. The local foods movement encourages consumption of locally-produced foods as a means of reducing carbon emissions associated with food transportation, among other perceived benefits. At the same time, the concept of virtual water trade recognizes that importing the water embedded in production in the form of food can balance a local water deficit. Taking into account the virtual water of food production and carbon emissions of food transportation, the spatial arrangement of the current US crop portfolio minimizes neither water nor carbon footprints. Changes in crop distribution result in trade-offs between the per capita

  7. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management.

  8. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. PMID:27241204

  9. Ultimate biochemical oxygen demand in semi-intensively managed shrimp pond waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three independent studies were conducted to quantified ultimate biochemical oxygen demand (UBOD) and the corresponding decomposition rate constant for production pond (average 21.5 ha each) waters and effluents on six semi-intensively managed marine shrimp (Litopenaeus vannamei) farms in Honduras. S...

  10. Urban water demand modeling: Review of concepts, methods, and organizing principles

    NASA Astrophysics Data System (ADS)

    House-Peters, Lily A.; Chang, Heejun

    2011-05-01

    In this paper, we use a theoretical framework of coupled human and natural systems to review the methodological advances in urban water demand modeling over the past 3 decades. The goal of this review is to quantify the capacity of increasingly complex modeling techniques to account for complex human and natural processes, uncertainty, and resilience across spatial and temporal scales. This review begins with coupled human and natural systems theory and situates urban water demand within this framework. The second section reviews urban water demand literature and summarizes methodological advances in relation to four central themes: (1) interactions within and across multiple spatial and temporal scales, (2) acknowledgment and quantification of uncertainty, (3) identification of thresholds, nonlinear system response, and the consequences for resilience, and (4) the transition from simple statistical modeling to fully integrated dynamic modeling. This review will show that increasingly effective models have resulted from technological advances in spatial science and innovations in statistical methods. These models provide unbiased, accurate estimates of the determinants of urban water demand at increasingly fine spatial and temporal resolution. Dynamic models capable of incorporating alternative future scenarios and local stochastic analysis are leading a trend away from deterministic prediction.

  11. Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation

    SciTech Connect

    Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

    2013-01-17

    Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

  12. Crop Insurance Increases Water Withdrawals for Irrigation in Agriculture

    NASA Astrophysics Data System (ADS)

    Konar, M.; Deryugina, T.; Lin, X.

    2015-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool that has been developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, it is not clear what the implications of crop insurance are for crop irrigation. By providing a guaranteed level of income in case of crop failure, crop insurance can reduce the farmer's incentive to irrigate. Thus, crop insurance can decrease water use in times of drought and promote water sustainability. However, to minimize this "moral hazard", the insurer may require farmers to irrigate crops more than necessary. Further, by shifting crop production, crop insurance may increase demand for water. Thus, it is unclear whether crop insurance increases or decreases crop water use. Here, we determine the empirical relationship between crop insurance and irrigation withdrawals in the United States. To establish causality, we exploit variation in crop insurance policies over time, using an instrumental variables approach. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, primarily from groundwater aquifers.

  13. Modeling and managing urban water demand through smart meters: Benefits and challenges from current research and emerging trends

    NASA Astrophysics Data System (ADS)

    Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.

    2015-12-01

    Urban population growth, climate and land use change are expected to boost residential water demand in urban contexts in the next decades. In such a context, developing suitable demand-side management strategies is essential to meet future water demands, pursue water savings, and reduce the costs for water utilities. Yet, the effectiveness of water demand management strategies (WDMS) relies on our understanding of water consumers' behavior, their consumption habits, and the water use drivers. While low spatial and temporal resolution water consumption data, as traditionally gathered for billing purposes, hardly support this understanding, the advent of high-resolution, smart metering technologies allowed for quasi real-time monitoring water consumption at the single household level. This, in turn, is advancing our ability in characterizing consumers' behavior, modeling, and designing user-oriented residential water demand management strategies. Several water smart metering programs have been rolled-out in the last two decades worldwide, addressing one or more of the following water demand management phases: (i) data gathering, (ii) water end-uses characterization, (iii) user modeling, (iv) design and implementation of personalized WDMS. Moreover, the number of research studies in this domain is quickly increasing and big economic investments are currently being devoted worldwide to smart metering programs. With this work, we contribute the first comprehensive review of more than 100 experiences in the field of residential water demand modeling and management, and we propose a general framework for their classification. We revise consolidated practices, identify emerging trends and highlight the challenges and opportunities for future developments given by the use of smart meters advancing residential water demand management. Our analysis of the status quo of smart urban water demand management research and market constitutes a structured collection of information

  14. The potential for snow to supply human water demand in the present and future

    NASA Astrophysics Data System (ADS)

    Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.

    2015-11-01

    Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins—which together have a present population of ∼2 billion people—are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of >300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.

  15. Alternative agriculture adoption: Effects of ground water contamination and other factors

    SciTech Connect

    Cyphers, D.; D'Souza, G. )

    1992-12-01

    The factors influencing adoption of alternative agriculture are quantified using a logit model and survey data. The likelihood of adoption of alternative agriculture is affected most by the environmental characteristic of whether or not ground water contamination exists. This creates an awareness effect' upon which to formulate policies leading to a sustainable agriculture.

  16. High Resolution Modelling of Climate Change Impacts on Water Supply and Demand, Crop Nutrient Usage and GHG emissions, Similkameen Watershed, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Mirmasoudi, S.; Byrne, J. M.; Kroebel, R.; MacDonald, R. J.; Johnson, D. L.; McKenzie, R. H.

    2015-12-01

    The Similkameen watershed in southern British Columbia, Canada is expected to warm substantially in the coming decades. A higher proportion of winter rain to snow and an earlier onset of spring snowmelt are likely to result in lower spring stream flow peaks. The reduction in winter water storage, combined with longer, warmer, and drier summers, poses a challenge for water resources in an irrigation-based agricultural watershed. There are already substantial irrigation developments, and water demands are expected to increase to maintain current agricultural production, further stressing a shrinking summer water supply. Agriculture releases significant amounts of CO2, CH4 and N2O to the atmosphere, accounting for approximately 8% of anthropogenic greenhouse gas (GHG) emissions in Canada, excluding CO2 emissions from fuels. Agricultural GHG fluxes are complex but the active management of agricultural systems offers possibilities for mitigating GHG emissions. Although GHG emissions derived from soil have been researched for several decades, there are still geographic regions and agricultural systems that have not been well characterized. This work will address a series of questions for the Similkameen watershed. For a range of climate scenarios, we will: (i) use the GENESYS (GENerate Earth SYstems Science input) hydrometeorological model to simulate historical and future water supplies; (ii) link GENESYS and AquaCrop models to assess climate driven changes in water requirement and associated crop productivity; and (iii) link GENESYS and HOLOS (whole-farm model and software program that estimates GHG emissions) to estimate farm and regional level GHG emissions and seasonal nutrient balance for the crops in the watershed.

  17. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect

    Pratt, R.G.; Ross, B.A.

    1991-11-01

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  18. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  19. Water in India with reference to agriculture and population: some issues and patterns -- dynamic approaches needed for development.

    PubMed

    Roy, B K

    1990-03-01

    Population growth is increasing the demand for water in India, especially for agricultural purposes. Yet, the government of India has not included an assessment of water needs for an expanding population into its development strategy. The leading obstacle to such an assessment is lack of quality data. In fact, the latest data comes from the 1981 Census. A government official proposes to transform climate and water balance synthesis into crop regions as a means to evaluate the national or macro level effects on agriculture. Rice is the dominant crop of the eastern and coastal regions of India which have a humid and rainy climate. The acute to marginally dry crop regions grow jowar, maize, bajra, and ragi and face a water shortage. In dry northwestern India, developed irrigation systems sustain the wheat crop. Agricultural water needs depend on sufficient monsoon rain and/or irrigation. India has 5 microclimates: perhumid, humid, dry, semiarid, and arid regions. 40.7% of all of India which comprises 33.4% of the population is prone to drought. Rural-urban migration since 1960 has increased the urban population size in India, yet most cities' master plans for provision of safe drinking water for urban dwellers are only advisory rather than mandatory. In fact, 460,000 urban dwellers and many rural dwellers still depend on rivers, canals, or tanks which often are contaminated with sewage, toxins, and radioactive materials. Further, only 0.53% of the rural population has sanitation facilities. 5-level zoning (population-hydrological regions) for India would provide distributional aspects of water by major and minor surface water plans and groundwater, which in turn would bring about a practical infrastructure to different areas for agricultural and population needs. Much of the baseline data needed to develop these regions and to research this system already exists.

  20. Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees

    NASA Astrophysics Data System (ADS)

    Johnson, Mark S.; Lathuillière, Michael J.; Tooke, Thoreau R.; Coops, Nicholas C.

    2015-06-01

    Urban agriculture requires local water to replace ‘hydrologic externalities’ associated with food produced outside of the local area, with an accompanying shift of the water footprint (WF) for agricultural production from rural to urban areas. Water requirements of urban agriculture have been difficult to estimate due to the heterogeneity of shading from trees and buildings within urban areas. We developed CityCrop, a plant growth and evapotranspiration (ET) model that couples a 3D model of tree canopies and buildings derived from LiDAR with a ray-casting approach to estimate spatially-explicit solar inputs in combination with local climate data. Evaluating CityCrop over a 1 km2 mixed use, residential neighborhood of Vancouver Canada, we estimated median light attenuation to result in 12% reductions in both reference ET (ETo) and crop ET (ETc). However, median crop yields were reduced by only 3.5% relative to potential yield modeled without any light attenuation, while the median crop WF was 9% less than the WF for areas unimpeded by shading. Over the 75 day cropping cycle, median crop water requirements as ETc were 17% less than that required for a well-watered grass (as ETo). If all lawns in our modeled area were replaced with crops, we estimate that about 37% of the resident population could obtain the vegetable portion of their diet from within the local area over a 150 day growing season. However doing so would result in augmented water demand if watering restrictions apply to lawns only. The CityCrop model can therefore be useful to evaluate trade-offs related to urban agriculture and to inform municipal water policy development.

  1. Water use, availability, and net demand in the Tennessee River watershed within Alabama, 2005

    USGS Publications Warehouse

    Gill, Amy C.; Harper, Michael J.; Littlepage, Thomas M.

    2013-01-01

    Survey of Alabama. Net water demand for the watershed was calculated by subtracting the Tennessee Valley Authority estimates of return flow from water withdrawals. The net water demand was 136 Mgal/d, which is less than 1 percent of the estimated water available.

  2. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  3. Agricultural green and blue water consumption and its influence on the global water system

    NASA Astrophysics Data System (ADS)

    Rost, Stefanie; Gerten, Dieter; Bondeau, Alberte; Lucht, Wolfgang; Rohwer, Janine; Schaphoff, Sibyll

    2008-09-01

    This study quantifies, spatially explicitly and in a consistent modeling framework (Lund-Potsdam-Jena managed Land), the global consumption of both "blue" water (withdrawn for irrigation from rivers, lakes and aquifers) and "green" water (precipitation) by rainfed and irrigated agriculture and by nonagricultural terrestrial ecosystems. In addition, the individual effects of human-induced land cover change and irrigation were quantified to assess the overall hydrological impact of global agriculture in the past century. The contributions to irrigation of nonrenewable (fossil groundwater) and nonlocal blue water (e.g., from diverted rivers) were derived from the difference between a simulation in which these resources were implicitly considered (IPOT) and a simulation in which they were neglected (ILIM). We found that global cropland consumed >7200 km3 year-1 of green water in 1971-2000, representing 92% (ILIM) and 85% (IPOT), respectively, of total crop water consumption. Even on irrigated cropland, 35% (ILIM) and 20% (IPOT) of water consumption consisted of green water. An additional 8155 km3 year-1 of green water was consumed on grazing land; a further ˜44,700 km3 year-1 sustained the ecosystems. Blue water consumption predominated only in intensively irrigated regions and was estimated at 636 km3 year-1 (ILIM) and 1364 km3 year-1 (IPOT) globally, suggesting that presently almost half of the irrigation water stemmed from nonrenewable and nonlocal sources. Land cover conversion reduced global evapotranspiration by 2.8% and increased discharge by 5.0% (1764 km3 year-1), whereas irrigation increased evapotranspiration by up to 1.9% and decreased discharge by 0.5% at least (IPOT, 1971-2000). The diverse water fluxes displayed considerable interannual and interdecadal variability due to climatic variations and the progressive increase of the global area under cultivation and irrigation.

  4. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  5. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  6. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  7. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  8. Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River basin - Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Neto, A.; Scott, C. A.; Lima, E. A.; Montenegro, S. M. G. L.; Cirilo, J. A.

    2014-09-01

    Water availability for a range of human uses will increasingly be affected by climate change, especially in the arid and semiarid tropics. The main objective of this study is to evaluate the infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the Capibaribe River basin (CRB). The basin has experienced spatial and sectoral (agriculture-to-urban) reconfiguration of water demands. Human settlements that were once dispersed, relying on intermittent sources of surface water, are now larger and more spatially concentrated, which increases water-scarcity effects. Based on the application of linked hydrologic and water-resources models using precipitation and temperature projections of the IPCC SRES (Special Report: Emissions Scenarios) A1B scenario, a reduction in rainfall of 26.0% translated to streamflow reduction of 60.0%. We used simulations from four members of the HadCM3 (UK Met Office Hadley Centre) perturbed physics ensemble, in which a single model structure is used and perturbations are introduced to the physical parameterization schemes in the model (Chou et al., 2012). We considered that the change of the water availability in the basin in the future scenarios must drive the water management and the development of adaptation strategies that will manage the water demand. Several adaptive responses are considered, including water-loss reductions, wastewater collection and reuse, and rainwater collection cisterns, which together have potential to reduce future water demand by 23.0%. This study demonstrates the vulnerabilities of the infrastructure system during socio-hydrological transition in response to hydroclimatic and demand variabilities in the CRB and also indicates the differential spatial impacts and vulnerability of multiple uses of water to changes over time. The simulations showed that the measures proposed and the water from interbasin transfer project of the São Francisco River had a positive

  9. Water hyacinths as a resource in agriculture and energy production: a literature review.

    PubMed

    Gunnarsson, Carina C; Petersen, Cecilia Mattsson

    2007-01-01

    Water hyacinths are becoming a problem in lakes, ponds and waterways in many parts of the world. This paper contains a literature study of different ways to use water hyacinths, mainly in agricultural or alternative energy systems. The literature review indicated that water hyacinths can be rich in nitrogen, up to 3.2% of DM and have a C/N ratio around 15. The water hyacinth can be used as a substrate for compost or biogas production. The sludge from the biogas process contains almost all of the nutrients of the substrate and can be used as a fertiliser. The use of water hyacinth compost on different crops has resulted in improved yields. The high protein content makes the water hyacinth possible to use as fodder for cows, goats, sheep and chickens. Water hyacinth, due to its abundant growth and high concentrations of nutrients, has a great potential as fertiliser for the nutrient deficient soils of Africa and as feed for livestock. Applying the water hyacinths directly without any other processing than sun drying, seems to be the best alternative in small-scale use due to the relatively small losses of nutrients and workload required. To meet the ever-growing energy demand, biogas production could be one option but it requires investments and technological skills that would impose great problems in developing countries where the water hyacinth is often found. Composting as an alternative treatment has the advantage of a product that is easy to work into the soil compared with dried water hyacinths, because of the decomposed structure. Harvesting and transport of water hyacinths can be conducted manually on a small scale and does not require a new harvesting technique to be introduced. Transporting of fresh water hyacinths means, if used as fertiliser in amounts large enough to enhance or effect crop growth, an unreasonably large labour requirement. Based on the labour need and the limited access to technology, using dried water hyacinths, as green manure is a

  10. Water hyacinths as a resource in agriculture and energy production: a literature review.

    PubMed

    Gunnarsson, Carina C; Petersen, Cecilia Mattsson

    2007-01-01

    Water hyacinths are becoming a problem in lakes, ponds and waterways in many parts of the world. This paper contains a literature study of different ways to use water hyacinths, mainly in agricultural or alternative energy systems. The literature review indicated that water hyacinths can be rich in nitrogen, up to 3.2% of DM and have a C/N ratio around 15. The water hyacinth can be used as a substrate for compost or biogas production. The sludge from the biogas process contains almost all of the nutrients of the substrate and can be used as a fertiliser. The use of water hyacinth compost on different crops has resulted in improved yields. The high protein content makes the water hyacinth possible to use as fodder for cows, goats, sheep and chickens. Water hyacinth, due to its abundant growth and high concentrations of nutrients, has a great potential as fertiliser for the nutrient deficient soils of Africa and as feed for livestock. Applying the water hyacinths directly without any other processing than sun drying, seems to be the best alternative in small-scale use due to the relatively small losses of nutrients and workload required. To meet the ever-growing energy demand, biogas production could be one option but it requires investments and technological skills that would impose great problems in developing countries where the water hyacinth is often found. Composting as an alternative treatment has the advantage of a product that is easy to work into the soil compared with dried water hyacinths, because of the decomposed structure. Harvesting and transport of water hyacinths can be conducted manually on a small scale and does not require a new harvesting technique to be introduced. Transporting of fresh water hyacinths means, if used as fertiliser in amounts large enough to enhance or effect crop growth, an unreasonably large labour requirement. Based on the labour need and the limited access to technology, using dried water hyacinths, as green manure is a

  11. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population.

    PubMed

    Dawadi, Srijana; Ahmad, Sajjad

    2013-01-15

    This study investigated the effect of increasing population and changing climatic conditions on the water resources of a semi-arid region, the Las Vegas Valley (LVV) in southern Nevada. A system dynamics model was developed for the LVV from 1989 to 2035. The impact of climate change on water demand and the water supply from the Colorado River was modeled, using projections from 16 global climate models for 3 emission scenarios. Variability in water demand and supply under different scenarios of population growth and demand management, including water conservation and water pricing, was evaluated. With the population growth that was projected, if no further demand management policies were implemented, the LVV would not be able to meet the water demand in the near future. However, by combining water conservation and pricing policies, the available supply could last well into the future. The reduction in water demand in 2035 was predicted to be 327 million cubic meters (MCM) for 'status quo' population growth, or 30.6%; 408 MCM for 50% of the projected growth, or 38%; and 511 MCM for no population growth, or 47.8%. Water supply reliability decreased significantly with changing climatic conditions. Therefore, major challenges to water sustainability in the LVV would be due to rapid population growth as well as to climate variability. However, with the combination of reduced population growth rate and water conservation policies, the Colorado River supply could meet the future demand of the LVV most of the time.

  12. Water demand management in Malawi: problems and prospects for its promotion

    NASA Astrophysics Data System (ADS)

    Mulwafu, W.; Chipeta, C.; Chavula, G.; Ferguson, A.; Nkhoma, B. G.; Chilima, G.

    This paper discusses the status of water demand management (WDM) in Malawi. Findings from the study indicate that, while WDM is highly advocated in the urban and peri-urban areas, very few aspects of WDM are practiced in the rural areas. The water pricing structure that the supplying institutions established serves as a disincentive for water wastages in the urban areas. Both private firms and individuals use various measures to conserve water as a way of minimizing water consumption. The motives for water conservation range from profit maximization to inadequate financial resources to meet the costs of water respectively. In the rural areas where water is supplied at no cost, the people tend to pay less attention to water conservation. In cases where water providers attempted to institute factors of cost sharing, the rural inhabitants tended to be reluctant to contribute. This is so because people view water as a social good that should be supplied to them free of charge. The paper demonstrates that although some aspects of WDM are being practiced in the country, the existing conditions on the ground militate against its increased expansion as a strategy for promoting an efficient and equitable use of existing water resources. A large section of the population still lack access to potable water and the Malawi government is committed to the provision of basic water services. Yet WDM will become even more critical in future because of the growing competition for water resources, particularly due to the growing population and the increasing economic activities such as farming, industrialization and urbanization. The paper argues that despite the promising benefits that WDM has, its promotion must necessarily be infused with ideas of water supply, considering that the largest population still lacks access to potable water. Coupled with this will be the need for a proper policy framework that promotes public awareness for people to start appreciating the economic value

  13. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors

    NASA Astrophysics Data System (ADS)

    Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.

    2016-02-01

    In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.

  14. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    rights data as well as instream flow requirements are incorporated to inform water allocation and curtailment decisions. This modeling framework is applied over the 1976-2006 period and compared to a future 30-year period centered on the 2030s. Impacts of climate change on irrigation water availability, crop irrigation demand, frequency of curtailment, and crop yields are quantified and presented. Development of this modeling framework is part of a larger effort to develop a regional-scale earth system model, "BioEarth". The goal of BioEarth is to understand the interactions between land use and water and nutrient cycling under decadal-scale climate variability to inform decisions related to agricultural and natural resources management.

  15. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  16. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Surface Transportation Board Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries... these approvals will expire if not renewed. (1) Recordations, Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract Summaries, Control Number 2140-0024 See 78...

  17. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    PubMed

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-error<30%. In terms of magnitude, the results were as accurate as or better than those of more traditional (i.e., using areas that fluctuate based on water resource availability and prescribed crop factors) irrigation modelling. The RS

  18. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    PubMed

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-error<30%. In terms of magnitude, the results were as accurate as or better than those of more traditional (i.e., using areas that fluctuate based on water resource availability and prescribed crop factors) irrigation modelling. The RS

  19. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.

  20. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  1. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  2. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  3. Demand-based water options for arsenic mitigation: an experience from rural Bangladesh.

    PubMed

    Hoque, B A; Hoque, M M; Ahmed, T; Islam, S; Azad, A K; Ali, N; Hossain, M; Hossain, M S

    2004-01-01

    A supply of safe drinking water is a recognized global concern. The arsenic contamination of groundwater in Bangladesh and other countries has furthered this concern. Lack of appropriate water options is one of the main barriers to the supply of safe drinking water for 30-60 million people who are exposed to the risk of drinking arsenic-contaminated water in Bangladesh. This paper describes the experience from a water supply programme for arsenic mitigation based on demand and participation of 30,000 rural people in Srinagar, a subdistrict of Bangladesh. About 85% of the 912 tubewell water samples tested had an arsenic content higher than 0.05 mg/l. The project promoted 11 options including groundwater, surface-water and rainwater-harvesting household-based options as well as community managed technologies. Most people, particularly women, wanted piped water, and hand-operated deep tubewells were also requested. Four cluster-based motorized piped water systems, 20 home-based arsenic-removal options (two types) and an arsenic-removal filter plant were installed. The public contributed about 49, 25 and 20% of the installation costs of piped water, home-based options and filter options, respectively, and 100% of all operation and maintenance costs. The household options and filter plant were abandoned within a few weeks. Reportedly, those options required too much attention, discharged small volumes of water at low rates, were difficult to maintain, and discharged poor-quality water. The proportion of families (54%) that drank arsenic-contaminated water during the final survey was significantly lower than in the baseline survey (87%). For arsenic-affected areas, it is recommended that a cluster-based piped water system be given proper consideration when selecting appropriate water options rather than household-based options or the development of new low-cost options.

  4. When the 'soft-path' gets hard: demand management and financial instability for water utilities

    NASA Astrophysics Data System (ADS)

    Zeff, H. B.; Characklis, G. W.

    2014-12-01

    In the past, cost benefit analysis (CBA) has been viewed as an effective means of evaluating water utility strategies, particularly those that were dependent on the construction of new supply infrastructure. As water utilities have begun to embrace 'soft-path' approaches as a way to reduce the need for supply-centric development, CBA fails to recognize some important financial incentives affected by reduced water consumption. Demand management, both as a short-term response to drought and in longer-term actions to accommodate demand growth, can introduce revenue risks that adversely affect a utility's ability to repay debt, re-invest in aging infrastructure, or maintain reserve funds for use in a short-term emergency. A utility that does not generate sufficient revenue to support these functions may be subject to credit rating downgrades, which in turn affect the interest rate it pays on its debt. Interest rates are a critical consideration for utility managers in the capital-intensive water sector, where debt payments for infrastructure often account for a large portion of a utility's overall costs. Even a small increase in interest rates can add millions of dollars to the cost of new infrastructure. Recent studies have demonstrated that demand management techniques can lead to significant revenue variability, and credit rating agencies have begun to take notice of drought response plans when evaluating water utility credit ratings, providing utilities with a disincentive to fully embrace soft-path approaches. This analysis examines the impact of demand management schemes on key credit rating metrics for a water utility in Raleigh, North Carolina. The utility's consumer base is currently experiencing rapid population growth, and demand management has the potential to reduce the dependence on costly new supply infrastructure but could lead to financial instability that will significantly increase the costs of financing future projects. This work analyzes how 'soft

  5. A new emission-based approach for regulation of N losses from agricultural areas to surface waters

    NASA Astrophysics Data System (ADS)

    Rosenstand Poulsen, Jane; Kronvang, Brian; Bering Ovesen, Niels; Piil, Kristoffer; Kolind Hvid, Søren

    2015-04-01

    Demands for a reduction and hence regulation of nitrogen (N) emissions to streams, lakes and coastal areas are a central part of many river basin management plans under the EU Water Framework Directive. Therefore, large focus has been placed on exploring different mitigation options that can assist in reducing the N emission from agricultural areas. However, the spatial variability in landscape, geology and hydrology entails significant differences in the vulnerability of catchments to intense agricultural activities. Hence, if rigid regulations of N emissions are applied without considering this variability, it will not necessarily lead to an optimum balance between applied fertilisers, yields and loss of excess N to the surrounding surface waters. Therefore, the overall purpose of this pilot study is to develop a concept for regulation of nutrient emissions to surface waters based on a comprehensive stream monitoring design in order to measure the temporal and spatial transport of N at sub-catchment scale. The purpose of such a monitoring design is twofold: i) quantification of the actual N emissions from a given agricultural sub-catchment or even individual farms; ii) quantification at sub-catchment scale of nitrate retention that may ultimately lead to a more precise regulation of N emissions from agricultural areas to surface waters. In order to investigate down to which scale it is feasible to quantify N emissions to surface waters and to develop the best monitoring concept, three catchments subdivided into several sub-catchments in Denmark will be studied during the period 2014-2017. The catchments represent different landscapes and geological settings as well as three different hydrological regimes. In the three catchments, hydrometric stations have been established at the outlet of the drainage networks where continuous measurements are made of water stage. In addition daily water samples and weekly grab samples of water are taken and weekly discharge

  6. Overcoming constraints to the implementation of water demand management in southern Africa

    NASA Astrophysics Data System (ADS)

    Mwendera, E. J.; Hazelton, D.; Nkhuwa, D.; Robinson, P.; Tjijenda, K.; Chavula, G.

    This paper presents results of a study on water demand management status and overcoming constraints to implementation of water demand management in the southern African region, as part of Phase II of water demand management (WDM) programme implemented by the IUCN (The World Conservation Union). The study was conducted in Malawi, Namibia, South Africa, Swaziland, Zambia and Zimbabwe. The study methodology consisted of a survey of literature, and interviewing and communicating with stakeholders in order to learn from stakeholders on the critical constraints to WDM implementation and strategies to overcome them. The study has shown that, despite the potential savings that would accrue from implementation of WDM, the water sector across the southern African region continues to focus on water supply augmentation. There are inadequate financial and human resources for rehabilitation, operation and maintenance of water conveyance systems resulting in system leaks, which contribute to high levels of unaccounted-for water, a situation that masks the potential benefits of WDM. In most countries, the water sector operates on ad-hoc sub-sector water user objectives, which provided guidelines only for development and management purposes. Most of the institutional frameworks have remained diffuse, resulting into poor performance in the sector, and into crisis management in the water resources development. Though the WDM policy in most countries is already accessible through guidelines for catchment management institutions and water supply institutions; there is a lack of broad commitment to implementing them. In other countries the instruments are relatively new and have not been applied widely. Similarly, the effectiveness of instruments has not been well evaluated in most countries. In countries where policy is weak there is often a lack of clarity as to who is responsible for WDM implementation, and even less clarity on who is responsible for facilitating and monitoring

  7. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    SciTech Connect

    Judi, David R.; Mcpherson, Timothy N.

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storage in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.

  8. Constraints and potentials of future irrigation water availability on agricultural production under climate change.

    PubMed

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M; Folberth, Christian; Foster, Ian; Gosling, Simon N; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-03-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required. PMID:24344283

  9. Constraints and potentials of future irrigation water availability on agricultural production under climate change.

    PubMed

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M; Folberth, Christian; Foster, Ian; Gosling, Simon N; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-03-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.

  10. Constraints and potentials of future irrigation water availability on agricultural production under climate change

    PubMed Central

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M.; Folberth, Christian; Foster, Ian; Gosling, Simon N.; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C.; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-01-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required. PMID:24344283

  11. Derivation of operation rules for reservoirs in parallel with joint water demand

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang; Hu, Tiesong; Xiong, Lihua; Cao, Zhixian; Xu, Chongyu

    2015-12-01

    The purpose of this paper is to derive the general optimality conditions of the commonly used operating policies for reservoirs in parallel with joint water demand, which are defined in terms of system-wide release rules and individual reservoir storage balancing functions. Following that, a new set of release rules for individual reservoirs are proposed in analytical forms by considering the optimality conditions for the balance of total water delivery utility and carryover storage value of individual reservoirs. Theoretical analysis indicates that the commonly used operating policies are a special case of the newly derived rules. The derived release rules are then applied to simulating the operation of a parallel reservoir system in northeastern China. Compared to the performance of the commonly used policies, some advantages of the proposed operation rules are illustrated. Most notably, less water shortage occurrence and higher water supply reliability are obtained from the proposed operation rules.

  12. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  13. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe

    NASA Astrophysics Data System (ADS)

    Webber, Heidi; Gaiser, Thomas; Oomen, Roelof; Teixeira, Edmar; Zhao, Gang; Wallach, Daniel; Zimmermann, Andrea; Ewert, Frank

    2016-07-01

    While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2–3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1–2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley–Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.

  14. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe

    NASA Astrophysics Data System (ADS)

    Webber, Heidi; Gaiser, Thomas; Oomen, Roelof; Teixeira, Edmar; Zhao, Gang; Wallach, Daniel; Zimmermann, Andrea; Ewert, Frank

    2016-07-01

    While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.

  15. Capacity building in water demand management as a key component for attaining millennium development goals

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Forster, Laura; Arntzen, Jaap

    Successful water demand management (WDM) implementation as a component of integrated water resource management (IWRM) can play a significant role in the alleviation of poverty through more efficient use of available water resources. The urban population in Southern African cities is characterised by so-called ‘water poor’ communities who typically expend a high percentage of their household income on poor quality water. Usually they have no access to an affordable alternative source. Although WDM as a component of IWRM is not a panacea for poverty, it can help alleviate poverty by facilitating water services management by municipal water supply agencies (MWSAs) in the region. WDM is a key strategy for achieving the millennium development goals (MDGs) and, as such, should be given due attention in the preparation of national IWRM and water efficiency plans. Various studies in the Southern African region have indicated that capacity building is necessary for nations to develop IWRM and water-use efficiency plans to meet the targets set out in the MDGs. WDM education and training of water professionals and end-users is particularly important in developing countries, which are resource and information-access poor. In response to these findings, The World Conservation Union (IUCN) and its consulting partners, the Training and Instructional Design Academy of South Africa (TIDASA), and Centre for Applied Research (CAR) designed, developed and presented a pilot WDM Guideline Training Module for MWSAs as part of Phase II of IUCN’s Southern Africa regional WDM project. Pilot training was conducted in July 2004 in Lusaka, Zambia for a group of 36 participants involved in municipal water supply from nine Southern African countries. This paper looks at the links between building the capacity of professionals, operational staff and other role-players in the municipal water supply chain to implement WDM as part of broader IWRM strategies, and the subsequent potential for

  16. Sustainability of least cost policies for meeting Mexico City's future water demand

    NASA Astrophysics Data System (ADS)

    Downs, Timothy J.; Mazari-Hiriart, Marisa; DomíNguez-Mora, Ramón; Suffet, I. H.

    2000-08-01

    Meeting future water demand without degrading ecosystems is one important indicator of sustainable development. Using simulations, we showed that compared to existing policy, more sustainable water supply options are similar or cheaper in cost. We probabilistically forecasted the Mexico City metropolitan zone population for the year 2015 to be 23.5 million and total required water supply to be 106 m3 s-1. We optimized existing and potential supply sources from aquifers, surface water, treatment/reuse, and efficiency/demand management by cost to meet future supply needs; the applied source supply limits determined the degree of sustainability. In two scenarios to supply 106 m3 s-1, the business-as-usual scenario (zero sustainability) had an average relative unit cost of 1.133; while for the most sustainable scenario (it includes reducing potential supply basins' exploitation limits by 50%), the value was 1.121. One extreme scenario to supply the forecast's 95% confidence value (124 m3 s-1) showed little unit cost change (1.106). The simulation shows sustainable policies can be cost-effective.

  17. Industrial water demand management and cleaner production potential: a case of three industries in Bulawayo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Mlilo, Sipho; Broome, Jeff; Lumbroso, Darren

    The combination of water demand management and cleaner production concepts have resulted in both economical and ecological benefits. The biggest challenge for developing countries is how to retrofit the industrial processes, which at times are based on obsolete technology, within financial, institutional and legal constraints. Processes in closed circuits can reduce water intake substantially and minimise resource input and the subsequent waste thereby reducing pollution of finite fresh water resources. Three industries were studied in Bulawayo, Zimbabwe to identify potential opportunities for reducing water intake and material usage and minimising waste. The industries comprised of a wire galvanising company, soft drink manufacturing and sugar refining industry. The results show that the wire galvanising industry could save up to 17% of water by recycling hot quench water through a cooling system. The industry can eliminate by substitution the use of toxic materials, namely lead and ammonium chloride and reduce the use of hydrochloric acid by half through using an induction heating chamber instead of lead during the annealing step. For the soft drink manufacturing industry water intake could be reduced by 5% through recycling filter-backwash water via the water treatment plant. Use of the pig system could save approximately 12 m 3/month of syrup and help reduce trade effluent fees by Z30/m 3 of “soft drink”. Use of a heat exchanger system in the sugar refining industry can reduce water intake by approximately 57 m 3/100 t “raw sugar” effluent volume by about 28 m 3/100 t “raw sugar”. The water charges would effectively be reduced by 52% and trade effluent fees by Z3384/100 t “raw sugar” (57%). Proper equipment selection, equipment modification and good house-keeping procedures could further help industries reduce water intake and minimise waste.

  18. Process-based modelling of regional water demand for electricity, industry and municipal sectors in Integrated Assessment Models.

    NASA Astrophysics Data System (ADS)

    Bijl, David L.; Bogaart, Patrick W.; Kram, Tom; De Vries, Bert J. M.; Van Vuuren, Detlef P.

    2014-05-01

    Integrated Assessment Models (IAMs) are a prime tool for studying global scale interactions between the human and natural earth systems. Our research contributes to this field by modelling water, food and energy demand as outcomes of more physical processes and by adding links between them. As part of this ambition, we here describe a model for water demand in the electricity generation, industrial and municipal sectors, going beyond previous modelling efforts. For instance, by coupling water demand to energy inputs, the model directly couples water efficiency to fuel efficiency of power plants. We present electricity, industry and municipal water demand models and develop water demand projections for the new Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs) for climate research. Our regional-level demand models contribute to understanding the extent of crossing planetary boundaries and the scope for solutions such as virtual water trade or efficiency improvements. We also discuss how we plan to link demand and supply models, and how the usefulness for policy makers can be increased.

  19. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  20. Uncertainty analysis of daily potable water demand on the performance evaluation of rainwater harvesting systems in residential buildings.

    PubMed

    Silva, Arthur Santos; Ghisi, Enedir

    2016-09-15

    The objective of this paper is to perform a sensitivity analysis of design variables and an uncertainty analysis of daily potable water demand to evaluate the performance of rainwater harvesting systems in residential buildings. Eight cities in Brazil with different rainfall patterns were analysed. A numeric experiment was performed by means of computer simulation of rainwater harvesting. A sensitivity analysis was performed using variance-based indices for identifying the most important design parameters for rainwater harvesting systems when assessing the potential for potable water savings and underground tank capacity sizing. The uncertainty analysis was performed for different scenarios of potable water demand with stochastic variations in a normal distribution with different coefficients of variation throughout the simulated period. The results have shown that different design variables, such as potable water demand, number of occupants, rainwater demand, and roof area are important for obtaining the ideal underground tank capacity and estimating the potential for potable water savings. The stochastic variations on the potable water demand caused amplitudes of up to 4.8% on the potential for potable water savings and 9.4% on the ideal underground tank capacity. Average amplitudes were quite low for all cities. However, some combinations of parameters resulted in large amplitude of uncertainty and difference from uniform distribution for tank capacities and potential for potable water savings. Stochastic potable water demand generated low uncertainties in the performance evaluation of rainwater harvesting systems; therefore, uniform distribution could be used in computer simulation.

  1. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    SciTech Connect

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  2. The many faces and facets of water in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The many forms of water (i.e., water vapor, fog, rain, snow, hail and ice) are essential, but can be detrimental, for maintaining an adequate food supply and a productive and healthy environment for all forms of life. Greater limitations on water availability and quality call for research on water c...

  3. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through

  4. Retrospective Analog Year Analyses Using NASA Satellite Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Technical Reports Server (NTRS)

    Teng, William; Shannon, Harlan

    2011-01-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attach s, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly affect crop yields, WAOB often uses precipitation time series to identify growing seasons with similar weather patterns and help estimate crop yields for the current growing season, based on observed yields in analog years. Historically, these analog years are visually identified; however, the qualitative nature of this method sometimes precludes the definitive identification of the best analog year. Thus, one goal of this study is to derive a more rigorous, statistical approach for identifying analog years, based on a modified coefficient of determination, termed the analog index (AI). A second goal is to compare the performance of AI for time series derived from surface-based observations vs. satellite-based measurements (NASA TRMM and other data).

  5. MANPOWER REQUIREMENTS AND DEMAND IN AGRICULTURE BY REGIONS AND NATIONALLY, WITH ESTIMATION OF VOCATIONAL TRAINING AND EDUCATIONAL NEEDS AND PRODUCTIVITY.

    ERIC Educational Resources Information Center

    ARCUS, PETER; HEADY, EARL O.

    THE PURPOSE OF THIS STUDY IS TO ESTIMATE THE MANPOWER REQUIREMENTS FOR THE NATION FOR 144 REGIONS THE TYPES OF SKILLS AND WORK ABILITIES REQUIRED BY AGRICULTURE IN THE NEXT 15 YEARS, AND THE TYPES AND AMOUNTS OF EDUCATION NEEDED. THE QUANTITATIVE ANALYSIS IS BEING MADE BY METHODS APPROPRIATE TO THE PHASES OF THE STUDY--(1) INTERRELATIONS AMONG…

  6. Demand for Agricultural Extension Services among Small-Scale Maize Farmers: Micro-Level Evidence from Kenya

    ERIC Educational Resources Information Center

    Gido, Eric O.; Sibiko, Kenneth W.; Ayuya, Oscar I.; Mwangi, Joseph K.

    2015-01-01

    Purpose: The objective of the study was to determine the level and determinants of demand for extension services among small-scale maize farmers in Kenya. Design/methodology/approach: Based on an exploratory research design, primary data were collected from a sample of 352 households through face-to-face interviews. Focus group discussions were…

  7. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  8. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water.

    PubMed

    Jegatheesan, Veeriah; Kim, Seung Hyun; Joo, C K; Gao, Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong River that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand because FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  9. Modeling of Electric Water Heaters for Demand Response: A Baseline PDE Model

    SciTech Connect

    Xu, Zhijie; Diao, Ruisheng; Lu, Shuai; Lian, Jianming; Zhang, Yu

    2014-09-05

    Demand response (DR)control can effectively relieve balancing and frequency regulation burdens on conventional generators, facilitate integrating more renewable energy, and reduce generation and transmission investments needed to meet peak demands. Electric water heaters (EWHs) have a great potential in implementing DR control strategies because: (a) the EWH power consumption has a high correlation with daily load patterns; (b) they constitute a significant percentage of domestic electrical load; (c) the heating element is a resistor, without reactive power consumption; and (d) they can be used as energy storage devices when needed. Accurately modeling the dynamic behavior of EWHs is essential for designing DR controls. Various water heater models, simplified to different extents, were published in the literature; however, few of them were validated against field measurements, which may result in inaccuracy when implementing DR controls. In this paper, a partial differential equation physics-based model, developed to capture detailed temperature profiles at different tank locations, is validated against field test data for more than 10 days. The developed model shows very good performance in capturing water thermal dynamics for benchmark testing purposes

  10. Optimal expansion of a drinking water infrastructure system with respect to carbon footprint, cost-effectiveness and water demand.

    PubMed

    Chang, Ni-Bin; Qi, Cheng; Yang, Y Jeffrey

    2012-11-15

    Urban water infrastructure expansion requires careful long-term planning to reduce the risk from climate change during periods of both economic boom and recession. As part of the adaptation management strategies, capacity expansion in concert with other management alternatives responding to the population dynamics, ecological conservation, and water management policies should be systematically examined to balance the water supply and demand temporally and spatially with different scales. To mitigate the climate change impact, this practical implementation often requires a multiobjective decision analysis that introduces economic efficiencies and carbon-footprint matrices simultaneously. The optimal expansion strategies for a typical water infrastructure system in South Florida demonstrate the essence of the new philosophy. Within our case study, the multiobjective modeling framework uniquely features an integrated evaluation of transboundary surface and groundwater resources and quantitatively assesses the interdependencies among drinking water supply, wastewater reuse, and irrigation water permit transfer as the management options expand throughout varying dimensions. With the aid of a multistage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing of multiple competing objectives across a suite of management strategies. These strategies that prioritize 20 options provide a possible expansion schedule over the next 20 years that improve water infrastructure resilience and at low life-cycle costs. The proposed method is transformative to other applications of similar water infrastructure systems elsewhere in the world.

  11. Scheduling and adaptation of London's future water supply and demand schemes under uncertainty

    NASA Astrophysics Data System (ADS)

    Huskova, Ivana; Matrosov, Evgenii S.; Harou, Julien J.; Kasprzyk, Joseph R.; Reed, Patrick M.

    2015-04-01

    The changing needs of society and the uncertainty of future conditions complicate the planning of future water infrastructure and its operating policies. These systems must meet the multi-sector demands of a range of stakeholders whose objectives often conflict. Understanding these conflicts requires exploring many alternative plans to identify possible compromise solutions and important system trade-offs. The uncertainties associated with future conditions such as climate change and population growth challenge the decision making process. Ideally planners should consider portfolios of supply and demand management schemes represented as dynamic trajectories over time able to adapt to the changing environment whilst considering many system goals and plausible futures. Decisions can be scheduled and adapted over the planning period to minimize the present cost of portfolios while maintaining the supply-demand balance and ecosystem services as the future unfolds. Yet such plans are difficult to identify due to the large number of alternative plans to choose from, the uncertainty of future conditions and the computational complexity of such problems. Our study optimizes London's future water supply system investments as well as their scheduling and adaptation over time using many-objective scenario optimization, an efficient water resource system simulator, and visual analytics for exploring key system trade-offs. The solutions are compared to Pareto approximate portfolios obtained from previous work where the composition of infrastructure portfolios that did not change over the planning period. We explore how the visual analysis of solutions can aid decision making by investigating the implied performance trade-offs and how the individual schemes and their trajectories present in the Pareto approximate portfolios affect the system's behaviour. By doing so decision makers are given the opportunity to decide the balance between many system goals a posteriori as well as

  12. Global climate change response program. Impacts of projected climate change on urban water use. An application using the Wasatch Front water demand and supply model. Final report

    SciTech Connect

    Hughes, T.; Wang, Y.M.; Hansen, R.

    1994-02-01

    Urban water use, particularly outdoor use, responds to changes in temperature, precipitation, and other climatic parameters. The study significantly improved the capacity of an existing regional water demand model to estimate the response of both residential and commercial-industrial water demand to changes in climatic parameters. The resulting functional relationships derived from historic time-series climatic and water use data were applied to global climate scenarios for the four Wasatch Front counties of Utah.

  13. Future Proofing Water Policy and Catchment Management for a Changing Climate: A Case Study of Competing Demands and Water Scarcity in the River Thames and Catchment

    NASA Astrophysics Data System (ADS)

    Whitehead, P. G.; Crossman, J.; Jin, L.

    2011-12-01

    The River Thames Catchment is the major water supply system in Southern England and supplies all of London's water supply from either the River Lee (a tributary of the Thames) or the main river abstraction site at Teddington (see Figure 1) or from groundwater sources in London. There has been a measurable change in rainfall patterns over the past 250 years with reducing summer rainfall and, hence flows, over the past 40 years. In 1976, following 3 dry winters, the London Reservoirs were more or less empty and the river flow direction was reversed to ensure a supply of water for London. Recent climate change studies in the Thames catchments suggest an increasing threat to water supply and also damage to river water quality and ecology. In addition to a changing climate, population levels in London have risen in recent years and the catchment is increasingly vulnerable to land use change. Since the 1920s changes in land use have increased the levels of nitrogen and phosphorus in the catchment and this trend is predicted to be exacerbated as climate change reduces freshwater dilution. Also land use is predicted to change as agriculture becomes more intensive as farmers react to higher grain and food prices. At the same time rising water temperatures has exposed the river to the potential for toxic algal blooms, such as cyanobacteria. This doom and gloom story is being managed however using a range of policy instruments, led by central government and public and private organisations such as Thames Water and the Environment Agency. Measures such as new reservoirs, a water transfer scheme from Wales and water metering to reduce demand are all being actively pursued, as are land management measures to control diffuse pollution. In order to assess the effects of climate change on the Thames catchment a major modelling study has been undertaken. The Integrated Catchment Model (INCA) has been set up for the Thames to model flow, nitrogen, phosphorus and ecology. Climate

  14. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  15. Voluntary arrangements to cope with diffuse pollution from agriculture and their role in European water policy.

    PubMed

    Heinz, I; Andrews, K; Brouwer, F; Zabel, T

    2002-01-01

    A limited number of Member States in the EU have gained experience with establishing co-operative agreements between agriculture and the water sector. Their main aim is to reduce or prevent water pollution caused by intensive farming practices. The research has shown that significant changes in farming practices have been achieved as a result of negotiation between farmers and water suppliers. Consequently, in many catchment areas improvements in water quality can be observed. Co-operative agreements have the important advantage that the measures taken can be tailored to the different local conditions in catchment areas. Reducing diffuse pollution resulting from intensive agriculture is one of the main issues of the EU Water Framework Directive. The current paper builds on the results of a EU-wide research project which examines the role co-operative agreements can play in water policy and the Common Agricultural Policy.

  16. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production. PMID:27344509

  17. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  18. Evaluation of golf courses water demand in southern of Portugal for the last three decades

    NASA Astrophysics Data System (ADS)

    Gago Pedras, Celestina M.; Lança, Rui M.; Martins, Fernando; Fernandez, Helena; Vieira, Cristina; Monteiro, José Paulo; Guerrero, Carlos

    2014-05-01

    Golf is an economic activity with a prominent position in the tourist-sport offer in the region of Algarve. Located in southern of Portugal, this region is the most suitable region for the growth of the golf industry. The climate is characterized by mild winters with slight rainfall and hot and dry summers. The region has an annual average temperature of 14oC and annual precipitation that rarely exceeds 500 mm year-1. Since most of the rainfall occurs concentrated in the winter, irrigation is needed during the remaining months of the year to meet the water demand from plants. A proper irrigation management will allow to optimize the use water, thus it constitutes a key issue for the sustainability of this activity in areas subjected to water scarcity. Currently, remote sensing provides the tools to assess the evolution of the greenish quality of the area in the golf courses. In this study, based on Landsat images, vegetation indices were calculated the Normalized Difference Vegetation Index (NDVI), for the spring and summer seasons during the last 30 years. For the same period, according the data collected from weather stations distributed in the region, maps of precipitation, temperature, solar radiation, relative humidity and wind were produced. According the current maintenance practices and irrigation cycles, maps of potential and real evapotranspiration and with basis on the water balance were calculated, and water deficit maps estimated. Upon crossing this information with the NDVI maps, trends were identified in the consumption of water for irrigation due to the growth of the occupied area by golf courses in the region of Algarve. Since drought problems tend to increase due to climate changes, it becomes relevant the need to conduct this study aiming the research of strategies to ensure the beneficial use of water on golf courses and other turfgrass areas. Keywords: evapotranspiration, golf, irrigation, NDVI, water deficit

  19. Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models

    NASA Astrophysics Data System (ADS)

    Tiwari, Mukesh K.; Adamowski, Jan

    2013-10-01

    A new hybrid wavelet-bootstrap-neural network (WBNN) model is proposed in this study for short term (1, 3, and 5 day; 1 and 2 week; and 1 and 2 month) urban water demand forecasting. The new method was tested using data from the city of Montreal in Canada. The performance of the WBNN method was compared with the autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average model with exogenous input variables (ARIMAX), traditional NNs, wavelet analysis-based NNs (WNN), bootstrap-based NNs (BNN), and a simple naïve persistence index model. The WBNN model was developed as an ensemble of several NNs built using bootstrap resamples of wavelet subtime series instead of raw data sets. The results demonstrated that the hybrid WBNN and WNN models produced significantly more accurate forecasting results than the traditional NN, BNN, ARIMA, and ARIMAX models. It was also found that the WBNN model reduces the uncertainty associated with the forecasts, and the performance of WBNN forecasted confidence bands was found to be more accurate and reliable than BNN forecasted confidence bands. It was found in this study that maximum temperature and total precipitation improved the accuracy of water demand forecasts using wavelet analysis. The performance of WBNN models was also compared for different numbers of bootstrap resamples (i.e., 25, 50, 100, 200, and 500) and it was found that WBNN models produced optimum results with different numbers of bootstrap resamples for different lead time forecasts with considerable variability.

  20. New Demands, New Supplies: A National Look at the Water Balance of Carbon Dioxide Capture and Sequestration

    NASA Astrophysics Data System (ADS)

    Roach, J. D.; Kobos, P.; Klise, G. T.; Krumhansl, J. L.; McNemar, A.

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. New demands, new supplies : a national look at the water balance of carbon dioxide capture and sequestration.

    SciTech Connect

    Krumhansl, James Lee; McNemar, Andrea , Morgantown, WV); Kobos, Peter Holmes; Roach, Jesse Dillon; Klise, Geoffrey Taylor

    2010-12-01

    Concerns over rising concentrations of greenhouse gases in the atmosphere have resulted in serious consideration of policies aimed at reduction of anthropogenic carbon dioxide (CO2) emissions. If large scale abatement efforts are undertaken, one critical tool will be geologic sequestration of CO2 captured from large point sources, specifically coal and natural gas fired power plants. Current CO2 capture technologies exact a substantial energy penalty on the source power plant, which must be offset with make-up power. Water demands increase at the source plant due to added cooling loads. In addition, new water demand is created by water requirements associated with generation of the make-up power. At the sequestration site however, saline water may be extracted to manage CO2 plum migration and pressure build up in the geologic formation. Thus, while CO2 capture creates new water demands, CO2 sequestration has the potential to create new supplies. Some or all of the added demand may be offset by treatment and use of the saline waters extracted from geologic formations during CO2 sequestration. Sandia National Laboratories, with guidance and support from the National Energy Technology Laboratory, is creating a model to evaluate the potential for a combined approach to saline formations, as a sink for CO2 and a source for saline waters that can be treated and beneficially reused to serve power plant water demands. This presentation will focus on the magnitude of added U.S. power plant water demand under different CO2 emissions reduction scenarios, and the portion of added demand that might be offset by saline waters extracted during the CO2 sequestration process.

  2. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas

    PubMed Central

    2014-01-01

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH’s, aldrin, dicofol, DDT and its derivatives, α,β endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

  3. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system.

  4. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. PMID:26994788

  5. On the forest cover–water yield debate: from demand- to supply-side thinking

    PubMed Central

    Ellison, David; N Futter, Martyn; Bishop, Kevin

    2012-01-01

    Several major articles from the past decade and beyond conclude the impact of reforestation or afforestation on water yield is negative: additional forest cover will reduce and removing forests will raise downstream water availability. A second group of authors argue the opposite: planting additional forests should raise downstream water availability and intensify the hydrologic cycle. Obtaining supporting evidence for this second group of authors has been more difficult due to the larger scales at which the positive effects of forests on the water cycle may be seen. We argue that forest cover is inextricably linked to precipitation. Forest-driven evapotranspiration removed from a particular catchment contributes to the availability of atmospheric moisture vapor and its cross-continental transport, raising the likelihood of precipitation events and increasing water yield, in particular in continental interiors more distant from oceans. Seasonal relationships heighten the importance of this phenomenon. We review the arguments from different scales and perspectives. This clarifies the generally beneficial relationship between forest cover and the intensity of the hydrologic cycle. While evidence supports both sides of the argument – trees can reduce runoff at the small catchment scale – at larger scales, trees are more clearly linked to increased precipitation and water availability. Progressive deforestation, land conversion from forest to agriculture and urbanization have potentially negative consequences for global precipitation, prompting us to think of forest ecosystems as global public goods. Policy-making attempts to measure product water footprints, estimate the value of ecosystem services, promote afforestation, develop drought mitigation strategies and otherwise manage land use must consider the linkage of forests to the supply of precipitation.

  6. Retrospective Analog Year Analyses Using NASA Satellite Data to Improve USDA's World Agricultural Supply and Demand Estimates

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Shannon, H. D.

    2011-12-01

    The USDA World Agricultural Outlook Board (WAOB) is responsible for monitoring weather and climate impacts on domestic and foreign crop development. One of WAOB's primary goals is to determine the net cumulative effect of weather and climate anomalies on final crop yields. To this end, a broad array of information is consulted, including maps, charts, and time series of recent weather, climate, and crop observations; numerical output from weather and crop models; and reports from the press, USDA attachés, and foreign governments. The resulting agricultural weather assessments are published in the Weekly Weather and Crop Bulletin, to keep farmers, policy makers, and commercial agricultural interests informed of weather and climate impacts on agriculture. Because both the amount and timing of precipitation significantly impact crop yields, WAOB often uses precipitation time series to identify growing seasons with similar weather patterns and help estimate crop yields for the current growing season, based on observed yields in analog years. Although, historically, these analog years are identified through visual inspection, the qualitative nature of this methodology sometimes precludes the definitive identification of the best analog year. One goal of this study is to introduce a more rigorous, statistical approach for identifying analog years. This approach is based on a modified coefficient of determination, termed the analog index (AI). The derivation of AI will be described. Another goal of this study is to compare the performance of AI for time series derived from surface-based observations vs. satellite-based measurements (NASA TRMM and other data). Five study areas and six growing seasons of data were analyzed (2003-2007 as potential analog years and 2008 as the target year). Results thus far show that, for all five areas, crop yield estimates derived from satellite-based precipitation data are closer to measured yields than are estimates derived from surface

  7. Evaluation of water demand in golf courses from southern Portugal during the last three decades

    NASA Astrophysics Data System (ADS)

    Gago Pedras, Celestina M.; Lança, Rui M.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Vieira, Cristina; Monteiro, José P.; Guerrero, Carlos

    2014-05-01

    Golf is an economic activity with a prominent position in the tourist-sport offer in the region of Algarve. Located in southern of Portugal, this region is the most suitable region for the growth of the golf industry. The climate is characterized by mild winters with slight rainfall and hot and dry summers. The region has an annual average temperature of 14oC and annual precipitation that rarely exceeds 500 mm year-1. Since most of the rainfall occurs concentrated in the winter, irrigation is needed during the remaining months of the year to meet the water demand from plants. A proper irrigation management will allow to optimize the use water, thus it constitutes a key issue for the sustainability of this activity in areas subjected to water scarcity. Currently, remote sensing provides the tools to assess the evolution of the greenish quality of the area in the golf courses. In this study, based on Landsat images, vegetation indices were calculated the Normalized Difference Vegetation Index (NDVI), for the spring and summer seasons during the last 30 years. For the same period, according the data collected from weather stations distributed in the region, maps of precipitation, temperature, solar radiation, relative humidity and wind were produced. According the current maintenance practices and irrigation cycles, maps of potential and real evapotranspiration and with basis on the water balance were calculated, and water deficit maps estimated. Upon crossing this information with the NDVI maps, trends were identified in the consumption of water for irrigation due to the growth of the occupied area by golf courses in the region of Algarve. Since drought problems tend to increase due to climate changes, it becomes relevant the need to conduct this study aiming the research of strategies to ensure the beneficial use of water on golf courses and other turfgrass areas.

  8. Summary of reported agriculture and irrigation water use in Jefferson County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Jefferson County, Arkansas. The number of withdrawal registrations for Jefferson County was 1,636 (1,227 groundwater and 409 surface water). Water with- drawals reported during the registration process total 5.64 Mgal/day (3.89 Mgal/d groundwater and 1.75 Mgal/d surface water) for agriculture and 197.49 Mgal/d (161.39 Mgal/d groundwater and 36.10 Mgal/d surface water) for irrigation. The regis- tration reports for 1991 indicate that this water was applied to 132,667 acres of land to irrigate rice, sorghum, corn, soybeans, milo, cash grains, cotton, vegetables, and unknown crops as well as for the agricultural uses of animal aquaculture, crawfish, minnows, timber, and ducks. (USGS) {descriptors: *Water use, *Arkansas, *Jefferson County, Selective withdrawal, Groundwater, Surface water

  9. Summary of reported agriculture and irrigation water use in Monroe County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Monroe County, Arkansas. The number of withdrawal registrations for Monroe County was 1,886 (1,677 groundwater and 209 surface water). Water withdrawals reported during the registration process total 8.87 Mgal/d (5.75 Mgal/d groundwater and 3.12 Mgal/d surface water) for agriculture and 210.61 Mgal/d (190.99 Mgal/d groundwater and 19.62 Mgal/d surface water) for irrigation. The registration reports for 1991 indicate that this water was applied to 127,670 acres of land to irrigate rice, sorghum, soybeans, milo, cash grains, cotton, hay, and unknown crops, as well as for agricultural uses of animal aquaculture, minnows, and ducks. {descriptors: *Water use, *Arkansas, *Monroe County, Selective withdrawal, Groundwater, Surface water

  10. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    USGS Publications Warehouse

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  11. Agricultural water and energy use in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Masiyandima, M. C.; Sow, A.

    2015-12-01

    Assessment of the productivity of irrigation water is important measuring the performance of irrigation schemes especially in water scarce areas. Equally important for performance is the energy cost of providing water for irrigation. Sahel irrigation schemes are dependent on pumping water from rivers into a network of gravity operated channels. In the Senegal River valley in Senegal the cost of pumping water and for irrigation has been estimated to be 20-25% of total rice production costs. Irrigation schemes in the valley are characterized by low water productivity. We analysed rice production, irrigation water use and energy use for supplying irrigation water at Pont Gendarme, Ndiawar and Ngallenka MCA irrigation schemes in the Senegal River valley. For the 2013 rainfall season the mean yield ranged between 6 and 8t ha-1. Dry season yield ranged between 1.7 and 6.8t ha-1. Energy use for irrigation in the Ndiawar irrigation scheme was 8kg MJ-1 and 6.4kg MJ-1 in the 2013 and 2014 rainfall seasons respectively. In 2014 (rainfall season) energy productivity of irrigation water was 8.5, 8.0 and 16.4 kg MJ-1 at Ngallenka MCA, Ndiawar and Pont Gendarme respectively. Dry season (2014) energy productivity at Ndiawar and Pont Gendarme was 3.4 and 11.2kg MJ-1 respectively. Productivity of irrigation water was similar for all schemes (0.37kg m-3 at Pont Gendarme, 0.42kg m-3 at Ngallenka MCA, and 0.41kg m-3 Ndiawar). Energy use for the supply of irrigation water in the rainfall season ranged from 403 to 1,002MJ ha-1. Dry season irrigation energy use was 589MJ ha-1 Pont Gendarme and 331MJ ha-1 at Ndiawar. Reducing water use in these schemes through better water management will result in lower production costs and increased margins for the farmers. The observations from 2013 - 2014 highlight the importance of using both water and energy productivity to assess performance of irrigation schemes.

  12. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.

    PubMed

    Keller, Markus; Zhang, Yun; Shrestha, Pradeep M; Biondi, Marco; Bondada, Bhaskar R

    2015-06-01

    We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink-driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought-induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink-driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow.

  13. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment.

    PubMed

    Johnson, Clayton J; Singer, Philip C

    2004-10-01

    The objective of this research was to examine the impact of a magnetic ion exchange resin (MIEX) on ozone demand and bromate formation in two different ozonated waters at bench scale. The first raw water had a high bromide ion concentration, a high ozone demand, and was highly colored. Based on experimental findings from the first water, the second water was selected as a model water in which more controlled experiments were performed. The waters were treated with the MIEX resin using jar test procedures to find the optimal MIEX dosage based upon the removal of ultraviolet (UV)-absorbing substances, dissolved organic carbon (DOC), and bromide. The optimal resin dosage was chosen for bulk MIEX treatment and subsequent ozonation in a semi-batch reactor. The ozone demand and formation of bromate were analyzed as a function of ozone dosage and dissolved ozone concentration for the MIEX pre-treated water, and compared to the results obtained by ozonating the water without MIEX pre-treatment. The results indicate that pre-treatment of the water with the MIEX resin significantly reduces total organic carbon, DOC, UV absorbance, color, and to some extent, bromide. MIEX pre-treatment of the water prior to ozonation substantially lowered the ozone demand and formation of bromate during subsequent ozonation.

  14. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  15. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  16. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  17. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  18. Simultaneous concentration of bovine viruses and agricultural zoonotic bacteria from water using sodocalcic glass wool filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...

  19. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  20. Using wetlands for water quality improvement in agricultural watersheds; the importance of a watershed scale approach.

    PubMed

    Crumpton, W G

    2001-01-01

    Agricultural applications of fertilizers and pesticides have increased dramatically since the middle 1960s, and agrochemical contamination of surface and groundwater has become a serious environmental concern. Since the mid-1980s, a variety of state and federal programs have been used to promote wetland restoration, and these continuing efforts provide a unique opportunity for water quality improvement in agricultural watersheds. However, wetland restorations have been motivated primarily by concern over waterfowl habitat loss, and model simulations suggest that commonly used site selection criteria for wetland restorations may be inadequate for water quality purposes. This does not lessen the promise of wetlands for water quality improvement in agricultural watersheds, but rather emphasizes the need for watershed scale approaches to wetland siting and design. Water quality is best viewed from a watershed perspective, and watershed scale endpoints should be explicitly considered in site selection for wetland restoration.

  1. A Stepwise Time Series Regression Procedure for Water Demand Model Identification

    NASA Astrophysics Data System (ADS)

    Miaou, Shaw-Pin

    1990-09-01

    Annual time series water demand has traditionally been studied through multiple linear regression analysis. Four associated model specification problems have long been recognized: (1) the length of the available time series data is relatively short, (2) a large set of candidate explanatory or "input" variables needs to be considered, (3) input variables can be highly correlated with each other (multicollinearity problem), and (4) model error series are often highly autocorrelated or even nonstationary. A step wise time series regression identification procedure is proposed to alleviate these problems. The proposed procedure adopts the sequential input variable selection concept of stepwise regression and the "three-step" time series model building strategy of Box and Jenkins. Autocorrelated model error is assumed to follow an autoregressive integrated moving average (ARIMA) process. The stepwise selection procedure begins with a univariate time series demand model with no input variables. Subsequently, input variables are selected and inserted into the equation one at a time until the last entered variable is found to be statistically insignificant. The order of insertion is determined by a statistical measure called between-variable partial correlation. This correlation measure is free from the contamination of serial autocorrelation. Three data sets from previous studies are employed to illustrate the proposed procedure. The results are then compared with those from their original studies.

  2. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  3. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  4. Retrofitting an existing pump intake and hydraulic conveyance system requiring tripling of cooling water demand

    SciTech Connect

    Sarkar, C.K.; Pandit, D.R.

    1997-09-01

    The paper describes a hydraulic study, analysis, and design to retrofit an existing intake structure and water conveyance system for supplying cooling water to a new 286 MW cogeneration plant built within an existing power house building where a plant of much smaller capacity was formerly housed. The new plant requires a threefold increase in its cooling water demand. The existing hydraulic conveyance system consisted of a large tidal basin intake, a 1,000-foot-long intake tunnel, a pump intake basin of long, narrow, and difficult configuration with two small surge chambers located in the basement of the powerhouse building, and a 984-foot-long discharge tunnel. To satisfy the project license requirements, the thermal effluent had to be carried beyond the basin to the river mid-stream, almost tripling the length of the discharge tunnel. The cooling system for the new plant has been designed on the principle of siphon head recovery. The challenge was to satisfactorily accommodate the tripled flow capacity requirement in the system, while avoiding major structural enlargement/alterations and keeping costs of modifications to the minimum. The new plant, known as the Brooklyn Navy Yard Cogeneration Project (BNYCP), consists of a 286 MW combined-cycle cogeneration facility constructed in Building B-41 leased from the Brooklyn Navy Yard Development Corporation (BNYDC).

  5. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    PubMed

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  6. Rapid determination of the chemical oxygen demand of water using a thermal biosensor.

    PubMed

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-06-06

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  7. Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor

    PubMed Central

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-01-01

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178

  8. On-demand hydrogen generation using nanosilicon: splitting water without light, heat, or electricity.

    PubMed

    Erogbogbo, Folarin; Lin, Tao; Tucciarone, Phillip M; LaJoie, Krystal M; Lai, Larry; Patki, Gauri D; Prasad, Paras N; Swihart, Mark T

    2013-02-13

    We demonstrate that nanosize silicon (~10 nm diameter) reacts with water to generate hydrogen 1000 times faster than bulk silicon, 100 times faster than previously reported Si structures, and 6 times faster than competing metal formulations. The H(2) production rate using 10 nm Si is 150 times that obtained using 100 nm particles, dramatically exceeding the expected effect of increased surface to volume ratio. We attribute this to a change in the etching dynamics at the nanoscale from anisotropic etching of larger silicon to effectively isotropic etching of 10 nm silicon. These results imply that nanosilicon could provide a practical approach for on-demand hydrogen production without addition of heat, light, or electrical energy.

  9. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed.

  10. Peroxone mineralization of chemical oxygen demand for direct potable water reuse: Kinetics and process control.

    PubMed

    Wu, Tingting; Englehardt, James D

    2015-04-15

    Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. PMID:25704155

  11. Climate change impacts on global agricultural water deficit

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Cai, Ximing

    2013-03-01

    This paper assesses the change in crop water deficits (the difference between crop evapotranspiration and precipitation that is effective for crop growth) of 26 crops (including rainfed and irrigated) under current (1961-1990) and projected climates (2070-2099). We found that despite the universally rising mean temperature, crop water deficits are likely to decline slightly at the global scale, although changes vary by region. While the increasing precipitation and changing intra-annual precipitation distribution in many areas can lead to more effective rainfall for crop growth, the declining diurnal temperature range will play a key role in offsetting the warming effect at the global scale. Regionally, Africa and China are likely to benefit from lower water requirements, but the impacts on other regions, including Europe, India, South America, and the United States, are subject to the land-use types (rainfed or irrigated) and the uncertainty involved in the assessment approaches.

  12. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  13. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  14. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  15. Effects of Agriculture and Urbanization on Quality of Shallow Ground Water in the Arid to Semiarid Western United States, 1993-2004

    USGS Publications Warehouse

    Paul, Angela P.; Seiler, Ralph L.; Rowe, Timothy G.; Rosen, Michael R.

    2007-01-01

    Within the Western United States, agricultural and rural lands are being developed into commercial and residential areas. With changes in land use and increasing population, greater demands are placed on water resources for agricultural, industrial, and domestic supplies. Many areas in the Western United States rely exclusively on ground water as their source of drinking water. Areas that use surface-water resources often need to supplement this supply with ground water. Generally, shallow ground water is susceptible to fluctuating water quality within relatively short time scales and therefore can be used as an indicator of land-use stresses that may, in time, affect deep aquifer systems. This regional study examines data on shallow ground-water quality collected from 1993 to 2004 from 273 agricultural and 181 urban wells from 7 U.S. Geological Survey National Water-Quality Assessment study units in Arizona, California, Nevada, New Mexico, south-central Colorado, and Utah. This report determines important influences that land-use practices may have on the quality of recently recharged ground water, which may ultimately affect deep water supplies within the region. The results of this investigation show that nitrate, the principal species of nitrogen present in ground water, exceeds the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 10 milligrams per liter in water from more than 25 percent of agricultural wells and 10 percent of urban wells. In agricultural areas, the probability of exceeding the USEPA MCL for nitrate is influenced primarily by three factors: fertilizer use, irrigation, and aquifer oxidation-reduction (redox) conditions. At the study-unit level, differences in nutrient concentrations between agricultural and urban land use likely are influenced by ground-water redox conditions within respective aquifer systems. The most commonly detected pesticides belonged to the triazine, urea, amide, and carbamate classes. The

  16. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  17. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  18. Optimizing the use of limited water in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 92% of freshwater withdrawals in Uzbekistan are used for irrigation, whereas in the United States, freshwater withdrawls account for about 33% of the total use. In Uzbekistan, most of the water suitable for irrigation has already been allocated. In the United States, groundwater depletion and ...

  19. Summary of reported agriculture and irrigation water use in Phillips County, Arkansas, 1991

    USGS Publications Warehouse

    Holland, T.W.; Manning, C.A.; Stafford, K.L.

    1993-01-01

    This report summarizes the 1991 water-use reporting through the Conservation District Office in Phillips County, Arkansas. The number of withdrawal registrations for Phillips County was 1,109 (1,103 groundwater and 6 surface water). Water withdrawals reported during the registration process total 0.15 Mgal/d (0.15 Mgal/d groundwater and none from surface water) for agriculture and 123.75 Mgal/d (122.66 Mgal/d groundwater and 1.09 Mgal/d surface water