Science.gov

Sample records for agricultural water quality

  1. Agriculture and water quality. Agriculture Information Bulletin

    SciTech Connect

    Crowder, B.M.; Ribaudo, M.O.; Young, C.E.

    1988-08-01

    Agriculture generates byproducts that may contribute to the contamination of the Nation's water supply. Any effective regulations to ban or restrict agricultural-chemical or land-use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface waterways in runoff; some leach through soil into ground water. Because surface-water systems and ground water systems are interrelated, farm-management practices need to focus on water quality in both systems. Modifying farm-management practices may raise production costs in some areas. Farmers can reduce runoff losses by reducing input use, implementing soil-conservation practices, and changing land use. Also at issue is who should pay for improving water quality.

  2. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  3. Water Quality Significance of Wetlands Receiving Agricultural Drainage

    NASA Astrophysics Data System (ADS)

    Stringfellow, W.; Sharon, B.; Engelage, S.; Hanlon, J.; Graham, J.; Burks, R.

    2007-12-01

    The San Joaquin Valley is one of the most productive agricultural regions in the world and this productivity is heavily dependent on irrigated agricultural. An inevitable consequence of irrigated agricultural is the generation of return-flows conveyed down-gradient in agricultural drains that eventually discharge to surface waters. Agricultural drainage often has poor water quality characteristics, but demand for water in California is high and agricultural drainage is often diverted for secondary use, including the maintenance of ponds and wetlands. Additionally, agricultural drainage often discharges into riparian wetlands, rather than into the open river channel. In this study we tested the hypothesis that wetlands were mitigating or buffering the impact of agricultural drainage and that discharge of agricultural drainage into wetland buffer zones would provide water quality benefits. Water samples were collected at wetland, agricultural, and mixed drainages in the San Joaquin River basin and analyzed for a broad array of physical and chemical water quality parameters, including nutrients and organic carbon. At selected wetlands, input-output studies were conducted to determine wetland specific water quality effects. The water quality of drainages influenced by wetlands was compared to drainages that were predominantly influenced by other types of land-use. Wetland influenced drainages are more likely to have higher DOC concentrations that other drainages, including agricultural and mixed urban-agricultural drains. Wetland dominated drainages had lower nitrates than agricultural drainages and studies of individual wetlands demonstrated that wetlands remove soluble phosphate and nitrate, but produce DOC and biochemical oxygen demand (BOD). Overall land use in a drainage was a less significant determinant of water quality than soil type and the presence or absence of wetlands. The specific trihalomethane formation potential (THMFP) of the DOC from wetland

  4. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  5. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  6. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  7. Agricultural hydrology and water quality II: Introduction to the featured collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  8. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  9. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  10. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  11. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  12. Agricultural phosphorus, water quality, and poultry production: are they compatible?

    PubMed

    Sharpley, A

    1999-05-01

    With the concentration of poultry production and increase in operation size in several regions of the U.S., more manure is applied to agricultural land. This application of manure has resulted in more P being added than crops require, an accumulation in soil P, and increased potential for P loss in surface runoff. This situation has been exacerbated by manure management being N-based. Increased outputs of P to fresh waters can accelerate eutrophication, which impairs water use and can lead to fish kills and toxic algal blooms. As a result, information is needed on the effect of poultry production on the fate of P in agricultural systems so that compatible production and water quality goals can be met. Overall, these goals will be met by focusing on ways to increase P use-efficiency by attempting to balance inputs of P in feed and fertilizer into a watershed with output in crop and livestock. This will involve refining feed rations, using feed additives to increase P absorption by the animal, moving manure from surplus to deficit areas, finding alternative uses for manure, and targeting conservation practices, such as reduced tillage, buffer strips, and cover crops, to critical areas of P export from a watershed. These critical areas are where high P soils coincide with parts of the landscape where surface runoff and erosion potential is high. Development of management systems that address both production and environmental concerns must consider the socioeconomic and political impacts of any management changes on both rural and urban communities, and of the mechanisms by which change can be achieved in a diverse and dispersed community of land users. PMID:10228962

  13. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  14. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  15. Using wetlands for water quality improvement in agricultural watersheds; the importance of a watershed scale approach.

    PubMed

    Crumpton, W G

    2001-01-01

    Agricultural applications of fertilizers and pesticides have increased dramatically since the middle 1960s, and agrochemical contamination of surface and groundwater has become a serious environmental concern. Since the mid-1980s, a variety of state and federal programs have been used to promote wetland restoration, and these continuing efforts provide a unique opportunity for water quality improvement in agricultural watersheds. However, wetland restorations have been motivated primarily by concern over waterfowl habitat loss, and model simulations suggest that commonly used site selection criteria for wetland restorations may be inadequate for water quality purposes. This does not lessen the promise of wetlands for water quality improvement in agricultural watersheds, but rather emphasizes the need for watershed scale approaches to wetland siting and design. Water quality is best viewed from a watershed perspective, and watershed scale endpoints should be explicitly considered in site selection for wetland restoration.

  16. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  17. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  18. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  19. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L.

    2007-01-01

    [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ???90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (???1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs. Copyright 2007 by the American Geophysical Union.

  20. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  1. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    USGS Publications Warehouse

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  2. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  3. Water quality of runoff from agricultural-forestry watersheds in the Geum River Basin, Korea.

    PubMed

    Kim, Geonha; Chung, Sewoong; Lee, Chaeyoung

    2007-11-01

    Forestry and agricultural land uses constitute 85% of Korea and these land uses are typically mixed in many watersheds. Land cover is one of the most important factors affecting diffuse pollution and water quality. The aim of this study is to estimate the pollutant concentrations in runoff from four study watersheds consisting of a mix of forestry and agricultural land uses at different ratios in the Geum River Basin. The effect of topographical variables was also considered. The ratio of agricultural land use to the total area of study watersheds was in the range of 0.01-0.36. Flow rate and water quality (suspended solids, organics and nutrients) of runoff from 40 rainfall events were monitored at the study watersheds. Descriptive statistics showed higher nutrients and organic concentrations in runoff from watershed with higher agricultural activities. Event Mean Concentration (EMC) of individual runoff event was calculated for each water quality constituent based on the flow rate and concentration data of runoff discharge, and arranged on a cumulative probability scale according to runoff occurrence. From the correlation analysis between EMC data and affecting variables, the ratio of agricultural land use to the total area was identified as the parameter that most affected the magnitude of EMC.

  4. Water quality of runoff from agricultural-forestry watersheds in the Geum River Basin, Korea.

    PubMed

    Kim, Geonha; Chung, Sewoong; Lee, Chaeyoung

    2007-11-01

    Forestry and agricultural land uses constitute 85% of Korea and these land uses are typically mixed in many watersheds. Land cover is one of the most important factors affecting diffuse pollution and water quality. The aim of this study is to estimate the pollutant concentrations in runoff from four study watersheds consisting of a mix of forestry and agricultural land uses at different ratios in the Geum River Basin. The effect of topographical variables was also considered. The ratio of agricultural land use to the total area of study watersheds was in the range of 0.01-0.36. Flow rate and water quality (suspended solids, organics and nutrients) of runoff from 40 rainfall events were monitored at the study watersheds. Descriptive statistics showed higher nutrients and organic concentrations in runoff from watershed with higher agricultural activities. Event Mean Concentration (EMC) of individual runoff event was calculated for each water quality constituent based on the flow rate and concentration data of runoff discharge, and arranged on a cumulative probability scale according to runoff occurrence. From the correlation analysis between EMC data and affecting variables, the ratio of agricultural land use to the total area was identified as the parameter that most affected the magnitude of EMC. PMID:17294267

  5. Identifying Optimum Landscapes for Water Quality and Ecosystem Services in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Pennington, D. N.; Mulla, D.; Polasky, S.; Taff, S.; Nelson, E.

    2011-12-01

    Many areas in the US fail to meet water quality standards. Management actions to improve water quality also impact other ecosystem services, both positively and negatively. We developed an integrated approach to analyze how to meet various levels of water quality while maximizing the net benefits of other ecosystem services in an agricultural watershed. We used the SWAT model (Soil and Water Assessment Tool) to predict crop yield, flow, sediment and phosphorus export and the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) model to estimate market returns from agriculture production and non-market values from sediment and phosphorus reduction and from carbon sequestration. We applied these models to an agricultural watershed located in South Central Minnesota to find optimal landscape arrangement for a range of water quality goals. Results showed that the current landscape is near the economic optimum and that market returns from agricultural production dominate total economic returns, even when ecosystem services such as water quality and carbon sequestration are valued. We find that land use patterns that achieve 50% reductions in sediment and phosphorus result in significant annual losses in economic returns (averaging approximately 300/ha and 250/ha for sediment and phosphorus, respectively). When including non-market valuation of ecosystem services, 50% reductions in sediment and phosphorus result in declines in total watershed value an average of about 220/ha and 180/ha for sediment and phosphorus, respectively. However, compared to the current landscape, we show that marginal water quality improvements (10-15% reductions in sediment and phosphorus) could be achieved with no net loss in economic returns. Further, when ecosystem service valuation is included, reductions in sediment and phosphorus on the order of 15-20%, respectively, could be achieved with no net loss of total value. Landscape changes to achieve sediment and phosphorus

  6. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  7. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  8. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production. PMID:25193824

  9. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production.

  10. Quality of ground water in agricultural areas of the San Luis Valley, south-central Colorado

    USGS Publications Warehouse

    Edelmann, Patrick; Buckles, D.R.

    1984-01-01

    The quality of ground water in the principal agricultural areas of the San Luis Valley, south-central Colorado was evaluated using chemical analyses of water collected from 57 wells completed in the unconfined aquifer and from 25 wells completed in the confined aquifer. Ground water in both aquifers generally contains dissolved-solids concentrations of less than 500 milligrams per liter. In most areas, calcium is the principal cation in the ground water. Nitrite plus nitrate concentrations expressed as nitrogen, are generally less than 1 milligram per liter. However, the quality of ground water in certain areas may pose health and agricultural hazards. Water in the unconfined aquifer near Center contains high nitrite plus nitrate as nitrogen concentrations. The highest measured concentration in this area was 33 milligrams per liter. Water containing more than 1 milligram per liter of nitrite as nitrogen, or 10 milligrams per liter nitrate, as nitrogen, poses a potential health hazard for infants and should not be used for drinking. In addition, dissolved-solids concentration in the ground water in some areas is greater than 500 milligrams per liter and, if used for irrigation may reduce crop yields. (USGS)

  11. [Relationship Between Agricultural Land and Water Quality of Inflow River in Erhai Lake Basin].

    PubMed

    Pang, Yan; Xiang, Song; Chu, Zhao-sheng; Xue, Li-qiang; Ye, Bi-bi

    2015-11-01

    We studied the relationship between agricultural land and water quality of inflow river in Erhai Lake Basin, by means of spatial and statistical analysis, from the perspective of comprehensive agricultural land and the area percentage of different types of agricultural land. The obtained results indicated that inflow water quality showed a significant spatial difference, the inflow TP pollution in the western inflow rivers of Erhai Basin was serious. The major pollution indicators in the northern and southern inflow rivers (except for D3) were organic matter and nitrogen. The area percentage of agricultural land had a significantly indicative effect on the water quality of inflow river. The area percentage of comprehensive agricultural land negatively correlated with permanganate index, NH4(+) -N, TN and TP contents in wet season, the correlation coefficients were - 0.859, - 0.565, - 0.693, - 0.181. It negatively correlated with permanganate index and NH4(+) -N content in dry season, the correlation coefficients were - 0.384, - 0.328. It had positive relationships with and TN, TP content in dry season, the correlation coefficients were 0.221 and 0.146. The area percentage of different types of agricultural land had an obviously indicative effect on the inflow water quality. Farmland positively correlated with TN and TP contents both in wet and dry seasons. The correlation coefficients between farmland and TN, TP were 0.252, 0.581 in rainy season and were 0.149, 0.511 in dry season. It had positive and negative relationships with permanganate index, NH4(+) -N content in wet season and dry season, respectively. The correlation coefficients between farmland and permanganate index, NH4(+) -N were 0.388, 0.053 in rainy season and were -0.137, -0.147 in dry season. Forest land exhibited an opposite performance to that of farmland. The correlation coefficients between forest land and TN, TP, permanganate index, NH4(+) -N were - 0.526, - 0.275, - 0.469, -0.155 in rainy

  12. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  13. Effects of controlled agricultural practices on water quality in the Minnesota sand-plain aquifer

    USGS Publications Warehouse

    Anderson, H.W.; Stoner, J.D.

    1989-01-01

    Recent studies of Minnesota's sand plains indicate that ground-water chemistry is related to agricultural practices. Surficial sand-plain aquifers cover 8,000,000 acres of Minnesota and are a major source of water for domestic use, irrigation, and some municipal systems. The sand-plain aquifers consist of sand and gravel deposits that are from 20 to greater than 100 feet thick and are covered by a thin sandy loam that generally is less than 2 feet thick. Sand-plain aquifers are recharged by the downward percolation of precipitation through the soil root zone and the unsaturated zone in the sand to the water table. The water table is the upper surface of the zone of saturation and forms the top of the sand-plain aquifer. Sand-plain aquifers are susceptible to contamination by agricultural chemicals (fertilizers and pesticides), if downward-percolating recharge water contains these chemicals. The concentrations of nitrate, pesticides, and some other chemical constituents fluctuate seasonally and differ with depth below the water table (Anderson, 1989). Despite the availability of water-quality data for about 260 wells that were collected during previous studies in three U.S. Geological Survey (USGS) project areas in Minnesota, it is not known how concentrations of agricultural chemicals in ground water relate to the rate and timing of fertilizer and pesticide application or to the tillage practices used. Field-scale research is needed to determine the effects of different farming practices on the concentrations of nitrate, pesticides, and other agricultural chemicals in ground water in the unsaturated and saturated zones.

  14. Optimization of integrated water quality management for agricultural efficiency and environmental conservation.

    PubMed

    Fleifle, Amr; Saavedra, Oliver; Yoshimura, Chihiro; Elzeir, Mohamed; Tawfik, Ahmed

    2014-01-01

    The scarcity of water resources in Egypt has necessitated the use of various types of lower quality water. Agricultural drainage water is considered a strategic reserve for meeting increasing freshwater demands. In this study, a novel model series was applied to a drainage basin in the Nile Delta to optimize integrated water quality management for agriculture and the aquatic environment. The proposed model series includes a waste load allocation model, an export coefficient model, a stream water quality model, and a genetic algorithm. This model series offers an optimized solution for determining the required removal levels of total suspended solids (TSS), the chemical oxygen demand (COD) at point and non-point pollution sources, and the source flows that require treatment to meet a given water quality target. The model series was applied during the summer and winter to the El-Qalaa basin in the western delta of the Nile River. Increased pollutant removal and treated fractions at point and non-point sources reduced violations of the TSS standards from 732.6 to 238.9 mg/L in summer and from 543.1 to 380.9 mg/L in winter. Likewise, violations of the COD standards decreased from 112.4 mg/L to 0 (no violations) in summer and from 91.7 mg/L to no violations in winter. Thus, this model is recommended as a decision support tool for determining a desirable waste load allocation solution from a trade-off curve considering costs and the degree of compliance with water quality standards.

  15. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  16. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  17. Evaluation of Shiraz wastewater treatment plant effluent quality for agricultural irrigation by Canadian Water Quality Index (CWQI)

    PubMed Central

    2013-01-01

    Background Using treated wastewater in agriculture irrigation could be a realistic solution for the shortage of fresh water in Iran, however, it is associated with environmental and health threats; therefore, effluent quality assessment is quite necessary before use. The present study aimed to evaluate the physicochemical and microbial quality of Shiraz wastewater treatment plant effluent for being used in agricultural irrigation. In this study, 20 physicochemical and 3 microbial parameters were measured during warm (April to September) and cold months (October to march). Using the measured parameters and the Canadian Water Quality Index, the quality of the effluent was determined in both warm and cold seasons and in all the seasons together. Results The calculated index for the physicochemical parameters in the effluent was equal (87) in warm and cold months and it was obtained as 85 for the seasons all together. When the microbial parameters were used in order to calculate the index, it declined to 67 in warm and cold seasons and 64 in all the seasons together. Also, it was found that three physicochemical parameters (TDS, EC, and NO3) and three microbial parameters (Fecal coliform, Helminthes egg, and Total coliform) had the most contribution to the reduction of the index value. Conclusions The results showed that the physicochemical quality of Shiraz Wastewater Treatment Plant Effluent was good for irrigation in the warm, cold, and total of the two kinds of seasons. However, by applying the microbial parameter, the index value declined dramatically and the quality of the effluent was marginal. PMID:23566673

  18. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  19. The Effect of Aquatic Vegetation on Water Quality in the Everglades Agricultural Area Canals

    NASA Astrophysics Data System (ADS)

    Gomez, S. M.; Bhadha, J. H.; Lang, T. A.; Josan, M. S.; Daroub, S. H.

    2011-12-01

    The canals in the Everglades Agricultural Area contain an abundance of floating aquatic vegetation (FAV) and submerged aquatic vegetation (SAV). These FAV flourish in waters with high phosphorus (P) concentrations and prevent the co-precipitation of P with the limestone bedrock (CaCO3). To test the effects of FAV and SAV and the presence of sediments on water quality in the canals, a lysimeter study was set up and stocked with FAV (water lettuce) and SAV (filamentous algae). There were four treatments with four replicates Treatment one contained limerock, sediment from the canals, and FAV. Treatment two contained limerock, sediment, and SAV. Treatment three contained limerock and FAV, while treatment four had limerock and SAV. After 7 days, the buckets were drained and replaced the water with new, high P canal water. Water samples were taken at 0, 0.25, 1, 3, and 7 days after each weekly water exchange. To test water quality soluble reactive P, total P, total dissolved P, Ca, and total organic carbon were analyzed. The impact of FAV and SAV and canal sediments on water quality will be discussed. We hypothesize water lettuce treatments will initially result in a reduction in P-concentration in all species, but will only serve as a short-term sink because of their high turn-over rate and production of labile high-P sediment (floc). In addition, we hypothesize the treatments with no sediment will have more P reduction because of the availability for P to co-precipitate with CaCO3.

  20. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  1. Water and sediment quality in a tropical swamp used for agricultural and oil refining activities.

    PubMed

    Norville, Wendy; Banjoo, Darryl

    2011-01-01

    The Godineau Swamp in Trinidad receives anthropogenic input from agricultural and oil refining activities, sewage and domestic waste. This study was conducted in order to provide a comprehensive baseline dataset for the swamp, to assess water and sediment quality in the swamp, and to identify hotspots and possible sources of pollutants to the swamp. Ten sampling stations were established in the swamp during April/May and July 2002. Water quality parameters monitored included physicochemical measurements (pH, temperature, dissolved oxygen and salinity), total suspended solids, and nutrients (ammonia, nitrites, nitrates and total phosphorus). Sediments were analyzed for hydrocarbons, heavy metals and total organic carbon. Temperatures and pH of water in the swamp were ambient; dissolved oxygen was low in many instances (<3 mg/L). In the dry season, there was saltwater intrusion along the Oropuche River up to the most easterly station. Levels of ammonia and phosphorus concentrations were suggestive of periodic inputs of agricultural and domestic wastes. Hydrocarbons concentrations in sediment were above ambient levels and suggestive of contamination from industrial activities. Sediments from the Godineau River contained elevated nutrients, hydrocarbons, metals and TOC compared with other stations. The results of this study indicate some degree of pollution of the Godineau swamp, which prompts the need for the implementation of measures beneficial for wise use of the swamp.

  2. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  3. Modelling the Impact of Land Use Change on Water Quality in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Johnes, P. J.; Heathwaite, A. L.

    1997-03-01

    Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance-decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity.

  4. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  5. Shallow ground-water quality in selected agricultural areas of south-central Georgia, 1994

    USGS Publications Warehouse

    Crandall, C.A.

    1996-01-01

    The Georgia-Florida Coastal Plain National Water-Quality Assessment Program began an agricultural land-use study in March 1994. The study area is located in the upper Suwannee River basin in Tift, Turner, Worth, Irwin, Wilcox, and Crisp Counties, Ga. Twenty-three shallow monitoring wells were installed in a 1,335-square- mile area characterized by intensive row-crop agriculture (peanuts, corn, cotton, and soybeans). The study focused on recently recharged shallow ground water in surficial aquifers to assess the relation between land-use activities and ground- water quality. All wells were sampled in March and April (spring) 1994, and 14 of these wells were resampled in August (summer) 1994. Shallow ground water in the study area is characterized by oxic and acidic conditions, low bicarbonate, and low dissolved-solids concentrations. The median pH of shallow ground water was 4.7 and the median bicarbonate concentration was 1.7 mg/L (milligrams per liter). Dissolved oxygen concentrations ranged from 3.0 to 8.0 mg/L. The median dissolved-solids concentration in samples collected in the spring was 86 mg/L. Major inorganic ion composition was generally mixed with no dominant cation; nitrate was the dominant anion (greater than 60 percent of the anion composition) in 14 of 23 samples. Only concentrations of bicarbonate, dissolved organic carbon, and nitrate had significant differences in concentrations between samples collected in the spring and the background samples. However, median concentrations of some of the major ingredients in fertilizer (including magnesium, chloride, nitrate, iron, and manganese) were higher in water samples from agricultural wells than in background samples. The median concentration of dissolved solids in ground-water samples collected in the spring (86 mg/L) was more than double the median concentration (41 mg/L) of the background samples. The median nitrate as nitrogen concentration of 6.7 mg/L in the spring samples reflects the effects of

  6. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  7. Assessing the use of treated waste water for irrigation agricultural lands by using soil quality indices

    NASA Astrophysics Data System (ADS)

    Arcenegui, V.; Morugán, A.; García-Orenes, F.; Zornoza, R.; Mataix-Solera, J.; Navarro, M. A.; Guerrero, C.; Mataix-Beneyto, J.

    2009-04-01

    The use of treated wastewater for the irrigation of agricultural soils is an alternative to utilizing better-quality water, especially in semiarid regions where water shortage is a very serious problem. However, this practise can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) are used to evaluate the effects of long-term irrigation with treated wastewater in soil. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS)). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and

  8. [Strategy of grain yield stability cooperated with harmonious water environment quality of small agricultural watershed].

    PubMed

    Zeng, Zhao-xia; Liu, Xiao-li; Wang, Ke-lin; Zeng, Fu-ping; Song, Tong-qing; Song, Xi-juan

    2010-08-01

    This paper investigated the spatial variability of the correlations between grain yields and fertilization quantity within the selected agricultural watershed, in the typical black soil region, and then optimized the fertilization quantity at different landscape farmlands within the watershed based on the regression equations. Study simulated the surface runoff water quality before and after fertilization spatial adjustment with the achieved parameters by Soil and Water Assessment Tool (SWAT) model. The results showed that watershed scale fertilization adjustment is possible and necessary according to the spatial heterogeneity about fertilization and grain yields. Based on grain yield stability, spatial adjustment of fertilization reduced the whole watershed total N fertilization quantity by 1.88%, and the total non-point nutrients load reduction of NH4+ -N and NO3- -N was 9.7%, 5.6%, respectively.

  9. Partitioning of sediment-associated organic matter in agricultural watersheds: controlling parameters and water quality implications

    NASA Astrophysics Data System (ADS)

    Journet, S.; Pellerin, B. A.; Bachand, P. A.; Spencer, R.; Bergamaschi, B. A.; Hernes, P. J.

    2009-12-01

    Sediment-associated organic matter (OM) may constitute a significant source of dissolved organic matter (DOM) in agricultural watersheds, but the partitioning of sediment-bound OM is still poorly characterized in such systems. The Willow Slough agricultural watershed in the Central Valley of California, USA, is the focus of a study of DOM dynamics in agricultural watersheds. Weekly surface water samples collected at the watershed outlet since January 2006 show that dissolved organic carbon (DOC) concentrations increase during summer irrigation up to 7 mg/L, and steadily return to winter baseline concentrations (2 mg/L). A similar trend is observed for total suspended sediment concentrations (TSS), which peak about five weeks earlier than DOC (late June) around 200 mg/L, suggesting that sediments may contribute significantly to the delivery of DOM. We investigated the potential impact of sediment-bound OM partitioning on DOM concentration and composition in agricultural surface waters and will present laboratory data related to the equilibrium abiotic release of DOM from suspended, bed, and bank sediments, collected in the Willow Slough watershed over a range of land uses and hydrologic conditions. Desorption isotherms show distinct DOC contributions between sediment types (from 2 to 15% OC desorbed), with suspended sediment from summer irrigation yielding up to 3.4 times more DOC than winter storm suspended sediment, and 4.8 times more than summer bed sediment. In addition, environmental parameters such as water temperature, conductivity, and pH were found to affect OM partitioning differently, pH displaying the most control on DOC release (up to 60% increase from pH 6.5 to pH 9.5). Finally, a detailed biogeochemical characterization of the desorbed DOM quality (including amino acids composition) will serve as a basis for comparing riverine and sediment-derived DOM. By assessing the contribution of DOM from sediments in agricultural watersheds, this research

  10. Spatial relationships between water quality and pesticide application rates in agricultural watersheds.

    PubMed

    Hunt, John W; Anderson, Brian S; Phillips, Bryn M; Tjeerdema, Ron S; Richard, Nancy; Connor, Val; Worcester, Karen; Angelo, Mark; Bern, Amanda; Fulfrost, Brian; Mulvaney, Dustin

    2006-10-01

    Pesticide applications to agricultural lands in California, USA, are reported to a central data base, while data on water and sediment quality are collected by a number of monitoring programs. Data from both sources are geo-referenced, allowing spatial analysis of relationships between pesticide application rates and the chemical and biological condition of water bodies. This study collected data from 12 watersheds, selected to represent a range of pesticide usage. Water quality parameters were measured during six surveys of stream sites receiving runoff from the selected watershed areas. This study had three objectives: to evaluate the usefulness of pesticide application data in selecting regional monitoring sites, to provide information for generating and testing hypotheses about pesticide fate and effects, and to determine whether in-stream nitrate concentration was a useful surrogate indicator for regional monitoring of toxic substances. Significant correlations were observed between pesticide application rates and in-stream pesticide concentrations (p < 0.05) and toxicity (p < 0.10). In-stream nitrate concentrations were not significantly correlated with either the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.30). Neither total watershed area nor the area in which pesticide usage was reported correlated significantly with the amount of pesticides applied, in-stream pesticide concentrations, or in-stream toxicity (all p > 0.14). In-stream pesticide concentrations and effects were more closely related to the intensity of pesticide use than to the area under cultivation.

  11. Scale-dependence of land use effects on water quality of streams in agricultural catchments.

    PubMed

    Buck, Oliver; Niyogi, Dev K; Townsend, Colin R

    2004-07-01

    The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.

  12. Hydrologic and water-quality impacts of agricultural land use changes incurred from bioenergy policies

    NASA Astrophysics Data System (ADS)

    Lin, Zhulu; Anar, Mohammad J.; Zheng, Haochi

    2015-06-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin, an international river basin shared by the US and Canada. The influence of the land use change on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%.

  13. Reconnaissance of water quality in the High Plains Aquifer beneath agricultural lands, south-central Kansas

    USGS Publications Warehouse

    Stullken, L.E.; Stamer, J.K.; Carr, J.E.

    1987-01-01

    The High Plains of western Kansas was one of 14 areas selected for preliminary groundwater quality reconnaissance by the U.S. Geological Survey 's Toxic Waste--Groundwater Contamination Program. The specific objective was to evaluate the effects of land used for agriculture (irrigated cropland and non-irrigated rangeland) on the water in the High Plains aquifer. Conceptual inferences, based on the information available, would lead one to expect groundwater beneath irrigated cropland to contain larger concentrations of sodium, sulfate, chloride, nitrite plus nitrate, and some water soluble pesticides than water beneath non-irrigated land (range-land) The central part of the Great Bend Prairie, an area of about 1,800 sq mi overlying the High Plains aquifer in south-central Kansas, was selected for the study of agricultural land use because it has sand soils, a shallow water table, relatively large annual precipitation, and includes large areas that are exclusively irrigated cropland or non-irrigated rangeland. As determined by a two-tailed Wilcoxon rank-sum test, concentrations of sodium and alkalinity were significantly larger at the 95% confidence level for water samples from beneath irrigated cropland than from beneath rangeland. No statistically significant difference in concentrations of sulfate, chloride, nitrite plus nitrate, and ammonia, was detected. Concentrations of 2,4-D found in water samples from beneath the rangeland were larger at the 99% confidence level as compared to concentrations of 2,4-D in samples from beneath irrigated cropland. Larger concentrations of sodium and alkalinity were found in water beneath irrigated cropland, and the largest concentration of the pesticide atrazine (triazines were found in three samples) was found in water from the only irrigation well sampled. The sodium and atrazine concentrations found in water from the irrigation well support the premise that water-level drawdown develops under irrigated fields. This diverts

  14. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  15. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be

  16. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  17. Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas.

    PubMed

    Delpla, Ianis; Baurès, Estelle; Jung, Aude-Valérie; Thomas, Olivier

    2011-04-01

    Since a rise in dissolved organic carbon (DOC) concentrations has been observed for surface waters at least over the last two decades, a change in weather conditions (temperature and precipitations) has been proposed to partly explain this increase. While the majority of DOC delivery from soils to stream occurs during rainfall events, a better understanding of the rainfall influence on DOC release is needed. This study has been conducted in Brittany, western France, on agricultural experimental plots receiving either cattle manure (CM) or pig slurry (PS) as fertilizers in accordance with local practices. Each plot was instrumented with a flow meter and an auto sampler for runoff measurements. The results show that export of DOC during high intensity events is higher than during lower intensity rainfalls. Fertilization has a noticeable impact on total organic carbon (TOC) fluxes with an increase of five to seven folds for PS and CM respectively. If TOC shock load occurs shortly after the rainfall peak, DOC maximum appears with the first flush of the event. Organic carbon (OC) is mainly under colloidal (41.2%) and soluble (23.9%) forms during the first stage of a rainfall event and a control of rainfall intensity on OC colloidal transport is suggested. These findings highlight the potential risk of receiving water quality degradation due to the increase of heavier rainfall events with climate change in temperate areas.

  18. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  19. A statistical assessment of the impact of agricultural land use intensity on regional surface water quality at multiple scales.

    PubMed

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-11-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO(3)-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (COD(Mn)) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO(3)-N and COD(Mn), respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  20. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  1. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains (fig. 1A). Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers (fig. 2) knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone (fig. 3). However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer (figs. 1A and 1B). The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in

  2. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    Increasing human pressures on the natural environment through the demand for increased agricultural productivity have exacerbated and deteriorated water quality conditions within many environments due to an unbalancing of the nutrient cycle. As a consequence, increased agricultural diffuse water pollution has resulted in elevated concentrations of nutrients within surface water and groundwater bodies. This deterioration in water quality has direct consequences for the health of aquatic ecosystems and biodiversity, human health, and the use of water as a resource for public water supply and recreation. To mitigate these potential impacts and to meet commitments under the EU Drinking Water and Water Framework Directives, there is a need to improve our understanding of the impacts that agricultural land use and management practices have on water quality. Water quality models are one of the tools available which can be used to facilitate this aim. These simplified representations of the physical environment allow a variety of changes to be simulated within a catchment, including for example changes in agricultural land use and management practices, allowing for predictions of the impacts of those measures on water quality to be developed and an assessment to be made of their effectiveness in improving conditions. The aim of this research is to apply the water quality model SWAT (Soil and Water Assessment Tool) to the Wensum catchment (area 650 km2), situated in the East of England, to predict the impacts of potential changes in land use and land management practices on water quality as part of a process to select those measures that in combination will have the greatest potential to improve water quality. Model calibration and validation is conducted at three sites within the catchment against observations of river discharge and nitrate and total phosphorus loads at a monthly time-step using the optimisation algorithm SUFI-2 (Sequential Uncertainty Fitting Version 2

  3. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  4. Agricultural land use and water quality in the upper St. Joseph River basin, Michigan

    USGS Publications Warehouse

    Cummings, T. Ray

    1978-01-01

    Land use in the upper St. Joseph River basin of south-central Michigan is primarily agricultural. In the 144-square-mile area, the chemical and physical characteristics of water are determined by the climate and soils, as well as by land conservation practices. Municipal waste discharges affect water quality at some locations, as do the larger lakes and ponds. Data indicate that mean discharge from the basin is 135 cubic feet per second. About half this flow is contributed to the St. Joseph River by three major tributaries: Beebe Creek (36 cubic feet per second); Sand Creek (24 cubic feet per second); and Soap Creek (13 cubic feet per second). Runoff from 21 drainage areas delineated for the investigation ranged from 0.22 to 4.07 cubic feet per second per square mile; both the higher and lower values are largely the result of naturally occurring inter- and intrabasin transfers of water.Suspended-sediment concentrations are low throughout the basin, rarely exceeding 100 milligrams per liter. Mean concentrations at four daily sampling stations on the major tributaries and on the St. Joseph River ranged from 9.7 milligrams per liter to 38 milligrams per liter. The maximum sediment yield was 182 pounds per acre per year. Deposition of sediment in five of the 21 areas resulted in a net loss of sediment transported, and thus “negative” yields.Nitrogen and phosphorus concentrations do not vary greatly from site to site. Mean concentrations of total nitrogen at downstream sites on Beebe, Sand, and Soap Creeks, and on the St. Joseph River ranged from 1.5 to 1.8 milligrams per liter. About 90 percent of all nitrogen, and 66 percent of all phosphorus, is transported in solution. Land used principally for agriculture has a mean total nitrogen yield of 4.9 pounds per acre per year and a mean total phosphorus yield of 0.13 pounds per year. A comparison of total nitrogen and total phosphorus yields with type of agricultural use showed few relationships; nitrogen yield

  5. Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins.

    PubMed

    Partyka, Melissa L; Bond, Ronald F; Chase, Jennifer A; Kiger, Luana; Atwill, Edward R

    2016-03-01

    Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins. PMID:27065413

  6. Cotton production and water quality: Economic and environmental effects of pollution prevention. Agricultural economic report

    SciTech Connect

    Crutchfield, S.R.; Ribaudo, M.O.; Hansen, L.T.; Quiroga, R.

    1992-12-01

    Cotton production, compared with other crops, is less likely to cause erosion-induced water-quality problems because cotton acreage is not the major source of erosion in most regions. For cotton production, the most widespread potential damages to water quality are nitrates from fertilizer polluting ground water and pesticides contaminating surface water. This damage could be reduced by restricting chemical and fertilizer use on all cotton production, but doing so could reduce cotton yields and raise cotton prices. The same level of water-quality improvement could be achieved at less cost by targeting the chemical use or erosion restrictions only to cotton farms with the most vulnerable soils. Data come from a 1989 USDA survey of cotton producers.

  7. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    PubMed

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds. PMID:25740683

  8. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    PubMed

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  9. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    NASA Astrophysics Data System (ADS)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-05-01

    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  10. Agriculture and Water Quality in the Corn Belt: Overview of Issues and Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than three decades have elapsed since the passage of the Federal Water Pollution Control Act with its stated goal of zero discharge of pollutants into the nation’s waterways. Yet water quality remains poor in many locations and considerable loading of pollutants continue. This is particularly ...

  11. Water Quality Signal of Animal Agriculture at USGS Monitoring Stations is Related to Animal Confinement and/or Farm Size

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2007-12-01

    US animal agriculture has undergone major structural changes over the past two decades, with the total number of livestock producers declining dramatically and the average size of the remaining operations increasing substantially. The result has been a pronounced trend towards greater spatial concentration and confinement of livestock. The change raises important questions about the water quality effects of animal agriculture in regions where livestock waste production has become more intensive but recovery, handling, and application of animal wastes to cropland more systematized. In previous research, we developed three separate national-level SPARROW models of surface water contaminants (total nitrogen, total phosphorus, and fecal coliform bacteria). Based on USGS monitoring and ancillary data from more than 400 US stream and river basins, the models include point and nonpoint sources of contaminants, land-to-water transport factors, and in-stream loss processes; parameter estimation is by non-linear regression. In this study we report on a pattern in the statistical results for the three models: The source coefficients (quantity of contaminant delivered to streams per unit of contaminant input) for unconfined animals are consistently larger and more statistically significant than those for confined animals. The implicit meaning is that something associated with waste management on large farms and/or animal confinement (e.g. retention period, recovery of manure for application to crops and subsequent crop uptake, and/or better waste treatment) reduces the average water quality signal of this scale of animal agriculture (per unit of manure input) to barely detectable at downstream monitoring stations, while the water quality signal from unconfined animal agriculture is more clear. The county-level data for confined and unconfined manure inputs (defined primarily by farm size) are from the USDA, and are spatially distributed in the model GIS by 1-km land use data

  12. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  13. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production.

    PubMed

    Estrada-Acosta, M; Jiménez, M; Chaidez, C; León-Félix, J; Castro-Del Campo, N

    2014-07-01

    The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process. PMID:24682661

  14. Quality of shallow groundwater and drainage water in irrigated agricultural lands in a Mediterranean coastal region of Turkey.

    PubMed

    Odemiş, Berkant; Bozkurt, Sefer; Ağca, Necat; Yalçin, Mehmet

    2006-04-01

    Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO(3), HCO(3), Cl and SO(4)). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C(3)S(1) in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C(2)S(1) to C(4)S(2) in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001). PMID:16614781

  15. Water quality assessment for sustainable agriculture in the Wet Tropics--a community-assisted approach.

    PubMed

    Faithful, John; Finlayson, Wendy

    2005-01-01

    A number of studies in north Queensland over the past two decades have concluded that large amounts of nutrients and sediments are exported from agricultural watersheds, particularly during wet season rainfall events. With the co-operation of a number of growers, runoff from Queensland Wet Tropics banana and cane farm paddocks in two distinct tropical river catchments was examined to provide an estimate of nutrient and sediment concentrations and export, with comparison to water quality of flow through a small urban lakes system. Median total nitrogen concentrations in cane drainage runoff (3110 microg N/L) were higher than for banana paddock drainage (2580 microg N/L), although the maximum concentration was recorded from a banana paddock (20,900 microg N/L). Nitrogen losses during post-event drainage flow were supplemented by high proportions of NO(X) (nitrate + nitrite) sourced from groundwater inputs. Banana paddocks had the highest maximum and median total phosphorus and TSS concentrations (5120 and 286 microg P/L, and 7250 and 75 mg/L respectively) compared to the cane farms (1430 and 50 microg P/L, and 1840 and 14 mg/L respectively). The higher phosphorus and TSS concentrations in the banana runoff were attributed to higher paddock slopes and a greater proportion of exposed ground surface during the wet season. Highest nutrient and TSS concentrations corresponded with samples collected near the peak discharge periods; however, the rising stage of the drainage flows, where the highest nutrient and TSS concentrations are often reported, were difficult to target because of the manual sampling strategy used. This study shows that high concentrations of nutrients and TSS occur in the runoff from cane and banana paddocks. Median total nitrogen, total phosphorus and TSS concentrations in flow through the urban lakes were 369 microg N/L, 16 microg P/L and 11 mg/L, respectively. Flux estimates of 9.2 kg N, 0.8 kg P and 126 kg TSS/ha were determined for drainage runoff

  16. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    PubMed Central

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-01-01

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178

  17. Combining Water Quality and Cost-Benefit Analysis to Examine the Implications of Agricultural Best Management Practices

    NASA Astrophysics Data System (ADS)

    Rao, N. S.; Easton, Z. M.; Lee, D. R.; Steenhuis, T. S.

    2007-12-01

    Nutrient runoff from agricultural fields threatens water quality and can impair habitats in many watersheds. Agencies consider these potential risks as they determine acceptable levels of nutrient loading. For example, in the New York City (NYC) watershed, the Environmental Protection Agency's Total Maximum Daily Load (TMDL) for phosphorus (P) has been set at 15μg P L-1 to protect against eutrophication and bacterial outbreaks. In the NYC watersheds agricultural Best Management Practices (BMPs) are the primary means to control nonpoint source P loading. BMPs include riparian buffers, filter strips, manure storage facilities, crop rotation, stripcropping, tree planting and nutrient management plans (NMPs). Water quality research on BMPs to date has included studies on site-specificity of different BMPs, short and long term BMP efficacy, and placement of BMPs with respect to critical source areas. A necessary complement to studies addressing water quality aspects of different BMPs are studies examining the cost-benefit aspects of BMPs. In general, there are installment, maintenance and opportunity costs associated with each BMP, and there are benefits, including cost share agreements between farmers and farm agencies, and increased efficiency of farm production and maintenance. Combining water quality studies and related cost-benefit analyses would help planners and watershed managers determine how best improve water quality. Our research examines the costs-benefit structure associated with BMP scenarios on a one-farm headwater watershed in the Catskill Mountains of NY. The different scenarios include "with and without" BMPs, combinations of BMPs, and different BMP placements across agricultural fields. The costs associated with each BMP scenarios are determined using information from farm agencies and watershed planning agencies. With these data we perform a cost-benefit analysis for the different BMP scenarios and couple the water quality modeling using the

  18. Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Rolfe, John; Windle, Jill

    2011-12-01

    Policymakers wanting to increase protection of the Great Barrier Reef from pollutants generated by agriculture need to identify when measures to improve water quality generate benefits to society that outweigh the costs involved. The research reported in this paper makes a contribution in several ways. First, it uses the improved science understanding about the links between management changes and reef health to bring together the analysis of costs and benefits of marginal changes, helping to demonstrate the appropriate way of addressing policy questions relating to reef protection. Second, it uses the scientific relationships to frame a choice experiment to value the benefits of improved reef health, with the results of mixed logit (random parameter) models linking improvements explicitly to changes in "water quality units." Third, the research demonstrates how protection values are consistent across a broader population, with some limited evidence of distance effects. Fourth, the information on marginal costs and benefits that are reported provide policymakers with information to help improve management decisions. The results indicate that while there is potential for water quality improvements to generate net benefits, high cost water quality improvements are generally uneconomic. A major policy implication is that cost thresholds for key pollutants should be set to avoid more expensive water quality proposals being selected.

  19. Assessing the Long-Term Impacts of Water Quality Outreach and Education Efforts on Agricultural Landowners

    ERIC Educational Resources Information Center

    Jackson-Smith, Douglas B.; McEvoy, Jamie P.

    2011-01-01

    We assess the long-term effectiveness of outreach and education efforts associated with a water quality improvement project in a watershed located in northern Utah, USA. Conducted 15 years after the original project began, our research examines the lasting impacts of different extension activities on landowners' motivations to participate and…

  20. Predicting microbial water quality with models: over-arching questions for managing risk in agricultural catchments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the microbial quality of recreational, irrigation and shellfish-harvesting waters is important to ensure compliance with health-related standards and associated legislation. Animal faeces represent a significant human health risk, and concentrations of fecal indicator organisms (FIOs) pr...

  1. Extending results from agricultural fields with intensively monitored data to surrounding areas for water quality management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 45% reduction in riverine total nitrogen flux from the 1980-1996 time period is needed to meet water quality goals in the Mississippi Basin and Gulf of Mexico. This paper addresses the goal of reducing nitrogen in the Mississippi River through three objectives. First, the paper outlines an approac...

  2. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  3. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds.

    PubMed

    Williams, Mark R; Buda, Anthony R; Elliott, Herschel A; Collick, Amy S; Dell, Curtis; Kleinman, Peter J A

    2015-05-01

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO-N concentrations in seep and stream water were affected by NO-N processing along seep surface flow paths and by upslope applications of N from fertilizers and manures. The research was conducted in two headwater agricultural watersheds, FD36 (40 ha) and RS (45 ha), which are fed, in part, by a shallow fractured aquifer system possessing high (3-16 mg L) NO-N concentrations. Data from in-seep monitoring showed that NO-N concentrations generally decreased downseep (top to bottom), indicating that most seeps retained or removed a fraction of delivered NO-N (16% in FD36 and 1% in RS). Annual mean N applications in upslope fields (as determined by yearly farmer surveys) were highly correlated with seep NO-N concentrations in both watersheds (slope: 0.06; = 0.79; < 0.001). Strong positive relationships also existed between seep and stream NO-N concentrations in FD36 (slope: 1.01; = 0.79; < 0.001) and in RS (slope: 0.64; = 0.80; < 0.001), further indicating that N applications control NO-N concentrations at the watershed scale. Our findings clearly point to NO-N leaching from upslope agricultural fields as the primary driver of NO-N losses from seeps to streams in these watersheds and therefore suggest that appropriate management strategies (cover crops, limiting fall/winter nutrient applications, decision support tools) be targeted in these zones. PMID:26024271

  4. At-grade stabilization structure impact on surface water quality of an agricultural watershed.

    PubMed

    Minks, Kyle R; Ruark, Matthew D; Lowery, Birl; Madison, Fred W; Frame, Dennis; Stuntebeck, Todd D; Komiskey, Matthew J; Kraft, George J

    2015-04-15

    Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters.

  5. Water Quality and Supply Issues of Irrigated Agricultural Regions - Lessons from the San Joaquin Valley of California

    NASA Astrophysics Data System (ADS)

    Suen, C. J.; Wang, D.

    2014-12-01

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrigation water is mostly derived from the Sierra snow melt. On the west side, water is imported from the northern part of the state through the Sacramento Delta and a network of canals and aqueducts. Ground water is also used for both east and west sides of the valley to supplement surface water sources, especially during droughts. After years of intense irrigation, a number of water supply and water quality issues have emerged. They include groundwater overdraft, land subsidence, water contamination by agricultural drainage laden with selenium, salinity buildup in soil and water, nutrients contamination from fertilizers and livestock production, competition for water with megalopolis and environmental use and restoration. All these problems are intensified by the effect of climate change that has already taken place and other geological hazards, such as earthquakes that can bring the water supply system to a complete halt. In addition to scientific and technical considerations, solutions for these complex issues necessarily involve management planning, public policy and actions. Currently, they include furloughing marginally productive lands, groundwater recharge and banking, water reuse and recycle, salinity and nutrient management, integrated regional water management planning, and public education and outreach. New laws have been enacted to better monitor groundwater elevations, and new bond measures to improve storage, infrastructures, and reliability, have been placed on the public ballot. The presentation will discuss these complex water issues.

  6. Measuring the Contribution of Agricultural Conservation Practices to Observed Trends and Recent Condition in Water Quality Indicators in Ohio, USA.

    PubMed

    Miltner, Robert J

    2015-11-01

    Over the last three decades, significant investments made to upgrade wastewater infrastructure and manage pollution from diffuse sources have resulted in measurably improved water quality and biological conditions in Ohio's rivers and streams. Conservation measures to reduce soil loss appear to have contributed significantly to the improvement witnessed over the last two decades and should therefore be continued. Within the most recent timeframe examined, little difference was found in either total phosphorus or suspended sediment concentration in relation to conservation measures, indicating that the environmental benefits of measures targeting soil loss may be approaching an asymptote. Conservation measures targeting livestock and forage management, however, appear to have reduced nitrogen concentrations within the recent time frame. An examination of the interrelationships between habitat quality, conservation measures, and land use indicated that water quality was generally mediated by interactions with stream habitat quality. However, the positive effect of habitat quality was reduced in catchments draining fine-textured soils. The implication of these latter two findings suggest that proscriptively adding natural function to the large network of ditched and maintained conveyances draining agricultural lands would substantially improve water quality, but management at the field level is necessary to minimize phosphorus losses.

  7. Stream buffer effectiveness in an agriculturally influenced area, southwestern Georgia: responses of water quality, macroinvertebrates, and amphibians.

    PubMed

    Muenz, Tara K; Golladay, Stephen W; Vellidis, George; Smith, Lora L

    2006-01-01

    To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.

  8. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality.

    PubMed

    Udeigwe, Theophilus K; Eze, Peter N; Teboh, Jasper M; Stietiya, Mohammed H

    2011-01-01

    Contaminants such as nitrogen (N), phosphorus (P), dissolved organic carbon (DOC), arsenic (As), heavy metals, and infectious pathogens are often associated with agricultural systems. Various soil and water remediation techniques including the use of chemical amendments have been employed to reduce the risks associated with these contaminants. This paper reviews the use of chemical amendments for immobilizing principal agricultural contaminants, the chemistry of contaminant immobilization, and the environmental consequences associated with the use of these chemical products. The commonly used chemical amendments were grouped into aluminum-, calcium-, and iron-containing products. Other products of interest include phosphorus-containing compounds and silicate clays. Mechanisms of contaminant immobilization could include one or a combination of the following: surface precipitation, adsorption to mineral surfaces (ion exchange and formation of stable complexes), precipitation as salts, and co-precipitation. The reaction pH, redox potential, clay minerals, and organic matter are potential factors that could control contaminant-immobilization processes. Reviews of potential environmental implications revealed that undesirable substances such as trace elements, fluoride, sulfate, total dissolved solids, as well as radioactive materials associated with some industrial wastes used as amendment could be leached to ground water or lost through runoff to receiving water bodies. The acidity or alkalinity associated with some of the industrial-waste amendments could also constitute a substantial environmental hazard. Chemical amendments could introduce elements capable of inducing or affecting the activities of certain lithotrophic microbes that could influence vital geochemical processes such as mineral dissolution and formation, weathering, and organic matter mineralization.

  9. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    USGS Publications Warehouse

    Harden, Stephen L.

    2015-01-01

    A classification tree model was developed to examine relations of watershed environmental attributes among the study sites with and without CAFO manure effects. Model results indicated that variations in swine barn density, percentage of wetlands, and total acres available for applying swine-waste manures had an important influence on those watersheds where CAFO effects on water quality were either evident or mitigated. Measurable effects of CAFO waste manures on stream water quality were most evident in those SW and SP watersheds having lower percentages of wetlands combined with higher swine barn densities and (or) higher total acres available for applying waste manure at the swine CAFOs. Stream water quality was similar to background agricultural conditions in SW and SP watersheds with lower swine barn densities coupled with higher percentages of wetlands or lower acres available for swine manure applications. The model provides a useful tool for exploring and identifying similar, unmonitored watersheds in the North Carolina Coastal Plain with potential CAFO manure influences on water quality that might warrant further examination.

  10. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review.

    PubMed

    Schoumans, O F; Chardon, W J; Bechmann, M E; Gascuel-Odoux, C; Hofman, G; Kronvang, B; Rubæk, G H; Ulén, B; Dorioz, J-M

    2014-01-15

    The EU Water Framework Directive (WFD) obliges Member States to improve the quality of surface water and groundwater. The measures implemented to date have reduced the contribution of point sources of pollution, and hence diffuse pollution from agriculture has become more important. In many catchments the water quality remains poor. COST Action 869 was an EU initiative to improve surface water quality that ran from 2006 to 2011, in which 30 countries participated. Its main aim was a scientific evaluation of the suitability and cost-effectiveness of options for reducing nutrient loss from rural areas to surface waters at catchment scale, including the feasibility of the options under different climatic and geographical conditions. This paper gives an overview of various categories of mitigation options in relation to phosphorus (P). The individual measures are described in terms of their mode of action, applicability, effectiveness, time frame, environmental side-effects (N cycling) and cost. In total, 83 measures were evaluated in COST Action 869.

  11. Designing a constructed wetland for the detention of agricultural runoff for water quality improvement.

    PubMed

    Millhollon, Eddie P; Rodrigue, Paul B; Rabb, James L; Martin, Danny F; Anderson, Russell A; Dans, Darinda R

    2009-01-01

    The goal of this study was to construct a wetland that would detain runoff from a 162-ha watershed for the purposes of improving water quality. The volume of runoff that needed to be detained was determined to be that amount coming off the 162-ha watershed consisting of 146 ha of cultivated crop land and 16 ha of pasture that exceeded the amount that would have come off of the watershed in its natural, forested state. The Soil Conservation Service (now the Natural Resource Conservation Service [NRCS]) runoff curve number method was used to estimate runoff from the watershed in its natural, forested state and in its current state of cultivated crop land and pasture. The design of the constructed wetland was accomplished using the natural topography of the wetland site and the design criteria for a sediment containment system developed by NRCS. The SPAW (Soil-Plant-Atmosphere-Water Field & Pond Hydrology) computer model was used to model depth and volume in the wetland to determine if the constructed wetland design would accommodate typical runoff events. Construction of the wetland occurred over a 4-mo period. The capabilities of the system were verified when Hurricane Rita deposited above-normal rainfall to the wetland site area. The wetland was able to accommodate this event, allowing flow through the system for 9 d, followed by continued detention of remaining runoff for water quality improvement.

  12. Shallow Ground-Water Quality in Agricultural Areas of Northern Alabama and Middle Tennessee, 2000-2001

    USGS Publications Warehouse

    Kingsbury, James A.

    2003-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, 32 monitoring wells were installed near cropland in parts of northern Alabama and Middle Tennessee to characterize the effect of row-crop agriculture on shallow ground-water quality. The wells were completed in regolith overlying carbonate bedrock. These geologic units are part of the Mississippian carbonate aquifer, a source of drinking water for domestic and municipal supply in the area. The majority of these wells were sampled in the spring of 2000 for inorganic constituents, nutrients, pesticides, and selected pesticide degradates. Land use and soil characteristics were delineated for a 1,640-foot radius buffer area around each well to relate water quality to environmental factors. A strong association among soil characteristics, land use, and hydrogeology limited the analysis of the effect of these factors on nitrate and pesticide occurrence. Nitrate and pesticide concentrations generally were low, and no samples exceeded established drinking-water maximum contaminant levels. The maximum concentration of nitrate was about 8 milligrams per liter as nitrogen, and the median concentration was 1 milligram per liter. Nitrate concentrations were strongly correlated to dissolved-oxygen concentrations, and ratios of chloride to nitrate indicate nitrate concentrations were affected by denitrification in about a third of the samples. A pesticide or pesticide degradate was detected at concentrations greater than 0.01 microgram per liter in 91 percent of the samples. Pesticides with the highest use typically were detected most frequently and at the highest concentrations; however, glyphosate had the highest estimated use but was not detected in any samples. Fluometuron and atrazine, two high-use pesticides, were detected in 83 and 70 percent, respectively, of the samples from wells where the pesticide was applied in the buffer area. Maximum concentrations of fluometuron and atrazine were 2

  13. Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Gascuel-Odoux, Chantal; Durand, Patrick; Weiler, Markus

    2016-02-01

    Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water-groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.

  14. Use of Daphnia spp. for the ecotoxicological assessment of water quality in an agricultural watershed in South-Central Chile.

    PubMed

    Cooman, K; Debels, P; Gajardo, M; Urrutia, R; Barra, R

    2005-02-01

    Because of the importance of surface waters from the Chillán River watershed (Chile) for recreation, agricultural irrigation, and the production of drinking water, local concern about river water quality has increased considerably during the last decade. Agricultural and forestry activities in the watershed, characterized by an intensive use of pesticides, are thought to play an important role in the generation of non-point-source pollution, whereas the discharge of urban wastewater from the city of Chillán constitutes a major point source of pollution. In the present investigation, acute and chronic laboratory bioassays using Daphnia spp. were conducted on surface water samples from 17 river stations located throughout the watershed. Sampling occurred on 6 occasions during a 16-month period (2000 to 2001) and included both high and low flow conditions. Almost all toxic effects observed in summer were directly related to the discharge of urban wastewater, whereas toxicity in rural areas was mainly detected during the winter period when rainfall and river flow are high. Toxicity test results were compared with measured physicochemical water-quality data. Mortality and alterations in reproductive success of Daphnia spp. were not consistently reflected in detected chemical pollution. With only one exception (atrazine), detected pesticide concentrations were below known toxicity levels. However, additive and synergistic effects of the presence of a mixture of pesticides could not be excluded as a possible cause of observed toxicity. At several stations, filtering of the water sample led to a strong decrease in toxicity, which suggests the presence of xenobiotics attached to the smaller sediment fraction. Inclusion of sediment chemical analysis and sediment toxicity testing in future work should therefore be encouraged. The presented approach provided information about the adverse effects of human activities on surface water quality in the watershed, not easily

  15. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    NASA Astrophysics Data System (ADS)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  16. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: Spatial and seasonal variations in water quality

    USGS Publications Warehouse

    Alpers, Charles N.; Fleck, Jacob A.; Marvin-DiPasquale, Mark C.; Stricker, Craig A.; Stephenson, Mark; Taylor, Howard E.

    2014-01-01

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37 ng L−1 unfiltered; 0.04 to 7.3 ng L−1 filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4 2 −/Cl− ratio, and δ34S in aqueous sulfate. These relationships suggest that microbial reduction of SO4 2−, Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting.

  17. Mercury cycling in agricultural and managed wetlands, Yolo Bypass, California: spatial and seasonal variations in water quality.

    PubMed

    Alpers, Charles N; Fleck, Jacob A; Marvin-DiPasquale, Mark; Stricker, Craig A; Stephenson, Mark; Taylor, Howard E

    2014-06-15

    The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37ngL(-1) unfiltered; 0.04 to 7.3ngL(-1) filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate-limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4(2-)/Cl(-) ratio, and δ(34)S in aqueous sulfate. These relationships suggest that microbial reduction of SO4(2-), Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting. PMID:24332791

  18. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching).

    NASA Astrophysics Data System (ADS)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin

    2014-05-01

    Despite best management practices, agriculture is still facing major challenges to reduce nutrients leaching to the aquatic environment. In deltas, most of total nutrient losses from artificially drained agricultural soils are discharged via drains. Controlled drainage is a promising measure to prevent drainage of valuable nutrients, improve water quality and agricultural yield and adapt to climate change (reduce peak runoff, manage water scarcity and drought). In The Netherlands, this technique has attracted much attention by water managers and farmers alike, yet field studies to determine the expected (positive) effects for Dutch conditions were scarce. Recently, a field experiment was set up on clay soils. Research questions were: how does controlled, subsurface drainage perform on clay soils? Will deeper tile drains function just as well? What are the effects on drain water quality (especially with respect to nitrogen and salt) and crop yield? An agricultural field on clay soils was used to test different tile drainage configurations. Four types of tile drainage systems were installed, all in duplicate: eight plots in total. Each plot has its own outlet to a control box, where equipment was installed to control drain discharge and to measure the flow, concentrations of macro-ions, pH, nitrogen, N-isotopes and heavy metals. In each plot, groundwater observation wells and suction cups are installed in the saturated and vadose zones, at different depths, and crop yield is determined. Four plots discharge into a hydrologic isolated ditch, enabling the determination of water- and nutrient balances. Automatic drain water samplers and innovative nitrate sensors were installed in four plots. These enable identification and unravelling so-called first flush effects (changes in concentrations after a storm event). Water-, chloride- and nitrogen balances have been set up, and the interaction between groundwater and surface water has been quantified. The hydrological

  19. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  20. The impact of stormwater treatment areas and agricultural best management practices on water quality in the Everglades Protection Area.

    PubMed

    Entry, James A; Gottlieb, Andrew

    2014-02-01

    Half of the original Everglades system has been lost to drainage and development. What remains is included within the boundaries of the Everglades Protection Area (EPA), comprised of three Water Conservation Areas (WCAs) and Everglades National Park (Park). Inflows to the EPA contain elevated nutrient concentrations. Best management practices (BMPs) were implemented and six large wetlands called stormwater treatment areas (STAs) were constructed to improve water quality. We analyzed water quality in the WCAs and Park and performed an economic analysis of the STAs to remove nutrients from EPA inflows. In general, nutrient concentrations in all WCAs were higher during the pre-STA period than after the STAs became operational. In WCA2 and the Park, total phosphorus (TP) trends showed more negative slopes prior, as compared to after, the STAs became operational. These results suggest that BMPs lead to large initial decreases in nutrient export resulting in improved downstream water quality. A preliminary economic analysis shows that operation and management of the STAs are complicated and cost intensive. Comparing the cost of phosphorus (P) removal from water entering the EPA using BMPs and STAs may not currently be viable. BMPs prevent P from being applied to, or leaving from agricultural fields while STAs remove P from stormwater. We expect nutrient concentrations in water flowing into and out of the STAs to decline as both BMPs and STAs become more effective. We suggest an economic analysis of BMPs, STAs, and other potential approaches to determine the most cost-effective methods to reduce nutrient concentrations and related stressors affecting the Everglades.

  1. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  2. Applicability of rapid and on-site measured enzyme activity for surface water quality monitoring in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Farnleitner, Andreas H.; Sommer, Regina; Kumpan, Monika; Zessner, Matthias

    2014-05-01

    For the near real time and on-site detection of microbiological fecal pollution of water, the measurement of beta-D- Glucuronidase (GLUC) enzymatic activity has been suggested as a surrogate parameter and has been already successfully operated for water quality monitoring of ground water resources (Ryzinska-Paier et al. 2014). Due to possible short measure intervals of three hours, this method has high potential as a water quality monitoring tool. While cultivation based standard determination takes more than one working day (Cabral 2010) the potential advantage of detecting the GLUC activity is the high temporal measuring resolution. Yet, there is still a big gap of knowledge on the fecal indication capacity of GLUC (specificity, sensitivity, persistence, etc.) in relation to potential pollution sources and catchment conditions (Cabral 2010, Ryzinska-Paier et al. 2014). Furthermore surface waters are a big challenge for automated detection devices in a technical point of view due to the high sediment load during event conditions. This presentation shows results gained form two years of monitoring in an experimental catchment (HOAL) dominated by agricultural land use. Two enzymatic measurement devices are operated parallel at the catchment outlet to test the reproducibility and precision of the method. Data from continuous GLUC monitoring under both base flow and event conditions is compared with reference samples analyzed by standardized laboratory methods for fecal pollution detection (e.g. ISO 16649-1, Colilert18). It is shown that rapid enzymatic on-site GLUC determination can successfully be operated from a technical point of view for surface water quality monitoring under the observed catchment conditions. The comparison of enzyme activity with microbiological standard analytics reveals distinct differences in the dynamic of the signals during event conditions. Cabral J. P. S. (2010) "Water Microbiology. Bacterial Pathogens and Water" International Journal of

  3. Water-Quality and Biological Characteristics and Responses to Agricultural Land Retirement in Three Streams of the Minnesota River Basin, Water Years 2006-08

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; Sanocki, Christopher A.; Mohring, Eric H.; Kiesling, Richard L.

    2009-01-01

    Water-quality and biological characteristics in three streams in the Minnesota River Basin were assessed using data collected during water years 2006-08. The responses of nutrient concentrations, suspended-sediment concentrations, and biological characteristics to agricultural land retirement also were assessed. In general, total nitrogen, suspended-sediment, and chlorophyll-a concentrations, and fish resource quality improved with increasing land retirement. The Chetomba Creek, West Fork Beaver Creek, and South Branch Rush River subbasins, which range in size from about 200 to 400 square kilometers, have similar geologic and hydrologic settings but differ with respect to the amount, type, and location of retired agricultural land. Total nitrogen concentrations were largest, with a mean of 15.0 milligrams per liter (mg/L), in water samples from the South Branch Rush River, a subbasin with little to no agricultural land retirement; total nitrogen concentrations were smaller in samples from Chetomba Creek (mean of 10.6 mg/L) and West Fork Beaver Creek (mean of 7.9 mg/L), which are subbasins with more riparian or upland land retirement at the basin scale. Total phosphorus concentrations were not related directly to differing land-retirement percentages with mean concentrations at primary data-collection sites of 0.259 mg/L in the West Fork Beaver Creek subbasin, 0.164 mg/L in the Chetomba Creek subbasin, and 0.180 mg/L in the South Branch Rush River subbasin. Temporal variation in water quality was characterized using data from in-stream water-quality monitors and storm-sediment data. Fish data indicate better resource quality for the West Fork Beaver Creek subbasin than for other subbasins likely due to a combination of factors, including habitat quality, food resources, and dissolved oxygen characteristics. Index of biotic integrity (IBI) scores increased as local land-retirement percentages (within 50 and 100 meters of the streams) increased. Data and analysis from

  4. LANDSAT-4 Science Characterization Early Results. Volume 4: Applications. [agriculture, soils land use, geology, hydrology, wetlands, water quality, biomass identification, and snow mapping

    NASA Technical Reports Server (NTRS)

    Barker, J. L. (Editor)

    1985-01-01

    The excellent quality of TM data allows researchers to proceed directly with applications analyses, without spending a significant amount of time applying various corrections to the data. The early results derived of TM data are discussed for the following applications: agriculture, land cover/land use, soils, geology, hydrology, wetlands biomass, water quality, and snow.

  5. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  6. Issues of sustainable irrigated agriculture in the San Joaquin Valley of California in a changing regulatory environment concerning water quality and protection of wildlife

    SciTech Connect

    Quinn, N.W.T.; Delamore, M.L.

    1994-06-01

    Since the discovery of selenium toxicosis in the Kesterson Reservoir in the San Joaquin Valley, California, public perception of irrigated agriculture as a benign competitor for California`s developed water supply has been changed irrevocably. Subsurface return flows from irrigated agriculture were implicated as the source of selenium which led to incidents of reproductive failure in waterfowl and threatened survival of other fish and wildlife species. Stringent water quality objectives were promulgated to protect rivers, tributaries, sloughs and other water bodies receiving agricultural discharges from selenium contamination. Achieving these objectives was left to the agricultural water districts, federal and state agencies responsible for drainage and water quality enforcement in the San Joaquin Basin. This paper describes some of the strategies to improve management of water resources and water quality in response to these new environmental objectives. Similar environmental objectives will likely be adopted by other developed and developing countries with large regions of arid zone agriculture and susceptible wildlife resources. A series of simulation models have been developed over the past four years to evaluate regional drainage management strategies such as: irrigation source control; drainage recycling; selective retirement of agricultural land; regional shallow ground water pumping; coordination of agricultural drainage, wetland and reservoir releases; and short-term ponding of drainage water. A new generation of Geographic Information Service-based software is under development to bridge the gap between planning and program implementation. Use of the decision support system will allow water districts and regulators to continuously monitor drainage discharges to the San Joaquin River in real-time and to assess impacts of management strategies that have been implemented to take advantage of the River`s assimilative capacity for trace elements and salts.

  7. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...

  8. Modeling water quality to improve agricultural practices and land management in a tunisian catchment using the soil and water assessment tool.

    PubMed

    Aouissi, Jalel; Benabdallah, Sihem; Chabaâne, Zohra Lili; Cudennec, Christophe

    2014-01-01

    Agriculture intensification has impaired water quality. In this study, the risk of pollution by nitrates was assessed by experimental monitoring, spatial integration of farm census, and modeling of water quality using the Soil and Water Assessment Tool (SWAT), version 2009, over the period of 1990 to 2006 for a catchment located northern Tunisia. Under a semiarid climate, the water quality is influenced by the predominating agriculture activities. The hydrological results are compared with the observed flows derived from measurements at the outlet of the Joumine watershed. Model performance showed good statistical agreements, with a Nash-Sutcliffe efficiency of 0.9 and a value of 0.92 after monthly calibration. The model predicted the timing of monthly peak flow values reasonably well. During the validation period, SWAT simulations were nearly as accurate, with Nash-Sutcliffe efficiency and values of 0.89 and 0.92, respectively. The model was used to simulate NO concentrations. The predicted NO concentration values were compared with in situ measured concentrations. The simulated and measured NO-N concentrations varied in the same range of 0 to 5 mg L at the E3 and E5 locations. The calibrated model was then used for simulating the impact of the best management practice scenarios to reduce NO loads to the river. The first set-up consisted of reducing the N fertilizer application by 20 and 100% from the current state. These two scenarios induced a reduction in NO loads by 22 and 72%, respectively. The second set-up consisted of using vegetation filter strips. The last scenario combined filter strips and a reduction of 20% in N fertilizer application. Results showed NO reduction rates of 20 and 36%, respectively. The SWAT model allowed managers to have several options to improve the water quality in the Joumine watershed. PMID:25602536

  9. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, Douglas A.

    1995-01-01

    The effects of selected agricultural land-management practices on water quality were assessed in a comparative study of four small basins in the Piedmont province of North Carolina. Agricultural practices, such as tillage and applications of fertilizer and pesticides, are major sources of sediment, nutrients, and pesticides in surface water, and of nutrients and pesticides in ground water. The four study basins included two adjacent row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields (7.4 acres) was farmed by using conservation land-management (CLM) practices, which included strip cropping, contour plowing, field borders, and grassed waterways. The other row-crop field (4.8 acres) was farmed by using standard land-management (SLM) practices, which included continuous cropping, straight-row plowing without regard to land topography, and poorly maintained waterways. The mixed land-use basin (665 acres) was monitored to compare water quality in surface water as SLM practices were converted to CLM practices during the project. The forested basin (44 acres) provided background surface-water hydrologic and chemical-quality conditions. Surface-water flow was reduced by 18 percent by CLM practices compared to surface-water flow from the SLM practices basin. The thickness of the unsaturated zone in the row-crop basins ranged from a few feet to 25 feet. Areas with thick unsaturated zones have a greater capacity to intercept and store nutrients and pesticides than do areas with thinner zones. Sediment concentrations and yields for the SLM practices basin were considerably higher than those for the other basins. The median sediment concentration in surface water for the SLM basin was 3.4 times that of the CLM basin, 8.2 times that of the mixed land-use basin, and 38.4 times that of the forested basin. The total sediment yield for the SLM basin was 2.3 times that observed for the CLM basin, 14.1 times that observed for the mixed land

  10. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  11. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  12. Contrasting nitrogen fate in watersheds using agricultural and water quality information

    USGS Publications Warehouse

    Essaid, Hedeff I.; Baker, Nancy T.; McCarthy, Kathleen A.

    2016-01-01

    Surplus nitrogen (N) estimates, principal component analysis (PCA), and end-member mixing analysis (EMMA) were used in a multisite comparison contrasting the fate of N in diverse agricultural watersheds. We applied PCA-EMMA in 10 watersheds located in Indiana, Iowa, Maryland, Nebraska, Mississippi, and Washington ranging in size from 5 to 1254 km2 with four nested watersheds. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer, and manure for the period from 1987 to 2004. Watershed average Surplus N ranged from 11 to 52 kg N ha−1 and from 9 to 32% of N input. Solute concentrations in streams, overland runoff, tile drainage, groundwater (GW), streambeds, and the unsaturated zone were used in the PCA-EMMA procedure to identify independent components contributing to observed stream concentration variability and the end-members contributing to streamflow and NO3 load. End-members included dilute runoff, agricultural runoff, benthic-processing, tile drainage, and oxic and anoxic GW. Surplus N was larger in watersheds with more permeable soils (Washington, Nebraska, and Maryland) that allowed greater infiltration, and oxic GW was the primary source of NO3 load. Subsurface transport of NO3 in these watersheds resulted in some removal of Surplus N by denitrification. In less permeable watersheds (Iowa, Indiana, and Mississippi), NO3 was rapidly transported to the stream by tile drainage and runoff with little removal. Evidence of streambed removal of NO3 by benthic diatoms was observed in the larger watersheds.

  13. Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands.

    PubMed

    Rozemeijer, J C; Klein, J; Broers, H P; van Tol-Leenders, T P; van der Grift, B

    2014-12-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/l per decade for total nitrogen (N-tot) and -0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies. PMID:25236957

  14. Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands.

    PubMed

    Rozemeijer, J C; Klein, J; Broers, H P; van Tol-Leenders, T P; van der Grift, B

    2014-12-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/l per decade for total nitrogen (N-tot) and -0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.

  15. Synthetic- and bio-polymer use for runoff water quality management in irrigated agriculture.

    PubMed

    Sojka, R E; Entry, J A; Orts, W J; Morishita, D W; Ross, C W; Horne, D J

    2005-01-01

    Low concentrations of synthetic- or bio-polymers in irrigation water can nearly eliminate sediment, N, ortho- and total-P, DOM, pesticides, micro-organisms, and weed seed from runoff. These environmentally safe polymers are employed in various sensitive uses including food processing, animal feeds, and potable water purification. The most common synthetic polymer is anionic, high purity polyacrylamide (PAM), which typically provides 70-90% contaminant elimination. Excellent results are achieved adding only 10 ppm PAM to irrigation water, applying 1-2 kg ha(-1) per irrigation, costing 4 dollars - 12 dollars kg(-1). Biopolymers are less effective. Using twice or higher concentrations, existing biopolymers are approximately 60% effective as PAM, at 2-3 times the cost. A half million ha of US irrigated land use PAM for erosion control and runoff protection. The practice is spreading rapidly in the US and worldwide. Interest in development of biopolymer surrogates for PAM is high. If the supply of cheap natural gas (raw material for PAM synthesis) diminishes, industries may seek alternative polymers. Also "green" perceptions and preferences favor biopolymers for certain applications. PMID:15850180

  16. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    SciTech Connect

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations of spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.

  17. Effects of Agriculture and Urbanization on Quality of Shallow Ground Water in the Arid to Semiarid Western United States, 1993-2004

    USGS Publications Warehouse

    Paul, Angela P.; Seiler, Ralph L.; Rowe, Timothy G.; Rosen, Michael R.

    2007-01-01

    Within the Western United States, agricultural and rural lands are being developed into commercial and residential areas. With changes in land use and increasing population, greater demands are placed on water resources for agricultural, industrial, and domestic supplies. Many areas in the Western United States rely exclusively on ground water as their source of drinking water. Areas that use surface-water resources often need to supplement this supply with ground water. Generally, shallow ground water is susceptible to fluctuating water quality within relatively short time scales and therefore can be used as an indicator of land-use stresses that may, in time, affect deep aquifer systems. This regional study examines data on shallow ground-water quality collected from 1993 to 2004 from 273 agricultural and 181 urban wells from 7 U.S. Geological Survey National Water-Quality Assessment study units in Arizona, California, Nevada, New Mexico, south-central Colorado, and Utah. This report determines important influences that land-use practices may have on the quality of recently recharged ground water, which may ultimately affect deep water supplies within the region. The results of this investigation show that nitrate, the principal species of nitrogen present in ground water, exceeds the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 10 milligrams per liter in water from more than 25 percent of agricultural wells and 10 percent of urban wells. In agricultural areas, the probability of exceeding the USEPA MCL for nitrate is influenced primarily by three factors: fertilizer use, irrigation, and aquifer oxidation-reduction (redox) conditions. At the study-unit level, differences in nutrient concentrations between agricultural and urban land use likely are influenced by ground-water redox conditions within respective aquifer systems. The most commonly detected pesticides belonged to the triazine, urea, amide, and carbamate classes. The

  18. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods.

  19. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment (Portugal) using the SWAT model.

    PubMed

    Rocha, João; Roebeling, Peter; Rial-Rivas, María Ermitas

    2015-12-01

    The extensive use of fertilizers has become one of the most challenging environmental issues in agricultural catchment areas. In order to reduce the negative impacts from agricultural activities and to accomplish the objectives of the European Water Framework Directive we must consider the implementation of sustainable agricultural practices. In this study, we assess sustainable agricultural practices based on reductions in N-fertilizer application rates (from 100% to 0%) and N-application methods (single, split and slow-release) across key agricultural land use classes in the Vouga catchment, Portugal. The SWAT model was used to relate sustainable agricultural practices, agricultural yields and N-NO3 water pollution deliveries. Results show that crop yields as well as N-NO3 exportation rates decrease with reductions in N-application rates and single N-application methods lead to lower crop yields and higher N-NO3 exportation rates as compared to split and slow-release N-application methods. PMID:26196068

  20. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    2000-01-01

    The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

  1. Agricultural use of water.

    PubMed

    Collett, J R

    1980-07-28

    Irrigation for agricultural purposes is one of the essential claims on available water resources. Those resources have not been adequately utilized in many countries for a variety of reasons. Where finance has been allocated to irrigation schemes, the schemes have tended to be large-scale, and the performance often disappointing. Alternatively, small-scale irrigation schemes, while receiving less support and encouragement, can often be more effective. For both large-scale and small-scale irrigation schemes, the responses of individual farmers and village communities are critical factors. More technologies need to be developed that are adapted to local needs, resources and aspirations within the context of current socio-economic practices. Obviously, the wider the range of technologies available, the more likely it will be that the technology most appropriate to existing conditions will be identified and used.

  2. Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion

    NASA Astrophysics Data System (ADS)

    Chaplin-Kramer, Rebecca; Hamel, Perrine; Sharp, Richard; Kowal, Virgina; Wolny, Stacie; Sim, Sarah; Mueller, Carina

    2016-07-01

    Corporations and other multinational institutions are increasingly looking to evaluate their innovation and procurement decisions over a range of environmental criteria, including impacts on ecosystem services according to the spatial configuration of activities on the landscape. We have developed a spatially explicit approach and modeled a hypothetical corporate supply chain decision representing contrasting patterns of land-use change in four regions of the globe. This illustrates the effect of introducing spatial considerations in the analysis of ecosystem services, specifically sediment retention. We explored a wide variety of contexts (Iowa, USA; Mato Grosso, Brazil; and Jiangxi and Heilongjiang in China) and these show that per-area representation of impacts based on the physical characterization of a region can be misleading. We found two- to five-fold differences in sediment export for the same amount of habitat conversion within regions characterized by similar physical traits. These differences were mainly determined by the distance between land use changes and streams. The influence of landscape configuration is so dramatic that it can override wide variation in erosion potential driven by physical factors like soil type, slope, and climate. To minimize damage to spatially-dependent ecosystem services like water purification, sustainable sourcing strategies should not assume a direct correlation between impact and area but rather allow for possible nonlinearity in impacts, especially in regions with little remaining habitat and highly variable hydrological connectivity.

  3. Ground-water quality and vulnerability to contamination in selected agricultural areas of southeastern Michigan, northwestern Ohio, and northeastern Indiana

    USGS Publications Warehouse

    Thomas, Mary Ann

    2000-01-01

    Ground-water quality was assessed in the northeastern part of the Corn Belt, where tile-drained row crops are underlain by fractured glacial till. Data were collected from 30 shallow monitor wells and 18 co-located domestic wells as part of the U.S. Geological Survey?s National Water-Quality Assessment in the Lake Erie-Lake St. Clair Basin. Pesticides or pesticide degradates were detected in 41 percent of the monitor wells and 6 percent of the domestic wells. The pesticides detected closely correspond to those most heavily applied?herbicides used on corn and soybeans. Pesticide degradates were detected three times more frequently, and at higher concentrations, than were parent compounds. No pesticide concentration exceeded a USEPA Maximum Contaminant Level (MCL), but MCL?s have not been established for 9 of the 11 compounds detected. Thirty-seven percent of monitor-well samples had nitrate concentrations indicative of human influences such as fertilizer, manure or septic systems. Nitrate was the only chemical constituent detected at a concentration greater than an MCL. The MCL was exceeded in 7 percent of samples from monitor wells which were too shallow to be used as a source of drinking water. Pesticide and nitrate concentrations in the study area are low relative to other agricultural areas of the Nation. Several authors have suggested that ground water in parts of the Upper Mid-west is minimally contaminated because it is protected by the surficial glacial till or tile drains. These ideas are examined in light of the relations between concentration, well depth, and ground-water age in the study area. Most of the shallow ground water is hydraulically connected to the land surface, based on the observations that 83 percent of waters from monitor wells were recharged after 1953, and 57 percent contained a pesticide or an elevated nitrate concentration. Fractures or sand-and-gravel stringers within the till are the probable pathways. In some areas, deeper parts of

  4. Climate Change Impact on the Hydrology and Water Quality of a Small Partially-Irrigated Agricultural Lowland Catchment

    NASA Astrophysics Data System (ADS)

    Visser, A.; Kroes, J.; van Vliet, M. T.; Blenkinsop, S.; Broers, H.

    2010-12-01

    The objective of this study was to assess the potential effects of climate change on the hydrology of the small partially-irrigated agricultural lowland catchment of the Keersop, in south of the Netherlands, as well as the transport of a pre-existing spatially extensive trace metal contamination. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, with Cd and Zn for example, has accumulated in the topsoil and leaches towards the surface water system, especially during periods with high groundwater levels and high discharge rates. Daily time-series of precipitation and potential evapotranspiration were derived from the results of eight regional climate model experiments under the SRES A2 emissions scenario. They each span 100 years and are representative for the periods 1961-1990 (“baseline climate”) and 2071-2100 (“future climate”). The time-series of future climate were characterized by lower precipitation (-1% to -12%) and higher air temperatures (between 2°C and 5°C), and as a result higher potential evapotranspiration, especially in summer. The time-series were used to drive the quasi-2D unsaturated-saturated zone model (SWAP) of the Keersop catchment (43 km2). The model consisted of an ensemble of 686 1D models, each of which represented a 250x250 m area within the catchment. Simulation results for the future climate scenarios show a shift in the water balance of the catchment. The decrease in annual rainfall is nearly compensated by an increase in irrigation in the catchment, if present day irrigation rules are followed. On the other hand, both evaporation and transpiration fluxes increase. This increase is compensated by a decrease in the drainage flux and groundwater recharge. As a result, groundwater levels decline and the annual discharge of the Keersop stream decreases under all future climate scenarios, by 26% to 46%. Because Cd and Zn

  5. Runoff, sediment transport, and water quality in a northern Illinois agricultural watershed before urban development, 1979-81

    USGS Publications Warehouse

    Allen, H.E., Jr.; Gray, J.R.

    1984-01-01

    A study designed to quantify and evaluate changes in runoff and sediment transport attributable to construction activities during urban development of a watershed required identification of pre-construction hydrologic conditions. Data collected before construction on a 2.81 sq m (7.28 sq km) agricultural watershed (upper Spring Creek) near Rockford, IL, show that during a 2-year period ending June 30, 1981, 2,890 tons (2,620 Mg) of suspended sediment were transported from the watershed. Of the 2 ,890 tons (2,620 Mg), 2,690 tons (2,440 Mg) or 93.1 % were transported during a storm in a 46.6-hour period of June 13-14, 1981. Runoff from a 0.031 sq m (0.080 sq km) subbasin (Spring Creek tributary) transported 33.9 tons (30.9 Mg) of suspended sediment during a 3.2-hour storm period on June 13, 1981. Regression models relating storm suspended-sediment yields and peak-water discharge per square mile for upper Spring Creek and Spring Creek tributary have average standard errors of 57 and 24 %, respectively. Trace amounts of currently banned pesticides, including Aldrin and DDT, were detected in streambed material samples. Documented sediment yields, chemical quality, and relations between runoff and sediment discharge provide baseline information for future evaluation of hydrologic conditions in the watershed. (USGS)

  6. Analysis of the potential impacts on surface water quality resulting from the proposed use of the San Luis Drain to transport agricultural drainage through the northern Grasslands

    SciTech Connect

    Quinn, N.W.T.

    1992-05-01

    An Environmental Assessment and initial Study for the interim use of a portion of the San Luis Drain for conveyance water through the Grassland Water District and adjacent Grassland areas was conducted. The project proposes the use of 18 miles of the San Luis Drain for the conveyance of agricultural drainage water for a period of five years and the elimination of agricultural drainage discharges from 76 miles of existing channels in and adjacent to the Grassland Water District. A report was prepared to (a) quantify the potential project effects on surface water quality within Salt and Mud Sloughs and the San Joaquin River using currently available data, and (b) to improve the understanding of existing water supply and drainage operations within the Grassland area. After submission of the original report it was brought to the attention of one of the coauthors that the database on selenium and boron concentrations in drainage water did not include the water quality data collected by the Regional Water Quality Control Board (CRWQCB). In addition, the US Bureau of Reclamation (USBR) requested further examination of Grasslands hydrology to estimate the quantity of supplemental water that would be needed to restore the San Joaquin River to the same TDS and trace element concentrations prior to implementation of the project. This report addresses these issues.

  7. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed.

  8. Using the Provenance of Sediment and Bioavailable Phosphorus to Help Mitigate Water Quality Impact in an Agricultural Catchment.

    PubMed

    McDowell, R W; Norris, M; Cox, N

    2016-07-01

    The quality and health of surface waters can be impaired by sediment and sediment-bound phosphorus (P). The Waituna Lagoon catchment in southern New Zealand has undergone agricultural intensification that has been linked to increases in sediment and sediment-bound bioavailable P (BAP) in the lagoon. Time-integrated samplers trapped suspended sediment from the water column, and their geochemical signature was compared with likely sources (stream banks, stream beds, topsoil, and subsoil) in each of the lagoon's contributing streams and rivers. The proportion of BAP, but not necessarily total P, within trapped sediment was much greater in samples from the Moffat and Carran Creeks than from the Waituna Creek, probably due to the erosion of organic-rich soils that had little capacity to retain P compared with the more mineral soils of the Waituna Creek. Annually, most BAP and sediment came from bank erosion, and strategies such as fencing out stock should focus on minimizing this throughout the catchment. However, when considering losses in space and time relative to the impact on the Waituna Lagoon, strategies the Waituna Creek catchment should also minimize contributions from topsoil in winter-spring, whereas in the Carran and Moffat Creek catchments strategies need to decrease P inputs (e.g., effluent) to Organic soils likely to lose much BAP in summer-autumn when the impact on the Lagoon is quickest. This study highlighted the need to identify sources and timings of BAP and sediment loss before recommending mitigation practices, which without this information may be slow or not succeed. PMID:27380076

  9. Hydrogeology, herbicides and nutrients in ground water and springs, and relation of water quality to land use and agricultural practices near Carlisle, Pennsylvania

    USGS Publications Warehouse

    Hippe, D.J.; Witt, E. C.; Giovannitti, R.M.

    1994-01-01

    Discharge and water-quality data collected in two adjacent karst-spring basins in Cumberland County, Pa., from May 1990 through April 1991 were used to (1) describe the hydrogeology of the area; (2) determine the concentrations of selected herbicides, herbicide-soil metabolites, and nutrients in water from wells and discharges from springs, (3) determine herbicide and nutrient discharges from springs; and (4) determine the relation of ground-water quality to land use and agricultural practices in the spring basins. The study area is underlain by a regolith-mantled carbonate-rock aquifer system. Agricultural land, forest, and residential land are the principal land uses. Herbicides are applied primarily to cornfields. Cyanazine, atrazine, metolachlor, and alachlor account for about 90 percent of the documented herbicide use on cropland. Daily mean discharge of Alexanders and Mount Rock Springs was 3.8 and 3.7 cubic feet per second, and total discharge was 1,390 and 1,370 cubic feet per second-days. Increases in discharge were related to individual periods of precipitation, but maximum flow rates lagged precipitation periods by 2 to 5 days. The recharge area to each spring is estimated to be 2.8 square miles. Atrazine was the only herbicide in common use that was detected in discharges from springs. Atrazine and the atrazine soil-metabolite deethylatrazine (DEA) were detected in spring discharges for the duration of the study. Changes in atrazine and DEA concentrations in the discharges from springs were minimal, and no flush of herbicides from the springs followed application. Temporal variation in constituent discharges was related mostly to changes in spring flow; the largest daily constituent discharges coincided with periods of increased spring flow during the winter and early spring. Atrazine and DEA discharged from Alexanders Spring and Mount Rock Spring were about 0.5 and 0.6 percent of the estimated annual atrazine use on row crops in their respective

  10. Surface-water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; data on agricultural organic compounds, nutrients, and sediment in water, 1988-90

    USGS Publications Warehouse

    Sullivan, D.J.; Terrio, P.J.

    1994-01-01

    This report describes the sampling design and methods and presents data collected to determine the distribution of agricultural organic compounds, nutrients, and sediment in selected areas of the upper Illinois River Basin as part of the National Water-Quality Assessment program. Four stations in small watersheds (two urban, two agricultural) were sampled in 1988 and 1989. Seventeen stations in an agricultural subbasin were sampled in 1990. Samples were collected before, during, and after runoff events from late spring to midsummer to determine concentrations of agricultural organic compounds in surface waters resulting from storm runoff, as well as background concentrations. Over 200 water samples were analyzed for agricultural organic compound, nutrient, and suspended-sediment concentrations. The agricultural organic compounds included triazine and chlorophenoxy-acid herbicides, and organo-phosphorus insecticides.

  11. Principles of Water Quality

    SciTech Connect

    Waite, T.D.

    1984-01-01

    CONTENTS: Introduction to Water Quality Concepts. Natural Environmental Processes. Toxic Metals as Factors in Water Quality. Refractory Organic Compounds. Nutrients, Productivity, and Eutrophication. Microbes and Water Quality. Thermal Effects and Water Quality. Air Quality. Water Quality Interactions. Introduction to Water Quality Modeling. Water Quality Standards, and Management Approaches.

  12. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W.; Jaynes, M.L.

    1994-01-01

    large increase of specific conductance in the tidal creek. Flashboard risers had no significant effect on concentrations of dissolved oxygen, suspended sediment, total ammonia plus organic nitrogen, or phosphorus. Maximum concentrations of ammonia nitrogen were smaller at both test sites after riser installation. In addition, concentrations of nitrite plus nitrate nitrogen exceeding 1.0 milligram per liter rarely occurred at the flashboard-riser test sites following installation of the risers. Median loadings of nitrite plus nitrate nitrogen and total nitrogen decreased at one riser test site following flashboard-riser installation. Tide gates and flashboard risers were associated with reductions in concentrations and export of nitrite plus nitrate nitrogen; however, these changes should be interpreted cautiously because reductions were not observed consistently at every site. The hydrology and baseline water-quality characteristics of the two study areas differ, making comparisons of the effectiveness of the two types of water-control structures difficult to interpret. The effects of water-control structures on the hydrology of the drainage canals are more meaningful than the changes in water quality. Tide gates and flashboard risers altered the hydrologic characteristics of the drainage canals and created an environment favorable for nutrient loss or transformation. Both structures retained agricultural drainage upstream, which increased potential storage for infiltration and reduced the potential for surface runoff, sediment, and nutrient transport, and higher peak outflow rates.

  13. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions.

  14. The impact of cattle access on ecological water quality in streams: Examples from agricultural catchments within Ireland.

    PubMed

    Conroy, E; Turner, J N; Rymszewicz, A; O'Sullivan, J J; Bruen, M; Lawler, D; Lally, H; Kelly-Quinn, M

    2016-03-15

    Unrestricted cattle access to rivers and streams represent a potentially significant localised pressure on freshwater systems. However there is no consensus in the literature on the occurrence and extent of impact and limited research has examined the effects on aquatic biota in the humid temperate environment examined in the present study. Furthermore, this is one of the first times that research consider the potential for cattle access impacts in streams of varying water quality in Northern Europe. We investigated the effects of cattle access on macroinvertebrate communities and deposited fine sediment levels, in four rivers of high/good and four rivers of moderate water quality status which drain, low gradient, calcareous grassland catchments in Ireland. We assessed the temporal variability in macroinvertebrates communities across two seasons, spring and autumn. Site specific impacts were evident which appeared to be influenced by water quality status and season. All four high/good water status rivers revealed significant downstream changes in community structure and at least two univariate metrics (total richness and EPT richness together with taxon, E and EPT abundance). Two of the four moderate water status rivers showed significant changes in community structure, abundance and richness metrics and functional feeding groups driven in the main by downstream increases in collectors/gatherers, shredders and burrowing taxa. These two moderate water status rivers had high or prolonged livestock activity. In view of these findings, the potential for some of these sites to achieve at least high/good water quality status, as set out in the EU Water Framework Directive, may be compromised. The results presented highlight the need for additional research to further define the site specific factors and livestock management practices, under different discharge conditions, that increase the risk of impact on aquatic ecology due to these cattle-river interactions. PMID

  15. Comparison of Hydrologic and Water-Quality Characteristics of Two Native Tallgrass Prairie Streams with Agricultural Streams in Missouri and Kansas

    USGS Publications Warehouse

    Heimann, David C.

    2009-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low

  16. Effects of agricultural land-management practices on water quality in northeastern Guilford County, North Carolina, 1985-90

    USGS Publications Warehouse

    Harned, D.A.

    1994-01-01

    The effects of different agricultural land- management practices on sediment, nutrients, and selected pesticides in surface water, and on nutrients and pesticides in ground water were studied in four small basins in the Piedmont of North Carolina. The basins included two adjacent basins in row-crop fields, a mixed land-use basin, and a forested basin. One of the row-crop fields was farmed using conservation land-management practices, including strip cropping, contour plowing, field borders, and grassed waterways. The other field was farmed using standard land- management practices, including continuous cropping, straight-row plowing, and ungrassed waterways. The sediment yield for the standard land-management basin was 2.3 times that for the conservation land-management basin, 14.1 times that for the mixed land-use basin, and 19.5 times that for the forested basin. Nutrient concentra- tions in surface water from the row-crop and mixed land-use basins were higher than those in surface water for the forested basin. Nutrient concentra- tions in soil water and ground water beneath the row-crop basins were lower than those in surface- water runoff for these basins. The lowest nutrient concentrations measured in the row-crop basins generally were in soil-water samples collected just below the root zone (3-foot depth) and in ground water. No significant differences in pesticide concentrations were identified between the surface-water runoff from the standard land- management basin and that from the conservation land-management basin. Concentrations of the soil pesticides isopropalin and flumetralin were higher in the standard land-management basin than in the conservation land-management basin.

  17. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions

  18. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport

  19. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    PubMed

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  20. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient

    USGS Publications Warehouse

    Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

    2011-01-01

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water

  1. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china.

    PubMed

    Chen, Jiabo; Lu, Jun

    2014-01-01

    Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3--N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.

  2. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  3. Quality-assurance design applied to an assessment of agricultural pesticides in ground water from carbonate bedrock aquifers in the Great Valley of eastern Pennsylvania

    USGS Publications Warehouse

    Breen, Kevin J.

    2000-01-01

    Assessments to determine whether agricultural pesticides are present in ground water are performed by the Commonwealth of Pennsylvania under the aquifer monitoring provisions of the State Pesticides and Ground Water Strategy. Pennsylvania?s Department of Agriculture conducts the monitoring and collects samples; the Department of Environmental Protection (PaDEP) Laboratory analyzes the samples to measure pesticide concentration. To evaluate the quality of the measurements of pesticide concentration for a groundwater assessment, a quality-assurance design was developed and applied to a selected assessment area in Pennsylvania. This report describes the quality-assurance design, describes how and where the design was applied, describes procedures used to collect and analyze samples and to evaluate the results, and summarizes the quality assurance results along with the assessment results. The design was applied in an agricultural area of the Delaware River Basin in Berks, Lebanon, Lehigh, and Northampton Counties to evaluate the bias and variability in laboratory results for pesticides. The design?with random spatial and temporal components?included four data-quality objectives for bias and variability. The spatial design was primary and represented an area comprising 30 sampling cells. A quality-assurance sampling frequency of 20 percent of cells was selected to ensure a sample number of five or more for analysis. Quality-control samples included blanks, spikes, and replicates of laboratory water and spikes, replicates, and 2-lab splits of groundwater. Two analytical laboratories, the PaDEP Laboratory and a U.S. Geological Survey Laboratory, were part of the design. Bias and variability were evaluated by use of data collected from October 1997 through January 1998 for alachlor, atrazine, cyanazine, metolachlor, simazine, pendimethalin, metribuzin, and chlorpyrifos. Results of analyses of field blanks indicate that collection, processing, transport, and laboratory

  4. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?

    PubMed

    Liu, Mei; Lu, Jun

    2014-09-01

    Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.

  5. Agricultural water pollution control: An interdisciplinary approach

    NASA Astrophysics Data System (ADS)

    Miller, Watkins W.; Ching, Chauncey T. K.; Yanagida, John F.; Jakus, Paul

    1985-01-01

    Regulation and control of agricultural water pollution is unique and difficult to accomplish. Water quality standards are often proposed without adequate consideration of the overall economic impact on agricultural production. This article illustrates how economists and physical scientists can cooperate to develop appropriate control strategies for agricultural water pollution. Data provided by physical scientists and economists are used in a linear programming model to describe salt discharge as a function of water management, production levels, and an associated effluent charge. Four water management activities were chosen on the basis of different costs of production (including a parametrically varied effluent charge), water requirements, alfalfa yields, and levels of salt discharge. Results indicate that when the effluent charge is low (<0.20/metric ton salt discharged), maximum production with maximum salt discharge is most profitable. As the effluent charge is increased (0.20 0.40/metric ton salt discharged), it becomes progressively less profitable to produce alfalfa at maximum levels of pollutant discharge. When the effluent charge is >0.40/metric ton salt discharged, alfalfa production is no longer economically feasible. An important aspect of this approach is that it permits policy makers to identify explicitly the relationship between the environmental standard and the effect on agricultural production.

  6. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in an agricultural area of Sherburne County, Minnesota, 1998

    USGS Publications Warehouse

    Ruhl, James F.; Fong, Alison L.; Hanson, Paul E.; Andrews, William J.

    2000-01-01

    Tritium concentrations had a range of from 7.5 to 18.8 tritium units (TUs) and a median of 12.5 TUs. These concentrations indicate that the ground water predominantly recharged after testing of thermonuclear weapons during the early 1950's.

  7. Water-Quality Assessment of the Trinity River Basin, Texas - Pesticides in a Coastal Prairie Agricultural Area, 1994-95

    USGS Publications Warehouse

    Brown, M.F.

    1996-01-01

    Agriculture is a major land use in the coastal prairie area located in the southern part of the Trinity River Basin. Crops grown in the area include rice, sorghum, and soybeans. Pesticide- use estimates for the area show that compounds with the highest use are the herbicides: molinate, propanil, thiobencarb, metolachlor, acifluorfen, bentazon, and atrazine and the insecticides: carbaryl and methyl parathion. More than 20 pesticide samples collected from each of three streams in the coastal prairie resulted in detections of 29 different pesticide compounds. The most frequently detected compounds were the herbicides: atrazine, metolachlor, and molinate, which were detected in more than 75 percent of the samples. Herbicides were detected more frequently than insecticides. Maximum concentrations of atrazine, metolachlor, and molinate occurred in the spring and were 4, 1.9, and 200 micrograms per liter (?g/L), respectively. Almost all concentrations of atrazine and metolachlor were below drinking water standards; no standard is available for molinate. Concentrations and estimated loads and percent of applied compound lost to the streams were generally higher in the watersheds where more of the pesticides were applied to crops.

  8. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil).

    PubMed

    da Rocha, Monyque Palagano; Dourado, Priscila Leocadia Rosa; de Souza Rodrigues, Mayara; Raposo, Jorge Luiz; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2015-07-01

    Water quality monitoring is used to determine the impact of human activities on the environment. We evaluated water quality in the Água Boa stream, located within the municipality of Dourados, State of Mato Grosso do Sul, Brazil, by analyzing physico-chemical, chemical, and microbiological parameters, as well as chlorophyll concentrations. Five sets of water samples were collected between December 2012 and November 2013 from three locations within the stream. The results showed the presence of Escherichia coli and antibiotic-resistant Pseudomonas spp. strains and high concentrations of organic matter (total dissolved solids), inorganic species (Mg, Ca, and Fe), and agrochemical residues (thiamethoxam). The main stream water contaminants are derived from urban, industrial, and agricultural activities within the watershed. Given the presence of contaminants, it is important that such findings are disseminated in order to highlight the risks that contact with this water may pose to human health. To preserve the environment and improve site conditions, people would need to participate by demanding that normative national and international standards be respected and that the situation be supervised by the competent governmental agencies; this would make it possible to reverse or minimize contamination problems within the Água Boa stream.

  9. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil).

    PubMed

    da Rocha, Monyque Palagano; Dourado, Priscila Leocadia Rosa; de Souza Rodrigues, Mayara; Raposo, Jorge Luiz; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2015-07-01

    Water quality monitoring is used to determine the impact of human activities on the environment. We evaluated water quality in the Água Boa stream, located within the municipality of Dourados, State of Mato Grosso do Sul, Brazil, by analyzing physico-chemical, chemical, and microbiological parameters, as well as chlorophyll concentrations. Five sets of water samples were collected between December 2012 and November 2013 from three locations within the stream. The results showed the presence of Escherichia coli and antibiotic-resistant Pseudomonas spp. strains and high concentrations of organic matter (total dissolved solids), inorganic species (Mg, Ca, and Fe), and agrochemical residues (thiamethoxam). The main stream water contaminants are derived from urban, industrial, and agricultural activities within the watershed. Given the presence of contaminants, it is important that such findings are disseminated in order to highlight the risks that contact with this water may pose to human health. To preserve the environment and improve site conditions, people would need to participate by demanding that normative national and international standards be respected and that the situation be supervised by the competent governmental agencies; this would make it possible to reverse or minimize contamination problems within the Água Boa stream. PMID:26088756

  10. Water-quality assessment of the Trinity River Basin, Texas - Nutrients in two coastal prairie streams draining agricultural areas, 1994-95

    USGS Publications Warehouse

    Land, Larry F.

    1996-01-01

    In 1991, the U.S. Geological Survey (USGS) began nationwide implementation of the National Water-Quality Assessment (NAWQA) Program. Long-term goals of NAWQA are to describe the status of and trends in the quality of a large, representative part of the Nation?s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources (Leahy and others, 1990). The Trinity River Basin in east-central Texas (fig. 1) was among the first 20 hydrologic areas, called study units, to be assessed by this program. The first intensive data-collection phase for the Trinity River Basin NAWQA began in March 1993 and ended in September 1995. Streams in the Trinity River Basin were assessed by sampling water, bed sediment, and tissue of biota and characterizing the aquatic communities and their habitat. Aquifers were assessed by sampling water from wells. The coastal prairie is a small part of the Trinity River Basin, but it is environmentally important because of its proximity to Galveston Bay and the extensive use of agricultural chemicals on many irrigated farms. Galveston Bay (fig. 1) was selected by Congress as an estuary of national significance and was included on a priority list for the National Estuary Program. The Trinity River is especially important because its watershed dominates the total Galveston Bay drainage area and because its flow contributes substantial amounts of freshwater and water-quality constituents to the bay. Historically, measurements of the quantity and quality of water entering Galveston Bay from the Trinity River Basin have been made using data from a station about 113 kilometers (70 miles) upstream from Trinity Bay, an inlet bay to Galveston Bay. With a focused objective of providing additional water-quality information in the intervening coastal prairie area and an overall objective of improving the understanding of the relations between farming practices

  11. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  12. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  13. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  14. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  15. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or...

  16. Hydrologic conditions and water quality in an agricultural area in Kleberg and Nueces Counties, Texas, 1996-98

    USGS Publications Warehouse

    Ockerman, Darwin J.; Petri, Brian L.

    2001-01-01

    During 1996?98, rainfall and runoff were monitored on a 49,680-acre agricultural watershed in Kleberg and Nueces Counties in South Texas. Nineteen rainfall samples were analyzed for selected nutrients, and runoff samples from 29 storms were analyzed for major ions, nutrients, and pesticides. Loads of nutrients in rainfall and loads of nutrients and pesticides in runoff were computed. For a 40,540-acre part of the watershed (lower study area), constituent loads entering the watershed in rainfall, in runoff from the upper study area, and from agricultural chemical applications to the lower study area were compared with runoff loads exiting the lower study area. Total rainfall for 1996?98 averaged 25.86 inches per year, which is less than the long-term annual average rainfall of 29.80 inches for the area. Rainfall and runoff during 1996?98 were typical of historical patterns, with periods of below average rainfall and runoff interspersed with extreme events. Five individual storms accounted for about 38 percent of the total rainfall and 94 percent of the total runoff. During the 3-year study, the total nitrogen runoff yield from the lower study area was 1.3 pounds per acre per year, compared with 49 pounds per acre per year applied as fertilizer and 3.1 pounds per acre per year from rainfall. While almost all of the fertilizer and rainfall nitrogen was ammonia and nitrate, most of the nitrogen in runoff was particulate organic nitrogen, associated with crop residue. Total nitrogen exiting the lower study area in surface-water runoff was about 2.5 percent of the nitrogen inputs (fertilizer and rainfall nitrogen). Annual deposition of total nitrogen entering the lower study area in rainfall exceeded net yields of total nitrogen exiting the watershed in runoff because most of the rainfall does not contribute to runoff. During the study, the total phosphorus runoff yield from the lower study area was 0.48 pound per acre per year compared with 4.2 pounds per acre per year

  17. [Agricultural environment quality of China and its improving countermeasures].

    PubMed

    Zeng, Xibai; Yang, Zhengli

    2006-01-01

    This paper analyzed the present status of China agricultural water and soil environment. It was indicated that the agricultural water environment in this country was more serious, with the affected area being approximately 20% of the total farmland, and 5% of it being severely affected. More attention should be paid to the pollution of agricultural chemicals in soil environment. The impacts of industrial wastes, urban sewage and garbage, agricultural chemicals, and soil erosion on agro-environment were discussed, with the impact degree of these factors analyzed. The major problems in China agricultural environment melioration were presented, related researches and major countermeasures in this country and developed countries were reviewed, and relevant measures and suggestions on improving the agricultural environment quality of China were put forward.

  18. Water quality and supply issues of irrigated agricultural regions – lessons from the San Joaquin Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley of California covers 4 million hectares of farmland and produces $25 billion of agricultural products annually, but its average annual rainfall ranges from only 130 mm in the south to 330 mm in the north and nearly all occur in the winter. On the east side of the valley, irrig...

  19. Water quality of the Apalachicola-Chattahoochee-Flint and Ocmulgee river basins related to flooding from Tropical Storm Alberto; pesticides in urban and agricultural watersheds, and nitrate and pesticides in ground water, Georgia, Alabama, and Florida

    USGS Publications Warehouse

    Hippe, D.J.; Wangsness, D.J.; Frick, E.A.; Garrett, J.W.

    1994-01-01

    This report presents preliminary water-quality information from three studies that are part of the National Water-Quality Assessment (NAWQA) Program in the Apalachicola-Chattahoochee-Flint (ACF) River basin and the adjacent Ocmulgee River basin. During the period July 3-7, 1994, heavy rainfall from tropical storm Alberto caused record flooding on the Ocmulgee and Flint Rivers and several of their tributaries. Much of the nitrogen load transported during the flooding was as organic nitrogen generally derived from organic detritus, rather than nitrate derived from other sources, such as fertilizer. More than half the mean annual loads of total phosphorus and organic nitrogen were trans- ported in the Flint and Ocmulgee Rivers during the flood. Fourteen herbicides, five insecticides, and one fungicide were detected in floodwaters of the Ocmulgee, Flint, and Apalachicola Rivers. In a second study, water samples were collected at nearly weekly intervals from March 1993 through April 1994 from one urban and two agricultural watersheds in the ACF River basin, and analyzed for 84 commonly used pesticides. More pesticides were detected and at generally higher concentrations in water from the urban watershed than the agricultural water- sheds, and a greater number of pesticides were persistent throughout much of the year in the urban watershed. Simazine exceeded U.S. Environmental Protection Agency (EPA) drinking-water standards in one of 57 samples from the urban watershed. In a third study, 38 wells were installed in surficial aquifers adjacent to and downgradient of farm fields within agricultural areas in the southern ACF River basin. Even though regional aquifers are generally used for irrigation and domestic- and public-water supplies, degradation of water quality in the surficial aquifers serves as an early warning of potential contamination of regional aquifers. Nitrate concentrations were less than 3 mg/L as N (indicating minimal effect of human activities) in water

  20. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  1. Historical contributions of phosphorus from natural and agricultural sources and implications for stream water quality, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Pope, Larry M.; Milligan, Chad R.; Mau, David Phillip

    2002-01-01

    An examination of soil cores collected from 43 nonagricultural coring sites in the Cheney Reservoir watershed of south-central Kansas was conducted by the U.S. Geological Survey in September 1999. The cores were collected as part of an ongoing cooperative study with the city of Wichita, Kansas. The 43 sites (mostly cemeteries) were thought to have total phosphorus concentrations in the soil that are representative of natural conditions (unaffected by human activity). The purpose of this report is to present the analysis and evaluation of these soil cores, to quantify the phosphorus contributions to Cheney Reservoir from natural and agricultural sources, and to provide estimates of stream-water-quality response to natural concentrations of total phosphorus in the soil. Analysis of soil cores from the 43 sites produced natural concentrations of total phosphorus that ranged from 74 to 539 milligrams per kilogram with a median concentration of 245 milligrams per kilogram in 2-inch soil cores and from 50 to 409 milligrams per kilogram with a median concentration of 166 milligrams per kilogram in 8-inch soil cores. Natural concentrations of total phosphorus in soil were statistically larger in samples from coring sites in the eastern half of the watershed than in samples from coring sites in the western half of the watershed. This result partly explains a previously determined west-to-east increase in total phosphorus yields in streams of the Cheney Reservoir watershed. A comparison of total phosphorus concentrations in soil under natural conditions to the historical mean total phosphorus concentration in agriculturally enriched bottom sediment in Cheney Reservoir indicated that agricultural activities within the watershed have increased total phosphorus concentrations in watershed soil that is transported in streams to about 2.9 times natural concentrations. Retention efficiencies for phosphorus and sediment historically transported to Cheney Reservoir were calculated

  2. Water Quality: An Introduction

    ERIC Educational Resources Information Center

    Merritt, LaVere B.

    1977-01-01

    An overview of the various aspects of water quality, including a rationale for multidisciplinary cooperation in water quality management, a list of beneficial water uses, a discussion of the major types of water pollutants, and an explanation of the use of aquatic biota in testing for water quality. (CS)

  3. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Concentrations of atrazine and DEA generally were greater near the water table and decreased or were not detected in deeper wells. All of the samples in which atrazine and DEA were detected also had increased (greater than 3 mg/L) nitrate-N concentrations. However, not all samples with increased concentrations of nitrate-N had detections of atrazine or DEA. This likely indicates either that there were sources of nitrate-N other than cultivated fields on which both atrazine and nitrogen were applied or that nitrate-N reached ground water more readily than atrazine or DEA.

  4. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  5. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  6. Shore zone in protection of water quality in agricultural landscape-the Mściwojów Reservoir, southwestern Poland.

    PubMed

    Dąbrowska, Jolanta; Kaczmarek, Halina; Markowska, Joanna; Tyszkowski, Sebastian; Kempa, Olgierd; Gałęza, Marta; Kucharczak-Moryl, Ewa; Moryl, Andrzej

    2016-08-01

    Shore zones are transition areas (ecotones) between aquatic and terrestrial ecosystems. Their function in the environment is crucial because they serve as buffer zones that capture pollutants and slow down erosion of reservoir and watercourse banks provided that they are managed properly. Research on a shore zone was conducted at the Mściwojów retention reservoir with an innovative water self-purification system. After several years of its operation, an increased phosphate concentration in the main part of the reservoir was reported. The mapping of the terrain's surface and modeling of hydrological processes in the direct catchment area of the said reservoir were done using the digital elevation model (DEM). The DEM was created from LiDAR data obtained in 2012 by airborne laser scanning. Analyses of the surface runoff led to identification of surface runoff transport pathways, along which the eroded material from cultivated fields is discharged directly to the reservoir. Surface runoff transport pathways gather the eroded material from a maximum area of 45,000 m(2) in the western part of the direct catchment and 40,000 m(2) in the eastern part of it. Due to the reservoir management negligence, the riparian zone designed for the Mściwojów Reservoir no longer exists. The percentage of the natural shore that undergoes erosion processes is over 54. The said processes and fluctuations of the water level in the reservoir, as well as degradation of the shore zone caused by human activity, bring about limited plant development in the littoral zone, which in turn lowers the reservoir's resistance to degradation.

  7. Shore zone in protection of water quality in agricultural landscape-the Mściwojów Reservoir, southwestern Poland.

    PubMed

    Dąbrowska, Jolanta; Kaczmarek, Halina; Markowska, Joanna; Tyszkowski, Sebastian; Kempa, Olgierd; Gałęza, Marta; Kucharczak-Moryl, Ewa; Moryl, Andrzej

    2016-08-01

    Shore zones are transition areas (ecotones) between aquatic and terrestrial ecosystems. Their function in the environment is crucial because they serve as buffer zones that capture pollutants and slow down erosion of reservoir and watercourse banks provided that they are managed properly. Research on a shore zone was conducted at the Mściwojów retention reservoir with an innovative water self-purification system. After several years of its operation, an increased phosphate concentration in the main part of the reservoir was reported. The mapping of the terrain's surface and modeling of hydrological processes in the direct catchment area of the said reservoir were done using the digital elevation model (DEM). The DEM was created from LiDAR data obtained in 2012 by airborne laser scanning. Analyses of the surface runoff led to identification of surface runoff transport pathways, along which the eroded material from cultivated fields is discharged directly to the reservoir. Surface runoff transport pathways gather the eroded material from a maximum area of 45,000 m(2) in the western part of the direct catchment and 40,000 m(2) in the eastern part of it. Due to the reservoir management negligence, the riparian zone designed for the Mściwojów Reservoir no longer exists. The percentage of the natural shore that undergoes erosion processes is over 54. The said processes and fluctuations of the water level in the reservoir, as well as degradation of the shore zone caused by human activity, bring about limited plant development in the littoral zone, which in turn lowers the reservoir's resistance to degradation. PMID:27418074

  8. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model.

    PubMed

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-03-01

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006-2008) and validation (2009-2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184

  9. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model

    PubMed Central

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-01-01

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184

  10. Use of real-time and continuous water quality monitoring in Iowa streams to inform conservation strategy in an agricultural landscape

    NASA Astrophysics Data System (ADS)

    Jones, C. S.; Kim, S. W.; Davis, C. A.

    2015-12-01

    Agricultural watersheds in the Midwestern U.S. are major contributors of nutrients to the Mississippi River Basin and the Gulf of Mexico. Many states within the Upper Mississippi River Basin, including Iowa, are developing nutrient reduction strategies to reduce non-point and point source loads of nitrogen and phosphorous in an effort to reverse degradation of streams and lakes. Quantifying nutrient loads in Iowa and assessing loads transported within Iowa rivers are important components of Iowa's strategy. Nutrient loads estimated with data collected using traditional methods of grab sampling are expensive and have met with limited usefulness to the agricultural community when assessing the effectiveness of implemented conservation practices. New sensor technology is allowing for real-time measurement of nutrient loads in many Iowa rivers. IIHR Hydroscience and Engineering has deployed 22 nitrate-nitrogen sensors in several Iowa rivers to provide accurate measure of nutrient loads. Combined with 17 sensors operated by the USGS, the sensor network captures nutrient transport and loading patterns in rivers across the state. A new Iowa Water Quality Information System (IWQIS) is being developed to display and share the continuous, real-time data. The data reported here will compare and contrast load calculations obtained using continuous monitors with those from a more traditional grab samples. We also will demonstrate how continuous nitrate monitoring informs watershed hydrology and the assessment of conservation practices designed to reduce nutrient loss from farmed fields. Finally, we will establish that the costs of real time continuous monitoring are modest when compared to grab sampling strategies and the costs of implementing conservation on productive lands in the Western Corn Belt of Iowa.

  11. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model.

    PubMed

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-03-18

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006-2008) and validation (2009-2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands.

  12. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  13. Effects of agriculture on quality of water in surficial sand-plain aquifers in Douglas, Kandiyohi, Pope, and Stearns counties, Minnesota

    USGS Publications Warehouse

    Anderson, H.W.

    1989-01-01

    Four of eight wells sampled for herbicides in west-central Minnesota had detectable concentrations of the triazine herbicide atrazine that ranged from 0.2 to 0.6 micrograms per liter. These concentrations were well below the water-quality guidelines published by the Canadian Inland Waters Directorate, Water Quality Branch, which specify 100 micrograms per liter as the maximum permissible concentration for the group of triazine herbicides in a raw drinking-water supply.

  14. Water-quality assessment of the Trinity River Basin, Texas - Nutrients in streams draining an agricultural and an urban area, 1993-95

    USGS Publications Warehouse

    Land, Larry F.; Shipp, Allison A.

    1996-01-01

    Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.

  15. Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia; effects of agricultural activities on, and distribution of, nitrate and other inorganic constituents in the surficial aquifer

    USGS Publications Warehouse

    Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)

  16. Review of the Pyrolysis Platform for Producing Bio-oil and Biochar: Technology, Logistics, and Potential Impacts on Greenhouse Gas Emissions, Water Quality, Soil Quality, and Agricultural Productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a ...

  17. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    USGS Publications Warehouse

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  18. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  19. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects. PMID:27007730

  20. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  1. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on water quality in the Little Conestoga Creek headwaters, 1983-89

    USGS Publications Warehouse

    Koerkle, E.H.; Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.

    1996-01-01

    Water quality in the headwaters of the Little Conestoga Creek, Lancaster County, Pa., was investigated from April 1986 through September 1989 to determine possible effects of agricultural nutrient management on water quality. Nutrient management, an agricultural Best-Management Practice, was promoted in the 5.8-square-mile watershed by the U.S. Department of Agriculture Rural Clean Water Program. Nonpoint-source- agricultural contamination was evident in surface water and ground water in the watershed; the greatest contamination was in areas underlain by carbonate rock and with intensive row-crop and animal production. Initial implementation of nutrient management covered about 30 percent of applicable land and was concentrated in the Nutrient-Management Subbasin. By 1989, nutrient management covered about 45 percent of the entire Small Watershed, about 85 percent of the Nutrient- Management Subbasin, and less than 10 percent of the Nonnutrient-Management Subbasin. The number of farms implementing nutrient management increased from 14 in 1986 to 25 by 1989. Nutrient applications to cropland in the Nutrient- Management Subbasin decreased by an average of 35 percent after implementation. Comparison of base- flow surface-water quality from before and after implementation suggests that nutrient management was effective in slowing or reversing increases in concentrations of dissolved nitrate plus nitrite in the Nutrient-Management Subbasin. Although not statistically significant, the Mann-Whitney step-trend coefficient for the Nutrient-Management Subbasin was 0.8 milligram per liter, whereas trend coefficients for the Nonnutrient-Management Subbasin and the Small Watershed were 0.4 and 1.4 milligrams per liter, respectively, for the period of study. Analysis of covariance comparison of concurrent concentrations from the two sub- basins showed a significant decrease in concen- trations from the Nutrient-Management Subbasin compared to the Nonnutrient-Management Subbasin

  2. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  3. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  4. Detecting gradual and abrupt changes in water quality time series in response to regional payment programs for watershed services in an agricultural area

    NASA Astrophysics Data System (ADS)

    He, Tian; Lu, Yan; Cui, Yanping; Luo, Yabo; Wang, Min; Meng, Wei; Zhang, Kaijie; Zhao, Feifei

    2015-06-01

    Market-based watershed protection instruments can effectively improve water quality at various catchment scales. Two payments for watershed services (PWS) programs for water quality improvement have been successively implemented in the Huai River catchment and its sub-watershed, the Shaying River catchment, in Henan Province since 2009. To detect changes in water quality in response to PWS schemes, nonparametric statistical approaches were used to analyze gradual and abrupt trends in water quality, focusing on chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) at 26 monitoring stations in the Huai River watershed during 2006-2013. The nonparametric Mann-Kendall test and the Theil-Sen estimator were used to identify trends and their magnitudes in weekly water quality observations and the Pettitt test was applied to change-point analysis of water quality time series. We found decreasing concentration trends in the weekly water quality data set in this catchment, with water quality at most stations affected by the PWS schemes. The COD and NH3-N concentrations decreased at 26 stations by an average of 0.05 mg/L wk and 0.01 mg/L wk, respectively, from 2006 to 2013. Meanwhile, the mean concentrations of COD and NH3-N decreased at the 26 stations by an average of 18.03 mg/L and 4.82 mg/L, respectively, after the abrupt change points of the time-series trends of these two pollutants. We also estimated annual reductions in COD and NH3-N for each station based on average flow observations using the Theil-Sen approach along with the resulting economic benefits from 2009 to 2010. The COD and NH3-N reductions were 14604.50 and 6213.25 t/y, respectively, in the Huai River catchment in Henan Province. The total economic benefits of reductions in these two pollutants were 769.71 million ¥ in 2009 and 2010, accounting for 0.08% and 0.06%, respectively, of the GDP in the entire Huai River watershed of Henan Province. These results provide new insights into the linkages

  5. Agroecosystem Impacts on Water Quality

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.

    2010-12-01

    Agroecosystems can have large scale impacts on soil water and groundwater quality by mobilizing salts into underlying aquifers through enhanced recharge and increasing chemical loading to systems through fertilizer applications and irrigation water. Crop evapotranspiration is similar to desalinization in that root-water uptake excludes most salts, and soil-water salinity levels may build up when water drainage or percolation through the root zone is insufficient to flush accumulated salts. The objective of this study was to evaluate impacts of agroecosystems on soil water and groundwater quality using data from the US High Plains and California Central Valley. Natural ecosystems accumulated large reservoirs of salts in unsaturated soils in the southern High Plains and southern part of the Central Valley. Increased recharge under rainfed and irrigated agriculture mobilized these salt reservoirs into the underlying aquifer in the southern High Plains, increasing groundwater salinity, particularly chloride and sulfate. Deficit irrigation in the southern High Plains has created large salt bulges in the unsaturated zone because of insufficient irrigation to flush these salts into the underlying aquifer. Irrigation in both the High Plains and Central Valley regions has markedly increased groundwater nitrate levels, particularly in irrigated areas because of higher fertilizer applications. Agroecosystem impacts on water quality reflect a delicate balance between water and salt cycles and crop production should be managed to minimize negative environmental impacts.

  6. Quality of ground water in shallow wells in agricultural areas of Haywood, Shelby, Lake, and Obion counties, Tennessee, January and February 1988

    USGS Publications Warehouse

    Withington, D.B.

    1988-01-01

    Three areas with sparse data on the impact of agricultural chemicals on groundwater quality in the state of Tennessee were chosen for sampling groundwater for nitrogen species and pesticides. These sites, located in Haywood, Shelby, and Lake Counties, are all areas of high intensity agriculture. Because of the importance of the surficial alluvial aquifer to the domestic supply in West Tennessee, shallow wells at each site were sampled. Two sampling events were scheduled, in the winter and in the spring, to establish the difference between background and effected contaminant levels. Preliminary results from the first sampling event indicate a range of nitrite plus nitrate as nitrogen concentrations from less than 0.1 to 7.8 milligrams per liter. The results from triazine analyses show concentrations below the detection limit. (USGS)

  7. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  8. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  9. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  10. Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, S.J.; Spangler, L.E.; Kimball, B.A.; Wilberg, D.E.; Naftz, D.L.

    2006-01-01

    Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River. The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter. Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons. Water samples collected from selected sites within

  11. Substitutions between Water and other Agricultural Inputs - An Empirical Analysis

    NASA Astrophysics Data System (ADS)

    Cai, X.; You, J.

    2005-12-01

    Increasing concerns about water availability, environmental water requirement and water quality have led to an increased importance of quantitative assessments of the substitution between water and other agricultural inputs at the margin for agricultural and environmental policy analysis. This paper explores the potential substitutions between water and other agricultural inputs in irrigated agriculture through an empirical study. The study include (1) an analysis based on a crop production function for net substitution at the crop field and farm levels; and (2) a numerical study for gross substitution in the context of water allocation in river basins thorough an integrated hydrologic-economic river basin model. Along with the empirical analysis and numerical illustrations, we discuss several theoretical issues relevant to substitutions between water and other inputs, such as (1) selection of indicators of elasticity of substitution, depending on farmers' concerns on yield, production, or profit; (2) appropriateness of net or gross substitution analysis, which is relevant to the spatial scale of the analysis (field, district or region), as well as farmers' concerns; and (3) output impact of substitutions. Water is both a natural resource and an economic input, and the constraints on water include those from both physical and socio-economic aspects. Therefore, the output impact of the substitution between water and other inputs should be extended from a pure economic concept to the context of integrated hydrologic-economic systems.

  12. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  13. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  14. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  15. Purified water quality study

    SciTech Connect

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  16. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  17. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; description and water quality of the Little Conestoga Creek headwaters prior to the implementation of nutrient management

    USGS Publications Warehouse

    Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.; Howse, M.A.

    1992-01-01

    The headwaters of the Conestoga River are being studied to determine the effects of agricultural Best-Management Practices on surface-water and ground-water quality. As part of this study, a 5.82-square-mile area of the Little Conestoga Creek headwaters (Small Watershed) was monitored during 1984-86, prior to implementation of Best-Management Practices. This report describes the land use and hydrology of this study area and characterizes its surface-water and ground-water quality during the pre-Best-Management Practice phase. During base-flow conditions, median concentrations of dissolved nitrite plus nitrate nitrogen as nitrogen increased from 2.7 to 8.1 milligrams per liter as the stream flowed through the intensively-farmed carbonate valley. Median total phosphorus increased from 0.05 to 0.20 milligram per liter. Concentrations of dissolved nitrate nitrogen as nitrogen measured in ground water in carbonate rocks in the valley were as great as 25 milligrams per liter and consistently exceeded 10 milligrams per liter. Statistical analysis showed that it will require substantial reductions in concentrations and discharges of nitrogen and phosphorus in base flow to obtain statistically measurable improvements in water quality. If concentrations and discharges of total nitrogen in base flow at the five sites are reduced by 15 to 33 percent, and by 63 to 70 percent, respectively, then the Wilcoxon Mann-Whitney rank-sum test will be able to detect an improvement in water quality 95 percent of the time. Likewise, if concentrations of total phosphorus are reduced by 36 to 54 percent, or discharges of total phosphorus are reduced by 52 to 69 percent at the five sites, then an improvement in water quality will be able to be detected 95 percent of the time.

  18. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  19. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  20. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  1. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  2. Army industrial, landscaping, and agricultural water use

    SciTech Connect

    Stoughton, Kate McMordie; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  3. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  4. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  5. Trapping runoff, sediment and nutrients at the edge-of-field: Using constructed wetlands to control runoff and improve water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Deasy, Clare; Quinton, John; Stoate, Chris

    2010-05-01

    Across Europe, many rivers and lakes are polluted. In the UK, the Biodiversity Action Plan estimates that over 70% of lakes are eutrophic. Diffuse pollution from agriculture is currently of extreme concern, but pollution and flood risk can be mitigated by management activities. The use of in-field mitigation options such as reduced tillage has been found to be effective at reducing runoff, sediment and nutrient loss in overland flow, but pollutants can still be lost from hillslopes unchecked via subsurface flow pathways, some of which may contribute very high loads of nutrients to streams. Edge-of-field mitigation approaches, which can tackle both surface and subsurface pathways at locations where they discharge into ditches and streams, therefore have greater potential as runoff control measures than in-field measures alone. In the UK, the implementation, effectiveness and functioning of seven new wetlands constructed at the edges of agricultural fields is currently being assessed. The constructed wetlands, of different designs, which are fed by different flow types and are located on different farm and soil types, are continuously monitored for discharge and turbidity at inlets and outlets, while storm sampling allows assessment of sediment and nutrient transfer into and out of the wetland at times when there is a high risk of pollutant transfer. Pond surveys and sediment sampling will take place annually, and tracer experiments will be carried out in the course of the project. The data will be used to generate information on sediment and nutrient load reductions or wetland effectiveness, wetland sediment and nutrient budgets, and water and sediment residence times. In this paper we present the initial results, including novel high-resolution data from the first monitored events. Early outputs suggest that constructed wetlands which receive surface runoff inputs can retain flood waters and may reduce flood peaks, wetlands built to take drain outfalls may be

  6. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  7. Ground-water monitoring plan, water quality, and variability of agricultural chemicals in the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1998-2000

    USGS Publications Warehouse

    Kelly, Brian P.

    2002-01-01

    A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five

  8. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  9. Water-quality assessment of the Trinity River Basin, Texas - Pesticides in streams draining an urban and an agricultural area, 1993-95

    USGS Publications Warehouse

    Land, Larry F.; Brown, Mariann F.

    1996-01-01

    A comparison of pesticide data for bed-sediment samples from five urban streams and five agricultural streams showed detections of 11 organochlorine insecticides in the urban area and 1 in the agricultural area. All compounds were either DDT-related or one of the components of chlordane except for mirex and dieldrin.

  10. Surface water quality assessment by environmetric methods.

    PubMed

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  11. Water quality in Lis river, Portugal.

    PubMed

    Vieira, Judite; Fonseca, André; Vilar, Vítor J P; Boaventura, Rui A R; Botelho, Cidália M S

    2012-12-01

    In the past 30 years, the Lis river basin has been subjected to constant ecological disasters mainly due to piggery untreated wastewater discharges. The aim of this study was to evaluate the effect of existing domestic, agricultural, and industrial activities on the water quality, and to propose a watershed plan to protect and manage surface water resources within the Lis river basin. For this purpose, 16 monitoring stations have been strategically selected along the Lis river stretch and its main tributaries to evaluate the water quality in six different sampling periods (2003–2006). All samples were characterized in terms of organic material, nutrients, chlorophyll, and pathogenic bacteria. Generally, the Lis river presents poor water quality, according to environmental quality standards for surface water, principally in terms of dissolved oxygen, biochemical oxygen demand, total nitrogen, and fecal coliform, which can be associated mainly with the contamination source from pig-breeding farms. PMID:22286837

  12. Assessing the Impacts of Land Use Change from Cotton to Perennial Bioenergy Grasses on Hydrological Fluxes and Water Quality in a Semi-Arid Agricultural Watershed Using the APEX Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Ale, S.; Rajan, N.

    2015-12-01

    The semi-arid Texas High Plains (THP) region, where cotton (Gossypium hirsutum L.) is grown in vast acreage, has the potential to grow perennial bioenergy grasses. A change in land use from cotton cropping systems to perennial grasses such as Alamo switchgrass (Panicum virgatum L.) and Miscanthus giganteus (Miscanthus sinensis Anderss. [Poaceae]) can significantly affect regional hydrologic cycle and water quality. Assessing the impacts of this potential land use change on hydrology and water quality enables the environmental assessment of feasibility to grow perennial grasses in this region to meet the U.S. national bioenergy target of 2022. The Agricultural Policy/Environmental eXtender (APEX) model was used in this study to assess the impacts of replacing cotton with switchgrass and Miscanthus on water and nitrogen balances in the upstream subwatershed of the Double Mountain Fork Brazos watershed in the THP, which contains 52% cotton land use. The APEX model was initially calibrated against observed streamflow and crop yield data. Since observed data on nitrogen loads in streamflow was not available for this subwatershed, we calibrated the APEX model against the SWAT-simulated nitrogen loads at the outlet of this subwatershed, which were obtained in a parallel study. The calibrated APEX model was used to simulate the impacts of land use change from cotton to Miscanthus and switchgrass on surface and subsurface water and nitrogen balances. Preliminary results revealed that the average (1994-2009) annual surface runoff decreased by 84% and 66% under the irrigated and dryland switchgrass scenarios compared to the baseline scenarios. Average annual percolation increased by 106% and 57% under the irrigated and dryland switchgrass scenarios relative to the baseline scenarios. Preliminary results also indicated Miscanthus and switchgrass appeared to be superior to cotton in terms of better water conservation and water quality, and minimum crop management requirements.

  13. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...; ] DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program and Cooperative... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... Agricultural Water Enhancement Program Legislative Authority The Agricultural Water Enhancement Program...

  14. Water quality for the year 2000

    SciTech Connect

    Newman, A.

    1991-09-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings.

  15. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  16. Handbook for aquaculture water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  17. Hemodialysis and water quality.

    PubMed

    Coulliette, Angela D; Arduino, Matthew J

    2013-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed.

  18. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  19. Deficit irrigation for reducing agricultural water use.

    PubMed

    Fereres, Elias; Soriano, María Auxiliadora

    2007-01-01

    At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas. PMID:17088360

  20. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  1. Nowcasting recreational water quality

    USGS Publications Warehouse

    Boehm, Alexandria B.; Whitman, Richard L.; Nevers, Meredith; Hou, Deyi; Weisberg, Stephen B.

    2007-01-01

    Advances in molecular techniques may soon provide new opportunities to provide more timely information on whether recreational beaches are free from fecal contamination. However, an alternative approach is the use of predictive models. This chapter presents a summary of these developing efforts. First, we describe documented physical, chemical, and biological factors that have been demonstrated by researchers to affect bacterial concentrations at beaches and thus represent logical parameters for inclusion in a model. Then, we illustrate how various types of models can be applied to predict water quality at freshwater and marine beaches.

  2. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region. PMID:25940468

  3. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  4. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains. PMID:25687808

  5. Agricultural conversion of floodplain ecosystems: implications for groundwater quality.

    PubMed

    Schilling, Keith E; Jacobson, Peter J; Vogelgesang, Jason A

    2015-04-15

    With current trends of converting grasslands to row crop agriculture in vulnerable areas, there is a critical need to evaluate the effects of land use on groundwater quality in large river floodplain systems. In this study, groundwater hydrology and nutrient dynamics associated with three land cover types (grassland, floodplain forest and cropland) were assessed at the Cedar River floodplain in southeastern Iowa. The cropland site consisted of newly-converted grassland, done specifically for our study. Our objectives were to evaluate spatial and temporal variations in groundwater hydrology and quality, and quantify changes in groundwater quality following land conversion from grassland to row crop in a floodplain. We installed five shallow and one deep monitoring wells in each of the three land cover types and recorded water levels and quality over a three year period. Crop rotations included soybeans in year 1, corn in year 2 and fallow with cover crops during year 3 due to river flooding. Water table levels behaved nearly identically among the sites but during the second and third years of our study, NO₃-N concentrations in shallow floodplain groundwater beneath the cropped site increased from 0.5 mg/l to more than 25 mg/l (maximum of 70 mg/l). The increase in concentration was primarily associated with application of liquid N during June of the second year (corn rotation), although site flooding may have exacerbated NO₃-N leaching. Geophysical investigation revealed differences in ground conductivity among the land cover sites that related significantly to variations in groundwater quality. Study results provide much-needed information on the effects of different land covers on floodplain groundwater and point to challenges ahead for meeting nutrient reduction goals if row crop land use expands into floodplains.

  6. Using UAVs to enhance the quality of precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies by USDA Agricultural Research Service (ARS) have indicated potential for significant improvement in the quality and application of Precision Agriculture products through the use of very high resolution imagery. An assessment of potential platforms to collect such imagery at an afford...

  7. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  8. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales.

  9. Standards Set for Quality Programs in Vocational Agriculture

    ERIC Educational Resources Information Center

    Crawford, Harold R.

    1977-01-01

    Reports the progress of a project which completed a model designed to validate categories of standards for quality agricultural/agribusiness education. The development of the model and its implementation and dissemination procedures are described. (BM)

  10. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    EPA Science Inventory

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  11. A bottom up approach to implementing multi-purpose mitigation measures for reducing flood risk and improving water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. E.; Quinn, P. F.; Jonczyk, J.; Burke, S.; Nicholson, A.; Barber, N.; Owen, G.; Palmer, M.

    2012-04-01

    A number of studies have suggested that there is evidence that modern land-use management practices have increased surface runoff at the local scale. There is an urgent need for interventions to reduce the risk of flooding whilst also delivering multiple benefits (doing more for less). There are many settlements, which regularly suffer from flooding, which would benefit from upstream mitigation measures. Interventions at the source of runoff generation can have a positive impact on the flood hydrograph downstream. An integrated approach to managing runoff can also have multiple benefits on pollution and ecology, which could lead to beneficial impacts at the catchment scale. Belford, a small community in Northumberland, UK has suffered from an increased number of flood events over the past ten years. There is currently support within the English and Welsh Environment Agency for sustainable flood management solutions such as storage ponds, wetlands, beaver dams and willow riparian features which are being trialled at Belford. These runoff attenuation features (RAFs) also have benefits to water quality, capture sediment and create new ecological zones. Although the process by which numerous RAFs were deployed in Belford proved initially difficult to achieve within the existing regulatory framework, an efficient uptake process is now supported by local regulators including several branches of the Environment Agency. The Belford runoff management framework provides a step by step guide to implementing mitigation measures in the Belford burn catchment and could be easily applied to other catchments at a similar scale. The approach is based on implementing mitigation measures through engaging with catchment stakeholders and using solid field science and management protocols.

  12. Communicating water quality risk

    SciTech Connect

    Scherer, C.W. )

    1990-01-01

    Technology for detecting and understanding water quality problems and the impacts of activities on long-range groundwater quality has advanced considerably. In the past a technical solution was considered adequate but today one must consider a wide range of both technical and social factors in evaluating technical alternatives that are also acceptable social solutions. Policies developed and implemented with limited local participation generally are resisted and become ineffective if public cooperation is necessary for effective implementation. The public, the experts and the policymakers all must understand and appreciate the different perspectives present in risk policymaking. The typical model used to involve the public in policy decisions is a strategy described as the decide-announce-defend-approach. Much more acceptable to the public, but also more difficult to implement, is a strategy that calls for free flow of information within the community about the problem, policies and potential solutions. Communication about complex issues will be more successful if the communication is substantial; if it takes advantage of existing interpersonal networks and mass media; if it pays particular attention to existing audience knowledge, interest and behaviors; and if it clearly targets messages to various segments of the audience.

  13. Influence of agricultural practices on fruit quality of bell pepper.

    PubMed

    Abu-Zahra, T R

    2011-09-15

    An experiment was carried out under plastic house conditions to compare the effect of four fermented organic matter sources (cattle, poultry and sheep manure in addition to 1:1:1 mixture of the three organic matter sources) in which 4 kg organic matter m(-2) were used, with that of the conventional agriculture (chemical fertilizers) treatments on Marvello red pepper fruit quality, by using a Randomized Complete Block Design (RCBD) with four replicates. Pepper fruits characteristics cultivated in soil supplemented with manure were generally better than those from plants grown in soil only. Addition of animal manure increased bell pepper fruit content of soluble solids, ascorbic acid, total phenols, crude fibre and intensity of red color as compare with conventional agriculture that produced fruits with higher titratable acidity, water content, lycopene and bigger fruit size. In most cases of animal manure treatments, best results were obtained by the sheep manure treatment that produced the highest TSS, while the worst results were obtained by the poultry manure treatment that produced the smallest fruit and lowest fruit lycopene content.

  14. Application of multiple geochemical indicators, including the stable isotopes of water, to differentiate water quality evolution in a region influenced by various agricultural practices and domestic wastewater treatment and disposal.

    PubMed

    Butler, Thomas W

    2007-12-15

    Spatial and temporal variations in groundwater chemistry indicate that the use of low TDS lake water for irrigation, on land located just south of the City of Dixon, Solano County, California, is primarily responsible for improving groundwater quality with regards to salts. The stable isotopes of water further support this finding and suggest that TDS concentrations decrease as groundwater evolves to a more highly evaporated state. This seemingly contradictory finding was primarily attributed to infiltration of low TDS Lake Berryessa surface water, which has an isotopic signature indicative of an evaporated source and is used extensively for irrigation in the area, mixing with poorer quality locally recharged shallow groundwater. Geochemical modeling using the program PHREEQC further supports the anthropogenic aquifer freshening hypotheses through computed reductions in the saturation state of carbonate minerals in the vicinity of land irrigated by lake derived water, which is undersaturated with regards to modeled carbonates. Additionally, delta(18)O and delta(2)H were found to be useful in estimating climatic variables such as temperature and humidity, illustrating the potential for applying these models in hydrologic investigations within the area. It was however found that USDA NRCS soils data and measured water chemistry were not well correlated and thus the use of soils classifications to assess potential groundwater quality impacts was of limited utility.

  15. Nutrient Management Certification for Delaware: Developing a Water Quality Curriculum

    ERIC Educational Resources Information Center

    Hansen, David J.; Binford, Gregory D.

    2004-01-01

    Water quality is a critical environmental, social, and political issue in Delaware. In the late 1990s, a series of events related to water quality issues led to the passage of a state nutrient management law. This new law required nutrient management planning and established a state certification program for nutrient users in the agricultural and…

  16. Effects of land use and geohydrology on the quality of shallow ground water in two agricultural areas in the western Lake Michigan drainages, Wisconsin

    USGS Publications Warehouse

    Saad, David A.

    1997-01-01

     Estimated recharge dates showed that historic patterns of atrazine plus deethyl atrazine concentrations in ground water mimic historic patterns of atrazine use on corn. Concentrations in ground water that recharged prior to the early 1960s, when atrazine started to become widely used on corn in Wisconsin, were very low or not detectable. As atrazine use on corn steadily increased from the late 1960s to the late 1970s and early 1980s, detectable concentrations of atrazine plus deethyl atrazine in ground water became more common. The recharge dates of some of the highest measured concentrations of atrazine plus ethyl atrazine in ground water from both study areas correspond to the period of highest atrazine use on corn within the State.

  17. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  18. Microbiological quality of natural waters.

    PubMed

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  19. Workshop on Agricultural Air Quality: State of the science

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Blunden, Jessica; Roelle, Paul A.; Schlesinger, William H.; Knighton, Raymond; Niyogi, Dev; Gilliam, Wendell; Jennings, Greg; Duke, Clifford S.

    The first Workshop on Agricultural Air Quality: State of the Science was held at the Bolger Center in Potomac, Maryland from 4 to 8 June 2006. This international conference assembled approximately 350 people representing 25 nations from 5 continents, with disciplines ranging from atmospheric chemistry to soil science. The workshop was designed as an open forum in which participants could openly exchange the most current knowledge and learn about numerous international perspectives regarding agricultural air quality. Participants represented many stakeholder groups concerned with the growing need to assess agricultural impacts on the atmosphere and to develop beneficial policies to improve air quality. The workshop focused on identifying methods to improve emissions inventories and best management practices for agriculture. Workshop participants also made recommendations for technological and methodological improvements in current emissions measurement and modeling practices. The workshop commenced with a session on agricultural emissions and was followed by international perspectives from the United States, Europe, Australia, India, and South America. This paper summarizes the findings and issues of the workshop and articulates future research needs. These needs were identified in three general areas: (1) improvement of emissions measurement; (2) development of appropriate emission factors; and (3) implementation of best management practices (BMPs) to minimize negative environmental impacts. Improvements in the appropriate measurements will inform decisions regarding US farming practices. A need was demonstrated for a national/international network to monitor atmospheric emissions from agriculture and their subsequent depositions to surrounding areas. Information collected through such a program may be used to assess model performance and could be critical for evaluating any future regulatory policies or BMPs. The workshop concluded that efforts to maximize

  20. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  1. Water availability, water quality water governance: the future ahead

    NASA Astrophysics Data System (ADS)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  2. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  3. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  4. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  5. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  6. Nitrate concentrations and fluxes in the River Thames, London UK 1868 to 2008: catchment-scale modelling of diffuse agricultural sources and groundwater response using the world's longest water quality time series

    NASA Astrophysics Data System (ADS)

    Howden, N. J.; Burt, T. P.; Worrall, F.; Mathias, S.; Whelan, M.

    2011-12-01

    This paper presents analyses of the world's longest water quality record: 140 years of monthly-average nitrate concentrations (1868 to 2008) and fluxes (1883 to 2008) for the River Thames north of London. We show how short- and long- term patterns in these time series are influenced by both climatic and anthropogenic pressures, in the case of the latter, particularly land use and land management practices. Climate change does not play a significant role in controlling annual average concentrations or fluxes, rather large-scale land conversions from permanent grassland to arable farming have created sustained diffuse sources of nitrate that have caused (almost four-fold) increases in concentrations and fluxes that persist for many decades after the initial changes. Our analyses of this unique time series highlight four areas of particular interest: (1) Despite several layers of regulation and source control, fluvial concentrations and fluxes remain in- tractably high - no decrease has been observed since the early 1970s; (2) Catchment response to changing nitrogen inputs from land use and land management is subject to considerable lag: present conditions in the river reflect land practices from some years ago; (3) Following (2), we suggest that current changes to land use and land management practices will not be reflected in river water quality for some time to come; (4) Overall, the long-term view afforded by this record questions the derivation of "baseline conditions" that are formulated from records that do not reflect the massive changes in land use and land management in the mid-20th century. Overall, a better understanding of the links, and time delays, between cause (i.e. changing land use / land management) and fluvial response (i.e. concentration increase/decrease) will improve our ability both to predict changes in the coming decades, and inform management decision making now, to ensure the appropriate balance between agricultural development and

  7. Primer on Water Quality

    MedlinePlus

    ... streams and ground water. After decades of use, pesticides are now widespread in streams and ground water, ... and guidelines established to protect human health. Some pesticides have not been used for 20 to 30 ...

  8. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  9. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  10. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  11. Factors Influencing Practical Training Quality in Iranian Agricultural Higher Education

    ERIC Educational Resources Information Center

    Mojarradi, Gholamreza; Karamidehkordi, Esmail

    2016-01-01

    This paper presents an analysis of the factors influencing the practical training quality of agricultural higher education programmes from the senior students' perspective. The study was conducted in two public universities located in the north-west of Iran using a cross-sectional survey and structured interviews with a randomised sample of 254…

  12. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  13. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  14. Water Quality Monitoring Manual.

    ERIC Educational Resources Information Center

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  15. Water quality for cattle.

    PubMed

    Morgan, Sandra E

    2011-07-01

    Water is often considered the most important livestock nutrient. It can carry both nutrients and toxic materials and can be a source of poisoning, although death losses are not common. More likely are questions of low-level contaminants or nutrient interactions that affect productivity. This article characterizes the major contaminants of water, their expected effects, and means to evaluate their presence.

  16. Muddy Water and American Agriculture: How to Best Control Sedimentation From Agricultural Land?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Stephen B.; Lee, John Gary; Beasley, David B.

    1985-08-01

    The role of agricultural sediment in water quality is well documented. While numerous policies have been advocated and initiated, it still appears to be a significant problem. The present analysis concentrates on the outcome of several policy alternatives in terms of sediment delivery and project costs. These results are obtained by combining social science investigation of probable farmer behavior under a variety of scenarios with a hydrologic simulation model which predicts the sediment delivery with different land uses. This integration of social science behavioral research with the hydrologic response simulation model provides a framework to assess the environmental effectiveness of alternative policies aimed at reducing sedimentation. While the results presented here are preliminary, this approach seems to offer great promise as a tool for federal, state and local conservation agencies in their efforts to efficiently and effectively use their limited resources to reduce soil loss.

  17. Chemical and microbiological water quality of subsurface agricultural drains during a field trial of liquid dairy manure effluent application rate and varying tillage practices, Upper Tiffin Watershed, southeastern Michigan

    USGS Publications Warehouse

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality

  18. Chemical and Microbiological Water Quality of Subsurface Agricultural Drains during a Field Trial of Liquid Dairy Manure Effluent Application Rate and Varying Tillage Practices, Upper Tiffin Watershed, Southeastern Michigan

    USGS Publications Warehouse

    Haack, Sheridan Kidd; Duris, Joseph W.

    2008-01-01

    A field trial was done in the Upper Tiffin River Watershed, in southeastern Michigan, to determine the influence of liquid dairy manure effluent (LDME) management practices on the quality of agricultural subsurface-drain water. Samples from subsurface drains were analyzed for nutrients, fecal-coliform and Escherichia coli (E. coli) bacteria, antibiotics, chemicals typically detected in wastewater, and the occurrence of genes indicating the presence of shiga-toxin-producing E. coli, or of bovine-specific Bacteroidetes bacteria. Samples were collected from November 2, 2006, to March 20, 2007, from eight subsurface drains under field plots that received no LDME and no tillage (controls) or received 4,000 or 8,000 gallons per acre (gal/acre) of LDME and either no tillage or two different types of tillage. The two types of tillage tested were (1) ground-driven, rotary, subsurface cultivation and (2) rolling-tine aeration. Samples were collected before LDME application and at 4 hours, and 1, 2, 6, 7, and 14 days post-application. Nutrient concentrations were high in subsurface-drain water throughout the field-trial period and could not be attributed to the field-trial LDME application. Of the 59 drain-water samples, including those collected before LDME application and control samples for each date, 56 had concentrations greater than the U.S. Environmental Protection Agency (USEPA), Ecoregion VI recommended surface-water criterion for total phosphorus, and all samples had concentrations greater than the recommended total nitrogen criterion. Nitrate + nitrite nitrogen concentration exceeded 20 milligrams per liter for every sample and contributed most to the total nitrogen concentrations. Substantial increases in drain-water concentrations of organic and ammonia nitrogen and total phosphorus were found for all treatments, including controls, at 14 days post-application after 0.84 inch of rainfall over 2 days. E. coli concentrations exceeded the USEPA recreational-water-quality

  19. Water Quality and Sustainable Environmental Health

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  20. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  1. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  2. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  3. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  4. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  5. A framework for developing research protocols for evaluation of microbial hazards and controls during production that pertain to the quality of agricultural water contacting fresh produce that may be consumed raw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural water may contact fresh produce during irrigation and/or when crop protection sprays (e.g., cooling to prevent sunburn, frost protection, and agrochemical mixtures) are applied. This document provides a framework for designing research studies that would add to our understanding of preh...

  6. Sewage sludge composting: quality assessment for agricultural application.

    PubMed

    Nafez, Amir Hossein; Nikaeen, Mahnaz; Kadkhodaie, Safora; Hatamzadeh, Maryam; Moghim, Sharareh

    2015-11-01

    In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration.

  7. Sewage sludge composting: quality assessment for agricultural application.

    PubMed

    Nafez, Amir Hossein; Nikaeen, Mahnaz; Kadkhodaie, Safora; Hatamzadeh, Maryam; Moghim, Sharareh

    2015-11-01

    In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration. PMID:26508019

  8. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  9. Water Quality Control, Curriculum Guide.

    ERIC Educational Resources Information Center

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  10. Evaluating Water Quality in a Suburban Environment

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  11. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  12. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  13. Voluntary arrangements to cope with diffuse pollution from agriculture and their role in European water policy.

    PubMed

    Heinz, I; Andrews, K; Brouwer, F; Zabel, T

    2002-01-01

    A limited number of Member States in the EU have gained experience with establishing co-operative agreements between agriculture and the water sector. Their main aim is to reduce or prevent water pollution caused by intensive farming practices. The research has shown that significant changes in farming practices have been achieved as a result of negotiation between farmers and water suppliers. Consequently, in many catchment areas improvements in water quality can be observed. Co-operative agreements have the important advantage that the measures taken can be tailored to the different local conditions in catchment areas. Reducing diffuse pollution resulting from intensive agriculture is one of the main issues of the EU Water Framework Directive. The current paper builds on the results of a EU-wide research project which examines the role co-operative agreements can play in water policy and the Common Agricultural Policy.

  14. Integrated water quality management for drinking water of good quality.

    PubMed

    Isaji, C

    2003-01-01

    The Nagoya Waterworks and Sewerage Bureau has developed original supporting tools for the systematic and cost-effective management of problem solving. An environmental information map and prediction of pollutant reaching are used for rapid and appropriate proper countermeasures against water quality accidents in the source area. In disinfection byproduct control a method for estimating trihalomethane (THM) contents was effective for the complement of their observations. Surrogate indicators such as turbidity and conductivity that could be measured continuously also could complement water quality items measured monthly. A processing tool of voluminous data was practical for rapid judgment of water quality. Systematic monitoring was established for stricter turbidity control for measures against Cryptosporidium and keeping residual chlorine stable in the service area.

  15. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  16. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  17. 75 FR 45091 - Notice of Request for Nominations to the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Natural Resources Conservation Service Notice of Request for Nominations to the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service, United States Department of Agriculture... Designated Federal Official. Mr. Schmidt may be contacted at the Department of Agriculture, Natural...

  18. 77 FR 1913 - Notice of Meeting of the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...; ] DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Notice of Meeting of the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service, USDA. ACTION: Notice of Meeting..., Department of Agriculture Natural Resources Conservation Service, Post Office Box 2890, Washington, DC...

  19. Integrated Economic Modeling of Water Supply-Quality Tradeoffs: An Application to the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Bair, L.; MacEwan, D.

    2015-12-01

    Sustainable water management in the San Joaquin Valley, California involves the complex interaction of agricultural, municipal and industrial, and environmental water use. California's Sustainable Groundwater Management Act (SGMA) of 2014 requires groundwater basins historically in a state of overdraft to bring the basin into a sustainable balance over the next 20 years. In addition to limiting groundwater availability, implementation of the SGMA has implications for surface and groundwater quality. Availability of groundwater influences agricultural production decisions, resulting in variation in agricultural runoff and changes to surface and groundwater quality. Changes in water quality have economic impacts on agricultural production and urban water use. These impacts range from reductions in crop productivity to costs of alternative water supplies to amend declining water quality. We model the impact of agricultural and urban groundwater availability on surface water quality within the San Joaquin and Kings River watersheds in the Central Valley, downriver to the Mendota Pool by linking SWAT (Soil and Water Assessment Tool), an integrated water supply-quality model, with SWAP (Statewide Agricultural Production Model), a regional agricultural economics model. The integrated model specifies the relationship between changes in groundwater availability, groundwater elevation, agricultural production, and surface water quality. We link the SWAT-SWAP model output to urban and agricultural economic loss calculations that are a function of water quality. Model results demonstrate the economic tradeoffs between groundwater availability and water quality. The results of the integrated economic water supply-quality model are applicable to other regions in California and elsewhere that contain complex water supply-quality interactions.

  20. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  1. Satellite Mapping of Agricultural Water Requirements in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Guzman, A.; Hiatt, S.; Post, K.; Adhikari, D.; Rosevelt, C.; Keefauver, S.; Miller, G.; Michaelis, A.; Votava, P.; Temesgen, B.; Frame, K.; Nemani, R. R.

    2013-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The Satellite Irrigation Management Support (SIMS) framework utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations from the California Irrigation Management Information System to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We also summarize results from ongoing studies to quantify the benefits of using satellite data to enhance ET-based irrigation management in terms of total applied water, crop yield, and nitrate leaching.

  2. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  3. Pesticide mitigation strategies for surface water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pesticide residues are being increasingly detected in surface water in agricultural and urban areas. In some cases water bodies are being listed under the Clean Water Act 303(d) as impaired and Total Maximum Daily Loads are required to address the impairments in agricultural areas. Pesticides in sur...

  4. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  5. Linking land cover and water quality in New York City's water supply watersheds.

    PubMed

    Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A

    2005-08-01

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.

  6. Biomonitors of stream quality on agricultural areas: fish versus invertebrates

    USGS Publications Warehouse

    Berkman, Hilary E.; Rabeni, Charles F.; Boyle, Terence P.

    1986-01-01

    Although the utility of using either fish or benthic invertebrates as biomonitors of stream quality has been clearly shown, there is little comparative information on the usefulness of the groups in any particular situation. We compared fish to invertebrate assemblages in their ability to reflect habitat quality of sediment-impacted streams in agricultural regions of northeast Missouri, USA. Habitat quality was measured by a combination of substrate composition, riparian type, buffer strip width, and land use. Invertebrates were more sensitive to habitat differences when structural measurements, species diversity and ordination, were used. Incorporating ecological measurements, by using the Index of Biological Integrity, increased the information obtained from the fish assemblage. The differential response of the two groups was attributed to the more direct impact of sediments on invertebrate life requisites; the impact of sedimentation on fish is considered more indirect and complex, affecting feeding and reproductive mechanisms.

  7. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  8. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  9. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  10. Pesticide Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred

    This publication describes in nontechnical language the problem of pesticide use and how it affects water quality. It provides information on laws affecting pesticide use and the reasons for them, as well as giving directions for the proper use of pesticides. The booklet is divided into five chapters, each of which concludes with a list of study…

  11. Water quality by photographic analysis

    NASA Technical Reports Server (NTRS)

    Klooster, S. A.; Scherz, J. P.

    1974-01-01

    Positive correlation exists between reflectance of water and the water quality parameter of turbidity. This relationship holds for all times for a particular waste. At particular times other parameters such as suspended solids correlate to turbidity and can also be mapped. To analyze aerial photos properly to obtain water reflectance, a standard reflectance panel is needed somewhere in the frame. For this study color and color-infrared film are used and analyzed with a color microdensitometer which, with certain modifications, is also used to analyze reflectance of water samples. Noise in the analysis includes bottom effects, reflection from the air-water interface, and path luminance, but these can all be dealt with by proper techniques.

  12. Agricultural Water Conservation via Conservation Tillage and Thermal Infrared

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia water conservation is an issue that involves all citizens. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  13. Thermal Infrared Imagery for Better Water Conservation in Agricultural Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation is an issue that involves all citizens in Georgia. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  14. Quality criteria for water, 1986

    SciTech Connect

    Not Available

    1986-05-01

    Section 304(a) (1) of the Clean Water Act 33 U.S.C. 1314(a) (1) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water-quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation that may be expected from the presence of pollutants in any body of water including ground water; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters. In a continuing effort to provide those who use EPA's water-quality and human-health criteria with up-to-date criteria values and associated information, the document was assembled. The document includes summaries of all the contaminants for which EPA has developed criteria recommendations.

  15. Integrating agricultural policies and water policies under water supply and climate uncertainty

    NASA Astrophysics Data System (ADS)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  16. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  17. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system.

  18. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. PMID:26994788

  19. Hydrology and the hypothetical effects of reducing nutrient applications of water quality in the Bald Eagle Creek Headwaters, southeastern Pennsylvania prior to implementation of agricultural best-management practices

    USGS Publications Warehouse

    Fishel, D.K.; Langland, M.J.; Truhlar, M.V.

    1991-01-01

    The report characterizes a 0.43-square-mile agricultural watershed in York County, underlain by albite-chlorite and oligoclase-mica schist in the Lower Susquehanna River basin, that is being studied as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. The water quality of Bald Eagle Creek was studied from October 1985 through September 1987 prior to the implementation of Best-Management Practices to reduce nutrient and sediment discharge into Muddy Creek, a tributary to the Chesapeake Bay. About 88 percent of the watershed is cropland and pasture, and nearly 33 percent of the cropland is used for corn. The animal population is entirely dairy cattle. About 85,640 pounds of nitrogen (460 pounds per acre) and 21,800 pounds of phosphorus (117 pounds per acre) were applied to fields; 52 percent of the nitrogen and 69 percent of the phosphorus was from commercial fertilizer. Prior to fertilization, nitrate nitrogen in the soil ranged from 36 to 136 pounds per acre and phosphorus ranged from 0.89 to 5.7 pounds per acre in the top 4 feet of soil. Precipitation was about 18 percent below normal and streamflow about 35 percent below normal during the 2-year study. Eighty-four percent of the 20.44 inches of runoff was base flow. Median concentrations of total nitrogen and dissolved phosphorous in base flow were 0.05 and 0.04 milligrams per liter as phosphorus, respectively. Concentrations of dissolved nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations decreased similarly to those observed in carbonate-rock areas as nutrient uptake and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment, 5,250 pounds of nitrogen, and 66.6 pounds of phosphorus discharged in base flow during the 2-year period. The suspended sediment load was about 232,000 pounds in stormflow from 26 storms that contributed 51 percent of the total stormflow. The

  20. The Water Quality Portal: a single point of access for water quality data

    NASA Astrophysics Data System (ADS)

    Kreft, J.

    2015-12-01

    The Water Quality Portal (WQP) is a cooperative project between the U.S. Geological Survey (USGS) and the U.S. Environmental Protection Agency (EPA) overseen by the National Water Quality Monitoring Council (NWQMC). It was launched in April of 2012 as a single point of access for discrete water quality samples stored in the USGS NWIS and EPA STORET systems. Since launch thousands of users have visited the Water Quality Portal to download billions of results that are pertinent to their interests. Numerous tools have also been developed that use WQP web services as a source of data for further analysis. Since the launch of the Portal, the WQP development team at the USGS Center for Integrated Data Analytics has worked with USGS and EPA stakeholders as well as the wider user community to add significant new features to the WQP. WQP users can now directly plot sites of interest on a web map based on any of the 164 WQP query parameters, and then download data of interest directly from that map. In addition, the WQP has expanded beyond just serving out NWIS and STORET data, and provides data from the US Department of Agriculture's Agricultural Research Service STEWARDS system, the USGS BioData system and is working with others to bring in additional data. Finally, the WQP is linked to another NWQMC-supported project, the National Environmental Methods Index (NEMI), so WQP users can easily find the method behind the data that they are using. Future work is focused on incorporating additional biological data from the USGS BioData system, broadening the scope of discrete water quality sample types from STORET, and developing approaches to make the data in the WQP more visible and usable. The WQP team is also exploring ways to further integrate with other systems, such as those operated the U.S. Department of Agriculture Forest Service and other federal agencies to facilitate the overarching goal of improving access to water quality data for all users.

  1. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  2. SWQM: Source Water Quality Modeling Software

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  3. Optical water quality in rivers

    NASA Astrophysics Data System (ADS)

    Julian, J. P.; Doyle, M. W.; Powers, S. M.; Stanley, E. H.; Riggsbee, J. A.

    2008-10-01

    Optical water quality (OWQ) governs the quantity and quality of light in aquatic ecosystems, and thus spatiotemporal changes in OWQ affect many biotic and abiotic processes. Despite the fundamental role of light in rivers, studies on riverine OWQ have been limited and mostly descriptive. Here we provide a comprehensive, quantitative analysis of the controls and spatiotemporal dynamics of riverine OWQ, focusing on the inherent optical properties (IOPs), which are those that are only affected by water constituents and not by changes in the solar radiation field. First, we briefly review the constituents attenuating light in rivers. Second, we develop a new method for partitioning (light) beam attenuation into its constituent fractions. This method distinguishes between absorption and scattering by dissolved and particulate constituents, and further isolates particulates into mineral and organic components. Third, we compare base flow IOPs between four rivers with vastly different physical characteristics to illustrate intersite variability. Fourth, we analyze the spatial and temporal patterns of IOPs for the four rivers. Fifth, we quantify a longitudinal water clarity budget for one of the rivers. Finally, available data are synthesized to identify general spatial trends robust across broad geographic areas. Temporal trends in IOPs were largely dictated by storm frequency, while spatial trends were largely dictated by channel network configuration. Generally, water clarity decreased with increasing discharge primarily owing to greater scattering by particulates and secondarily to greater absorption by chromophoric dissolved organic matter. Water clarity also generally decreased longitudinally along the river owing to increased particulate inputs from tributaries; however, for pear-shaped, dendritic basins, water clarity reached a minimum at ˜70% of the channel length and then increased. By illustrating the controls and spatiotemporal variability of riverine OWQ

  4. The many faces and facets of water in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The many forms of water (i.e., water vapor, fog, rain, snow, hail and ice) are essential, but can be detrimental, for maintaining an adequate food supply and a productive and healthy environment for all forms of life. Greater limitations on water availability and quality call for research on water c...

  5. Water quality monitoring in the Paul do Boquilobo Biosphere Reserve

    NASA Astrophysics Data System (ADS)

    Baptista, C.; Santos, L.

    2016-08-01

    The Paul do Boquilobo is an important wetland ecosystem classified by Unesco as a MAB Biosphere reserve also awarded Ramsar site status, representing one of the most important habitats for the resident nesting colony of Cattle Egret (Bulbucus ibis). Yet owing to its location, it suffers from human induced impacts which include industrial and domestic effluent discharges as well as agricultural land use which have negatively impacted water quality. The current study reports the results obtained from the introductory monitoring programme of surface water quality in the Nature Reserve to emphasize the detrimental impact of the anthropogenic activities in the water quality of such an important ecosystem. The study involved physicochemical and biotic variables, microbial parameters and biological indicators. Results after 3 years of monitoring bring to evidence a poor water quality further impaired by seasonal patterns. Statistical analysis of data attributed water quality variation to 3 main parameters - pH, dissolved oxygen and nitrates, indicating heavy contamination loads from both organic and agricultural sources. Seasonality plays a role in water flow and climatic conditions, where sampling sites presented variable water quality data, suggesting a depurative function of the wetland.

  6. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  7. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  8. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  9. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  10. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  11. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  12. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  13. STREAM NETWORK EXPANSION: A RIPARIAN WATER QUALITY FACTOR

    EPA Science Inventory

    Little is known about how active stream network expansion during rainstorms influences the ability of riparian buffers to improve water quality. We used aerial photographs to quantify stream network expansion during the wet winter season in five agricultural watersheds in western...

  14. Hydrologic and water quality models: Use, calibration, and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper introduces a special collection of 22 research articles that present and discuss calibration and validation concepts in detail for hydrologic and water quality models by their developers and presents a broad framework for developing the American Society of Agricultural and Biological Engi...

  15. Phosphorus fertilization, soil stratification and potential water quality impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality experts have suggested that no-till induces phosphorus stratification, which may exacerbate soluble P runoff from agricultural fields, leading to eutrophication. The objectives of this study were to explore P fertilization strategies on P stratification and P runoff from a corn-soybea...

  16. Everglades restoration and water quality challenges in south Florida.

    PubMed

    Perry, William B

    2008-10-01

    This paper provides background information and a brief overview of water quality issues for the rest of the papers in this volume that are concerned with Everglades restoration. The Everglades of Florida have been diminished over 50% of their former extent. The Everglades are no longer a free-flowing wetland ecosystem, but are now subject to a complicated system of water management that is regulated primarily for flood control and consumptive use. Attempts to restore a more natural hydropattern to the remaining undeveloped Everglades are made more difficult by the natural extremes in rainfall, flat landscape, highly porous geology, and inaccessibility of the remaining natural areas. The Comprehensive Everglades Restoration Plan (CERP) seeks ecosystem restoration by adding water storage capacity, reducing groundwater seepage, improving regulatory delivery and timing of water to avoid environmental damage, and where feasible, improving the quality of water to be used for Everglades restoration. Water quality issues that currently exist for south Florida include eutrophication (especially phosphorus), mercury, and contaminants from agricultural production and the urban environment. Lands once in agricultural production that will be converted back to wetlands or will become reservoirs may contribute to the water quality concerns. Stormwater runoff from managed lands that will be used for restoration purposes will also present water quality challenges. The state continues to seek water quality improvement with a number of pollution reduction programs, and CERP attempts to improve water quality without sacrificing even more natural areas; however providing water quality sufficient for use in recovery of remaining Everglades wetlands and estuaries will remain a daunting challenge.

  17. Climate impacts on water quality in the Fort Cobb Reservoir (OK) watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a dominant land use in the U.S., and significant water quality concerns are associated with agricultural systems and practices. It is essential to understand interactive effects of geology, geomorphology, soils, and climate, with agricultural systems so that we can improve environmen...

  18. Water transfers, agriculture, and groundwater management: a dynamic economic analysis.

    PubMed

    Knapp, Keith C; Weinberg, Marca; Howitt, Richard; Posnikoff, Judith F

    2003-04-01

    Water transfers from agricultural to urban and environmental uses will likely become increasingly common worldwide. Many agricultural areas rely heavily on underlying groundwater aquifers. Out-of-basin surface water transfers will increase aquifer withdrawals while reducing recharge, thereby altering the evolution of the agricultural production/groundwater aquifer system over time. An empirical analysis is conducted for a representative region in California. Transfers via involuntary surface water cutbacks tilt the extraction schedule and lower water table levels and net benefits over time. The effects are large for the water table but more modest for the other variables. Break-even prices are calculated for voluntary quantity contract transfers at the district level. These prices differ considerably from what might be calculated under a static analysis which ignores water table dynamics. Canal-lining implies that districts may gain in the short-run but lose over time if all the reduction in conveyance losses is transferred outside the district. Water markets imply an evolving quantity of exported flows over time and a reduction in basin net benefits under common property usage. Most aquifers underlying major agricultural regions are currently unregulated. Out-of-basin surface water transfers increase stress on the aquifer and management benefits can increase substantially in percentage terms but overall continue to remain small. Conversely, we find that economically efficient management can mitigate some of the adverse consequences of transfers, but not in many circumstances or by much. Management significantly reduced the water table impacts of cutbacks but not annual net benefit impacts. Neither the break-even prices nor the canal-lining impacts were altered by much. The most significant difference is that regional water users gain from water markets under efficient management.

  19. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  20. SIMPLE: assessment of non-point phosphorus pollution from agricultural land to surface waters by means of a new methodology.

    PubMed

    Schoumans, O F; Mol-Dijkstra, J; Akkermans, L M W; Roest, C W J

    2002-01-01

    In the past, environmental Phosphorus (P) parameters like soil P indices have been used to catogorize the potential risk of P losses from agricultural land. In order to assess the actual risk of P pollution of groundwater and surface waters, dynamic process oriented soil and water quality models have been frequently used. Recently, an approximating model for phosphorus, called SIMPLE, has been developed. This model approximates the output from a complex dynamic water quality model. The approximating model is called a metamodel. This simple P-model proves to be a powerful tool for quick assessment of the risk of P pollution from agricultural land to surface waters. PMID:12079100

  1. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  2. Water Quality Assessment of Ayeyarwady River in Myanmar

    NASA Astrophysics Data System (ADS)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  3. Water-quality assessment of the Merced River, California

    USGS Publications Warehouse

    Sorenson, Stephen K.

    1982-01-01

    The Merced River and its major tributaries have been subject of water-quality and water-quantity studies by local, State, and Federal agencies since before 1900. Data have been compiled and analyzed, and even though water-quality problems exist in the basin, the water generally is of good quality for most of the beneficial uses defined by the California State Water Resources Control Board. Water-quality objectives for dissolved oxygen, pesticides, and pH were violated in some parts of the basin. The most likely cause of the dissolved-oxygen and pesticide violations is the return of agricultural irrigation water to the river in the lower 30 miles of the river. Violations of pH objectives occurred only in the upper drainage and were likely due to naturally occurring, poorly buffered water. Water quality is currently being monitored at three stations in the basin by California Department of Water Resources, at one station by the U.S. Geological Survey, and at several sites by the National Park Service. Modifications to the current water-quality monitoring program are proposed to gain further information on dissolved-oxygen fluctuations and pesticide concentrations in the lower river and to investigate nutrient input to Lake McClue. (USGS)

  4. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.

    2012-12-01

    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships, the equilibrium reached and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. This study was carried out in three areas of Alicante Province (SE Spain) irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  5. Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, A.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J.; Mataix-Beneyto, J.

    2013-03-01

    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. These indices represent the balance reached among properties in "steady state" soils. This study was carried out in four study sites from SE Spain irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

  6. Water quality in Lake Lanier

    SciTech Connect

    Callaham, M.A. )

    1991-04-01

    Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreased at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.

  7. Effects of land use and hydrogeology on the water quality of alluvial aquifers in eastern Iowa and southern Minnesota, 1997

    USGS Publications Warehouse

    Savoca, Mark E.; Sadorf, Eric M.; Linhart, S. Mike; Akers, Kim K.B.

    2000-01-01

    Factors other than land use may contribute to observed differences in water quality between and within agricultural and urban areas. Nitrate, atrazine, deethylatrazine, and deisopropylatrazine concentrations were signi

  8. How federal farm programs affect water use, quality, and allocation among sectors

    NASA Astrophysics Data System (ADS)

    Frisvold, George B.

    2004-12-01

    This article examines the effects of U.S. federal farm programs on agricultural water use, water quality, and the allocation of water between agriculture and other sectors of the economy. Agriculture is central to policy debates over how to allocate water between competing uses and how to control water pollution. Agriculture accounts for 80% of U.S. consumptive use of freshwater and has been identified as the largest contributor to nonpoint source water pollution. Over the last 20 years, agricultural policy reforms have greatly reduced, though not eliminated, incentives to overuse water and chemical inputs and have improved targeting of conservation programs to achieve environmental benefits. Recent changes provide greater incentives for voluntary reallocation of water from agriculture to other uses. The 2002 farm bill reverses some reforms, increasing some distortionary subsidies, while shifting conservation program priorities from environmental to income transfer objectives.

  9. Hydrologic control of dissolved organic matter concentration and quality in a semiarid artificially drained agricultural catchment

    NASA Astrophysics Data System (ADS)

    Bellmore, Rebecca A.; Harrison, John A.; Needoba, Joseph A.; Brooks, Erin S.; Kent Keller, C.

    2015-10-01

    Agricultural practices have altered watershed-scale dissolved organic matter (DOM) dynamics, including in-stream concentration, biodegradability, and total catchment export. However, mechanisms responsible for these changes are not clear, and field-scale processes are rarely directly linked to the magnitude and quality of DOM that is transported to surface water. In a small (12 ha) agricultural catchment in eastern Washington State, we tested the hypothesis that hydrologic connectivity in a catchment is the dominant control over the concentration and quality of DOM exported to surface water via artificial subsurface drainage. Concentrations of dissolved organic carbon (DOC) and humic-like components of DOM decreased while the Fluorescence Index and Freshness Index increased with depth through the soil profile. In drain discharge, these characteristics were significantly correlated with drain flow across seasons and years, with drain DOM resembling deep sources during low-flow and shallow sources during high flow, suggesting that DOM from shallow sources bypasses removal processes when hydrologic connectivity in the catchment is greatest. Assuming changes in streamflow projected for the Palouse River (which contains the study catchment) under the A1B climate scenario (rapid growth, dependence on fossil fuel, and renewable energy sources) apply to the study catchment, we project greater interannual variability in annual DOC export in the future, with significant increases in the driest years. This study highlights the variability in DOM inputs from agricultural soil to surface water on daily to interannual time scales, pointing to the need for a more nuanced understanding of agricultural impacts on DOM dynamics in surface water.

  10. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... AGENCY 40 CFR Part 131 RIN 2040-AF33 Water Quality Standards; Withdrawal of Certain Federal Water Quality... certain human health and aquatic life water quality criteria applicable to waters of New Jersey, Puerto... establish numeric water quality criteria for 12 states and two Territories, including New Jersey,...

  11. Channel incision and water quality

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p < 0.02). Physical aquatic habitat and fish populations in the nonincised urbanizing stream were

  12. Annual agricultural pesticide use for Midwest Stream-Quality Assessment, 2012-13

    USGS Publications Warehouse

    Baker, Nancy T.; Stone, Wesley W.

    2014-01-01

    This report provides estimates of annual agricultural use of 190 pesticide compounds for counties and selected watersheds of Midwestern States for 2012 and 2013 compiled for subsequent analysis by the National Water-Quality Assessment Program, Midwest Stream-Quality Assessment (MSQA). One of the goals of MSQA is to characterize contaminants at perennial-stream sites throughout the Corn Belt. Evaluating pesticide inputs from agricultural sources will aid in that characterization. Crop acres for selected Midwestern crops were obtained from the Cropland Data Layer of the U.S. Department of Agriculture’s National Agricultural Statistics Service and used in conjunction with GfK Kynetec, Inc. proprietary Crop Reporting District-level pesticide-use data to estimate pesticide use for counties and watersheds. Estimated pesticide use (EPest) values were calculated by using both the “EPest-high” and “EPest-low” methods, the distinction being that there are more counties with estimated pesticide use for EPest-high compared to EPest-low, owing to differing assumptions about missing survey data. County-level and watershed-level estimates of annual agricultural pesticide use are provided as downloadable, tab-delimited files for both EPest-high and Epest-low. Summary graphs of MSQA watershed-level pesticide use for selected crops are also provided.

  13. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  14. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  15. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  16. Water quality modeling using geographic information system (GIS) data

    NASA Technical Reports Server (NTRS)

    Engel, Bernard A

    1992-01-01

    Protection of the environment and natural resources at the Kennedy Space Center (KSC) is of great concern. The potential for surface and ground water quality problems resulting from non-point sources of pollution was examined using models. Since spatial variation of parameters required was important, geographic information systems (GIS) and their data were used. The potential for groundwater contamination was examined using the SEEPAGE (System for Early Evaluation of the Pollution Potential of Agricultural Groundwater Environments) model. A watershed near the VAB was selected to examine potential for surface water pollution and erosion using the AGNPS (Agricultural Non-Point Source Pollution) model.

  17. 75 FR 8917 - Notice of a Meeting of the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Natural Resources Conservation Service Notice of a Meeting of the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service, Department of Agriculture. ACTION: Notice of a meeting..., Natural Resources Conservation Service, 1400 Independence Avenue, SW., Room 6165 South...

  18. 77 FR 41165 - Notice of Meeting of the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Notice of Meeting of the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service, USDA. ACTION: Notice of meeting. SUMMARY: The Department...

  19. 78 FR 10127 - Request for Nominations to the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ...; ] DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Request for Nominations to the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service, United States Department of... Resources Conservation Service, 1201 Lloyd Boulevard, Suite 1000, Portland, Oregon 97232, or by email...

  20. Water quality in southern Florida; Florida, 1996-98

    USGS Publications Warehouse

    McPherson, Benjamin F.; Miller, Ronald L.; Haag, Kim H.; Bradner, Anne

    2000-01-01

    Major influences and findings for water quality and biology in southern Florida, including the Everglades, are described and illustrated. Samples were collected to determine total phosphorus, dissolved organic carbon, pesticides, mercury, nitrate, volatile organic carbon compounds, and radon-222. Water-management, agricultural, and land-use practices are discussed. Sixty-three species of fish in 26 families were collected; 43 native species, 10 exotic or nonnative species, and 10 species of marine fish that periodically inhabit canals and rivers were identified.

  1. Remote Sensing of Water Quality in the Niger River Basin

    NASA Astrophysics Data System (ADS)

    Mueller, C.; Palacios, S. L.; Milesi, C.; Schmidt, C.; Baney, O. N.; Mitchell, Å. R.; Kislik, E.; Palmer-Moloney, L. J.

    2015-12-01

    An overarching goal of the National Geospatial Intelligence Agency (NGA) Anticipatory Analytics- -GEOnarrative program is to establish water linkages with energy, food, and climate and to understand how these linkages relate to national security and stability. Recognizing that geopolitical stability is tied to human health, agricultural productivity, and natural ecosystems' vitality, NGA partnered with NASA Ames Research Center to use satellite remote sensing to assess water quality in West Africa, specifically the Niger River Basin. Researchers from NASA Ames used MODIS and Landsat imagery to apply two water quality indices-- the Floating Algal Index (FAI) and the Turbidity Index (TI)--to large rivers, lakes and reservoirs within the Niger Basin. These indices were selected to evaluate which observations were most suitable for monitoring water quality in a region where coincident in situ measurements are not available. In addition, the FAI and TI indices were derived using data from the Hyperspectral Imagery for the Coastal Ocean (HICO) sensor for Lake Erie in the United States to determine how increased spectral resolution and in-situ measurements would improve the ability to measure the spatio-temporal variations in water quality. Results included the comparison of outputs from sensors with different spectral and spatial resolution characteristics for water quality monitoring. Approaches, such as the GEOnarrative, that incorporate water quality will enable analysts and decision-makers to recognize the current and potentially future impacts of changing water quality on regional security and stability.

  2. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  3. Nonpoint source pollution: a distributed water quality modeling approach.

    PubMed

    León, L F; Soulis, E D; Kouwen, N; Farquhar, G J

    2001-03-01

    A distributed water quality model for nonpoint source pollution modeling in agricultural watersheds is described in this paper. A water quality component was developed for WATFLOOD (a flood forecast hydrological model) to deal with sediment and nutrient transport. The model uses a distributed group response unit approach for water quantity and quality modeling. Runoff, sediment yield and soluble nutrient concentrations are calculated separately for each land cover class, weighted by area and then routed downstream. With data extracted using Geographical Information Systems (GIS) technology for a local watershed, the model is calibrated for the hydrologic response and validated for the water quality component. The transferability of model parameters to other watersheds, especially those in remote areas without enough data for calibration, is a major problem in diffuse modeling. With the connection to GIS and the group response unit approach used in this paper, model portability increases substantially, which will improve nonpoint source modeling at the watershed-scale level.

  4. Ground-water flow and effects of agricultural application of sewage sludge and other fertilizers on the chemical quality of sediments in the unsaturated zone and ground water near Platteville, Colorado, 1985-89

    USGS Publications Warehouse

    Gaggiani, N.G.

    1995-01-01

    From fall 1985 through 1989, 6,431 dry tons of anaerobic, digested, sewage sludge were applied as a fertilizer on about 1 square mile of sandy farm- land near Platteville, Colorado. Mean nitrite plus nitrate as nitrogen concentrations in the surficial aquifer increased during the period of sewage- sludge application. However, the effects of municipal sewage sludge applied to the soil in section 16 are difficult to ascertain because anhydrous ammonia and cattle and chicken manure were applied to section 16 prior to sewage-sludge application and anhydrous ammonia was applied during the period of sewage-sludge application. Mostly ammonia plus organic nitrogen was detected in the unsaturated zone while nitrite plus nitrate as nitrogen predominated in the surficial aquifer. The areas of largest concentrations of nitrite plus nitrate as nitrogen were in the northeastern and southwestern quarter sections os section 16. Changes in nitrite plus nitrate as nitrogen concentrations with depth and time were detected in water samples from the multilevel ground-water sampling devices in the surficial aquifer. Nitrogen probably entered the saturated zone in the irrigated areas and low temporarily ponded areas and moved to the northeast with water in the surficial aquifer.

  5. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  6. Monitoring of recharge water quality under woodland

    NASA Astrophysics Data System (ADS)

    Krajenbrink, G. J. W.; Ronen, D.; Van Duijvenbooden, W.; Magaritz, M.; Wever, D.

    1988-03-01

    The study compares the quality of groundwater in the water table zone and soil moisture below the root zone, under woodland, with the quality of the regional precipitation. The water quality under forest shows evidence of the effect of atmospheric deposition of acidic components (e.g. SO 2) and ammonia volatilized from land and feed lots. Detailed chemical profiles of the upper meter of groundwater under different plots of forest, at varying distances from cultivated land, were obtained with a multilayer sampler, using the dialysis-cell method. Porous ceramic cups and a vacuum method were used to obtain soil moisture samples at 1.20 m depth under various types of trees, an open spot and arable land, for the period of a year. The investigation took place in the recharge area of a pumping station with mainly mixed forest, downwind of a vast agricultural area with high ammonia volatilization and underlain by an ice-deformed aquifer. Very high NO -3 concentrations were observed in soil moisture and groundwater (up to 21 mg Nl -1) under coniferous forest, especially in the border zone. This raises the question of the dilution capacity of recharge water under woodland in relation to the polluted groundwater under farming land. The buffering capacity of the unsaturated zone varies substantially and locally a low pH (4.5) was observed in groundwater. The large variability of leachate composition on different scales under a forest and the lesser but still significant concentration differences in the groundwater prove the importance of a monitoring system for the actual solute flux into the groundwater.

  7. Future agriculture with minimized phosphorus losses to waters: Research needs and direction.

    PubMed

    Sharpley, Andrew N; Bergström, Lars; Aronsson, Helena; Bechmann, Marianne; Bolster, Carl H; Börling, Katarina; Djodjic, Faruk; Jarvie, Helen P; Schoumans, Oscar F; Stamm, Christian; Tonderski, Karin S; Ulén, Barbro; Uusitalo, Risto; Withers, Paul J A

    2015-03-01

    The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities.

  8. Assessing water quality trends in catchments with contrasting hydrological regimes

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie C.; Shore, Mairead; Mellander, Per-Erik

    2016-04-01

    Environmental resources are under increasing pressure to simultaneously achieve social, economic and ecological aims. Increasing demand for food production, for example, has expanded and intensified agricultural systems globally. In turn, greater risks of diffuse pollutant delivery (suspended sediment (SS) and Phosphorus (P)) from land to water due to higher stocking densities, fertilisation rates and soil erodibility has been attributed to deterioration of chemical and ecological quality of aquatic ecosystems. Development of sustainable and resilient management strategies for agro-ecosystems must detect and consider the impact of land use disturbance on water quality over time. However, assessment of multiple monitoring sites over a region is challenged by hydro-climatic fluctuations and the propagation of events through catchments with contrasting hydrological regimes. Simple water quality metrics, for example, flow-weighted pollutant exports have potential to normalise the impact of catchment hydrology and better identify water quality fluctuations due to land use and short-term climate fluctuations. This paper assesses the utility of flow-weighted water quality metrics to evaluate periods and causes of critical pollutant transfer. Sub-hourly water quality (SS and P) and discharge data were collected from hydrometric monitoring stations at the outlets of five small (~10 km2) agricultural catchments in Ireland. Catchments possess contrasting land uses (predominantly grassland or arable) and soil drainage (poorly, moderately or well drained) characteristics. Flow-weighted water quality metrics were calculated and evaluated according to fluctuations in source pressure and rainfall. Flow-weighted water quality metrics successfully identified fluctuations in pollutant export which could be attributed to land use changes through the agricultural calendar, i.e., groundcover fluctuations. In particular, catchments with predominantly poor or moderate soil drainage

  9. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  10. Water quality change detection: multivariate algorithms

    NASA Astrophysics Data System (ADS)

    Klise, Katherine A.; McKenna, Sean A.

    2006-05-01

    In light of growing concern over the safety and security of our nation's drinking water, increased attention has been focused on advanced monitoring of water distribution systems. The key to these advanced monitoring systems lies in the combination of real time data and robust statistical analysis. Currently available data streams from sensors provide near real time information on water quality. Combining these data streams with change detection algorithms, this project aims to develop automated monitoring techniques that will classify real time data and denote anomalous water types. Here, water quality data in 1 hour increments over 3000 hours at 4 locations are used to test multivariate algorithms to detect anomalous water quality events. The algorithms use all available water quality sensors to measure deviation from expected water quality. Simulated anomalous water quality events are added to the measured data to test three approaches to measure this deviation. These approaches include multivariate distance measures to 1) the previous observation, 2) the closest observation in multivariate space, and 3) the closest cluster of previous water quality observations. Clusters are established using kmeans classification. Each approach uses a moving window of previous water quality measurements to classify the current measurement as normal or anomalous. Receiver Operating Characteristic (ROC) curves test the ability of each approach to discriminate between normal and anomalous water quality using a variety of thresholds and simulated anomalous events. These analyses result in a better understanding of the deviation from normal water quality that is necessary to sound an alarm.

  11. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  12. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  13. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  14. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  15. METHODS FOR DETERMINING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    The goal of the clean water act of 1972 was to restore and maintain physical, chemical & biological quality of waters in the U.S. Although great progress has been made in cleaning up lakes, rivers and coastal waters many still do not meet water quality standards. Most beaches ha...

  16. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-07-14

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  17. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  18. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  19. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    USGS Publications Warehouse

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35

  20. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety. PMID:26685623

  1. [Discussion on agricultural product quality and safety problem from ecological view].

    PubMed

    Xiao, Ming; Dong, Nan; Lyu, Xin

    2015-08-01

    There are many different perspectives about the sustainable agriculture, which had been proposed since the last three decades in the world. While China's ecologists and agronomists proposed a similar concept named 'ecological agriculture'. Although ecological agriculture in China has achieved substantial progress, including theory, models and supporting technologies nearly several decades of practice and development, its application guidance still is not yet clear. The organic agriculture model proposed by European Union is popular, but it is limited in the beneficiary groups and the social and ecological responsibility. In this context, the article based on an ecological point of view, analyzed the shortcomings of ecological imbalance caused by a single mode of agricultural production and the negative impact on the quality of agricultural products, and discussed the core values of ecological agriculture. On this basis, we put forward the concept of sustainable security of agricultural products. Based on this concept, an agricultural platform was established under the healthy ecosysphere environment, and from this agricultural platform, agricultural products could be safely and sustainably obtained. Around the central value of the concept, we designed the agricultural sustainable and security production model. Finally, we compared the responsibility, benefiting groups, agronomic practices selection and other aspects of sustainable agriculture with organic agriculture, and proved the advancement of sustainable agricultural model in agricultural production quality and safety.

  2. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  3. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  4. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  5. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  6. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. PMID:23998504

  7. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  8. Phosphorus release from agriculture to surface waters: past, present and future in China.

    PubMed

    Chen, M; Chen, J

    2008-01-01

    So far, there is no clear picture at national level regarding the severity, spatial distribution, trend and driving forces of phosphorus (P) release from agriculture to surface waters in China, which presents a major obstacle for surface water quality management and relevant policy-making. By applying a proposed Activity-Unit-Balance (AUB) methodology, this paper retrospects and prospects phosphorus release from agricultural activities to surface waters from 1978 to 2050 in China. Modelling results reveal that P load from agriculture has increased 3.4 times during 1978-2005 and will increase by 1.8 times during 2005-2050. Although major contribution factors are mineral fertiliser application (MFA) and livestock feeding activities (LFAs), LFAs will be the single largest source of increased total P load in the next decades. Most importantly, agricultural pollution in China is spatially overlapped with industrial and domestic pollution, and regions in the southeast to "Heihe-Tengchong" line have to be confronted with an austere challenge to control and manage industrial and domestic pollution as well as pollution from agriculture at present and in future.

  9. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  10. Multivariate analysis of drinking water quality parameters in Bhopal, India.

    PubMed

    Parashar, Charu; Verma, Neelam; Dixit, Savita; Shrivastava, Rajneesh

    2008-05-01

    Pollution of water bodies is one of the areas of major concern to environmentalists. Water quality is an index of health and well being of a society. Industrialization, urbanization and modern agriculture practices have direct impact on the water resources. These factors influence the water resources quantitatively and qualitatively. The study area selected were the Upper lake and Kolar reservoir of Bhopal, the state capital of Madhya Pradesh, India. The Upper lake and Kolar reservoir both are the important sources of potable water supply for the Bhopal city. The physico-chemical parameters like temperature, pH, turbidity, total hardness, alkalinity, BOD, COD, Chloride, nitrate and phosphate were studied to ascertain the drinking water quality.

  11. On-Farm Studies of Water Use and Water Quality for Rice Production in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lower Mississippi River Valley region of the USA has a largely rural population and an economy heavily dependent on agriculture. The L'Anguille River watershed in eastern Arkansas, a major USA rice producing area, has been experiencing declining groundwater levels and water quality issues. Previ...

  12. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  13. The Quality of Drinking Water in North Carolina Farmworker Camps

    PubMed Central

    Weir, Maria; Summers, Phillip; Chen, Haiying; Quandt, Sara A.; Liebman, Amy K.; Arcury, Thomas A.

    2012-01-01

    Objectives. The purpose of this study was to assess water quality in migrant farmworker camps in North Carolina and determine associations of water quality with migrant farmworker housing characteristics. Methods. We collected data from 181 farmworker camps in eastern North Carolina during the 2010 agricultural season. Water samples were tested using the Total Coliform Rule (TCR) and housing characteristics were assessed using North Carolina Department of Labor standards. Results. A total of 61 (34%) of 181 camps failed the TCR. Total coliform bacteria were found in all 61 camps, with Escherichia coli also being detected in 2. Water quality was not associated with farmworker housing characteristics or with access to registered public water supplies. Multiple official violations of water quality standards had been reported for the registered public water supplies. Conclusions. Water supplied to farmworker camps often does not comply with current standards and poses a great risk to the physical health of farmworkers and surrounding communities. Expansion of water monitoring to more camps and changes to the regulations such as testing during occupancy and stronger enforcement are needed to secure water safety. PMID:22897558

  14. A farm-focused approach to improving watershed-level water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural nonpoint source pollution and corresponding mitigation management practices are typically evaluated for water quality effectiveness based on hydrologic boundaries. Often, multiple combinations of practices will adequately control the pollution, but at varying costs and farmer-acceptance...

  15. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  16. Watershed land use effects on lake water quality in Denmark.

    PubMed

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin; Lauridsen, Torben L; Bjerring, Rikke; Olesen, Jørgen E; Jeppesen, Erik

    2012-06-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak, which can in part be attributed to lack of detailed information about land use activities or point sources. We examined a comprehensive data set comprising land use data, point-source information, and in-lake water quality for 414 Danish lakes. By excluding point-source-influenced lakes (n = 210), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10-12% to 39-42% for deep lakes and from 10-12% to 21-23% for shallow lakes, with the highest increase for TN. Relationships between TP and agricultural land use were even stronger for lakes with rivers in their watershed (55%) compared to lakes without (28%), indicating that rivers mediate a stronger linkage between landscape activity and lake water quality by providing a "delivery" mechanism for excess nutrients in the watershed. When examining the effect of different near-freshwater land zones in contrast to the entire watershed, relationships generally improved with size of zone (25, 50, 100, 200, and 400 m from the edge of lake and streams) but were by far strongest using the entire watershed. The proportion of agricultural land use in the entire watershed was best in explaining lake water quality, both relative to estimated nutrient surplus at agricultural field level and near-lake land use, which somewhat contrasts typical strategies of management policies that mainly target agricultural nutrient applications and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes

  17. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  18. Do waterbody classifications predict water quality?

    PubMed

    Barclay, Janet R; Tripp, Hannah; Bellucci, Christopher J; Warner, Glenn; Helton, Ashley M

    2016-12-01

    Many states classify waterbodies according to groups of designated uses, which suggests that classifications may be correlated with water quality. The primary assessments of water quality in the United States (the Biennial Integrated Water Quality Reports) do not consider classification, so the relationship between classification and water quality is untested. Additionally, water quality has been shown to be influenced by watershed land use; however, land use is not typically part of waterbody classification systems. To determine the relationships between waterbody classification, water quality, watershed land cover, and forest fragmentation, we analyzed existing water quality data for the State of Connecticut from the United States Geological Survey and the Connecticut Department of Energy and Environmental Protection and land cover data from the National Land Cover Dataset. Connecticut uses a unique classification system that includes separation of drinking water sources (Class AA) and waterbodies receiving waste water discharges (Class B). Using a comparison of multiple means, we found that Class B waters had higher levels of nitrogen, solids, chloride, sodium, dissolved copper, total iron, and dissolved manganese than Class AA waters. Watersheds upstream of Class B segments had less forest cover, more development and more impervious cover than watersheds upstream of Class AA segments. Class A sites had some similarities in water quality and land cover with Class AA sites and some with Class B sites. The subset of Class B waterbodies with "Class AA-like" water quality also had "Class AA-like" land cover. Based on this and a multiple linear regression analysis, we found that water quality is more closely related to watershed land cover and forest fragmentation than to waterbody classification. Our results suggest that watershed land cover likely is a better proxy for water quality than waterbody classification.

  19. Do waterbody classifications predict water quality?

    PubMed

    Barclay, Janet R; Tripp, Hannah; Bellucci, Christopher J; Warner, Glenn; Helton, Ashley M

    2016-12-01

    Many states classify waterbodies according to groups of designated uses, which suggests that classifications may be correlated with water quality. The primary assessments of water quality in the United States (the Biennial Integrated Water Quality Reports) do not consider classification, so the relationship between classification and water quality is untested. Additionally, water quality has been shown to be influenced by watershed land use; however, land use is not typically part of waterbody classification systems. To determine the relationships between waterbody classification, water quality, watershed land cover, and forest fragmentation, we analyzed existing water quality data for the State of Connecticut from the United States Geological Survey and the Connecticut Department of Energy and Environmental Protection and land cover data from the National Land Cover Dataset. Connecticut uses a unique classification system that includes separation of drinking water sources (Class AA) and waterbodies receiving waste water discharges (Class B). Using a comparison of multiple means, we found that Class B waters had higher levels of nitrogen, solids, chloride, sodium, dissolved copper, total iron, and dissolved manganese than Class AA waters. Watersheds upstream of Class B segments had less forest cover, more development and more impervious cover than watersheds upstream of Class AA segments. Class A sites had some similarities in water quality and land cover with Class AA sites and some with Class B sites. The subset of Class B waterbodies with "Class AA-like" water quality also had "Class AA-like" land cover. Based on this and a multiple linear regression analysis, we found that water quality is more closely related to watershed land cover and forest fragmentation than to waterbody classification. Our results suggest that watershed land cover likely is a better proxy for water quality than waterbody classification. PMID:27621038

  20. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  1. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  2. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  3. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  4. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  5. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  6. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  7. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  8. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  9. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  10. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  11. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  12. A proposed ground-water quality monitoring network for Idaho

    USGS Publications Warehouse

    Whitehead, R.L.; Parliman, D.J.

    1979-01-01

    A ground water quality monitoring network is proposed for Idaho. The network comprises 565 sites, 8 of which will require construction of new wells. Frequencies of sampling at the different sites are assigned at quarterly, semiannual, annual, and 5 years. Selected characteristics of the water will be monitored by both laboratory- and field-analysis methods. The network is designed to: (1) Enable water managers to keep abreast of the general quality of the State 's ground water, and (2) serve as a warning system for undesirable changes in ground-water quality. Data were compiled for hydrogeologic conditions, ground-water quality, cultural elements, and pollution sources. A ' hydrologic unit priority index ' is used to rank 84 hydrologic units (river basins or segments of river basins) of the State for monitoring according to pollution potential. Emphasis for selection of monitoring sites is placed on the 15 highest ranked units. The potential for pollution is greatest in areas of privately owned agricultural land. Other areas of pollution potential are residential development, mining and related processes, and hazardous waste disposal. Data are given for laboratory and field analyses, number of site visits, manpower, subsistence, and mileage, from which costs for implementing the network can be estimated. Suggestions are made for data storage and retrieval and for reporting changes in water quality. (Kosco-USGS)

  13. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  14. Scale effects of STATSGO and SSURGO databases on flow and water quality predictions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil information is one of the crucial inputs needed to assess the impacts of existing and alternative agricultural management practices on water quality. Therefore, it is important to understand the effects of spatial scale at which soil databases are developed on water quality evaluations. In the ...

  15. Regulating Water Quality: Policy, Standards, and Laws. January 1993 - January 1995.

    ERIC Educational Resources Information Center

    Makuch, Joe

    The 127 citations in this annotated bibliography provide a substantial resource describing recent investigations on the regulation of water quality. The listing, prepared by NAL's Water Quality Information Center, is part of the Quick Bibliography Series of the National Agricultural Library (NAL), intended primarily for communicating current…

  16. Managing ground-water contamination from agricultural nitrates

    SciTech Connect

    Halstead, J.M.

    1989-01-01

    Ground-water contamination from agricultural nitrates poses potential adverse health effects to a large segment of the rural population of the United States. Contamination is especially prevalent in livestock intensive areas, which produce large quantities of animal waste with substantial nitrogen content. In this study, potential management strategies for reducing nitrate contamination of ground water from agricultural sources were examined using an economic-physical model of representative dairy farm in Rockingham County, Virginia. A mixed-integer programming model with stochastic constraints on nitrate loading to ground water and silage production was used. Results of the model indicate that substantial reductions in current nitrate loadings are possible with relatively minor impacts on farmers' net returns through the use of currently practiced approaches of cost sharing for manure storage facility construction and nutrient management planning. Study results indicate that a wide range of policy options exist for reducing nitrate loading to ground water; these reductions, while varying in cost, do no appear to come at the expense of eliminating the economic viability of the county dairy sector.

  17. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  18. ORD Studies of Water Quality in Hospitals

    EPA Science Inventory

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  19. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  20. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions.

  1. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  2. Recent Advances in Point-of-Access Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  3. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  4. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  5. MODELING THE IMPACTS OF LAND USE CHANGE ON HYDROLOGY AND WATER QUALITY OF A PACIFIC NORTHWEST WATERSHED

    EPA Science Inventory

    In many parts of the world, aquatic ecosystems are threatened by hydrological and water quality alterations due to extraction and conversion of natural resources for agriculture, urban development, forestry, mining, transportation, and water resources development. To evaluate the...

  6. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  7. Understanding the relationship of land uses and water quality in Twenty First Century: A review.

    PubMed

    Giri, Subhasis; Qiu, Zeyuan

    2016-05-15

    Rising food, housing and energy demand of increasing population creates an immense pressure on water resources, especially on water quality. The water quality around the globe is degrading primarily due to intense agricultural activities associated with rapid urbanization. This study attributes to cause of water quality problem, indices to measure water quality, methods to identify proper explanatory variables to water quality and it's processing to capture the special effect, and finally modeling of water quality using identified explanatory variables to provide insights. This would help policymakers and watershed managers to take necessary steps to protect water quality for the future as well as current generation. Finally, some knowledge gaps are also discussed which need to be addressed in the future studies. PMID:26967657

  8. Understanding the relationship of land uses and water quality in Twenty First Century: A review.

    PubMed

    Giri, Subhasis; Qiu, Zeyuan

    2016-05-15

    Rising food, housing and energy demand of increasing population creates an immense pressure on water resources, especially on water quality. The water quality around the globe is degrading primarily due to intense agricultural activities associated with rapid urbanization. This study attributes to cause of water quality problem, indices to measure water quality, methods to identify proper explanatory variables to water quality and it's processing to capture the special effect, and finally modeling of water quality using identified explanatory variables to provide insights. This would help policymakers and watershed managers to take necessary steps to protect water quality for the future as well as current generation. Finally, some knowledge gaps are also discussed which need to be addressed in the future studies.

  9. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  10. The effects of buffer strips and bioretention facilities on agricultural productivity and environmental quality in Central Africa

    NASA Astrophysics Data System (ADS)

    Gilroy, Kristin L.; McCuen, Richard H.

    2010-05-01

    SummaryLand degradation is a growing concern in Central Africa as poor management practices continue to cause erosion and increase water runoff in agricultural fields. The implementation of best management practices (BMPs) is needed; however, productivity is often indirectly related to the environmental benefits of such practices and resource constraints often exist. The purpose of this study was to determine the effects of bioretention facilities and buffer strips on environmental quality with productivity and resources as constraints. A water quantity and quality model for an agricultural field in Central Africa was developed. Analyses were conducted to assess the marginal benefits of each BMP, the effect of different BMP combinations on environmental quality and productivity, and the effect of data uncertainty and location uncertainty on model predictions. The results showed that bioretention pits were more effective than buffer strips in increasing environmental quality. Productivity was shown to be directly related to bioretention pits, thus environmental quality can be attained without sacrificing productivity. Data uncertainties resulted in changes in the environmental quality values, but trends remained the same. Guidelines were provided to assist design engineers in developing BMP scenarios that provide the greatest productivity and environmental quality for the constraints involved. The results of this study will bring awareness to the ability of attaining environmental quality without sacrificing productivity as well as the need for accurate data in Central Africa.

  11. Parents' perceptions of water safety and quality.

    PubMed

    Merkel, Lori; Bicking, Cara; Sekhar, Deepa

    2012-02-01

    Every day parents make choices about the source of water their families consume. There are many contributing factors which could affect decisions about water consumption including taste, smell, color, safety, cost, and convenience. However, few studies have investigated what parents with young children think about water quality and safety in the US and how this affects the choices they are making. This study aimed to describe the perceptions of parents with regard to water quality and safety and to compare bottled water and tap water use, as well as to examine motivation for water choices. We conducted an online questionnaire to survey parents living in Pennsylvania about water quality and safety, and preference for bottled versus tap water. Parents were recruited through child care centers, and 143 surveys were returned. The survey results showed high overall scores for perception of tap water quality and safety, and a preference for tap water over bottled water. We found that parents were concerned for the environmental impact that buying bottled water may have but were also concerned about potential contamination of tap water by natural gas drilling processes and nuclear power plants. These findings regarding parental concerns are critical to inform pediatric health care providers, water sellers, and suppliers in order that they may provide parents with the necessary information to make educated choices for their families.

  12. Monitoring eastern Oklahoma lake water quality using Landsat

    NASA Astrophysics Data System (ADS)

    Barrett, Clay

    The monitoring of public waters for recreational, industrial, agricultural, and drinking purposes is a difficult task assigned to many state water agencies. The Oklahoma Water Resources Board (OWRB) is only physically monitoring a quarter of the lakes it is charged with monitoring in any given year. The minimal sample scheme adopted by the OWRB is utilized to determine long-term trends and basic impairment but is insufficient to monitor the water quality shifts that occur following influx from rains or to detect algal blooms, which may be highly localized and temporally brief. Recent work in remote sensing calibrates reflectance coefficients between extant water quality data and Landsat imagery reflectance to estimate water quality parameters on a regional basis. Remotely-sensed water quality monitoring benefits include reduced cost, more frequent sampling, inclusion of all lakes visible each satellite pass, and better spatial resolution results. The study area for this research is the Ozark foothills region in eastern Oklahoma including the many lakes impacted by phosphorus flowing in from the Arkansas border region. The result of this research was a moderate r2 regression value for turbidity during winter (0.52) and summer (0.65), which indicates that there is a seasonal bias to turbidity estimation using this methodology and the potential to further develop an estimation equation for this water quality parameter. Refinements that improve this methodology could provide state-wide estimations of turbidity allowing more frequent observation of water quality and allow better response times by the OWRB to developing water impairments.

  13. The Heartland Region P-Index Conservation Innovation Grant: protecting water quality through improved phosphorus management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing phosphorus loss from agricultural land is important for improvement and protection of surface water quality. Agricultural models can be used to determine management impacts on P loss and therefore serve as a guide for recommending best management practices. However, the models must be comp...

  14. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  15. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  16. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  17. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  18. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  19. Professional Development for Water Quality Control Personnel.

    ERIC Educational Resources Information Center

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  20. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-09-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.

  1. Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier.

    PubMed

    Bell, Andrew Reid; Lemos, Maria Carmen; Scavia, Donald

    2010-11-15

    In the Amazonian agricultural frontier, pasture for cattle ranching is an important and potentially hazardous form of land use because of sediment erosion as pastures degrade. This relationship between ranching, sediment load, and water quality is likely to further exacerbate environmental impacts, particularly in the context of climate change. We examine the role that river basin councils (RBCs) - a water governance option of Brazil's 1997 National Water Act - might play in managing this nonpoint-source pollution in the Amazônian state of Rondônia. We implement a simple coupled rancher-water system model to compare two potential governance options: a bulk water cleanup charge (BWC) implemented by RBCs and a land-use fine (LUF) for failing to maintain riparian buffers. We find no significant advantage of BWC over LUF in reducing sediment loading while keeping ranching profitable, under a changing climate. We also fail to find in Rondônia the important stake in water issues that has driven water reform elsewhere in Brazil. Moreover, the comparative success of reforestation programs suggests these programs may, in fact, have the potential to manage nonpoint-source agricultural pollution in the region. PMID:20961050

  2. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  3. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  4. Influence of lake morphology on water quality.

    PubMed

    Moses, Sheela A; Janaki, Letha; Joseph, Sabu; Justus, J; Vimala, Sheeja Ramakrishnan

    2011-11-01

    Lakes are seriously affected due to urban pollution. The study of the morphological features of a lake system helps to identify its environmental status. The objective of the present study is to analyse the influence of morphometry on water quality in a lake (Akkulam-Veli Lake, Thiruvananthapuram, Kerala). The morphological features namely mean depth, surface area, volume, shoreline length, shoreline development and index of basin permanence have been evaluated. Correlation analysis has been conducted to determine the relationship between morphological features and water quality. Regression analysis has been conducted to find out the extent of influence of morphometric features on water quality. The study revealed that the lake is less affected by wind-induced wave action due to various reasons. The depth and volume have significant role in the water quality. The nitrogen fixation of blue green algae can be observed from the morphological features. The morphology has greater role in the water quality of a lake system. PMID:21387171

  5. Influence of lake morphology on water quality.

    PubMed

    Moses, Sheela A; Janaki, Letha; Joseph, Sabu; Justus, J; Vimala, Sheeja Ramakrishnan

    2011-11-01

    Lakes are seriously affected due to urban pollution. The study of the morphological features of a lake system helps to identify its environmental status. The objective of the present study is to analyse the influence of morphometry on water quality in a lake (Akkulam-Veli Lake, Thiruvananthapuram, Kerala). The morphological features namely mean depth, surface area, volume, shoreline length, shoreline development and index of basin permanence have been evaluated. Correlation analysis has been conducted to determine the relationship between morphological features and water quality. Regression analysis has been conducted to find out the extent of influence of morphometric features on water quality. The study revealed that the lake is less affected by wind-induced wave action due to various reasons. The depth and volume have significant role in the water quality. The nitrogen fixation of blue green algae can be observed from the morphological features. The morphology has greater role in the water quality of a lake system.

  6. Process water usage and water quality in poultry processing equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The operation of poultry processing equipment was analyzed to determine the impact of water reduction strategies on process water quality. Mandates to reduce the consumption of process water in poultry processing facilities have created the need to critically examine water usage patterns and develop...

  7. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  8. Quality of wastewater reuse in agricultural irrigation and its impact on public health.

    PubMed

    Al-Hammad, Bushra Ahmed; Abd El-Salam, Magda Magdy; Ibrahim, Sahar Yassin

    2014-11-01

    This study is planned to perform a sanitary survey of the largest sewage treatment plant in Riyadh, KSA, fortnightly for 6 months to examine its effluent quality as an example for the growing dependence on reuse of treated municipal wastewater in agricultural irrigation purposes to cope with increasing water shortage. The biological and physico-chemical parameters of 12 wastewater samples from the plant were examined using standard methods. The physico-chemical analysis indicated that the surveyed municipal wastewater treatment plant contained some of the studied parameters, such as turbidity, total suspended solids, biochemical oxygen demand, chemical oxygen demand and residual chlorine above the maximum permissible wastewater limits set by the Saudi Standards. However, heavy metal concentrations in all samples were lower than the recommended standards. Total and faecal coliform counts were above the permissible limits indicating poor sanitation level. Fifty percent of all wastewater samples were contaminated with faecal coliforms but, surprisingly, Escherichia coli were only detected in 8.3 % of the samples. Regular monitoring and enhancement of microbial and physico-chemical parameters of the wastewater quality served by different wastewater treatment plants for reuse in agricultural irrigation is recommended to preserve the environment and public health. PMID:25085428

  9. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  10. Water Quality Criteria, Report of the National Technical Advisory Committee to the Secretary of the Interior.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    Contained are reports of five subcommittees of the National Technical Advisory Committee on Water Quality Criteria. Subcommittees were recreation and aesthetics; public water supplies; fish, other aquatic life, and wildlife; agricultural uses; and industrial water supplies. Each committee report contains discussion of the problem area, criteria…

  11. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  12. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  13. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  14. Water chemistry responses to hydraulic manipulation of an agricultural wetland

    NASA Astrophysics Data System (ADS)

    Powers, S.; Stanley, E. H.

    2011-12-01

    Small impoundments are often crucial factors for the movement of sediment, organic matter, water-borne nutrients, and toxic materials through river networks. By recent accounting, at least 2.6 million small artificial water bodies exist in the US alone. A large proportion of those structures occur in regions with high intensity of agriculture, such as in the Midwestern grain belt. While small impoundments are aging structures which appear to serve few purposes, some hold ecological and biogeochemical value as artificial wetlands. We documented instantaneous net fluxes of solute (chloride, sulfate, nitrate, ammonium, and soluble reactive phosphorus) through an artificial flow-through wetland in agricultural southern Wisconsin over 6 years which spanned removal of a small dam. Phased dewatering and dam removal ultimately converted the artificial wetland to a canal-like state (increase in mean water velocity from 0.08 to 0.22 m s-1). Mean net flux for chloride across the system averaged nearly 0 g d-1, indicating conservative transport and successful characterization of hydrology. In contrast, net fluxes for other solute forms were altered following loss of the wetland: a persistent net sulfate sink (5-10% of inputs retained), suggestive of sulfate-reducing bacteria, was reduced; seasonal (summer) net sinks for nitrate and ammonium, suggestive of uptake by algae and denitrifying bacteria, were reduced; temporal variability for the net flux of soluble reactive phosphorus was reduced. Overall, loss of the artificial wetland caused by dam removal shifted seasonal and annual net fluxes of biologically available solute toward export. Nutrient retention by artificial wetlands could be important for elemental budgets in regions which have high nutrient loading to surface and ground water.

  15. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  16. Quality of ground water in Routt County, northwestern Colorado

    USGS Publications Warehouse

    Covay, Kenneth J.; Tobin, R.L.

    1980-01-01

    Chemical and bacteriological data were collected to describe the quality of water from selected geologic units in Routt County, Colo. Calcium bicarbonate was the dominant water-chemistry type; magnesium, sodium, and sulfate frequently occurred as codominant ions. Specific conductance values ranged from 50 to 6,000 micromhos. Mean values of specific conductance, dissolved solids , and hardness from the sampled aquifers were generally greatest in waters from the older sedimentary rocks of the Lance Formation, Lewis Shale, Mesaverde Group, and Mancos Shale, and least in the ground waters from the alluvial deposits, Browns Park Formation, and the basement complex. Correlations of specific conductance with dissolved solids and specific conductance with hardness were found within specified concentration ranges. On the basis of water-quality analyses, water from the alluvial desposits, Browns Park Formation, and the basement complex generally is the most suitable for domestic uses. Chemical constituents in water from wells or springs exceeded State and Federal standards for public-water supplies or State criteria for agricultural uses were pH, arsenic, boron, chloride, iron, fluoride, manganese, nitrite plus nitrate, selenium, sulfate, or dissolved solids. Total-coliform bacteria were detected in water from 29 sites and fecal-coliform bacteria were detected in water from 6 of the 29 sites. (USGS)

  17. Emerging National Research Needs for Agricultural Air Quality

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Schlesinger, William H.; Niyogi, Dev; Jennings, Greg; Gilliam, Wendell; Knighton, Raymond E.; Duke, Clifford S.; Blunden, Jessica; Krishnan, Srinath

    2006-01-01

    Over the next 50 years, the Earth's human population is predicted to increase from the current 6.1 billion to more than 9 billion, creating a parallel increase in demand for agricultural commodities. Satisfying the demand for food is already driving changes in crop and livestock production methods that may have profound environmental effects. Increased consumption of animal protein in developed and developing countries, for example, has resulted in concentrated production of poultry and livestock, which has led to concentrated emissions of pollutants from these production facilities and has created regulatory concerns for agriculture. Development of land for nonagricultural uses has placed more pressure on marginal agricultural lands and has caused environmental degradation including the emission of trace gases (e.g., carbon, sulfur, and nitrogen species) into the atmosphere.

  18. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods.

  19. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods. PMID:26592651

  20. Dissolved Organic Carbon as a Drinking Water Constituent of Concern in California Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Bachand, P. A.; Deverel, S.; Kendall, C.

    2007-12-01

    Dissolved organic carbon (DOC) from the breakdown of plant and animal material is a concern for drinking water quality in California due to the potential formation of carcinogenic byproducts during disinfection. Agricultural DOC loading to surface water is a significant concern, but the sources and reactivity in agricultural runoff remains poorly understood. Here we present data on DOC dynamics in surface water from the Willow Slough watershed, a 425\\- km2 agricultural catchment in the Sacramento Valley, California. Samples collected weekly during 2006 and 2007 were analyzed for DOC concentration, optical properties (UV absorbance and fluorescence), 13C\\- DOC isotopes, and trihalomethane formation potential (a regulated disinfection byproduct formed during chlorination). DOC concentrations at the watershed mouth ranged from 2 to 4 mg/L during winter and spring, with a clear increase in DOC concentrations to more than 7 mg L following the onset of summer irrigation. The 13C\\- DOC values revealed a large range (-19 to -27 ‰), with lowest values during winter baseflow and higher values during summer and winter storms. Spectral slopes also varied seasonally (0.012 to 0.020), with steeper slopes during winter baseflow. Both isotopic and optical data provide evidence for algal\\- derived DOC during the winter baseflow and terrestrial sources during winter storms and summer irrigation. Total THM formation potential was higher in winter than summer, and is strongly correlated to DOC concentrations in surface waters (r2 = 0.87). In contrast to the total THM formation potential, the specific THM formation potential (e.g., total THM normalized to DOC) decreased during the summer irrigation season, suggesting a change in reactivity related to DOC source or degradation. Additional data from plant leachates and ground water will be discussed, as well as the implications of watershed management on DOC dynamics and reactivity in agriculturally-dominated landscapes.

  1. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  2. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  3. Correlation study among water quality parameters an approach to water quality management.

    PubMed

    Sinha, D K; Rastogi, G K; Kumar, R; Kumar, N

    2009-04-01

    To find out an approach to water quality management through correlation studies between various water quality parameters, the statistical regression analysis for six data points of underground drinking water of different hand pumps at J. P. Nagar was carried out. The comparison of estimated values with W.H.O drinking water standards revealed that water of the study area is polluted with reference to a number of physico-chemical parameters studied. Regression analysis suggests that conductivity of underground water is found to be significantly correlated with eight out of twelve water quality parameters studied. It may be suggested that the underground drinking water quality at J. P. Nagar can be checked very effectively by controlling the conductivity of water. The present study may be treated one step forward towards the water quality management.

  4. Water flowing north of the border: export agriculture and water politics in a rural community in Baja California.

    PubMed

    Zlolniski, Christian

    2011-01-01

    Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right.

  5. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    PubMed

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  6. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  7. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    PubMed

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  8. 76 FR 52932 - Notice of Meeting of the Agricultural Air Quality Task Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... Natural Resources Conservation Service Notice of Meeting of the Agricultural Air Quality Task Force AGENCY: Natural Resources Conservation Service (NRCS). ACTION: Notice of meeting. SUMMARY: The Agricultural Air.... Dave White, Chief, Natural Resources Conservation Service. BILLING CODE 3410-16-P...

  9. Universal optimization of water quality management strategy

    NASA Astrophysics Data System (ADS)

    Unami, K.; Kawachi, T.

    Although many optimization models for water quality problems have been developed, methodology for judging the necessity of applying them is scarcely worked out. The universal optimization scheme presented here is to determine a management strategy for controlling water quality in a generic body of water. Dynamics of a water quality index is represented by an ordinary differential equation, and a linear system model is deduced. The H∞ control theory, which summarizes system stabilization and error minimization, is applied to a generalized water quality control problem including the linear system model. A class of H∞ controllers is identified, and a temporal discretization scheme for a controller is proposed. Three application examples demonstrate the conception of universal optimization and the validity of its implementation using an H∞ controller.

  10. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  11. Drinking water microbiology--new directions toward water quality enhancement.

    PubMed

    Geldreich, E E

    1989-12-01

    Drinking water microbiology has emerged from decades of relative complacency to recognize there can be major concerns with potable water quality. Many of these issues are a result of an explosion of information on new waterborne agents, treatment problems with raw-source water qualities, biofilm development in some distribution systems and specialized requirements in water quality unique to hospitals and industries. Protozoan cyst survival after some disinfection practices involving surface water impoundments and virus occurrence in poorly protected groundwaters have provided reasons for expanding minimum treatment of surface waters and for requiring disinfection of all groundwaters unless there is a demonstrative data base to support exceptions in treatment requirements. Official monitoring of small water supplies must be increased on a monthly basis and a rapid alert established to inform water plant operators of unsatisfactory water qualities. As an option, application of operational tests to analyse water quality in terms of chlorine residual, turbidity, total coliforms and heterotrophic bacterial counts in small water plant operations should be encouraged. This would provide the operator at remote locations with the opportunity to utilize the information to make necessary treatment adjustments or corrections in water distribution deficiencies promptly and be a supplement to the official regional monitoring program. Application of drinking water alternative sources (bottled water and water from point-of-use treatment devices) should be viewed by the health authorities as only a temporary solution, not as a permanent fix for a public water supply known to present some established health risk to consumers. The public must also recognize that bottled water is not frequently monitored by health laboratories for acceptable quality and the use of home treatment devices places the responsibility of proper maintenance on the user. Microbial quality improvements in

  12. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  13. Microwave sensing of quality attributes of agricultural and food products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microwave sensors for real-time characterization of agricultural and food products have become viable solutions with recent advances in the development of calibration methods and the availability of inexpensive microwave components. The examples shown here for grain, seed, and in-shell peanuts indic...

  14. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  15. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  16. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  17. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  18. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  19. A water quality monitoring system for HAWC

    NASA Astrophysics Data System (ADS)

    Garfias, F.; Bernal, A.; Tinoco, S.; Iriarte, A.

    2012-09-01

    HAWC (High Altitude Water Cherenkov), is a gamma ray (γ) large aperture observatory with high sensitivity that will be able to continuously monitor the sky for transient sources of photons with energies between 100 GeV and 100 TeV. HAWC is under construction in Sierra Negra, Puebla, Mexico, which is located at a high altitude of 4100m. HAWC will be an array of 300 Cherenkov detectors each one with 200,000 liters of highly pure water. The sensitivity of the instrument depends strongly on the water quality. We present the design and construction of the HAWC water quality monitoring system. We seek monitor the transparency in violet-blue range to achieve and maintain the required water transparency quality in each detector. The system is robust and user friendly. The measurements are reproducible. Also we present some results from the monitoring the water from the VAMOS detector tanks and of the filtering system.

  20. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  1. Water shortages and implied water quality: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Genius, Margarita; Tsagarakis, Konstantinos P.

    2006-12-01

    This paper analyses the extent to which households in an urban area are willing to pay to ensure a fully reliable water supply when the latter induces changes in drinking water quality. The water supply system in the city of Heraklion, Greece, is characterized by periodic water rationing, which is more pronounced in the summer months. The generalized use of cisterns and even water tanks helps residents cope with quantity shortages but has a negative effect on the quality of the water reaching their taps. The results of our contingent valuation show that respondents not affected by shortages and already drinking tap water have a smaller willingness to pay, while positive perceptions on quality have a positive effect.

  2. Modelling Common Agricultural Policy-Water Framework Directive interactions and cost-effectiveness of measures to reduce nitrogen pollution.

    PubMed

    Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic

    2010-01-01

    Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use.

  3. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  4. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  5. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  6. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  7. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  8. Quality of surface waters in Wilton, Connecticut

    USGS Publications Warehouse

    Kulp, K.P.

    1982-01-01

    Water, bed material, and biological samples were collected and analyzed at 10 surface-water gaging sites on six streams in the town of Wilton, Connecticut over a 2-year period. The data indicate fair to excellent water quality. Fecal coliform bacteria, pH, alkalinity, iron, and manganese are the parameters that most often exceed recommended limits established by either the U. S. Environmental Protection Agency or the Connecticut Department of Environmental Protection. Data from sites on the Norwalk and East Branch Silvermine Rivers indicate little if any undesirable changes in water quality take place as they flow through the study area. (USGS)

  9. Modelling of Buckingham Canal water quality.

    PubMed

    Abbasi, S A; Khan, F I; Sentilvelan, K; Shabudeen, A

    2002-10-01

    The paper presents a case study of the modelling of the water quality of a canal situated in a petrochemical industrial complex, which receives wastewaters from Madras Refineries Limited (MRL), and Madras Fertilizers Limited (MFL). The canal well known Buckingham Canal which passes through Chennai (Madras), India has been modelled using the software QUAL2E-UNCAS. After testing and validation of the model, simulations have been carried out. The exercise enables forecasting the impacts of different seasons, base flows, and waste water inputs on the water quality of the Buckingham Canal. It also enables development of water management strategies.

  10. GKI water quality studies. Progress report

    SciTech Connect

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  11. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  12. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  13. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  14. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  15. Global surface water quality hotspots under climate change and anthropogenic developments

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Yearsley, John R.

    2016-04-01

    In recent decades, freshwater usage for various sectors (e.g. agriculture, industry, energy and domestic) has more than doubled. A growing global population will place further demands on water supplies, whereas the availability and quality of water resources will be affected by climate change and human impacts. These developments will increase imbalances between fresh water demand and supply in terms of both water quantity and water quality. Here we discuss a methodology to identify regions of the world where surface water quality is expected to deteriorate under climate change and anthropogenic developments. Our approach integrates global hydrological-water quality modelling, climate and socio-economic scenarios and relations of water quality