Science.gov

Sample records for agriculture climate change

  1. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

  2. Adapting agriculture to climate change

    PubMed Central

    Howden, S. Mark; Soussana, Jean-François; Tubiello, Francesco N.; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists. PMID:18077402

  3. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  4. Climate Change and Agriculture: Effects and Adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...

  5. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  6. Climate change and agriculture in developing countries

    SciTech Connect

    Antle, J.M.

    1995-08-01

    Most analysts agree that the poorest countries` agricultures are likely to be the most vulnerable to-and least capable of adapting to-climate change or other environmental disruptions. Research has only recently begun to assess what the likely impacts of climate change on developing countries` agricultures may be, how these agricultures might adapt to climate change, and how policies might be designed to facilitate adaptation. This paper begins with a discussion of what researchers currently believe the impacts of climate change could be on developing country agriculture, principally tropical agriculture. Climate changes are expected to occur from thirty to more than one hundred years in the future. These time horizons mean that predictions of the key factors determining impacts and adaptation-population, income, institutions, and technology-are probably as uncertain as predictions of climate change itself. Rates of productivity growth and technological adaptation will be critical to future food supplies, with or without climate change. Continuation of the trend of the past forty years could make so abundant that climate change effects would be inconsequential, but lower rates of growth could result in population growth outstripping food supplies. The second section of this paper addresses the critical issue of predicting the long-term trend in productivity by building on the substantial knowledge we have about the economic factors determining agricultural innovation and adaptation. Considering the time horizons and uncertainties involved in climate change, the wise policy strategy is to pursue investments that are economically justified, whether or not climate change occurs. A better understanding of managed ecosystems would improve our understanding of agricultural sustainability as well as climate change impacts and adaptation. The third section of this paper outlines an economic approach to modeling managed ecosystems. 21 refs.

  7. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  8. Anticipating impacts of climate change on organic agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional and organic agriculture are inextricably linked to climate and will be impacted by climate change. Organic agriculture, unlike conventional agriculture, encompasses heterogeneous agricultural management methods and practices owing to its multiple origins around the world. Although it re...

  9. Drought, Climate Change and Potential Agricultural Productivity

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Herrera-Estrada, J. E.; Caylor, K. K.; Wood, E. F.

    2011-12-01

    Drought is a major factor in agricultural productivity, especially in developing regions where the capacity for water resources management is limited and climate variability ensures that drought is recurrent and problematic. Recent events in East Africa are testament to this, where drought conditions that have slowly developed over multiple years have contributed to reduced productivity and ultimately food crises and famine. Prospects for the future are not promising given ongoing problems of dwindling water supplies from non-renewable sources and the potential for increased water scarcity and increased drought with climate change. This is set against the expected increase in population by over 2 billion people by 2050 and rise in food demand, coupled with changes in demographics that affect food choices and increases in non-food agriculture. In this talk we discuss the global variability of drought over the 20th century and recent years, and the projected changes over the 21st century, and how this translates into changes in potential agricultural productivity. Drought is quantified using land surface hydrological models driven by a hybrid reanalysis-observational meteorological forcing dataset. Drought is defined in terms of anomalies of hydroclimatic variables, in particular precipitation, evaporation and soil moisture, and we calculate changes in various drought characteristics. Potential agricultural productivity is derived from the balance of precipitation to crop water demand, where demand is based on potential evaporation and crop coefficients for a range of staple crops. Some regional examples are shown of historic variations in drought and potential productivity, and the estimated water deficit for various crops. The multitude of events over the past decade, including heat waves in Europe, fires in Russia, long-term drought in northern China, southeast Australia, the Western US and a series of droughts in the Amazon and Argentina, hint at the influence of

  10. Climate change - Agricultural land use - Food security

    NASA Astrophysics Data System (ADS)

    Nagy, János; Széles, Adrienn

    2015-04-01

    In Hungary, plougland decreased to 52% of its area by the time of political restructuring (1989) in comparison with the 1950s. Forested areas increased significantly (18%) and lands withdrawn from agricultural production doubled (11%). For today, these proportions further changed. Ploughlands reduced to 46% and forested areas further increased (21%) in 2013. The most significat changes were observed in the proportion of lands withdrawn from agricultural production which increased to 21%. Temperature in Hungary increased by 1°C during the last century and predictions show a further 2.6 °C increase by 2050. The yearly amount of precipitation significantly decreased from 640 mm to 560 mm with a more uneven temporal distribution. The following aspects can be considered in the correlation between climate change and agriculture: a) impact of agriculture on climate, b) future impact of climate change on agriculture and food supply, c) impact of climate change on food security. The reason for the significant change of climate is the accumulation of greenhouse gases (GHG) which results from anthropological activities. Between 2008 and 2012, Hungary had to reduce its GHG emission by 6% compared to the base period between 1985-1987. At the end of 2011, Hungarian GHG emission was 43.1% lower than that of the base period. The total gross emission was 66.2 million CO2 equivalent, while the net emission which also includes land use, land use change and forestry was 62.8 million tons. The emission of agriculture was 8.8 million tons (OMSZ, 2013). The greatest opportunity to reduce agricultural GHG emission is dinitrogen oxides which can be significantly mitigated by the smaller extent and more efficient use of nitrogen-based fertilisers (precision farming) and by using biomanures produced from utilised waste materials. Plant and animal species which better adapt to extreme weather circumstances should be bred and maintained, thereby making an investment in food security. Climate

  11. Climate change and global agriculture: Recent findings and issues

    SciTech Connect

    Reilly, J.

    1995-08-01

    This paper (a) reviews existing findings on the global impacts of climate change on agriculture, (b) identifies limitations of these findings, and (c) discusses three issues of interest on the Intergovernmental Panel on Climate Change (IPCC). The three issues are as follows: regional effects versus global efficiency: the issue of hunger; climate change, agriculture and economic development; cost and disruption of adaptation to climate change. 45 refs., 3 tabs.

  12. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  13. Climate change impacts on the U.S. agricultural economy

    NASA Astrophysics Data System (ADS)

    Wu, You; Liang, Xin-Zhong; Gao, Wei

    2015-09-01

    The most important aggregate measure of the long run health of the productive component of the agricultural economy is agricultural total factor productivity (TFP). Between 1948 and 2011, average annual input growth in US agriculture averaged approximately 0.07% while annual average output growth averaged roughly 1.5%. That translates into an annual average agricultural TFP growth rate of approximately 1.43%. That growth has led to a remarkable expansion of the productive ability of the US agricultural sector. However, climate change poses unprecedented challenges to U.S. agricultural production because of the sensitivity of agricultural productivity and costs to changing climate conditions. Some studies have examined the effect of climate change on U.S. agriculture. But none has investigated how climate affects the overall U.S. agricultural productivity. This study intends to find out climate change impacts on U.S. agricultural TFP change (TFPC). By correlation analysis with data in 1979-2005, we found that precipitation and temperature had significant positive or negative correlations with U.S. agricultural TFPC. Those correlation coefficients ranged from -0.8 to 0.8. And significant correlations, whether positive or negative, existed in different regions and different seasons. This is important information for policy-makers in decisions to support U.S. agriculture sustainability.

  14. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  15. Climate change effects on agriculture: economic responses to biophysical shocks.

    PubMed

    Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-03-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  16. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    NASA Technical Reports Server (NTRS)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  17. Predicting the Impacts of Climate Change on Central American Agriculture

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  18. Assessment of climate change impact on Eastern Washington agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An assessment of the potential impact of climate change and the concurrent increase of atmospheric CO2 concentration on eastern Washington State agriculture was conducted. Climate projections from four selected general circulation models (GCM) were chosen, and the assessment included the crops with ...

  19. Systems in peril: Climate change, agriculture and biodiversity in Australia

    NASA Astrophysics Data System (ADS)

    Cocklin, Chris; Dibden, Jacqui

    2009-11-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  20. Assessing the Agricultural Vulnerability for India under Changing Climate

    NASA Astrophysics Data System (ADS)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  1. Climate change and the origins of agriculture: A global perspective

    SciTech Connect

    Byrne, R.

    1995-12-31

    Most students of the agricultural origins problem have rejected the thesis that climate change was in important causal variable. For example, it is often emphasized that agriculture began at different times in different areas, and that climate change could not therefore have been a significant factor. It is also suggested that climate change at the end of the last glacial could not have been important, because similar changes in climate occurred at the end of the penultimate glaciation without any cultural response. The primary purpose of this paper is to demonstrate that these objections are invalid, and are based on a misunderstanding of: (1) the nature of late-Pleistocene/early-Holocene climate changes; and (2) the ecological context of early agriculture. Alternatively, it is proposed that the more or less synchronous development of agricultural in several widely separated areas of the globe is best seen as an indirect response to changes in climate during the Pleistocene/Holocene transitions. Three common denominators characterize the early centers of agricultural and collectively point to climate changes as a primary factor: (1) all are located in areas that today are characterized by strongly seasonal rainfall regimes; (2) the initial domestication of plants occurred independently at within a very short period of time during and immediately following the Pleistocene/Holocene transition; and (3) the early plant domesticates were either annuals or geophytes, autecologically adapted to seasonality of moisture supply. The implication is that increased seasonality during the Pleistocene/Holocene transition brought about changes in wild plant and animal populations that in turn led to domestication and agriculture.

  2. World agriculture and climate change: Current modeling issues

    SciTech Connect

    Darwin, R.

    1996-12-31

    Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.

  3. Climate change effects on agriculture: Economic responses to biophysical shocks

    PubMed Central

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  4. Climate change effects on agriculture: Economic responses to biophysical shocks

    SciTech Connect

    Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2013-12-16

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  5. Assessing the Vulnerability of Agriculture to Climate Change in Jordan

    NASA Astrophysics Data System (ADS)

    Khresat, Sa'eb; Shraidaeh, Fadi; Maddat, Amer

    2015-04-01

    Climate change represents one of the greatest environmental, social and economic threats facing Jordan. In particular, the combined effects of climate change and water scarcity threaten to affect food and water resources that are critical for livelihoods in Jordan. This is especially true for those communities who live in the dryland area in the country and who rely wholly on rain-fed agriculture. The exact nature and extent of the impact of climate change on temperature and precipitation distribution pattern remain uncertain and it is the poor and vulnerable who will be the most susceptible to climate change adverse effects. A vulnerability assessment of rain fed agriculture to climate change and variability in semi-arid parts of Jordan was conducted in 2014. The purpose of this study is to assess the vulnerability and resilience of the most vulnerable groups where rainfed and irrigated agriculture is practiced. Also, the study focused on quantifying the impacts on agricultural productivity in response to climate change. This will help policymakers and researchers better understand and anticipate the likely impacts of climate change on agriculture and on vulnerable communities in Jordan. Also, it will provide them with tools to identify and implement appropriate adaptation strategies. The data used includes; Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5 adopted by the IPCC for its fifth Assessment Report (AR5). Those pathways were used for climate modeling. A decision support system (DSSAT) for agricultural production was used to assess the impact of climate changes on agricultural production. This approach was used for the Identification of climate change risk and their impacts on Agriculture. Outputs from models are used to assess the vulnerability of farmers and crops to climate and socio-economic change by estimating their sensitivity and capacity to adapt to external factors as a means of identifying what causes the differences in their

  6. Agricultural Adaptations to Climate Changes in West Africa

    NASA Astrophysics Data System (ADS)

    Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.

    2014-12-01

    Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.

  7. Agricultural ecosystem effects on trace gases and global climate change

    SciTech Connect

    Not Available

    1993-01-01

    Global climate change is an issue that has been thrust to the forefront of scientific, political, and general community interest. In the span of this human generation, the earth's climate is expected to change more rapidly than it has over any comparable period of recorded history. Some of the changes will result from natural processes, beyond human control, but much of this change is subject to anthropogenic influence arising from processes that are only beginning to be understood. Increasing concentrations of atmospheric radiatively active trace gases are being inadvertently affected by fossil fuel combustion; but other activities of industry, agriculture, forestry, changing land-use practices, waste disposal, and transportation also affect the chemical composition of the atmosphere. The measured and projected changes of the atmospheric concentrations of radiatively active trace gases have been modeled and estimated to predict changes in the global climate. Accuracy and reliability of these predictions are the subject of considerable debate among scientists and other concerned individuals, groups, and governmental agencies throughout the world. The objective of this book is to provide a review of current knowledge on the measurement of radiatively active trace gases in agricultural ecosystems and the effect of agriculture on the atmospheric concentrations of these gases. This book is compiled from written papers presented at a symposium entitled, Agroecosystem Effects on Radiatively Important Trace Gases and Global Climate Change, held at the American Society of Agronomy Meetings in Denver, CO, 27 Oct.-1 Nov. 1991. Fourteen chapters have been processed separately for inclusion in the appropriate data bases.

  8. Simulating climate change effects in a Minnesota agricultural watershed

    SciTech Connect

    Hanratty, M.P.; Stefan, H.G.

    1998-11-01

    The effect of climate change on quality and quantity of runoff from a northern, agricultural watershed was simulated using the Soil and Water Assessment Tool, 1996 Version (SWAT96). SWAT`s snow evaporation submodel was modified. SWAT was calibrated using water quality and quantity data measured in the Cottonwood River near New ULM, MN. The standard errors after calibration were 3.31 mm, 157 kg/d, 752 kg/d, 3744 kg/d, and 85 t/d for mean monthly streamflow, P yield, ammonia (NH{sub 3})/organic N yield, nitrate (NO{sub 3}) yield, and sediment yield, respectively. The standard error for monthly streamflow was 9.62 mm. SWAT96 was then used to simulate the effect on the Cottonwood River watershed of a 2xCO{sub 2} climate scenario, obtained from the Canadian Climate Center`s global circulation model. Assuming land cover and land management remained constant, SWAT96 projected a decrease in mean annual streamflow, P yield, NH{sub 3}/organic N yield, NO{sub 3}/nitrate (NO{sub 2}) yield, and sediment yield. Mean monthly values changed significantly for many months of the year under the 2xCO{sub 2} climate scenario. The standard errors in SWATs baseline simulations, however, were too high for the simulated climate change effects to be measurable for NO{sub 3}/NO{sub 2} and sediment yields. The model assumptions and calibration methods used to obtain the accuracy required for simulating the effects of climate change lead to the conclusions that land use/land cover and land management practices are likely to have a greater impact on water quality than climate change and that SWAT must be calibrated to be used for climate change analysis.

  9. Climate Change Impacts on North Dakota: Agriculture and Hydrology

    NASA Technical Reports Server (NTRS)

    Kirilenko, Andrei; Zhang, Xiaodong; Lim, Yeo Howe; Teng, William L.

    2011-01-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed; one of the most dramatic examples of the consequences of this change is the Devils Lake flooding. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for multiple locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing.

  10. Adaptation potential of European agriculture in response to climate change

    NASA Astrophysics Data System (ADS)

    Moore, Frances C.; Lobell, David B.

    2014-07-01

    Projecting the impacts of climate change on agriculture requires knowing or assuming how farmers will adapt. However, empirical estimates of the effectiveness of this private adaptation are scarce and the sensitivity of impact assessments to adaptation assumptions is not well understood. Here we assess the potential effectiveness of private farmer adaptation in Europe by jointly estimating both short-run and long-run response functions using time-series and cross-sectional variation in subnational yield and profit data. The difference between the impacts of climate change projected using the short-run (limited adaptation) and long-run (substantial adaptation) response curves can be interpreted as the private adaptation potential. We find high adaptation potential for maize to future warming but large negative effects and only limited adaptation potential for wheat and barley. Overall, agricultural profits could increase slightly under climate change if farmers adapt but could decrease in many areas if there is no adaptation. Decomposing the variance in 2040 projected yields and farm profits using an ensemble of 13 climate model runs, we find that the rate at which farmers will adapt to rising temperatures is an important source of uncertainty.

  11. Global agricultural intensification during climate change: a role for genomics.

    PubMed

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; de Oliveira, Antonio Costa; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change. PMID:26360509

  12. Robust negative impacts of climate change on African agriculture

    NASA Astrophysics Data System (ADS)

    Schlenker, Wolfram; Lobell, David B.

    2010-01-01

    There is widespread interest in the impacts of climate change on agriculture in Sub-Saharan Africa (SSA), and on the most effective investments to assist adaptation to these changes, yet the scientific basis for estimating production risks and prioritizing investments has been quite limited. Here we show that by combining historical crop production and weather data into a panel analysis, a robust model of yield response to climate change emerges for several key African crops. By mid-century, the mean estimates of aggregate production changes in SSA under our preferred model specification are - 22, - 17, - 17, - 18, and - 8% for maize, sorghum, millet, groundnut, and cassava, respectively. In all cases except cassava, there is a 95% probability that damages exceed 7%, and a 5% probability that they exceed 27%. Moreover, countries with the highest average yields have the largest projected yield losses, suggesting that well-fertilized modern seed varieties are more susceptible to heat related losses.

  13. Climate Change and Agricultural Sustainability - A Global Assessment

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhang, X.

    2012-12-01

    This study provides a spatially explicit estimate of climate change impact on world-wide agricultural sustainability, considering uncertainty in climate change projections. The potential changes in agricultural land and crop water requirement and availability are assessed by region in the world. Uncertainty in General Circulation Model (GCM) projections is addressed using data assembled from a number of GCMs and representative emission scenarios. Erroneous data and the uncertain nature of land classifications based on multiple indices (i.e., soil properties, land slope, temperature, and humidity) are handled with fuzzy logic modeling. It is found that global arable land area is likely to be affected by emission scenarios, for example, it may decrease by 0.8% ~ 1.7% under scenario A1B (CO2-equivalent GHG concentrations of 850 ppmv) but increase by 2.0% ~ 4.4% under scenario B1 (CO2-equivalent GHG concentrations of 600 ppmv, which represents a greener economy than A1B). However, at the regional scale, although the magnitudes of the projected changes vary by scenario, the increasing or decreasing trends in arable land area are consistent: Regions with relative high latitudes - Russia, China and the U.S. - could see a significant increase in arable land in coming years, but South America, Africa, Europe and India could lose land area. For agricultural water use, the following questions are addressed: Where will there be a need for irrigation expansion and by how much? Where and how much of current irrigation pressures or water deficits for rainfed crops can be mitigated or aggravated? And finally, what is the overall situation for the entire world? It is found that despite the universally rising mean temperature, the global irrigation requirements are likely to decrease. This is probably due to the declining diurnal temperature range, which plays a key role in the evapotranspiration control, as well as the increasing precipitation in many areas contributing to the

  14. Climate change impacts on North Dakota: agriculture and hydrology

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Zhang, X.; Lim, Y.; Teng, W. L.

    2011-12-01

    North Dakota is one of the principal producers of agricultural commodities in the USA, including over half of the total spring wheat production. While the region includes some of the best agricultural lands in the world, the steep temperature and precipitation gradients also make it one of the most sensitive to climate change. Over the 20th century, both the temperature and the pattern of precipitation in the state have changed. One of the most dramatic examples of the consequences of this change is the Devils Lake flooding. Devils Lake is a terminal lake with a surface area of about 500 km2 in a 9,867 km2 closed watershed, located in the northeastern part of the state. The recent changes in climate interrupted the 5-7 year long wet/dry cycle, resulting in a persistently wet state. The change in the water balance has led to a substantial increase in the lake level from 427.0 m in 1940 to 434.6 m in 1993 to 443.2 m in 2011. The resulting flooding has threatened the local communities, costing $450 million in mitigation efforts thus far. If the elevation reaches 444.4 m, the saline, eutrophic lake will naturally spill into the Sheyenne River, eventually flowing into Lake Winnipeg. In two studies, we estimated the climate change impacts on crop yields and on the hydrology of the Devils Lake basin. The projections of six GCMs, driven by three SRES scenarios were statistically downscaled for eight different locations throughout the state, for the 2020s, 2050s, and 2080s climate. Averaged over all GCMs, there is a small increase in precipitation, by 0.6 - 1.1% in 2020s, 3.1 - 3.5% in 2050s, and 3.0 - 7.6% in 2080s. This change in precipitation varies with the seasons, with cold seasons becoming wetter and warm seasons not changing. For projections of climate change impacts on the hydrology of the Devils Lake basin, we additionally used the information on the spatial distribution of precipitation over the basin from the NASA TRMM TMPA 3B42-V6 product, which combines

  15. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    PubMed

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  16. The effects of climate change on Midwestern agriculture

    NASA Astrophysics Data System (ADS)

    Gosselin, Nichole A.

    Changes in climate are likely to impact future Midwestern agriculture. This study investigates changes in Midwestern crop yield and soil carbon in the future and the sensitivity of these variables to changes in individual climate parameters. The use of a bias correction technique on regional climate model precipitation and temperature data that is used as input into both a crop model and a soil nutrient cycling model is investigated. Systematic model biases are found in climate models and removing these biases using local observations can improve results when the data is used as input into crop and soil models. A quantile mapping bias correction technique, using the University of Washington's (UW) gridded precipitation and temperature as an observation reference is applied to NARCCAP's CRCM/CGCM3 daily precipitation, maximum and minimum temperatures. Bias correction removed error in past average yearly soybean and maize yield for Ames, IA by 110% and 6%, respectively. From the past (1968-1997) to the future (2040-2069) time period, maize yield decreased by 36.5%, while soybean yield increased by 1.2%. Maize yield was particularly sensitive to days above 95F, while soybean yield was most sensitive to seasonal precipitation and growing season length of the climate parameters investigated. Projections of soil carbon, net primary productivity (NPP) and soil carbon respiration were investigated using the Daycent model. When averaged over the Midewestern domain, NPP, CO2 respiration and soil carbon all increased in the future. Removing the biases from the climate model changed the output for all three variables significantly.

  17. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    SciTech Connect

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison M.; Zhang, Xuesong; Jones, Russ; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, B. J.; McFarland, Jim; Strzepek, K.; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  18. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  19. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  20. Potential implications of climate change for US agriculture. Staff paper

    SciTech Connect

    Kaiser, H.M.; Riha, S.J.; Wilks, D.S.; Sampath, R.

    1995-10-01

    The report examines potential agronomic and economic effects of several assumed changed-climate scenarios grain farming in the United States. The analysis is based on a protocol that links climatic, agronomic, and economic models to form an integrated model. Three assumed climate scenarios are investigated for their relative effects on crop yields, cropping patterns, and farm-level profitability. The climate scenarios are simulated for representative farms in Iowa, Illinois, Nebraska, Minnesota, Ohio, Georgia, and North Carolina.

  1. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  2. GLOBAL CLIMATE CHANGE AND AGRICULTURE: AN ECONOMIC PERSPECTIVE

    EPA Science Inventory

    Climate change and related global concerns dominate the current environmental agenda as evidenced by the recent wave of articles, symposia workshops, and other scientific and lay forms dealing with this issue. hile most atmospheric scientists agree that a climate change "signal" ...

  3. Climate change and agriculture: Analysis of potential international impacts

    SciTech Connect

    1995-12-31

    This symposium was held November 4--5, 1992 in Minneapolis, Minnesota. The purpose of this conference was to provide a forum for exchange of state-the-art information on the effects of climate change on crop production, either positively or negatively. This publication contains four sections: (1) experimental studies of the responses of cotton and rice to elevated atmospheric carbon dioxide and to varying temperature and water regimes; (2) simulation methodology studies dealing with the development of modeling techniques to assess the effects of changing carbon dioxide and climate factors on crop growth and yield; (3) regional agronomic implications of climate changes as predicted by global climate models; and (4) economic implications of crop yield changes predicted by climate models. Individual papers have been processed separately for inclusion in the appropriate data bases.

  4. Animal Agriculture in a Changing Climate Online Course: An Effective Tool for Creating Extension Competency

    ERIC Educational Resources Information Center

    Whitefield, Elizabeth; Schmidt, David; Witt-Swanson, Lindsay; Smith, David; Pronto, Jennifer; Knox, Pam; Powers, Crystal

    2016-01-01

    There is a need to create competency among Extension professionals on the topic of climate change adaptation and mitigation in animal agriculture. The Animal Agriculture in a Changing Climate online course provides an easily accessible, user-friendly, free, and interactive experience for learning science-based information on a national and…

  5. Agriculture and climate change: Mitigation opportunities and adaptation imperatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintenance of critical agroecosystem functions will require proactive responses through the strategic application of management practices that mitigate greenhouse gas (GHG) emissions and/or adapt to impacts from climate change. Numerous management strategies currently exist to mitigate GHG emissio...

  6. Smallholder agriculture in India and adaptation to current and future climate variability and climate change

    NASA Astrophysics Data System (ADS)

    Murari, K. K.; Jayaraman, T.

    2014-12-01

    Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact

  7. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    NASA Astrophysics Data System (ADS)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  8. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  9. Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi

    2016-04-01

    Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent

  10. Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Wishart, D. N.

    2015-12-01

    Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.

  11. Agricultural management options for climate variability and change: conservation tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adapting to climate variability and change can be achieved through a broad range of management alternatives and technological advances. This publication is focused on the use of conservation tillage in crop production systems. The publication outlines ways that conservation tillage can reduce risk r...

  12. Climate change effects on soil organic carbon changes in agricultural lands of Spain

    NASA Astrophysics Data System (ADS)

    Álvaro-Fuentes, J.; Easter, M.; Arrúe, J. L.; Cantero-Martínez, C.; Paustian, K.

    2012-04-01

    Climate is a key factor to explain changes in soil organic carbon (SOC) at regional scales. Experimental data have showed that spatial and temporal changes in soil temperature and moisture modify microbial activity and thus SOC decomposition. Furthermore, precipitation amount and distribution have a main impact on crop growth and residue production. According to predictions based on atmosphere-ocean general circulation models (AOGCM) for the next decades in the Mediterranean region, air temperature will significantly increase and precipitation decrease with a significant impact on SOC turnover. However, in agricultural systems, the study of the impacts of climate on SOC dynamics is a complex task since climate effects will be determined by both soil characteristics and management practices. The establishment of soil monitoring networks within a specific region is a recommended approach to study the interactive effects of climate, management and soil on SOC changes. However, in large areas, the establishment and maintenance of these networks can imply significant cost and time. A lower cost and time consuming approach can be the use of soil organic matter (SOM) models. The use of process based SOM models linked to spatial data through geographical information systems (GIS) permits to integrate the spatial variability of the parameters that control SOM dynamics. This approach can be appropriate for Spanish conditions where the complex orography results in a large range of local climates. Moreover, the large agricultural heterogeneity in terms of management systems could have a noteworthy impact on the effects of climate on SOC turnover in Spanish agroecosystems. Thus, in this study we used the Century model to analyse the impact of climate on SOC changes in a representative area of 40498 km2 located in northeast Spain. The spatial distribution of the different land use categories and their change over time was obtained from the European Corine database. Soil

  13. The Impact of Changing Climate on Ammonia Emissions from Agriculture and the Associated Climate Forcings

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Riddick, S. N.; Hess, P. G. M.

    2015-12-01

    Agriculture is the largest anthropogenic source of ammonia (NH3) on a global scale with major contributions from the application of synthetic fertilizer and manure from livestock. While strict controls are placed on the emissions of many industrial pollutants, NH3 concentrations are expected to increase this century. In addition to future expansion of agricultural activities that could lead to greater NH3 emissions, NH3 emissions are affected by changes in temperature and precipitation. Here we use a newly developed agricultural N pathways model running in a global terrestrial model (Community Land Model v4.0) to estimate future NH3 emissions from manure and synthetic fertilizer application, and the impact of changing climate on these emissions and other N pathways (runoff, denitrification, etc.). We include future increases in the application of manure and synthetic fertilizer that are consistent with a middle-of-the-road projection of population growth and per capita caloric intake. Combined with atmospheric forcing that follows RCP8.5, NH3 emissions increase by about 50% and 90% between years 2010 and 2100 from synthetic fertilizer and manure, respectively. Roughly 25% of this increase can be attributed to the changing climate, mainly increased global temperatures over the 21st century. We show associated changes in ammonium nitrate and ammonium sulfate aerosol concentrations and radiative forcings, the results of a set of additional simulations using the Community Atmosphere Model v5.0 and an offline radiative transfer scheme. This work suggests that projections of global NH3 concentrations need to take changes in climate into account.

  14. Assessing risks of climate variability and climate change for Indonesian rice agriculture.

    PubMed

    Naylor, Rosamond L; Battisti, David S; Vimont, Daniel J; Falcon, Walter P; Burke, Marshall B

    2007-05-01

    El Niño events typically lead to delayed rainfall and decreased rice planting in Indonesia's main rice-growing regions, thus prolonging the hungry season and increasing the risk of annual rice deficits. Here we use a risk assessment framework to examine the potential impact of El Niño events and natural variability on rice agriculture in 2050 under conditions of climate change, with a focus on two main rice-producing areas: Java and Bali. We select a 30-day delay in monsoon onset as a threshold beyond which significant impact on the country's rice economy is likely to occur. To project the future probability of monsoon delay and changes in the annual cycle of rainfall, we use output from the Intergovernmental Panel on Climate Change AR4 suite of climate models, forced by increasing greenhouse gases, and scale it to the regional level by using empirical downscaling models. Our results reveal a marked increase in the probability of a 30-day delay in monsoon onset in 2050, as a result of changes in the mean climate, from 9-18% today (depending on the region) to 30-40% at the upper tail of the distribution. Predictions of the annual cycle of precipitation suggest an increase in precipitation later in the crop year (April-June) of approximately 10% but a substantial decrease (up to 75% at the tail) in precipitation later in the dry season (July-September). These results indicate a need for adaptation strategies in Indonesian rice agriculture, including increased investments in water storage, drought-tolerant crops, crop diversification, and early warning systems. PMID:17483453

  15. Agricultural Producer Perceptions of Climate Change and Climate Education Needs for the Central Great Plains

    ERIC Educational Resources Information Center

    Hibbs, Amber Campbell; Kahl, Daniel; PytlikZillig, Lisa; Champion, Ben; Abdel-Monem, Tarik; Steffensmeier, Timothy; Rice, Charles W.; Hubbard, Kenneth

    2014-01-01

    The Central Great Plains Climate Education Partnership conducted focus groups throughout Kansas to gain a better understanding of farmer perceptions and attitudes towards climate change education. Results indicate concern about climatic changes, even if producers are unsure that "human caused climate change" is occurring. Participants…

  16. A New Paradigm for Assessing the Role of Agriculture in the Climate System and in Climate Change

    NASA Technical Reports Server (NTRS)

    Pielke, Roger A., Sr.; Adegoke, Jimmy O.; Chase, Thomas N.; Marshall, Curtis H.; Matsui, Toshihisa; Niyogi, Dev

    2007-01-01

    This paper discusses the diverse climate forcings that impact agricultural systems, and contrasts the current paradigm of using global models downscaled to agricultural areas (a top-down approach) with a new paradigm that first assesses the vulnerability of agricultural activities to the spectrum of environmental risk including climate (a bottom-up approach). To illustrate the wide spectrum of climate forcings, regional climate forcings are presented including land-use/land-cover change and the influence of aerosols on radiative and biogeochemical fluxes and cloud/precipitation processes, as well as how these effects can be teleconnected globally. Examples are presented of the vulnerability perspective, along with a small survey of the perceived drought impacts in a local area, in which a wide range of impacts for the same precipitation deficits are found. This example illustrates why agricultural assessments of risk to climate change and variability and of other environmental risks should start with a bottom-up perspective.

  17. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    impair wetland function to intercept and remove nitrate from drainage water, or even add to the overall N loading to waterways. DCD is water soluble and degrades rapidly in warm soil conditions. The recommended application rate of 10 kg DCD/ha corresponds to 6 kg N/ha and may be exceeded in warm climates. Of the N2O produced by agricultural systems, approximately 30% is emitted from indirect sources, which are waterways draining agriculture. It is important therefore to focus strategies for managing N inputs to agricultural systems generally to reduce inputs to wetlands and streams where these might be reduced to N2O. Waste management options include utilizing the CH4 resource produced in farm waste treatment ponds as a source of energy, with conversion to CO2 via combustion achieving a 21-fold reduction in GHG emissions. Both of these have co-benefits for waterways as a result of reduced loadings. A conceptual model derived showing the linkages between key land management practices for greenhouse gas mitigation and key waterway values and ecosystem attributes is derived to aid resource managers making decisions affecting waterways and atmospheric GHG emissions. PMID:19092184

  18. Are the Discharge Changes in an Agricultural Watershed in Iowa Driven by Changes in Climate or Agriculture?

    NASA Astrophysics Data System (ADS)

    Villarini, G.; Strong, A.

    2013-12-01

    River discharge represents a vital resource for many human activities. The improved understanding of the physical processes controlling its regime can lead to large economic and societal benefits, such as improved flood warning and mitigation, and improved water management during droughts. This is particularly true for the agricultural U.S. Midwest, and Iowa more specifically. Iowa is relentlessly plagued by catastrophic flooding, with the spring and summer river floods of 1993 and 2008 and the drought of 2012 being the most recent widespread event affecting the state. These natural disasters also come with a very large price tag, both in terms of economic damage and number of fatalities. During the 20th and 21st centuries, discharge over this area has been changing on a number of temporal scales, from annual to decadal. An outstanding question is whether this variability is related to changes in the climate system or to changes in land use/land cover and agricultural practices. We address this question by developing statistical models to describe the changes in different parts of the discharge distribution. We use rainfall and predictors related to agricultural practices to explain the observed streamflow variability. We focus on the Raccoon River at Van Meter, which is a 9000-km2 watershed with daily discharge measurements covering most of the 20th century up to the present. Our results indicate that variability in the climate system is responsible for the majority of the changes observed in the discharge records. Moreover, the relative contribution of rainfall in explaining the changes in streamflow increases as we move toward the upper tail of the distribution.

  19. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  20. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    NASA Astrophysics Data System (ADS)

    Paradis, Daniel; Vigneault, Harold; Lefebvre, René; Savard, Martine M.; Ballard, Jean-Marc; Qian, Budong

    2016-03-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentration could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. The change in groundwater recharge regime induced by climate change (with current agricultural practices) would only contribute 0 to 6 % of that increase for the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to

  1. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  2. Estimating the Importance of Private Adaptation to Climate Change in Agriculture: A Review of Empirical Methods

    NASA Astrophysics Data System (ADS)

    Moore, F.; Burke, M.

    2015-12-01

    A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.

  3. Can conservation trump impacts of climate change and extremes on soil erosion in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preservation of top soil is critical for the long term sustainability of agricultural productivity, food security, and biodiversity. However, today’s growing population and increasing demand for food and fiber is stressing the agricultural soil and water resources. Climate change imposes additional ...

  4. WORKSHOP ON CLIMATE CHANGE AND AGRICULTURE IN THE GREAT LAKES REGION

    EPA Science Inventory

    How might a changing climate impact agricultural productivity in the Great Lakes region? How might it affect a farmer's choice of crops or economic risk? What impacts could the development of wind power have on agricultural land owners? These and other questions will be explored ...

  5. How will Climate Change Affect Agriculture over the Next 10-30 Years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is dependent upon the climate resources of temperature, sunlight, precipitation, and carbon dioxide. Efficient production depends upon optimum conditions of temperature and water supply and changes in these climatic variables will affect plant and animal systems over the next 10- 30 year...

  6. Climate change, agriculture and water resources in the Southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In February 2014 the USDA established regional climate hubs across the United States to assist farmers, ranchers and foresters in adapting to the effects of climate change. The Southwest (SW) region encompasses six states which provide highly diverse agricultural crops including cotton, stone fruit ...

  7. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  8. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  9. Climate change induced transformations of agricultural systems: insights from a global model

    NASA Astrophysics Data System (ADS)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  10. Potential impact of climate and socioeconomic changes on future agricultural land use in West Africa

    NASA Astrophysics Data System (ADS)

    Farzan Ahmed, Kazi; Wang, Guiling; You, Liangzhi; Yu, Miao

    2016-02-01

    Agriculture is a key component of anthropogenic land use and land cover changes that influence regional climate. Meanwhile, in addition to socioeconomic drivers, climate is another important factor shaping agricultural land use. In this study, we compare the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa using a prototype land use projection (LandPro) algorithm. The algorithm is based on a balance between food supply and demand, and accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. The impact of human decision-making on land use is explicitly considered through multiple "what-if" scenarios. In the application to West Africa, future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. Without agricultural intensification, the climate-induced decrease in crop yield together with future increases in food demand is found to cause a significant increase in cropland areas at the expense of forest and grassland by the mid-century. The increase in agricultural land use is primarily climate-driven in the western part of West Africa and socioeconomically driven in the eastern part. Analysis of results from multiple scenarios of crop area allocation suggests that human adaptation characterized by science-informed decision-making can potentially minimize future land use changes in many parts of the region.

  11. Modeling soil processes for adapting agricultural systems to climate variability and change

    NASA Astrophysics Data System (ADS)

    Basso, B.

    2014-12-01

    Climate change, drought, and agricultural intensification are increasing the demand for enhanced resource use efficiency (water, nitrogen and radiation). There is a global consensus between climate and agricultural scientists about the need to quantify the likely impacts of climate change on crop yields due to their significant consequences on food prices as well as the global economy. Crop models have been extensively tested for yields, but their validation for soil water balance, and carbon and nitrogen cycling in agricultural systems has been limited. The objective of this research is to illustrate the importance of modeling soil processes correctly to identify management strategy that allow cropping systems to adapt to climate variability and change. Results from the first phase of the AgMIP soil and crop rotation initiative will also be discussed.

  12. Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada

    NASA Astrophysics Data System (ADS)

    Paradis, D.; Vigneault, H.; Lefebvre, R.; Savard, M. M.; Ballard, J.-M.; Qian, B.

    2015-08-01

    Nitrate (N-NO3) concentration in groundwater, the sole source of potable water in Prince Edward Island (PEI, Canada), currently exceeds the 10 mg L-1 (N-NO3) health threshold for drinking water in 6 % of domestic wells. Increasing climatic and socio-economic pressures on PEI agriculture may further deteriorate groundwater quality. This study assesses how groundwater nitrate concentrations could evolve due to the forecasted climate change and its related potential changes in agricultural practices. For this purpose, a tridimensional numerical groundwater flow and mass transport model was developed for the aquifer system of the entire Island (5660 km2). A number of different groundwater flow and mass transport simulations were made to evaluate the potential impact of the projected climate change and agricultural adaptation. According to the simulations for year 2050, N-NO3 concentration would increase due to two main causes: (1) the progressive attainment of steady-state conditions related to present-day nitrogen loadings, and (2) the increase in nitrogen loadings due to changes in agricultural practices provoked by future climatic conditions. The combined effects of equilibration with loadings, climate and agricultural adaptation would lead to a 25 to 32 % increase in N-NO3 concentration over the Island aquifer system. Climate change alone (practices maintained at their current level) would contribute only 0 to 6 % to that increase according to the various climate scenarios. Moreover, simulated trends in groundwater N-NO3 concentration suggest that an increased number of domestic wells (more than doubling) would exceed the nitrate drinking water criteria. This study underlines the need to develop and apply better agricultural management practices to ensure sustainability of long-term groundwater resources. The simulations also show that observable benefits from positive changes in agricultural practices would be delayed in time due to the slow dynamics of nitrate

  13. Climatic Data Integration and Analysis - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Sheneman, L.; Gollberg, G.

    2013-12-01

    The Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA) is a five-year USDA/NIFA-funded coordinated agriculture project to examine the sustainability of cereal crop production systems in the Pacific Northwest, in relationship to ongoing climate change. As part of this effort, an extensive data management system has been developed to enable researchers, students, and the public, to upload, manage, and analyze various data. The REACCH PNA data management team has developed three core systems to encompass cyberinfrastructure and data management needs: 1) the reacchpna.org portal (https://www.reacchpna.org) is the entry point for all public and secure information, with secure access by REACCH PNA members for data analysis, uploading, and informational review; 2) the REACCH PNA Data Repository is a replicated, redundant database server environment that allows for file and database storage and access to all core data; and 3) the REACCH PNA Libraries which are functional groupings of data for REACCH PNA members and the public, based on their access level. These libraries are accessible thru our https://www.reacchpna.org portal. The developed system is structured in a virtual server environment (data, applications, web) that includes a geospatial database/geospatial web server for web mapping services (ArcGIS Server), use of ESRI's Geoportal Server for data discovery and metadata management (under the ISO 19115-2 standard), Thematic Realtime Environmental Distributed Data Services (THREDDS) for data cataloging, and Interactive Python notebook server (IPython) technology for data analysis. REACCH systems are housed and maintained by the Northwest Knowledge Network project (www.northwestknowledge.net), which provides data management services to support research. Initial project data harvesting and meta-tagging efforts have resulted in the interrogation and loading of over 10 terabytes of climate model output, regional entomological data

  14. Analysis of economic impacts of climate change on agricultural water management in Europe

    NASA Astrophysics Data System (ADS)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  15. Implications of climate change for agricultural productivity in the early twenty-first century

    PubMed Central

    Gornall, Jemma; Betts, Richard; Burke, Eleanor; Clark, Robin; Camp, Joanne; Willett, Kate; Wiltshire, Andrew

    2010-01-01

    This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified. PMID:20713397

  16. Farmers' Perceptions of Climate Change and Agricultural Adaptation Strategies in Rural Sahel

    NASA Astrophysics Data System (ADS)

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa

    2009-05-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.

  17. Farmers' perceptions of climate change and agricultural adaptation strategies in rural Sahel.

    PubMed

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa

    2009-05-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate. PMID:18810526

  18. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  19. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    SciTech Connect

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

  20. Adapting agriculture to climate change in Kenya: household strategies and determinants.

    PubMed

    Bryan, Elizabeth; Ringler, Claudia; Okoba, Barrack; Roncoli, Carla; Silvestri, Silvia; Herrero, Mario

    2013-01-15

    Countries in Sub-Saharan Africa are particularly vulnerable to climate change, given dependence on agricultural production and limited adaptive capacity. Based on farm household and Participatory Rural Appraisal data collected from districts in various agroecological zones in Kenya, this paper examines farmers' perceptions of climate change, ongoing adaptation measures, and factors influencing farmers' decisions to adapt. The results show that households face considerable challenges in adapting to climate change. While many households have made small adjustments to their farming practices in response to climate change (in particular, changing planting decisions), few households are able to make more costly investments, for example in agroforestry or irrigation, although there is a desire to invest in such measures. This emphasizes the need for greater investments in rural and agricultural development to support the ability of households to make strategic, long-term decisions that affect their future well-being. PMID:23201602

  1. The impact of high-end climate change on agricultural welfare.

    PubMed

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-08-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered. PMID:27574700

  2. The impact of high-end climate change on agricultural welfare

    PubMed Central

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-01-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered. PMID:27574700

  3. Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK.

    PubMed

    Burns, Fiona; Eaton, Mark A; Barlow, Kate E; Beckmann, Björn C; Brereton, Tom; Brooks, David R; Brown, Peter M J; Al Fulaij, Nida; Gent, Tony; Henderson, Ian; Noble, David G; Parsons, Mark; Powney, Gary D; Roy, Helen E; Stroh, Peter; Walker, Kevin; Wilkinson, John W; Wotton, Simon R; Gregory, Richard D

    2016-01-01

    Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species' populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species' populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species' population change (~1970-2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs. PMID:27007973

  4. Agricultural Management and Climatic Change Are the Major Drivers of Biodiversity Change in the UK

    PubMed Central

    Burns, Fiona; Eaton, Mark A.; Beckmann, Björn C.; Brereton, Tom; Brooks, David R.; Brown, Peter M. J.; Al Fulaij, Nida; Gent, Tony; Henderson, Ian; Noble, David G.; Parsons, Mark; Powney, Gary D.; Roy, Helen E.; Stroh, Peter; Walker, Kevin; Wilkinson, John W.; Wotton, Simon R.; Gregory, Richard D.

    2016-01-01

    Action to reduce anthropogenic impact on the environment and species within it will be most effective when targeted towards activities that have the greatest impact on biodiversity. To do this effectively we need to better understand the relative importance of different activities and how they drive changes in species’ populations. Here, we present a novel, flexible framework that reviews evidence for the relative importance of these drivers of change and uses it to explain recent alterations in species’ populations. We review drivers of change across four hundred species sampled from a broad range of taxonomic groups in the UK. We found that species’ population change (~1970–2012) has been most strongly impacted by intensive management of agricultural land and by climatic change. The impact of the former was primarily deleterious, whereas the impact of climatic change to date has been more mixed. Findings were similar across the three major taxonomic groups assessed (insects, vascular plants and vertebrates). In general, the way a habitat was managed had a greater impact than changes in its extent, which accords with the relatively small changes in the areas occupied by different habitats during our study period, compared to substantial changes in habitat management. Of the drivers classified as conservation measures, low-intensity management of agricultural land and habitat creation had the greatest impact. Our framework could be used to assess the relative importance of drivers at a range of scales to better inform our policy and management decisions. Furthermore, by scoring the quality of evidence, this framework helps us identify research gaps and needs. PMID:27007973

  5. Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.

    2015-12-01

    The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change

  6. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    NASA Astrophysics Data System (ADS)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    The current study was carried out within the FP7 ECLISE project in the Eastern Lower Danube Plain (Bărăgan Plain), one of the major agricultural areas in Romania. In this region, climate change signals are becoming more evident being predominantly characterized by increasing temperatures, decreasing of precipitations and intensification of extreme events in terms of frequency, intensity and duration. Over the past decades, the effects of extreme climatic phenomena on crop production have been ever more severe (very low outputs in the droughty years, significant crop losses during flooding periods, hailstorms, etc.). Concurrently, these effects have been the result of a whole range of complex interactions with other environmental, social, economic and political factors over the post-communist period. Using questionnaires survey for small individual households and large agricultural farms, focus group interviews and direct field observation, this study analyses the farmers' perception in terms of climate change, the impact of climate change on agriculture and how the farmers react and adapt to these changes. The current study have revealed that all farmers believe drought as being by far the most important climatic factor with major impact on agricultural production, followed by acid rains, hail storms and ground frost, facts evidenced also by the climatic diagnosis of the region. The majority of respondents have taken adaptation agricultural measures in response to changes in climate conditions (drought resistant seeds, modern technology to keep the moisture in the soil, etc.), but they consider that a national strategy for mitigating the effects of climate change would be more effective in this respect. Also, in order to correlate the farmers' perception of climate change and climatic factors, the authors used and processed a wide range of meteorological data (daily, monthly and annual from the most representative meteorological stations in the study-area), as

  7. Communicating Climate Change in the Agricultural Sector: Insights from Surveys and Interviews with Agricultural Advisors in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Prokopy, L. S.; Carlton, S.; Dunn, M.

    2014-12-01

    Understanding U.S. agricultural stakeholder views about the existence of climate change and what influences these views is central to developing communication in support of adaptation and mitigation. It has been postulated in the literature that extreme weather events can shape people's climate change beliefs and adaptation attitudes. In this presentation, we use data from pre- and post-extreme event surveys and interviews to examine the effects of the 2012 Midwestern US drought on agricultural advisors' climate change beliefs, adaptation attitudes, and risk perceptions. We found that neither climate change beliefs nor attitudes toward adaptation changed significantly as a result of the drought. Risk perceptions did change, however, with advisors becoming more concerned about risks from drought and pests and less concerned about risks related to flooding and ponding. Qualitative interviews revealed that while advisors readily accept the occurrence of extreme weather as a risk, the irregularity and unpredictability of extreme events for specific localities limits day-to-day consideration in respect to prescribed management advice. Instead, advisors' attention is directed towards planning for short-term changes encompassing weather, pests, and the market, as well as planning for long-term trends related to water availability. These findings provide important insights for communicating climate change in this critical sector while illustrating the importance of social science research in planning and executing communication campaigns.

  8. Agriculture Insurance: Adaptation to Vulnerability of Climate Change in Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Ambarawati, I. G. A. A.; Hongo, C.; Mirah Adi, A. A. A.; Tamura, E.

    2014-12-01

    Bali province of Indonesia is worldwide known for its tourist destination and it contributes more than 60 per cent to the regional domestic product. Meanwhile, agricultural sector including rice production still plays an important role in the Bali economy because of its 30 per cent contribution. Rice production in Bali is not just susceptible to loss caused by flood, drought and pest and disease attack but also from the climate change. The impact of climate change on food production in Indonesia is expected to decline in 2050, ranging from 38 per cent to more than ten-folds of the current production (Syaukat, 2011). Accordingly, adaptation to climate changes is required to minimize the risk along with the plans and strategies for food security and sustainable development. The government of Indonesia (GoI) has launched several pilot projects including agriculture insurance program to minimize the risk in production failure particularly rice farming, unfortunately Bali was excluded from the projects. Implementation of agriculture insurance in Indonesia has the legal basis now after the announcement of the Farmer Protection and Empowerment Act (Law No. 19/2013). Agriculture insurance is seen better in mitigating farmer's risk than that of the other program in rice production. The GoI plans to implement the insurance scheme in the beginning of 2015. This scheme is something "new" to farmers in Bali and Indonesia. Considering the importance of crop insurance to agriculture, this study attempts to explore the potential of such insurance to reveal a clear picture of opportunities and challenges in agriculture insurance implementation in Bali. The study empirically presents awareness and perception of farmers towards the insurance and adaptation to vulnerability of climate change. The study concludes with various suggestions for increasing the awareness of farmers for ensuring better penetration of agriculture insurance in Bali. Key words: agriculture insurance, farmer

  9. Functional foods and urban agriculture: two responses to climate change-related food insecurity.

    PubMed

    Dixon, Jane M; Donati, Kelly J; Pike, Lucy L; Hattersley, Libby

    2009-01-01

    Affluent diets have negative effects on the health of the population and the environment. Moreover, the ability of industrialised agricultural ecosystems to continue to supply these diets is threatened by the anticipated consequences of climate change. By challenging the ongoing supply the diets of affluent countries, climate change provides a population and environmental health opportunity. This paper contrasts two strategies for dealing with climate change-related food insecurity. Functional foods are being positioned as one response because they are considered a hyper-efficient mechanism for supplying essential micronutrients. An alternative response is civic and urban agriculture. Rather than emphasising increased economic or nutritional efficiencies, civic agriculture presents a holistic approach to food security that is more directly connected to the economic, environmental and social factors that affect diet and health. PMID:19261211

  10. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  11. Using changes in agricultural utility to quantify future climate-induced risk to conservation.

    PubMed

    Estes, Lyndon D; Paroz, Lydie-Line; Bradley, Bethany A; Green, Jonathan M H; Hole, David G; Holness, Stephen; Ziv, Guy; Oppenheimer, Michael G; Wilcove, David S

    2014-04-01

    Much of the biodiversity-related climate change impacts research has focused on the direct effects to species and ecosystems. Far less attention has been paid to the potential ecological consequences of human efforts to address the effects of climate change, which may equal or exceed the direct effects of climate change on biodiversity. One of the most significant human responses is likely to be mediated through changes in the agricultural utility of land. As farmers adapt their practices to changing climates, they may increase pressure on some areas that are important to conserve (conservation lands) whereas lessening it on others. We quantified how the agricultural utility of South African conservation lands may be altered by climate change. We assumed that the probability of an area being farmed is linked to the economic benefits of doing so, using land productivity values to represent production benefit and topographic ruggedness as a proxy for costs associated with mechanical workability. We computed current and future values of maize and wheat production in key conservation lands using the DSSAT4.5 model and 36 crop-climate response scenarios. Most conservation lands had, and were predicted to continue to have, low agricultural utility because of their location in rugged terrain. However, several areas were predicted to maintain or gain high agricultural utility and may therefore be at risk of near-term or future conversion to cropland. Conversely, some areas were predicted to decrease in agricultural utility and may therefore prove easier to protect from conversion. Our study provides an approximate but readily transferable method for incorporating potential human responses to climate change into conservation planning. PMID:24372589

  12. An exploratory study on occurrence and impact of climate change on agriculture in Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Varadan, R. Jayakumara; Kumar, Pramod; Jha, Girish Kumar; Pal, Suresh; Singh, Rashmi

    2015-12-01

    This study has been undertaken to examine the occurrence of climate change in Tamil Nadu, the southernmost state of India and its impact on rainfall pattern which is a primary constraint for agricultural production. Among the five sample stations examined across the state, the minimum temperature has increased significantly in Coimbatore while the same has decreased significantly in Vellore whereas both minimum and maximum temperatures have increased significantly in Madurai since 1969 with climate change occurring between late 1980s and early 1990s. As a result, the south-west monsoon has been disturbed with August rainfall increasing with more dispersion while September rainfall decreasing with less dispersion. Thus, September, the peak rainfall month of south-west monsoon before climate change, has become the monsoon receding month after climate change. Though there has been no change in the trend of the north-east monsoon, the quantity of October and November rainfall has considerably increased with increased dispersion after climate change. On the whole, south-west monsoon has decreased with decreased dispersion while north-east monsoon has increased with increased dispersion. Consequently, the season window for south-west monsoon crops has shortened while the north-east monsoon crops are left to fend against flood risk during their initial stages. Further, the incoherence in warming, climate change and rainfall impact seen across the state necessitates devising different indigenous and institutional adaptation strategies for different regions to overcome the adverse impacts of climate change on agriculture.

  13. Essays on agricultural adaptation to climate change and ethanol market integration in the U.S

    NASA Astrophysics Data System (ADS)

    Aisabokhae, Ruth Ada

    Climate factors like precipitation and temperature, being closely intertwined with agriculture, make a changing climate a big concern for the entire human race and its basic survival. Adaptation to climate is a long-running characteristic of agriculture evidenced by the varying types and forms of agricultural enterprises associated with differing climatic conditions. Nevertheless climate change poses a substantial, additional adaptation challenge for agriculture. Mitigation encompasses efforts to reduce the current and future extent of climate change. Biofuels production, for instance, expands agriculture's role in climate change mitigation. This dissertation encompasses adaptation and mitigation strategies as a response to climate change in the U.S. by examining comprehensively scientific findings on agricultural adaptation to climate change; developing information on the costs and benefits of select adaptations to examine what adaptations are most desirable, for which society can further devote its resources; and studying how ethanol prices are interrelated across, and transmitted within the U.S., and the markets that play an important role in these dynamics. Quantitative analysis using the Forestry and Agricultural Sector Optimization Model (FASOM) shows adaptation to be highly beneficial to agriculture. On-farm varietal and other adaptations contributions outweigh a mix shift northwards significantly, implying progressive technical change and significant returns to adaptation research and investment focused on farm management and varietal adaptations could be quite beneficial over time. Northward shift of corn-acre weighted centroids observed indicates that substantial production potential may shift across regions with the possibility of less production in the South, and more in the North, and thereby, potential redistribution of income. Time series techniques employed to study ethanol price dynamics show that the markets studied are co-integrated and strongly

  14. Climate change, diversified agriculture and adaptive capacity in Hawaii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Export-oriented sugar cane and pineapple plantation agriculture once dominated Hawaii's economy but over the latter half of the 20th Century, there was a rapid decline in the production of these crops as Hawaii's competitive advantage over foreign producers dwindled. The decline of the plantations c...

  15. Changes in climate variability with reference to land quality and agriculture in Scotland.

    PubMed

    Brown, Iain; Castellazzi, Marie

    2015-06-01

    Classification and mapping of land capability represents an established format for summarising spatial information on land quality and land-use potential. By convention, this information incorporates bioclimatic constraints through the use of a long-term average. However, climate change means that land capability classification should also have a dynamic temporal component. Using an analysis based upon Land Capability for Agriculture in Scotland, it is shown that this dynamism not only involves the long-term average but also shorter term spatiotemporal patterns, particularly through changes in interannual variability. Interannual and interdecadal variations occur both in the likelihood of land being in prime condition (top three capability class divisions) and in class volatility from year to year. These changing patterns are most apparent in relation to the west-east climatic gradient which is mainly a function of precipitation regime and soil moisture. Analysis is also extended into the future using climate results for the 2050s from a weather generator which show a complex interaction between climate interannual variability and different soil types for land quality. In some locations, variability of land capability is more likely to decrease because the variable climatic constraints are relaxed and the dominant constraint becomes intrinsic soil properties. Elsewhere, climatic constraints will continue to be influential. Changing climate variability has important implications for land-use planning and agricultural management because it modifies local risk profiles in combination with the current trend towards agricultural intensification and specialisation. PMID:25099211

  16. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    SciTech Connect

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal; Blanc, Elodie; Calvin, Katherine V.; Hasegawa, Tomoko; Havlik, Petr; Heyhoe, Edwina; Kyle, G. Page; Lotze-Campen, Hermann; von Lampe, Martin; Mason d'Croz, Daniel; van Meijl, Hans; Mueller, C.; Reilly, J. M.; Robertson, Richard; Sands, Ronald; Schmitz, Christoph; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Willenbockel, Dirk

    2014-01-01

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.

  17. Climate change and agricultural development: adapting Polish agriculture to reduce future nutrient loads in a coastal watershed.

    PubMed

    Piniewski, Mikołaj; Kardel, Ignacy; Giełczewski, Marek; Marcinkowski, Paweł; Okruszko, Tomasz

    2014-09-01

    Currently, there is a major concern about the future of nutrient loads discharged into the Baltic Sea from Polish rivers because they are main contributors to its eutrophication. To date, no watershed-scale studies have properly addressed this issue. This paper fills this gap by using a scenario-modeling framework applied in the Reda watershed, a small (482 km²) agricultural coastal area in northern Poland. We used the SWAT model to quantify the effects of future climate, land cover, and management changes under multiple scenarios up to the 2050s. The combined effect of climate and land use change on N-NO3 and P-PO4 loads is an increase by 20-60 and 24-31 %, respectively, depending on the intensity of future agricultural usage. Using a scenario that assumes a major shift toward a more intensive agriculture following the Danish model would bring significantly higher crop yields but cause a great deterioration of water quality. Using vegetative cover in winter and spring (VC) would be a very efficient way to reduce future P-PO4 loads so that they are lower than levels observed at present. However, even the best combination of measures (VC, buffer zones, reduced fertilization, and constructed wetlands) would not help to remediate heavily increased N-NO3 loads due to climate change and agricultural intensification. PMID:24154850

  18. Estimating farmers' willingness to pay for climate change adaptation: the case of the Malaysian agricultural sector.

    PubMed

    Masud, Muhammad Mehedi; Junsheng, Ha; Akhtar, Rulia; Al-Amin, Abul Quasem; Kari, Fatimah Binti

    2015-02-01

    This paper estimates Malaysian farmers' willingness to pay (WTP) for a planned adaptation programme for addressing climate issues in the Malaysian agricultural sector. We used the contingent valuation method (CVM) for a monetary valuation of farmers' preferences for a planned adaptation programme by ascertaining the value attached to address climatic issues in the Malaysian agricultural sector. Structured questionnaires were distributed among the sampled farmers. The study found that 74 % of respondents were willing to pay for a planned adaptation programme and that several socioeconomic and motivation factors have greater influence on their WTP. This paper clearly specifies the steps needed for all institutional bodies to better address issues in climate change. The outcomes of this paper will support policy makers to better design an efficient adaptation framework for adapting to the adverse impacts of climate change. PMID:25632900

  19. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  20. Structural equation modeling facilitates transdisciplinary research on agriculture and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is representative of many of the “grand challenges” facing agriculture and the environment—it is complex, spans traditional disciplinary boundaries, and is both a consequence and driver of coupled physical, biological, and socioeconomic processes acting at multiple spatial and tempora...

  1. Climate change, plant traits, and invasion in natural and agricultural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species and climate change, each of which is likely to influence agricultural productivity and biological diversity, are also likely to interact. This chapter explores characteristics of both invasive plants and invaded ecosystems to search for generalizations that may allow us to predict w...

  2. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar

    PubMed Central

    Harvey, Celia A.; Rakotobe, Zo Lalaina; Rao, Nalini S.; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; MacKinnon, James L.

    2014-01-01

    Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change. PMID:24535397

  3. Challenging a trickle-down view of climate change on agriculture and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is largely viewed as affecting ecohydrology of the Earth’s surface, but various studies are showing deeper effects on groundwater. Agricultural systems may be studied at the land surface and into the root zone with deeper effects of water and chemical movement to groundwater. ...

  4. Adaptation Planning for Climate Change Impacts on Irrigated Agriculture in California

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Fekete, B. M.; Ruane, A. C.; Rosenzweig, C.

    2012-12-01

    Climate change presents a unique challenge to water resources managers. As evolving patterns of precipitation alter the quantity and quality of runoff within watersheds, demand from competing sectors continues to increase. The agricultural industry is especially sensitive to future shifts in water supply and demand since irrigated croplands require large quantities of water at low prices. California is of interest because of its $35-billion agricultural sector, limited water resources, and complexity. This presentation explores future changes to the water resources of the western United States and the implications of these changes on California's irrigated agriculture. North American Regional Climate Change Assessment Program (NARCCAP) model output was used to drive current (1980-1999) and future (2050-2069) Water Balance/Transport Model (WBM) simulations of key water cycle components, including evapotranspiration, soil moisture, surface runoff, and groundwater recharge, as well as some water use components, including agricultural and electrical, over the contiguous United States. Climatic and hydrologic data were then synthesized to evaluate whether drought conditions in California, both historic and future, dominantly coincide with droughts in adjacent states and identify neighboring regions with the potential to provide supplemental water resources to California. Uncertainty in the assessment of future water supply was analyzed using multiple general circulation model-regional climate model pairs from NARCCAP.

  5. A system's approach to assess the exposure of agricultural production to climate change and variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating the exposure of agriculture to climate variability and change can help us to understand the key vulnerability as well as improve the adaptive capacity which is important for increasing food production to feed the world’s increasing population. A number of indices are available in literat...

  6. Spatial Modeling of Indian Agriculture, Economic Activity and Population under Climate Change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2010-12-01

    We present a spatial model of economic activity and human population built on physical geography that takes particular account of its effects through agricultural productivity and transport costs for trade. A major component of this work is an agricultural model, driven in part by high-resolution climate data and model output. We put forward India as the initial region for this modeling work; India is a relatively data-rich country, it exhibits significant within-country spatial and temporal variation in agricultural productivity, urbanization rates, and population growth rates, and the climate dynamics of the monsoon are well-studied and expected to change on decadal time scales. Agricultural productivity is modeled as a function of soil, climate, and technology variables. Farmers locate optimally given varying geography and transport costs; in turn, food availability defines urbanization rates and economic activity in non-agricultural sectors. This “social system” integrated assessment model is a step towards a valuable policy tool, but requires a significant mobilization of data and a grid-cell-level system of equations to describe the underlying dynamics of the model. We test against past trends of social-natural system progression in demography, human location, income, food production, etc., and argue that the model could be used to assess future trends under varying climate change scenarios, and eventually serve to model feedbacks through effects on migration, population growth rates, or economic activity.

  7. Environmental sub models for a macroeconomic model: agricultural contribution to climate change and acidification in Denmark.

    PubMed

    Jensen, Trine S; Jensen, Jørgen D; Hasler, Berit; Illerup, Jytte B; Andersen, Frits M

    2007-01-01

    Integrated modelling of the interaction between environmental pressure and economic development is a useful tool to evaluate environmental consequences of policy initiatives. However, the usefulness of such models is often restricted by the fact that these models only include a limited set of environmental impacts, which are often energy-related emissions. In order to evaluate the development in the overall environmental pressure correctly, these model systems must be extended. In this article an integrated macroeconomic model system of the Danish economy with environmental modules of energy related emissions is extended to include the agricultural contribution to climate change and acidification. Next to the energy sector, the agricultural sector is the most important contributor to these environmental themes and subsequently the extended model complex calculates more than 99% of the contribution to both climate change and acidification. Environmental sub-models are developed for agriculture-related emissions of CH(4), N(2)O and NH(3). Agricultural emission sources related to the production specific activity variables are mapped and emission dependent parameters are identified in order to calculate emission coefficients. The emission coefficients are linked to the economic activity variables of the Danish agricultural production. The model system is demonstrated by projections of agriculture-related emissions in Denmark under two alternative sets of assumptions: a baseline projection of the general economic development and a policy scenario for changes in the husbandry sector within the agricultural sector. PMID:16549237

  8. Climate Change and Agriculture in the U.S.: Effects and Adaptation (Invited)

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Rippey, B.; Walthall, C. L.; Hatfield, J.; Backlund, P. W.; Lengnick, L.; Marshall, E.

    2013-12-01

    Agriculture in the United States has followed a path of continual adaptation to a wide range of factors throughout its history. However, observational evidence, supported by an understanding of the physical climate system, shows that human-induced climate change is underway in the U.S. and even now causing changes for which there is no historical reference for producers. Temperatures have increased and precipitation patterns have changed; the incidence, frequency, and extent of pest infestations have been altered, as well as the natural resource base (water, air, and soils) upon which production depends. Each factor challenges agricultural management as atmospheric concentrations of greenhouse gases rise. These trends are likely to continue over the next century. Importantly, a gap exists between U.S. agricultural producers and managers' needs related to climate-driven problems and the information that research currently offers them. In the past, agricultural research into climate change effects has largely focused on mean values of precipitation and temperature. Today's management requirements, however, often demand immediate response on shorter time scales to address abrupt, often novel needs. Further complicating this reality, future decisions will likely require even greater emphasis on managing under increasing levels of uncertainty, and planning for and adjusting to the extremes. Research is moving to better address these emerging issues for the relevant timescales and parameters in order to allow the formulation of improved and resilient management strategies that apply to a future in which past experience has become less applicable. A climate-ready U.S. agricultural system requires easy access to useable climate knowledge and technical resources, improved climate risk management strategies, new processes to support effective adaptive actions, and the development of sustainable production systems resilient to climate effects. Mainstreaming climate knowledge

  9. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  10. Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.

    2012-12-01

    Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions

  11. How could Mosan agriculture be impacted by climate change and future droughts ?

    NASA Astrophysics Data System (ADS)

    Bauwens, A.; Sohier, C.; Deraedt, D.; Degré, A.

    2012-04-01

    Despite the great uncertainties regarding the future climatic context, lots of studies have focused on hydrological effects of climate change on the Meuse catchment. It appears that both winter high flows and summer low flows could be exacerbated. Climate change and its impacts on hydrology will thus affect various socio-economic sectors. High flows have been widely studied compared to low-flows. This poster will put the emphasis on a methodology developed in order to study impacts of droughts on agriculture. Agriculture is among the most impacted sectors due to climate change. The consequences could be both positive as negative in accordance with the range of predicted changes and the adaptation capacity of agricultural systems. Most of the existing studies related to climate change on agriculture focused on specific territory. Within the AMICE Interreg IVB project, a transnational approach has been developed to assess droughts impacts on agriculture through the Meuse basin. The project's previous works gave us a common scenario of climate trends and of the evolution of the hydrology in the Meuse basin. The methodology is based on the use of a physically-based model able to simulate the water-soil-plant continuum (derived from EPIC model). In order to be transferable from one country to another, the methodology proposed used data available at the basin scale. The UE soil data base was complemented with local information on agricultural practices and statistics. Three crops have been studied: maize, wheat and barley. The basic cultural calendar is supposed to be the same for the different countries. The methodology developed permits to study the evolution of yields, leaf area index, crops stress due to excess or lack of water through time under different scenarios build up in the frame of the project. It appears that corn is negatively affected by climate change, and thus despite the CO2 fertilization effect. Wheat and barley have similar behavior and are

  12. Service Center for Climate Change Adaptation in Agriculture - an initiative of the University of West Hungary

    NASA Astrophysics Data System (ADS)

    Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.

    2012-04-01

    In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on

  13. Modeling irrigation-based climate change adaptation in agriculture: Model development and evaluation in Northeast China

    NASA Astrophysics Data System (ADS)

    Okada, Masashi; Iizumi, Toshichika; Sakurai, Gen; Hanasaki, Naota; Sakai, Toru; Okamoto, Katsuo; Yokozawa, Masayuki

    2015-09-01

    Replacing a rainfed cropping system with an irrigated one is widely assumed to be an effective measure for climate change adaptation. However, many agricultural impact studies have not necessarily accounted for the space-time variations in the water availability under changing climate and land use. Moreover, many hydrologic and agricultural assessments of climate change impacts are not fully integrated. To overcome this shortcoming, a tool that can simultaneously simulate the dynamic interactions between crop production and water resources in a watershed is essential. Here we propose the regional production and circulation coupled model (CROVER) by embedding the PRYSBI-2 (Process-based Regional Yield Simulator with Bayesian Inference version 2) large-area crop model into the global water resources model (called H08), and apply this model to the Songhua River watershed in Northeast China. The evaluation reveals that the model's performance in capturing the major characteristics of historical change in surface soil moisture, river discharge, actual crop evapotranspiration, and soybean yield relative to the reference data during the interval 1979-2010 is satisfactory accurate. The simulation experiments using the model demonstrated that subregional irrigation management, such as designating the area to which irrigation is primarily applied, has measurable influences on the regional crop production in a drought year. This finding suggests that reassessing climate change risk in agriculture using this type of modeling is crucial not to overestimate potential of irrigation-based adaptation.

  14. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080.

    PubMed

    Fischer, Günther; Shah, Mahendra; Tubiello, Francesco N; van Velhuizen, Harrij

    2005-11-29

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological-economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5' X 5' latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change. PMID:16433094

  15. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080

    PubMed Central

    Fischer, Günther; Shah, Mahendra; N. Tubiello, Francesco; van Velhuizen, Harrij

    2005-01-01

    A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological–economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5′×5′ latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change. PMID:16433094

  16. The acceptability of climate change in agricultural communities: comparing responses across variability and change.

    PubMed

    Raymond, Christopher M; Spoehr, John

    2013-01-30

    This study examined how the terms used to describe climate change influence landholder acceptability judgements and attitudes toward climate change at the local scale. Telephone surveys were conducted with landholders from viticultural (n = 97) or cereal growing (n = 195) backgrounds in rural South Australia. A variety of descriptive and inferential statistics were used to examine the influence of human-induced climate change and winter/spring drying trend terms on adaptation responses and uncertainties surrounding climate change science. We found that the terms used to describe climate change leads to significant differences in adaptation response and levels of scepticism surrounding climate change in rural populations. For example, those respondents who accepted human induced climate change as a reality were significantly more likely to invest in technologies to sow crops earlier or increase the amount of water stored or harvested on their properties than respondents who accepted the winter/spring drying trend as a reality. The results have implications for the targeting of climate change science messages to both rural landholders and communities of practice involved in climate change adaptation planning and implementation. PMID:23246767

  17. Farmers' Preferences for Future Agricultural Land Use Under the Consideration of Climate Change

    NASA Astrophysics Data System (ADS)

    Pröbstl-Haider, Ulrike; Mostegl, Nina M.; Kelemen-Finan, Julia; Haider, Wolfgang; Formayer, Herbert; Kantelhardt, Jochen; Moser, Tobias; Kapfer, Martin; Trenholm, Ryan

    2016-09-01

    Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity.

  18. Farmers' Preferences for Future Agricultural Land Use Under the Consideration of Climate Change.

    PubMed

    Pröbstl-Haider, Ulrike; Mostegl, Nina M; Kelemen-Finan, Julia; Haider, Wolfgang; Formayer, Herbert; Kantelhardt, Jochen; Moser, Tobias; Kapfer, Martin; Trenholm, Ryan

    2016-09-01

    Cultural landscapes in Austria are multifunctional through their simultaneous support of productive, habitat, regulatory, social, and economic functions. This study investigates, if changing climatic conditions in Austria will lead to landscape change. Based on the assumption that farmers are the crucial decision makers when it comes to the implementation of agricultural climate change policies, this study analyzes farmers' decision-making under the consideration of potential future climate change scenarios and risk, varying economic conditions, and different policy regimes through a discrete choice experiment. Results show that if a warming climate will offer new opportunities to increase income, either through expansion of cash crop cultivation or new land use options such as short-term rotation forestry, these opportunities will almost always be seized. Even if high environmental premiums were offered to maintain current cultural landscapes, only 43 % of farmers would prefer the existing grassland cultivation. Therefore, the continuity of characteristic Austrian landscape patterns seems unlikely. In conclusion, despite governmental regulations of and incentives for agriculture, climate change will have significant effects on traditional landscapes. Any opportunities for crop intensification will be embraced, which will ultimately impact ecosystem services, tourism opportunities, and biodiversity. PMID:27372660

  19. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  20. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  1. Climate and Agriculture: Model Inter-Comparison for Evaluating the Uncertainties in Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Geethalakshmi, V.; Lakshmanan, A.; Bhuvaneswari, K.; Rajalakshmi, D.; Sekhar, N. U.; Anbhazhagan, R.; Gurusamy, L.

    2011-12-01

    Presence of large uncertainties in climate models (CM) and in future emission scenarios makes it difficult to predict the long-term climate changes at regional scales. Climate models do a reasonable job of capturing the large-scale aspects of current climate but still contain systematic model errors adding uncertainty to the future projections. Using CM outputs in impact models also cascade the uncertainty in climate change research. A study was undertaken with the objective of evaluating the uncertainty of climate change predictions by comparing the outputs from Regional Climate Models (RCM) and their resultant impact on rice productivity in Bhavani basin of Tamil Nadu, India. Current and future climate data were developed using RCMs viz., RegCM3 and PRECIS considering SRES A1B scenario for 130 years (1971-2100). The RCM outputs were used in DSSAT and EPIC models for assessing the impact of climate change. Results were compared to assess the magnitude of uncertainty in predicting the future climate and the resultant impacts. Comparison of predicted current climate with observed data indicated that RegCM3 under estimates maximum temperature by 1.8 °C while, PRECIS over estimates by 1.1°C over 40 years (1971 - 2010). The minimum temperature was under estimated by both the models, but with varying magnitude (3.8 °C for RegCM3 and 1 °C for PRECIS). RegCM3 over predicted rainfall (14 %), in contrast, PRECIS underpredicted (30.9 %) the same. Future climate projections indicated gradual increase in maximum and minimum temperatures with progress of time. Increase of maximum and minimum temperatures in PRECIS was 3.7oC and 4.2oC respectively and in RegCM3, it was 3.1oC and 3.7oC by 2100. No clear trend could be observed for rainfall other than increase in the quantum compared to current rainfall. Rice yield simulated over Bhavani basin for current and future climate by DSSAT, without CO2 fertilization effect, indicated reduction of 356 and 217 Kg ha-1decade-1 for

  2. COST 734-CLIVAGRI: Impacts of Climate change and Variability on European Agriculture

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Nejedlik, P.; Eitzinger, J.; Alexandrov, V.; Toulios, L.; Kajfez Bogataj, L.; Calanca, P.; Trnka, M.; Olesen, J. E.

    2009-09-01

    COST is an intergovernmental framework for European Cooperation in Science and Technology, funded by its member countries through the EU Framework Programme. The objective of COST is to coordinate, integrate and synthesise results from ongoing national research within and between COST member countries to add value to research investment. COST Actions aim to deliver scientific syntheses and analyses of best available practice to aid problem identification, risk assessment, public utilities and policy development. During 2006, COST Action 734 (CLIVAGRI-Impacts of Climate Change and Variability on European Agriculture) was launched thanks to the coordinated activity of 15 EU countries. The main objective of the Action is the evaluation of possible impacts from climate change and variability on agriculture and the assessment of critical thresholds for various European areas (COST 734 MoU. www.cost.esf.org). Secondary objectives are: the collection and review of existing agroclimatic indices and simulation models, to assess hazard impacts on various European agricultural areas relating hazards to climatic conditions; building climate scenarios for the next few decades; the definition of harmonised criteria to evaluate the impacts of climate change and variability on agriculture; the definition of warning systems guidelines. Four working groups, with the integration of remote sensing sub working group 2.1 were created to address these aims: WG1 - Agroclimatic indices and simulation models WG2 - Evaluation of the current trends of agroclimatic indices and simulation model outputs describing agricultural impacts and hazard levels WG3 - Development and assessment of future regional and local scenarios of agroclimatic conditions WG4 - Risk assessment and foreseen impacts on agriculture The activity of WGs has been structured like a matrix, presenting on the rows the methods of analysis and on the columns the phenomena and the hazards. Each intersection point describes the

  3. Mitigating climate change through managing constructed-microbial communities in agriculture

    DOE PAGESBeta

    Hamilton, Cyd E.; Bever, James D.; Labbe, Jessy; Yang, Xiaohan; Yin, Hengfu

    2015-10-27

    The importance of increasing crop production while reducing resource inputs and land-use change cannot be overstated especially in light of climate change and a human population growth projected to reach nine billion this century. Here, mutualistic plant microbe interactions offer a novel approach to enhance agricultural productivity while reducing environmental costs. In concert with other novel agronomic technologies and management, plant-microbial mutualisms could help increase crop production and reduce yield losses by improving resistance and/or resilience to edaphic, biologic, and climatic variability from both bottom-up and top-down perspectives.

  4. Mitigating climate change through managing constructed-microbial communities in agriculture

    SciTech Connect

    Hamilton, Cyd E; Bever, James; Labbe, Jessy; Yang, Xiaohan; Yin, Hengfu

    2016-01-01

    The importance of increasing crop production while reducing resource inputs and land-use change cannot be overstated especially in light of climate change and a human population growth projected to reach nine billion this century. Mutualistic plant microbe interactions offer a novel approach to enhance agricultural productivity while reducing environmental costs. In concert with other novel agronomic technologies and management, plant-microbial mutualisms could help increase crop production and reduce yield losses by improving resistance and/or resilience to edaphic, biologic, and climatic variability from both bottom-up and top-down perspectives.

  5. Climate change information supporting adaptation in forestry and agriculture - results and challenges

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála; Czimber, Kornél; Gribovszki, Zoltán; Bidló, András; Csáki, Péter; Kalicz, Péter; Haensler, Andreas; Jacob, Daniela; Mátyás, Csaba

    2015-04-01

    Recurrent droughts of the last decades have led to severe impacts in forestry and agriculture in the sensitive and vulnerable low-elevation regions of Southeast Europe. Observed impacts are very likely to occur with increasing probability under projected climate conditions throughout the 21st century. In order to suggest options for adaptation and mitigation, a GIS-based Decision Support System is under development in the frame of the joint EU-national research project "Agroclimate". Impact assessments and adaptation support services are based on the simulation results of 12 regional climate models (www.ensembles-eu.org) using the A1B emission scenario until 2100. The development of the Decision Support System requires the balancing of available climatic information and required data for research and economically relevant projection needs of the end users. Here, concrete examples of the development process will be shown for the stepwise analysis and comparison of the followings: 1. Provided climate services: • projected tendencies of temperature and precipitation means and extremes until the end of the 21st century, spread of the simulation results. 2. Required information for climate impact research: • types and characteristics of climate input data, • methods and functions for deriving possible climate change impacts in forestry and agriculture (e.g. on species distribution, growth, production, yield, soil water retention, ground water table, runoff, erosion, evapotranspiration and other ecosystem services and soil properties). 3. Required climate information from the end users' side for developing adaption strategies in the affected sectors: • types of climate indicators, • possible range of the expected impacts (in magnitude and probability). 4. Gaps between climate services and the needs of impact researchers and end users (e.g. spatial and temporal scales, interpretation techniques). Experiences of supporting climate change adaptation in forestry

  6. Utilization of remotely sensed data for agricultural insurance as adaptation to climate change

    NASA Astrophysics Data System (ADS)

    Hongo, C.; Ogasawara, C.; Sigit, G.; Tamura, E.

    2015-12-01

    Impact of climate change is not only seen on food production but also on food security, socio-economics of the poor and sustainable development of society. Adaptation to climate change is a pressing issue throughout the world to reduce the risks along with the plans and strategies for food security and sustainable development. As a key adaptation to the climate change, agricultural insurance is expected to play an important role in stabilizing agricultural production through compensating the losses caused by the climate change, meaning that the agricultural insurance can contribute to promotion of the stability in food security as one of 4 pillars defined by FOA of the United Nations. Having the above as background, we conducted research on utilization of remote sensing data including satellite data to assess damage ratio of rice production which could be used for calculation of indemnity in the agricultural insurance. Our study site was in West Java, Indonesia. For assessment of the damage ratio, estimation of rice yield is a key. As the result of our study, rice yield in dry season could be estimated at level of 1 % significance using SPOT5 satellite data taken in 2014, and the 10-fold cross-validation result was 0.7t/ha. Then, the decrease ratio in rice yield about each individual paddy field was calculated using data on the estimated result and the average yield of the past 10 years. According to the Indonesian agricultural insurance, if the damage of rice reaches 75% or above, the indemnity shall be paid to farmers. In our study site, the result showed that about 80 paddy fields located in lower irrigation region were the area to be paid by the insurance. Our study results suggest that the utilization of remote sensing data is much useful and promising for assessment of the damage ratio of rice production with precise, quick and quantitative, and also it can be incorporated into the insurance procedures.

  7. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  8. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  9. Climate Change, Agriculture and Sustainable Groundwater Management: Groundwater Reserves as a Hedge Against Climate Change and Drought (Invited)

    NASA Astrophysics Data System (ADS)

    Langridge, R.; Fisher, A. T.

    2010-12-01

    In regions of California and the Southwestern United States, climate change is projected to increase the frequency of prolonged drought events. While there is a critical need for proactive strategies to cushion the effects of future water shortages on agriculture, drought planning is essentially reactive, centered on how to manage water shortages after a dry period occurs. Our paper discusses a proactive approach to improve water supply security for agriculture during droughts, the development and maintenance of strategic groundwater reserves. This would involve bringing groundwater basins into hydrologic balance through recharge processes to reduce groundwater level decline rates and maintaining sufficient groundwater levels to sustain a reserve. Recovery of water to satisfy reasonable short-term demand would occur so long as the reserve is maintained. We discuss the physical and institutional opportunities and constraints to developing reserves in several sites along California’s north and central coast where groundwater levels have been declining and communities are particularly vulnerable to future droughts and concomitant water shortages. We examine preliminary hydrologic and social metrics for a reserve, developed on the basis of local and regional conditions, as well as mechanisms and incentives to sustain a reserve.

  10. Modeling the impacts of climate change and agricultural management practices on surface erosion in a dryland agricultural basin

    NASA Astrophysics Data System (ADS)

    Ottenbreit, E.; Adam, J. C.; Barber, M. E.

    2010-12-01

    The objective of this study is to investigate the effects of climate change and agricultural management practices on suspended sediment concentrations in the Potlach River basin in northwestern Idaho. Suspended sediment is a pollutant in many water systems and contributes to the impairment of streams. Conventional tillage practices and rain-on-snow events in the Palouse region of northern Idaho and eastern Washington can produce some of the highest sediment losses per acre in the United States. Climate change may lead to further problems as more frequent and intense winter storm events are predicted to occur. Many hydrological models have been developed which examine suspended sediment in river systems. The Potlatch River basin near Julietta, ID was examined using the Distributed Hydrology Soil Vegetation Model (DHSVM), which has a sediment module that includes surface erosion and channel sediment transport. DHSVM was calibrated and evaluated over the historical period of streamflow observations and was used to predict soil erosion rates and suspended sediment concentrations using a range of downscaled Global Climate Models (GCMs) emissions scenarios for the year 2045. Furthermore, the sensitivity of suspended sediment concentrations to conventional versus convservative tillage practices was explored. The results show that as the projected climate-driven intensity of storms increase, more sediment is predicted in the Potlatch River. Suspended sediment and streamflow are predicted to increase during the late fall through the early spring. This increase occurs during times of heightened runoff when suspended sediment concentration in the river is highest. Three tillage scenarios were incorporated into DHSVM for winter wheat: conventional till, reduced till, and no till. Erosion and suspended sediment were higher during storm events under conventional agricultural tillage scenarios. In the long-term, this research can lead to examination of the effects of climate

  11. Climate Change and Agriculture in Africa: Impact Assessment and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Brown, Molly E.; McCusker, Brent

    2008-11-01

    As climate change has emerged as a significant threat, there is much concern about how vulnerable agricultural communities will adapt, particularly as global population continues to rise. Much of the current lack of productivity and economic marginalization of African agriculture arises from global trade regimes that give a competitive advantage to Western farmers, from low use of agricultural inputs, and from a dearth of infrastructure and services for the agriculture sector. For centuries, African farmers have used a wide variety of risk-reducing livelihood strategies, including diversifying income sources, switching crops, and investing in marketing. However, improving their productivity to ``modern'' levels has remained a distant dream, resulting in a continual reduction in investment in the sector over the past five decades.

  12. Importance of impacts scenarios for the adaptation of agriculture to climate change

    NASA Astrophysics Data System (ADS)

    Zullo, J.; Macedo, C.; Pinto, H. S.; Assad, E. D.; Koga Vicente, A.

    2012-12-01

    The great possibility that the climate is already changing, and the most drastic way possible, increases the challenge of agricultural engineering, especially in environmentally vulnerable areas and in regions where agriculture has a high economic and social importance. Knowledge of potential impacts that may be caused by changes in water and thermal regimes in coming decades is increasingly strategic, as they allow the development of techniques to adapt agriculture to climate change and therefore minimizes the risk of undesirable impacts, for example, in food and nutritional security. Thus, the main objective of this paper is to describe a way to generate impacts scenarios caused by anomalies of precipitation and temperature in the definition of climate risk zoning of an agricultural crop very important in the tropics, such as the sugar cane, especially in central-southern Brazil, which is one of its main world producers. A key point here is the choice of the climate model to be used, considering that 23 different models were used in the fourth IPCC report published in 2007. The number and range of available models requires the definition of criteria for choosing the most suitable for the preparation of the impacts scenarios. One way proposed and used in this work is based on the definition of two groups of models according to 27 technical attributes of them. The clustering of 23 models in two groups, with a model representing each group (UKMO_HadCM3 and MIROC3.2_medres), assists the generation and comparison of impacts scenarios, making them more representative and useful. Another important aspect in the generation of impacts scenarios is the estimate of the relative importance of the anomalies of precipitation and temperature, which are the most commonly used. To assess the relative importance of the anomalies are generated scenarios considering an anomaly at a time and both together. The impacts scenarios for a high emission of greenhouse gases (A2), from 2010

  13. The challenge of climate change in Spain: Water resources, agriculture and land

    NASA Astrophysics Data System (ADS)

    Vargas-Amelin, Elisa; Pindado, Pablo

    2014-10-01

    Climate change effects are becoming evident worldwide, but some water scarce regions present higher vulnerability. Spain, located in the Mediterranean region, is expected for instance to be highly vulnerable given its unbalanced distribution between water resources availability and existing demands. This article presents an introduction to the main threats of climate change mainly on water resources, but it also assesses effects in interlinked areas such as agriculture, soil and land management. Contents focus on measures and initiatives promoted by the central government and address efforts to establish multi-sectoral coordinating bodies, specific adaptation plans and measures for the different sectors. The article highlights some political aspects, such as the complexity of involved competent authorities in water and land management, the need to strengthen public participation and the conflicts arising from the defence of regional interests. It also makes a link to current EU policies; summarises foreseeable problems derived from climate change effects, and provides some recommendations in the different areas covered.

  14. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.

    2016-08-01

    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.

  15. Towards an integrated economic assessment of climate change impacts on agriculture

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, H.; Piontek, F.; Stevanovic, M.; Popp, A.; Bauer, N.; Dietrich, J.; Mueller, C.; Schmitz, C.

    2012-12-01

    For a detailed understanding of the effects of climate change on global agricultural production systems, it is essential to consider the variability of climate change patterns as projected by General Circulation Models (GCMs), their bio-physical impact on crops and the response in land-use patterns and markets. So far, approaches that account for the interaction of bio-physical and economic impacts are largely lacking. We present an integrative analysis by using a soft-coupled system of a biophysical impact model (LPJmL, Bondeau et al. 2007), an economically driven land use model (MAgPIE, Lotze-Campen et al. 2008) and an integrated assessment model (ReMIND-R, Leimbach et al. 2010) to study climate change impacts and economic damages in the agricultural sector. First, the dynamic global vegetation and hydrology model LPJmL is used to derive climate change impacts on crop yields for wheat, maize, soy, rice and other major crops. A range of different climate projections is used, taken from the dataset provided by the Intersectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org), which bias-corrected the latest CMIP5 climate data (Taylor et al. 2011). Crop yield impacts cover scenarios with and without CO2 fertilization as well as different Representative Concentration Pathways (RCPs) and different GCMs. With increasing temperature towards the end of the century yields generally decrease in tropical and subtropical regions, while they tend to benefit in higher latitudes. LPJmL results have been compared to other global crop models in the Agricultural Model Intercomparison and Improvement Project (AgMIP, www.agmip.org). Second, changes in crop yields are analysed with the spatially explicit agro-economic model MAgPIE, which covers their interaction with economic development and changes in food demand. Changes in prices as well as welfare changes of producer and consumer surplus are taken as economic indicators. Due to climate-change related reductions in

  16. A Decision Support System for Climate Change Adaptation in Rainfed Sectors of Agriculture for Central Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Drüszler, Áron; Eredics, Attila; Gálos, Borbála; Illés, Gábor; Móricz, Norbert; Rasztovits, Ervin; Czimber, Kornél

    2013-04-01

    • Background and aims: Rainfed sectors of agriculture such as nature-close forestry, non-irrigated agriculture and animal husbandry on nature-close pastures are threatened by projected climate change especially in low-elevation regions in Southeast Europe, where precipitation is the limiting factor of production and ecosystem stability. Therefore the importance of complex, long term management planning and of land use optimization is increasing. The aim of the Decision Support System under development is to raise awareness and initiate preparation for frequency increase of extreme events, disasters and economic losses in the mentioned sectors. • Services provided: The Decision Support System provides GIS-supported information about the most important regional and local risks and mitigation options regarding climate change impacts, projected for reference periods until 2100 (e.g. land cover/use and expectable changes, potential production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.). The projections are referring first of all on biological production (natural produce), but the System includes also social and economic consequences. • Methods: In the raster based system, the latest image processing technology is used. We apply fuzzy membership functions, Support Vector Machine and Maximum Likelihood classifier. The System is developed in the first step for a reference area in SW Hungary (Zala county). • Novelty: The coherent, fine-scale regional system integrates the basic information about present and projected climates, extremes, hydrology and soil conditions and expected production potential for three sectors of agriculture as options for land use and conservation. • Funding: The development of the Decision Support System "Agrárklíma" is supported by TÁMOP-4.2.2.A-11/1/KONV and 4.2.2.B-10/1-2010-0018 "Talentum" joint EU-national research projects. Keywords: climate change

  17. Operational resilience of reservoirs to climate change, agricultural demand, and tourism: A case study from Sardinia.

    PubMed

    Mereu, Simone; Sušnik, Janez; Trabucco, Antonio; Daccache, Andre; Vamvakeridou-Lyroudia, Lydia; Renoldi, Stefano; Virdis, Andrea; Savić, Dragan; Assimacopoulos, Dionysis

    2016-02-01

    Many (semi-) arid locations globally, and particularly islands, rely heavily on reservoirs for water supply. Some reservoirs are particularly vulnerable to climate and development changes (e.g. population change, tourist growth, hydropower demands). Irregularities and uncertainties in the fluvial regime associated with climate change and the continuous increase in water demand by different sectors will add new challenges to the management and to the resilience of these reservoirs. The resilience of vulnerable reservoirs must be studied in detail to prepare for and mitigate potential impacts of these changes. In this paper, a reservoir balance model is developed and presented for the Pedra e' Othoni reservoir in Sardinia, Italy, to assess resilience to climate and development changes. The model was first calibrated and validated, then forced with extensive ensemble climate data for representative concentration pathways (RCPs) 4.5 and 8.5, agricultural data, and with four socio-economic development scenarios. Future projections show a reduction in annual reservoir inflow and an increase in demand, mainly in the agricultural sector. Under no scenario is reservoir resilience significantly affected, the reservoir always achieves refill. However, this occurs at the partial expenses of hydropower production with implications for the production of renewable energy. There is also the possibility of conflict between the agricultural sector and hydropower sector for diminishing water supply. Pedra e' Othoni reservoir shows good resilience to future change mostly because of the disproportionately large basin feeding it. However this is not the case of other Sardinian reservoirs and hence a detailed resilience assessment of all reservoirs is needed, where development plans should carefully account for the trade-offs and potential conflicts among sectors. For Sardinia, the option of physical connection between reservoirs is available, as are alternative water supply measures

  18. Prospective changes in irrigation water requirements caused by agricultural expansion and climate changes in the eastern arc mountains of Kenya.

    PubMed

    Maeda, Eduardo Eiji; Pellikka, Petri K E; Clark, Barnaby J F; Siljander, Mika

    2011-03-01

    Water resources and land use are closely linked with each other and with regional climate, assembling a very complex system. The understanding of the interconnecting relations involved in this system is an essential step for elaborating public policies that can effectively lead to the sustainable use of water resources. In this study, an integrated modelling framework was assembled in order to investigate potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR) in the Taita Hills, Kenya. The framework comprised a land use change simulation model, a reference evapotranspiration model and synthetic precipitation datasets generated through a Monte Carlo simulation. In order to generate plausible climate change scenarios, outputs from General Climate Models were used as reference to perturbing the Monte Carlo simulations. The results indicate that throughout the next 20 years the low availability of arable lands in the hills will drive agricultural expansion to areas with higher IWR in the foothills. If current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. This expansion will increase by approximately 40% the annual water volume necessary for irrigation. Climate change may slightly decrease crops' IWR in April and November by 2030, while in May a small increase will likely be observed. The integrated assessment of these environmental changes allowed a clear identification of priority regions for land use allocation policies and water resources management. PMID:21111528

  19. Response of Agriculture and Forests to Climate Change in France: Assessment of Uncertainties and Trend Analysis

    NASA Astrophysics Data System (ADS)

    Laanaia, N.; Carrer, D.

    2014-12-01

    In the framework of the French research project ORACLE we examine the impact of climate change on agriculture and forests in France for two time horizons (2020-2050 and 2070-2100) in reference to the 1970-2000 period. The biophysical variables (leaf area index, equilibrium forest biomass, leaf onset and offset, ...) are produced by ISBA-A-gs forced by the atmospheric variables produced by differents climat models and scenarios. Their trends will be analyzed. The impact of uncertainties at various levels through multi-model and multi-scenario approaches will be assessed

  20. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  1. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  2. Climate benefits of changes in agricultural practices in the context of heat wave mitigation

    NASA Astrophysics Data System (ADS)

    Davin, E.; Seneviratne, S. I.; Ciais, P.; Olioso, A.; Wang, T.

    2014-12-01

    About half of the terrestrial biosphere is under direct human influence through land management (i.e., agricultural areas and managed forests). Changing management practices is therefore a promising avenue for climate change mitigation. The mitigation potential arising from changes in land management practices has been mainly evaluated in terms of carbon storage and GHG emissions [2]. On the other hand, these practices can also influence climate by altering the physical properties of the land surface, but these effects have received less attention so far. Here we show that peak temperatures during heat heaves can be attenuated through cropland albedo management [2]. We first present observational evidence that a substantial summer albedo increase can be obtained by switching from conventional to no-till agriculture. Then, using a regional climate model, we investigate the biogeophysical effect of a full conversion to no-till management over Europe. The cooling effect owing to albedo increase under no-till farming appears to be strongly amplified during warm events. This is due to the low cloud cover during these events, thus leading to a more efficient radiative cooling from albedo change. This implies a strong potential of no-till farming to mitigate heat wave impacts. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect remains the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 degrees. These findings strongly suggest that the biogeophysical effect of management practices should be considered in the design of climate mitigation policies involving land management. References:[1] Smith, P. et al. (2014): Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel

  3. Online participation in climate change adaptation: A case study of agricultural adaptation measures in Northern Italy.

    PubMed

    Bojovic, Dragana; Bonzanigo, Laura; Giupponi, Carlo; Maziotis, Alexandros

    2015-07-01

    The new EU strategy on adaptation to climate change suggests flexible and participatory approaches. Face-to-face contact, although it involves time-consuming procedures with a limited audience, has often been considered the most effective participatory approach. In recent years, however, there has been an increase in the visibility of different citizens' initiatives in the online world, which strengthens the possibility of greater citizen agency. This paper investigates whether the Internet can ensure efficient public participation with meaningful engagement in climate change adaptation. In elucidating issues regarding climate change adaptation, we developed an eParticipation framework to explore adaptation capacity of agriculture to climate change in Northern Italy. Farmers were mobilised using a pre-existing online network. First they took part in an online questionnaire for revealing their perceptions of and reactions to the impacts of ongoing changes in agriculture. We used these results to suggest a portfolio of policy measures and to set evaluation criteria. Farmers then evaluated these policy options, using a multi criteria analysis tool with a simple user-friendly interface. Our results showed that eParticipation is efficient: it supports a rapid data collection, while involving high number of participants. Moreover, we demonstrated that the digital divide is decreasingly an obstacle for using online spaces for public engagement. This research does not present eParticipation as a panacea. Rather, eParticipation was implemented with well-established participatory approaches to both validate the results and, consequently, communicate meaningful messages on local agricultural adaptation practices to regional decision-makers. Feedbacks from the regional decision-makers showed their interest in using eParticipation to improve communication with farmers in the future. We expect that, with further Internet proliferation, eParticipation may allow the inclusion of

  4. Prospects of Russian Agriculture development under global climate and technological changes

    NASA Astrophysics Data System (ADS)

    Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Despite the great progresses of the last century in the agricultural sector and food supply, still about 820 million of people in developing countries are facing food scarcity and malnutrition. More than 180 million children are underweight. Except in Africa, 80 percent of the production gains came from increased yields in major cereal crops. The area cultivated has actually begun to decline in some regions. From now on, however, even Africa, which has always relied on cultivation of new land for production increases, will have to count on yield gains or pay high financial and ecological costs for expansion into areas not yet cultivated. The global scenario is changing fast. The technological, climatic and human-induced factors are creating long-lasting effects on the lives of people and on economic activities around the globe. In particular, climate change and/or variability is exacerbating rural increasing heat stress to natural habitats and human settlements, increasing climatic extremes, including drought and impacting food production. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Changes in total seasonal precipitation or in its pattern of variability are both important. The occurrence of moisture stress during flowering, pollination, and grain-filling is harmful to most crops and particularly so to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress; as a result there will be a need to develop crop varieties with greater drought tolerance. These climate change effects are particularly harmful in tropical regions of South America, Africa and South East Asia where food production is feeding a large part of world countries and poses serious risks to global food security in the future. Despite global projected climate change will affect a general decline of

  5. Regional aspects of climate change impacts and related adaptation options in European agriculture

    NASA Astrophysics Data System (ADS)

    Eitzinger, J.

    2009-09-01

    Through a change in climatic conditions and variability, for example, extreme weather events (heat waves, droughts, etc.) are likely to occur more frequently in different spatial and time scales in future. Since agriculture is one the man' activities more dependant on weather behaviour, the impact on risks of agricultural production is indeed one of the most important issues in climate change assessments. Therefore an early recognition of risks and implementation of adaptation strategies is crucial as anticipatory and precautionary adaptation is more effective and less costly than forced, last minute, emergency adaptation or retrofitting. Results of climate change impact and adaptation studies often show considerable different results, depending on the spatial scale of regionalisation. However, for a decision maker, only a high spatial resolution of related study results are useful as it can represent local conditions and its spatial variablitiy much better. Therefore the ADAGIO project (adagio-eu.org) was designed to focus on regional studies in order to uncover regional specific problems. In this context a bottom-up approach is used beside the top-down approach of using scientifc studies, involving regional experts and farmers in the evaluation of potential regional vulnerabilites and adaptation options. Preliminary results of the regional studies and gathered feedback from experts and farmers show in general that (increasing) drought and heat is the main factor having impact on agricultural vulnerability not only in the mediterranean region, but also in the Central and Eastern European regions. Another important aspect is that the increasing risk of pest and diseases may play a more important role for agricultural vulnerability than assumed before, however, till now this field is only rarely investigated in Europe. An important aspect is also that there are increasing regional differences in the crop production potential in Europe due to climate change and that

  6. Future state of the climate change, mitigation and development of sustainable agriculture in Bulgaria

    NASA Astrophysics Data System (ADS)

    Kazandjiev, V.; Georgieva, V.; Moteva, M.; Marinova, T.; Dimitrov, P.

    2010-09-01

    The farming is one of the most important branches that bring the increase to the gross internal production in Bulgaria. At the same time, the agriculture is the only branch, as in home, so in world scale in which the made as well direct production spending and investing regenerating (or not) only in the frameworks to one vegetative season. In addition on this, development of the intensive farming without using the most advanced technologies such as irrigation, automation, selection - for obtaining stable cultivars and hybrids, permanent weather monitoring and agroclimatic zoning and integrated and biochemical protection to the cultures and plantations had not possible. Analysis of long-term meteorological data from different regions shows clear tendencies to warming and drying for the period of contemporary climate (1971-2000) as well in Bulgaria. Hydro-meteorological conditions in the country are worsened. The most entire estimate is made from the Intergovernmental Panel for Climate Change (IPCC) 2007. Most of authors proven that the last decades are really warmest for last century, even for the entire period of the most instrumental observations. The causes for global warming was long time debatable, but the last investigations prove it anthropogenetic derive. The main goal of the paper is framing in conditions of the expected climate changes in our country for period 2020-2050-2070 and the most likely impacts on the agriculture with inspection padding to the consequences in them and making physical conditions for development of proof farming in production regions of the country. By the means of the systematized database of meteorological and agrometeorological data which we have at disposition for the period of this survey (1971-2000); Provide assignment of the expected climatic changes according to the scenarios in the centers for observing and investigations of climatic changes in Europe, US., Canada and Australia (ECHAM 4, HadCM 2, CGCM 1, CSIRO-MK2 Bs and

  7. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This

  8. Timescales of transformational climate change adaptation in sub-Saharan African agriculture

    NASA Astrophysics Data System (ADS)

    Rippke, Ulrike; Ramirez-Villegas, Julian; Jarvis, Andy; Vermeulen, Sonja J.; Parker, Louis; Mer, Flora; Diekkrüger, Bernd; Challinor, Andrew J.; Howden, Mark

    2016-06-01

    Climate change is projected to constitute a significant threat to food security if no adaptation actions are taken. Transformation of agricultural systems, for example switching crop types or moving out of agriculture, is projected to be necessary in some cases. However, little attention has been paid to the timing of these transformations. Here, we develop a temporal uncertainty framework using the CMIP5 ensemble to assess when and where cultivation of key crops in sub-Saharan Africa becomes unviable. We report potential transformational changes for all major crops during the twenty-first century, as climates shift and areas become unsuitable. For most crops, however, transformation is limited to small pockets (<15% of area), and only for beans, maize and banana is transformation more widespread (~30% area for maize and banana, 60% for beans). We envisage three overlapping adaptation phases to enable projected transformational changes: an incremental adaptation phase focused on improvements to crops and management, a preparatory phase that establishes appropriate policies and enabling environments, and a transformational adaptation phase in which farmers substitute crops, explore alternative livelihoods strategies, or relocate. To best align policies with production triggers for no-regret actions, monitoring capacities to track farming systems as well as climate are needed.

  9. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    NASA Astrophysics Data System (ADS)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  10. Climate Change and Adaptation in Irrigated Agriculture-A Case Study of the Yakima River

    SciTech Connect

    Scott, Michael J; Vail, Lance W; Stockle, Claudio O; Kemanian, Armen

    2004-07-22

    Using a case study of the Yakima River Valley in Washington State, we show that relatively simple tools originally developed to forecast the impact of the El Nino phenomenon on water supplies to irrigated agriculture also can be used to estimate the significantly shifted probability distribution of water shortages in irrigated agriculture during climate change, and that these shifted probabilities can be used to estimate the impact on agriculture in a region. The more permanent nature of changes in the temperature and precipitation regime associated with climate change means that risk management options also take a more permanent form (such as changes in crops and cultivars, and adding storage). A number of storage options have been proposed to deal with El Nino-associated drought, and would be more valuable under climate change. The most ambitious of the proposed storage projects is Black Rock, which would add about 500,00 acre-feet of water to supplement the Yakima's current 1.1 million acre-feet, at a cost currently estimated at $1.9 billion. For perspective, economic losses in the Yakima Valley reportedly have been about $100 million in a drought year such as 2001. Under current circumstances, the expected annual fisheries and periodic drought relief benefits may be large enough to justify the expenditure, but since drought has been occasional, environmental consequences of new projects uncertain, and the price tag beyond the reach of all but the Federal government, no projects have been built. The benefits become more certain with warming. Analysis shows that adding 500,000 acre-feet to TWSA would offset El Nino and the effects of 2 C warming.

  11. Impacts of Changing Climate on Agricultural Variability: Implications for Smallholder Farmers in India

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Jain, M.; DeFries, R. S.; Galford, G. L.; Small, C.

    2013-12-01

    Agriculture is the largest employment sector in India, where food productivity, and thus food security, is highly dependent on seasonal rainfall and temperature. Projected increase in temperature, along with less frequent but intense rainfall events, will have a negative impact on crop productivity in India in the coming decades. These changes, along with continued ground water depletion, could have serious implications for Indian smallholder farmers, who are among some of the most vulnerable communities to climatic and economic changes. Hence baseline information on agricultural sensitivity to climate variability is important for strategies and policies that promote adaptation to climate variability. This study examines how cropping patterns in different agro-ecological zones in India respond to variations in precipitation and temperature. We specifically examine: a) which climate variables most influence crop cover for monsoon and winter crops? and b) how does the sensitivity of crop cover to climate variability vary in different agro-ecological regions with diverse socio-economic factors? We use remote sensing data (2000-01 - 2012-13) for cropping patterns (developed using MODIS satellite data), climate parameters (derived from MODIS and TRMM satellite data) and agricultural census data. We initially assessed the importance of these climate variables in two agro-ecoregions: a predominantly groundwater irrigated, cash crop region in western India, and a region in central India primarily comprised of rain-fed or surface water irrigated subsistence crops. Seasonal crop cover anomaly varied between -25% and 25% of the 13-year mean in these two regions. Predominantly climate-dependent region in central India showed high anomalies up to 200% of the 13-year crop cover mean, especially during winter season. Winter daytime mean temperature is overwhelmingly the most important climate variable for winter crops irrespective of the varied biophysical and socio

  12. Multi-Factor Impact Analysis of Agricultural Production in Bangladesh with Climate Change

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Major, David C.; Yu, Winston H.; Alam, Mozaharul; Hussain, Sk. Ghulam; Khan, Abu Saleh; Hassan, Ahmadul; Al Hossain, Bhuiya Md. Tamim; Goldberg, Richard; Horton, Radley M.; Rosenzweig, Cynthia

    2012-01-01

    Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.

  13. BOREAL FOREST CARBON STOCKS AND WOOD SUPPLY: PAST, PRESENT AND FUTURE RESPONSES TO CHANGING CLIMATE, AGRICULTURE AND SPECIES AVAILABILITY

    EPA Science Inventory

    The paper assesses the role in boreal forest growth played by environment. It examines past changes in climate coupled with glaciation, and future changes in climate coupled with agricultural land use and tree species availability. The objective was to define and evaluate potenti...

  14. Assessing indigenous knowledge systems and climate change adaptation strategies in agriculture: A case study of Chagaka Village, Chikhwawa, Southern Malawi

    NASA Astrophysics Data System (ADS)

    Nkomwa, Emmanuel Charles; Joshua, Miriam Kalanda; Ngongondo, Cosmo; Monjerezi, Maurice; Chipungu, Felistus

    In Malawi, production from subsistence rain fed agriculture is highly vulnerable to climate change and variability. In response to the adverse effects of climate change and variability, a National Adaptation Programme of Action is used as framework for implementing adaptation programmes. However, this framework puts limited significance on indigenous knowledge systems (IKS). In many parts of the world, IKS have shown potential in the development of locally relevant and therefore sustainable adaptation strategies. This study was aimed at assessing the role of IKS in adaptation to climate change and variability in the agricultural sector in a rural district of Chikhwawa, southern Malawi. The study used both qualitative data from focus group and key informant interviews and quantitative data from household interviews and secondary data to address the research objectives. The study established that the local communities are able to recognise the changes in their climate and local environment. Commonly mentioned indicators of changing climatic patterns included delayed and unpredictable onset of rainfall, declining rainfall trends, warming temperatures and increased frequency of prolonged dry spells. An analysis of empirical data corroborates the people's perception. In addition, the community is able to use their IKS to adapt their agricultural systems to partially offset the effects of climate change. Like vulnerability to climate change, IKS varies over a short spatial scale, providing locally relevant adaptation to impacts of climate change. This paper therefore advocates for the integration of IKS in programmes addressing adaptation to climate change and vulnerability. This will serve to ensure sustainable and relevant adaptation strategies.

  15. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  16. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  17. Impact of climate change on the water cycle of agricultural landscapes in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Witte, Irene; Ingwersen, Joachim; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    For agricultural production and life in general, water is a necessity. To ensure food and drinking water security in the future an understanding of the impact of climate change on the water cycle is indispensable. The objective of this PhD research is to assess how higher temperatures, higher atmospheric CO2 concentration and changing precipitation patterns will alter the water cycle of agricultural landscapes in Southwest Germany. As representative key characteristics data evaluation will focus on water use efficiency (WUE) and groundwater recharge. The main research question is whether the positive effect of elevated atmospheric CO2 on WUE will be overcompensated by a decrease in net primary production due to warming and to altered seasonal water availability caused by higher rainfall variability. Elevated atmospheric CO2 stimulates plant growth and improves WUE, whereas higher temperatures are expected to reduce net primary production and groundwater recharge. Another research question referring to groundwater recharge is whether groundwater recharge will increase in winter and decrease in summer in Southwest Germany. Changed groundwater recharge directly affects drinking water supply and is an indicator for possible temporary water shortages in agricultural production. A multi-model ensemble composed of 16 combinations of four crop growth models, two water regime models and two nitrogen models will be calibrated and validated against sets of field data. Field data will be provided by FOR 1965 from 2009-2015 for the Kraichgau region and the Swabian Alb, two contrasting areas with regard to climate and agricultural intensity. By using a multi model ensemble uncertainties in predictions due to different model structures (epistemic uncertainty) can be quantified. The uncertainty related to the randomness of inputs and parameters, the so-called aleatory uncertainty, will be additionally assessed for each of the 16 models. Hence, a more reliable range of future

  18. Water supply patterns in two agricultural areas of Central Germany under climate change conditions

    NASA Astrophysics Data System (ADS)

    Tölle, M. H.; Moseley, C.; Panferov, O.; Busch, G.; Knohl, A.

    2012-04-01

    Increasing emissions of greenhouse gases and increasing prices for fossil fuels have highlighted the demand for CO2 "neutral" renewable energy sources, e.g. short rotation forestry systems used for bioenergy. These systems might be vulnerable to changes in temperature, precipitation and occurrence of extreme weather events. To estimate success or failure of such short rotation coppices in a certain area we need regional climate projections and risk assessment. Changes of water supply patterns in two agriculturally extensively used regions in Central Germany (around Göttingen and Großfahner) with different climate conditions but both in the temperate climate zone are explored. The study is carried out under present conditions as well as under projected climate change conditions (1971-2100) using A1B and B1 climate scenarios downscaled for Europe. Analysis of precipitation bias shows regional differences: a strong bias in Göttingen area and a weaker bias in the Großfahner area. A bias correction approach, Quantile mapping, is applied to the ensemble results for both areas for winter and summer seasons. By using quantile regression on the seasonal Standardized Precipitation Indices (SPIs) as indicator for water supply conditions we found that precipitation is expected to increase in winter in all quantiles of the distribution for Göttingen area during the 21th century. Heavy precipitation is also expected to increase for Großfahner area suggesting a trend to wetter extremes in winter for the future. This winter precipitation increase could trigger runoff and soil erosion risk enhancing the severity of floods. Increasing winter availability of water could enhance local water supply in spring. For both areas no significant change in summer was found over the whole time period. Although the climate change signal of the SPI indicate mild dryer conditions in summer at the end of the 21st century which may trigger water shortage and summer drying associated with above

  19. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    PubMed

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin. PMID

  20. Limited potential of no-till agriculture for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Powlson, David S.; Stirling, Clare M.; Jat, M. L.; Gerard, Bruno G.; Palm, Cheryl A.; Sanchez, Pedro A.; Cassman, Kenneth G.

    2014-08-01

    The Emissions Gap Report 2013 from the United Nations Environment Programme restates the claim that changing to no-till practices in agriculture, as an alternative to conventional tillage, causes an accumulation of organic carbon in soil, thus mitigating climate change through carbon sequestration. But these claims ignore a large body of experimental evidence showing that the quantity of additional organic carbon in soil under no-till is relatively small: in large part apparent increases result from an altered depth distribution. The larger concentration near the surface in no-till is generally beneficial for soil properties that often, though not always, translate into improved crop growth. In many regions where no-till is practised it is common for soil to be cultivated conventionally every few years for a range of agronomic reasons, so any soil carbon benefit is then lost. We argue that no-till is beneficial for soil quality and adaptation of agriculture to climate change, but its role in mitigation is widely overstated.

  1. Agriculture, Settlement, and Abrupt Climate Change: The 4.2ka BP event in Northern Mesopotamia

    NASA Astrophysics Data System (ADS)

    Ristvet, L.

    2003-12-01

    An abrupt aridification event at 4200 BP has been recorded in 41 paleoclimate proxies in the Old World, from Kilmanjaro, Tanzania to Rajasthan, India, East Asia and the Pacific. This event is particularly well defined for Western Asia, where it has been associated with the abandonment of settlements across the Fertile Crescent and the collapse of states on the Levantine coast and in the dry-farming plains of Northern Mesopotamia, including the Akkadian Empire. Adaptations to climate change are constrained by both local environmental and social factors. Agriculturalists, especially those living in pre-industrial societies, are particularly susceptible to changes in precipitation. The Tell Leilan Regional Survey, which systematically studied sites in a 1650km2 area of Northeastern Syria, records one set of adaptations to this event in an area where dry-farming provided the subsistence base. The survey transect crosses ecotones, from the present 500mm isohyet in the North to the 250mm isohyet in the South, and contains diverse wadi systems, ground water resources, soil profiles, and an ancient marsh/lake-- all of which allow this region to be taken as a microcosm of Northern Mesopotamia. In order to contextualize our study of human response to abrupt climate change, it is necessary to consider how the economic and social systems that were previously in place were transformed by this event. This study attempts to quantify climate change and model its effects on agricultural, pastoral, and settlement systems in Northeastern Syria from 2400-1700 BC. From 2400-2300 BC, optimal climate conditions coincided with the consolidation of an indigenous state. The next century witnessed the Akkadian conquest and imperialization of the Habur plains, which resulted in both the intensification and extensification of agro-production. During the next 300 years, (2200-1900 BC), rainfall plummeted to 70% of the climatic optimum, triggering the abandonment of cities along with their

  2. Climate change and its effect on agriculture, water resources and human health sectors in Poland

    NASA Astrophysics Data System (ADS)

    Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kedziora, A.; Kundzewicz, Z. W.

    2010-08-01

    Multi-model ensemble climate projections in the ENSEMBLES Project of the EU allowed the authors to quantify selected extreme-weather indices for Poland, of importance to climate impacts on systems and sectors. Among indices were: number of days in a year with high value of the heat index; with high maximum and minimum temperatures; length of vegetation period; and number of consecutive dry days. Agricultural, hydrological, and human health indices were applied to evaluate the changing risk of weather extremes in Poland in three sectors. To achieve this, model-based simulations were compared for two time horizons, a century apart, i.e., 1961-1990 and 2061-2090. Climate changes, and in particular increases in temperature and changes in rainfall, have strong impacts on agriculture via weather extremes - droughts and heat waves. The crop yield depends particularly on water availability in the plant development phase. To estimate the changes in present and future yield of two crops important for Polish agriculture i.e., potatoes and wheat, some simple empirical models were used. For these crops, decrease of yield is projected for most of the country, with national means of yield change being: -2.175 t/ha for potatoes and -0.539 t/ha for wheat. Already now, in most of Poland, evapotranspiration exceeds precipitation during summer, hence the water storage (in surface water bodies, soil and ground) decreases. Summer precipitation deficit is projected to increase considerably in the future. The additional water supplies (above precipitation) needed to use the agro-potential of the environment would increase by half. Analysis of water balance components (now and in the projected future) can corroborate such conclusions. As regards climate and health, a composite index, proposed in this paper, is a product of the number of senior discomfort days and the number of seniors (aged 65+). The value of this index is projected to increase over 8-fold during 100 years. This is an

  3. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation. PMID:26306792

  4. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  5. Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier.

    PubMed

    Bell, Andrew Reid; Lemos, Maria Carmen; Scavia, Donald

    2010-11-15

    In the Amazonian agricultural frontier, pasture for cattle ranching is an important and potentially hazardous form of land use because of sediment erosion as pastures degrade. This relationship between ranching, sediment load, and water quality is likely to further exacerbate environmental impacts, particularly in the context of climate change. We examine the role that river basin councils (RBCs) - a water governance option of Brazil's 1997 National Water Act - might play in managing this nonpoint-source pollution in the Amazônian state of Rondônia. We implement a simple coupled rancher-water system model to compare two potential governance options: a bulk water cleanup charge (BWC) implemented by RBCs and a land-use fine (LUF) for failing to maintain riparian buffers. We find no significant advantage of BWC over LUF in reducing sediment loading while keeping ranching profitable, under a changing climate. We also fail to find in Rondônia the important stake in water issues that has driven water reform elsewhere in Brazil. Moreover, the comparative success of reforestation programs suggests these programs may, in fact, have the potential to manage nonpoint-source agricultural pollution in the region. PMID:20961050

  6. Water governance, agricultural development and community-level resilience to climate change

    NASA Astrophysics Data System (ADS)

    Evans, T.; Cox, M.; McCord, P.; Caylor, K. K.; Washington-Ottombre, C.; Soderberg, K.; Sadri, S.

    2012-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial research focuses on agricultural decision-making and practices to assess current and future demand for water based on crop types and irrigation practices. Equally important is the role of environmental governance as expressed through institutions which, in case the case of water systems, are the rules implemented to allocate water resources across different user groups. In water-limited environments, institutions play a critical role in addressing the challenges posed by water demand exceeding water supply. A pressing global concern is whether institutions that evolved over the last several decades are well suited to meet potential future water demands in the context of climate change and increasing rates of water abstraction. A related question is whether social and cultural conditions enable adaptive governance that can modify institutions to different water availability scenarios. In order to assess cross-scale resilience of households and communities reliant on irrigated agriculture to climate change, methodological tools are needed to characterize these issues of "institutional fit" and institutional change. We have developed a framework for characterizing institutional dynamics as a platform for the cross-site analysis of human-water governance. To demonstrate the utility of this framework we present a coding process applying this framework to irrigation schemes in Kenya. We present findings from research on rural agriculturalists in Kenya investigating irrigation practices and institutions designed to allocate water across communities. Initial indications are that current institutional regimes are suitable for current hydrological

  7. Soil conservation under climate change: use of recovery biomasses on agricultural soil subjected to the passage of agricultural machinery

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Beni, C.; Servadio, P.

    2012-04-01

    Biomass administration is a good practice to preserve the soil fertility in climate change conditions. A test regarding the use of compost derived by wine distillation residues was conducted in the coastal area sited west of Rome, on a sandy soil in continuous cropping with carrot, two cycles per year, with a consequent deep environmental impact. The soil was fertilized with different systems: T = unfertilized soil; F = fertigation 200 kg N ha-1; FC = fertigation 100 kg N ha-1 plus half agronomic dose of compost 4 t ha-1; C2 = double compost dose 16 t ha-1; C4 = quadruple compost dose 32 t ha-1. The functional qualities of the soil, subjected to the passage of agricultural machineries, were determined through the following parameters: bulk density, shear strength, water infiltration rate, organic matter and nitrogen content, cation exchange capacity. At the summer harvest, yield of carrots, their sugar content, firmness and nutrients concentration were determined. The plots only amended (C2 and C4), compared to other treatments, presented lower bulk density (1.36 and 1.28 Mg m-3 respectively), higher shear strength (9 and 8 kPa respectively), as well as increased hydraulic conductivity. In these treatments (C2 and C4), in addition, occurred a higher content of organic matter (0.95 and 1.07% respectively) and nitrogen (0.11 and 0.12% respectively) and increased CEC (541 and 556 respectively) respect to the T treatment that was 521 meq 100g-1. In plots T and F, the organic matter content was reduced at the end of the field test. The yield of carrots increased in FC, C2, and C4, compared to the other treatments. In plots C4, however, morphological changes were induced in approximately 30% of tap-roots, due to the excessive compost dose. In treatments C2 and C4 was observed a reduction of the concentration of Na in the roots, as opposed to the higher concentration of Ca and K and trace elements. The administration of compost has also induced the increase of soluble

  8. Global Analogues of Climate Change Effects on Agriculture and Groundwater Between Hydrologically Similar Regions of the World

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large regions of the world are heavily dependent upon groundwater for domestic water and irrigation. The impacts of climate change, including modified climate variability, on groundwater resources, soil water, agriculture, and human life are relatively unknown in most areas, and key sensitivities n...

  9. Hydrological extremes and their agricultural impacts under a changing climate in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Gao, H.; Huang, M.; Sheffield, J.

    2015-12-01

    With the changing climate, hydrologic extremes (such as floods, droughts, and heat waves) are becoming more frequent and intensified. Such changes in extreme events are expected to affect agricultural production and food supplies. This study focuses on the State of Texas, which has the largest farm area and the highest value of livestock production in the U.S. The objectives are two-fold: First, to investigate the climatic impact on the occurrence of future hydrologic extreme events; and second, to evaluate the effects of the future extremes on agricultural production. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over Texas river basins during the historical period, is employed for this study. The VIC model is forced by the statistically downscaled climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four different scenarios in terms of Representative Concentration Pathway (RCP) (i.e. 2.6, 4.5, 6.0 and 8.5 w/m2). To carry out the analysis, VIC outputs forced by the CMIP5 model scenarios over three 30-year periods (1970-1999, 2020-2049 and 2070-2099) are first evaluated to identify how the frequency and the extent of the extreme events will be altered in the ten Texas major river basins. The results suggest that a significant increase in the number of extreme events will occur starting in the first half of the 21st century in Texas. Then, the effects of the predicted hydrologic extreme events on the irrigation water demand are investigated. It is found that future changes in water demand vary by crop type and location, with an east-to-west gradient. The results are expected to contribute to future water management and planning in Texas.

  10. An integrated dynamic modeling framework for investigating the impact of climate change and variability on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Rowan, Timothy S. C.; Maier, Holger R.; Connor, Jeff; Dandy, Graeme C.

    2011-07-01

    Many hydrologic systems are likely to be affected by climate change. This is of particular importance given that agricultural production systems are inextricably linked to the hydrologic systems they rely upon. Although irrigation is often employed as a method to dampen the effect of short-term variation in climatic inputs to agricultural production, sources of irrigation water are not immune to long-term climatic change. Irrigation water use decisions are most often made at the farm level. It is at this scale that the economic and social impacts of climate change will be manifest. This paper presents an integrated stochastic dynamic modeling framework that can be used to investigate the viability of irrigated farms under alternative climate change scenarios. The framework is applied to a theoretical farm in the Murray Darling Basin, Australia, under four potential future climate scenarios. It is found that neglecting interannual variability in climatic inputs to agriculture consistently underestimates the reduction in farm viability caused by climate change and that multiyear sequences of climate states strongly influence estimates of farm profitability.

  11. Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries.

    PubMed

    Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef; Alexandrov, Vesselin; Toulios, Leonidas; Calanca, Pierluigi; Trnka, Miroslav; Olesen, Jørgen E

    2008-12-01

    Climate plays a fundamental role in agriculture because of to its influence on production. All processes are regulated by specific climatic requirements. Furthermore, European agriculture, based on highly developed farming techniques, is mainly oriented to high quality food production that is more susceptible to meteorological hazards. These hazards can modify environment-genotype interactions, which can affect the quality of production. The COST 734 Action (Impacts of Climate Change and Variability on European Agriculture), launched in 2006, is composed of 28 signature countries and is funded by the European Commission. The main objective of the Action is the evaluation of possible impacts arising from climate change and variability on agriculture and the assessment of critical thresholds for various European areas. The Action will concentrate on four different tasks: agroclimatic indices and simulation models, including review and assessment of tools used to relate climate and agricultural processes; evaluation of the current trends of agroclimatic indices and model outputs, including remote sensing; developing and assessing future regional and local scenarios of agroclimatic conditions; and risk assessment and foreseen impacts on agriculture. The work will be carried out by respective Working Groups. This paper presents the results of the analysis of the first phase of inventory activity. Specific questionnaires were disseminated among COST 734 countries to collect information on climate change analysis, studies, and impact at the European level. The results were discussed with respect to their spatial distribution in Europe and to identify possible common long- and short-term strategies for adaptation. PMID:19076423

  12. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    PubMed

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. PMID:23995509

  13. Global Agricultural Land Resources – A High Resolution Suitability Evaluation and Its Perspectives until 2100 under Climate Change Conditions

    PubMed Central

    Zabel, Florian; Putzenlechner, Birgitta; Mauser, Wolfram

    2014-01-01

    Changing natural conditions determine the land's suitability for agriculture. The growing demand for food, feed, fiber and bioenergy increases pressure on land and causes trade-offs between different uses of land and ecosystem services. Accordingly, an inventory is required on the changing potentially suitable areas for agriculture under changing climate conditions. We applied a fuzzy logic approach to compute global agricultural suitability to grow the 16 most important food and energy crops according to the climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We present our results for current climate conditions (1981–2010), considering today's irrigated areas and separately investigate the suitability of densely forested as well as protected areas, in order to investigate their potentials for agriculture. The impact of climate change under SRES A1B conditions, as simulated by the global climate model ECHAM5, on agricultural suitability is shown by comparing the time-period 2071–2100 with 1981–2010. Our results show that climate change will expand suitable cropland by additionally 5.6 million km2, particularly in the Northern high latitudes (mainly in Canada, China and Russia). Most sensitive regions with decreasing suitability are found in the Global South, mainly in tropical regions, where also the suitability for multiple cropping decreases. PMID:25229634

  14. Potential impact of climate change on rainfed agriculture of a semi-arid basin in Jordan

    NASA Astrophysics Data System (ADS)

    Al-Bakri, Jawad; Suleiman, Ayman; Abdulla, Fayez; Ayad, Jamal

    Rainfed agriculture in Jordan is one of the most vulnerable sectors to climate change, as the available water and land resources are limited and most of the country’s land is arid. In this study, a crop simulation model (DSSAT) was used to assess the impact of different climate change scenarios on rainfed wheat and barley in the Yarmouk basin in Jordan. Analysis of observed crop data showed differences between cultivated and harvested areas for both crops in the study area with variations among years. Results from DSSAT model for years showed that it was able to capture the trend of yield over the years realistically well. The model predicted an average yield of wheat of 1176 kg ha -1, which was close to the average (1173 kg ha -1) obtained from the data of department of statistics (DOS), and an average predicted yield of barley was 927 kg ha -1 while the DOS average was 922 kg ha -1, with higher RMSE for barley (476 kg ha -1) than for wheat (319 kg ha -1). Results for predicting future yield of both crops showed that the responses of wheat and barley were different under different climate change scenarios. The reduction of rainfall by 10-20% reduced the expected yield by 4-8% for barley and 10-20% for wheat, respectively. The increase in rainfall by 10-20% increased the expected yield by 3-5% for barley and 9-18% for wheat, respectively. The increase of air temperature by 1, 2, 3 and 4 °C resulted in deviation from expected yield by -14%, -28%, -38% and -46% for barley and -17%, +4%, +43% and +113% for wheat, respectively. These results indicated that barley would be more negatively affected by the climate change scenarios and therefore adaptation plans should prioritize the arid areas cultivated with this crop.

  15. Climate Change

    MedlinePlus

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  16. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  17. Future agricultural water demand under climate change: regional variability and uncertainties arising from CMIP5 climate projections

    NASA Astrophysics Data System (ADS)

    Schewe, J.; Wada, Y.; Wisser, D.

    2012-12-01

    The agricultural sector (irrigation and livestock) uses by far the largest amount of water among all sectors and is responsible for 70% of the global water withdrawal. At a country scale, irrigation water withdrawal often exceeds 90% of the total water used in many of emerging and developing countries such as India, Pakistan, Iran and Mexico, sustaining much of food production and the livelihood of millions of people. The livestock sector generally accounts less than 1-2% of total water withdrawal, yet exceeds 10-30% of the total water used in many of the African countries. Future agricultural water demand is, however, subject to large uncertainties due to anticipated climate change, i.e. warming temperature and changing precipitation variability, in various regions of the world. Here, we use a global hydrological and water resources model to quantify the impact of climate change on regional irrigation and livestock water demand, and the resulting uncertainties arsing from newly available CMIP5 climate projections obtained through Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; http://www.isi-mip.org/). Irrigation water requirement per unit crop area is estimated by simulating daily soil water balance with crop-related data. Livestock water demand is calculated by combining livestock densities with their drinking water requirements that is a function of air temperature. The results of the ensemble mean show that global irrigation and livestock water demand increased by ~6% and ~12% by 2050 respectively primarily due to higher evaporative demand as a result of increased temperature. At a regional scale, agricultural water demand decreased over some parts of Europe (e.g., Italy, Germany) and Southeast Asia (e.g., the Philippines, Malaysia), but increased over South Asia, the U.S., the Middle East and Africa. However, the projections are highly uncertain over many parts of the world. The results of the ensemble projections in agricultural water demand

  18. Agricultural livelihoods in coastal Bangladesh under climate and environmental change--a model framework.

    PubMed

    Lázár, Attila N; Clarke, Derek; Adams, Helen; Akanda, Abdur Razzaque; Szabo, Sylvia; Nicholls, Robert J; Matthews, Zoe; Begum, Dilruba; Saleh, Abul Fazal M; Abedin, Md Anwarul; Payo, Andres; Streatfield, Peter Kim; Hutton, Craig; Mondal, M Shahjahan; Moslehuddin, Abu Zofar Md

    2015-06-01

    Coastal Bangladesh experiences significant poverty and hazards today and is highly vulnerable to climate and environmental change over the coming decades. Coastal stakeholders are demanding information to assist in the decision making processes, including simulation models to explore how different interventions, under different plausible future socio-economic and environmental scenarios, could alleviate environmental risks and promote development. Many existing simulation models neglect the complex interdependencies between the socio-economic and environmental system of coastal Bangladesh. Here an integrated approach has been proposed to develop a simulation model to support agriculture and poverty-based analysis and decision-making in coastal Bangladesh. In particular, we show how a simulation model of farmer's livelihoods at the household level can be achieved. An extended version of the FAO's CROPWAT agriculture model has been integrated with a downscaled regional demography model to simulate net agriculture profit. This is used together with a household income-expenses balance and a loans logical tree to simulate the evolution of food security indicators and poverty levels. Modelling identifies salinity and temperature stress as limiting factors to crop productivity and fertilisation due to atmospheric carbon dioxide concentrations as a reinforcing factor. The crop simulation results compare well with expected outcomes but also reveal some unexpected behaviours. For example, under current model assumptions, temperature is more important than salinity for crop production. The agriculture-based livelihood and poverty simulations highlight the critical significance of debt through informal and formal loans set at such levels as to persistently undermine the well-being of agriculture-dependent households. Simulations also indicate that progressive approaches to agriculture (i.e. diversification) might not provide the clear economic benefit from the perspective of

  19. Analysis of climate change in Northern Ethiopia: implications for agricultural production

    NASA Astrophysics Data System (ADS)

    Hadgu, Gebre; Tesfaye, Kindie; Mamo, Girma

    2015-08-01

    The impact of climatic change can be on specific locations. However, the broader the affected area coverage, in mind, the higher would be the chance in missing critical details. In this light, this paper attempts to assess the possible climatic changes and their corresponding implications on agricultural production in northern Ethiopia. The analysis is based on the future (2030 and 2050) temperature and rainfall data, downscaled as ensemble of four general circulation models (GCMs) using the A2 and B1 emission scenarios for ten meteorological stations located in different agroecological zones of the study region. The result indicates that, based on emission scenarios, the mean maximum and minimum temperature would increase by 2-2.3 and 0.8-0.9 °C in 2030 and by 2.2-2.7 and 1.4-1.7 °C in 2050, respectively. This will be accompanied by an increase in the frequency of hot days and nights and a decrease in cool days and nights. While annual rainfall totals will remain unchanged, main rainy season ( kiremt) rainfall total would increase on average in 12.9 and 14.2 % under A2 and 9.5 and 11.2 % under B1 by 2030 and 2050, respectively. Owing to an increase in kiremt rainfall, the yield of maize and sorghum may increase at some sites under future climatic conditions, and the increase would be higher under CO2 fertilization. The results suggest the need for site-specific adaptation strategies to reduce the impact and/or exploit the opportunities of climate change.

  20. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    PubMed

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  1. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation

    PubMed Central

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  2. Biochar soil amendments as a tool for climate change adaptation in PNW agriculture

    NASA Astrophysics Data System (ADS)

    Phillips, C. L.; Trippe, K. M.; Murphy, B. A.; Beovich, A. V.; Griffith, S. M.

    2015-12-01

    Loss of snow pack, changing hydrographs, and increased temperatures and irrigation demands as a result of climate change all threaten to create transformational drought for growers in the Pacific Northwest. One approach for adapting to drought is to improve moisture retention through soil management practices. Recent efforts at the FSCRU to develop on-farm power have produced a biochar from gasification of seed mill waste that may prove useful as a tool for drought adaption. Testing of this biochar revealed that it contains no toxic elements, making it suitable as a soil amendment, and additions of 20 tonnes ha-1 in dryland wheat system showed improved soil moisture and yield increases of 250%. Persistent but weaker impacts were observed in growing years 2 and 3 following the biochar amendments. Here we present results from a series of laboratory and field studies characterizing how grass seed screening biochar, which is produced from a regionally abundant feedstock, impacted soil hydraulic and thermal properties, soil chemistry, and plant growth. Because of the liming qualities of gasified biochar, the greatest growth benefits are likely to be realized in acidified soils, a growing problem in the PNW. Although the persistence of biochar impacts in soil is still unknown, our results indicate that gasified biochar, particularly when utilized as part of a system of on-farm power production, waste reduction, and nutrient recycling, can improve agricultural sustainability in the context of climate change.

  3. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Shen, Yanjun

    2016-09-01

    The water resources in the arid region of northwestern China, which are impacted by climate change, tend to be more unstable, and the environment and ecosystems will suffer from severe water shortage. In this paper, potential future climate trends were predicted based on CMIP5 simulations in this region. The water availability and agricultural water demand under future climate change scenarios were estimated. Impacted by increases in temperature, the irrigation water demand will increase by 4.27-6.15 billion m3 in this region over the next 60 years, compared to the demand of 32.75 billion m3 during 1971-2000. However, the annual runoff will only increase by 4.8-8.5 billion m3, which is equivalent to or even less than the increased irrigation water demand. In fact, the increased demand for industrial, domestic and ecological water were not considered here. Thus, the water supply/demand contradiction will result in more severe water shortages in the future. According to a comparison with simulated irrigation water demand under three adaptation strategy scenarios, we should take effective measures such as improving the efficiency of irrigation water utilization, reducing crop planting areas and adjusting crop planting structures to alleviate the impacts of future climate changes and human activities on the water supply and water use in this region.

  4. Climate change mitigation in the agricultural sector- an analysis of marginal abatement costs of climate mitigation in global paddy rice agriculture based on DNDC simulations

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, J.; Beach, R.; Salas, W.; Ingraham, P.; Ragnauth, S.

    2012-12-01

    Authors: Jia Li1, Robert H. Beach2, Changsheng Li3, William Salas4, Pete Ingraham5, Shaun Ragnauth1 INSTITUTIONS (ALL): 1. Climate Change Division, US Environmental Protection Agency, Washington, DC, United States. 2. RTI International, Durham, NC, United States. 3. ESRC, University of New Hampshire, Durham, NH, United States. 4. Applied Geosolutions, LLC, Newmarket, NH, United States. Global agriculture sector faces the dual challenge of climate change mitigation and providing food security for a growing population. In a new study, the U.S. EPA has developed an analysis of mitigation of non-CO2 greenhouse gases for the global agriculture sector. We estimate global greenhouse gas (GHG) emissions from paddy rice cultivation and rice yields under baseline management conditions as well as for alternative mitigation options. These biophysical effects are combined with data on input use and costs to estimate marginal abatement cost curves and evaluate the cost-effectiveness of mitigation options for global rice cropping systems. DNDC, a process-based crop model, is used to simulate crop yields, methane and nitrous oxide emissions, as well as soil carbon sequestration of the various rice cropping systems (irrigated and rainfed, and single, double, triple and mixed rotations) under local climatic and soil conditions at a 0.5 degree resolution at the global scale. We evaluate the impacts of various management alternatives (e.g., flooding methods, fertilizer applications, and crop residue management) on crop yields and GHG emissions and report the spatial and temporal distributions of the outcomes. The analysis provides important insights on the potential for closing the production efficiency gaps and the trade-offs and synergies between GHG mitigation and food security in different parts of the world.

  5. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.

    PubMed

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C; Müller, Christoph; Arneth, Almut; Boote, Kenneth J; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A M; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W

    2014-03-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  6. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  7. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  8. ELICITED EXPERT PERCEPTIONS FOR CLIMATE CHANGE RISKS AND ADAPTATION IN AGRICULTURE AND FOOD PRODUCTION THROUGH MENTAL MODELS APPROACH

    NASA Astrophysics Data System (ADS)

    Suda, Eiko; Kubota, Hiromi; Baba, Kenshi; Hijioka, Yasuaki; Takahashi, Kiyoshi; Hanasaki, Naota

    Impacts of climate change have become obvious in agriculture and food production in Japan these days, and researches to adapt to their risks have been conducted as a key effort to cope with the climate change. Numerous scientific findings on climate change impacts have been presented so far; however, prospective risks to be adapted to and their management in the context of individual on-site situations have not been investigated in detail. The structure of climate change risks and their management vary depending on geographical and social features in the regions where the adaptation options should be applied; therefore, a practical adaptation strategy should consider actual on-site situations. This study intended to clarify climate change risks to be adapted to in the Japanese agricultural sector, and factors to be considered in adaptation options, for encouragement of decision-making on adaptation implementation in the field. Semi-structured individual interviews have been conducted with 9 multidisciplinary experts engaging in climate change impacts research in agricultural production, economics, engineering, policy, and so on. Based on the results of the interviews, and the latest literatures available for risk assessment and adaptation, an expert mental model including their perceptions which cover the process from climate change impacts assessment to adaptation has been developed. The prospective risks, adaptation options, and issues to be examined to progress the development of practical and effective adaptation options and to support individual or social decision-making, have been shown on the developed expert mental model. It is the basic information for developing social communication and stakeholders cooperations in climate change adaptation strategies in agriculture and food production in Japan.

  9. The Impacts and Economic Costs of Climate Change in Agriculture and the Costs and Benefits of Adaptation

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Quiroga, S.; Garrote, L.; Cunningham, R.

    2012-04-01

    This paper provides monetary estimates of the effects of agricultural adaptation to climate change in Europe. The model computes spatial crop productivity changes as a response to climate change linking biophysical and socioeconomic components. It combines available data sets of crop productivity changes under climate change (Iglesias et al 2011, Ciscar et al 2011), statistical functions of productivity response to water and nitrogen inputs, catchment level water availability, and environmental policy scenarios. Future global change scenarios are derived from several socio-economic futures of representative concentration pathways and regional climate models. The economic valuation is conducted by using GTAP general equilibrium model. The marginal productivity changes has been used as an input for the economic general equilibrium model in order to analyse the economic impact of the agricultural changes induced by climate change in the world. The study also includes the analysis of an adaptive capacity index computed by using the socio-economic results of GTAP. The results are combined to prioritize agricultural adaptation policy needs in Europe.

  10. Vulnerability of the Ecuador's Agricultural Sector as part of an Integrated Climate Change Vulnerability Study

    NASA Astrophysics Data System (ADS)

    Flores-Lopez, F.; Depsky, N. J.

    2014-12-01

    Earlier this year SEI, in conjunction with the Environmental Secretary of Quito, concluded a vulnerability analysis for the Metropolitan District of Quito (DMQ). The study analyzed future anthropogenic and natural hazards, and how these threats may be potentially exacerbated by a changing climate over the next 40 years. The focus of this abstract is specifically on the vulnerability of the agricultural sector.Overall, there is a lack of consensus amongst the results of long-term trends of precipitation in the Quito region. However, there is much more confidence in the trends of mean air temperature increase, and therefore this analysis focused specifically upon the effects of increasing temperatures upon Quito's agricultural sector. Effects of a roughly 2°C increase in mean air temperature by 2050 (corresponding to a relative CO2 concentration pathway within the GCMs of 8.5) was evaluated with respect to its potential effects upon the length of growing season for principal crops, and which of these crops are most vulnerable to the increased heat stress. Also studied was the potential expansion of agriculture into higher elevation areas, namely the sensitive 'paramo' alpine ecosystem, due to increasing arability of these areas as temperatures rise. The extent of cultivation of 'paramos' areas was estimated in order to assess the likely diminutive effects upon local hydrology and ecosystem well-being.Our results show that in fact it is expected that the increase in temperature would have a positive effect on the development of some crops, though the growing seasons would likely be shortened, which may be problematic given soil and rainfall constraints.Regarding expansion of agriculture into the 'paramo' highlands, results showed that each 200m zone above 3400masl would experience a marked increase in agricultural land conversion, ranging from 15 - 55km2, depending upon the zone. The lowest zones are expectedly the most vulnerable as they already exist at the

  11. Agricultural machineries wheeling and soil qualities mapping in climatic changes conditions

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Servadio, P.

    2012-04-01

    As argued in the Fourth Assessment Report of the UN International Panel on Climate Change (IPCC) published in 2007 the global climate is changing and will continue to change in the near future. Due to the changing in time distribution and intensity of rainfall, the available time to carry out soil tillage operations, seedbed preparation and fertilizers distribution is becoming shorter. These issues are worsened by soil compaction that is one of the major problems facing modern agriculture. Soil compaction impedes infiltration of rainfall, so the increasing scale of mechanization might well be responsible for greater runoff, soil loss by water erosion and water-logging. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. The objective of this research was to study the compacting effect of two wheeled tractors fitted with different type of tires during fertilizing operations with soil water content over field capacity. Field tests were carried out in a farm near Rome (41°52'502'' Latitude (N); 12°12'866" Longitude (E)) in March 2010 on a clay soil (Vertic Cambisol) during wheat fertilizing. One tractor was fitted with very narrow and high aspect ratio tires with mounted broadcaster coded (WTN), the other tractor was equipped with extra large and low aspect ratio tires with trailed broadcaster for a total of four axles coded (WTEL). Immediately after fertilising operations, such effects have been quantified through spatial variation of some soil parameters: soil water content, soil penetration resistance (CI) and soil shear strength (SS). Soil samplings have been carried out on the tracks left by the tractors and on soil not interested by the passage (control). To monitor all tractors passes across the field and to compute the total area covered by tractors tires a DGPS receiver was placed into the tractors; to map soil parameters studied, both on tracks left by the tractors passes

  12. Climate-smart agriculture for food security

    NASA Astrophysics Data System (ADS)

    Lipper, Leslie; Thornton, Philip; Campbell, Bruce M.; Baedeker, Tobias; Braimoh, Ademola; Bwalya, Martin; Caron, Patrick; Cattaneo, Andrea; Garrity, Dennis; Henry, Kevin; Hottle, Ryan; Jackson, Louise; Jarvis, Andrew; Kossam, Fred; Mann, Wendy; McCarthy, Nancy; Meybeck, Alexandre; Neufeldt, Henry; Remington, Tom; Sen, Pham Thi; Sessa, Reuben; Shula, Reynolds; Tibu, Austin; Torquebiau, Emmanuel F.

    2014-12-01

    Climate-smart agriculture (CSA) is an approach for transforming and reorienting agricultural systems to support food security under the new realities of climate change. Widespread changes in rainfall and temperature patterns threaten agricultural production and increase the vulnerability of people dependent on agriculture for their livelihoods, which includes most of the world's poor. Climate change disrupts food markets, posing population-wide risks to food supply. Threats can be reduced by increasing the adaptive capacity of farmers as well as increasing resilience and resource use efficiency in agricultural production systems. CSA promotes coordinated actions by farmers, researchers, private sector, civil society and policymakers towards climate-resilient pathways through four main action areas: (1) building evidence; (2) increasing local institutional effectiveness; (3) fostering coherence between climate and agricultural policies; and (4) linking climate and agricultural financing. CSA differs from 'business-as-usual' approaches by emphasizing the capacity to implement flexible, context-specific solutions, supported by innovative policy and financing actions.

  13. Climate Change Impacts on US Agriculture and the Benefits of Greenhouse Gas Mitigation

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sue Wing, I.; Stern, A.

    2014-12-01

    As contributors to the US EPA's Climate Impacts and Risk Assessment (CIRA) project, we present empirically-based projections of climate change impacts on the yields of five major US crops. Our analysis uses a 15-member ensemble of climate simulations using the MIT Integrated Global System Model (IGSM) linked to the NCAR Community Atmosphere Model (CAM), forced by 3 emissions scenarios (a "business as usual" reference scenario and two stabilization scenarios at 4.5W/m2 and 3.7 W/m2 by 2100), quantify the agricultural impacts avoided due to greenhouse gas emission reductions. Our innovation is the coupling of climate model outputs with empirical estimates of the long-run relationship between crop yields and temperature, precipitation and soil moisture derived from the co-variation between yields and weather across US counties over the last 50 years. Our identifying assumption is that since farmers' planting, management and harvesting decisions are based on land quality and expectations of weather, yields and meteorological variables share a long-run equilibrium relationship. In any given year, weather shocks cause yields to diverge from their expected long-run values, prompting farmers to revise their long-run expectations. We specify a dynamic panel error correction model (ECM) that statistically distinguishes these two processes. The ECM is estimated for maize, wheat, soybeans, sorghum and cotton using longitudinal data on production and harvested area for ~1,100 counties from 1948-2010, in conjunction with spatial fields of 3-hourly temperature, precipitation and soil moisture from the Global Land Data Assimilation System (GLDAS) forcing and output files, binned into annual counts of exposure over the growing season and mapped to county centroids. For scenarios of future warming the identical method was used to calculate counties' current (1986-2010) and future (2036-65 and 2086-2110) distributions of simulated 3-hourly growing season temperature, precipitation

  14. Effects of climate change on agricultural-plant pests. Volume II, Part 10 of environmental and societal consequences of a possible CO/sub 2/-induced climate change

    SciTech Connect

    Haynes, D.L.

    1982-10-01

    Plant pests and their community of biotic cohorts respond to climatic changes, whether temporal aberrations or long term shifts. How they respond depends on the magnitude of the change and the ability of the species to tolerate or adapt to the new environment. Scientists see several climatological scenarios concerning the increase of atmospheric CO/sub 2/ and ambient temperature. Those who foresee a slow incremental raising of temperatures base their predictions mainly on the available empirical evidence and the notion that long term weather is basically a cyclical phenomena that continually adjusts and readjusts through time. The other scenario interprets the available empirical data as a gradual buildup that pushes the climatic picture towards a threshold or a trigger point that, once arrived at, is irreversible and dramatic. This paper explores the possible climatic scenarios as they relate to the ecological principles that affect pest abundance and the distribution and impact on domestic and international agriculture.

  15. Glacier Runoff and Human Vulnerability to Climate Change: The Case of Export Agriculture in Peru (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, M.

    2013-12-01

    There is growing concern about the effects of climate change and ensuing glacier shrinkage on water supplies for mountain communities worldwide. The issue is only becoming more complex as researchers seek to quantify glacier contributions to streamflow and to pinpoint when and how much glacier runoff will likely change as a result of future climate change and glacier variation. Additionally, some researchers are beginning to recognize the importance of understanding the human dimensions of glacier retreat to identify which social groups (stakeholders) use glacier runoff and how much they use, as well as what socio-environmental forces affect both water supplies and water use. This presentation examines these societal aspects of glacier runoff to analyze human vulnerability to hydrological changes in Peru's Santa River watershed below the most glaciated tropical mountain range in the world, the Cordillera Blanca. Specifically, it focuses on the billion-dollar export-oriented agricultural industry within the Chavimochic irrigation project, which uses Santa River water to irrigate approximately 80,000 hectares in the coastal desert region. Since the 1980s, Santa River water has allowed Chavimochic to sustain a major export economy, provide jobs in the agro-industry and related services, stimulate human migration, enhance or alter livelihoods, generate hydroelectricity, supply drinking water, and shape urban growth and land use practices. All of these variables are dependent on glacier meltwater from the Cordillera Blanca, especially during the dry season when glaciers provide most of the Santa River's water. In short, hundreds of thousands of people have come to depend on glacier runoff, thus revealing their high level of vulnerability to hydrological fluctuations in a glacier-fed watershed. What's more, people worldwide rely on the asparagus, avocados, and artichokes grown with glacier runoff. Consequently, the export-oriented agriculture, through the "virtual water

  16. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  17. Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea

    2013-04-01

    The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the

  18. Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea

    2013-04-01

    The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the

  19. Vulnerability of U.S. Agriculture and Energy Sectors to Changes in Climate and Socioeconomics

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Voisin, N.; Liu, L.; Bramer, L.; Fortin, D.; Huang, M.; Hathaway, J.; Kyle, P.; Leung, L. R.; Li, H. Y.; Liu, Y.; Patel, P.; Pulsipher, T.; Rice, J.; Tesfa, T. K.; Vernon, C. R.; Zhou, Y.

    2014-12-01

    A prominent integrated assessment model (IAM), the Global Change Assessment Model (GCAM), has been coupled with the Community Land Model (CLM) of the Community Earth system model (CESM) to assess the vulnerability of the US agriculture and energy sectors to future water shortages under changing climate and socioeconomics. This study utilizes the regionalized version of GCAM for the U.S. with 50-state. GCAM-USA includes a detailed representation of water demands and tracks them at multiple spatial scales and annual scale. A spatial and temporal disaggregation approach is developed to project the annual regional water demand simulations into a daily time step and 1/8o spatial resolution for input to CLM, which has been coupled to a river routing model and generic water management model applicable globally at 1/2o resolution and regionally at 1/8o resolution. The coupled modeling framework demonstrated reasonable ability to simulate the historical flow regulation and water supply over the continental U.S. The coupled modeling framework has been used to investigate: 1) Which water use sector (agriculture or energy) and subbasins in the conterminous U.S. will experience water deficits in future decades; 2) What are the drivers for the deficit (i.e., water availability, water demands, or both); 3) Will climate mitigation policies alleviate or exacerbate the situation; and lastly 4) How will the frequency , severity, and spatial extent of water deficits (hot spots) evolve under a non-mitigation scenario (RCP8.5) in which conventional fossil-fueled technologies prevail versus a mitigation scenario (RCP4.5) in which the carbon price causes a shift toward renewables and expansion of bioenergy productions. Results show that irrigation will face greater water deficit overall except in the northeastern U.S. Water deficit is greatest in the western U.S. except the Pacific Northwest. Human footprints on the regulated flows are most pronounced over the Rio Grande, Colorado, Great

  20. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  1. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  2. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  3. Implications of climate change on wind erosion of agricultural lands in the Columbia Plateau

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change may impact soil health and productivity as a result of accelerated or decelerated rates of erosion. Previous studies suggest a greater risk of wind erosion on arid and semi-arid lands due to loss of biomass under a future warmer climate. There have been no studies conducted to assess ...

  4. Preface to book entitled: Managing Agricultural Greenhouse Gases: Coordinated Agricultural Research through GRACEnet to Address our Changing Climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric greenhouse gas (GHG) absorbs and emits radiation within the thermal infrared range, a natural process that regulates the temperature of the Earth. Long-term changes in GHG emission could negatively or positively affect global surface temperature (USGCRP, 2009). The abatement of climate...

  5. Climate change and agricultural risk management: the role of the family-farm characteristics

    NASA Astrophysics Data System (ADS)

    Quaranta, G.; Salvia, R.

    2009-04-01

    During recent years, water-related anomalies (drought, water scarcity, flood) have become a common occurrence in most areas and especially in the arid and semiarid regions of Mediterranean areas. There are evidences of increasing inter-annual variability, as increasing deviation from the long-term mean. This could be the main reason for the increasing incidence of drought, rather than any decline in long-term rainfall, also if a decrease of total amount of water is expected by the IPCC scenarios. Another reason for increasing drought and water scarcity conditions is growing demand for water needed by different productive sectors. These anomalies greatly increase the uncertainties of the agricultural sector affecting performance and management and leading to substantial augment in agricultural risk and destabilization of farm incomes. Agricultural adaptation to drought and climate change at the farm level as well as changes in activity level strongly depend on the technological potential (different varieties of crops, irrigation technologies); soil, water, and biological response; and the capability of farmers to detect changes and undertake any necessary actions as result of perception of the problem and capacity/willingness to react. Farm characteristics (size, technological level and other characteristics) and the social economic features of the family running those farms (number of components, age, education level, etc) act as important variables influencing, at farm level, the capacity and rate of adaptation/mitigation options implementation. The ability or inability to avoid/react from a risk could be interpreted as a social resilience of an area, deriving mainly from its socio-demographic features. The shift from a paradigm mainly focuses upon the physical agents in the natural or human-modified environment, which cause a threat to society, to a new approach where the social, economical and political conditions are overcoming and gaining importance in the

  6. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  7. Climate change and Australian agriculture: a review of the threats facing rural communities and the health policy landscape.

    PubMed

    Hanna, Elizabeth G; Bell, Erica; King, Debra; Woodruff, Rosalie

    2011-03-01

    Population health is a function of social and environmental health determinants. Climate change is predicted to bring significant alterations to ecological systems on which human health and livelihoods depend; the air, water, plant, and animal health. Agricultural systems are intrinsically linked with environmental conditions, which are already under threat in much of southern Australian because of rising heat and protracted drying. The direct impact of increasing heat waves on human physiology and survival has recently been well studied. More diffusely, increasing drought periods may challenge the viability of agriculture in some regions, and hence those communities that depend on primary production. A worst case scenario may herald the collapse of some communities. Human health impacts arising from such transition would be profound. This article summarizes existing rural health challenges and presents the current evidence plus future predictions of climate change impacts on Australian agriculture to argue the need for significant augmentation of public health and existing health policy frameworks. The article concludes by suggesting that adaptation to climate change requires planning for worst case scenario outcomes to avert catastrophic impacts on rural communities. This will involve national policy planning as much as regional-level leadership for rapid development of adaptive strategies in agriculture and other key areas of rural communities. PMID:21242153

  8. Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.

    2014-12-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.

  9. Evaluating climate change impacts and adaptation options for agriculture in West Africa: a multi-model comparison

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Lobell, D. B.; Biasutti, M.; Guan, K.; Roudier, P.; Piani, C.

    2013-12-01

    Climate change is likely to stress food production in many parts of the developing world over the next few decades. In areas such as West Africa, where poor communities are highly dependent on the direct use of local natural resources, the effects of climate change on food security could be particularly devastating. Given these concerns, there is great interest in identifying and investing in technologies or practices that could help farmers adapt to climate variability and change. Recent studies found a robust agreement across the various climate models of the IPCC Coupled Models Inter-comparison Program ensemble on the seasonal distribution of Sahel rainfall changes (with a drying of the early season and positive rainfall anomaly at the end) in contrast with a large uncertainty for summertime rainfall totals. These changes will therefore certainly impact agriculture strategy (selection of new cultivars, later sowing) and output. This study estimates such impacts by using a series of climate scenarios as input for two crop models for multiple locations within West Africa. Simulations are run for the two major crops in the region - sorghum and millets. Building on the above simulations, we then simulate different scenarios of adaptation that could be used to cope with climate changes.

  10. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  11. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    PubMed Central

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies. PMID:26466733

  12. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  13. Local agriculture traditional knowledge to avoid erosion in a changing climate: Ensuring agricultural livelihoods and food security

    NASA Astrophysics Data System (ADS)

    Guadalupe Rivera Ferré, Marta; Di Masso, Marina; Vara, Isabel; Mailhost, Mara; Bhatta, Goppal; Cuellar, Mamem; López-i-Gelats, Feliu; Gallar, Donald

    2015-04-01

    In the regions that experience substantial climatic risks, considerable traditional expertise exists that is underutilized and that could be valuable as a starting point to build more effective strategies for adapting to climate change and ensure food availability. Some of these are agronomic strategies for soil conservation targeting erosion avoidance as a form to ensure soil fertility and thus, crop production and food availability. Following an extensive literature review in the Indogangetic Plans, we have identified many different practices derived from local traditional knowledge that can be classified as i) Reshaping the landscape (terracing, bunding, efficient distribution of land uses); ii) Stream diversion to reduce flood impact (channels along the edges of the fields, embankments, dams, network of ponds, outlets, walls and fencing); and iii) Others (agroforesty, use of specific trees as indicators of soil erosion, crop-fallow rotation, preservation of patches of forests, reforestation, collective management of forests). These endogenous-based practices have a great potential for adaptation since they are more easily adopted by communities, they require of minimum or not external expertise and aid, and usually, are cheaper than other strategies. A combination of local knowledge with other scientific knowledge may be the most effective way to face climate change. This work was performed as part of the CCAFS-Program of the CGIAR in South Asia.

  14. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed

    NASA Astrophysics Data System (ADS)

    Neupane, Ram P.; Kumar, Sandeep

    2015-10-01

    Land use and climate are two major components that directly influence catchment hydrologic processes, and therefore better understanding of their effects is crucial for future land use planning and water resources management. We applied Soil and Water Assessment Tool (SWAT) to assess the effects of potential land use change and climate variability on hydrologic processes of large agriculture dominated Big Sioux River (BSR) watershed located in North Central region of USA. Future climate change scenarios were simulated using average output of temperature and precipitation data derived from Special Report on Emission Scenarios (SRES) (B1, A1B, and A2) for end-21st century. Land use change was modeled spatially based on historic long-term pattern of agricultural transformation in the basin, and included the expansion of corn (Zea mays L.) cultivation by 2, 5, and 10%. We estimated higher surface runoff in all land use scenarios with maximum increase of 4% while expanding 10% corn cultivation in the basin. Annual stream discharge was estimated higher with maximum increase of 72% in SRES-B1 attributed from higher groundwater contribution of 152% in the same scenario. We assessed increased precipitation during spring season but the summer precipitation decreased substantially in all climate change scenarios. Similar to decreased summer precipitation, discharge of the BSR also decreased potentially affecting agricultural production due to reduced future water availability during crop growing season in the basin. However, combined effects of potential land use change with climate variability enhanced for higher annual discharge of the BSR. Therefore, these estimations can be crucial for implications of future land use planning and water resources management of the basin.

  15. Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network.

    PubMed

    Lee, Eunjeong; Seong, Chounghyun; Hakkwan, Kim; Park, Seungwoo; Kang, Moonseong

    2010-01-01

    This study described the development and validation of an artificial neural network (ANN) for the purpose of analyzing the effects of climate change on nonpoint source (NPS) pollutant loads from agricultural small watershed. The runoff discharge was estimated using ANN algorithm. The performance of ANN modelwas examined using observed data from s tudy watershed. The simulationresults agreed well with observed values during calibration and validation periods. NPS pollutant loads were calculated from load-discharge relationship driven by long-term monitoring data. LARS-WG (Long Ashton Research Station-Weather Generator) model was used to generate rainfall data. The calibrated ANN model and load-discharge relationship with the generated data from LARS-WGwere applied to analyze the effects of climate change on NPS pollutant loads from the agricultural small watershed. The results showed that the ANN model provided valuable approach i n estimating future runof f discharge, and the NPS pollutantloads. PMID:20923094

  16. Climate Change and the Global Harvest: Potential Impacts of the Greenhouse Effect on Agriculture

    NASA Astrophysics Data System (ADS)

    Norman, John M.

    The media preoccupation with El Nino and recent weather calamities suggests that nearly everyone should be aware, at least at a superficial level, of the possibilities for global climate changes. Endless articles in the popular press and scientific journal literature have reported a plethora of possible climate change outcomes, supported of course by a judicious selection of observations and reference citations. All this speculation has given rise to assertions that the scientific community is struggling with an uncomfortable dichotomy between genuine and justified concern versus enhanced budgets and notoriety that come with dire scenarios. Perhaps the climate-change research community is second only to the medical research community in having its credibility shaken by premature airing of uncertain findings.

  17. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Astrophysics Data System (ADS)

    Ruane, A. C.; Rosenzweig, C.; Antle, J. M.; Elliott, J. W.

    2015-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIP's community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPs/SSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate change's impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIP's 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  18. The AgMIP Coordinated Global and Regional Assessments (CGRA) of Climate Change Impacts on Agriculture and Food Security

    NASA Technical Reports Server (NTRS)

    Ruane, Alex; Rosenzweig, Cynthia; Elliott, Joshua; Antle, John

    2015-01-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to construct a protocol-based framework enabling regional assessments (led by regional experts and modelers) that can provide consistent inputs to global economic and integrated assessment models. These global models can then relay important global-level information that drive regional decision-making and outcomes throughout an interconnected agricultural system. AgMIPs community of nearly 800 climate, crop, livestock, economics, and IT experts has improved the state-of-the-art through model intercomparisons, validation exercises, regional integrated assessments, and the launch of AgMIP programs on all six arable continents. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) of climate change impacts on agriculture and food security to link global and regional crop and economic models using a protocol-based framework. The CGRA protocols are being developed to utilize historical observations, climate projections, and RCPsSSPs from CMIP5 (and potentially CMIP6), and will examine stakeholder-driven agricultural development and adaptation scenarios to provide cutting-edge assessments of climate changes impact on agriculture and food security. These protocols will build on the foundation of established protocols from AgMIPs 30+ activities, and will emphasize the use of multiple models, scenarios, and scales to enable an accurate assessment of related uncertainties. The CGRA is also designed to provide the outputs necessary to feed into integrated assessment models (IAMs), nutrition and food security assessments, nitrogen and carbon cycle models, and additional impact-sector assessments (e.g., water resources, land-use, biomes, urban areas). This presentation will describe the current status of CGRA planning and initial prototype experiments to demonstrate key aspects of the protocols before wider implementation ahead of the IPCC Sixth Assessment

  19. Impact of climate change on water and agriculture: Challenges and possible solutions for the Nile Delta

    NASA Astrophysics Data System (ADS)

    Mabrouk, Badr; Arafa, Salah; Farahat, Hany; Badr, Marmar; Gampe, David; Ludwig, Ralf

    2013-04-01

    The Nile-Delta is subjected to continuous changes; including shoreline changes either erosion or accretion, subsidence of the delta, as well as sea level rise due to climate change. The impacts of climate change on the Nile Delta have been addressed on local and international level as the Nile Delta coastal zones are vulnerable to sea level rise. The poster presents recent research activities and findings from the CLIMB project in the Nile Delta and costal zones of Egypt. Lots of field data have been collected such as aquifer geometry data, soil properties data, well data and contamination sources. All of these data support a coupled modeling approach of the land surface hydrological model WASIM-ETH and the hydrological model MOD-Flow to simulate and project the future impact translation of climate projections into hydrological impacts. Results confirm intensified threads to water security. Increasing potential evaporation (in response to increasing temperature) in combination with decreasing water levels in the Nile river, reduced precipitation and groundwater recharge and deteriorating groundwater quality, imposes great challenges to ensure the supply of drinking water and irrigation. Current irrigation strategies are highly inefficient and must be replaced by new and adapted systems. Based on the results of the coupled modeling approach, various scenarios can be evaluated. The vision is to develop a road map for climate change and green economy that maximizes wellbeing of the Egyptian citizens, operates with environmental limits, and is capable of adapting to global environmental change.

  20. The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach

    NASA Astrophysics Data System (ADS)

    Kabubo-Mariara, Jane; Karanja, Fredrick K.

    2007-06-01

    This paper measures the economic impact of climate on crops in Kenya. We use cross-sectional data on climate, hydrological, soil and household level data for a sample of 816 households. We estimate a seasonal Ricardian model to assess the impact of climate on net crop revenue per acre. The results show that climate affects crop productivity. There is a non-linear relationship between temperature and revenue on one hand and between precipitation and revenue on the other. Estimated marginal impacts suggest that global warming is harmful for crop productivity. Predictions from global circulation models confirm that global warming will have a substantial impact on net crop revenue in Kenya. The results also show that the temperature component of global warming is much more important than precipitation. Findings call for monitoring of climate change and dissemination of information to farmers to encourage adaptations to climate change. Improved management and conservation of available water resources, water harvesting and recycling of wastewater could generate water for irrigation purposes especially in the arid and semi-arid areas.

  1. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.

    PubMed

    Husaini, Amjad M; Tuteja, Narendra

    2013-01-01

    Biotechnological intervention in the development of crops has opened new vistas in agriculture. Central to the accomplishment of the Millennium Development Goals (MDGs), biotech-agriculture is essential in meeting these targets. Biotech crops have already made modest contributions toward ensuring food and nutrition security by reducing losses and increasing productivity, with less pesticide input. These crops could help address some of the major challenges in agriculture-based economies created by climate change. Projections of global climate change expect the concentration of greenhouse gases to increase, aridization of the environment to increase, temperature fluctuations to occur sharply and frequently, and spatial and temporal distribution of rainfall to be disturbed-all of which will increase abiotic stress-related challenges to crops. Countering these challenges and to meet the food requirement of the ever-increasing world population (expected to reach 9 billion by 2030) we need to (1) develop and use biotech crops for mitigating adverse climatic changes; (2) develop biotech crops resilient to adverse environmental conditions; and (3) address the issues/non-issues raised by NGO's and educate the masses about the benefits of biotech crops. PMID:23160541

  2. Simulated crop yield in response to changes in climate and agricultural practices: results from a simple process based model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Smith, M. J.; Purves, D.; Emmott, S.

    2013-12-01

    Global agriculture will, in the future, be faced with two main challenges: climate change and an increase in global food demand driven by an increase in population and changes in consumption habits. To be able to predict both the impacts of changes in climate on crop yields and the changes in agricultural practices necessary to respond to such impacts we currently need to improve our understanding of crop responses to climate and the predictive capability of our models. Ideally, what we would have at our disposal is a modelling tool which, given certain climatic conditions and agricultural practices, can predict the growth pattern and final yield of any of the major crops across the globe. We present a simple, process-based crop growth model based on the assumption that plants allocate above- and below-ground biomass to maintain overall carbon optimality and that, to maintain this optimality, the reproductive stage begins at peak nitrogen uptake. The model includes responses to available light, water, temperature and carbon dioxide concentration as well as nitrogen fertilisation and irrigation. The model is data constrained at two sites, the Yaqui Valley, Mexico for wheat and the Southern Great Plains flux site for maize and soybean, using a robust combination of space-based vegetation data (including data from the MODIS and Landsat TM and ETM+ instruments), as well as ground-based biomass and yield measurements. We show a number of climate response scenarios, including increases in temperature and carbon dioxide concentrations as well as responses to irrigation and fertiliser application.

  3. Impact of farm level adaptation to climate change on agricultural productivity and farmers' wellbeing: Empirical evidence from Pakistan

    NASA Astrophysics Data System (ADS)

    Abid, Muhammad; Scheffran, Jürgen

    2016-04-01

    Climate change is projected to adversely affect the agricultural sector and attached rural livelihoods, particularly in the developing countries. Hence adaptation to climate change is crucial to support agricultural productivity and rural livelihoods. The current study is based on comprehensive cross sectional data collected through 450 face-to-face interviews with farmers from three agro-ecological zones of Punjab province, Pakistan. This paper aims to examine the factors that influence the farmers' adaptation decisions and to assess the impact of farm level adaptation on crop productivity and farmers' wellbeing. The paper uses correlation analysis, binary logistic regression and propensity score matching techniques in order to explore the study objectives. The results of the study indicate that education, age, land holdings, farmer-to-farmer interaction, access to weather forecasting information and location in agro-ecological zone does have significant impact on farmers' decision to adapt to climate change. Major adaptation measures adopted by farmers were changing planting dates, changing cropping varieties, planting shaded trees and changing input-mix. Moreover the study found a positive and significant impact of adaptation on productivity of all major crops (wheat, sugarcane, maize and rice) and on farmers' wellbeing in term of farm income. Furthermore, the study also found that the extent of adaptation benefits increases with the number of adaptation measures. The findings of the study suggest to focus on farmers' education and easy access to climate-specific information for better adaptation at farm level and improved farm wellbeing. Key words: Climate change; Farm level adaptation; crop productivity; farmers' wellbeing; Pakistan

  4. Predicting the Impacts of Climate Change on Agricultural Yields and Water Resources in the Maumee River Watershed

    NASA Astrophysics Data System (ADS)

    Nagelkirk, R. L.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2012-12-01

    Climate change will likely have considerable effects on agriculture in the Midwestern United States. Under current climate projections, end-of-century temperatures rise by approximately 4 C, while precipitation stays relatively unchanged despite a potential increase in heavy rainfall events. These trends have already been observed over the last century: rising temperatures have extended the growing season two days per decade and heavy rainfall events have become twice as common. In an effort to understand the likely effects of climate change on agriculture, maize and soybean yields in the Maumee River Watershed were simulated using the Systems Approach to Land Use Sustainability (SALUS) crop model. SALUS calculates daily crop growth in response to changing climate, soil, and management conditions. We test the hypotheses that 1) despite any positive effects of CO2 fertilization and allowing for higher yielding varieties, longer and warmer growing seasons will lead to excessive water- and heat-stress, lowering yields under current management practices, and 2) that double-cropping maize and soybeans successively in the same season to offset these losses may become feasible if sufficient late-season soil moisture is made available. Outputs of daily Leaf Area Index (LAI) and root mass from a range of SALUS models are then distributed spatially to drive regional hydrologic simulations using the Integrated Landscape Hydrology Model (ILHM). These coupled simulations demonstrate the response of streamflow and groundwater levels to different management strategies.

  5. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    Changes in global population, food consumption and climate lead to a food security challenge for the future. Water resources, agricultural productivity and the relationships between them will to a large extent dictate how we address this challenge. Although food security is a global issue, impacts of climate change on water resources and agricultural productivity, as well as viability of adaptation strategies, are location specific; e.g., it is important to consider the regional regulatory environment. Our work focuses on the Columbia River basin (CRB) of the Pacific Northwest US. The water resources of the CRB are heavily managed to meet competing demands. There also exists a legal system for individuals/groups to obtain rights to use the publicly owned water resources, and the possibility of curtailing (i.e., restricting) some of these water rights in times of shortage. It is important to include an approximation of this water resource regulation and water rights curtailment process in modeling water availability and impacts of water shortages on agricultural production. The overarching objective of this work is to apply an integrated hydrologic-crop-water management modeling framework over the CRB to characterize the impacts of climate change on irrigation water demands, irrigation water availability, water shortages, and associated impacts in the 2030s. Results indicate that climate change has both positive and negative effects on agricultural production in the CRB and this varies by region and crop type. Certain watersheds that are already water stressed are projected to experience increasing stress in the future. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not necessarily translate into an increased negative effect on yields; some crops are projected to increase in yield despite curtailment. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops

  6. Climate Change and Projected Impacts in Agriculture: an Example on Mediterranean Crops

    NASA Astrophysics Data System (ADS)

    Ferrise, R.; Moriondo, M.; Bindi, M.

    2009-04-01

    Recently, the availability of multi-model ensemble prediction methods has permitted the assignment of likelihoods to future climate projections. This allowed moving from the scenario-based approach to the risk-based approach in assessing the effects of climate change, thus providing more useful information for decision-makers that, as reported by Schneider (2001), need probability estimates to assess the seriousness of the projected impacts. The probabilistic approach to evaluate crop response to climate change mainly consists in applying an impact model (such as crop growth model) to a very large number of climate projections so to provide a probabilistic distribution of the variable selected to evaluate the impact. By comparing the outputs of the multi-simulation with a critical threshold (such as minimum yield below which it is not admissible to fall), it is possible to evaluate the risk related to future climate conditions. Unfortunately, such an approach is a time-consuming process due to the large number of model runs needed for such a procedure. An alternative method relies on the set up of impact response surfaces (RS) with respect to key climatic variables on which a probabilistic representation of projected changes in the same climatic variables may be overlaid (Fronzek et al. 2008). This approach was exploited within the ENSEMBLES EU Project aiming at assessing climate change impact on typical Mediterranean crops. This work presents the results of the project with a particular concerning about the assessment of risk, of durum wheat (T. turgidum L. subsp. durum (Desf.) Husn) and grapevine (Vitis vinifera L.) yield falling below fixed thresholds, using probabilistic information about future climate. Methodology The simple mechanistic crop growth models, SIRIUS Quality (Jamieson et al., 1998) and VITE-model (Bindi et al., 1997a,b), were selected to respectively simulate durum wheat and grapevine yields in present and future scenarios. SIRIUS Quality is a

  7. Integrated Modeling to Assess the Impacts of Changes in Climate and Socio Economics on Agriculture in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Malek, K.; Nelson, R.; Stockle, C.; Brady, M.; Dinesh, S.; Barber, M. E.; Yorgey, G.; Kruger, C.

    2012-12-01

    The objective of this work is to assess the impacts of climate change and socio economics on agriculture in the Columbia River basin (CRB) in the Pacific Northwest region of the U.S. and a portion of Southwestern Canada. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of CRB water with 14,000 square kilometers of irrigated area. Agriculture is an important component of the region's economy, with an annual value over 5 billion in Washington State alone. Therefore, the region is relevant for applying a modeling framework that can aid agriculture decision making in the context of a changing climate. To do this, we created an integrated biophysical and socio-economic regional modeling framework that includes human and natural systems. The modeling framework captures the interactions between climate, hydrology, crop growth dynamics, water management and socio economics. The biophysical framework includes a coupled macro-scale physically-based hydrology model (the Variable Infiltration Capacity, VIC model), and crop growth model (CropSyst), as well as a reservoir operations simulation model. Water rights data and instream flow target requirements are also incorporated in the model to simulate the process of curtailment during water shortage. The economics model informs the biophysical model of the short term agricultural producer response to water shortage as well as the long term agricultural producer response to domestic growth and international trade in terms of an altered cropping pattern. The modeling framework was applied over the CRB for the historical period 1976-2006 and compared to a future 30-year period centered on the 2030s. Impacts of climate change on irrigation water availability, crop irrigation demand, frequency of curtailment, and crop yields are quantified and presented. Sensitivity associated with estimates of water availability, irrigation demand, crop

  8. Long-term climate change impacts on agricultural productivity in eastern China

    SciTech Connect

    Chavas, Daniel R.; Izaurralde, Roberto C.; Thomson, Allison M.; Gao, Xuejie

    2009-06-15

    Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work examines potential climate change impacts on the productivity of five major crops in northeastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10% decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenario conditions are used as input in the EPIC agro-ecosystem simulation model in the domain [30ºN, 108ºE] to [42ºN, 123ºE]. Simulations are performed with and without the enhanced CO2 fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5% for rice, 8.3% for canola, 18.6% for corn, 22.9% for potato, and 24.9% for winter wheat, although with significant spatial variability for each crop. However, absent the enhanced CO2 fertilization effect, potential productivity declines in all cases ranging from 2.5-12%. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a clear beneficiary from among those simulated in this study.

  9. Assessment of climate change and increased atmospheric CO2 impacts on water quality in an intensive agricultural headwater catchment

    NASA Astrophysics Data System (ADS)

    Salmon-Monviola, Jordy; Moreau, Pierre; Benhamou, Cyril; Durand, Patrick; Merot, Philippe; Oehler, François; Gascuel-Odoux, Chantal

    2013-04-01

    Climate change and increasing atmospheric CO2 concentration can lead to disturbances in the global hydrological and nitrogen (N) cycling, and losses in catchment systems. Potential impacts on water and N cycling have been studied in large catchments with a variety of land uses but less attention has focused on agricultural headwater catchments. Despite their relatively small dimensions, headwater catchments of 1-10 km² play a dominant role in N transformations in the landscape, and streams in such catchments may have major impacts on downstream water quantity and quality. This issue is particular important for agricultural catchment which have to reach the WFD targets, where land use changes has to be analysed in combination with climate change. The effects of climate change and rising concentrations of atmospheric CO2 have been studied on (1) changes in hydrological and N balance components on a yearly basis and (2) the seasonal dynamics of water and N fluxes. The spatially distributed agro-hydrological model TNT2 (Topography-based nitrogen Transfers and Transformations) driven by ARPEGE (Action de Recherche Petite Echelle Grande Echelle) climate-model outputs from A1B scenario have been applied on the Kervidy-Naizin headwater catchment (western France), a long term hydrological observatory. Consideration of atmospheric CO2 concentration was implemented at two levels in TNT2: i) to account for the CO2 effect on stomatal conductance TNT2; ii) to consider effect of CO2 on biomass growth. Climate data from ARPEGE model, corrected with the quantile-quantile bias correction method, over 30-year simulation periods were used as TNT2 input (Salmon-Monviola et al., in review). With increased CO2, the main trends in water balance were a significant decrease in annual actual evapotranspiration, a moderate decrease in annual discharge and wetland extent, and a decrease in spring and summer of groundwater recharge and soil water content. Not considering the effects of

  10. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    NASA Technical Reports Server (NTRS)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  11. Impact of carbon dioxide, trace gases, and climate change on global agriculture

    SciTech Connect

    Not Available

    1990-01-01

    Global climate change is one of several important issues that will command the attention of policymakers and scientist in the 1990s. The evidence that concentrations of carbon dioxide (CO{sub 2}), and other gases are increasing in the atmosphere is irrefutable. The evidence, and the knowledge that CO{sub 2} and trace gases may absorb thermal radiation sufficient to warm the atmosphere, has prompted much speculation that ensuing atmospheric warming may lead to changes in the distribution of precipitation, and of crop adaptation and productivity, that would alter the world supply of food and fiber. The implications of this speculation are compelling for agronomists, because agronomists are stewards of the world's food supply and of the natural resources that are used to produce food. Agronomists have a pivotal role in conducting the research needed to anticipate crop response to climate changes, and in informing policymakers and the general public about the adequacy of our knowledge. In this publication agronomists assess the current status of scientific knowledge about the putative role of greenhouse gases in global climate change and report their findings.

  12. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    PubMed

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities. PMID:25535553

  13. Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya

    NASA Astrophysics Data System (ADS)

    Maeda, Eduardo Eiji; Pellikka, Petri K. E.; Siljander, Mika; Clark, Barnaby J. F.

    2010-11-01

    The Taita Hills form the northernmost part of the Eastern Arc Mountains of Kenya and Tanzania, is one of the world's most important regions for biological conservation. Due to the expansion of agricultural activities during the last centuries, currently only 1% of the original vegetation remains preserved in the Taita Hills. These landscape changes, together with potential increases in rainfall volumes caused by climate change, offer a great risk for soil conservation. The present research aims to evaluate how future changes in climate and land use can alter, in time and space, the variables inherent to a widely used soil erosion model, and to assess the impacts of these changes for soil conservation. A modelling framework was assembled by integrating a landscape dynamic model, a soil erosion model and synthetic precipitation datasets generated through a Monte Carlo simulation. The results indicate that, if the current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. Although these land use changes will certainly increase soil erosion figures, new croplands will likely take place predominantly in the lowlands, which comprises areas with lower soil erosion potential. By the year 2030, rainfall erosivity is likely to increase during April and November, while a slight decrease tendency is observed during March and May. An integrated assessment of these environmental changes, performed using the modelling framework, allows a clear distinction of priority regions for soil conservation policies during the next 20 years.

  14. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    NASA Astrophysics Data System (ADS)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  15. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.

  16. Agricultural vulnerability over the Chinese Loess Plateau in response to climate change: Exposure, sensitivity, and adaptive capacity.

    PubMed

    Li, Xueling; Philp, Joshua; Cremades, Roger; Roberts, Anna; He, Liang; Li, Longhui; Yu, Qiang

    2016-04-01

    Understanding how the vulnerability of agricultural production to climate change can differ spatially has practical significance to sustainable management of agricultural systems worldwide. Accordingly, this study developed a conceptual framework to assess the agricultural vulnerability of 243 rural counties on the Chinese Loess Plateau. Indicators representing the climate/agriculture interface were selected to describe exposure and sensitivity, while stocks of certain capitals were used to describe adaptive capacity. A vulnerability index for each county was calculated and the spatial distribution was mapped. Results showed that exposure, sensitivity, and adaptive capacity occur independently, with most contributing indicator values concentrated in a narrow range after normalization. Within the 49 most vulnerable counties, which together encompass 81 % of the vulnerability index range, 42 were characterized by high exposure and sensitivity but low adaptive capacity. The most vulnerable area was found to be located in the central northeast-southwest belt of Loess Plateau. Adaptation measures for both ecological restoration and economic development are needed and potential adaptation options need further investigation. PMID:26563383

  17. Land cover, land use, and climate change impacts on agriculture in southern Vietnam

    NASA Astrophysics Data System (ADS)

    Kontgis, Caitlin

    Global environmental change is rapidly changing the surface of the Earth in varied and irrevocable ways. Across the world, land cover and land use have been altered to accommodate the needs of expanding populations, and climate change has required plant, animal, and human communities to adapt to novel climates. These changes have created unprecedented new ecosystems that affect the planet in ways that are not fully understood and difficult to predict. Of utmost concern is food security, and whether agro-ecosystems will adapt and respond to widespread changes so that growing global populations can be sustained. To understand how one staple food crop, rice, responds to global environmental change in southern Vietnam, this dissertation aims to accomplish three main tasks: (1) quantify the rate and form of urban and peri-urban expansion onto cropland using satellite imagery and demographic data, (2) track changes to annual rice paddy harvests using time series satellite data, and (3) model the potential effects of climate change on rice paddies by incorporating farmer interview data into a crop systems model. The results of these analyses show that the footprint of Ho Chi Minh City grew nearly five times between 1990 and 2012. Mismatches between urban development and population growth suggest that peri-urbanization is driven by supply-side investment, and that much of this form of land expansion has occurred near major transit routes. In the nearby Mekong River Delta, triple-cropped rice paddy area doubled between 2000 and 2010, from one-third to two-thirds of rice fields, while paddy area expanded by about 10%. These results illustrate the intensification of farming practices since Vietnam liberalized its economy, yet it is not clear whether such practices are environmentally sustainable long-term. Although triple-cropped paddy fields have expanded, future overall production is estimated to decline without the effects of CO2 fertilization. Temperatures are anticipated

  18. Climate Change

    NASA Astrophysics Data System (ADS)

    Cowie, Jonathan

    2001-05-01

    In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. It will be of interest to a wide range of people, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, and environmental science students who need to understand the biological and human ecological implications of climate change. It will also be a valuable reference for those involved in environmental monitoring, conservation, policy-making and policy lobbying. The first book to cover not only the human impacts on climate, but how climate change will affect humans and the species that we rely on Written in an accessible style, with specialist terms used only when necessary and thoroughly explained The author has years of experience conveying the views of biological science learned societies to policy-makers

  19. Climatic water balance and agricultural productivity dynamics in Dobrogea, southeastern Romania, against the background of climate change over the past decades

    NASA Astrophysics Data System (ADS)

    Bandoc, Georgeta; Pravalie, Remus

    2015-04-01

    Interdisciplinary analyses of the relationship between climate system dynamics and agricultural system variation are an essential component for increasing the efficiency of water resource management, and for adapting crops at local level. This paper analyzes the dynamics of the climate water balance (CWB) in the past five decades in Romania's most arid region, Dobrogea, against the background of climate change, as well as the statistical relationship between the variation of CWB values and that of regional agricultural systems. Thus, a first stage consisted in detailed climatic analyses of CWB value variation between 1961 and 2009, based on climatic data provided by 9 regional weather stations. The study mainly focused on CWB trends (mm) recorded annually and seasonally (winter, spring, summer and autumn), using statistical methods such as the Mann-Kendall test and the Sen's slope method, as well as GIS methods in order to visualize the results. The second main stage was directed towards the analysis of the statistical relationship between the aforementioned climate indicator's dynamics and agricultural yields (t / ha / year) in the administrative-territorial units overlapping Dobrogea (generally the plateau region), while corn was considered for the case study as it is one of the region's main crops. In this instance, the agro-climatic data were analyzed / statistically correlated in the 1990-2003 period (depending on data availability for corn production output at administrative unit level), based on Thiessen-Voronoi polygons which were considered to be compact spatial units in which both data categories can be grouped in order to establish interannual relationships. In terms of climate, the results indicated an annual increase of the climatic water deficit at the stations located in the northern region of the study area, with maximum rates of -3.2 mm / year. In contrast, CWB values decreased seasonally (the climatic water deficit increased) roughly throughout

  20. Production and Adaptation Assessments of Agricultural Crops under Climate Change in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Absar, S. M.; Touma, D. E.; Preston, B. L.; Ashfaq, M.

    2012-12-01

    We use multiple Global Climate Models (GCMs) data from the 5th phase of the Coupled Model Inter-comparison Project (CMIP5) in a point based crop simulation model, Decision Support System for Agro-technology Transfer (DSSAT), to investigate the impact of climate variability and change on crop yields in the southeastern United States. The input data consists of maximum and minimum temperatures, precipitation and solar radiation at daily time-scale, covering 40 years (1960-1999) in the baseline period, and 90 years (2010-2100) in the future period under the baseline emissions scenario of Representative Concentration Pathway (RCP) 8.5. The DSSAT model has been calibrated for 29 sites, representing the study area, using field experiment data. The input soil parameters for DSSAT include soil classification, surface slope, color, permeability, and drainage. For the analyses of projected changes, we divide the 21st century into the near-term (2010-2049) and long-term (2050-2100) periods and focus on comparing the yields of major crops grown at the selected sites, during each future period, with the corresponding yields in the baseline period. In particular, we investigate the effect of changes in mean and extreme hydro-meteorological characteristics on crop yields in the region. Given the projected changes in the crop yields in the future periods, we focus on the adaptation strategies at the local level based on the optimal management practices such as irrigation, fertilization, sowing date that will be needed to cope with climate variability and change in the region.

  1. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment.

    PubMed

    Fuhrer, J; Smith, P; Gobiet, A

    2014-09-15

    Coping with climate change in agriculture requires knowledge of trends in agro-climatic conditions with a focus at the smaller scales where decisions are taken. As part of the EU FP7 ACQWA project, the situation was analyzed for agriculture in the case of the Swiss Rhone catchment (Valais) where cultivation of permanent crops (orchards and vineyards) and livestock production are the most important agro-economic activities. The aim of this study was to use daily data from four downscaled and bias corrected transient climate change scenarios to analyze changes in water and temperature related indices over the period 1951-2050 for three locations (Aigle, Sion, Montana) that are representative of different production zones in the catchment. The results indicate that most relevant implications are caused by projected changes in temperature and not in precipitation. They indicate an extension of the thermal growing season with potentially positive effects on pasture and livestock production, most pronounced at the mountain site (Montana), but a trend towards increasing risks of frost in permanent crops and in heat stress for livestock at the valley bottom (Aigle, Sion). The increase in water requirement for irrigation in 2021-2050 relative to 1981-2009 is moderate (4-16%, depending on location). However, in years with low amounts of snow and rain, in small catchments with a nival regime, reduced water supply by rivers could restrict the surface area of grassland that can be irrigated, particularly during springtime. It is concluded that coping with heat-related risks may be most needed at the lower cropland and pasture sites while water-related issues would become more relevant in more elevated locations where pasture-based livestock production is the dominant type of agricultural land use. PMID:23830922

  2. Modeling agricultural commodity prices and volatility in response to anticipated climate change

    NASA Astrophysics Data System (ADS)

    Lobell, D. B.; Tran, N.; Welch, J.; Roberts, M.; Schlenker, W.

    2012-12-01

    Food prices have shown a positive trend in the past decade, with episodes of rapid increases in 2008 and 2011. These increases pose a threat to food security in many regions of the world, where the poor are generally net consumers of food, and are also thought to increase risks of social and political unrest. The role of global warming in these price reversals have been debated, but little quantitative work has been done. A particular challenge in modeling these effects is that they require understanding links between climate and food supply, as well as between food supply and prices. Here we combine the anticipated effects of climate change on yield levels and volatility with an empirical competitive storage model to examine how expected climate change might affect prices and social welfare in the international food commodity market. We show that price level and volatility do increase over time in response to decreasing yield, and increasing yield variability. Land supply and storage demand both increase, but production and consumption continue to fall leading to a decrease in consumer surplus, and a corresponding though smaller increase in producer surplus.

  3. Soil Incubation Study to Assess the Impacts of Manure Application and Climate Change on Greenhouse Gas Emissions from Agricultural Soil

    NASA Astrophysics Data System (ADS)

    Schiavone, K.; Barbieri, L.; Adair, C.

    2015-12-01

    Agricultural fields in Vermont's Lake Champlain Basin have problems with the loss of nutrients due to runoff which creates eutrophic conditions in the lakes, ponds and rivers. In efforts to retain nitrogen and other nutrients in the soil farmers have started to inject manure rather than spraying it. Our understanding of the effects this might have on the volatilization of nitrogen into nitrous oxide is limited. Already, agriculture produces 69% of the total nitrous oxide emissions in the US. Understanding that climate change will affect the future of agriculture in Vermont, we set up a soil core incubation test to monitor the emissions of CO₂ and N₂O using a Photoacoustic Gas Sensor (PAS). Four 10 cm soil cores were taken from nine different fertilizer management plots in a No Till corn field; Three Injected plots, three Broadcast plots, and three Plow plots. Frozen soil cores were extracted in early April, and remained frozen before beginning the incubation experiment to most closely emulate three potential spring environmental conditions. The headspace was monitored over one week to get emission rates. This study shows that environmental and fertilizer treatments together do not have a direct correlation to the amount of CO₂ and N₂O emissions from agricultural soil. However, production of CO₂ was 26% more in warmer environmental conditions than in variable(freeze/thaw) environmental conditions. The injected fertilizer produced the most emissions, both CO₂ and N₂O. The total N₂O emissions from Injected soil cores were 2.2x more than from traditional broadcast manure cores. We believe this is likely due to the addition of rich organic matter under anaerobic soil conditions. Although, injected fertilizer is a better application method for reducing nutrient runoff, the global warming potential of N₂O is 298 times that of CO₂. With climate change imminent, assessing the harmful effects and benefits of injected fertilizer is a crucial next step in

  4. Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change

    NASA Astrophysics Data System (ADS)

    Folberth, Christian; Yang, Hong; Gaiser, Thomas; Liu, Junguo; Wang, Xiuying; Williams, Jimmy; Schulin, Rainer

    2014-04-01

    Much of Africa is among the world’s regions with lowest yields in staple food crops, and climate change is expected to make it more difficult to catch up in crop production in particular in the long run. Various agronomic measures have been proposed for lifting agricultural production in Africa and to adapt it to climate change. Here, we present a projection of potential climate change impacts on maize yields under different intensification options in Sub-Saharan Africa (SSA) using an agronomic model, GIS-based EPIC (GEPIC). Fallow and nutrient management options taken into account are (a) conventional intensification with high mineral N supply and a bare fallow, (b) moderate mineral N supply and cowpea rotation, and (c) moderate mineral N supply and rotation with a fast growing N fixing tree Sesbania sesban. The simulations suggest that until the 2040s rotation with Sesbania will lead to an increase in yields due to increasing N supply besides improving water infiltration and soils’ water holding capacity. Intensive cultivation with a bare fallow or an herbaceous crop like cowpea in the rotation is predicted to result in lower yields and increased soil erosion during the same time span. However, yields are projected to decrease in all management scenarios towards the end of the century, should temperature increase beyond critical thresholds. The results suggest that the effect of eco-intensification as a sole means of adapting agriculture to climate change is limited in Sub-Saharan Africa. Highly adverse temperatures would rather have to be faced by improved heat tolerant cultivars, while strongly adverse decreases in precipitation would have to be faced by expanding irrigation where feasible. While the evaluation of changes in agro-environmental variables like soil organic carbon, erosion, and soil humidity hints that these are major factors influencing climate change resilience of the field crop, no direct relationship between these factors, crop yields, and

  5. Adapting the Biome-BGC Model to New Zealand Pastoral Agriculture: Climate Change and Land-Use Change

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.

    2011-12-01

    We have adapted the Biome-BGC model to make climate change and land-use scenario estimates of New Zealand's pasture production in 2020 and 2050, with comparison to a 2005 baseline. We take an integrated modelling approach with the aim of enabling the model's use for policy assessments across broadly related issues such as climate change mitigation and adaptation, land-use change, and greenhouse gas projections. The Biome-BGC model is a biogeochemical model that simulates carbon, water, and nitrogen cycles in terrestrial ecosystems. We introduce two new 'ecosystems', sheep/beef and dairy pasture, within the existing structure of the Biome-BGC model and calibrate its ecophysiological parameters against pasture clipping data from diverse sites around New Zealand to form a baseline estimate of total New Zealand pasture production. Using downscaled AR4 climate projections, we construct mid- and upper-range climate change scenarios in 2020 and 2050. We produce land-use change scenarios in the same years by combining the Biome-BGC model with the Land Use in Rural New Zealand (LURNZ) model. The LURNZ model uses econometric approaches to predict future land-use change driven by changes in net profits driven by expected pricing, including the introduction of an emission trading system. We estimate the relative change in national pasture production from our 2005 baseline levels for both sheep/beef and dairy systems under each scenario.

  6. Monthly water balance model for climate change analysis in agriculture with R

    NASA Astrophysics Data System (ADS)

    Kalicz, Péter; Herceg, András; Gribovszki, Zoltán

    2015-04-01

    For Hungary regional climate models projections suggest a warmer climate and some changes in annual precipitation distribution. These changes force the whole agrarian sector to consider the traditional cropping technologies. This situation is more serious in forestry because some forest populations are on their xeric distributional limits (Gálos et. al, 2014). Additionally, a decision has an impact sometimes longer than one hundred years. To support the stakeholder there is a project which develops a GIS (Geographic Information System) based decision support system. Hydrology plays significant role in this system because water is often one of the most important limiting factor in Hungary. A modified Thorntwaite-type monthly water balance model was choosen to produce hydrological estimations for the GIS modules. This model is calibrated with the available data between 2000 and 2008. Beside other meteorological data we used mainly an actual evapotranspiration map in the calibration phase, which was derived with the Complementary-relationship-based evapotranspiration mapping (CREMAP; Szilágyi and Kovács, 2011) technique. The calibration process is pixel based and it has several stochastic steps. We try to find a flexible solution for the model implementation which easy to automatize and can be integrate in GIS systems. The open source R programming language was selected which well satisfied these demands. The result of this development is summarized as an R package. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project. References Gálos B., Antal V., Czimber K., Mátyás Cs. (2014) Forest ecosystems, sewage works and droughts - possibilities for climate change adaptation. In: Santamarta J.C., Hernandez-Gutiérrez L.E., Arraiza M.P. (eds) 2014. Natural Hazards and Climate Change/Riesgos Naturales y Cambio Climático. Madrid: Colegio de Ingenieros de Montes. ISBN 978-84-617-1060-7, D.L. TF 565-2014, 91-104 pp Szilágyi J., Kovács Á. (2011

  7. As Climate Changes

    NASA Astrophysics Data System (ADS)

    Strzepek, Kenneth M.; Smith, Joel B.

    1996-01-01

    This book is the result of the first comprehensive study of world wide climate fluctuations that is not primarily based on pre-existing literature reviews. The authors, employing original analysis, model runs, and data sets, use common climate change scenarios to examine the impacts on agriculture, water resources, coastal resources, forests and human health. The studies focus on the impacts of climate change in the developing countries around the world. In addition, the editors use Egypt as a case study, providing the first integrated analysis of a single country. This book will enable well-informed and up-to-date decisions by climate change researchers and policy makers.

  8. Constraints and potentials of future irrigation water availability on agricultural production under climate change

    PubMed Central

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M.; Folberth, Christian; Foster, Ian; Gosling, Simon N.; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C.; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-01-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required. PMID:24344283

  9. Production and Adaptation Assessments of Agricultural Crops under Climate Change in Southeastern United States

    NASA Astrophysics Data System (ADS)

    Absar, M.; Touma, D. E.; Mei, R.; Rastogi, D.; Surendran Nair, S.; Ahmed, K. F.; Wu, W.; Preston, B. L.; Ashfaq, M.

    2013-12-01

    We use multiple Global Climate Models (GCMs) data from the 5th phase of the Coupled Model Inter-comparison Project (CMIP5) in a point based crop simulation model, Decision Support System for Agro-technology Transfer (DSSAT), to investigate the impact of climate variability and change on crop yields in the southeastern United States. The input data consists of maximum and minimum temperatures, precipitation and solar radiation at daily time-scale, covering 30 years (1975-2004) in the baseline period, and 90 years (2010-2100) in the future period under the Representative Concentration Pathway (RCP) 8.5. The DSSAT model is run for 1009 counties of 10 southeastern states, representing the study area. Default DSSAT crop and biophysical process parameter values are used with some minor adjustments based on suggestions from scientific literature. For the analyses of projected changes, we divide the 21st century into the near-term (2010-2039), mid-term (2040-2069) and long-term (2070-2100) periods and investigate the effect of changes in mean and extreme hydro-meteorological characteristics on crop yields by using future temperature, precipitation and CO2 data. We conduct two sets of experiments; the first set of experiments isolates the effect of temperature and precipitation on crop yields by using temperature and precipitation data from each of the three future periods while keeping CO2 at the baseline level (380ppm). The second set of experiments isolates the effect of CO2 on crop yields by using temperature and precipitation from the baseline period and using CO2 level as an average of the last 10 years in each of the three future periods (467ppm, 636ppm and 886ppm). Given the projected changes in the crop yields in the future, we focus on the adaptation strategies at the local level based on the optimal management practices such as irrigation, fertilization and planting date that will be needed to adapt to regional climate variability and change.

  10. Downscaled climate change impacts on agricultural water resources in Puerto Rico

    SciTech Connect

    Harmsen, E.W.; Miller, N.L.; Schlegel, N.J.; Gonzalez, J.E.

    2009-04-01

    The purpose of this study is to estimate reference evapotranspiration (ET{sub o}), rainfall deficit (rainfall - ET{sub o}) and relative crop yield reduction for a generic crop under climate change conditions for three locations in Puerto Rico: Adjuntas, Mayaguez, and Lajas. Reference evapotranspiration is estimated by the Penman-Monteith method. Rainfall and temperature data were statistically downscaled and evaluated using the DOE/NCAR PCM global circulation model projections for the B1 (low), A2 (mid-high) and A1fi (high) emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Relative crop yield reductions were estimated from a function dependent water stress factor, which is a function of soil moisture content. Average soil moisture content for the three locations was determined by means of a simple water balance approach. Results from the analysis indicate that the rainy season will become wetter and the dry season will become drier. The 20-year mean 1990-2010 September rainfall excess (i.e., rainfall - ET{sub o} > 0) increased for all scenarios and locations from 149.8 to 356.4 mm for 2080-2100. Similarly, the 20-year average February rainfall deficit (i.e., rainfall - ET{sub o} < 0) decreased from a -26.1 mm for 1990-2010 to -72.1 mm for the year 2080-2100. The results suggest that additional water could be saved during the wet months to offset increased irrigation requirements during the dry months. Relative crop yield reduction did not change significantly under the B1 projected emissions scenario, but increased by approximately 20% during the summer months under the A1fi emissions scenario. Components of the annual water balance for the three climate change scenarios are rainfall, evapotranspiration (adjusted for soil moisture), surface runoff, aquifer recharge and change in soil moisture storage. Under the A1fi scenario, for all locations, annual evapotranspiration decreased owing to lower soil moisture

  11. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  12. Impact of intensified irrigated agriculture and climate change on nitrogen loading in the Amu Darya drainage basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2013-04-01

    Pollutant loading and water losses by evapotranspiration are two main problems of intensified irrigated agricultural in arid and semi-arid regions. Climatic changes can further increase water losses and alter transport pathways for contaminants and nutrients. Identification of dominant processes that control nitrogen (N) loading in the highly managed Amu Darya Drainage Basin (ADRB), the largest sub-basin in the Aral Sea Drainage Basin (ASDB), is considered by looking at a 40-years (1960-2000) data record of dissolved inorganic nitrogen (DIN). Furthermore, hydrologic distributed modelling was used to investigate how N transport pathways and travel times have changed with past irrigation expansion, and is likely to change further in response to projected future hydro-climatic trends. River discharge has decreased drastically during the considered 40-years period in ADRB. Future climate and land-use projections show that downstream regions even are at risk of total surface water depletion within a future 30-years period. Decreasing riverine DIN concentration was observed near the Aral Sea outlet despite increasing N fertilizer application throughout the 40-years period. The reduction in concentrations could not be explained by increased N crop uptake, improved fertilization application or improved irrigation efficiency. Instead, this must primarily be due to a considerable increase in reuse in irrigation which extends the flow-path lengths and enhances N retention. A relationship between increased recirculation ratio (defined as the basin-scale return flow divided by the outflow) and decreased Cout/Cin ratio was developed, and shown to be valid for a relatively wide uncertainty range. An observed six-fold decrease in DIN load was primarily, but not exclusively, due to the drastic river flow reduction. Consequently, N accumulation in the soil-groundwater system has accelerated since the N fertilization has been maintained high throughout the period of considerable

  13. Uncertainties in predicting species distributions under climate change: a case study using Tetranychus evansi (Acari: Tetranychidae), a widespread agricultural pest.

    PubMed

    Meynard, Christine N; Migeon, Alain; Navajas, Maria

    2013-01-01

    Many species are shifting their distributions due to climate change and to increasing international trade that allows dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture. Species distribution modelling may help to predict potential changes in pest distributions. However, these modelling strategies are subject to large uncertainties coming from different sources. Here we used the case of the tomato red spider mite (Tetranychus evansi), an invasive pest that affects some of the most important agricultural crops worldwide, to show how uncertainty may affect forecasts of the potential range of the species. We explored three aspects of uncertainty: (1) species prevalence; (2) modelling method; and (3) variability in environmental responses between mites belonging to two invasive clades of T. evansi. Consensus techniques were used to forecast the potential range of the species under current and two different climate change scenarios for 2080, and variance between model projections were mapped to identify regions of high uncertainty. We revealed large predictive variations linked to all factors, although prevalence had a greater influence than the statistical model once the best modelling strategies were selected. The major areas threatened under current conditions include tropical countries in South America and Africa, and temperate regions in North America, the Mediterranean basin and Australia. Under future scenarios, the threat shifts towards northern Europe and some other temperate regions in the Americas, whereas tropical regions in Africa present a reduced risk. Analysis of niche overlap suggests that the current differential distribution of mites of the two clades of T. evansi can be partially attributed to environmental niche differentiation. Overall this study shows how consensus strategies and analysis of niche overlap can be used jointly to draw conclusions on invasive threat

  14. Uncertainties in Predicting Species Distributions under Climate Change: A Case Study Using Tetranychus evansi (Acari: Tetranychidae), a Widespread Agricultural Pest

    PubMed Central

    Meynard, Christine N.; Migeon, Alain; Navajas, Maria

    2013-01-01

    Many species are shifting their distributions due to climate change and to increasing international trade that allows dispersal of individuals across the globe. In the case of agricultural pests, such range shifts may heavily impact agriculture. Species distribution modelling may help to predict potential changes in pest distributions. However, these modelling strategies are subject to large uncertainties coming from different sources. Here we used the case of the tomato red spider mite (Tetranychus evansi), an invasive pest that affects some of the most important agricultural crops worldwide, to show how uncertainty may affect forecasts of the potential range of the species. We explored three aspects of uncertainty: (1) species prevalence; (2) modelling method; and (3) variability in environmental responses between mites belonging to two invasive clades of T. evansi. Consensus techniques were used to forecast the potential range of the species under current and two different climate change scenarios for 2080, and variance between model projections were mapped to identify regions of high uncertainty. We revealed large predictive variations linked to all factors, although prevalence had a greater influence than the statistical model once the best modelling strategies were selected. The major areas threatened under current conditions include tropical countries in South America and Africa, and temperate regions in North America, the Mediterranean basin and Australia. Under future scenarios, the threat shifts towards northern Europe and some other temperate regions in the Americas, whereas tropical regions in Africa present a reduced risk. Analysis of niche overlap suggests that the current differential distribution of mites of the two clades of T. evansi can be partially attributed to environmental niche differentiation. Overall this study shows how consensus strategies and analysis of niche overlap can be used jointly to draw conclusions on invasive threat

  15. Climate change, agroclimatic resources and agroclimatic zoning of agriculture in Bulgaria

    NASA Astrophysics Data System (ADS)

    Kazandjiev, V.; Moteva, M.; Georgieva, V.

    2009-09-01

    The important factors for the agrarian output in Bulgaria are only thermal and water probability. From the two factors the component related to soil moisture is more limited. As well water and temperatures probabilities in the agrarian output are estimated trough sums of temperatures and rainfalls or by derivatives indicators (most frequently named as coefficients or indices). The heat conditions and the heat resources are specified by the continuousness of the vegetative period. Duration of vegetative season is limited for each type of plant, between the spring and autumn steady pass of air temperature across the biological minimum. For the agricultural crops in Bulgaria the three biological minimums: in 5°C are taken for wheat and barley, oat, pea, lentil and sunflower; 10°C for corn, haricot, and soybean and in 15°C for the cotton, vegetables and other spring cultures). The cold and warm period duration are mutually related characteristics. The first period define number of days with the snow fall and days with the snow cover, that are in the basis in the formation of soil moisture reserves after the spring snow melt. Definition of the regions with temperature stress conditions during vegetative season is one of the most important parameters of agroclimatic conditions. The values indicating for the limitations are one or more periods from at least 10 consecutive days with maximal air temperature over 35 °С. More from the agricultures, character for the moderate continental climatic zone are developed normally under temperatures 25-28°С. Temperatures over 28°C are ballast slowing the growth and destroying plants due to the heat tension. The component, limiting in greatest degree growth, development and formation of yields from the agricultural crops are the conditions of moisturizing, present trough atmospheric and soil moisture. The most apparent indicator is the year sum of the rains or their sum by the periods with the average daily temperatures of

  16. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  17. USDA Southwest climate hub for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  18. Areal changes of lentic water bodies within an agricultural basin of the Argentinean pampas. Disentangling land management from climatic causes.

    PubMed

    Booman, Gisel Carolina; Calandroni, Mirta; Laterra, Pedro; Cabria, Fabián; Iribarne, Oscar; Vázquez, Pablo

    2012-12-01

    Wetland loss is a frequent concern for the environmental management of rural landscapes, but poor disentanglement between climatic and land management causes frequently constrains both proper diagnoses and planning. The aim of this study is to address areal changes induced by non-climatic factors on lentic water bodies (LWB) within an agricultural basin of the Argentinean Pampas, and the human activities that might be involved. The LWB of the Mar Chiquita basin (Buenos Aires province, Argentina) were mapped using Landsat images from 1998-2008 and then corrected for precipitation variability by considering the regional hydrological status on each date. LWB areal changes were statistically and spatially analyzed in relation to land use changes, channelization of streams, and drainage of small SWB in the catchment areas. We found that 12 % of the total LWB in the basin had changed (P < 0.05) due to non-climatic causes. During the evaluated decade, 30 % of the LWB that changed size had decreased while 70 % showed steady increases in area. The number of altered LWB within watersheds lineally increased or decreased according to the proportion of grasslands replaced by sown pastures, or the proportion of sown pastures replaced by crop fields, respectively. Drainage and channelization do not appear to be related to the alteration of LWB; however some of these hydrologic modifications may predate 1998, and thus earlier effects cannot be discarded. This study shows that large-scale changes in land cover (e.g., grasslands reduction) can cause a noticeable loss of hydrologic regulation at the catchment scale within a decade. PMID:22990683

  19. Climatic Changes and Evaluation of Their Effects on Agriculture in Asian Monsoon Region- A project of GRENE-ei programs in Japan

    NASA Astrophysics Data System (ADS)

    Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.

    2015-12-01

    It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to

  20. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar C.; Rosenberg, Norman J.; He, Xiaoxia

    2006-03-01

    The Huang-Hai Plain in northeast China has been cultivated for thousands of years and is the most productive wheat growing region in the country. Its agricultural future will be determined in large part by how global climatic changes affect regional conditions and by the actions China takes to mitigate or adapt to climate change impacts. One potential mitigation strategy is to promote soil carbon (C) sequestration, which would improve soil quality while simultaneously contributing to the mitigation of climate change. The IPCC estimates that 40 Pg of C could be sequestered in cropland soils worldwide over the next century. Here we assess the potential for soil C sequestration with conversion of a conventional till (CT) continuous wheat system to a wheat-corn double cropping system and by implementing no till (NT) management for both continuous wheat and wheat-corn systems. To assess the influence of these management changes under a changing climate, we use two climate change scenarios at two time periods in the EPIC agro-ecosystem simulation model. The applied climate change scenarios are from the HadCM3 Global Climate Model for the time periods 2015-2045 and 2070-2099. The HadCM3 model projects that both temperature and precipitation will increase throughout the next century with increases of greater than 5 °C and up to 300 mm possible by 2099. An increase in the variability of temperature is also projected and is, accordingly, applied in the simulations. The EPIC model indicates that winter wheat yields would increase on average by 0.2 Mg ha-1 in the 2030 period and by 0.8 Mg ha-1 in the 2085 period due largely to the warmer nighttime temperatures and higher precipitation projected by the HadCM3 model. Simulated yields were not significantly affected by imposed changes in crop management. Simulated soil organic C content was higher under both NT management and double cropping than under CT continuous wheat. Soil C sequestration rates for continuous wheat systems

  1. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  2. Impacts of Agricultural Management and Climate Change on Future Soil Organic Carbon Dynamics in North China Plain

    PubMed Central

    Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang

    2014-01-01

    Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration. PMID:24722689

  3. Climate change 2007 - mitigation of climate change

    SciTech Connect

    Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L.

    2007-07-01

    This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

  4. The USDA Southern Plains Climate Hub: Regional agricultural management in the context of weather and climate variability and change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Southern Great Plains of the United States, extremes of weather and climate are the norm. Farmers, ranchers, and foresters rely upon timely and authoritative data and information when making management decisions that are weather- and climate-dependent. In response to the needs of these agricu...

  5. Long-term prediction of groundwater recharge by climate changes in the Gosan agricultural area, Jeju Island of South Korea

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Kaown, D.; Lee, K. K.

    2015-12-01

    Evaluation of long-term changes in groundwater recharge due to the climate changes is needed to secure the sustainable use of grounwater. In Jeju Island, which is composed of various formations of porous volcanic rocks, groundwater is a sole resource for water supply because of its hydrogeological characteristics. Therefore, preservation of the groundwater resource is an essential issue in the island. Prior to establishing a management plan for maintaining the groundwater resources in Jeju Island, long-term estimation of influencing factors are necessary. The Gosan study area is located in the western part of the island, where extensive agricultural activity has been performed and groundwater is a main source of supply for watering crops. In this study, we estimated the recharge changes for 100 years (2000~2099) in the Gosan agricultural area based on two climate change scenarios (RCP 4.5 and RCP 8.5) by using the HELP3 (Hydrologic Evaluation of Landfill Performance) program. The estimated component of water budget in this study are as follows (averaged in 2000~2014), precipitation: 1.28x108 m3/yr; ET: 6.49x107 m3/yr; runoff: 5.84x106 m3/yr; and recharge: 5.27x107 m3/yr. Over the 100 years of the estimated period, precipitation will have a highest increase among other meteorological parameters to be 6.16x109 m3 (RCP4.5) and 6.34 x109 m3 (RCP8.5). Increase in recharge by RCP8.5 scenario (2.75 x109 m3) will be less than that by RCP4.5 (2.77x109 m3) because ET by RCP 8.5 (ET: 3.34x109 m3; runoff: 2.27x108 m3) is estimated to be higher than ET by RCP4.5 (ET: 3.15x109 m3; runoff: 2.35x108 m3). Jeju volcanic island is known to have higher recharge proportions to the precipitation due to the distributed highly porous volcanic rocks. Therefore, variations in precipitation by climate changes would greatly affect the groundwater resource of the island. Acknowledgement: This work was supported by the research project of "Advanced Technology for

  6. Global climate change

    PubMed Central

    Alley, Richard B.; Lynch-Stieglitz, Jean; Severinghaus, Jeffrey P.

    1999-01-01

    Most of the last 100,000 years or longer has been characterized by large, abrupt, regional-to-global climate changes. Agriculture and industry have developed during anomalously stable climatic conditions. New, high-resolution analyses of sediment cores using multiproxy and physically based transfer functions allow increasingly confident interpretation of these past changes as having been caused by “band jumps” between modes of operation of the climate system. Recurrence of such band jumps is possible and might be affected by human activities. PMID:10468545

  7. Global climate change.

    PubMed

    Alley, R B; Lynch-Stieglitz, J; Severinghaus, J P

    1999-08-31

    Most of the last 100,000 years or longer has been characterized by large, abrupt, regional-to-global climate changes. Agriculture and industry have developed during anomalously stable climatic conditions. New, high-resolution analyses of sediment cores using multiproxy and physically based transfer functions allow increasingly confident interpretation of these past changes as having been caused by "band jumps" between modes of operation of the climate system. Recurrence of such band jumps is possible and might be affected by human activities. PMID:10468545

  8. Climate Change Impact on the Hydrology and Water Quality of a Small Partially-Irrigated Agricultural Lowland Catchment

    NASA Astrophysics Data System (ADS)

    Visser, A.; Kroes, J.; van Vliet, M. T.; Blenkinsop, S.; Broers, H.

    2010-12-01

    The objective of this study was to assess the potential effects of climate change on the hydrology of the small partially-irrigated agricultural lowland catchment of the Keersop, in south of the Netherlands, as well as the transport of a pre-existing spatially extensive trace metal contamination. The area surrounding the Keersop has been contaminated with heavy metals by the atmospheric emissions of four zinc ore smelters. This heavy metal contamination, with Cd and Zn for example, has accumulated in the topsoil and leaches towards the surface water system, especially during periods with high groundwater levels and high discharge rates. Daily time-series of precipitation and potential evapotranspiration were derived from the results of eight regional climate model experiments under the SRES A2 emissions scenario. They each span 100 years and are representative for the periods 1961-1990 (“baseline climate”) and 2071-2100 (“future climate”). The time-series of future climate were characterized by lower precipitation (-1% to -12%) and higher air temperatures (between 2°C and 5°C), and as a result higher potential evapotranspiration, especially in summer. The time-series were used to drive the quasi-2D unsaturated-saturated zone model (SWAP) of the Keersop catchment (43 km2). The model consisted of an ensemble of 686 1D models, each of which represented a 250x250 m area within the catchment. Simulation results for the future climate scenarios show a shift in the water balance of the catchment. The decrease in annual rainfall is nearly compensated by an increase in irrigation in the catchment, if present day irrigation rules are followed. On the other hand, both evaporation and transpiration fluxes increase. This increase is compensated by a decrease in the drainage flux and groundwater recharge. As a result, groundwater levels decline and the annual discharge of the Keersop stream decreases under all future climate scenarios, by 26% to 46%. Because Cd and Zn

  9. Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change.

    PubMed

    Kollah, Bharati; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2016-03-01

    This review addresses the perspectives of Azolla as a multifaceted aquatic resource to ensure ecosystem sustainability. Nitrogen fixing potential of cyanobacterial symbiont varies between 30 and 60 kg N ha(-1) which designates Azolla as an important biological N source for agriculture and animal industry. Azolla exhibits high bioremediation potential for Cd, Cr, Cu, and Zn. Azolla mitigates greenhouse gas emission from agriculture. In flooded rice ecosystem, Azolla dual cropping decreased CH4 emission by 40 % than did urea alone and also stimulated CH4 oxidation. This review highlighted integrated approach using Azolla that offers enormous public health, environmental, and cost benefits. PMID:26697861

  10. Mitigating GHG emissions from agriculture under climate change constrains - a case study for the State of Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Haas, E.; Kiese, R.; Klatt, S.; Butterbach-Bahl, K.

    2012-12-01

    Mitigating greenhouse gas (N2O, CO2, CH4) emissions from agricultural soils under conditions of projected climate change (IPCC SRES scenarios) is a prerequisite to limit global warming. In this study we used the recently developed regional biogeochemical ecosystem model LandscapeDNDC (Haas et al., 2012, Landscape Ecology) and two time slices for present day (1998 - 2018) and future climate (2078-2098) (regional downscale of IPCC SRES A1B climate simulation) and compared a business as usual agricultural management scenario (winter rape seed - winter barley - winter wheat rotation; fertilization: 170 / 150 / 110 kg-N mineral fertilizer; straw harvest barley/wheat: 90 %) with scenarios where either one or all of the following options were realized: no-till, residue return to fields equal 100%, reduction of fertilization rate s were left on the field or reduction of N fertilization by 10%. The spatial domain is the State of Saxony (1 073 523 hectares of arable land), a typical region for agricultural production in Central Europe. The simulations are based on a high resolution polygonal datasets (5 517 agricultural grid cells) for which relevant information on soil properties is available. The regionalization of the N2O emissions was validated against the IPCC Tier I methodology resulting in N2O emissions of 1 824 / 1 610 / 1 180 [t N2O-N yr-1] for of the baseline years whereas the simulations results in 6 955 / 6 039 / 2 207 [t N2O-N yr-1] for the first three years of the baseline scenarios and ranging between 621 and 6 955 [t N2O-N yr-1] within the following years (mean of 2 923). The influence of climate change (elevated mean temperature of approx. 2°C and minor changes in precipitation) results in an increase of 259 [t N2O-N yr-1] (mean 3 182) or approx. 9 percent on average (with a minimum of 618 and a maximum of 6 553 [t N2O-N yr-1]). Focusing on the mitigation , the recarbonization did result in an increase of soil carbon stocks of 2 585 [kg C/ha] within the

  11. Climate change, agricultural adaptation and mitigation, and using the nitrogen index to increase nitrogen use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is needed to maximize productivity of agricultural systems in Mexico. However, when these systems receive more nitrogen than necessary, losses of nitrogen to the environment can occur and negatively impact water bodies. Additionally, it has been reported across the literature that nitrogen ...

  12. Adaptation of vulnerable regional agricultural systems in Europe to climate change - results from the ADAGIO project

    NASA Astrophysics Data System (ADS)

    Eitzinger, J.; Kubu, G.; Alexandrov, V.; Utset, A.; Mihailovic, D. T.; Lalic, B.; Trnka, M.; Zalud, Z.; Semeradova, D.; Ventrella, D.; Anastasiou, D. P.; Medany, M.; Altaher, S.; Olejnik, J.; Lesny, J.; Nemeshko, N.; Nikolaev, M.; Simota, C.; Cojocaru, G.

    2009-10-01

    During 2007-2009 the ADAGIO project (http://www.adagio-eu.org) is carried out to evaluate regional adaptation options in agriculture in most vulnerable European regions (mediterranean, central and eastern European regions). In this context a bottom-up approach is used beside the top-down approach of using scientific studies, involving regional experts and farmers in the evaluation of potential regional vulnerabilities and adaptation options. Preliminary results of the regional studies and gathered feedback from experts and farmers show in general that (increasing) drought and heat are the main factors having impact on agricultural vulnerability not only in the Mediterranean region, but also in the Central and southern Eastern European regions. Another important aspect is that the increasing risk of pest and diseases may play a more important role for agricultural vulnerability than assumed before, however, till now this field is only rarely investigated in Europe. Although dominating risks such as increasing drought and heat are similar in most regions, the vulnerabilities in the different regions are very much influenced by characteristics of the dominating agroecosystems and prevailing socio-economic conditions. This will be even be more significant for potential adaptation measures at the different levels, which have to reflect the regional conditions.

  13. The Importance of Considering the Temporal Distribution of Climate Variables for Ecological-Economic Modeling to Calculate the Consequences of Climate Change for Agriculture

    NASA Astrophysics Data System (ADS)

    Plegnière, Sabrina; Casper, Markus; Hecker, Benjamin; Müller-Fürstenberger, Georg

    2014-05-01

    The basis of many models to calculate and assess climate change and its consequences are annual means of temperature and precipitation. This method leads to many uncertainties especially at the regional or local level: the results are not realistic or too coarse. Particularly in agriculture, single events and the distribution of precipitation and temperature during the growing season have enormous influences on plant growth. Therefore, the temporal distribution of climate variables should not be ignored. To reach this goal, a high-resolution ecological-economic model was developed which combines a complex plant growth model (STICS) and an economic model. In this context, input data of the plant growth model are daily climate values for a specific climate station calculated by the statistical climate model (WETTREG). The economic model is deduced from the results of the plant growth model STICS. The chosen plant is corn because corn is often cultivated and used in many different ways. First of all, a sensitivity analysis showed that the plant growth model STICS is suitable to calculate the influences of different cultivation methods and climate on plant growth or yield as well as on soil fertility, e.g. by nitrate leaching, in a realistic way. Additional simulations helped to assess a production function that is the key element of the economic model. Thereby the problems when using mean values of temperature and precipitation in order to compute a production function by linear regression are pointed out. Several examples show why a linear regression to assess a production function based on mean climate values or smoothed natural distribution leads to imperfect results and why it is not possible to deduce a unique climate factor in the production function. One solution for this problem is the additional consideration of stress indices that show the impairment of plants by water or nitrate shortage. Thus, the resulting model takes into account not only the ecological

  14. Gaps in agricultural climate adaptation research

    NASA Astrophysics Data System (ADS)

    Davidson, Debra

    2016-05-01

    The value of the social sciences to climate change research is well recognized, but notable gaps remain in the literature on adaptation in agriculture. Contributions focus on farmer behaviour, with important research regarding gender, social networks and institutions remaining under-represented.

  15. African agriculture especially vulnerable to warming climate

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-09-01

    Malnourishment across Africa could jump 40% by 2050 due to climate change, according to the Africa Agriculture Status Report 2014 (AASR), released on 2 September. With temperatures predicted to rise 1.5°C-2.5°C by midcentury, African smallholder farms, which are generally run by one family, are more vulnerable than ever, the report finds.

  16. A Professional Development Climate Course for Sustainable Agriculture in Australia

    ERIC Educational Resources Information Center

    George, David; Clewett, Jeff; Birch, Colin; Wright, Anthony; Allen, Wendy

    2009-01-01

    There are few professional development courses in Australia for the rural sector concerned with climate variability, climate change and sustainable agriculture. The lack of educators with a sound technical background in climate science and its applications in agriculture prevents the delivery of courses either stand-alone or embedded in other…

  17. Climate and agricultural land use change impacts on streamflow in the upper midwestern United States

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Kessler, Andrew C.; Brown, Melinda K.; Zvomuya, Francis

    2015-07-01

    Increased streamflow and its associated impacts on water quality have frequently been linked to changes in land use and land cover (LULC) such as tile drainage, cultivation of prairies, and increased adoption of soybeans (Glycine max) in modern day cropping systems. This study evaluated the relative importance of changes in precipitation and LULC on streamflow in 29 Hydrologic Unit Code 008 watersheds in the upper midwestern United States. The evaluation was done by statistically testing the changes in slope and intercept of the relationships between ln(annual streamflow) versus annual precipitation for the periods prior to 1975 (prechange period) and after 1976 (postchange period). A significant shift either in slope or intercept of these relationships was assumed to be an indication of LULC changes whereas a lack of significant shift suggested a single relationship driven by precipitation. All 29 watersheds showed no statistical difference in slope or intercept of the relationships between the two periods. However, a simpler model that kept the slope constant for the two periods showed a slight upward shift in the intercept value for 10 watersheds in the postchange period. A comparison of 5 year moving averages also revealed that the increased streamflows in the postchange period are mainly due to an increase in precipitation. Minimal or the lack of LULC change impact on streamflow results from comparable evapotranspiration in the two time periods. We also show how incorrect assumptions in previously published studies minimized precipitation change impacts and heightened the LULC change impacts on streamflows.

  18. Development of drought and/or heat tolerant crop varieties, an adaptation approach to mitigate impact of climate change on agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As global climate change becomes inevitable, the sustainability of agricultural production in US and worldwide faces serious threat from extreme weather conditions, such as drought and high temperature (heat wave). Development of drought and/or heat tolerant crop varieties is one of the most effecti...

  19. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  20. Impact of conservation agriculture on catchment runoff and soil loss under changing climate conditions in May Zeg-zeg (Ethiopia)

    NASA Astrophysics Data System (ADS)

    Lanckriet, Sil; Araya, Tesfay; Cornelis, Wim; Verfaillie, Els; Poesen, Jean; Govaerts, Bram; Bauer, Hans; Deckers, Jozef; Haile, Mitiku; Nyssen, Jan

    2012-12-01

    SummaryThis study evaluates the practice of conservation agriculture (CA) in the May Zeg-zeg catchment (MZZ; 187 ha) in the North Ethiopian Highlands as a soil management technique for reducing soil loss and runoff, and assesses the consequences of future large-scale implementation on soil and hydrology at catchment-level. The study of such practice is important especially under conditions of climate change, since EdGCM (Educational Global Climate Model) simulation predicts by 2040 an increase in precipitation by more than 100 mm yr-1 in the study area. Firstly, field-saturated infiltration rates, together with soil texture and soil organic carbon contents, were measured. The relation with local topography allows to generate a pedotransfer function for field-saturated infiltration rate, and spatial interpolation with Linear Regression Mapping was used to map field-saturated infiltration rates optimally within the catchment. Secondly, on several farmlands, CA was checked against plain tillage (PT) for values of field-saturated infiltration rates, soil organic carbon, runoff and soil loss. Results show no significant differences for infiltration rates but significant differences for runoff and soil loss (as measured in the period 2005-2011). Runoff coefficients were 30.4% for PT and 18.8% for CA; soil losses were 35.4 t ha-1 yr-1 for PT and 14.4 t ha-1 yr-1 for CA. Thirdly, all collected information was used to predict future catchment hydrological response for full-implementation of CA under the predicted wetter climate (simulation with EdGCM). Curve Numbers for farmlands with CA were calculated. An area-weighted Curve Number allows the simulation of the 2011 rainy season runoff, predicting a total runoff depth of 23.5 mm under CA and 27.9 mm under PT. Furthermore, the Revised Universal Soil Loss Equation management factor P was calibrated for CA. Results also show the important influence of increased surface roughness on water ponding, modeled with a hydrologic

  1. Dew as an Adaptation Measure to Meet Agricultural and Reforestation Water Demand in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Tomaszkiewicz, Marlene; Abou Najm, Majdi; Alameddine, Ibrahim; El Fadel, Mutasem

    2014-05-01

    Dew harvesting, believed to be an ancient technique, has recently re-emerged as a viable and sustainable water resource. Nightly yields are relatively low, yet non-negligible, and dew events occur more frequently than rainfall promoting its effectiveness, particularly in arid and semi-arid regions. In this study, we demonstrate how dew can be harvested and subsequently used for small-scale irrigation to meet agricultural and reforestation water demand. Polyethylene dew harvesting systems were constructed and placed in the field. Dew was harvested as a result of the radiative cooling during the night, thus allowing dew formation under conditions of high humidity. Condensed dew formed upon the planar surface was collected by gravity. Water demand for selected crops and trees within a pilot study area (Lebanon) was estimated using a deficit irrigation model. Simulations of water demand requirements of various plants and surfaces were performed and compared to dew volumes to assess the ability of the system to meet all or in part the plant water demands across seasons. Data from the polyethylene low-cost dew condensers have shown that within the pilot study, average nightly dew yields were 0.1 L m-2 of condensing surface with a maximum yield of 0.4 L m-2. Dew events occurred generally more frequently than precipitation events, with an estimated 40% of nights producing dew condensate. This translates to 50 mm of equivalent rainfall on average (during dew nights), with a maximum of 200 mm in one night, if one assumes using drip irrigation over a seedling within a 20 cm2 area. Using a simple deficit irrigation model, it was demonstrated that crops such as the tomato plant, which typically has a growing season during the dry summer, can potentially be irrigated solely by dew, thus eliminating the need for traditional irrigation sources. Similarly, young tree seedlings, such as the cedar tree, can depend upon dew as a primary water resource. Moreover, based on similar

  2. Work More? The 8.2 kaBP Abrupt Climate Change Event and the Origins of Irrigation Agriculture and Surplus Agro-Production in Mesopotamia

    NASA Astrophysics Data System (ADS)

    Weiss, H.

    2003-12-01

    The West Asian archaeological record is of sufficient transparency and resolution to permit observation of the social responses to the major Holocene abrupt climate change events at 8.2, 5.2 and 4.2 kaBP. The 8.2kaBP abrupt climate change event in West Asia was a three hundred year aridification and cooling episode. During this period rain-fed agriculture, established for over a millennium in northern Mesopotamia, suddenly collapsed. Irrigation agriculture, pastoral nomadism, or migration were the only subsistence alternatives for populations previously supported by cereal dry-farming. Irrigation agriculture was not, however, possible along the northern alluvial plains of the Tigris and Euphrates Rivers, where incised riverbeds were several meters below plain level. Exploitable plain-level levees were only accessible in southern-most alluvial plain, at the head of the present-day Persian Gulf. The archaeological data from this region documents the first irrigation agriculture settlement of the plain during the 8.2 kaBP event. Irrigation agriculture provides about twice the yield of dry-farming in Mesopotamia, but at considerable labor costs relative to dry-farming. With irrigation agriculture surplus production was now available for deployment. But why work more? The 8.2 kaBP event provided the natural force for Mesopotamian irrigation agriculture and surplus production that were essential for the earliest class-formation and urban life.

  3. Implications of climate change for water surplus and scarcity and how that affects agricultural sustainability in Hungary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projected impacts of climate change have included, in addition to warmer temperatures, regionally variable effects on precipitation amounts, intensities, and seasonal distribution. Projections downscaled to Hungary and surrounding region were identified and their effects on streamflow, other water r...

  4. Integrated Assessments of the Impact of Climate Change on Agriculture: An Overview of AgMIP Regional Research in South Asia

    NASA Technical Reports Server (NTRS)

    McDermid, Sonali P.; Dileepkumar, Guntuku; Murthy, K. M. Dakshina; Nedumaran, S.; Singh, Piara; Srinivasa, Chukka; Gangwar, B.; Subash, N.; Ahmad, Ashfaq; Zubair, Lareef; Nissanka, S. P.

    2015-01-01

    South Asia encompasses a wide and highly varied geographic region, and includes climate zones ranging from the mountainous Himalayan territory to the tropical lowland and coastal zones along alluvial floodplains. The region's climate is dominated by a monsoonal circulation that heralds the arrival of seasonal rainfall, upon which much of the regional agriculture relies. The spatial and temporal distribution of this rainfall is, however, not uniform over the region. Northern South Asia, central India, and the west coast receive much of their rainfall during the southwest monsoon season, between June and September. These rains partly result from the moisture transport accompanying the monsoonal winds, which move in the southwesterly direction from the equatorial Indian Ocean. Regions further south, such as south/southeast India and Sri Lanka, may receive rains from both the southwest monsoon, and also during the northeast monsoon season between October and December (with northeasterly monsoon wind flow and moisture flux), which results in a bi- or multi-modal rainfall distribution. In addition, rainfall across South Asia displays a large amount of intraseasonal and interannual variability. Interannual variability is influenced by many drivers, both natural (e.g., El Ni-Southern Oscillation; ENSO) and man-made (e.g., rising temperatures due to increasing greenhouse gas concentrations), and it is challenging to obtaining accurate time-series of annual rainfall, even amongst various observed data products, which display inconsistencies amongst themselves. These climatic and rainfall variations can further complicate South Asia's agricultural and water management. Agriculture employs at least 65 of the workforce in most South Asian countries, and nearly 80 of South Asia's poor inhabit rural areas. Understanding the response of current agricultural production to climate variability and future climate change is of utmost importance in securing food and livelihoods for

  5. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world. PMID:23665996

  6. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, F.H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.

    2003-01-01

    In 1991, the United States Congress passed the Global Change Research Act directing the Executive Branch of government to assess the potential effects of predicted climate change and variability on the nation. This congressional action followed formation of the Intergovernmental Panel on Climate Change (IPCC) in 1988 by the United Nations Environmental Program and World Meteorological Organization. Some 2,000 scientists from more than 150 nations contribute to the efforts of the IPCC. Under coordination of the U.S. Global Change Research Program, the congressionally ordered national assessment has divided the country into 19 regions and five socio-economic sectors that cut across the regions: agriculture, coastal and marine systems, forests, human health, and water. Potential climate-change effects are being assessed in each region and sector, and those efforts collectively make up the national assessment. This document reports the assessment of potential climate-change effects on the Rocky Mountain/Great Basin (RMGB) region which encompasses parts of nine western states. The assessment began February 16-18, 1998 with a workshop in Salt Lake City co-convened by Frederic H. Wagner of Utah State University and Jill Baron of the U.S. Geological Survey Biological Resources Division (BRD). Invitations were sent to some 300 scientists and stakeholders representing 18 socio-economic sectors in nine statesa?|

  7. How can crop intra-specific biodiversity mitigate the vulnerability of agricultural systems to climate change? A case study on durum wheat in Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca

    2014-05-01

    Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different

  8. Convergence of agricultural intensification and climate change in the midwestern United States: Implications for soil and water conservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Society faces substantial challenges to expand food production while adapting to climatic changes and ensuring ecosystem services are maintained. A convergence of these issues is occurring in the Midwestern United States, i.e., the ‘cornbelt’ region that provides substantial grain supplies to world ...

  9. Theme: Changes in Agricultural Education.

    ERIC Educational Resources Information Center

    Agricultural Education Magazine, 1997

    1997-01-01

    Includes "Changes in Agricultural Education in Tennessee" (Byerley, Todd); "Evolving Focus for Agricultural Education Graduates?" (Schlink); "Researching Adult Organizations in Agricultural Education" (Seevers, Dormody); "Past 25 Years" (Klein, Luft); "Agricultural Education" (Sibiga, Mannebach); "Don't Look Back" (Butcher); "Changes in…

  10. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    PubMed

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  11. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  12. The Impact of Climate Change on the Potential Distribution of Agricultural Pests: The Case of the Coffee White Stem Borer (Monochamus leuconotus P.) in Zimbabwe

    PubMed Central

    Kutywayo, Dumisani; Chemura, Abel; Kusena, Winmore; Chidoko, Pardon; Mahoya, Caleb

    2013-01-01

    The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms. PMID:24014222

  13. Do we know how to reconcile preservation of landscapes with adaptation of agriculture to climate change? A case-study in a hilly area in Southern Italy

    NASA Astrophysics Data System (ADS)

    Menenti, Massimo; Alfieri, Silvia; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; De Lorenzi, Francesca

    2013-04-01

    Limited impacts of climate change on agricultural yields are unlikely to induce any significant changes in current landscapes. Larger impacts, unacceptable on economic or social ground, are likely to trigger interventions towards adaptation of agricultural production systems by reducing or removing vulnerabilities to climate variability and change. Such interventions may require a transition to a different production system, i.e. complete substitution of current crops, or displacement of current crops at their current location towards other locations, e.g. at higher elevations within the landscape. We have assessed the impacts of climate change and evaluated options for adaptation of a valley in Southern Italy, dominated by vine and olive orchards with a significant presence of wheat. We have first estimated the climatic requirements of several varieties for each dominant species. Next, to identify options for adaptation we have evaluated the compatibility of such requirements with indicators of a reference (current) climate and of future climate. This climate - compatibility assessment was done for each soil unit within the valley, leading to maps of locations where each crop is expected to be compatible with climate. This leads to identify both potential crop substitutions within the entire valley and crop displacements from one location to another within the valley. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consists of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. We evaluated the adaptive capacity of the "Valle Telesina" (Campania Region, Southern Italy). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to describe the hydrological conditions in response to climate for each

  14. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  15. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  16. Climate-smart agriculture global research agenda: science for action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate Smart Agriculture (CSA) addresses the challenge of meeting the growing demand for food, fiber, or fuel, caused by population growth, changes in diet related to increases in per capita income, and the need for alternative energy sources, despite the changing climate and fewer opportunities fo...

  17. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  18. Climatic Fluctuations and the Diffusion of Agriculture*

    PubMed Central

    Ashraf, Quamrul; Michalopoulos, Stelios

    2015-01-01

    This research examines the climatic origins of the diffusion of Neolithic agriculture across countries and archaeological sites. The theory suggests that a foraging society’s history of climatic shocks shaped the timing of its adoption of farming. Specifically, as long as climatic disturbances did not lead to a collapse of the underlying resource base, the rate at which hunter-gatherers were climatically propelled to experiment with their habitats determined the accumulation of tacit knowledge complementary to farming. Consistent with the proposed hypothesis, the empirical investigation demonstrates that, conditional on biogeographic endowments, climatic volatility has a hump-shaped effect on the timing of the adoption of agriculture. PMID:27019534

  19. Projected loss of soil organic carbon in temperate agricultural soils in the 21(st) century: effects of climate change and carbon input trends.

    PubMed

    Wiesmeier, Martin; Poeplau, Christopher; Sierra, Carlos A; Maier, Harald; Frühauf, Cathleen; Hübner, Rico; Kühnel, Anna; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2016-01-01

    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21(st) century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11-16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19-24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3-8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils. PMID:27585648

  20. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends

    PubMed Central

    Wiesmeier, Martin; Poeplau, Christopher; Sierra, Carlos A.; Maier, Harald; Frühauf, Cathleen; Hübner, Rico; Kühnel, Anna; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2016-01-01

    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21st century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11–16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19–24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3–8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils. PMID:27585648

  1. Future Water Management in the South Platte River Basin: Impacts of Hydraulic Fracturing, Population, Agriculture, and Climate Change in a Semi-Arid Region.

    NASA Astrophysics Data System (ADS)

    Walker, E. L.; Hogue, T. S.; Anderson, A. M.; Read, L.

    2015-12-01

    In semi-arid basins across the world, the gap between water supply and demand is growing due to climate change, population growth, and shifts in agriculture and unconventional energy development. Water conservation efforts among residential and industrial water users, recycling and reuse techniques and innovative regulatory frameworks for water management strive to mitigate this gap, however, the extent of these strategies are often difficult to quantify and not included in modeling water allocations. Decision support systems (DSS) are purposeful for supporting water managers in making informed decisions when competing demands create the need to optimize water allocation between sectors. One region of particular interest is the semi-arid region of the South Platte River basin in northeastern Colorado, where anthropogenic and climatic effects are expected to increase the gap between water supply and demand in the near future. Specifically, water use in the South Platte is impacted by several high-intensity activities, including unconventional energy development, i.e. hydraulic fracturing, and large withdrawals for agriculture; these demands are in addition to a projected population increase of 100% by 2050. The current work describes the development of a DSS for the South Platte River basin, using the Water Evaluation and Planning system software (WEAP) to explore scenarios of how variation in future water use in the energy, agriculture, and municipal sectors will impact water allocation decisions. Detailed data collected on oil and gas water use in the Niobrara shale play will be utilized to predict future sector use. We also employ downscaled climate projections for the region to quantify the potential range of water availability in the basin under each scenario, and observe whether or not, and to what extent, climate may impact management decisions at the basin level.

  2. Climate Change and Health

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  3. Fiddling with climate change

    NASA Astrophysics Data System (ADS)

    2012-01-01

    Composer and string musician, turned award-winning environmentalist, Aubrey Meyer tells Nature Climate Change why he is campaigning for countries to adopt his 'contraction and convergence' model of global development to avoid dangerous climate change.

  4. Water and carbon fluxes in rain fed agricultural sites under a changing climate: The role of stomata

    NASA Astrophysics Data System (ADS)

    Hosseini, A.; Gayler, S.; Streck, T.; Katul, G. G.

    2014-12-01

    were derived from eddy-covariance measurements of latent heat flux and net ecosystem exchange. To place those results in the broader context of climate change and food security issues, a sensitivity analyses on water and carbon fluxes with respect to climatic variables, soil texture, and root-density distribution is also presented.

  5. Climate Variability is Influencing Agricultural Expansion and Output in a Key Agricultural Region of Brazil

    NASA Astrophysics Data System (ADS)

    Spera, S. A.; Cohn, A.; VanWey, L.; Mustard, J. F.

    2013-12-01

    Over the last decade, the Brazilian state of Mato Grosso has both expanded and intensified its agricultural production to become the country's leading producer of soy, corn, and cotton. Yet this increase in agricultural production may be threatened due to changes in the region's climate stemming from deforestation caused by the agricultural expansion itself. The sensitivity of Mato Grosso's agriculture to climate variability has important implications for both climate change mitigation and climate adaptation. The vast bulk of research on the drivers of land use change in the region has examined economic and institutional drivers. Leveraging a novel remote sensing-derived dataset classifying shifts between single (cultivating one commercial crop per growing season) and double cropping (cultivating two commercial crops per growing season), we investigated the influence of climate variability on land use change during the period 2000 to 2011. Over the past decade, over half of Mato Grosso's farm area transitioned from single cropping to double cropping. We used regression analysis (controlling for space and time fixed effects) to show monthly rainfall, monthly temperature, agricultural commodity prices, and agricultural revenue to be the main drivers of adoption of double cropping and reversion to single cropping in the region. The influence of climate varies as much as five orders of magnitude across these outcomes, with both temperature and precipitation exhibiting the largest climatic influence on the transition from single to double cropping. Temperature consistently proves to be more important, explaining three times more of the variance than precipitation for each outcome. Months at the beginning of a given first crop season, the end of that first crop season, and middle of the subsequent second crop season are particularly important for planting decisions in the subsequent growing year. Fitting our land transition models using remote-sensing derived

  6. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  7. Assessment of Long-Term Climate Change Impacts on Agricultural Productivity in Eastern China Using High-Resolution Regional Climate Model Output

    NASA Astrophysics Data System (ADS)

    Chavas, D. R.; Izaurralde, C.; Thomson, A.

    2008-12-01

    Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work utilizes high-resolution regional climate model output to assess potential climate change impacts on the productivity of five major crops in eastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10 percent decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenario conditions are used as input in the EPIC agro-ecosystem simulation model in the domain [30N, 108E] to [42N, 123E]. Simulations are performed with and without the enhanced CO2 fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5 percent for rice, 8.3 percent for canola, 18.6 percent for corn, 22.9 percent for potato, and 24.9 percent for winter wheat, although with significant spatial variability for each crop. However, absent the enhanced CO2 fertilization effect, potential productivity declines in all cases ranging from 2.5-12 percent. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a

  8. Infrastructure development and agricultural exposure to climate variability and change: lessons from the Limarí basin in Central Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Alvarez, P.; Melo, O.; Dale, L. L.; Meza, F. J.

    2012-12-01

    conditions has been reduced. It can be derived from this analysis that infrastructure development in this basin has paradoxically increased exposure to the impacts of climate variability and also to the impacts of a drier future as projected with climate change in this basin. This situation has been referred previously as the "safe development" paradox. A typical example of this paradox is the flood-threat-levee-construction relationship whereby in response to flood threat, structural measures such as constructing levees are adopted, increasing the encroachment of people living in floodplains and hence increasing their exposure to flood impacts. As in the case of people living in floodplains behind levees, the development of the Limarí basin probably responds to rational decisions of private actors who consider that the climate is stationary. It is also probable that building the reservoirs 40 years ago was a good decision with benefits being much higher than construction costs. However, the Limarí basin highlights some challenging questions for future decisions. Understanding how to design new infrastructure (e.g. what should be the expected lifetime of reservoirs) or operate existing infrastructure (e.g. fixed operating rules vs. adaptive management) opens new research arena in a changing world.

  9. Application of stakeholder-based and modelling approaches for supporting robust adaptation decision making under future climatic uncertainty and changing urban-agricultural water demand

    NASA Astrophysics Data System (ADS)

    Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David

    2016-04-01

    Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing

  10. Messaging climate change uncertainty

    NASA Astrophysics Data System (ADS)

    Cooke, Roger M.

    2015-01-01

    Climate change is full of uncertainty and the messengers of climate science are not getting the uncertainty narrative right. To communicate uncertainty one must first understand it, and then avoid repeating the mistakes of the past.

  11. Climate Change Policy

    NASA Astrophysics Data System (ADS)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  12. Climate Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    EPA Science Inventory

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  13. Implications of climate mitigation for future agricultural production

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-12-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  14. Reclaimed water as a main resource to enhance the adaptive capacity to climate change in semi-arid Mediterranean agricultural areas using Earth Observation products

    NASA Astrophysics Data System (ADS)

    Pavia Rico, Ana; Lopez-Baeza, Ernesto; Matieu, Pierre-Philippe; Hernandez Sancho, Francesc; Loarte, Edwin

    Lack of water is being a big problem in semi-arid areas to make agricultural profits. Most of Mediterranean countries like Spain, Italy, Greece or Cyprus and other countries like Morocco, the Arab United Emirates, South-American countries or China are starting to reuse wastewater as adaptation to climate change water scarcity. Drought areas are nowadays increasing, thus making fertile areas unproductive. For this reason, the European trend is to work on reusing wastewater as a solution to water scarcity in agriculture. Moreover, since population is growing fast, wastewater production is increasing as well as drinkable water demand, thus making reclaimed water as the water guarantee for irrigation and better agricultural management. This work represents a preliminary initiative to check, analyse and monitor the land by using remote sensing techniques to identify and determine the potential lands that used to be productive in the past, are now abandoned, and we want to recuperate to obtain socio-economic benefits. On top of this, this initiative will clearly enhance the adaption capacity of rural/agricultural lands to climate change. Alternatively to reclaimed water, greenhouses, desalination plants or transboarding water do not really eliminate the problem but only offer a temporary solution, make spending plenty of money and always provoking irreversible damages to the environment. The pilot area to first develop this research is the Valencia and Murcia Autonomous Communities located in the Spanish Mediterranean Coastline. An added value of this work will be to develop a methodology transferable to other potential countries with similar climatic characteristics and difficulties for irrigation, by using remote sensing methods and techniques. The remote sensing products obtained provide full information about the current state of the potential lands to grow crops. Potential areas are then being selected to carry out a socio-economic analysis leading to: (i

  15. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport

  16. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  17. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  18. Preparing for climate change.

    PubMed

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  19. Agent-Based Modelling of Agricultural Water Abstraction in Response to Climate, Policy, and Demand Changes: Results from East Anglia, UK

    NASA Astrophysics Data System (ADS)

    Swinscoe, T. H. A.; Knoeri, C.; Fleskens, L.; Barrett, J.

    2014-12-01

    Freshwater is a vital natural resource for multiple needs, such as drinking water for the public, industrial processes, hydropower for energy companies, and irrigation for agriculture. In the UK, crop production is the largest in East Anglia, while at the same time the region is also the driest, with average annual rainfall between 560 and 720 mm (1971 to 2000). Many water catchments of East Anglia are reported as over licensed or over abstracted. Therefore, freshwater available for agricultural irrigation abstraction in this region is becoming both increasingly scarce due to competing demands, and increasingly variable and uncertain due to climate and policy changes. It is vital for water users and policy makers to understand how these factors will affect individual abstractors and water resource management at the system level. We present first results of an Agent-based Model that captures the complexity of this system as individual abstractors interact, learn and adapt to these internal and external changes. The purpose of this model is to simulate what patterns of water resource management emerge on the system level based on local interactions, adaptations and behaviours, and what policies lead to a sustainable water resource management system. The model is based on an irrigation abstractor typology derived from a survey in the study area, to capture individual behavioural intentions under a range of water availability scenarios, in addition to farm attributes, and demographics. Regional climate change scenarios, current and new abstraction licence reforms by the UK regulator, such as water trading and water shares, and estimated demand increases from other sectors were used as additional input data. Findings from the integrated model provide new understanding of the patterns of water resource management likely to emerge at the system level.

  20. Coping with climate change

    USGS Publications Warehouse

    Prato, Tony; Fagre, Daniel B.

    2006-01-01

    Climate is not the only factor in the deterioration of natural systems.We are making big changes to the landscape, altering land use and land cover in major ways. These changes combined present a challenge to environmental management. Adaptive management is a scientific approach to managing the adverse impacts of climate and landscape change.

  1. Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk.

    PubMed

    Bird, David Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; Koeberl, Judith; La Jeunesse, Isabelle; Meyer, Swen; Prettenthaler, Franz; Soddu, Antonino; Woess-Gallasch, Susanne

    2016-02-01

    In Europe, there is concern that climate change will cause significant impacts around the Mediterranean. The goals of this study are to quantify the economic risk to crop production, to demonstrate the variability of yield by soil texture and climate model and to investigate possible adaptation strategies. In the Rio Mannu di San Sperate watershed, located in Sardinia (Italy) we investigate production of wheat, a rainfed crop. In the Chiba watershed located in Cap Bon (Tunisia), we analyze irrigated tomato production. We find, using the FAO model AquaCrop that crop production will decrease significantly in a future climate (2040-2070) as compared to the present without adaptation measures. Using "value-at-risk", we show that production should be viewed in a statistical manner. Wheat yields in Sardinia are modelled to decrease by 64% on clay loams, and to increase by 8% and 26% respectively on sandy loams and sandy clay loams. Assuming constant irrigation, tomatoes sown in August in Cap Bon are modelled to have a 45% chance of crop failure on loamy sands; a 39% decrease in yields on sandy clay loams; and a 12% increase in yields on sandy loams. For tomatoes sown in March; sandy clay loams will fail 81% of the time; on loamy sands the crop yields will be 63% less while on sandy loams, the yield will increase by 12%. However, if one assume 10% less water available for irrigation then tomatoes sown in March are not viable. Some adaptation strategies will be able to counteract the modelled crop losses. Increasing the amount of irrigation one strategy however this may not be sustainable. Changes in agricultural management such as changing the planting date of wheat to coincide with changing rainfall patterns in Sardinia or mulching of tomatoes in Tunisia can be effective at reducing crop losses. PMID:26187862

  2. Climate Mitigation Versus Agriculture in the Tropics

    NASA Astrophysics Data System (ADS)

    McAfee, K.

    2011-12-01

    Significant new drivers of land-use change in the tropics are market-based strategies for climate-change mitigation and biodiversity conservation. These strategies are based on the putative monetary values of new commodities: genetic resources and ecosystem services, especially carbon sequestration services by forests. Payments for Ecosystem Services projects are expanding in Latin America, Asia, and some parts of Africa, promising a 'triple-win' for nature, the private sector, and the poor. Analysis of Mexico's national PES program and review of a growing body of PES case studies, however, reveal a pattern of conflict between poverty alleviation and other social goals, on the one hand, and the market-efficiency criteria that frame many PES projects, on the other hand. This poses a warning for more ambitious, global schemes based on similar principles, such as Reduced Emissions from Deforestation and Degradation (REDD). Additionally, transnational trade in carbon offsets, seen as a source of finance for PES and for REDD, puts climate policy on a collision course with agriculture, particularly given the context of closing land frontiers and international 'land-grabbing' claims on land for food-export plantations. Because market-based PES and REDD tend to target small- and medium-scale farmers, they are likely to constrain agriculture for domestic needs in regions where food security is already weak. Land-use governance based on conservation-by-commercialization can be compared to alternative approaches that link greening, food production, and social equity in a more integrated way, by combining scientific and local ecological and agroecological knowledge with strategies for rural revitalization and development.

  3. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  4. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  5. Uses of the climatic information in agriculture

    NASA Astrophysics Data System (ADS)

    Neri, C.; Magaña, V.

    2009-04-01

    Hydrometeorological extreme events have serious impacts on agricultural activities. The variation from a year to year of the annual accumulated precipitation can be substantial and have a large impact on agriculture. In Mexico it is know that a strong relation between the El Niño/Oscillation of Sur (ENOS) and annual precipitation exists. This relationship is one reason why climate information is a fundamental element that must be considered when making decisions and planning activities each agricultural cycle. Through the analysis of climate variability and crop vulnerability the risk of crop loss under adverse climate can be considered. If this risk is considered in agricultural planning, the work strategies will vary. Using calculations of the probability of rain occurrence, the vulnerability to hydrometerological extreme events can be considered, thus determining the probability of crop destruction due to rain deficit. This information can be used by farmers or agricultural insurance agencies to determine whether or not there will be sufficient rainfall for an agricultural cycle and what crops to cultivate. This type of infromation can be obtained from seasonal climate prognoses. At present we know that the prognosis schemes work better when conditions appear La Niña or El Niño.

  6. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  7. Climate Change: Basic Information

    MedlinePlus

    ... produce energy, although deforestation, industrial processes, and some agricultural practices also emit gases into the atmosphere. Greenhouse ... change. By making choices that reduce greenhouse gas pollution, and preparing for the changes that are already ...

  8. Climate Change in Prehistory

    NASA Astrophysics Data System (ADS)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  9. Climate impacts on agriculture: Implications for crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 50 years present a challenge to crop production. Understanding these implications for agricultural crops is critical to being able to develop cropping systems which are resilient to stresses induced by ...

  10. Modeling Climate Impacts on Agriculture in South East South America

    NASA Astrophysics Data System (ADS)

    Ines, A. M.; Baethgen, W.; Greene, A. M.; Goddard, L. M.

    2013-12-01

    In the past two decades, a rapid expansion of croplands in South East South America is observed. This drastic change in landuse is seen to be due to two major factors - climate and economics. Converting marginal lands into agricultural lands is possible due to the increase in annual precipitation in the region and the increasing prices of soybeans and higher demands for grain crops have played a key role to this expansion. But the question is, how sustainable is the current trend in the future? A modeling study is conducted to evaluate the impacts of climate on agriculture in the Southern Cone of South America. We examine the impacts of climate variability and current climate change to crop yields using crop simulation models. Using the results of our current climate analysis as a baseline, we evaluate the impacts of future climate change in the next 10-30 years. Climate projections include scenarios considering only global warming, ozone and both impacting the near-term climate of the future in the region and considering decadal variability. We aim to evaluate the vulnerability of the current system to climate change. This paper will present the results of our modeling study.

  11. Seasonal Climate Forecasts and Adoption by Agriculture

    NASA Astrophysics Data System (ADS)

    Garbrecht, Jurgen; Meinke, Holger; Sivakumar, Mannava V. K.; Motha, Raymond P.; Salinger, Michael J.

    2005-06-01

    Recent advances in atmospheric and ocean sciences and a better understanding of the global climate have led to skillful climate forecasts at seasonal to interannual timescales, even in midlatitudes. These scientific advances and forecasting capabilities have opened the door to practical applications that benefit society. The benefits include the reduction of weather/climate related risks and vulnerability, increased economic opportunities, enhanced food security, mitigation of adverse climate impacts, protection of environmental quality, and so forth. Agriculture in particular can benefit substantially from accurate long-lead seasonal climate forecasts. Indeed, agricultural production very much depends on weather, climate, and water availability, and unexpected departures from anticipated climate conditions can thwart the best laid management plans. Timely climate forecasts offer means to reduce losses in drought years, increase profitability in good years, deal more effectively with climate variability, and choose from targeted risk-management strategies. In addition to benefiting farmers, forecasts can also help marketing systems and downstream users prepare for anticipated production outcomes and associated consequences.

  12. Effects of agricultural management on productivity, soil quality and climate change mitigation - evaluations within the EU Project (FP 7) CATCH-C

    NASA Astrophysics Data System (ADS)

    Spiegel, Heide; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2014-05-01

    Soils are the main basis for the production of food and feed. Furthermore, the production of biomass for energy and material use is becoming increasingly important. Goals for an optimal management of agricultural soils are, on the one hand, the maintenance or improvement of soil quality and, on the other hand, high productivity and climate change mitigation (reduction of GHG emissions and C sequestration). Thus, the EU project CATCH-C aims to evaluate current management practices concerning these three goals based on indicators derived from long-term field experiments of the project partners and from literature data. A maximum of 72 indicators for productivity, soil quality and the potential for carbon storage in the soil and the reduction of greenhouse gas emissions were selected by the project partners. As indicators for productivity, crop yields are determined in almost all field trials. The content of soil organic carbon (SOC) is an indicator for chemical, physical and biological soil quality and was analysed in the topsoil in all field trials. Less data exist for SOC contents in the subsoil. An important physical soil quality indicator is the bulk density, however, it is not determined in all field trials of the project partners. Therefore, information on SOC stocks, with relevance to carbon storage and climate change mitigation, is not available in all field experiments. Other physical indicators, such as penetration resistance, runoff coefficient and soil losses are evaluated. Essential biological indicators are microbial biomass and the number and weight of earthworms, which have been tested in several field trials. The evaluation of all these indicators will help to select "best management practices" and to address trade-offs and synergies for all indicators under consideration of major European farm type zones. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies

  13. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate. PMID:20873680

  14. Prediction of climate change impacts on agricultural watersheds and the performance of winter cover crops: Case study of the upper region of the Choptank River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated CO2 concentration, temperature, and precipitation intensity driven by climate change are expected to cause significant environmental changes in the Chesapeake Bay Watershed (CBW). Although the potential effects of climate change are widely reported, few studies have been conducted to unders...

  15. Representative Agricultural Pathways and Climate Impact Assessment for Pacific Northwest Agricultural Systems

    NASA Astrophysics Data System (ADS)

    MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.

    2013-12-01

    Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.

  16. Simulation of effects of climate change on surface water balances of agricultural lands. Final technical report, 30 September 1992-29 September 1994

    SciTech Connect

    Heilman, J.L.; McFarland, M.J.

    1994-12-31

    In this project, the authors used the simulation model ENWATBAL and a stochastic weather generator (WXGEN) to evaluate the impact of climatic change on water balances of cotton and sorghum, major crops in Texas that differ in their response to elevated CO2. Specific objectives were: test the accuracy of the ENWATBAL model for the study of climate change; determine the sensitivities of soil water evaporation and transpiration of cotton and sorghum to single and multifactor changes in climate and CO2; and assess effects of gradual climate change on water balances of cotton and sorghum in west Texas.

  17. Climate and Agriculture: Challenges for Efficient Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate has always been and will continue to be an important factor in agricultural production. Evidence of this is apparent when looking at where plants or animals are distributed around the world and the variation among years in terms of grain, forage, vegetable, and fruit production. The recent r...

  18. Cuba confronts climate change.

    PubMed

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions. PMID:26027581

  19. What Is Climate Change?

    ERIC Educational Resources Information Center

    Beswick, Adele

    2007-01-01

    Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

  20. Biophysical impacts of climate-smart agriculture in the Midwest United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse ga...

  1. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  2. Climate Change Made Simple

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.

    2007-01-01

    The newly revised specifications for GCSE science involve greater consideration of climate change. This topic appears in either the chemistry or biology section, depending on the examination board, and is a good example of "How Science Works." It is therefore timely that students are given an opportunity to conduct some simple climate modelling.…

  3. Population and Climate Change

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  4. Criminality and climate change

    NASA Astrophysics Data System (ADS)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  5. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  6. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  7. Rapid climate change

    SciTech Connect

    Morantine, M.C.

    1995-12-31

    Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

  8. Climate Impacts on Irrigated Agriculture in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Mehta, V. K.; Davitt, A. W. D.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2015-12-01

    Irrigated farms account for 80%-90% of consumptive water use in the United States and $118.5 billion of US agricultural production. Despite the vast water use and high yields of irrigated croplands, agriculture is typically the lowest value sector in a water resources system, and thus the first to face reductions when water becomes scarce. A major challenge for hydrologic and agricultural communities is assessing the effects of climate change on the sustainability of regional water resources and irrigated agriculture. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the service area of Yolo County Flood Control and Water Conservation District, and forced using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. Thirty year historical (1980-2009) simulations of WEAP-DSSAT for corn, wheat, and rice were run using a spatially interpolated observational dataset, and contrasted with future simulations using climate scenarios developed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. On average corn yields decrease, wheat yields increase, and rice yields remain unchanged. Potential adaptations, as well as implications for groundwater pumping, irrigation extent and method, and land use change including fallowing and switching crops, are examined.

  9. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  10. Climate change and food security.

    PubMed

    Gregory, P J; Ingram, J S I; Brklacich, M

    2005-11-29

    vulnerability to climate change is not uniform. Improved systems of food production, food distribution and economic access may all contribute to food systems adapted to cope with climate change, but in adopting such changes it will be important to ensure that they contribute to sustainability. Agriculture is a major contributor of the greenhouse gases methane (CH4) and nitrous oxide (N2O), so that regionally derived policies promoting adapted food systems need to mitigate further climate change. PMID:16433099

  11. Climate Change Impacts in the Amazon. Review of scientific literature

    SciTech Connect

    2006-04-15

    The Amazon's hydrological cycle is a key driver of global climate, and global climate is therefore sensitive to changes in the Amazon. Climate change threatens to substantially affect the Amazon region, which in turn is expected to alter global climate and increase the risk of biodiversity loss. In this literature review the following subjects can be distinguished: Observed Climatic Change and Variability, Predicted Climatic Change, Impacts, Forests, Freshwater, Agriculture, Health, and Sea Level Rise.

  12. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  13. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  14. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  15. Western water and climate change.

    PubMed

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels. PMID:26910940

  16. Recent climate and air pollution impacts on Indian agriculture

    PubMed Central

    Burney, Jennifer; Ramanathan, V.

    2014-01-01

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (−20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs. PMID:25368149

  17. Recent climate and air pollution impacts on Indian agriculture.

    PubMed

    Burney, Jennifer; Ramanathan, V

    2014-11-18

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (-20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs. PMID:25368149

  18. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  19. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  20. Avoiding dangerous climate change

    SciTech Connect

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

  1. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  2. Debating Climate Change

    SciTech Connect

    Malone, Elizabeth L.

    2009-11-01

    Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

  3. Climate variability and vulnerability to climate change: a review.

    PubMed

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-11-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  4. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  5. AMS and climate change

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    2010-04-01

    This paper attempts to draw a connection between information that can be gained from measurements with accelerator mass spectrometry (AMS) and the study of climate change on earth. The power of AMS to help in this endeavor is demonstrated by many contributions to these proceedings. Just like in archaeology, we are entering a phase of an 'integrated approach' to understand the various components of climate change. Even though some basic understanding emerged, we are still largely in a situation of a phenomenological description of climate change. Collecting more data is therefore of paramount interest. Based on a recent suggestion of 'geo-engineering' to take out CO 2 from the atmosphere, this radical step will also be briefly discussed.

  6. Anthropogenic climate change

    SciTech Connect

    Budyko, M.I.; Izreal, Yu.A.

    1991-01-01

    The climate modeling community would agree that the present generation of theoretical models cannot adequately answer important question about the climatic implications of increasing concentrations of CO[sub 2] and other greenhouse gases. Society, however, is presently deciding by its action, or inaction, the policies that will deal with the extent and results of our collective flatulence. In this situation, an engineering approach to estimating the developing pattern of anthropogenic climate change is appropriate. For example, Budyko has argued that, while scientists may have made great advances in modelling the flow around an airfoil, engineers make extensive use of empirical equations and measurements to design airplanes that fly. Budyko and Izreal have produced an encyclopedic treatise summarizing the results of Soviet researchers in applying empirical and semiempirical methods to estimating future climatic patterns, and some of their ensuring effects. These techniques consist mainly of statistical relationships derived from 1850-1950 network data and of patterns revealed by analysis of paleoclimatic data. An important part of the Soviet effort in anthropogenic climate-change studies is empirical techniques that represent independent verification of the results of theoretical climate models.

  7. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment. PMID:17513270

  8. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  9. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  10. Climate change velocity underestimates climate change exposure in mountainous regions

    NASA Astrophysics Data System (ADS)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  11. Climate change velocity underestimates climate change exposure in mountainous regions.

    PubMed

    Dobrowski, Solomon Z; Parks, Sean A

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  12. Early Agriculture: Land Clearance and Climate Effects

    NASA Astrophysics Data System (ADS)

    Ruddiman, W. F.

    2013-12-01

    In the 2003 AGU Emiliani Lecture, I proposed the 'early anthropogenic hypothesis' --the idea that major anthropogenic effects on greenhouse gases and climate occurred thousands of years before the industrial era. In the decade since then, several dozen published papers have argued its pros and cons. In the 2013 Tyndall History of Global Change Lecture I will update where matters now stand. I will show figures from the 2003 Climate Change paper that laid out the initial hypothesis, and then update subsequent evidence from ice-core drilling, archeology, and land-use histories. The primary claims in the 2003 hypothesis were these: (1) the CH4 rise since 5000 years ago is anthropogenic; (2) the CO2 rise since 7000 years ago is also anthropogenic; (3) the amount of carbon emitted from preindustrial deforestation was roughly twice the amount released during the industrial era; (4) global temperature would have been cooler by about 0.8oC by the start of the industrial era if agricultural CO2 and CH4 emissions had not occurred; (5) early anthropogenic warming prevented the inception of new ice sheets at high northern latitudes; and (6) pandemics and other population catastrophes during the last 2000 years caused CO2 decreases lasting decades to centuries. The new evidence shows that these claims have held up well. The late-Holocene CO2 and CH4 rises are anomalous compared to average gas trends during previous interglaciations of the last 800,000 years. Land-use models based on historical data simulate pre-industrial CO2 carbon releases more than twice the industrial amounts. Archeological estimates of CH4 emissions from expanding rice irrigation account for much of the late Holocene CH4 rise, even without including livestock emissions or biomass burning. Model simulations show that the large pre-industrial greenhouse-gas emissions indicated by these historical and archeological estimates would have warmed global climate by more than 1oC and prevented northern glacial

  13. Climate Change? When? Where?

    ERIC Educational Resources Information Center

    Boon, Helen

    2009-01-01

    Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

  14. Learning Progressions & Climate Change

    ERIC Educational Resources Information Center

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  15. Emissions versus climate change

    EPA Science Inventory

    Climate change is likely to offset some of the improvements in air quality expected from reductions in pollutant emissions. A comprehensive analysis of future air quality over North America suggests that, on balance, the air will still be cleaner in coming decades.

  16. Confronting Climate Change

    ERIC Educational Resources Information Center

    Roach, Ronald

    2009-01-01

    The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

  17. Anthropogenic Climate Change in Asia: Key Challenges

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.

    2009-12-01

    The energy, agricultural, and water sectors in Asia, a vast continent that comprises more than half of the world's population, are crucially vulnerable to shifts in climate. The acceleration of economic development in Asia over the past few decades, the dependence of its huge agricultural economy on rainfall, and its growing energy demands have thrust climate change and its impacts squarely into important sectors of the Asian society. Further, it is likely that there has been significant anthropogenic warming over the past 50 years averaged over the Asian continent (Intergovernmental Panel on Climate Change (IPCC) [2007]; see Figure 1a). Asian megacities are already witnessing stresses in food, water, transportation, health, and air quality. The situation could become even worse with projected changes in temperature and rainfall in the 21st century, coupled with the likelihood that climate change will exacerbate extremes.

  18. Integrated Assessment of Hadley Centre (HadCM2) Climate Change Projections on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States.I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model.

    SciTech Connect

    Rosenberg, Norman J.; Brown, Robert A.; Izaurralde, R Cesar C.; Thomson, Allison M.

    2003-06-30

    This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologic unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.

  19. Environmental and societal consequences of a possible CO/sub 2/-induced climate change. Volume II, Part 8. Impacts of rising atmospheric carbon dioxide levels on agricultural growing seasons and crop water use efficiencies

    SciTech Connect

    Newman, J. E.

    1982-09-01

    The researchable areas addressed relate to the possible impacts of climate change on agricultural growing seasons and crop adaptation responses on a global basis. The research activities proposed are divided into the following two main areas of investigation: anticipated climate change impacts on the physical environmental characteristics of the agricultural growing seasons and, the most probable food crop responses to the possible changes in atmospheric CO/sub 2/ levels in plant environments. The main physical environmental impacts considered are the changes in temperature, or more directly, thermal energy levels and the growing season evapotranspiration-precipitation balances. The resulting food crop, commercial forest and rangeland species response impacts addressed relate to potential geographical shifts in agricultural growing seasons as determined by the length in days of the frost free period, thermal energy changes and water balance changes. In addition, the interaction of possible changes in plant water use efficiencies during the growing season in relationship to changing atmospheric CO/sub 2/ concentrations, is also considered under the scenario of global warming due to increases in atmospheric CO/sub 2/ concentration. These proposed research investigations are followed by adaptive response evaluations.

  20. Nitrogen – climate interactions in US agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the United States cycles large quantities of nitrogen (N) to produce food, fuel and fiber and is a major source of excess reactive nitrogen (Nr) in the environment. Nitrogen lost from cropping systems and animal operations moves to waterways, groundwater, and the atmosphere. Changes i...

  1. Adapting Cropping Patterns to Climate Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many studies on the potential impacts of climate change in agriculture have focused primarily on productivity of individual crops at specific locations rather than considering how cropping patterns may evolve adaptively. These adaptations likely would include both geographic and temporal changes. Th...

  2. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  3. Climate change, migration and health.

    PubMed

    Carballo, Manuel

    2008-01-01

    In summary, climate change of the magnitude that is now being talked about promises to invoke major changes in the nature of the world we live in. From an agricultural and food production perspective new challenges are already emerging and many countries, regional organizations and international agencies are ill-prepared to deal with them. From the perspective of the forced emergence of new diseases. There may also be complex struggles for scarce resources including land, water, food and housing. To what extent these will translate into social and political instability is not clear, but the potential for instability within and between countries should not be under-estimated; nor should the scarcity of selected commodities. Understanding these complex dynamics and planning for them in timely and comprehensive ways is essential. Preparedness by governments, the international community and the private sector, will help accommodate some of the changes that are already taking place and many others which are still to materialize. PMID:18795506

  4. Potential effects of climate change on Oregon crops

    EPA Science Inventory

    This talk will discuss: 1) potential changes in the Pacific Northwest climate with global climate change, 2) how climate change can affect crops, 3) the diversity of Oregon agriculture, 4) examples of potential response of Oregon crops – especially dryland winter wheat, and 5) br...

  5. 7 CFR 2.74 - Director, Climate Change Program Office.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Director, Climate Change Program Office. 2.74 Section... Director, Climate Change Program Office. (a) Delegations. Pursuant to § 2.29(a)(12), the following delegations of authority are made by the Chief Economist to the Director, Climate Change Program Office:...

  6. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  7. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    NASA Astrophysics Data System (ADS)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    In Ethiopia, repeated plowing, complete removal of crop residues at harvest, aftermath grazing of crop fields and occurrence of repeated droughts have reduced the biomass return to the soil and aggravated cropland degradation. Conservation Agriculture (CA)-based resource conserving cropping systems may reduce runoff and soil erosion, and improve soil quality, thereby increasing crop productivity. Thus, a long-term tillage experiment has been carried out (2005 to 2012) on a Vertisol to quantify - among others - changes in runoff and soil loss for two local tillage practices, modified to integrate CA principles in semi-arid northern Ethiopia. The experimental layout was a randomized complete block design with three replications on permanent plots of 5 m by 19 m. The tillage treatments were (i) derdero+ (DER+) with a furrow and permanent raised bed planting system, ploughed only once at planting by refreshing the furrow from 2005 to 2012 and 30% standing crop residue retention, (ii) terwah+ (TER+) with furrows made at 1.5 m interval, plowed once at planting, 30% standing crop residue retention and fresh broad beds, and (iii) conventional tillage (CT) with a minimum of three plain tillage operations and complete removal of crop residues. All the plowing and reshaping of the furrows was done using the local ard plough mahresha and wheat, teff, barley and grass pea were grown. Glyphosate was sprayed starting from the third year onwards (2007) at 2 l ha-1 before planting to control pre-emergent weeds in CA plots. Runoff and soil loss were measured daily. Soil water content was monitored every 6 days. Significantly different (p<0.05) runoff coefficients averaged over 8 years were 14, 20 and 27% for DER+, TER+ and CT, respectively. Mean soil losses were 4 t ha-1 y-1 in DER+, 13 in TER+ and 18 in CT. Soil water storage during the growing season was constantly higher in CA-based systems compared with CT. A period of at least three years of cropping was required before

  8. Climate Change and Climate Modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Gavin

    2011-06-01

    In long-established fields like fluid mechanics or quantum theory, the contents of introductory textbooks are mostly predictable: The basics are covered in more or less the same order, and while cutting-edge research occasionally gets a look-in (depending on the inclinations of the authors), the contents are far more frequently reworkings of previous textbooks than a synthesis of recent primary literature. In a field like climate science, however, where there is a much shorter history of textbook writing, much of the subject matter is extracted directly from papers published in the past 10 years. This makes the resulting textbooks far more varied and interesting.

  9. Projections of Future Climate Change

    SciTech Connect

    Cubasch, U.; Meehl , G.; Boer, G. J.; Stouffer, Ron; Dix, M.; Noda, A.; Senior, C. A.; Raper, S.; Yap, K. S.; Abe-Ouchi, A.; Brinkop, S.; Claussen, M.; Collins, M.; Evans, J.; Fischer-Bruns, I.; Flato, G.; Fyfe, J. C.; Ganopolski, A.; Gregory, J. M.; Hu, Z. Z.; Joos, Fortunat; Knutson, T.; Knutti, R.; Landsea, C.; Mearns, L. O.; Milly, C.; Mitchell, J. F.; Nozawa, T.; Paeth, H.; Raisanen, J.; Sausen, R.; Smith, Steven J.; Stocker, T.; Timmermann, A.; Ulbrich, U.; Weaver, A.; Wegner, J.; Whetton, P.; Wigley, T. M.; Winton, M.; Zwiers, F.; Kim, J. W.; Stone, J.

    2001-10-01

    Contents: Executive Summary 9.1 Introduction 9.2 Climate and Climate Change 9.3 Projections of Climate Change 9.4 General Summary Appendix 9.1: Tuning of a Simple Climate Model toAOGCM Results References

  10. Perception of climate change.

    PubMed

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-09-11

    "Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3σ) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change. PMID:22869707

  11. Confronting Climate Change

    NASA Astrophysics Data System (ADS)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  12. Outchasing climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  13. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. PMID:16512862

  14. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  15. [Agricultural migration has changed face].

    PubMed

    Ouedraogo, D

    1991-04-01

    Movements related to colonization of new lands for cultivation or pasturing have constituted the dominant form of migration in the Sahel countries since the colonial period. the relative importance of such movements declined with the development of labor migration, but geographic mobility continues to be an integral part of Sahel life. A principal strategy during crises of agricultural production was the vast movement of population toward new lands, but such movements had little macroeconomic or macrosocial importance given the low population density and technical development of the time; the family subsistence enterprise was merely displaced. The artificial division into separate countries in the colonial era brought some control of migratory movements, and especially those across international borders, but such migrations increased again after independence and especially during the prolonged drought. Rural migration has been encouraged by development of transportation and communication facilities and by progress in controlling endemic diseases such as river blindness and sleeping sickness. Contemporary migration differs fundamentally from agricultural migration of the past. Migration has become, in addition to a survival strategy, a strategy of economic and social advancement. The change of residence is often accompanied by a restructuring of economic activities and substantial increases in the household's resources. Migrants attempt to produce enough for their own consumption, with some left for sale. They may also take on secondary employment, especially in the dry season: sale of firewood, petty trading, artisanal production. Spontaneous population movements seem to benefit the migrants, improving family and national agricultural production and contributing to a better distribution of rural population, but they have a high social and ecological cost and should receive more attention from planners and researchers in the context of the current campaign against

  16. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  17. Climate-agriculture interactions and needs for policy making

    NASA Astrophysics Data System (ADS)

    Phillips, J. G.

    2010-12-01

    Research exploring climate change interactions with agriculture has evolved from simplistic “delta T” simulation experiments with crop models to work highlighting the importance of climate variability and extreme events, which characterized the negative impacts possible if no adaptation occurred. There soon followed consideration of socioeconomic factors allowing for adaptive strategies that are likely to mitigate the worst case outcomes originally projected. At the same time, improved understanding of biophysical feedbacks has led to a greater recognition of the role that agriculture plays in modifying climate, with a great deal of attention recently paid to strategies to enhance carbon sequestration in agricultural systems. Advances in models of biogeochemical cycling applied to agronomic systems have allowed for new insights into greenhouse gas emissions and sinks associated with current, conventional farming systems. Yet this work is still relatively simplistic in that it seldom addresses interactions between climate dynamics, adoption of mitigation strategies, and feedbacks to the climate system and the surrounding environment. In order for agricultural policy to be developed that provides incentives for appropriate adaptation and mitigation strategies over the next 50 years, a systems approach needs to be utilized that addresses feedbacks and interactions at field, farm and regional scales in a broader environmental context. Interactions between carbon and climate constraints on the one hand, and environmental impacts related to water, nutrient runoff, and pest control all imply a transformation of farming practices that is as of yet not well defined. Little attention has been paid to studying the implications of “alternative” farming strategies such as organic systems, intensive rotational grazing of livestock, or increases in the perennial component of farmscapes, all of which may be necessary responses to energy and other environmental constraints

  18. Climate changes, shifting ranges

    USGS Publications Warehouse

    Romanach, Stephanie

    2015-01-01

    Even a fleeting mention of the Everglades conjures colorful images of alligators, panthers, flamingos, and manatees. Over the centuries, this familiar cast of characters has become synonymous with life in south Florida. But the workings of a changing climate have the potential to significantly alter the menagerie of animals that call this area home. Global projections suggest south Florida wildlife will need to contend with higher temperatures, drier conditions, and rising seas in the years ahead. Recent modeling efforts shed new light on the potential outcomes these changes may have for threatened and endangered species in the area.

  19. Introduction: food crops in a changing climate.

    PubMed

    Slingo, Julia M; Challinor, Andrew J; Hoskins, Brian J; Wheeler, Timothy R

    2005-11-29

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given. PMID:16433087

  20. Understanding recent climate change.

    PubMed

    Serreze, Mark C

    2010-02-01

    The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most. PMID:20121837

  1. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  2. Prehispanic agriculture and climate on the Pacific slope of Guatemala

    NASA Astrophysics Data System (ADS)

    Connolly, Elizabeth Wilcut

    The relationship between agriculture and social complexity is a complicated one through both time and space; this is no less true in prehispanic Mesoamerica. Human occupation of the Pacific Coast of Gualtemala prior to Spanish contact was affected by humans' relationship with their physical environment, including the vegetation and climate. I examined multiple lines of evidence, including phytolith, pollen, and settlement data, seeking to detect changes within the paleoenviromental, paleoclimatic, and socio-cultural records from the Middle and Late Formative (1000 BC to AD 150) through the Classic (AD 150 to 600) and Post-Classic (ca. AD 1000) periods. This work reveals that social complexity on the Pacific Slope of Gualtemala developed alongside agricultural intensification. More significantly, however, it also reveals that while there was a population "collapse" on the Pacific Slope at the end of the Late Formative period, there was not the correlating drought or decline in agriculture seen in other areas of the Maya homeland.

  3. NASA Nice Climate Change Education

    NASA Astrophysics Data System (ADS)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  4. Insects and climate change

    SciTech Connect

    Elias, S.A. )

    1991-09-01

    In this article the author describes some of the significant late glacial and Holocene changes that occurred in the Rocky Mountains, including the regional extirpation of certain beetle species. The fossil data presented here summarize what is known about regional insect responses to climate change in terms of species stability and geographic distribution. To minimize potential problems of species interactions (i.e., insect-host plant relationships, host-parasite relationships, and other interactions that tie a particular insect species' distribution to that of another organism), only predators and scavengers are discussed. These insects respond most rapidly to environmental changes, because for the most part they are not tied to any particular type of vegetation.

  5. Climate change and habitat conversion favour the same species.

    PubMed

    Frishkoff, Luke O; Karp, Daniel S; Flanders, Jon R; Zook, Jim; Hadly, Elizabeth A; Daily, Gretchen C; M'Gonigle, Leithen K

    2016-09-01

    Land-use change and climate change are driving a global biodiversity crisis. Yet, how species' responses to climate change are correlated with their responses to land-use change is poorly understood. Here, we assess the linkages between climate and land-use change on birds in Neotropical forest and agriculture. Across > 300 species, we show that affiliation with drier climates is associated with an ability to persist in and colonise agriculture. Further, species shift their habitat use along a precipitation gradient: species prefer forest in drier regions, but use agriculture more in wetter zones. Finally, forest-dependent species that avoid agriculture are most likely to experience decreases in habitable range size if current drying trends in the Neotropics continue as predicted. This linkage suggests a synergy between the primary drivers of biodiversity loss. Because they favour the same species, climate and land-use change will likely homogenise biodiversity more severely than otherwise anticipated. PMID:27396714

  6. Climate Variability and Change

    USGS Publications Warehouse

    U.S. Geological Survey

    2007-01-01

    In 2007, the U.S. Geological Survey (USGS) developed a science strategy outlining the major natural science issues facing the Nation in the next decade. The science strategy consists of six science directions of critical importance, focusing on areas where natural science can make a substantial contribution to the well-being of the Nation and the world. This fact sheet focuses on climate variability and change and how USGS research can strengthen the Nation with information needed to meet the challenges of the 21st century.

  7. Agroforestry, climate change, and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...

  8. Modelling rainfall erosion resulting from climate change

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  9. Agricultural Climate Services Planning and Engagement in the Midwest

    NASA Astrophysics Data System (ADS)

    Kluck, D.

    2009-12-01

    Agribusiness and related industries in the Midwest are dominant influences on the regional economy, politics and the livelihoods of many communities. The successes and failures of crops and commodities markets in this area, often referred to as the “Corn Belt”, has a disproportionate effect globally in terms of food and energy production. Agribusiness in the Midwest is proud of the fact that they “feed the world” and have some of the highest output per acre of row crops on Earth. In spite of attempts to lessen the impact of climate (irrigation, genetic manipulation, etc…) it remains one of the most influential inputs to crop success. Thus, early warning of climate events and repercussions from climate change are increasingly important for preparedness, sustainability and adaptation. Drought, floods, heat, cold, early/late freeze, disease and invasive species all serve as major factors for this sector. Recognizing the importance of these impacts, NOAA and its partners plan to continue a discussion on the needs of critical information for agricultural decision makers. NOAA and its partners are eager to understand the climate information priorities within the agricultural community so it can determine where effort and support should go to address the gaps. This September 9-10th NOAA will convene experts from NOAA, Illinois-Indiana Sea Grant, USDA-CSREES (Extension Services), academia, state climate offices, Regional Climate Centers, and others to determine a possible path for such services. This meeting will follow on from the “Corn and Climate Workshop” which began this discussion last September (2008). This will be a first for regional climate services planning meetings in the Midwest. A plethora of possible inputs and outcomes are anticipated from the meeting. One of the goals is to collect and prioritize actionable suggestions from a variety of sources before and during the two-day session. From this list, meeting participants will discuss and

  10. Ruminants, climate change and climate policy

    NASA Astrophysics Data System (ADS)

    Ripple, William J.; Smith, Pete; Haberl, Helmut; Montzka, Stephen A.; McAlpine, Clive; Boucher, Douglas H.

    2014-01-01

    Greenhouse gas emissions from ruminant meat production are significant. Reductions in global ruminant numbers could make a substantial contribution to climate change mitigation goals and yield important social and environmental co-benefits.

  11. Permafrost and Climate Change

    NASA Astrophysics Data System (ADS)

    Basnet, S.; Shahroudi, N.

    2012-12-01

    This paper examines the effects of climate change on Permafrost. Climate change has been shown to have a global correlation with decreased snow cover in high latitudes. In the current research station and satellite data were used to detect the location of permafrost. Permafrost is dependent on the temperature of the ground surface. Air temperature and snow cover from Integrated Surface Database (ISD) downloaded from National Climatic Data Center (NCDC) were observed for six consecutive years (1999-2004). The research was carried out over the entire globe to study the trend between fluctuating temperature and snow cover. Number of days with temperature below zero (freezing) and above zero (melting) was counted over a 6-year period. It was observed that each year the area of ice cover decreased by 0.3% in the Northern Hemisphere; a 1% increase in air temperature was also observed. Furthermore, the results from station data for snow cover and air temperature were compared with the snow cover and skin temperature from the satellite data. The skin temperature was retrieved from infrared (IR) radiance at International Satellite Cloud Climatology Project (ISCCP) and the snow cover is derived from visible satellite data at The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA). Both dataset projected that the higher latitudes had the highest number of days with temperature below zero degree Celsius and these locations will be able to house permafrost. In order to improve the data quality as well as for more accurate results, in the future ISD data and satellite skin temperature will be analyzed for longer period of time (1979-2011) and (1983-2007) respectively also, two additional station data will be studied. The two datasets for future studies are Integrated Global Radiosonde Archive (IGRA) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The results outputted by

  12. Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

  13. Communicating Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  14. Climate Change: Prospects for Nature

    SciTech Connect

    Thomas Lovejoy

    2008-03-12

    Thomas Lovejoy, President of The H. John Heinz III Center for Science, Economics and the Environment, explores the impact of climate change on the natural world. He also discusses the implications of climate change for climate policy and natural resource management.

  15. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  16. An investigation of evapotranspiration rates within mid-western agricultural systems in response to elevated carbon dioxide and ozone concentrations and climate change

    NASA Astrophysics Data System (ADS)

    Abdullah, W. F.; Lombardozzi, D.; Levis, S.; Bonan, G. B.

    2013-12-01

    Warith Featherstone Abdullah, Danica Lombardozzi, Samuel Levis and Gordon Bonan Jackson State University Dept. of Physics, Atmospheric Sciences & Geosciences National Center for Atmospheric Research Climate & Global Dynamics Because the human population is expected to surpass 8 billion by the year 2050, food security is a pressing issue. In the face of elevated temperatures associated with climate change (CC), elevated carbon dioxide (CO2) and elevated ozone (O3) concentrations, food productivity is uncertain. Plant stomata must be open to gain carbon which simultaneously causes water loss. Research suggests rising temperatures, elevated CO2 and elevated O3 in the future may impact plant stomata and change the rate plants lose water and take up carbon, affecting plant productivity and crop yields. Evapotranspiration (ET), latent heat fluxes, leaf carbon and net primary productivity (NPP) were analyzed in U.S Mid-west where crop density is greatest. Four simulations were run using the National Center for Atmospheric Research (NCAR) Community Land Model version 4 (CLM4) component of the Community Earth System Model (CESM) with an extended carbon-nitrogen model (CN). Analyses were based on June-July-August seasonal averages through 2080-2100 to compare the individual effects of CC, elevated CO2 and O3, and combined effects of all drivers. Results from model projections show increased ET with CC and all drivers combined, but only small changes from O3 or CO2 alone. Further results show that NPP was reduced with CC and O3 alone, but increased with CO2 alone and only slightly reduced with interacting components. The combined driver simulation, which most accurately represents future global change, suggests deteriorating water usage efficiency, thus potentially decreasing carbon uptake and crop production. However, further research is needed for verification. Midwest seasonal summation estimates for net primary productivity calculated by CLM4CN model. Climate change, CO2

  17. Scenarios of climate change

    NASA Astrophysics Data System (ADS)

    Graßl, H.

    2009-09-01

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8°C, and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere’s greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2°C is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun’s supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action.

  18. Climate change and marine life

    PubMed Central

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith; Bruno, John F.; Buckley, Lauren; Burrows, Michael T.; Duarte, Carlos M.; Halpern, Benjamin S.; Hoegh-Guldberg, Ove; Holding, Johnna; Kappel, Carrie V.; Kiessling, Wolfgang; Moore, Pippa J.; O'Connor, Mary I.; Pandolfi, John M.; Parmesan, Camille; Schoeman, David S.; Schwing, Frank; Sydeman, William J.; Poloczanska, Elvira S.

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change. PMID:22791706

  19. Climate adaptation as mitigation: the case of agricultural investments

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply

  20. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  1. Climate change and plant disease management.

    PubMed

    Coakley, S M; Scherm, H; Chakraborty, S

    1999-09-01

    ▪ Abstract  Research on impacts of climate change on plant diseases has been limited, with most work concentrating on the effects of a single atmospheric constituent or meteorological variable on the host, pathogen, or the interaction of the two under controlled conditions. Results indicate that climate change could alter stages and rates of development of the pathogen, modify host resistance, and result in changes in the physiology of host-pathogen interactions. The most likely consequences are shifts in the geographical distribution of host and pathogen and altered crop losses, caused in part by changes in the efficacy of control strategies. Recent developments in experimental and modeling techniques offer considerable promise for developing an improved capability for climate change impact assessment and mitigation. Compared with major technological, environmental, and socioeconomic changes affecting agricultural production during the next century, climate change may be less important; it will, however, add another layer of complexity and uncertainty onto a system that is already exceedingly difficult to manage on a sustainable basis. Intensified research on climate change-related issues could result in improved understanding and management of plant diseases in the face of current and future climate extremes. PMID:11701829

  2. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  3. Conservation practices and their potential to mitigate climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resilience of agricultural systems to climate change is dependent on the ability of the soil to capture and supply water to the plant at critical times in order to overcome the potential negative impacts of rising temperature. Climate change will occur as not only changes in the mean values of t...

  4. The 7 Aarhus Statements on Climate Change

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen; Svenning, Jens-Christian; Olesen, Jørgen E.; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene

    2009-03-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.

  5. Natural and anthropogenic climate changes

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D. ); Li, K.; Wang, S. . Inst. of Geography)

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO[sub 2]-doubled global and regional climates; and studies of desertification in the United States and China.

  6. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. PMID:24916195

  7. Hearing Examines Climate Change Economics

    NASA Astrophysics Data System (ADS)

    2007-03-01

    The Intergovernmental Panel on Climate Change has released its summary report on the science of climate change and will release subsequent reports on impacts and response strategies in coming months (see Eos 88(7), 2007). With this as backdrop, attention to issues related to climate change policy has been growing, particularly within the U.S. government where House and Senate committees continue to hold hearings each week on various aspects of climate change. One of these hearings, held 28 February by the House Ways and Means Committee, focused on the economic issues related to strategies for reducing levels of greenhouse gases in the atmosphere.

  8. Integrated Assessment of Hadley Centre (HadCM2) Climate-Change Impacts on Agricultural Productivity and Irrigation Water Supply in the Conterminous United States. Part II. Regional Agricultural Production in 2030 and 2095.

    SciTech Connect

    Izaurralde, R Cesar C.; Rosenberg, Norman J.; Brown, Robert A.; Thomson, Allison M.

    2003-06-30

    This study used scenarios of the HadCM2 GCM and the EPIC agroecosystem model to evaluate climate change impacts on crop yields and ecosystem processes. Baseline climate data were obtained from records for 1961-1990. The scenario runs for 2025-2034 and 2090-2099 were extracted from a HadCM2 run. EPIC was run on 204 representative farms under current climate and two 10-y periods centered on 2030 and 2095, each at CO2 concentrations of 365 and 560 ppm. Texas, New Mexico, Colorado, Utah, Arizona, and California are projected to experience significant temperature increases by 2030. Slight cooling is expected by 2030 in Alabama, Florida, Maine, Montana, Idaho, and Utah. Larger areas are projected to experience increased warming by 2095. Uniform precipitation increases are expected by 2030 in the NE. These increases are predicted to expand to the eastern half of the country by 2095. EPIC simulated yield increases for the Great Lakes, Corn Belt and Northeast regions. Simulated yields of irrigated corn yields were predicted to increase in almost all regions. Soybean yields could decrease in the Northern and Southern Plains, the Corn Belt, Delta, Appalachian, and Southeast regions and increase in the Lakes and Northeast regions. Simulated wheat yields exhibited upward yield trends under scenarios of climate change. National corn production in 2030 and 2095 could be affected by changes in three major producing regions. In 2030, corn production could increase in the Corn Belt and Lakes regions but decrease in the Northern Plains leading to an overall decrease in national production. National wheat production is expected to increase during both future periods. A proxy indicator was developed to provide a sense of where in the country, and when water would be available to satisfy change in irrigation demand for corn and alfalfa production as these are influenced by the HadCM2 scenarios and CO2-fertilization.

  9. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    PubMed Central

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  10. Global climate change and international security.

    SciTech Connect

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  11. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  12. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  13. Vulnerability to Climate Change in Rural Nicaragua

    NASA Astrophysics Data System (ADS)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  14. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  15. Climate Change and National Security

    SciTech Connect

    Malone, Elizabeth L.

    2013-02-01

    Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

  16. Biophysical impacts of climate-smart agriculture in the Midwest United States.

    PubMed

    Bagley, Justin E; Miller, Jesse; Bernacchi, Carl J

    2015-09-01

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse gas emissions, retain soil quality and increase climate resilience of agricultural systems. One component that is commonly neglected when assessing the environmental impacts of climate-smart agriculture is the biophysical impacts, where changes in ecosystem fluxes and storage of moisture and energy lead to perturbations in local climate and water availability. Using a combination of observational data and an agroecosystem model, a series of climate-smart agricultural scenarios were assessed to determine the biophysical impacts these techniques have in the Midwest United States. The first scenario extended the growing season for existing crops using future temperature and CO2 concentrations. The second scenario examined the biophysical impacts of no-till agriculture and the impacts of annually retaining crop debris. Finally, the third scenario evaluated the potential impacts that the adoption of perennial cultivars had on biophysical quantities. Each of these scenarios was found to have significant biophysical impacts. However, the timing and magnitude of the biophysical impacts differed between scenarios. PMID:25393245

  17. How Does Drought Change With Climate Change

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.

    2014-12-01

    Large disparities among published studies have led to considerable confusion over the question of how drought is changing and how it is expected to change with global warming. As a result the IPCC AR5 assessment has watered down statements, and failed to carry out an adequate assessment of the sources of the discrepancies. Quite aside from the different definitions of drought related to meteorological (absence of precipitation), hydrological (lack of water in lakes and rivers), and agricultural (lack of soil moisture) drought, there are many indices that measure drought. Good homogeneous datasets are essential to assess changes over time, but are often not available. Simpler indices may miss effects of certain physical processes, such as evapotranspiration (ET). The Palmer Drought Severity Index (PDSI) has been much maligned but has considerable merit because it can accommodate different ET formulations (e.g., Thornthwaite vs Penman-Monteith), it can be self calibrating to accommodate different regions, and it carries out a crude moisture balance. This is in contrast to simpler indices, such as the Standardized Precipitation Index, which provides only a measure of moisture supply, or the Standardized Precipitation Evapotranspiration Index, which also includes potential (but not actual) ET. The largest source of drought variations is ENSO: dur