Science.gov

Sample records for agriculture common crop

  1. Agricultural pesticide emissions associated with common crops in the United States

    SciTech Connect

    Benjey, W.G.

    1993-01-01

    Annual emissions for the year 1987 from the application of agricultural pesticides have been estimated by crop type by county for the United States using a geographic information system. The emissions estimates are based upon computed volatilization rates accounting for the properties of each pesticide, evaporation rates, mode of application (surface or soil incorporation) and percent of interception by leaves. Key pesticide properties include the Henry's Law constant, half-life in soil and the organic carbon partitioning coefficient. The volatilization rates are multiplied by the amount of pesticide applied by crop acreage in each county as determined from agricultural census and pesticide sales data. The geographic distribution of the dominant emissions, such as atrazine and diazinon, etc. are presented by crop type and state. For a given pesticide, the geographic variability is controlled principally by amount applied and water availability as reflected in evaporation rates.

  2. Field spectroscopy of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Daughtry, C. S. T.; Biehl, L. L.; Kanemasu, E. T.; Hall, F. G.

    1986-01-01

    The development of the full potential of multispectral data acquired from satellites, requires quantitative knowledge, and physical models of the spectral properties of specific earth surface features. Knowledge of the relationships between spectral-radiometric characteristics and important biophysical parameters of agricultural crops and soils can best be obtained by carefully controlled studies of fields or plots. It is important to select plots where data describing the agronomic-biophysical properties of the crop canopies and soil background are attainable, taking into account also the feasibility of frequent timely calibrated spectral measurements. The term 'field spectroscopy' is employed for this research. The present paper is concerned with field research which was sponsored by NASA as part of the AgRISTARS Supporting Research Project. Attention is given to field research objectives, field research instrumentation, measurement procedures, spectral-temporal profile modeling, and the effects of cultural and environmental factors on crop reflectance.

  3. Biofuels, Bioenergy, and bioproducts from sustainable agricultural and forest crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most conferences about short rotation crops have primarily focused on either agricultural or forest crops, resulting in less integration and slower advancement of common underlying science and application. The goal of this conference was to initiate and provide opportunities for an international for...

  4. Agricultural impacts: Mapping future crop geographies

    NASA Astrophysics Data System (ADS)

    Travis, William R.

    2016-06-01

    Modelled patterns of climate change impacts on sub-Saharan agriculture provide a detailed picture of the space- and timescales of change. They reveal hotspots where crop cultivation may disappear entirely, but also large areas where current or substitute crops will remain viable through this century.

  5. Technical Guidelines and References: Crops Training Component. From: Agricultural Development Workers Training Manual. Volume III: Crops.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    This reference manual for training Peace Corps agricultural development workers deals with crops. The document begins with common units of area, length, weight, volume, and conversions between them. A practice problem is worked and other conversion problems are given. The second section is intended to show agricultural field workers how to survey…

  6. 75 FR 59057 - Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... March 30, 2010 (75 FR 15778-15891). Need for Correction As published, the final regulation contained... Insurance Corporation 7 CFR Part 457 RIN 0563-AB96 Common Crop Insurance Regulations, Cotton Crop Insurance Provisions and Macadamia Nut Crop Insurance Provisions; Correction AGENCY: Federal Crop Insurance...

  7. 75 FR 15777 - Common Crop Insurance Regulations, Basic Provisions; and Various Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Basic Provisions, Small Grains Crop Insurance Provisions, Cotton Crop Insurance Provisions, Sunflower Seed Crop Insurance Provisions, Coarse Grains Crop Insurance Provisions, Malting Barley Crop Insurance Provisions, Rice Crop Insurance Provisions, and Canola and Rapeseed Crop Insurance Provisions to......

  8. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions to convert the Florida avocado pilot crop insurance program to a permanent insurance program for the 2011 and succeeding crop...

  9. Why we need GMO crops in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fact that in a very short period of 35 years the global population will reach an estimated 9 billion people presents a massive challenge to agriculture: how do we feed all of these people with nutritious food in a sustainable way? At the present time the yields of most of our major crops are sta...

  10. Crop Farm Employee. Agricultural Cooperative Training. Vocational Agriculture. Revised.

    ERIC Educational Resources Information Center

    Boyd, Chester; And Others

    Designed for students enrolled in the Vocational Agricultural Cooperative Part-Time Training Program, this course of study contains 13 units for crop farm employees. Units include (examples of unit topics in parentheses): introduction (opportunities in farming, farming as a science, and farming in the United States), farm records (keeping farm…

  11. Separability of agricultural crops with airborne scatterometry

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1983-01-01

    Backscattering measurements were acquired with airborne scatterometers over a site in Cass County, North Dakota on four days in the 1981 crop growing season. Data were acquired at three frequencies (L-, C- and Ku-bands), two polarizations (like and cross) and ten incidence angles (5 degrees to 50 degrees in 5 degree steps). Crop separability is studied in an hierarchical fashion. A two-class separability measure is defined, which compares within-class to between-class variability, to determine crop separability. The scatterometer channels with the best potential for crop separability are determined, based on this separability measure. Higher frequencies are more useful for discriminating small grains, while lower frequencies tend to separate non-small grains better. Some crops are more separable when row direction is taken into account. The effect of pixel purity is to increase the separability between all crops while not changing the order of useful scatterometer channels. Crude estimates of separability errors are calculated based on these analyses. These results are useful in selecting the parameters of active microwave systems in agricultural remote sensing.

  12. 75 FR 70850 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation, USDA. ACTION: Proposed... amend the Common Crop Insurance Regulations, Extra Long Staple Cotton Crop Insurance Provisions to... statement into the Crop Provisions, and to make the Extra Long Staple Cotton Crop Insurance...

  13. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  14. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  15. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  16. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  17. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds...

  18. 76 FR 32067 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Corporation 7 CFR Part 457 RIN 0563-AC27 Common Crop Insurance Regulations; Extra Long Staple Cotton Crop... Insurance Corporation (FCIC) finalizes amendments made to the Common Crop Insurance Regulations, Extra Long... incorporate a current Special Provisions statement into the Crop Provisions, and to make the Extra Long...

  19. Agricultural Development Workers Training Manual. Volume III. Crops.

    ERIC Educational Resources Information Center

    Leonard, David; And Others

    This training manual, the third volume in a four-volume series of curriculum guides for use in training Peace Corps agricultural development workers, deals with crops. The first chapter provides suggested guidelines for setting up and carrying out the crops component of the agricultural development worker training series. Included in the second…

  20. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  1. Climate impacts on agriculture: Implications for crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 50 years present a challenge to crop production. Understanding these implications for agricultural crops is critical to being able to develop cropping systems which are resilient to stresses induced by ...

  2. 78 FR 47214 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Insurance Regulations; Extra Long Staple Cotton Crop Provisions AGENCY: Federal Crop Insurance Corporation... the Common Crop Insurance Regulations, Extra Long Staple (ELS) Cotton Crop Insurance Provisions to... 48 FR 29115, June 24, 1983. Executive Order 12988 This proposed rule has been reviewed in...

  3. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...The Federal Crop Insurance Corporation (FCIC) proposes to amend the Common Crop Insurance Regulations, Processing Sweet Corn Crop Insurance Provisions. The intended effect of this action is to provide policy changes that better meet the needs of insured producers. The proposed changes will be effective for the 2013 and succeeding crop...

  4. 76 FR 43606 - Common Crop Insurance Regulations; Onion Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    .... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24, 1983... Insurance Regulations; Onion Crop Insurance Provisions AGENCY: Federal Crop Insurance Corporation, USDA... Common Crop Insurance Regulations, Onion Crop Insurance Provisions. The intended effect of this action...

  5. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  6. Fuel production potential of several agricultural crops

    SciTech Connect

    Mays, D.A.; Buchanan, W.; Bradford, B.N.

    1984-11-01

    Data collected on starch and sugar crops indicate that sweet potato and sweet sorghum have the best potential for alcohol production in the TVA area. Of the oil crops evaluated in this series of experiments only sunflower and okara appear to offer potential in the Tennessee Valley for oil production for fuel or other uses. 21 tabs.

  7. Hyperspectral imagery for mapping crop yield for precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...

  8. 77 FR 59045 - Common Crop Insurance Regulations; Prune Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ...The Federal Crop Insurance Corporation (FCIC) finalizes the Common Crop Insurance Regulations, Prune Crop Insurance Provisions. The intended effect of this action is to provide policy changes and clarify existing policy provisions to better meet the needs of insured producers, and to reduce vulnerability to program fraud, waste, and abuse. The changes will apply for the 2013 and succeeding......

  9. 78 FR 22411 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Florida Citrus Fruit Crop Insurance Provisions that published on Friday, December 21, 2012, (74 FR 75509... Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit Crop... Friday, December 21, 2012. The regulation pertains to the insurance of Florida Citrus Fruit....

  10. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  11. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  12. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  13. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  14. Wild chimpanzees show group differences in selection of agricultural crops

    PubMed Central

    McLennan, Matthew R.; Hockings, Kimberley J.

    2014-01-01

    The ability of wild animals to respond flexibly to anthropogenic environmental changes, including agriculture, is critical to survival in human-impacted habitats. Understanding use of human foods by wildlife can shed light on the acquisition of novel feeding habits and how animals respond to human-driven land-use changes. Little attention has focused on within-species variation in use of human foods or its causes. We examined crop-feeding in two groups of wild chimpanzees – a specialist frugivore – with differing histories of exposure to agriculture. Both groups exploited a variety of crops, with more accessible crops consumed most frequently. However, crop selection by chimpanzees with long-term exposure to agriculture was more omnivorous (i.e., less fruit-biased) compared to those with more recent exposure, which ignored most non-fruit crops. Our results suggest chimpanzees show increased foraging adaptations to cultivated landscapes over time; however, local feeding traditions may also contribute to group differences in crop-feeding in this species. Understanding the dynamic responses of wildlife to agriculture can help predict current and future adaptability of species to fast-changing anthropogenic landscapes. PMID:25090940

  15. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  16. PRECISION AGRICULTURE MASTERS PROGRAM - EDUCATING MISSOURI CROP PRODUCERS ABOUT THE BENEFITS OF PRECISION AGRICULTURE MANAGEMENT THROUGH ON-FARM RESEARCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agriculture Masters (PAM) Program was initiated to enhance the transfer of technology related to precision agriculture to Missouri's crop producers. The PAM program consists of three parts: the precision agriculture knowledge network available through the Missouri Precision Agricultur...

  17. Farm noise emissions during common agricultural activities.

    PubMed

    Depczynski, J; Franklin, R C; Challinor, K; Williams, W; Fragar, L J

    2005-08-01

    Noise injury in agriculture is a significant yet often unrecognized problem. Many farmers, farm workers, and family members are exposed to noise levels above recommended levels and have greater hearing loss than their non-farming contemporaries. The aim of this study was to gather up-to-date information on farm noise levels and to enhance the quality of information available to assist farmers in reducing noise exposure and meeting Occupational Health and Safety (OHS) regulations regarding noise management. Farm visits were conducted on 48 agricultural establishments that produce a range of commodities. Noise levels were measured at the ears of operators and bystanders involved in typical activities on farms. The average and peak noise levels were measured for 56 types of machinery or sites of farming activity, totaling 298 separate items and activities. Common noise hazards identified included firearms, tractors without cabs, workshop tools, small motors (e.g., chainsaws, augers, pumps), manual handling of pigs, shearing sheds, older cabbed tractors, and heavy machinery such as harvesters, bulldozers, and cotton module presses. We found that use of firearms without hearing protection presents a pressing hearing health priority. However, farming activities involving machinery used for prolonged periods also present significant risks to farmers' hearing health. Noise management strategies on the farm are essential in order to prevent noise injury among farmers. PMID:16184791

  18. Control of Vertebrate Pests of Agricultural Crops.

    ERIC Educational Resources Information Center

    Wingard, Robert G.; Studholme, Clinton R.

    This agriculture extension service publication of Pennsylvania State University discusses the damage from and control of vertebrate pests. Specific discussions describe the habits, habitat, and various control measures for blackbirds and crows, deer, meadow and pine mice, European starlings, and woodchucks. Where confusion with non-harmful species…

  19. Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture.

    PubMed

    Thottathil, Gincy Paily; Jayasekaran, Kandakumar; Othman, Ahmad Sofiman

    2016-02-01

    Agricultural development in the tropics lags behind development in the temperate latitudes due to the lack of advanced technology, and various biotic and abiotic factors. To cope with the increasing demand for food and other plant-based products, improved crop varieties have to be developed. To breed improved varieties, a better understanding of crop genetics is necessary. With the advent of next-generation DNA sequencing technologies, many important crop genomes have been sequenced. Primary importance has been given to food crops, including cereals, tuber crops, vegetables, and fruits. The DNA sequence information is extremely valuable for identifying key genes controlling important agronomic traits and for identifying genetic variability among the cultivars. However, massive DNA re-sequencing and gene expression studies have to be performed to substantially improve our understanding of crop genetics. Application of the knowledge obtained from the genomes, transcriptomes, expression studies, and epigenetic studies would enable the development of improved varieties and may lead to a second green revolution. The applications of next generation DNA sequencing technologies in crop improvement, its limitations, future prospects, and the features of important crop genome projects are reviewed herein. PMID:27019684

  20. Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture

    PubMed Central

    Thottathil, Gincy Paily; Jayasekaran, Kandakumar; Othman, Ahmad Sofiman

    2016-01-01

    Agricultural development in the tropics lags behind development in the temperate latitudes due to the lack of advanced technology, and various biotic and abiotic factors. To cope with the increasing demand for food and other plant-based products, improved crop varieties have to be developed. To breed improved varieties, a better understanding of crop genetics is necessary. With the advent of next-generation DNA sequencing technologies, many important crop genomes have been sequenced. Primary importance has been given to food crops, including cereals, tuber crops, vegetables, and fruits. The DNA sequence information is extremely valuable for identifying key genes controlling important agronomic traits and for identifying genetic variability among the cultivars. However, massive DNA re-sequencing and gene expression studies have to be performed to substantially improve our understanding of crop genetics. Application of the knowledge obtained from the genomes, transcriptomes, expression studies, and epigenetic studies would enable the development of improved varieties and may lead to a second green revolution. The applications of next generation DNA sequencing technologies in crop improvement, its limitations, future prospects, and the features of important crop genome projects are reviewed herein. PMID:27019684

  1. 78 FR 70485 - Common Crop Insurance Regulations; Extra Long Staple Cotton Crop Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Insurance Corporation 7 CFR Part 457 RIN 0563-AC41 Common Crop Insurance Regulations; Extra Long Staple... Regulations, Extra Long Staple Cotton Crop Insurance Provisions to make the Extra Long Staple (ELS) Cotton.... See the Notice related to 7 CFR part 3015, subpart V, published at 48 FR 29115, June 24,...

  2. 78 FR 33690 - Common Crop Insurance Regulations; Pecan Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... was published Thursday, February 28, 2013 (78 FR 13454-13460). The regulation pertains to the... 28, 2013 (78 FR 13454-13460). Need for Correction As published, the final regulation contained a... Federal Crop Insurance Corporation 7 CFR Part 457 RIN 0563-AC35 Common Crop Insurance Regulations;...

  3. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  4. Nutrient Losses from Row Crop Agriculture in Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topic: USDA CEAP: Research Results and Recommendations Nutrient losses from row crop agriculture are known to contribute to water quality problems such as eutrophication and the zone of hypoxia in the Gulf of Mexico. Fields and catchments in the Cedar Creek sub-watershed of the St. Joseph River ba...

  5. Hyperspectral mapping of crop and soils for precision agriculture

    NASA Astrophysics Data System (ADS)

    Whiting, Michael L.; Ustin, Susan L.; Zarco-Tejada, Pablo; Palacios-Orueta, Alicia; Vanderbilt, Vern C.

    2006-08-01

    Precision agriculture requires high spectral and spatial resolution imagery for advanced analyses of crop and soil conditions to increase environmental protection and producers' sustainability. GIS models that anticipate crop responses to nutrients, water, and pesticides require high spatial detail to generate application prescription maps. While the added precision of geo-spatial interpolation to field scouting generates improved zone maps and are an improvement over field-wide applications, it is limited in detail due to expense, and lacks the high precision required for pixel level applications. Multi-spectral imagery gives the spatial detail required, but broad band indexes are not sensitive to many variables in the crop and soil environment. Hyperspectral imagery provides both the spatial detail of airborne imagery and spectral resolution for spectroscopic and narrow band analysis techniques developed over recent decades in the laboratory that will advance precise determination of water and bio-physical properties of crops and soils. For several years, we have conducted remote sensing investigations to improve cotton production through field spectrometer measurements, and plant and soil samples in commercial fields and crop trials. We have developed spectral analyses techniques for plant and soil conditions through determination of crop water status, effectiveness of pre-harvest defoliant applications, and soil characterizations. We present the most promising of these spectroscopic absorption and narrow band index techniques, and their application to airborne hyperspectral imagery in mapping the variability in crops and soils.

  6. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  7. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  8. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  9. Determination of caloric values of agricultural crops and crop waste by Adiabatic Bomb Calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorific values of agricultural crops and their waste were measured by adiabatic bomb calorimetry. Sustainable farming techniques require that all potential sources of revenue be utilized. A wide variety of biomass is beginning to be used as alternative fuels all over the world. The energy potentia...

  10. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  11. Climate impacts on agriculture: Implications for crop production

    SciTech Connect

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  12. Management controls on nitrous oxide emissions from row crop agriculture

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Shcherbak, I.; Millar, N.; Robertson, G. P.

    2011-12-01

    Agriculture is a significant source of the potent greenhouse gas (GHG) nitrous oxide (N2O), accounting for ~70% of total anthropic N2O emissions in the US primarily as a result of N fertilizer application. Emissions of N2O are the largest contributor to the global warming potential of row-crop agriculture. Management, including choice of crop type and rotation strongly impacts N2O emissions, but continuous emissions data from row-crops over multiple rotations are lacking. Empirical quantification of these long-term emissions and the development of crop- and rotation-specific N2O emission factors are vital for improving estimates of agricultural GHG emissions, important for informing management practices to reduce agriculture's GHG footprint, and developing mitigation protocols for environmental markets. Over 20 years we measured soil N2O emissions and calculated crop and management specific emission factors in four continuous rotations of corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) under conventional tillage (CT), zero tillage (NT), low chemical input (LI), and biologically (Org) based management. Two of these systems (LI and Org) included winter cover crops, red clover (Trifolium pratense) or ray (Secale cereale). While average soil N2O fluxes in all systems where similar (2.9±0.2 to 3.8±0.5 g N2O-N ha-1 d-1), there was a significant interaction of total emissions with crop and phase. Surprisingly, the lowest total emissions from the corn period of the rotation were from CT, and the highest from LI, with 608±4 and 983±8 g N2O-N ha-1 crop year-1, respectively. Total emissions during the wheat period of the rotation showed the opposite trend, with total emissions of 942±7 and 524±38 g N2O-N ha-1 crop year-1, for CT ant LI, respectively. Total emissions from the soybean period of the rotation were highest under NT and lowest under CT management (526±5 and 296±2 g N2O-N ha-1 crop year-1, respectively). Emission efficiency, N2O emitted

  13. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  14. Agronomic conditions and crop evolution in ancient Near East agriculture.

    PubMed

    Araus, José L; Ferrio, Juan P; Voltas, Jordi; Aguilera, Mònica; Buxó, Ramón

    2014-01-01

    The appearance of agriculture in the Fertile Crescent propelled the development of Western civilization. Here we investigate the evolution of agronomic conditions in this region by reconstructing cereal kernel weight and using stable carbon and nitrogen isotope signatures of kernels and charcoal from a set of 11 Upper Mesopotamia archaeological sites, with chronologies spanning from the onset of agriculture to the turn of the era. We show that water availability for crops, inferred from carbon isotope discrimination (Δ(13)C), was two- to fourfold higher in the past than at present, with a maximum between 10,000 and 8,000 cal BP. Nitrogen isotope composition (δ(15)N) decreased over time, which suggests cultivation occurring under gradually less-fertile soil conditions. Domesticated cereals showed a progressive increase in kernel weight over several millennia following domestication. Our results provide a first comprehensive view of agricultural evolution in the Near East inferred directly from archaeobotanical remains. PMID:24853475

  15. Agronomic conditions and crop evolution in ancient Near East agriculture

    PubMed Central

    Aguilera, Mònica; Buxó, Ramón

    2014-01-01

    The appearance of agriculture in the Fertile Crescent has propelled the development of Western civilization. Here we investigate the evolution of agronomic conditions in this region by reconstructing cereal kernel weight and using stable carbon and nitrogen isotope signatures of kernels and charcoal from a set of 11 Upper Mesopotamia archaeological sites, with chronologies spanning from the onset of agriculture to the turn of the era. We show that water availability for crops, inferred from carbon isotope discrimination (Δ13C), was two- to fourfold higher in the past than at present, with a maximum between 10,000 and 8,000 cal BP. Nitrogen isotope composition (δ15N) decreased over time, which suggests cultivation occurring under gradually less fertile soil conditions. Domesticated cereals showed a progressive increase in kernel weight over several millennia following domestication. Our results provide a first comprehensive view of agricultural evolution in the Near East inferred directly from archaeobotanical remains. PMID:24853475

  16. Effects of crop residue returning on nitrous oxide emissions in agricultural soils

    NASA Astrophysics Data System (ADS)

    Shan, Jun; Yan, Xiaoyuan

    2013-06-01

    Crop residue returning is a common practice in agricultural system that consequently influences nitrous oxide (N2O) emissions. Much attention has been focused on the effects of crop residue on N2O release. However, no systematic result has yet been drawn because environmental factors among different studies vary. A meta-analysis was described to integrate 112 scientific assessments of crop residue returning on N2O emissions in this study. Results showed that crop residue returning, when averaged across all studies, had no statistically significant effect on N2O release compared with control treatments. However, the range of effects of crop residue returning on N2O emission was significantly affected by synthetic nitrogen (N) fertilizer application, type of crop residue, specific manner in which crop residue has returned, and type of land-use. N2O release was significantly inhibited by 11.7% and 27.1% (P < 0.05) when crop residue was with synthetic N fertilizer and when type of land-use was paddy, respectively. While N2O emissions were significantly enhanced by 42.1% and 23.5% (P < 0.05) when crop residue was applied alone and when type of land-use was upland, respectively. N2O emissions were likewise increased when crop residue with lower C/N ratio was used, mulching of crop residue was performed, and type of land-use was fallow. Our study provides the first quantitative analysis of crop residue returning on N2O emissions, indicating that crop residue returning has no statistically significant effect on N2O release at regional scale, and underlining that the Intergovernmental Panel on Climate Change guidelines should take the opposite effects of crop residue returning on upland and paddy into account when estimating the N2O emission factor of crop residue for different land-use types. Given that most of data are dominated by certain types of crop residue and specific application methods, more field data are required to reduce uncertainty.

  17. Prediction of Potato Crop Yield Using Precision Agriculture Techniques.

    PubMed

    Al-Gaadi, Khalid A; Hassaballa, Abdalhaleem A; Tola, ElKamil; Kayad, Ahmed G; Madugundu, Rangaswamy; Alblewi, Bander; Assiri, Fahad

    2016-01-01

    Crop growth and yield monitoring over agricultural fields is an essential procedure for food security and agricultural economic return prediction. The advances in remote sensing have enhanced the process of monitoring the development of agricultural crops and estimating their yields. Therefore, remote sensing and GIS techniques were employed, in this study, to predict potato tuber crop yield on three 30 ha center pivot irrigated fields in an agricultural scheme located in the Eastern Region of Saudi Arabia. Landsat-8 and Sentinel-2 satellite images were acquired during the potato growth stages and two vegetation indices (the normalized difference vegetation index (NDVI) and the soil adjusted vegetation index (SAVI)) were generated from the images. Vegetation index maps were developed and classified into zones based on vegetation health statements, where the stratified random sampling points were accordingly initiated. Potato yield samples were collected 2-3 days prior to the harvest time and were correlated to the adjacent NDVI and SAVI, where yield prediction algorithms were developed and used to generate prediction yield maps. Results of the study revealed that the difference between predicted yield values and actual ones (prediction error) ranged between 7.9 and 13.5% for Landsat-8 images and between 3.8 and 10.2% for Sentinel-2 images. The relationship between actual and predicted yield values produced R2 values ranging between 0.39 and 0.65 for Landsat-8 images and between 0.47 and 0.65 for Sentinel-2 images. Results of this study revealed a considerable variation in field productivity across the three fields, where high-yield areas produced an average yield of above 40 t ha-1; while, the low-yield areas produced, on the average, less than 21 t ha-1. Identifying such great variation in field productivity will assist farmers and decision makers in managing their practices. PMID:27611577

  18. 78 FR 4305 - Common Crop Insurance Regulations; Florida Citrus Fruit Crop Insurance Provisions; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Friday, December 21, 2012 (74 FR 75509-75521). The regulation pertains to the insurance of Florida Citrus..., 2012, (74 FR 75509-75521). Need for Correction As published, the final regulation contained errors that... Corporation 7 CFR Part 457 RIN 0563-AC39 Common Crop Insurance Regulations; Florida Citrus Fruit...

  19. Double-crop sunflowers for agricultural diesel fuel

    SciTech Connect

    Glenn, T.L.; Keener, H.M.; Henry, J.E.; Triplett, G.B. Jr.

    1982-01-01

    Agronomic and engineering information on double-crop sunflower production, processing and utilization is presented. This and other available information is used to assess feasibility and future directions in the use of sunflower oil for agricultural diesel fuel in the US Eastern Corn Belt area. Double-cropping yields varied considerably due to precipitation extremes, plus different soil characteristics and management practices. Average expeller oil yields of 0.344 kg of oil per kg of moisture free seed were achieved with a feed rate of 125 kg per hour for a range in seed and processing conditions. Results from feasibility analyses suggest that sunflower oil can be grown in Ohio and processed in a community cooperative plant with a favorable energy ratio and marginal profitability. 3 figures, 4 tables.

  20. Occupational exposure to particulate matter from three agricultural crops in California.

    PubMed

    Moran, Rebecca E; Bennett, Deborah H; Garcia, John; Schenker, Marc B

    2014-03-01

    Agricultural work is a major contributor to California's and the nation's economy and employs a large number of workers. However, agricultural work can have numerous risks, such as exposure to elevated levels of particulate matter (PM) and other airborne pollutants with potential adverse health effects. To determine the magnitude of occupational exposures, PM levels were assessed for 89 workers from three major crops in California; almonds, melons and tomatoes. Personal samples were collected for PM2.5 and inhalable PM using personal sampling equipment. Geometric mean concentrations from personal exposure for workers in almonds (inhalable PM=4368 μg/m(3), PM2.5=122 μg/m(3), N=5), tomatoes (inhalable PM=1410 μg/m(3), PM2.5=12 μg/m(3), N=33), and melons (inhalable PM=1118 μg/m(3), PM2.5=19 μg/m(3), N=51) showed high PM exposure when working with these three crops. Large exposure differences by crop were more common than by task (i.e. harvesting, packing and weeding) among the three crops studied. This is the largest study of agricultural workers engaged in hand harvesting, a significant employer of farm labor, and relatively high levels of exposure to PM were measured. PMID:23831254

  1. Crop insurance: a tool to stabilize Spanish agricultural income

    NASA Astrophysics Data System (ADS)

    Calatayud Piñero, E.; Escribano Pintor, S.

    2009-04-01

    Agricultural insurance was born as a need for farmers, opposite to the erratic behavior of the climatology, natural disaster, which strangles the farmer during the cycle of his crops and harvest, reverberating negatively in the economy of the farmer. Before this situation, it became necessary to determine, inside the agricultural policies, a specific regulation of the agricultural insurance across a participation of the State by means of contributions to the agricultural insurance which result was, in Spain, the current Law 87/1978, of December 28 of Agricultural Insurance. The benefits of the existence of a good system of agricultural insurance not only are to level of the farmer but also to regional level and top areas, since to the regional production turns diminished, it reverberates in the economic productivity and in the rest of economic sectors, with the consequent tensions and imbalances, and the probability of being translated in a decrease of the quality of life of the rural way. But the analysis of the importance of his situation, not only must be carried out from a theoretical perspective, where already there exist numerous studies that treat the relation and importance of the agricultural insurance with regard to the traditional agriculture characterized by his limited capacity of innovation. For it, in this paper, we will proceed to realize an empirical analysis, inside our country, across the principal agrarian information statistics, as faithful reflection of the economic dimension of the sector, for across his evolution as well as that of the indemnifications paid for the agricultural insurance, to be able to show the importance of the same one in his contribution to the maintenance and improvement of the agriculture, avoiding the uncertainty of the farmer By means of the utilization of mobile averages, which eliminate the erratic behavior in the annual series, first we will realize a national analysis for the set of the lines of agricultural

  2. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  3. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals

    PubMed Central

    García-Mier, Lina; Guevara-González, Ramón G.; Mondragón-Olguín, Víctor M.; Verduzco-Cuellar, Beatriz del Rocío; Torres-Pacheco, Irineo

    2013-01-01

    Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices. PMID:23429238

  4. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  5. Economic Analysis of Energy Crop Production in the U.S. - Location, Quantities, Price, and Impacts on Traditional Agricultural Crops

    SciTech Connect

    Walsh, M.E.; De La Torre Ugarte, D.; Slinsky, S.; Graham, R.L.; Shapouri, H.; Ray, D.

    1998-10-04

    POLYSYS is used to estimate US locations where, for any given energy crop price, energy crop production can be economically competitive with conventional crops. POLYSYS is a multi-crop, multi-sector agricultural model developed and maintained by the University of Tennessee and used by the USDA-Economic Research Service. It includes 305 agricultural statistical districts (ASD) which can be aggregated to provide state, regional, and national information. POLYSYS is being modified to include switchgrass, hybrid poplar, and willow on all land suitable for their production. This paper summarizes the preliminary national level results of the POLYSYS analysis for selected energy crop prices for the year 2007 and presents the corresponding maps (for the same prices) of energy crop production locations by ASD. Summarized results include: (1) estimates of energy crop hectares (acres) and quantities (dry Mg, dry tons), (2) identification of traditional crops allocated to energy crop production and calculation of changes in their prices and hectares (acres) of production, and (3) changes in total net farm returns for traditional agricultural crops. The information is useful for identifying areas of the US where large quantities of lowest cost energy crops can most likely be produced.

  6. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  7. Environmental effects of growing short-rotation woody crops on former agricultural lands

    SciTech Connect

    Tolbert, V.R.; Thornton, F.C.; Joslin, J.D.

    1997-10-01

    Field-scale studies in the Southeast have been addressing the environmental effects of converting agricultural lands to biomass crop production since 1994. Erosion, surface water quality and quantity and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops are being compared. Nutrient cycling, soil physical changes and crop productivity are also being monitored at the three sites. Maximum sediment losses occurred in the spring and fall. Losses were greater from sweetgum planted without a cover crop than with a cover crop. Nutrient losses of N and P in runoff and subsurface water occurred primarily after spring fertilizer application.

  8. Agricultural Issues of Significance to Iowa Crop Producers and Their Educational Implications

    ERIC Educational Resources Information Center

    Licht, Melea A. R.; Martin, Robert A.

    2007-01-01

    The purpose of this study was to determine the agricultural information preferences of crop producers in Iowa and the implications for agricultural extension education. The objective was to identify agricultural information issues producers perceive as significant to their businesses. The results will help agricultural extension educators and…

  9. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  10. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m

  11. Review of anthraquinone applications for pest management and agricultural crop protection.

    PubMed

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  12. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants. PMID:24242193

  13. Classification of crops across heterogeneous agricultural landscape in Kenya using AisaEAGLE imaging spectroscopy data

    NASA Astrophysics Data System (ADS)

    Piiroinen, Rami; Heiskanen, Janne; Mõttus, Matti; Pellikka, Petri

    2015-07-01

    Land use practices are changing at a fast pace in the tropics. In sub-Saharan Africa forests, woodlands and bushlands are being transformed for agricultural use to produce food for the rapidly growing population. The objective of this study was to assess the prospects of mapping the common agricultural crops in highly heterogeneous study area in south-eastern Kenya using high spatial and spectral resolution AisaEAGLE imaging spectroscopy data. Minimum noise fraction transformation was used to pack the coherent information in smaller set of bands and the data was classified with support vector machine (SVM) algorithm. A total of 35 plant species were mapped in the field and seven most dominant ones were used as classification targets. Five of the targets were agricultural crops. The overall accuracy (OA) for the classification was 90.8%. To assess the possibility of excluding the remaining 28 plant species from the classification results, 10 different probability thresholds (PT) were tried with SVM. The impact of PT was assessed with validation polygons of all 35 mapped plant species. The results showed that while PT was increased more pixels were excluded from non-target polygons than from the polygons of the seven classification targets. This increased the OA and reduced salt-and-pepper effects in the classification results. Very high spatial resolution imagery and pixel-based classification approach worked well with small targets such as maize while there was mixing of classes on the sides of the tree crowns.

  14. Environmental factors that influence the location of crop agriculture in the conterminous United States

    USGS Publications Warehouse

    Baker, Nancy T.; Capel, Paul D.

    2011-01-01

    Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.

  15. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  16. Reusable Software and Open Data Incorporate Ecological Understanding To Optimize Agriculture and Improveme Crops.

    NASA Astrophysics Data System (ADS)

    LeBauer, D.

    2015-12-01

    Humans need a secure and sustainable food supply, and science can help. We have an opportunity to transform agriculture by combining knowledge of organisms and ecosystems to engineer ecosystems that sustainably produce food, fuel, and other services. The challenge is that the information we have. Measurements, theories, and laws found in publications, notebooks, measurements, software, and human brains are difficult to combine. We homogenize, encode, and automate the synthesis of data and mechanistic understanding in a way that links understanding at different scales and across domains. This allows extrapolation, prediction, and assessment. Reusable components allow automated construction of new knowledge that can be used to assess, predict, and optimize agro-ecosystems. Developing reusable software and open-access databases is hard, and examples will illustrate how we use the Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), the Biofuel Ecophysiological Traits and Yields database (BETYdb, betydb.org), and ecophysiological crop models to predict crop yield, decide which crops to plant, and which traits can be selected for the next generation of data driven crop improvement. A next step is to automate the use of sensors mounted on robots, drones, and tractors to assess plants in the field. The TERRA Reference Phenotyping Platform (TERRA-Ref, terraref.github.io) will provide an open access database and computing platform on which researchers can use and develop tools that use sensor data to assess and manage agricultural and other terrestrial ecosystems. TERRA-Ref will adopt existing standards and develop modular software components and common interfaces, in collaboration with researchers from iPlant, NEON, AgMIP, USDA, rOpenSci, ARPA-E, many scientists and industry partners. Our goal is to advance science by enabling efficient use, reuse, exchange, and creation of knowledge.

  17. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture

    NASA Astrophysics Data System (ADS)

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2016-07-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; www.cropwatch.com.cn, Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  18. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance provisions. The Green Pea Crop...

  19. Attitudes of Agricultural Experts Toward Genetically Modified Crops: A Case Study in Southwest Iran.

    PubMed

    Ghanian, Mansour; Ghoochani, Omid M; Kitterlin, Miranda; Jahangiry, Sheida; Zarafshani, Kiumars; Van Passel, Steven; Azadi, Hossein

    2016-04-01

    The production of genetically modified (GM) crops is growing around the world, and with it possible opportunities to combat food insecurity and hunger, as well as solutions to current problems facing conventional agriculture. In this regard the use of GMOs in food and agricultural applications has increased greatly over the past decade. However, the development of GM crops has been a matter of considerable interest and worldwide public controversy. This, in addition to skepticism, has stifled the use of this practice on a large scale in many areas, including Iran. It stands to reason that a greater understanding of this practice could be formed after a review of the existing expert opinions surrounding GM crops. Therefore, the purpose of this study was to analyze the predictors that influence agricultural experts' attitudes toward the development of and policies related to GM crops. Using a descriptive correlational research method, questionnaire data was collected from 65 experts from the Agricultural Organization in the Gotvand district in Southwest Iran. Results indicated that agricultural experts were aware of the environmental benefits and possible risks associated with GM crops. The majority of participants agreed that GM crops could improve food security and accelerate rural development, and were proponents of labeling practices for GM crops. Finally, there was a positive correlation between the perception of benefits and attitudes towards GM crops. PMID:26045394

  20. Crop Insurance Increases Water Withdrawals for Irrigation in Agriculture

    NASA Astrophysics Data System (ADS)

    Konar, M.; Deryugina, T.; Lin, X.

    2015-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool that has been developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, it is not clear what the implications of crop insurance are for crop irrigation. By providing a guaranteed level of income in case of crop failure, crop insurance can reduce the farmer's incentive to irrigate. Thus, crop insurance can decrease water use in times of drought and promote water sustainability. However, to minimize this "moral hazard", the insurer may require farmers to irrigate crops more than necessary. Further, by shifting crop production, crop insurance may increase demand for water. Thus, it is unclear whether crop insurance increases or decreases crop water use. Here, we determine the empirical relationship between crop insurance and irrigation withdrawals in the United States. To establish causality, we exploit variation in crop insurance policies over time, using an instrumental variables approach. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, primarily from groundwater aquifers.

  1. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    NASA Astrophysics Data System (ADS)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  2. Reducing pollution in agriculture land, agroforestry and Common Agrarian Policy

    NASA Astrophysics Data System (ADS)

    Rosa Mosquera Losada, Maria; Santiago-Freijanes, José Javier; Ferreiro-Domínguez, Nuria; Rois, Mercedes; Rigueiro-Rodríguez, Antonio

    2015-04-01

    Reducing non-point source pollution in Europe is a key activity for the European institutions and citizens. Ensuring high quality food supply while environment is sustainable managed is a highly relevant in the European agriculture. New CAP tries to promote sustainability with the greening measures in Pillar I (EU payments) and Pillar II (EU-Country cofinanced payments). The star component of the Pillar I is the greening. The greening includes three types of activities related to crop rotation, maintenance of permanent pasture and the promotion of Ecological Focus Areas (EFA). Greening practices are compulsory in arable lands when they are placed in regions with low proportion of forests and when the owner has large farms. Among the EFA, there are several options that include agroforestry practices like landscape features, buffer strips, agroforestry, strips of eligible hectares along forest edges, areas with short rotation coppice. These practices promote biodiversity and the inclusion of woody vegetation that is able to increase the uptake of the excess of nutrients like N or P. USA Agriculture Department has also recognize the importance of woody vegetation around the arable lands to reduce nutrient pollution and promote biodiversity.

  3. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  4. Transgenic Crops and Sustainable Agriculture in the European Context

    ERIC Educational Resources Information Center

    Ponti, Luigi

    2005-01-01

    The rapid adoption of transgenic crops in the United States, Argentina, and Canada stands in strong contrast to the situation in the European Union (EU), where a de facto moratorium has been in place since 1998. This article reviews recent scientific literature relevant to the problematic introduction of transgenic crops in the EU to assess if…

  5. Cover Crop Chart: An Outreach Tool for Agricultural Producers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in cover crops by farmers and ranchers throughout the Northern Great Plains has increased the need for information on the suitability of a diverse portfolio of crops for different production and management resource goals. To help address this need, Northern Great Plains Research Laboratory...

  6. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive agricultural practices, such as tillage, monocropping, seasonal fallow periods, and inorganic nutrient application have been shown to reduce arbuscular mycorrrhizal fungi (AMF) populations and thus may reduce benefits frequently provided to crops by AMF, such as nutrient acquisition, disea...

  7. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  8. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1995-12-31

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable feedstock resources. The Department of Energy is supporting research to address how these crops can provide environmental benefits to soil, water and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soil conservation and water quality improvements in crop settings. Replacement of traditional erosive row crops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different biomass crops for selected wildlife species is also under study. To date, these studies have shown that in comparison with row crops biomass plantings of both grass and tree crops increased biodiversity of birds; however, the habitat value of tree plantations is not equivalent to natural forests. The effects on native wildlife of establishing multiple plantations across a landscape are being studied. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing biomass feedstocks. Data from site-specific environmental studies can provide input for evaluation of the probable effects of large-scale plantings at both landscape and regional levels of resolution.

  9. Increased area of a highly suitable host crop increases herbivore pressure in intensified agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    tLandscape simplification associated with agricultural intensification has important effects on economi-cally important arthropods. The declining cover of natural and semi-natural habitats, in particular, hasbeen shown to reduce natural-enemy attack of crop pests, but also in some cases reduced crop...

  10. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  11. Impact of bioenergy crops on pests, natural enemies and pollinators in agricultural and non-crop landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainability of the nation's bioenergy feedstock production relies on selection and placement of energy crops that efficiently generate biomass or oilseed without compromising existing agricultural or natural systems. Pest and beneficial arthropods (e.g., pollinators, predators) will occur in thes...

  12. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  13. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  14. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  15. Seasonal changes in the performance of a catch crop for mitigating diffuse agricultural pollution.

    PubMed

    Kondo, K; Inoue, K; Fujiwara, T; Yamane, S; Yasutake, D; Maeda, M; Nagare, H; Akao, S; Ohtoshi, K

    2013-01-01

    An in situ technology for mitigating diffuse agricultural pollution using catch crops was developed for simultaneously preventing nitrate groundwater pollution, reducing nitrous oxide (N2O) gas emissions, and removing salts from the topsoil. Seasonal changes in the performance of a catch crop were investigated using lysimeters in a full-scale greenhouse experiment with 50 d cultivation of dent corn. Catch crop cultivation significantly reduced the leached mineral nitrogen by 89-91% in summer, 87-89% in spring, and 61-82% in winter, and it also significantly reduced the N2O emission by 68-84% in summer. The amounts of nitrogen uptake by the catch crop were remarkably higher than those of leached nitrogen and N2O emission in each season. Catch crop cultivation is a promising technology for mitigating diffuse agricultural pollution. PMID:23985506

  16. Environmental enhancement using short-rotation woody crops and perennial grasses as alternative agricultural crops

    SciTech Connect

    Tolbert, V.R.; Schiller, A.

    1996-10-01

    Short-rotation woody crops and perennial grasses are grown as biomass feedstocks for energy and fiber. When replacing traditional row crops on similar lands, these alternative crops can provide multiple environmental benefits in addition to enhancing rural economies and providing valuable resources. The DOE is supporting research to address how these crops can provide environmental benefits to soil, water, and native wildlife species in addition to providing bioenergy feedstocks. Research is underway to address the potential for biomass crops to provide soils conservation and water quality improvements in crop settings. Replacement of traditional erosive row drops with biomass crops on marginal lands and establishment of biomass plantations as filter strips adjacent to streams and wetlands are being studied. The habitat value of different crops for wildlife species is also considered. Combining findings on wildlife use of individual plantations with information on the cumulative effects of multiple plantations on wildlife populations can provide guidance for establishing and managing biomass crops to enhance biodiversity while providing feedstocks. Data from site-specific environmental studies can provide input for evaluation of the effects of large-scale plantings at both landscape and regional levels of resolution.

  17. Reduced nitrogen losses following conversion of row crop agriculture to perennial biofuel crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2O emissions, and require large inputs of N fertilizer. Second generation cellulosic crops have the potential to reduce these N losses, and provide even greater biomass for conversion t...

  18. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    PubMed

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. PMID:27197837

  19. MANAGING COVER CROPS IN CONSERVATION AGRICULTURE USING ROLLERS/CRIMPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rollers may provide a viable alternative to herbicides for terminating cover crops, however, excessive vibration generated by rollers and transferred to tractors hinders adoption of this technology in the US. To avoid excessive vibration, producers must limit their operational speed, which increases...

  20. Subsistence Agriculture versus Cash Cropping: The Social Repercussions.

    ERIC Educational Resources Information Center

    Rennie, Sandra Joy

    1991-01-01

    The introduction of cash cropping in the Solomon Islands and Tonga has had negative effects on women, leading to deterioration in their status, decreased leisure time, fewer opportunities to earn cash, increased birth rate (to help with the increased workload), and more sharply defined sex roles. (SV)

  1. 7 CFR 457.110 - Fig crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fig crop insurance provisions. 457.110 Section 457.110..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.110 Fig crop insurance provisions. The Fig... Department of Agriculture Federal Crop Insurance Corporation Fig Crop Provisions If a conflict exists...

  2. 7 CFR 457.110 - Fig crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fig crop insurance provisions. 457.110 Section 457.110..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.110 Fig crop insurance provisions. The Fig... Department of Agriculture Federal Crop Insurance Corporation Fig Crop Provisions If a conflict exists...

  3. 7 CFR 457.110 - Fig crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fig crop insurance provisions. 457.110 Section 457.110..., DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.110 Fig crop insurance provisions. The Fig... Department of Agriculture Federal Crop Insurance Corporation Fig Crop Provisions If a conflict exists...

  4. Development and testing of crop monitoring methods to improve global agricultural monitoring in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.

    2014-12-01

    The SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture) is funded through the EC FPY7 Research programme with the particular aim to contribute to the GEOGLAM Research Agenda. It is a partnership of globally distributed expert organizations, focusses on developing innovative techniques and datasets in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterize cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, are used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series are be explored to better assess crop yield gaps and shifts in cultivation. The third research topic entails the development of best practices for assessing the impact of crop land and cropping system change on the environment. In support of the GEO JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative, case studies in Ukraine, Russia, Europe, Africa, Latin America and China are carried out in order to explore possible methodological synergies and particularities according to different cropping systems. This presentation will report on the progress made with respect to the three topics above.

  5. Potential alternative fuel sources for agricultural crops and plant components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  6. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States

    PubMed Central

    Savage, Steven D.; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 80% of conventional yield. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap. PMID:27552217

  7. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States.

    PubMed

    Kniss, Andrew R; Savage, Steven D; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 80% of conventional yield. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap. PMID:27552217

  8. Common waterhemp growth and fecundity as influenced by emergence date and competing crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common waterhemp (Amarathus rudis Sauer) has become problematic in glyphosate-tolerant crops. Dry weight and seed production of this weed at different times of emergence and alone or in crops (corn, Zea mays L., and soybean, Glycine max [L.] Merr.) were examined in 2001 and 2002 in Morris, MN. Later...

  9. Proximity to Crops and Residential Exposure to Agricultural Herbicides in Iowa

    PubMed Central

    Ward, Mary H.; Lubin, Jay; Giglierano, James; Colt, Joanne S.; Wolter, Calvin; Bekiroglu, Nural; Camann, David; Hartge, Patricia; Nuckols, John R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case–control study of non-Hodgkin lymphoma in Iowa (1998–2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02–1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101–250, 251–500, and 501–750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields. PMID:16759991

  10. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Onion crop insurance provisions. 457.135 Section 457.135 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop...

  11. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  12. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  13. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  14. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  15. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  16. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  17. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  18. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  19. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  20. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  1. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop...

  2. 7 CFR 457.171 - Cabbage crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cabbage crop insurance provisions. 457.171 Section 457.171 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.171 Cabbage crop...

  3. 7 CFR 457.169 - Mint crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Mint crop insurance provisions. 457.169 Section 457.169 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.169 Mint crop...

  4. 7 CFR 457.160 - Processing tomato crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Processing tomato crop insurance provisions. 457.160 Section 457.160 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.160 Processing tomato crop insurance provisions. The...

  5. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop...

  6. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  7. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop...

  8. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  9. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  10. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  11. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop...

  12. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Stonefruit crop insurance provisions. 457.159 Section 457.159 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.159 Stonefruit crop...

  13. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  14. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  15. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Stonefruit crop insurance provisions. 457.159 Section 457.159 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.159 Stonefruit crop...

  16. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop...

  17. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop...

  18. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop...

  19. 7 CFR 457.122 - Walnut crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Walnut crop insurance provisions. 457.122 Section 457.122 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.122 Walnut crop...

  20. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cotton crop insurance provisions. 457.104 Section 457.104 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop...

  1. Agricultural Classification of Multi-Temporal MODIS Imagery in Northwest Argentina Using Kansas Crop Phenologies

    NASA Astrophysics Data System (ADS)

    Keifer, Jarrett Alexander

    Subtropical deforestation in Latin America is thought to be driven by demand for agricultural land, particularly to grow soybeans. However, existing remote sensing methods that can differentiate crop types to verify this hypothesis require high spatial or spectral resolution data, or extensive ground truth information to develop training sites, none of which are freely available for much of the world. I developed a new method of crop classification based on the phenological signatures of crops extracted from multi-temporal MODIS vegetation indices. I tested and refined this method using the USDA Cropland Data Layer from Kansas, USA as a reference. I then applied the method to classify crop types for a study site in Pellegrini, Santiago Del Estero, Argentina. The results show that this method is unable to effectively separate summer crops in Pellegrini, but can differentiate summer crops and non-summer crops. Unmet assumptions about agricultural practices are primarily responsible for the ineffective summer crop classification, underlining the need for researchers to have a complete understanding of ground conditions when designing a remote sensing analysis.

  2. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  3. Paradoxical EU agricultural policies on genetically engineered crops.

    PubMed

    Masip, Gemma; Sabalza, Maite; Pérez-Massot, Eduard; Banakar, Raviraj; Cebrian, David; Twyman, Richard M; Capell, Teresa; Albajes, Ramon; Christou, Paul

    2013-06-01

    European Union (EU) agricultural policy has been developed in the pursuit of laudable goals such as a competitive economy and regulatory harmony across the union. However, what has emerged is a fragmented, contradictory, and unworkable legislative framework that threatens economic disaster. In this review, we present case studies highlighting differences in the regulations applied to foods grown in EU countries and identical imported products, which show that the EU is undermining its own competitiveness in the agricultural sector, damaging both the EU and its humanitarian activities in the developing world. We recommend the adoption of rational, science-based principles for the harmonization of agricultural policies to prevent economic decline and lower standards of living across the continent. PMID:23623240

  4. A GPS Backpack System for Mapping Soil and Crop Parameters in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Stafford, J. V.; Lebars, J. M.

    Farmers are having to gather increasing amounts of data on their soils and crops. Precision agriculture metre-by-metre is based on a knowledge of the spatial variation of soil and crop parameters across a field. The data has to be spatially located and GPS is an effective way of doing this. A backpack data logging system with GPS position tagging is described which has been designed to aid a fanner in the manual collection of data.

  5. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  6. Agricultural Production and Business Management: Volume 1 (Crops).

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The curriculum guide is the first part of a two-year program developed as part of revision of the total agricultural education curriculum in South Carolina. The project was designed to implement the following changes: (1) provide a more comprehensive vocational offering; (2) place a greater emphasis on behavioral objectives; (3) place a greater…

  7. Nutrient Losses from Row Crop Agriculture in Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient losses from agriculture in the Midwestern United States have been identified as contributing to water quality problems such as hypoxia in the Gulf of Mexico, and eutrophication in the great lakes. Fields and catchments in the Cedar Creek sub-watershed of the St. Joseph River basin were mon...

  8. Lady Beetles (Coleoptera: Coccinellidae: Coccinellini) Associated with Alaskan Agricultural Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coccinellid populations were monitored in agricultural areas of the Tanana and Matanuska-Susitna river valleys of Alaska from 2004 to 2005. Ten species were confirmed from the University of Alaska, Fairbanks, Museum of the North Insect Collection and 13 species were collected in association with Ala...

  9. Innovating Conservation Agriculture: The Case of No-Till Cropping

    ERIC Educational Resources Information Center

    Coughenour, C. Milton

    2003-01-01

    The extensive sociological studies of conservation agriculture have provided considerable understanding of farmers' use of conservation practices, but attempts to develop predictive models have failed. Reviews of research findings question the utility of the conceptual and methodological perspectives of prior research. The argument advanced here…

  10. Safeguarding fruit crops in the age of agricultural globalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expansion of fruit production and markets into new geographic areas provides novel opportunities and challenges for the agricultural and marketing industries. In today’s competitive global market environment, growers need access to the best material available in terms of genetics and plant heal...

  11. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  12. Tentative critical levels of tropospheric ozone for agricultural crops in Japan

    NASA Astrophysics Data System (ADS)

    Yonekura, T.

    2010-12-01

    Ground level ozone concentrations have increased year by year in Japan. High ozone concentrations have been known to affect growth and yield of agricultural crops. In the US and Europe, much effort has been directed to establish regulatory policies such as secondary air quality standard and critical levels to protect vegetation against ozone. On the contrary, in Japan, there is a few data of agricultural crops sensitivity to ozone. Furthermore, there is no information about the ozone risk of agricultural crop loss by based on ozone index (e.g. AOT40, SUM06, W126)-crop response relationship, yet. The objects of our research are: (1) to screen sensitivity of ozone on 10 crops cultivated in urban area in Japan. (2) to establish critical levels of ozone for protecting agricultural crops based on ozone index-crop response relationship. The 10 Japanese agricultural crops such as Japanese rice, Hanegi (Welsh onion), Shungiku (Crown daisy), Saradana (Lettus), Hatsukadaikon (Radish), Kokabu (Small Turnip), Santosai (Chinese cabbage), Tasai (Spinach mustard), Komatsuna (Japanese mustard spinach) and Chingensai (Bok Choy), were fumigated to three levels of ozone (clean air (< 5 ppbv), ambient level of ozone, 1.5 times ambient ozone) in open-top chambers during 30 to 120 days. Those experiments were repeated five times during two growing season. Throughout the experimental period, the growth or yield were measured, and the relationship between growth (or yield) and ozone index was examined. As a result, the influences of ozone on growth or yield were different among 10 crops. Relatively good correlations of coefficients of determination (r2) for linear regressions to growth or yield were obtained with “8h means” and “AOT40” rather than “SUM00”, “SUM06” and “W126”. Critical level for 10 crops in terms of an AOT40 were 1.1 to 2.1 ppm h per month. The ozone sensitive crop in our study was sound to be 1.0 ppm h per month in AOT40.

  13. Spectral properties of agricultural crops and soils measured from space, aerial, field and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1980-01-01

    It is pointed out that in order to develop the full potential of multispectral measurements acquired from satellite or aircraft sensors to monitor, map, and inventory agricultural resources, increased knowledge and understanding of the spectral properties of crops and soils are needed. The present state of knowledge is reviewed, emphasizing current investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems. The relationships of important biological and physical characteristics to their spectral properties of crops and soils are discussed. Future research needs are also indicated.

  14. The common milkweed (Asclepias syriaca): A new industrial crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asclepias syriaca L. (the common milkweed) is a perennial plant occurring east of the Rockies in the United States, but particularly east of the Mississippi River and from Southern Canada to Mexico. The plant has many unsavory given names by frustrated farmers including “the Wheat Farmers Nightmare...

  15. Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops.

    PubMed

    Smith, Candice M; David, Mark B; Mitchell, Corey A; Masters, Michael D; Anderson-Teixeira, Kristina J; Bernacchi, Carl J; Delucia, Evan H

    2013-01-01

    Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and NO emissions; second-generation cellulosic crops have the potential to reduce these N losses. We measured N losses and cycling in establishing miscanthus (), switchgrass ( L. fertilized with 56 kg N ha yr), and mixed prairie, along with a corn ( L.)-corn-soybean [ (L.) Merr.] rotation (corn fertilized at 168-202 kg N ha). Nitrous oxide emissions, soil N mineralization, mid-profile nitrate leaching, and tile flow and nitrate concentrations were measured. Perennial crops quickly reduced nitrate leaching at a 50-cm soil depth as well as concentrations and loads from the tile systems (year 1 tile nitrate concentrations of 10-15 mg N L declined significantly by year 4 in all perennial crops to <0.6 mg N L, with losses of <0.8 kg N ha yr). Nitrous oxide emissions were 2.2 to 7.7 kg N ha yr in the corn-corn-soybean rotation but were <1.0 kg N ha yr by year 4 in the perennial crops. Overall N balances (atmospheric deposition + fertilization + soybean N fixation - harvest, leaching losses, and NO emissions) were positive for corn and soybean (22 kg N ha yr) as well as switchgrass (9.7 kg N ha yr) but were -18 and -29 kg N ha yr for prairie and miscanthus, respectively. Our results demonstrate rapid tightening of the N cycle as perennial biofuel crops established on a rich Mollisol soil. PMID:23673757

  16. Herbicide and cover crop residue integration for amaranth control in conservation agriculture cotton and implications for resistance management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture practices are threatened by glyphosate-resistant Palmer amaranth. Integrated practices including PRE herbicides and high-residue conservation agriculture systems may decrease Amaranth emergence. Field experiments were conducted from autumn 2006 through cash crop harvest in...

  17. Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture.

    PubMed

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  18. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture

    PubMed Central

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  19. Mapping Agricultural Crops with AVIRIS Spectra in Washington State

    NASA Technical Reports Server (NTRS)

    Green, Robert; Pavri, Betina; Roberts, Dar; Ustin, Susan

    1998-01-01

    Spectroscopy is used in the laboratory to measure the molecular components and concentrations of plant constituents to answer questions about the plant type, status, and health. Imaging spectrometers measure the upwelling spectral radiance above the Earth's surface as images. Ideally, imaging spectrometer data sets should be used to understand plant type, plant status, and health of plants in an agricultural setting. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set was acquired over agricultural fields near Wallula, Washington on July 23rd, 1997. AVIRIS measures upwelling radiance spectra through 224 spectral channels with contiguous 10-nm sampling from 400 to 2500 nm in the solar-reflected spectrum. The spectra are measured as images of 11 by up to 800 km with 20-m spatial resolution. The spectral images measured by AVIRIS represent the integrated signal resulting from: the solar irradiance; two way transmittance and scattering of the atmosphere; the absorptions and scattering of surface materials; as well as the spectral, radiometric and spatial response functions of AVIRIS. This paper presents initial research to derive properties of the agricultural fields near Wallula from the calibrated spectral images measured by AVIRIS near the top of the atmosphere.

  20. Mapping Agricultural Crops with AVIRIS Spectra in Washington State

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pavri, Betina; Roberts, Dar; Ustin, Susan

    2000-01-01

    Spectroscopy is used in the laboratory to measure the molecular components and concentrations of plant constituents to answer questions about the plant type, status, and health. Imaging spectrometers measure the upwelling spectral radiance above the Earth's surface as images. Ideally, imaging spectrometer data sets should be used to understand plant type, plant status, and health of plants in an agricultural setting. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set was acquired over agricultural fields near Wallula, Washington on July 23rd, 1997. AVIRIS measures upwelling radiance spectra through 224 spectral channels with contiguous 10-nm sampling from 400 to 2500 run in the solar-reflected spectrum. The spectra are measured as images of 11 by up to 800 km with 20-m spatial resolution. The spectral images measured by AVIRIS represent the integrated signal resulting from: the solar irradiance; two way transmittance and scattering of the atmosphere; the absorptions and scattering of surface materials; as well as the spectral, radiometric and spatial response functions of AVIRIS. This paper presents initial research to derive properties of the agricultural fields near Wallula from the calibrated spectral images measured by AVIRIS near the top of the atmosphere.

  1. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils?

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Kögel-Knabner, Ingrid

    2015-12-01

    The carbon (C) balance of agricultural soils may be largely affected by climate change. Increasing temperatures are discussed to cause a loss of soil organic carbon (SOC) due to enhanced decomposition of soil organic matter, which has a high intrinsic temperature sensitivity. On the other hand, several modeling studies assumed that potential SOC losses would be compensated or even outperformed by an increased C input by crop residues into agricultural soils. This assumption was based on a predicted general increase of net primary productivity (NPP) as a result of the CO2 fertilization effect and prolonged growing seasons. However, it is questionable if the crop C input into agricultural soils can be derived from NPP predictions of vegetation models. The C input in European croplands is largely controlled by the agricultural management and was strongly related to the development of crop yields in the last decades. Thus, a glance at past yield development will probably be more instructive for future estimations of the C input than previous modeling approaches based on NPP predictions. An analysis of European yield statistics indicated that yields of wheat, barley and maize are stagnating in Central and Northern Europe since the 1990s. The stagnation of crop yields can probably be related to a fundamental change of the agricultural management and to climate change effects. It is assumed that the soil C input is concurrently stagnating which would necessarily lead to a decrease of agricultural SOC stocks in the long-term given a constant temperature increase. Remarkably, for almost all European countries that are faced with yield stagnation indications for agricultural SOC decreases were already found. Potentially adverse effects of yield stagnation on the C balance of croplands call for an interdisciplinary investigation of its causes and a comprehensive monitoring of SOC stocks in agricultural soils of Europe. PMID:26235605

  2. "Development of an interactive crop growth web service architecture to review and forecast agricultural sustainability"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Walden, V. P.

    2014-12-01

    As climate change and weather variability raise issues regarding agricultural production, agricultural sustainability has become an increasingly important component for farmland management (Fisher, 2005, Akinci, 2013). Yet with changes in soil quality, agricultural practices, weather, topography, land use, and hydrology - accurately modeling such agricultural outcomes has proven difficult (Gassman et al, 2007, Williams et al, 1995). This study examined agricultural sustainability and soil health over a heterogeneous multi-watershed area within the Inland Pacific Northwest of the United States (IPNW) - as part of a five year, USDA funded effort to explore the sustainability of cereal production systems (Regional Approaches to Climate Change for Pacific Northwest Agriculture - award #2011-68002-30191). In particular, crop growth and soil erosion were simulated across a spectrum of variables and time periods - using the CropSyst crop growth model (Stockle et al, 2002) and the Water Erosion Protection Project Model (WEPP - Flanagan and Livingston, 1995), respectively. A preliminary range of historical scenarios were run, using a high-resolution, 4km gridded dataset of surface meteorological variables from 1979-2010 (Abatzoglou, 2012). In addition, Coupled Model Inter-comparison Project (CMIP5) global climate model (GCM) outputs were used as input to run crop growth model and erosion future scenarios (Abatzoglou and Brown, 2011). To facilitate our integrated data analysis efforts, an agricultural sustainability web service architecture (THREDDS/Java/Python based) is under development, to allow for the programmatic uploading, sharing and processing of variable input data, running model simulations, as well as downloading and visualizing output results. The results of this study will assist in better understanding agricultural sustainability and erosion relationships in the IPNW, as well as provide a tangible server-based tool for use by researchers and farmers - for both

  3. Modelling Common Agricultural Policy-Water Framework Directive interactions and cost-effectiveness of measures to reduce nitrogen pollution.

    PubMed

    Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic

    2010-01-01

    Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use. PMID:20453343

  4. Dispersal of viable row-crop seeds of commercial agriculture by farmland birds: implication for genetically modified crops.

    PubMed

    Cummings, John L; Handley, Levis W; Macbryde, Bruce; Tupper, Shelagh K; Werner, Scott J; Byram, Zachary J

    2008-01-01

    To address some concerns about the expansion of genetically engineered pharmaceutical and industrial crops to outdoor plantings and potential impacts on the human food supply, we determined whether commercial agriculture seeds of maize or corn Zea mays L., barley Hordeum vulgare L., safflower Carthamus tinctorius L. and rice Oryza sativa L. are digested or pass viably through the digestive tract, or are transported externally, by captive mallard ducks Anas platyrhynchos L., ring-necked pheasants Phasianus colchicus L., red-winged blackbirds Agelaius phoeniceus (L.) and rock pigeons Columba livia Gmelin (with the exception of whole maize seeds which were too large to feed to the blackbirds). These crop seeds, whether free-fed or force-fed, did not pass through the digestive tract of these bird species. The birds nonetheless did retain viable seeds in the esophagus/crop and gizzard for several hours. For example, after foraging for 6 h, mallards had retained an average of 228 +/- 112 barley seeds and pheasants 192 +/- 78 in the esophagus/crop, and their germination rates were 93 and 50%, respectively. Birds externally transported seeds away from the feeding location, but in only four instances were seeds found attached to their muddy feet or legs and in no case to feathers. Risk of such crop seeds germinating, establishing and reproducing off site after transport by a bird (externally or internally) or movement of a carcass by a predator, will depend greatly on the crop and bird species, location, environmental conditions (including soil characteristics), timing, and seed condition. PMID:19081011

  5. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    SciTech Connect

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

  6. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    NASA Astrophysics Data System (ADS)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  7. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  8. ADJUSTMENT, MAINTENANCE, AND REPAIR OF CROP HARVESTING MACHINERY. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED FOR HELPING TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN ADJUSTING, REPAIRING, AND MAINTAINING CROP HARVESTING MACHINERY. SUGGESTIONS FOR INTRODUCTION OF THE…

  9. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  10. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  11. Micronutrient-Efficient Genotypes for Crop Yield and Nutritional Quality in Sustainable Agriculture: A Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronutrient deficiency is a limiting factor for crop productivity in many agricultural lands worldwide. Furthermore, many food systems in developing countries can not provide sufficient micronutrient contents to meet the demands of their people, especially low-income families. Several approaches...

  12. Sustainable agriculture for a dynamic world: Forage-Crop-Livestock systems research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at the USDA-Agricultural Research Service, Grazinglands Research Laboratory is focused on development and delivery of improved technologies, strategies, and planning tools for integrated crop-forage-livestock systems under variable climate, energy, and market conditions. The GRL research p...

  13. New roller/crimper concepts for mechanical termination of cover crops in conservaton agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rollers/crimpers have been used in conservation agriculture to terminate cover crops, however, excessive vibration generated by the original straight-bar roller design has delayed adoption of this technology in the United States. To avoid excessive vibration, producers generally reduce operating spe...

  14. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  15. Satellite Estimates of Crop Area and Maize Yield in Zambia's Agricultural Districts

    NASA Astrophysics Data System (ADS)

    Azzari, G.; Lobell, D. B.

    2015-12-01

    Predicting crop yield and area from satellite is a valuable tool to monitor different aspects of productivity dynamics and food security. In Sub-Saharan Africa, where the agricultural landscape is complex and dominated by smallholder systems, such dynamics need to be investigated at the field scale. We leveraged the large data pool and computational power of Google Earth Engine to 1) generate 30 m resolution cover maps of selected provinces of Zambia, 2) estimate crop area, and 3) produce yearly maize yield maps using the recently developed SCYM (Scalable satellite-based Crop Yield Mapper) algorithm. We will present our results and their validation against a ground survey dataset collected yearly by the Zambia Ministry of Agriculture from about 12,500 households.

  16. Common Fractions. [Student Worksheets for Vocational Agricultural Courses].

    ERIC Educational Resources Information Center

    Jewell, Larry R.

    This learning module provides students with practice in applying mathematical operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…

  17. Common Ground: Agriculture for a Sustainable Future. Lesson Plans.

    ERIC Educational Resources Information Center

    Selfridge, Deborah J.

    This document contains lesson plans for a four-unit course in agriculture for sustainable development and is accompanied by a video tape and a booklet that discusses existing and future agricultural practices. Each unit of the document contains some or all of the following components: an introduction; objectives and competencies addressed; a list…

  18. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  19. Meteorological risks, impacts on crop production systems and agricultural insurances in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, A.; Piccard, I.

    2012-04-01

    Devastating weather-related events recorded in recent years have captured the interest of the general public in Belgium. Extreme weather events such as droughts, heat stress, rain storms and floods are projected to increase both in frequency and magnitude with climate change. Since more than half of the Belgian territory is managed by the agricultural sector, extreme events have significant impacts on agro-ecosystem services and pose severe limitations to sustainable agricultural land management. The perspective of rising risk-exposure is exacerbated further by more limits to aid received for agricultural damage (amendments to EC Regulation 1857/2006) and an overall reduction of direct income support to farmers. Current knowledge gaps related to the occurrence of extreme events and the response of agro-ecosystems need to be addressed in conjunction with their vulnerability, resilience and adaptive possibilities. A chain of risks approach starts with assessing the likely frequency and magnitude of extreme meteorological events by means of probability density functions. Impacts are subsequently based on physically based models that provide information on the state of the damage at any given time and assist in understanding the links between different factors causing damage and in determining bio-physical vulnerability. The output of regional bio-physical models is compared with remote sensing based algorithms applied on SPOT-VGT temporal data. Crop damage and risk indicators are derived from remote sensing, meteorological records, crop modelling and agricultural statistics and compared to damage statistics obtained from the government-based agricultural disaster funds. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Spatio-temporal indicators of drought during the growing season and waterlogging at harvest showed the highest agreement with damage, followed by hail and frost. In general potatoes, flax and

  20. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  1. The biospeckle method for the investigation of agricultural crops: A review

    NASA Astrophysics Data System (ADS)

    Zdunek, Artur; Adamiak, Anna; Pieczywek, Piotr M.; Kurenda, Andrzej

    2014-01-01

    Biospeckle is a nondestructive method for the evaluation of living objects. It has been applied to medicine, agriculture and microbiology for monitoring processes related to the movement of material particles. Recently, this method is extensively used for evaluation of quality of agricultural crops. In the case of botanical materials, the sources of apparent biospeckle activity are the Brownian motions and biological processes such as cyclosis, growth, transport, etc. Several different applications have been shown to monitor aging and maturation of samples, organ development and the detection and development of defects and diseases. This review will focus on three aspects: on the image analysis and mathematical methods for biospeckle activity evaluation, on published applications to botanical samples, with special attention to agricultural crops, and on interpretation of the phenomena from a biological point of view.

  2. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  3. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data

    NASA Astrophysics Data System (ADS)

    Lunetta, Ross S.; Shao, Yang; Ediriwickrema, Jayantha; Lyon, John G.

    2010-04-01

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). The crop area distributions and changes in crop rotations were characterized by comparing annual crop map products for 2005, 2006, and 2007. The total acreages for corn and soybeans were relatively balanced for calendar years 2005 (31,462 km 2 and 31,283 km 2, respectively) and 2006 (30,766 km 2 and 30,972 km 2, respectively). Conversely, corn acreage increased approximately 21% from 2006 to 2007, while soybean and wheat acreage decreased approximately 9% and 21%, respectively. Two-year crop rotational change analyses were conducted for the 2005-2006 and 2006-2007 time periods. The large increase in corn acreages for 2007 introduced crop rotation changes across the GLB. Compared to 2005-2006, crop rotation patterns for 2006-2007 resulted in increased corn-corn, soybean-corn, and wheat-corn rotations. The increased corn acreages could have potential negative impacts on nutrient loadings, pesticide exposures, and sediment-mediated habitat degradation. Increased in US corn acreages in 2007 were related to new biofuel mandates, while Canadian increases were attributed to higher world-wide corn prices. Additional study is needed to determine the potential impacts of increases in corn-based ethanol agricultural production on watershed ecosystems and receiving waters.

  4. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  5. Agricultural Intensification in the Amazon: Tracking Nitrogen Fertilizer from Soy-Maize Double Cropping to Streams

    NASA Astrophysics Data System (ADS)

    Cabrera, V. D.; Jankowski, K.; Neill, C.; Macedo, M.; Deegan, L.; Brando, P. M.; Nascimento, S.; Nascimento, E.; Rocha, S.; Coe, M. T.; Nunes, D.

    2015-12-01

    Globalization and the increasing demand for food create pressure to both expand and intensify agriculture. These changes have potentially large consequences for the solute concentrations and functioning of streams. In the Brazilian Amazon, crop agriculture expanded greatly during the last 20 years. More recently, farmers have intensified production on existing cropland by double cropping of soy and maize during the same year. Maize, a novel crop for the region, requires much higher applications of nitrogen (N) fertilizer than soybeans. To determine whether this novel land use and associated N addition influenced N concentrations in groundwater and stream water, we measured N concentrations in groundwater wells and streams from small headwater watersheds across three land uses (soy-maize, soy, and tropical forest) in the Upper Xingu Basin, a region of rapid cropland intensification in the southern Amazon. Each watershed contained six groundwater wells arranged in a transect reaching cropland field edge on either side of the stream. Total inorganic N concentrations were higher in wells adjacent to fields where double cropping occurred, while stream concentrations did not differ overall among land uses. This suggests the riparian zones are critical in the removal of N, but as the intensification of agriculture continues the ability of the riparian zone to prevent N from traveling to streams is unknown. Their protection is critical to the functioning of tropical watersheds.

  6. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  7. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  8. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  9. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  10. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows:...

  11. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  12. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  13. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  14. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2011 and succeeding crop years are as...

  15. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugarcane crop insurance provisions. 457.116 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.116 Sugarcane crop insurance provisions. The Sugarcane Crop Insurance Provisions for the 2004 and succeeding crop years are as...

  16. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  17. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  18. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  19. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  20. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries...

  1. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Onion crop insurance provisions. 457.135 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop insurance provisions. The onion crop insurance provisions for the 2013 and succeeding crop years are as follows:...

  2. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Onion crop insurance provisions. 457.135 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop insurance provisions. The onion crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  3. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Peach crop insurance provisions. 457.153 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop insurance provisions. The Peach Crop Insurance Provisions for the 2001 and succeeding crop years are as follows:...

  4. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Pear crop insurance provisions. 457.111 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.111 Pear crop insurance provisions. The Pear Crop Insurance Provisions for the 2011 and succeeding crop years are as follows:...

  5. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Pear crop insurance provisions. 457.111 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.111 Pear crop insurance provisions. The Pear Crop Insurance Provisions for the 2011 and succeeding crop years are as follows:...

  6. 7 CFR 457.111 - Pear crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Pear crop insurance provisions. 457.111 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.111 Pear crop insurance provisions. The Pear Crop Insurance Provisions for the 2011 and succeeding crop years are as follows:...

  7. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  8. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The Apple Crop Insurance Provisions for the 2005 and succeeding crop years are as follows:...

  9. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  10. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  11. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows:...

  12. Environmental effects of planting biomass crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.E.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous. and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  13. Environmental effects of planting energy crops at larger scales on agricultural lands

    SciTech Connect

    Tolbert, V.R.; Downing, M.

    1995-09-01

    Increasing from research-scale to larger-scale plantings of herbaceous and short rotation woody crops on agricultural land in the United States has raised questions about the positive and negative environmental effects of farmland conversion. Research currently underway at experimental plot scales enables us examine runoff quality and quantity, erosion, and changes in soil characteristics associated with these energy crops compared to conventional row crops. A study of the fate of chemicals applied to the different crop types will enhance our knowledge of uptake, release, and off-site movement of nutrients and pesticides. Ongoing biodiversity studies in the North Central US allow us to compare differences in scale of plantings on bird and small mammal populations and habitat use. Plantings of 50--100 or more contiguous acres are needed to allow both researchers and producers to determine the benefits of including temporal energy crop rotations in the landscape. Results from these larger-scale plantings will help identify (1) the monitoring requirements needed to determine environmental effects of larger-scale plantings, (2) the best methods to determine the environmental effects of rotation length and the best crop management strategies for full-scale production. Because of the variations in soils, temperature, rainfall and other climatic conditions, as well as differences in the types of energy crops most suited for different regions, monitoring of large-scale plantings in these different regions of the US will be required to predict the environmental effects of regional agricultural land-use shifts for full-scale plantings.

  14. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    PubMed Central

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  15. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.

    PubMed

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere. PMID:26070897

  16. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    NASA Astrophysics Data System (ADS)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  17. Agricultural land application of pulp and paper mill sludges in the Donnacona area, Quebec: Chemical evaluation and crop response

    SciTech Connect

    Veillette, A.X.; Tanguay, M.G.

    1997-12-31

    Primary paper mill sludges from a thermomechanical pulp (TMP) mill were land applied at the rate of 20 metric ton per hectare (t/ha) for agricultural purposes in the Donnacona area, Quebec, in May 1994 and May 1995. Eleven agricultural sites featuring various crops were tested over two seasons to measure the impact of TMP primary paper mill sludges on soil, plant tissue and crop yield. Cereal and potato crops showed a significant increase in yield. TMP Primary sludges were also applied at the rate of 225 t/ha for land reclamation purposes of one site at the end of 1994. Soils were tested every second month. Chemical crop analyses were also performed. The first year crop response was satisfactory. Combined (primary and secondary) TMP sludges were added at the rate of 200 t/ha in the beginning of 1996. Soil, vadose zone water and crop analysis are being investigated. Impressive crop responses were obtained in the 1996 season.

  18. How can we harness quantitative genetic variation in crop root systems for agricultural improvement?

    PubMed

    Topp, Christopher N; Bray, Adam L; Ellis, Nathanael A; Liu, Zhengbin

    2016-03-01

    Root systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mechanistic understanding of root growth and function will be important for future agricultural gains. PMID:26911925

  19. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Texas citrus tree crop insurance provisions. 457.106 Section 457.106 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The...

  20. 7 CFR 457.2 - Availability of Federal crop insurance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of Federal crop insurance. 457.2 Section 457.2 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.2 Availability of Federal...

  1. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  2. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage...

  3. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  4. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  5. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  6. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage...

  7. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage...

  8. Drought Effects on Agricultural Yield: Comparison Across Regions and Crop Types

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2014-12-01

    Global agricultural production is dominated by rainfed agriculture, and is therefore prone to disruption from climate extreme weathers. These uncertainties become more problematic when considering the projection of increased drought frequency suggested by several climate models for various world regions. Curiously, few regional analyses of drought impact of food production have been attempted. We collated and analyzed data from the last 25 years to disentangle the effects of drought (i.e. timing, intensity and duration) on agricultural production in different eco-regions and with varying crop types. Our preliminary results suggested greater yield reduction in annual (-21.5%) than perennial plants (-16%), in C4 (-21%) compared to C3 crops (-17%), and when drought occurred during generative (i.e. flowering until maturity; -16.5%) than vegetative stage (-15.5%). Although drought caused similar amounts of yield reduction in both tropical and subtropical regions (i.e. -17%), it carries a greater food security risk in the tropics due to inherently low productivity (i.e. less than half than in the subtropical regions). Consequently, cultivating drought-resistant C3 perennial plants (e.g. sweet potato and cassava) in the tropics could prove a viable adaptive strategy to mitigate the effects of climate variability. In addition, these crops have limited input requirements, are well adapted to nutrient-poor Oxisols and Ultisols of the tropics, and generally outyield cereal crops in the region. Our analysis is ongoing and needs to take into account agronomic traits (e.g. water requirement), as well as the energy and nutritional values (e.g. protein, minerals) of alternative crops. Our results could inform the selection and development of new cultivars for the drought-prone regions of the world.

  9. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  10. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  11. Response to issues on GM agriculture in Africa: Are transgenic crops safe?

    PubMed

    Adenle, Ademola A

    2011-01-01

    The controversies surrounding transgenic crops, often called Genetically Modified Organisms (GMOs), call for a need to raise the level of public awareness of Genetic Modification (GM) technology in Africa. This should be accomplished by educating the public about the potential benefits and risks that may be associated with this new technology. In the last 15 years, GM crop producing countries have benefited from adoption of this new technology in the form of improved crop productivity, food security, and quality of life. The increased income to resource-poor farmers is a key benefit at the individual level especially as most countries using this technology are in the developing world, including three African countries (South Africa, Burkina Faso and Egypt). Despite clear benefits to countries and farmers who grow GMOs, many people are concerned about suspected potential risks associated with GMOs. This sparks debate as to whether GM technology should be adopted or not. Given the concerns regarding the safety of GMO products, thorough scientific investigation of safe application of GMOs is required. The objective of this paper is to respond to the issues of GM agriculture in Africa and some of the issues surrounding the adoption of GM crops between developed and developing countries. In this article, I analyse relevant papers relating to the adoption of GM technology particularly in developing countries including the few African countries that have adopted GM crops. The issues discussed span a wide range including: safety; potential benefits and risks; disputes between the United States of America (USA) and the European Union (EU) over adoption of GM crops with a focus on Africa continent. This article is concluded by summarising the issues raised and how GM technology can be adopted for agricultural development in Africa. PMID:21981823

  12. Impact of nowcasting on the production and processing of agricultural crops. [in the US

    NASA Technical Reports Server (NTRS)

    Dancer, W. S.; Tibbitts, T. W.

    1973-01-01

    The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.

  13. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  14. Interaction of turbine-generated turbulence with agricultural crops: Conceptual framework and preliminary results

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Segal, M.; Elmore, R.; Hatfield, J.; Prueger, J. H.; Taylor, S. E.

    2009-12-01

    The US Midwest is a unique location for wind power production because wind farms in this region, unlike any other, are co-located within major agricultural production systems that are among the most highly productive in the world. Iowa has over 3,000 MW of installed power in wind farms typically consisting of 75-120 turbines positioned within agricultural fields with irregular spacing but inter-turbine distances in some cases less than 300 m. Wind turbines extract energy from the ambient flow and change mean and turbulent characteristics of wind flow over and within the crop canopy. Turbulent exchange of air from within the crop canopy regulates vertical fluxes of heat, moisture, momentum, and CO2. Changes in wind speed and turbulence structure by wind farms and isolated wind turbines will influence crop growth, productivity, and seed quality in unknown ways. For instance, enhanced vertical fluxes of heat and moisture may help cool the crop on hot summer days (beneficial) but may enhance loss of soil moisture (detrimental). Faster drying of dew from the crop in the morning reduces leaf wetness, which is a condition favoring growth of fungus, mold and toxins. Corn and soybeans typically draw down ambient CO2 levels by 15-20% during the day in the peak growing season, providing an opportunity to enhance downward fluxes of CO2 into the crop canopy by turbine-induced turbulence. Reduction of high winds and resulting leaf shredding and stalk lodging are documented positive effects of agricultural shelterbelts and may be benefits of turbines as well. Enhanced surface evaporation during fall dry-down would improve seed readiness for storage and reduce artificial drying costs. Modification of surface wind convergence/divergence patterns may enhance convection and change rainfall patterns and modify snow deposition, melting, and soil-moisture-recharge in winter. Wind machines are widely used in orchards and vineyards for avoiding killing freezes, but turbine benefits for

  15. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGESBeta

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  16. Agriculture In Uruguay: New Methods For Drought Monitoring and Crop Identification Using Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Lessel, J.; Ceccato, P.

    2014-12-01

    Agriculture is a vital resource in the country of Uruguay. Here we propose new methods using remotely sensed data for assisting ranchers, land managers, and policy makers in the country to better manage their crops. Firstly, we created a drought severity index based on the climatological anomalies of land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS), precipitation data from the Tropical Rainfall Monitoring Mission (TRMM), and normalized difference water index (NDWI) data also using MODIS. The use of the climatological anomalies on the variables has improved the ability of the index to correlate with known drought indices versus previously published indices, which had not used them. We applied various coefficient schemes and vegetation indices in order to choose the model which best correlated with the drought indices across 10 sites throughout Uruguay's rangelands. The model was tested over summer months from 2009-2013. In years where drought had indeed been a problem in the country (such as 2009) the model showed intense signals of drought. Secondly, we used Landsat images to identify winter and summer crops in Uruguay. We first classified them using ENVI and then used the classifications in an ArcMap model to identify specific crop areas. We first created a polygon of the classifications for soils and vegetation for each month (omitting cloud covered images). We then used the crop growing cycle to identify the times during the year for which specific polygons should be soil and which should be vegetation. By intersecting the soil polygons with the vegetation polygons during their respective time periods during the crop growing cycle we were able to create an accurately identify crops. When compared to a shapefile of proposed crops for the year the model obtained a kappa value of 0.60 with a probability of detection of 0.79 and a false alarm ratio of 0.31 for the south-western study area over the 2013-2014 summer.

  17. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  18. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  19. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when

  20. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  1. Understanding the relative influence of climatic variations and agricultural management practices on crop yields at the US county level

    NASA Astrophysics Data System (ADS)

    Leng, G.; Zhang, X.; Huang, M.; Yang, Q.; Rafique, R.; Asrar, G.; Leung, L. R.

    2015-12-01

    Crop yields are largely determined by climate variations and agricultural management practices, such as irrigation, fertilization and residue management. Understanding the role of these factors in regulating crop yield variations is not only important for improved crop yield production, but also equally valuable for future crop yield prediction and food security assessments. Recently, the Community Land Model (CLM) has been augmented and evaluated for simulating corn, soybean and cereals at coarse aerial resolutions of 2 degrees (2000x2000 km). To better understand the underlying mechanisms controlling yield variations, we implemented and validated the agricultural version of CLM (CLM-crop) at a 0.125 degree resolution over the Conterminous United States (CONUS). We conducted a suite of numerical experiments to untangle the relative influence of climatic variations (temperature, precipitation, and radiation) and agricultural management practices on yield variations for the past 30 years at the US county level. Preliminary results show that the model with default parameter settings captures well the temporal variations in crop yields, as compared with the actual yield reported by the US Department of Agriculture (USDA). However, the magnitude of simulated crop yields is substantially higher, especially in the Mid-western US. We find that improved characterization of fertilizers and irrigation practices is key to model performance. Retrospectively (1979-2012), crop yields are more sensitive to changes in climate factors (such as temperature) than to changes in crop management practices. The results of this study advances understanding of the dominant factors in regulating the crop yield variations at the county level, which is essential for credible prediction of crop yields in a changing climate, under different agricultural management practices.

  2. Understanding the potential impact of transgenic crops in traditional agriculture: maize farmers' perspectives in Cuba, Guatemala and Mexico.

    PubMed

    Soleri, Daniela; Cleveland, David A; Aragón, Flavio; Fuentes, Mario R; Ríos, Humberto; Sweeney, Stuart H

    2005-01-01

    Genetically engineered transgenic crop varieties (TGVs) have spread rapidly in the last 10 years, increasingly to traditionally-based agricultural systems (TBAS) of the Third World both as seed and food. Proponents claim they are key to reducing hunger and negative environmental impacts of agriculture. Opponents claim they will have the opposite effect. The risk management process (RMP) is the primary way in which TGVs are regulated in the US (and many other industrial countries), and proponents claim that the findings of that process in the US and its regulatory consequences should be extended to TBAS. However, TBAS differ in important ways from industrial agriculture, so TGVs could have different effects in TBAS, and farmers there may evaluate risks and benefits differently. To evaluate some potential impacts of TGVs in TBAS we used the RMP as a framework for the case of Bt maize in Mesoamerica and Cuba. We interviewed 334 farmers in Cuba, Guatemala and Mexico about farming practices, evaluations of potential harm via hypothetical scenarios, and ranking of maize types. Results suggest high potential for transgene flow via seed, grain and pollen; differences in effects of this exposure in TBAS compared with industrial agriculture; farmers see some potential consequences as harmful. Perceptions of harm differ among farmers in ways determined by their farming systems, and are different from those commonly assumed in industrial systems. An RMP including participation of farmers and characteristics of TBAS critical for their functioning is necessary to ensure that investments in agricultural technologies will improve, not compromise these agricultural systems. PMID:16634221

  3. [Cumulative risk assessment for consumers of agricultural crops polluted with one chemical class pesticide residues (case of triazole fungicides)].

    PubMed

    Koval'chuk, N M; Omel'chuk, S T

    2011-01-01

    Different indices of cumulative risk assessment of combination of residues of pesticides which may simultaneously be present in raw agricultural crops, based on toxic evaluation of such combination have been presented. Risk for population health due to consumption of raw agricultural crops with triazole residues is acceptable on hazard index, point of departure index and cumulative risk index, exceeds allowable level on criterion "total margin of exposure". PMID:22768736

  4. Partitioning evapotranspiration via continuous sampling of water vapor isotopes over common row crops and candidate biofuel crops.

    NASA Astrophysics Data System (ADS)

    Miller, J. N.; Black, C. K.; Bernacchi, C.

    2014-12-01

    Global demand for renewable energy is accelerating land conversion from common row crops such as maize and soybean to cellulosic biofuel crops such as miscanthus and switchgrass. This land conversion is expected to alter ecohydrology via changes in evapotranspiration (ET). However, the direction in which evapotranspiration will shift, either partitioning more moisture through soil evaporation (E) or through plant transpiration (T) is uncertain. To investigate how land conversion from maize to miscanthus affects ET partitioning we measured the isotopic composition of water vapor via continuous air sampling. We obtained continuous diurnal measurements of δ2H and δ18O for miscanthus and maize on multiple days over the course of the growing season. Water vapor isotopes drawn from two heights were measured at 2 Hz using a cavity ringdown spectrometer and partitioned into components of E and T using a simple mixing equation. A second approach to partitioning was accomplished by subtracting transpiration measurements, obtained through sap flow sensors, from total ET, measured via eddy covariance. Preliminary results reveal that both methods compare favorably and that transpiration dominates variations in ET in miscanthus fields more so than in fields of maize.

  5. Farmer's Incentives for Adoption of Recommended Farm Practices in Wheat Crop in Aligarh Intensive Agricultural District, India.

    ERIC Educational Resources Information Center

    Vidyarthy, Gopal Saran

    This study was undertaken to identify farmer incentives that led them to adopt wheat crop practices in Aligarh Intensive Agricultural District Program: the association between the farmer's characteristics and adoption groups; the incentives that lead the farmers to adopt recommended wheat crop practices; relationship between identified incentives…

  6. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.

    PubMed

    Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat

    2016-02-01

    Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture. PMID:26752267

  7. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  8. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  9. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External

  10. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  11. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    PubMed

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from <1 to 7677 ng kg(-1), with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. PMID:22030249

  12. Past and present trends of agricultural production and crop residues available for removal in the Mid-American Region

    SciTech Connect

    Posselius, J.H. Jr.

    1981-09-01

    This report consists of two separate studies. Part I discusses past and present trends of agricultural production in the MASEC region, while Part II emphasizes crop residues available for removal in the MASEC region. Part I analyzes agricultural crop and livestock production levels and trends by crop and livestock type on a state level basis. The resource base is divided into three main categories: starch crops, sugar crops, and livestock. The term starch crops refers to crops which are currently grown in significant acreage in the North Central region, such as: barley, beans, corn, oats, rice, rye, grain sorghum, sunflowers, and wheat. The term sugar crops refers to; sugar beets and sweet sorghum, and the term livestock refers to; cattle, dairy, hogs, chickens, and turkeys. The states that comprise the North Central region includes; Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. Part II estimates the amount of crop residue available for removal in the MASEC region by crop type, on a county and state level basis. Wind and water erosion are considered as are nutrient losses and the net energy aspects of residue removal.

  13. Rhizo-lysimetry: facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems

    PubMed Central

    2013-01-01

    Background Rhizo-lysimeters offer unique advantages for the study of plants and their interactions with soils. In this paper, an existing facility at Charles Sturt University in Wagga Wagga Australia is described in detail and its potential to conduct both ecophysiological and ecohydrological research in the study of root interactions of agricultural crops and pastures is quantitatively assessed. This is of significance to future crop research efforts in southern Australia, in light of recent significant long-term drought events, as well as potential impacts of climate change as predicted for the region. The rhizo-lysimeter root research facility has recently been expanded to accommodate larger research projects over multiple years and cropping rotations. Results Lucerne, a widely-grown perennial pasture in southern Australia, developed an expansive root system to a depth of 0.9 m over a twelve month period. Its deeper roots particularly at 2.05 m continued to expand for the duration of the experiment. In succeeding experiments, canola, a commonly grown annual crop, developed a more extensive (approximately 300%) root system than wheat, but exhibited a slower rate of root elongation at rates of 7.47 x 10–3 m day–1 for canola and 1.04 x10–2 m day–1 for wheat. A time domain reflectometry (TDR) network was designed to accurately assess changes in soil water content, and could assess water content change to within 5% of the amount of water applied. Conclusions The rhizo-lysimetry system provided robust estimates of root growth and soil water change under conditions representative of a field setting. This is currently one of a very limited number of global research facilities able to perform experimentation under field conditions and is the largest root research experimental laboratory in the southern hemisphere. PMID:23363534

  14. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe.

    PubMed

    Holzschuh, Andrea; Dainese, Matteo; González-Varo, Juan P; Mudri-Stojnić, Sonja; Riedinger, Verena; Rundlöf, Maj; Scheper, Jeroen; Wickens, Jennifer B; Wickens, Victoria J; Bommarco, Riccardo; Kleijn, David; Potts, Simon G; Roberts, Stuart P M; Smith, Henrik G; Vilà, Montserrat; Vujić, Ante; Steffan-Dewenter, Ingolf

    2016-10-01

    Mass-flowering crops (MFCs) are increasingly cultivated and might influence pollinator communities in MFC fields and nearby semi-natural habitats (SNHs). Across six European regions and 2 years, we assessed how landscape-scale cover of MFCs affected pollinator densities in 408 MFC fields and adjacent SNHs. In MFC fields, densities of bumblebees, solitary bees, managed honeybees and hoverflies were negatively related to the cover of MFCs in the landscape. In SNHs, densities of bumblebees declined with increasing cover of MFCs but densities of honeybees increased. The densities of all pollinators were generally unrelated to the cover of SNHs in the landscape. Although MFC fields apparently attracted pollinators from SNHs, in landscapes with large areas of MFCs they became diluted. The resulting lower densities might negatively affect yields of pollinator-dependent crops and the reproductive success of wild plants. An expansion of MFCs needs to be accompanied by pollinator-supporting practices in agricultural landscapes. PMID:27531385

  15. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan.

    PubMed

    Khan, Kifayatullah; Lu, Yonglong; Khan, Hizbullah; Ishtiaq, Muhammad; Khan, Sardar; Waqas, Muhammad; Wei, Luo; Wang, Tieyu

    2013-08-01

    This study assessed the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) in agricultural soils and crops (fruits, grains and vegetable) and their possible human health risk in Swat District, northern Pakistan. Cd concentration was found higher than the limit (0.05 mg/kg) set by world health organization in 95% fruit and 100% vegetable samples. Moreover, the concentrations of Cr, Cu, Mn, Ni and Zn in the soils were shown significant correlations with those in the crops. The metal transfer factor (MTF) was found highest for Cd followed by Cr>Ni>Zn>Cu>Mn, while the health risk assessment revealed that there was no health risk for most of the heavy metals except Cd, which showed a high level of health risk index (HRI⩾10E-1) that would pose a potential health risk to the consumers. PMID:23721688

  16. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  17. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  18. Monitoring agricultural crops using a light-weight hyperspectral mapping system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Suomalainen, Juha; Franke, Jappe; Bartholomeus, Harm; Mücher, Sander; Becker, Rolf

    2014-05-01

    quality. Next we would like to present the relations between sensor derived spectral measurements and crop status variables for a time-series of measurements over the growing season. In addition, the spatial variation of crop characteristics within the field can be adopted for variable rate application of fertilizers within the field. The outcome of the experiments should guide the operational use of UAV based systems in precision agriculture systems.

  19. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect

    Ian Bonner; David Muth

    2013-09-01

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented

  20. The global impact of ozone on agricultural crop yields under current and future air quality legislation

    NASA Astrophysics Data System (ADS)

    Van Dingenen, Rita; Dentener, Frank J.; Raes, Frank; Krol, Maarten C.; Emberson, Lisa; Cofala, Janusz

    In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic "current legislation (CLE) scenario", i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia. Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of "western" crop exposure-response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative. Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2-6% loss globally) and rice (additional 1-2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat). Translating these assumed yield losses into total global economic

  1. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  2. Crop and Soil Science. A Curriculum Guide for Idaho Vocational Agriculture Instructors. Volume 1 and Volume 2.

    ERIC Educational Resources Information Center

    Ledington, Richard L.

    The 24 units that comprise this crop and soil science curriculum guide are not geared to a particular age level and must be adapted to the students for whom they are used. Units 1 through 6 are general units covering topics common to soil science. Units 7 through 24 are units covering topics common to crop production. Each unit includes objectives…

  3. Mapping Crop Status from AN Unmanned Aerial Vehicle for Precision Agriculture Applications

    NASA Astrophysics Data System (ADS)

    Guo, T.; Kujirai, T.; Watanabe, T.

    2012-07-01

    Remote sensing system mounted on unmanned aerial vehicle (UAV) could provide a complementary means to the conventional satellite and aerial remote sensing solutions especially for the applications of precision agriculture. UAV remote sensing offers a great flexibility to quickly acquire field data in sufficient spatial and spectral resolution at low cost. However a major problem of UAV is the high instability due to the low-end equipments and difficult environment situation, and this leads to image sensor being mostly operated under a highly uncertain configuration. Thus UAV images exhibit considerable derivation in spatial orientation, large geometric and spectral distortion, and low signal-to-noise ratio (SNR). To achieve the objectives of agricultural mapping from UAV, we apply a micro-helicopter UAV with a multiple spectral camera mounted and develop a framework to process UAV images. A very important processing is to generate mosaic image which can be aligned with maps for later GIS integration. With appropriate geometric calibration applied, we first decompose a homography of consecutive image pairs into a rotational component and a simple perspective component, and apply a linear interpolation to the angle of the rotational component, followed by a linear matrix interpolation operator to the perspective component, and this results in an equivalent transformation but ensures a smooth evolution between two images. Lastly to demonstrate the potential of UAV images to precision agriculture application, we perform spectral processing to derive vegetation indices (VIs) maps of crop, and also show the comparison with satellite imagery. Through this paper, we demonstrate that it is highly feasible to generate quantitative mapping products such as crop stress maps from UAV images, and suggest that UAV remote sensing is very valuable for the applications of precision agriculture.

  4. 7 CFR 457.173 - Florida Avocado crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Florida Avocado crop insurance provisions. 457.173... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.173 Florida Avocado crop insurance provisions. The Florida Avocado Crop Insurance Provisions for the 2011 and...

  5. 7 CFR 457.173 - Florida Avocado crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Florida Avocado crop insurance provisions. 457.173... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.173 Florida Avocado crop insurance provisions. The Florida Avocado Crop Insurance Provisions for the 2011 and...

  6. 7 CFR 457.173 - Florida Avocado crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Florida Avocado crop insurance provisions. 457.173... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.173 Florida Avocado crop insurance provisions. The Florida Avocado Crop Insurance Provisions for the 2011 and...

  7. 7 CFR 457.173 - Florida Avocado crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Florida Avocado crop insurance provisions. 457.173... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.173 Florida Avocado crop insurance provisions. The Florida Avocado Crop Insurance Provisions for the 2011 and...

  8. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree crop insurance provisions. The macadamia tree crop insurance provisions for the 2011 and...

  9. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree crop insurance provisions. The macadamia tree crop insurance provisions for the 1999 and...

  10. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree crop insurance provisions. The macadamia tree crop insurance provisions for the 2011 and...

  11. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree crop insurance provisions. The macadamia tree crop insurance provisions for the 2011 and...

  12. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Macadamia tree crop insurance provisions. 457.130... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree crop insurance provisions. The macadamia tree crop insurance provisions for the 2011 and...

  13. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India.

    PubMed

    Murthy, C S; Yadav, Manoj; Mohammed Ahamed, J; Laxman, B; Prawasi, R; Sesha Sai, M V R; Hooda, R S

    2015-03-01

    Drought is an important global hazard, challenging the sustainable agriculture and food security of nations. Measuring agricultural drought vulnerability is a prerequisite for targeting interventions to improve and sustain the agricultural performance of both irrigated and rain-fed agriculture. In this study, crop-generic agricultural drought vulnerability status is empirically measured through a composite index approach. The study area is Haryana state, India, a prime agriculture state of the country, characterised with low rainfall, high irrigation support and stable cropping pattern. By analysing the multiyear rainfall and crop condition data of kharif crop season (June-October) derived from satellite data and soil water holding capacity and groundwater quality, nine contributing indicators were generated for 120 blocks (sub-district administrative units). Composite indices for exposure, sensitivity and adaptive capacity components were generated after assigning variance-based weightages to the respective input indicators. Agricultural Drought Vulnerability Index (ADVI) was developed through a linear combination of the three component indices. ADVI-based vulnerability categorisation revealed that 51 blocks are with vulnerable to very highly vulnerable status. These blocks are located in the southern and western parts of the state, where groundwater quality is saline and water holding capacity of soils is less. The ADVI map has effectively captured the spatial pattern of agricultural drought vulnerability in the state. Districts with large number of vulnerable blocks showed considerably larger variability of de-trended crop yields. Correlation analysis reveals that crop condition variability, groundwater quality and soil factors are closely associated with ADVI. The vulnerability index is useful to prioritise the blocks for implementation of long-term drought management plans. There is scope for improving the methodology by adding/fine-tuning the indicators and

  14. Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops.

    PubMed

    Geraskin, S A; Dikarev, V G; Zyablitskaya, Ye Ya; Oudalova, A A; Spirin, Ye V; Alexakhin, R M

    2003-01-01

    The genetic consequences of radioactive contamination by the fallout to agricultural crops after the accident at the Chernobyl NPP in 1986 have been studied. In the first, acute, period of this accident, when the absorbed dose was primarily due to external beta- and gamma-irradiation, the radiation injury of agricultural crops, according to the basic cytogenetic tests, resembled the effect produced by acute gamma-irradiation at comparable doses. The yield of cytogenetic damage in leaf meristem of plants grown in the 10-km zone of the ChNPP in 1987-1989 (the period of chronic, lower level radiation exposure) was shown to be enhanced and dependent on the level of radioactive contamination. The rate of decline with time in cytogenetic damage induced by chronic exposure lagged considerably behind that of the radiation exposure. Analysis of genetic variability in three sequential generations of rye and wheat revealed increased cytogenetic damage in plants exposed to chronic irradiation during the 2nd and 3rd years. PMID:12590075

  15. Fly ash-amended compost as a manure for agricultural crops

    SciTech Connect

    Menon, M.P.; Sajwan, K.S.; Ghuman, G.S.; James, J.; Chandra, K. )

    1993-11-01

    Homemade organic compost prepared from lawn grass clippings was amended with fine fly ash collected from a coal-fired power plant (SRS 484.D. Savannah River Site, Aiken, SC) to investigate its usefulness as a manure in enhancing nutrient uptake and increasing dry matter yield in selected agricultural crops. Three treatments were compared: five crops (mustard, collard, string beans, bell pepper, and eggplant) were each grown on three kinds of soil: soil alone, soil amended with composted grass clippings, and soil amended with the mixed compost of grass clippings and 20% fly ash. The fly ash-amended compost was found to be effective in enhancing the dry matter yield of collard greens and mustard greens by 378% and 348%, respectively, but string beans, bell pepper, and eggplant did not show any significant increase in dry matter yield. Analysis of the above-ground biomass of these last three plants showed they assimilated high levels of boron, which is phytotoxic; and this may be the reason for their poor growth. Soils treated with fly ash-amended compost often gave higher concentrations than the control for K, Ca, Mg, S, Zn, and B in the Brassica crops. 18 refs., 2 figs., 5 tabs.

  16. Caesium-137 root uptake by agricultural and wild crops in post-Chernobyl landscape: the possibilities for phytoremediation?

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Shamshurina, Eugenia; Komissarova, Olga; Belyaev, Vladimir

    2015-04-01

    In spite of long term period after Chernobyl fallout (≈25 years after the accident) the level of Cs-137 in soils of contaminated landscapes remains several times more than radiation safety standard (= 37 kBq/m2). In particular, within the area of Plavsk radioactive hot spot (Tula region, Russia) current Cs-137 activities in soil are 460-500 Bq/kg (170-200 kBq/m2) on watershed, 580-680 Bq/kg (200-220 kBq/m2) in arable lower parts of slopes and 620-710 Bq/kg (210-280 kBq/m2) in untilled foots of slopes and river floodplains. To estimate the process of Cs-137 root uptake and incorporation of the radionuclide in plant tissues 6 agricultural crops of typical field rotation (spring barley, maize, summer rape, galega, potatoes, amaranth) as well as natural ecosystems of dry and wet meadows were selected for the detailed study. Total bioproductivity of agricultural crops varies between 1.7-3.9 kg/m2, natural grass ecosystems - 1.9-2.2 g/m2, and is obviously unaffected by radioactive land contamination. At the same time Cs-137 activity in total biomass slightly increases with Cs-137 activity in soil (correlation coefficient r=0.45) and with total biomass (correlation coefficient r=0.51) in the row: rape (5 Bq/kg) < amaranth, galega (17-19 Bq/kg) < barley, potatoes (31-37 Bq/kg) < maize (58 Bq/kg) < dry meadow (73 Bq/kg) < wet meadow (120 Bq/kg). Commonly, Cs-137 activity in vegetation of natural ecosystems with predominance of perennial grasses is significantly higher than in agrosystems with annual crops. But a substantial portion of Cs-137 in meadow vegetation is associated with belowground biomass, where the radionuclide's activity is 3-5 times greater than in the aboveground part. The distribution of Cs-137 activities between above- and belowground parts of agricultural crops greatly varies depending on the biological characteristics of plants: barley and maize (Gramíneae family) are also characterized by elevated Cs-137 concentrations in belowground parts (12

  17. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.

    PubMed

    Husaini, Amjad M; Tuteja, Narendra

    2013-01-01

    Biotechnological intervention in the development of crops has opened new vistas in agriculture. Central to the accomplishment of the Millennium Development Goals (MDGs), biotech-agriculture is essential in meeting these targets. Biotech crops have already made modest contributions toward ensuring food and nutrition security by reducing losses and increasing productivity, with less pesticide input. These crops could help address some of the major challenges in agriculture-based economies created by climate change. Projections of global climate change expect the concentration of greenhouse gases to increase, aridization of the environment to increase, temperature fluctuations to occur sharply and frequently, and spatial and temporal distribution of rainfall to be disturbed-all of which will increase abiotic stress-related challenges to crops. Countering these challenges and to meet the food requirement of the ever-increasing world population (expected to reach 9 billion by 2030) we need to (1) develop and use biotech crops for mitigating adverse climatic changes; (2) develop biotech crops resilient to adverse environmental conditions; and (3) address the issues/non-issues raised by NGO's and educate the masses about the benefits of biotech crops. PMID:23160541

  18. Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees

    NASA Astrophysics Data System (ADS)

    Johnson, Mark S.; Lathuillière, Michael J.; Tooke, Thoreau R.; Coops, Nicholas C.

    2015-06-01

    Urban agriculture requires local water to replace ‘hydrologic externalities’ associated with food produced outside of the local area, with an accompanying shift of the water footprint (WF) for agricultural production from rural to urban areas. Water requirements of urban agriculture have been difficult to estimate due to the heterogeneity of shading from trees and buildings within urban areas. We developed CityCrop, a plant growth and evapotranspiration (ET) model that couples a 3D model of tree canopies and buildings derived from LiDAR with a ray-casting approach to estimate spatially-explicit solar inputs in combination with local climate data. Evaluating CityCrop over a 1 km2 mixed use, residential neighborhood of Vancouver Canada, we estimated median light attenuation to result in 12% reductions in both reference ET (ETo) and crop ET (ETc). However, median crop yields were reduced by only 3.5% relative to potential yield modeled without any light attenuation, while the median crop WF was 9% less than the WF for areas unimpeded by shading. Over the 75 day cropping cycle, median crop water requirements as ETc were 17% less than that required for a well-watered grass (as ETo). If all lawns in our modeled area were replaced with crops, we estimate that about 37% of the resident population could obtain the vegetable portion of their diet from within the local area over a 150 day growing season. However doing so would result in augmented water demand if watering restrictions apply to lawns only. The CityCrop model can therefore be useful to evaluate trade-offs related to urban agriculture and to inform municipal water policy development.

  19. Gis-Based Crop Support System For Common Oatand Naked Oat in China

    NASA Astrophysics Data System (ADS)

    Wan, Fan; Wang, Zhen; Li, Fengmin; Cao, Huhua; Sun, Guojun

    The identification of the suitable areas for common oat (Avena sativa L.) and naked oat (Avena nuda L.) in China using Multi-Criteria Evaluation (MCE) approach based on GIS is presented in the current article. Climate, topography, soil, land use and oat variety databases were created. Relevant criteria,suitability levels and their weights for each factor were defined. Then the criteria maps were obtained and turned into the MCE process, and suitability maps for common oat and naked oat were created. The land use and the suitability maps were crossed to identify the suitable areas for each crop. The results identified 397,720 km2 of suitable areas for common oats of forage purpose distributed in 744 counties in 17 provinces, and 556,232 km2 of suitable areas for naked oats of grain purpose distributed in 779 counties in 19 provinces. This result is in accordance with the distribution of farmingpastoral ecozones located in semi-arid regions of northern China. The mapped areas can help define the working limits and serve as indicative zones for oat in China. The created databases, mapped results, interface of expert system and relevant hardware facilities could construct a complete crop support system for oats.

  20. Salt tolerant green crop species for sodium management in space agriculture

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  1. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity.

    PubMed

    Belhaj, Dalel; Jerbi, Bouthaina; Medhioub, Mounir; Zhou, John; Kallel, Monem; Ayadi, Habib

    2016-08-01

    The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L(-1) COD and 30 mg L(-1) BOD5) and inorganic pollutants (e.g., up to 0.5 mg L(-1) Cu and 0.1 mg L(-1) Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place. PMID:26520100

  2. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Canola and rapeseed crop insurance provisions. 457.161 Section 457.161 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.161 Canola...

  3. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Canola and rapeseed crop insurance provisions. 457.161 Section 457.161 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.161 Canola...

  4. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh...

  5. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fresh market tomato (dollar plan) crop insurance provisions. 457.139 Section 457.139 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS §...

  6. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market pepper crop insurance provisions. 457.148 Section 457.148 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.148 Fresh...

  7. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Fresh market pepper crop insurance provisions. 457.148 Section 457.148 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.148 Fresh...

  8. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market tomato (dollar plan) crop insurance provisions. 457.139 Section 457.139 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS §...

  9. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  10. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  11. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. PMID:24144612

  12. Effect of coal fly ash-amended organic compost as a manure for agricultural crops

    SciTech Connect

    Ghuman, G.S.; Menon, M.P.; James, J.; Chandra, K.; Sajwan, K. )

    1991-04-01

    Coal-fired electric power plants generate large quantities of fly ash as a byproduct. In continuation of previous studies on the utilization of fly ash as an amendment to organic compost for use as a manure for agricultural crops, the authors have now determined the effects of this manure on the yield and uptake of selected elements by several plants including collard green, corn, mustard green, bell pepper, egg plant, and climbing beans. An amended compost containing 30-40% fly ash with a compost:soil ratio of 1:3 was found to be most effective to enhance the yield and nutrient uptake of most of the plants. At 20% fly ash level, no increase in yield of any of the above crops was observed. The uptake of K, Mg, Mn, and P was increased in most plants. Boron which is known to be detrimental to the growth of plants above certain level was also found to be increased in plants nourished with the manure.

  13. Role of native shrubs of the Sahel in mitigating water and nutrient stresses of agricultural crops

    NASA Astrophysics Data System (ADS)

    Bayala, R.; Ghezzehei, T. A.; Bogie, N. A.; Diedhiou, I.; Dick, R.

    2015-12-01

    In the semi arid zone of the Sahel native woody shrubs are present in many farmers' fields. The native density of these shrubs is fairly low at around 200 to 300 individuals per hectare. An ongoing study in the Peanut Basin, Senegal has shown a vast improvement in crop yields when annual food crops are planted with the shrub Guiera senegalensis, especially in years of low or irregular precipitation. Shrubs in field plots established in 2003 where a rotation of peanuts and millet are grown are planted at a much higher density of 1500-1830 individuals per hectare. In order to increase the density of shrubs on the landscape, the shrubs must be cultivated. We monitored soil moisture, soil temperature, and growth of recently transplanted individuals at a field station in Thies, Senegal.This study seeks to determine the growth characteristics and water use of young shrubs in order to inform possible future plantations of the shrubs in a more intensely managed agroecosystem. If this technique of intercropping is to be expanded we must not exceed the carrying capacity of the landscape. In vulnerable ecosystems where natural resources are scarce and farming inputs are low, we must work to determine ways of exploiting the adaptation of local agroecosystems to increase the sustainability of agriculture in the region.

  14. New oilseed crops for fuels and chemicals: ecological and agricultural considerations

    SciTech Connect

    Draper, H.M. III

    1982-01-01

    A new approach to agriculture involving oilseed crops for fuels and chemicals is proposed. Such an approach to biomass energy would be designed to benefit the limited-resource farmer in the United States and the Third World, while at the same time not aggravating global ecological problems such as deforestation and desertification. Since food versus fuel conflicts arise when plants are grown for industrial uses on good lands, productivity questions are examined, with the conclusion that fundamental biological constraints will limit yields on marginal lands. Conventional vegetable oil crops are limited in their climatic requirements or are not well adapted to limited-resource farming; therefore, new oilseeds more adaptable to small farming are proposed. Such plants would be for specialty chemicals or to meet local energy needs. Chemicals produced would be low-volume, labor-intensive, and possibly high-priced. A list of 281 potential new oilseeds is provided, and each is classified according to potential, multiple product potential, and vegetative characteristics. Using climatic data which are available for most areas, a method of making rough productivity estimates for unconventional wild plant oilseeds is proposed, and example resource estimates are provided for the southeastern United States.

  15. Net carbon balance of three full crop rotations at an agricultural site near Gebesee, Germany

    NASA Astrophysics Data System (ADS)

    Hurkuck, M.; Brümmer, C.; Kolle, O.; Kutsch, W. L.; Moffat, A. M.; Mukwashi, K.; Truckenbrodt, S. C.; Herbst, M.

    2015-12-01

    Continuous eddy-covariance (EC) measurements of biosphere-atmosphere CO2 and H2O exchange have been conducted since 2001 at an agricultural site near Gebesee, Germany, thus providing one of the longest EC time series of European croplands. During the experimental period, winter wheat and winter barley were alternately planted with potatoes, sugar beet, rape, and peppermint covering three full crop rotations (2001-2004, 2005-2009, and 2010-2014). In this study, data of 14 years of net ecosystem CO2 exchange (NEE) and evapotranspiration (E) were re-calculated. Based on these data, we present the net carbon (C) balance (net biome production, NBP) accounting for any additional C input by fertilization and C output by harvest. Further emphasis was placed on the sensitivity of water use efficiency (WUE) and E to climate and crop type. The main aim was to investigate the interannual variability in both NBP and WUE, thus disentangling the impacts of climatic conditions and land management on the net C balance as well as on WUE and E.

  16. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  17. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  18. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  19. Multi-country evidence that crop diversification promotes ecological intensification of agriculture.

    PubMed

    Gurr, Geoff M; Lu, Zhongxian; Zheng, Xusong; Xu, Hongxing; Zhu, Pingyang; Chen, Guihua; Yao, Xiaoming; Cheng, Jiaan; Zhu, Zengrong; Catindig, Josie Lynn; Villareal, Sylvia; Van Chien, Ho; Cuong, Le Quoc; Channoo, Chairat; Chengwattana, Nalinee; Lan, La Pham; Hai, Le Huu; Chaiwong, Jintana; Nicol, Helen I; Perovic, David J; Wratten, Steve D; Heong, Kong Luen

    2016-01-01

    Global food security requires increased crop productivity to meet escalating demand(1-3). Current food production systems are heavily dependent on synthetic inputs that threaten the environment and human well-being(2,4,5). Biodiversity, for instance, is key to the provision of ecosystem services such as pest control(6,7), but is eroded in conventional agricultural systems. Yet the conservation and reinstatement of biodiversity is challenging(5,8,9), and it remains unclear whether the promotion of biodiversity can reduce reliance on inputs without penalizing yields on a regional scale. Here we present results from multi-site field studies replicated in Thailand, China and Vietnam over a period of four years, in which we grew nectar-producing plants around rice fields, and monitored levels of pest infestation, insecticide use and yields. Compiling the data from all sites, we report that this inexpensive intervention significantly reduced populations of two key pests, reduced insecticide applications by 70%, increased grain yields by 5% and delivered an economic advantage of 7.5%. Additional field studies showed that predators and parasitoids of the main rice pests, together with detritivores, were more abundant in the presence of nectar-producing plants. We conclude that a simple diversification approach, in this case the growth of nectar-producing plants, can contribute to the ecological intensification of agricultural systems. PMID:27249349

  20. Gully evolution in field crops on vertic soils under conventional agriculture

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Pérez, Rafael; Mora, Jose; Gómez, Jose A.

    2015-04-01

    Gully erosion is a major process contributing to soil degradation on cultivated areas. Its effects are especially intense in farms under conventional agriculture characterised by the use of heavy machinery for land levelling and herbicides leading to the depletion of natural vegetation in valley locations. When the soil (e.g. vertic soils) and parent material conditions (e.g. soft erodible marls) are favourable to incision, gully features may present large dimensions, producing the loss of significant proportions of productive land. This study evaluates the evolution of several gully networks located in Córdoba (Spain) within the Campiña area (a rolling landscape on Miocene marls) with conventional agriculture and gully filling operations as the predominant farm practices. The area of the catchments ranged from 10 to 100 ha, they were covered by field crops (mostly bean, sunflower and wheat) on vertic soils. Firstly, we carried out a historical analysis of the gully development during the last six decades by aerial image interpretation. Secondly, a number of field surveys were conducted to characterise the evolution of the gully morphology in a period of five years (2010-2014). For this purpose, a range of measurement techniques were used: pole and tape, differential GPS and 3D photo-reconstruction. Finally, the influence of topography (slope and drainage area) on gully dimensions along the longitudinal profile was assessed.

  1. SIDE-EFFECTS OF COMMONLY USED CROP PROTECTION PRODUCTS IN PEAR ON TWO BENEFICIAL MIRIDAE BUGS.

    PubMed

    Vrancken, K; Belien, T; Bylemans, D

    2015-01-01

    Anthocoris nemoralis, Anthocoris nemorum and Orius spp. are not the only beneficial predatory bugs inhabiting pear orchards in Belgium. Quite often, the Miridae bugs Heterotoma spp. and Pilophorus spp. can be found during spring and summer in these orchards, thereby feeding on several pests such as psyllids, aphids, spider mites, ... . Side-effects are usually assessed on Anthocoris and Orius spp., but due to the potential importance of Miridae bugs in pest reduction, we tested some commonly used crop protection products used in pear cultivation on Heterotoma planicornis and Pilophorus perplexus (residue-based tests in petri-dishes). One day after treatment, mortalities already could be observed for some products. Seven days after treatment, abamectin, deltamethrin and thiacloprid were considered the most toxic products as stated by the IOBC classification. This outcome was then analysed with regard to different treatment schedules, providing insights in potential side-effects on crop protection treatments on the composition of beneficial fauna in pear orchards. PMID:27145577

  2. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product

    NASA Astrophysics Data System (ADS)

    Stern, Alan J.; Doraiswamy, Paul C.; Raymond Hunt, E.

    2012-01-01

    Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. In Iowa and much of the Midwestern United States (US), the typical management decision is to rotate corn and soybean crops for a single field; therefore, the land-cover changes each year even though the total area of agricultural land-use remains the same. The price for corn increased from 2001 to 2010, which increased corn production in Iowa. We tested the hypothesis that the production increase was the result of changes in crop rotation in Iowa using the annual remote sensing classification (the cropland data layer) produced by the United States Department of Agriculture, National Agricultural Statistics Service. It was found that the area planted in corn increased from 4.7 million hectares in 2001 to 5.7 million hectares in 2007, which was correlated with the market price for corn. At the county level, there were differences in how the increase in corn production was accomplished. Northern and central counties had little land to expand cultivation and generally increased corn production by converting to a corn-corn rotation from the standard corn-soybean rotation. Southern counties in Iowa increased corn production by expanding into land that was not under recent cultivation. These changes affect the amount of soil carbon sequestration.

  3. DETERMINATION OF BACKGROUND LEVELS OF LEAD AND CADMIUM IN RAW AGRICULTURAL CROPS BY USING DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRY

    EPA Science Inventory

    A method is described for the simultaneous determination of ultratrace levels of lead and cadmium in selected agricultural crop samples by differential pulse anodic stripping voltametry. Samples are dry ashed at high temperature with H2SO4 as an ashing aid. Techniques are describ...

  4. Introduction to Agronomy, Grain Crops, Weeds and Controls. A Learning Activity Pac in Agricultural Education Courses in Wisconsin.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    This learning activity pac contains information to help the teachers of high school vocational agriculture in the instructional area of agronomy. Each of the two main sections, grain crops and weeds and controls, includes teacher and student units for the section lessons. Teacher units include special instructions--equipment needed (film…

  5. Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review describes production of acetone butanol ethanol (ABE) from a variety of agricultural residues and energy crops employing biochemical or fermentation processes. A number of organisms are available for this bioconversion including Clostridium beijerinckii P260, C. beijerinckii BA101, C. a...

  6. Agricultural Policy Environmental eXtender simulation of three adjacent row-crop watersheds in the claypan region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, and pollutant loadings in whole farms or small watersheds with variety of management practices. The study objectives were to identify sensitive parameters and parameterize, calibrate and validate the APEX model fo...

  7. The mechanisms of plant stress mitigation by kaolin-based particle films and its applications in horticultural and agricultural crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kaolin-based particle films have utility in reducing insect, heat, light, and uv stress in plants due to the reflective nature of the particles. Particle films with a residue density of 1 to 3 g/ square meter have been evaluated in a range of crops and agricultural environments. The particle film ...

  8. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    PubMed

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  9. Crop diversity effects on productivity and economic returns under dryland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing crop diversity has been identified as a method to improve agronomic performance of cropping systems and increase provision of ecosystem services. However, there is a need to understand the economic performance of more diverse cropping systems. Crop productivity and economic net returns we...

  10. The Common Market Concept: Using Community Based Resources in New Ways to Deliver Innovative Agriculture Programs.

    ERIC Educational Resources Information Center

    Upchurch, Jim; Fischer, Larry

    The cooperative agricultural programs described in this report were undertaken by John Wood Community College (JWCC) as part of a "common market" instructional delivery system, which utilizes existing community resources through contractual agreements with area schools, businesses, and government agencies. The report first provides a rationale for…

  11. Findings from the National Agricultural Workers Survey (NAWS) 1990. A Demographic and Employment Profile of Perishable Crop Farm Workers. Research Report No. 1.

    ERIC Educational Resources Information Center

    Mines, Richard; And Others

    This report provides information on the characteristics and work patterns of United States agricultural workers performing seasonal agricultural services (SAS) during fiscal year 1990. SAS crops include the majority of nursery products, cash grains, field crops, and all fruits and vegetables. More than 2,000 personal interviews with SAS workers…

  12. Impact of tillage on N2O and CO2 efflux in an agricultural crop

    NASA Astrophysics Data System (ADS)

    Lognoul, Margaux; Theodorakopoulos, Nicolas; Hiel, Marie-Pierre; Heinesch, Bernard; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    In an experiment conducted in the Belgian loess belt between June and October 2015, the effect of two tillage treatments (CT - conventional tillage and RT - reduced tillage) on CO2 and N2O fluxes exchanged by a maize crop were compared. The experimental site included two parcels subjected to crop residues incorporation and to their respective tillage treatment (CT and RT) since 2008. Fluxes were measured using two fully automated sets of dynamic closed chambers, allowing a 4.5h temporal resolution. Soil water content and temperature were also monitored as well as pH, total N (TN) and total organic C (TOC) content. Results suggest that tillage practices significantly impacted emissions of both gases, with average soil respiration twice as large for RT than CT (91 μg C.m-2.s-1 versus 44.5 μg C.m-2.s-1) and N2O fluxes 8 times greater for RT than CT (5.55 ng N2O_N.m-2.s-1 versus 0.68 ng N2O_N.m-2.s-1). These observations could be explained by an effect of tillage treatment on stratification of crop residues within the soil profile, as shown in our experiment. Indeed significantly higher TN and TOC content were measured in the surface layer (0-10cm) under RT and that might have enhanced microbial activity responsible for CO2 and N2O production. A single N2O emission burst was observed in both treatments, most likely triggered by a sudden and important increase of soil moisture with a time delay of 4.5h for RT and 27h for CT. Here again, peak mean emissions were 9 times larger for RT than for CT (13.3 ng N2O_N.m-2.s-1 versus 1.43 ng N2O_N.m-2.s-1 for CT). The absence of peak emissions later during the experiment, despite the occurrence of similar soil moisture increases suggests that such increase is not the sole condition to generate N2O bursts. In the present case, it is possible that the absence of further peaks was due to a non-availability of soil N caused by increased competition for N because of maize growth. The system of automated chambers proved it

  13. CropEx Web-Based Agricultural Monitoring and Decision Support

    NASA Technical Reports Server (NTRS)

    Harvey. Craig; Lawhead, Joel

    2011-01-01

    CropEx is a Web-based agricultural Decision Support System (DSS) that monitors changes in crop health over time. It is designed to be used by a wide range of both public and private organizations, including individual producers and regional government offices with a vested interest in tracking vegetation health. The database and data management system automatically retrieve and ingest data for the area of interest. Another stores results of the processing and supports the DSS. The processing engine will allow server-side analysis of imagery with support for image sub-setting and a set of core raster operations for image classification, creation of vegetation indices, and change detection. The system includes the Web-based (CropEx) interface, data ingestion system, server-side processing engine, and a database processing engine. It contains a Web-based interface that has multi-tiered security profiles for multiple users. The interface provides the ability to identify areas of interest to specific users, user profiles, and methods of processing and data types for selected or created areas of interest. A compilation of programs is used to ingest available data into the system, classify that data, profile that data for quality, and make data available for the processing engine immediately upon the data s availability to the system (near real time). The processing engine consists of methods and algorithms used to process the data in a real-time fashion without copying, storing, or moving the raw data. The engine makes results available to the database processing engine for storage and further manipulation. The database processing engine ingests data from the image processing engine, distills those results into numerical indices, and stores each index for an area of interest. This process happens each time new data is ingested and processed for the area of interest, and upon subsequent database entries, the database processing engine qualifies each value for each area of

  14. Effect of crop residue incorporation on soil organic carbon (SOC) and greenhouse gas (GHG) emissions in European agricultural soils

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Schlatter, Norman; Baumgarten, Andreas; Bechini, Luca; Krüger, Janine; Grignani, Carlo; Zavattaro, Laura; Costamagna, Chiara; Spiegel, Heide

    2014-05-01

    Soil organic matter (SOM) improves soil physical (e.g. increased aggregate stability), chemical (e.g. cation exchange capacity) and biological (e.g. biodiversity, earthworms) properties. The sequestration of soil organic carbon (SOC) may mitigate climate change. However, as much as 25-75% of the initial SOC in world agricultural soils may have been lost due to intensive agriculture (Lal, 2013). The European Commission has described the decline of organic matter (OM) as one of the major threats to soils (COM(2006) 231). Incorporation of crop residues may be a sustainable and cost-efficient management practice to maintain the SOC levels and to increase soil fertility in European agricultural soils. Especially Mediterranean soils that have low initial SOC concentrations, and areas where stockless croplands predominate may be suitable for crop residue incorporation. In this study, we aim to quantify the effects of crop residue incorporation on SOC and GHG emissions (CO2 and N2O) in different environmental zones (ENZs, Metzger et al., 2005) in Europe. Response ratios for SOC and GHG emissions were calculated from pairwise comparisons between crop residue incorporation and removal. Specifically, we investigated whether ENZs, clay content and experiment duration influence the response ratios. In addition, we studied how response ratios of SOM and crop yields were correlated. A total of 718 response ratios (RR) were derived from a total of 39 publications, representing 50 experiments (46 field and 4 laboratory) and 15 countries. The SOC concentrations and stocks increased by approximately 10% following crop residue incorporation. In contrast, CO2 emissions were approximately six times and N2O emissions 12 times higher following crop residue incorporation. The effect of ENZ on the response ratios was not significant. For SOC concentration, the >35% clay content had significantly approximately 8% higher response ratios compared to 18-35% clay content. As the duration of the

  15. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity

  16. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  17. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  18. Using high resolution CIR imagery in the classification of non-cropped areas in agricultural landscapes in the UK

    NASA Astrophysics Data System (ADS)

    O'Connell, Jerome; Bradter, Ute; Benton, Tim G.

    2013-10-01

    With global food demand on course to double in the next 50 years the pressures of agricultural intensification on ecosystem services in highly managed landscapes are increasing. Within an agricultural landscape non-cropped areas are a key component of ecological heterogeneity and the sustainability of ecosystem services. Management of the landscape for both production of food and ecosystem services requires configuring the non-cropped areas in an optimal way, which, in turn requires large scale information on the distribution of non-cropped areas. In this study the Canny edge detection algorithm was used to delineate 93% of all boundaries within 422 ha of agricultural land in south east England. The resulting image was used in conjunction with vegetation indices derived from Color Infra Red (CIR) aerial photography and auxiliary landuse data in an Object Orientated (OO) Knowledge Based Classifier (KBC) to identify non-cropped areas. An overall accuracy of 94.27% (Kappa 0.91) for the KBC compared favorably with 63.04% (Kappa 0.55) for a pixel based hybrid classifier of the same area.

  19. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. PMID:24803003

  20. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  1. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment.

    PubMed

    Zhang, Ge; Wen, Yangping; Guo, Chaoqun; Xu, Jingkun; Lu, Baoyang; Duan, Xuemin; He, Haohua; Yang, Jun

    2013-12-17

    A highly selective and sensitive fluorescent chemosensor suitable for practical measurement of palladium ion (Pd(2+)) in agricultural crops and environment samples has been successfully fabricated using polybenzanthrone (PBA). PBA was facilely electrosynthesized in the mixed electrolyte of acetonitrile and boron trifluoride diethyl etherate. The fluorescence intensity of PBA showed a linear response to Pd(2+) in the concentration range of 5 nM-0.12 mM with a detection limit of 0.277 nM and quantification limit of 0.925 nM. Different compounds existing in agricultural crops and environment such as common metal ions, anions, natural amino acids, carbohydrates, and organic acids were used to examine the selectivity of the as-fabricated sensor, and no obvious fluorescence change could be observed in these interferents and their mixtures. A possible mechanism was proposed that the coordination of PBA and Pd(2+) enhance the aggregation of polymer chains, which led to a significant quenching of PBA emission, and this was further confirmed by absorption spectra monitoring and transmission electron microscopy. The excellent performance of the proposed sensor and satisfactory results of the Pd(2+) determination in practical samples suggested that the PBA-based fluorescent sensor for the determination of Pd(2+) will be a good candidate for application in agriculture and environment. PMID:24296147

  2. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops.

    PubMed

    Bredow, C; Azevedo, J L; Pamphile, J A; Mangolin, C A; Rhoden, S A

    2015-01-01

    Because of human population growth, increased food production and alternatives to conventional methods of biocontrol and development of plants such as the use of endophytic bacteria and fungi are required. One of the methods used to study microorganism diversity is sequencing of the 16S rRNA gene, which has several advantages, including universality, size, and availability of databases for comparison. The objective of this study was to analyze endophytic bacterial diversity in agricultural crops using published papers, sequence databases, and phylogenetic analysis. Fourteen papers were selected in which the ribosomal 16S rRNA gene was used to identify endophytic bacteria, in important agricultural crops, such as coffee, sugar cane, beans, corn, soybean, tomatoes, and grapes, located in different geographical regions (America, Europe, and Asia). The corresponding 16S rRNA gene sequences were selected from the NCBI database, aligned using the Mega 5.2 program, and phylogenetic analysis was undertaken. The most common orders present in the analyzed cultures were Bacillales, Enterobacteriales, and Actinomycetales and the most frequently observed genera were Bacillus, Pseudomonas, and Microbacterium. Phylogenetic analysis showed that only approximately 1.56% of the total sequences were not properly grouped, demonstrating reliability in the identification of microorganisms. This study identified the main genera found in endophytic bacterial cultures from plants, providing data for future studies on improving plant agriculture, biotechnology, endophytic bacterium prospecting, and to help understand relationships between endophytic bacteria and their interactions with plants. PMID:26345903

  3. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions...

  4. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions...

  5. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions...

  6. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions...

  7. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions...

  8. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fresh market tomato (dollar plan) crop insurance...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.139 Fresh market tomato (dollar plan) crop insurance provisions. The fresh market tomato (dollar plan)...

  9. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market tomato (dollar plan) crop insurance...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.139 Fresh market tomato (dollar plan) crop insurance provisions. The fresh market tomato (dollar plan)...

  10. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 2011...

  11. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 1999...

  12. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 2011...

  13. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... timely planted acreage. If you have limited or additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2013-01-01 2013-01-01 false Green pea crop insurance provisions. 457.137 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop...

  14. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... timely planted acreage. If you have limited or additional levels of coverage, as specified in 7 CFR part... 7 Agriculture 6 2014-01-01 2014-01-01 false Green pea crop insurance provisions. 457.137 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop...

  15. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia

    PubMed Central

    Spengler, Robert; Frachetti, Michael; Doumani, Paula; Rouse, Lynne; Cerasetti, Barbara; Bullion, Elissa; Mar'yashev, Alexei

    2014-01-01

    Archaeological research in Central Eurasia is exposing unprecedented scales of trans-regional interaction and technology transfer between East Asia and southwest Asia deep into the prehistoric past. This article presents a new archaeobotanical analysis from pastoralist campsites in the mountain and desert regions of Central Eurasia that documents the oldest known evidence for domesticated grains and farming among seasonally mobile herders. Carbonized grains from the sites of Tasbas and Begash illustrate the first transmission of southwest Asian and East Asian domesticated grains into the mountains of Inner Asia in the early third millennium BC. By the middle second millennium BC, seasonal camps in the mountains and deserts illustrate that Eurasian herders incorporated the cultivation of millet, wheat, barley and legumes into their subsistence strategy. These findings push back the chronology for domesticated plant use among Central Eurasian pastoralists by approximately 2000 years. Given the geography, chronology and seed morphology of these data, we argue that mobile pastoralists were key agents in the spread of crop repertoires and the transformation of agricultural economies across Asia from the third to the second millennium BC. PMID:24695428

  16. Spectral properties of agricultural crops and soils measured from space, aerial, field, and laboratory sensors

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Vanderbilt, V. C.; Robinson, B. F.; Daughtry, C. S. T.

    1981-01-01

    Investigations of the multispectral reflectance characteristics of crops and soils as measured from laboratory, field, aerial, and satellite sensor systems are reviewed. The relationships of important biological and physical characteristics to the spectral properties of crops and soils are addressed.

  17. Automatic Training Site Selection for Agricultural Crop Classification: a Case Study on Karacabey Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdarici Ok, A.; Akyurek, Z.

    2011-09-01

    This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m) and multispectral (4m) Kompsat-2 images (July 2008) of Karacabey Plain (~100km2), located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m) image and multispectral (4m) image are orthorectified. Next, the fused image (1m) is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i) spatial domain (hs), (ii) range domain (hr), and (iii) minimum region (MR). In this study, in total, 176 parameter combinations (hs, hr, and MR) are tested on a small part of the area (~10km2) to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000) is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m) to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  18. Economic Benefits of Predictive Models for Pest Control in Agricultural Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various forms of crop models or decision making tools for managing crops have existed for many years. The potential advantage of all of these decision making tools is that more informed and economically improved crop management or decision making is accomplished. However, examination of some of thes...

  19. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops

    NASA Astrophysics Data System (ADS)

    Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H.

    Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.

  20. Mapping changes in agricultural cropping frequency across Zimbabwe using cross-scale time-series remote sensing data and a novel signal decomposition method

    NASA Astrophysics Data System (ADS)

    Khandelwal, A.; Van Den Hoek, J.; Sedano, F.; Kumar, V.; Tucker, C. J.

    2014-12-01

    A central challenge in agricultural remote sensing is the detection of changes in intra-annual cropping frequency, often necessary in monitoring crop productivity, agricultural management practices, or policy implementation. Though remote sensing imagery offers synoptic and systematic measurements relevant to monitoring crop phenology across spatial scales, broad-scale (i.e., country-wide) changes in cropping frequency have seldom been quantified due to spatio-temporal heterogeneity in phenological and climatic cycles, signal noise, and missing data resulting from cloud cover. For example, in Zimbabwe, once the breadbasket of southern Africa, large-scale changes to agricultural production followed land distribution policies introduced in the early 2000s. The diverse impacts of land reform on the agricultural economy continue to be debated yet the underlying changes in cropping frequency and pattern have never been systematically assessed. Using Zimbabwean agriculture as a case study and MODIS 16-day composite Normalized Difference Vegetation Index (NDVI) and complementary Landsat imagery collected since 2000 across Zimbabwe, this presentation introduces a novel time-series signal decomposition and spatiotemporal clustering approach to map intra-annual cropping frequency and changes therein. MODIS-derived results indicate a massive decline in double-cropped acreage since 2000, a complete overhaul of cropping pattern with the disaggregation of large-scale commercial farms into multiple smallholder plots, and a spatial contraction of double-cropped fields to peri-urban lands, while Landsat trends capture the recent emergence of small-scale double-cropping systems unseen in MODIS data. These findings provide an independent and objective assessment of field-level changes in agricultural productivity, spatiotemporally explicit land reform effects on large-scale as well as smallholder agriculture and potential for food production, and have importance for regional water

  1. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  2. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  3. Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture

    NASA Astrophysics Data System (ADS)

    Kozak, Joseph A.; Ahuja, Lajpat R.; Green, Timothy R.; Ma, Liwang

    2007-01-01

    Crop canopies and residues have been shown to intercept a significant amount of rainfall. However, rainfall or irrigation interception by crops and residues has often been overlooked in hydrologic modelling. Crop canopy interception is controlled by canopy density and rainfall intensity and duration. Crop residue interception is a function of crop residue type, residue density and cover, and rainfall intensity and duration. We account for these controlling factors and present a model for both interception components based on Merriam's approach. The modified Merriam model and the current modelling approaches were examined and compared with two field studies and one laboratory study. The Merriam model is shown to agree well with measurements and was implemented within the Agricultural Research Service's Root Zone Water Quality Model (RZWQM). Using this enhanced version of RZWQM, three simulation studies were performed to examine the quantitative effects of rainfall interception by corn and wheat canopies and residues on soil hydrological components. Study I consisted of 10 separate hypothetical growing seasons (1991-2000) for canopy effects and 10 separate non-growing seasons (1991-2000) for residue effects for eastern Colorado conditions. For actual management practices in a no-till wheat-corn-fallow cropping sequence at Akron, Colorado (study II), a continuous 10-year RZWQM simulation was performed to examine the cumulative changes on water balance components and crop growth caused by canopy and residue rainfall interception. Finally, to examine a higher precipitation environment, a hypothetical, no-till wheat-corn-fallow rotation scenario at Corvallis, Oregon, was simulated (study III). For all studies, interception was shown to decrease infiltration, runoff, evapotranspiration from soil, deep seepage of water and chemical transport, macropore flow, leaf area index, and crop/grain yield. Because interception decreased both infiltration and soil evapotranspiration

  4. Assessment of possible allergenicity of hypothetical ORFs in common food crops using current bioinformatic guidelines and its implications for the safety assessment of GM crops.

    PubMed

    Young, Gregory J; Zhang, Shiping; Mirsky, Henry P; Cressman, Robert F; Cong, Bin; Ladics, Gregory S; Zhong, Cathy X

    2012-10-01

    Before a genetically modified (GM) crop can be commercialized it must pass through a rigorous regulatory process to verify that it is safe for human and animal consumption, and to the environment. One particular area of focus is the potential introduction of a known or cross-reactive allergen not previously present within the crop. The assessment of possible allergenicity uses the guidelines outlined by the Food and Agriculture Organization (FAO) and World Health Organization's (WHO) Codex Alimentarius Commission (Codex) to evaluate all newly expressed proteins. Some regulatory authorities have broadened the scope of the assessment to include all DNA reading frames between stop codons across the insert and spanning the insert/genomic DNA junctions. To investigate the utility of this bioinformatic assessment, all naturally occurring stop-to-stop frames in the non-transgenic genomes of maize, rice, and soybean, as well as the human genome, were compared against the AllergenOnline (www.allergenonline.org) database using the Codex criteria. We discovered thousands of frames that exceeded the Codex defined threshold for potential cross-reactivity suggesting that evaluating hypothetical ORFs (stop-to-stop frames) has questionable value for making decisions on the safety of GM crops. PMID:22867756

  5. Susceptibility of several floriculture crops to three common species of meloidogyne in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current and pending restriction on the use of soil fumigants and other nematicides effective in controlling nematodes in field grown floriculture crops has increased the importance of determining the relative susceptibility of these crops to important species of root-knot nematodes. Greenhouse ...

  6. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets.

    PubMed

    Knudsen, Knud Erik Bach

    2014-09-01

    The current paper reviews content and variation in fiber and nonstarch polysaccharides (NSP) of common crops used in broiler diets. The cereal grain is a complex structure, and its cell walls (CW) differ in their composition and hence properties. Arabinoxylan (AX), mixed linkage (1→3; 1→4)-β-glucan (β-glucan), cellulose, and the noncarbohydrate component lignin are the predominant polymers in cereals. They occur in different proportions depending on the species and tissue type. Rye, triticale, wheat, corn, and sorghum are all rich in AX, whereas barley and oats contain a high level of β-glucan. The AX from rye, wheat, and triticale and β-glucan from barley and oats are to a large extent soluble, whereas the solubility of AX found in corn and sorghum is lower than the other cereals. The ratio of arabinose to xylose gives a crude indication of the AX structure, which varies between the endosperm, the aleurone and the outer grain layers as well as between the same tissues from different grains. Varietal differences in AX structure of the endosperm are also identified. From the analysis of the released oligomers after hydrolysis with a specific (1→3,1→4)-β-d-glucan hydrolase, it is found that the ratio of trisaccharides (degree of polymerization 3) and tetrasaccharides (degree of polymerization 4) varies depending on the source, being higher in barley than in oats but lower than in wheat. The molecular weight of β-glucan is higher than that of AX, and both polymers contribute to the viscosity of the extract. However, because AX molecules are more resistant to degradation than β-glucan, the use of AX rich grains in broiler diets is usually more problematic than those containing high concentrations of β-glucan. The cereal coproducts (brans and hulls) are concentrated sources of cellulose, lignin, and insoluble AX, but β-glucan can also be present mainly in rye and wheat brans. The CW composition of seeds and grains of protein crops and feedstuffs are

  7. Synergies and liabilities: a full-cost approach to the abatement of greenhouse gas fluxes in row-crop agriculture

    NASA Astrophysics Data System (ADS)

    Philip Robertson, G.; Grace, P. R.

    2003-04-01

    According to the IPCC TAR, agriculture is responsible for 21-25% of the global anthropic CO2 flux, 55-60% of the anthropic CH4 flux, and 65-80% of the anthropic flux of N2O. A number of CO2 stabilization strategies target agricultural production practices, and the potential for simultaneously abating fluxes of the non-CO2 greenhouse gases is substantial. But so is the potential for creating greenhouse gas (GHG) liabilities, the unintentional increase in one or more GHGs by activities that mitigate another. Whole-system accounting provides a means for including all GHG-contributing processes in the same cropping system analysis in order to illuminate major liabilities and synergies. We contrast a field crop system in the upper U.S. midwest with a similar system in tropical India, and provide evidence that N2O flux - the major contributor to radiative forcing in both row-crop systems - can be abated with little loss of crop productivity.

  8. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    NASA Astrophysics Data System (ADS)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  9. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  10. Testing parametric BRDF models with CHRIS/PROBA acquisitions over agricultural crops

    NASA Astrophysics Data System (ADS)

    Verger, Aleixandre; Camacho-de Coca, Fernando; Meli, Joaquin

    2004-10-01

    A proper determination of the BRDF is of interest for land surface studies in different topics such as albedo estimation, correction of anisotropy effects, and retrieval of vegetation parameters by defining optimal geometries. In this paper, we evaluate a set of parametric models widely-used for BRDF characterisation (Roujean model, Ambrals combinations, non-linear RPV and the empirical Walthall's model). These models are inverted and tested against atmospherically-corrected BRF measurements acquired with the CHRIS (Compact High Resolution Imaging Spectrometer) instrument on board the PROBA (Project for On-Board Autonomy) satellite over an agricultural test site located in Barrax, Spain) during the SPARC (SPectra bARrax Campaign) 2003 campaign. The study area presents different land crops with high variability in LAI values from 0 to 6. The objectives of the present study are to determine how well the different parametric BRDF models are able to fit CHRIS/PROBA's observed multiangular reflectances in order to determine the nadir-zenith reflectance, which is the optimal geometry to retrieve the fractional vegetation coverage (FVC), and to describe the anisotropy of vegetation canopies, which can be useful to estimate accurately the leaf area index (LAI). To do so, performance indicators are obtained for the different models. The results of this study show that all the tested models are fairly accurate in the entire spectral range (RMS<0.016 at 674 nm and RMS<0.025 at 803 nm) and thus are suitable for normalisation purposes. However, most of them are not able to describe BRDF features such as the hot spot, which hampers the use of these models for exploiting the directional information. There are no significant differences, for the experimental conditions, among those evaluated although the best models appear to be the linear Ross-Li model (low RMS) and the non-linear RPV model (more realistic BRDF).

  11. Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2016-04-01

    Due to its high elevation and cold temperature, the Tibetan Plateau (TP) is regarded as the "Third Pole". Different from other polar regions, which are truly remote, the TP has a small population and a few agricultural activities. In this study, agricultural soil and crop samples (including highland barley and rape) were collected in the main farmland of the TP to obtain the contamination levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) in the Tibetan agricultural system as well as the relevant human exposure risks. The average concentrations of DDTs and HCHs in the agricultural soil, highland barley and rape were 1.36, 0.661, 1.03 ng/g dw and 0.349, 0.0364, 0.0225 ng/g dw, respectively. In the agricultural soil, DDTs and HCHs metabolism (DDE, DDD and β-HCH) were abundant, which indicated a "historical" source, whereas crops contained a similar composition ((DDE + DDD)/DDT, α/β-HCH and α/γ-HCH) to that of wild plants, suggesting that the DDTs and HCHs in crops are likely from long range atmospheric transport. The human health risks via non-dietary and dietary to DDTs and HCHs in the farmland were assessed. All of the hazard index (HI) values of DDTs and HCHs for non-carcinogenic risks were <1, and most of the cancer risk values were <10(-6), suggesting that DDTs and HCHs in the farmland will not pose non-carcinogenic risks and will pose only very low cancer risks to the Tibetan residents. PMID:26874624

  12. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it

  13. New insights into phosphorus management in agriculture--A crop rotation approach.

    PubMed

    Łukowiak, Remigiusz; Grzebisz, Witold; Sassenrath, Gretchen F

    2016-01-15

    This manuscript presents research results examining phosphorus (P) management in a soil–plant system for three variables: i) internal resources of soil available phosphorus, ii) cropping sequence, and iii) external input of phosphorus (manure, fertilizers). The research was conducted in long-term cropping sequences with oilseed rape (10 rotations) and maize (six rotations) over three consecutive growing seasons (2004/2005, 2005/2006, and 2006/2007) in a production farm on soils originated from Albic Luvisols in Poland. The soil available phosphorus pool, measured as calcium chloride extractable P (CCE-P), constituted 28% to 67% of the total phosphorus input (PTI) to the soil–plant system in the spring. Oilseed rape and maize dominant cropping sequences showed a significant potential to utilize the CCE-P pool within the soil profile. Cropping sequences containing oilseed rape significantly affected the CCE-P pool, and in turn contributed to the P(TI). The P(TI) uptake use efficiency was 50% on average. Therefore, the CCE-P pool should be taken into account as an important component of a sound and reliable phosphorus balance. The instability of the yield prediction, based on the P(TI), was mainly due to an imbalanced management of both farmyard manure and phosphorus fertilizer. Oilseed rape plants provide a significant positive impact on the CCE-P pool after harvest, improving the productive stability of the entire cropping sequence. This phenomenon was documented by the P(TI) increase during wheat cultivation following oilseed rape. The Unit Phosphorus Uptake index also showed a higher stability in oilseed rape cropping systems compared to rotations based on maize. Cropping sequences are a primary factor impacting phosphorus management. Judicious implementation of crop rotations can improve soil P resources, efficiency of crop P use, and crop yield and yield stability. Use of cropping sequences can reduce the need for external P sources such as farmyard manure

  14. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys

    PubMed Central

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general

  15. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys.

    PubMed

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general

  16. Promoting landscape-based crop management for food, feed, and bioenergy with precision agriculture technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failure to consider natural and anthropogenic soil variability within fields and across landscapes in the development and implementation of soil and crop management systems can limit crop production and degrade soil and water resources. Targeting of management systems based on soil variability is ne...

  17. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.

    PubMed

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C; Müller, Christoph; Arneth, Almut; Boote, Kenneth J; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A M; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W

    2014-03-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  18. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison

    PubMed Central

    Rosenzweig, Cynthia; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Müller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay; Neumann, Kathleen; Piontek, Franziska; Pugh, Thomas A. M.; Schmid, Erwin; Stehfest, Elke; Yang, Hong; Jones, James W.

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies. PMID:24344314

  19. Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia E.; Elliott, Joshua; Deryng, Delphine; Ruane, Alex C.; Mueller, Christoph; Arneth, Almut; Boote, Kenneth J.; Folberth, Christian; Glotter, Michael; Khabarov, Nikolay

    2014-01-01

    Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.

  20. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors

    NASA Astrophysics Data System (ADS)

    Dobbie, K. E.; McTaggart, I. P.; Smith, K. A.

    1999-11-01

    Emissions of nitrous oxide from intensively managed agricultural fields were measured over 3 years. Exponential increases in flux occurred with increasing soil water- filled pore space (WFPS) and temperature; increases in soil mineral N content due to fertilizer application also stimulated emissions. Fluxes were low when any of these variables was below a critical value. The largest fluxes occurred when WFPS values were very high (70-90%), indicating that denitrification was the major process responsible. The relationships with the driving variables showed strong similarities to those reported for very different environments: irrigated sugar cane crops, pastures, and forest in the tropics. Annual emissions varied widely (0.3-18.4 kg N2O-N ha-1). These variations were principally due to the degree of coincidence of fertilizer application and major rainfall events. It is concluded therefore that several years' data are required from any agricultural ecosystem in a variable climate to obtain a robust estimate of mean N2O fluxes. The emissions from small-grain cereals (winter wheat and spring barley) were consistently lower (0.2-0.7 kg N2O-N per 100 kg N applied) than from cut grassland (0.3-5.8 kg N2O- N per 100 kg N). Crops such as broccoli and potatoes gave emissions of the same order as those from the grassland. Although these differences between crop types are not apparent in general data comparisons, there may well be distinct regional differences in the relative and absolute emissions from different crops, due to local factors relating to soil type, weather patterns, and agricultural management practices. This will only be determined by more detailed comparative studies.

  1. Simulated crop yield in response to changes in climate and agricultural practices: results from a simple process based model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Smith, M. J.; Purves, D.; Emmott, S.

    2013-12-01

    Global agriculture will, in the future, be faced with two main challenges: climate change and an increase in global food demand driven by an increase in population and changes in consumption habits. To be able to predict both the impacts of changes in climate on crop yields and the changes in agricultural practices necessary to respond to such impacts we currently need to improve our understanding of crop responses to climate and the predictive capability of our models. Ideally, what we would have at our disposal is a modelling tool which, given certain climatic conditions and agricultural practices, can predict the growth pattern and final yield of any of the major crops across the globe. We present a simple, process-based crop growth model based on the assumption that plants allocate above- and below-ground biomass to maintain overall carbon optimality and that, to maintain this optimality, the reproductive stage begins at peak nitrogen uptake. The model includes responses to available light, water, temperature and carbon dioxide concentration as well as nitrogen fertilisation and irrigation. The model is data constrained at two sites, the Yaqui Valley, Mexico for wheat and the Southern Great Plains flux site for maize and soybean, using a robust combination of space-based vegetation data (including data from the MODIS and Landsat TM and ETM+ instruments), as well as ground-based biomass and yield measurements. We show a number of climate response scenarios, including increases in temperature and carbon dioxide concentrations as well as responses to irrigation and fertiliser application.

  2. Simulating the effects of climate and agricultural management practices on global crop yield

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  3. Translational research in agricultural biology - enhancing crop resistivity against environmental stress alongside nutritional quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural security, including producing nutritious food, is needed to make agriculture sustainable. All kinds of genetically engineered (transgenic) lines have been developed, including transgenic lines that have promise of withstanding environmental extremes (abiotic and biotic) and others that...

  4. Agricultural biology in the 3rd millennium: nutritional food security & specialty crops through sustainable agriculture and biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food security and agricultural sustainability are of prime concern in the world today in light of the increasing trends in population growth in most parts of the globe excepting Europe. The need to develop capacity to produce more to feed more people is complicated since the arable land is decreasin...

  5. Towards a Quantitative Use of Satellite Remote Sensing in Crop Growth Models for Large Scale Agricultural Production Estimate (Invited)

    NASA Astrophysics Data System (ADS)

    Defourny, P.

    2013-12-01

    The development of better agricultural monitoring capabilities is clearly considered as a critical step for strengthening food production information and market transparency thanks to timely information about crop status, crop area and yield forecasts. The documentation of global production will contribute to tackle price volatility by allowing local, national and international operators to make decisions and anticipate market trends with reduced uncertainty. Several operational agricultural monitoring systems are currently operating at national and international scales. Most are based on the methods derived from the pioneering experiences completed some decades ago, and use remote sensing to qualitatively compare one year to the others to estimate the risks of deviation from a normal year. The GEO Agricultural Monitoring Community of Practice described the current monitoring capabilities at the national and global levels. An overall diagram summarized the diverse relationships between satellite EO and agriculture information. There is now a large gap between the current operational large scale systems and the scientific state of the art in crop remote sensing, probably because the latter mainly focused on local studies. The poor availability of suitable in-situ and satellite data over extended areas hampers large scale demonstrations preventing the much needed up scaling research effort. For the cropland extent, this paper reports a recent research achievement using the full ENVISAT MERIS 300 m archive in the context of the ESA Climate Change Initiative. A flexible combination of classification methods depending to the region of the world allows mapping the land cover as well as the global croplands at 300 m for the period 2008 2012. This wall to wall product is then compared with regards to the FP 7-Geoland 2 results obtained using as Landsat-based sampling strategy over the IGADD countries. On the other hand, the vegetation indices and the biophysical variables

  6. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.

  7. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  8. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    PubMed

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  9. Assimilation of Downscaled SMOS Soil Moisture for Quantifying Drought Impacts on Crop Yield in Agricultural Regions in Brazil

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Bongiovanni, T. E.; Judge, J.; Principe, J. C.; Fraisse, C.

    2013-12-01

    Reliable soil moisture (SM) information in the root zone (RZSM) is critical for quantification of agricultural drought impacts on crop yields and for recommending management and adaptation strategies for crop management, commodity trading and food security.The recently launched European Space Agency-Soil Moisture and Ocean Salinity (ESA-SMOS) and the near-future National Aeronautics and Space Administration-Soil Moisture Active Passive (NASA-SMAP) missions provide SM at unprecedented spatial resolutions of 10-25 km, but these resolutions are still too coarse for agricultural applications in heterogeneous landscapes, making downscaling a necessity. This downscaled near-surface SM can be merged with crop growth models in a data assimilation framework to provide optimal estimates of RZSM and crop yield. The objectives of the study include: 1) to implement a novel downscalingalgorithm based on the Information theoretical learning principlesto downscale SMOS soil moisture at 25 km to 1km in the Brazilian La Plata Basin region and2) to assimilate the 1km-soil moisture in the crop model for a normal and a drought year to understand the impact on crop yield. In this study, a novel downscaling algorithm based on the Principle of Relevant Information (PRI) was applied to in-situ and remotely sensed precipitation, SM, land surface temperature and leaf area index in the Brazilian Lower La Plata region in South America. An Ensemble Kalman Filter (EnKF) based assimilation algorithm was used to assimilate the downscaled soil moisture to update both states and parameters. The downscaled soil moisture for two growing seasons in2010-2011 and 2011-2012 was assimilated into the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model over 161 km2 rain-fed region in the Brazilian LPB regionto improve the estimates of soybean yield. The first season experienced normal precipitation, while the second season was impacted by drought. Assimilation improved yield

  10. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    PubMed Central

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. PMID:25844008

  11. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability.

    PubMed

    Kumar, Anil; Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-10-01

    In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  12. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    PubMed Central

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  13. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    PubMed

    Qadir, M; Oster, J D

    2004-05-01

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  14. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate.

    PubMed

    Smith, Keith A; Mosier, Arvin R; Crutzen, Paul J; Winiwarter, Wilfried

    2012-05-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N(2)O). We obtained an N(2)O emission factor (EF) of 3-5%, and applied it to biofuel production. For 'first-generation' biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N(2)O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N(2)O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N(2)O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659-662.). However, by also including soil organic N mineralized following land-use change and NO(x) deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N(2)O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  15. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land

    PubMed Central

    West, Paul C.; Gibbs, Holly K.; Monfreda, Chad; Wagner, John; Barford, Carol C.; Carpenter, Stephen R.; Foley, Jonathan A.

    2010-01-01

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha−1 vs. ∼63 tons·ha−1) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha−1·y−1 vs. 3.84 tons·ha−1·y−1). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions. PMID:21041633

  16. Subsurface application of dry poultry litter: Impacts on common bermudagrass and other no-till crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry manure provides a rich organic nutrient source to fertilize crops and help neutralize soil acidity. However, the usual practice of broadcasting litter on the surface of pastures and other no-till systems can degrade water quality by allowing nutrients to be transported from fields in surfac...

  17. Common off-flavors in pond-raised channel catfish Ictalurus punctatus following partial crop harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel catfish (Ictalurus punctatus) ponds often contain larger standing crops of food-sized catfish than processors can accept at one time. Large fish populations with acceptable flavor quality are partially harvested and remaining fish are returned to the pond and harvested again as soon as poss...

  18. The Combination of Uav Survey and Landsat Imagery for Monitoring of Crop Vigor in Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Lukas, V.; Novák, J.; Neudert, L.; Svobodova, I.; Rodriguez-Moreno, F.; Edrees, M.; Kren, J.

    2016-06-01

    Mapping of the with-in field variability of crop vigor has a long tradition with a success rate ranging from medium to high depending on the local conditions of the study. Information about the development of agronomical relevant crop parameters, such as above-ground biomass and crop nutritional status, provides high reliability for yield estimation and recommendation for variable rate application of fertilizers. The aim of this study was to utilize unmanned and satellite multispectral imaging for estimation of basic crop parameters during the growing season. The experimental part of work was carried out in 2014 at the winter wheat field with an area of 69 ha located in the South Moravia region of the Czech Republic. An UAV imaging was done in April 2014 using Sensefly eBee, which was equipped by visible and near infrared (red edge) multispectral cameras. For ground truth calibration the spectral signatures were measured on 20 sites using portable spectroradiometer ASD Handheld 2 and simultaneously plant samples were taken at BBCH 32 (April 2014) and BBCH 59 (Mai 2014) for estimation of above-ground biomass and nitrogen content. The UAV survey was later extended by selected cloud-free Landsat 8 OLI satellite imagery, downloaded from USGS web application Earth Explorer. After standard pre-processing procedures, a set of vegetation indices was calculated from remotely and ground sensed data. As the next step, a correlation analysis was computed among crop vigor parameters and vegetation indices. Both, amount of above-ground biomass and nitrogen content were highly correlated (r > 0.85) with ground spectrometric measurement by ASD Handheld 2 in BBCH 32, especially for narrow band vegetation indices (e.g. Red Edge Inflection Point). UAV and Landsat broadband vegetation indices varied in range of r = 0.5 - 0.7, highest values of the correlation coefficients were obtained for crop biomass by using GNDVI. In all cases results from BBCH 59 vegetation stage showed lower

  19. Development of the Land-use and Agricultural Management Practice web-Service (LAMPS) for generating crop rotations in space and time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The Land-use and Agricultural Management Practices web-Service (LAMPS) provides crop rotation and management information for user-specified areas within...

  20. ELEMENTS IN MAJOR RAW AGRICULTURAL CROPS IN THE UNITED STATES. 1. CADMIUM AND LEAD IN LETTUCE, PEANUTS, SOYBEANS, SWEET CORN, AND WHEAT

    EPA Science Inventory

    Six raw agricultural crops (lettuce, peanuts, potatoes, soybeans, sweet corn and wheat were collected from major U.S. growing areas uncontaminated by human activities other than normal agricultural practices and analyzed for Cd and Pb by using differential pulse anodic stripping ...

  1. The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat

    NASA Technical Reports Server (NTRS)

    Kauth, R. J.; Thomas, G. S.

    1976-01-01

    The time trajectories of agricultural data points as seen in Landsat signal space form a pattern suggestive of a tasselled woolly cap. Most of the important crop phenomena can be described using this three dimensional construct: the distribution of signals from bare soil, the processes of green development, yellow development, and shadowing and harvesting. A linear preprocessing transformation which isolates green development, yellow development and soil brightness is used to reduce the dimension of the signal space. Specific measurable pattern elements of the tasselled cap are used to estimate and correct atmospheric haze and moisture effects.

  2. Impact of Bioenergy Crops in a Carbon Dioxide Constrained World: An Application of the MiniCAM Energy-Agriculture and Land Use Model

    SciTech Connect

    Gillingham, Kenneth; Smith, Steven J.; Sands, Ronald D.

    2007-10-01

    In the coming century, modern bioenergy crops have the potential to play a crucial role in the global energy mix, especially under policies to reduce carbon dioxide emissions as proposed by many in the international community. Previous studies have not fully addressed many of the dynamic interactions and effects of a policy-induced expansion of bioenergy crop production, particularly on crop yields and human food consumption. This study combines an updated agriculture and land use (AgLU) model with a well-developed energy-economic model to provide an analysis of the effects of bioenergy crops on energy, agricultural and land use systems. The results indicate that carbon mitigation policies can stimulate a large production of bioenergy crops, dependent on the severity of the policy. This production of bioenergy crops can lead to several impacts on the agriculture and land use system: decreases in forestland and unmanaged land, decreases in the average yield of food crops, increases in the prices of food crops, and decreases in the level of human consumption of calories.

  3. A preliminary study of the statistical analyses and sampling strategies associated with the integration of remote sensing capabilities into the current agricultural crop forecasting system

    NASA Technical Reports Server (NTRS)

    Sand, F.; Christie, R.

    1975-01-01

    Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.

  4. The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach

    NASA Astrophysics Data System (ADS)

    Kabubo-Mariara, Jane; Karanja, Fredrick K.

    2007-06-01

    This paper measures the economic impact of climate on crops in Kenya. We use cross-sectional data on climate, hydrological, soil and household level data for a sample of 816 households. We estimate a seasonal Ricardian model to assess the impact of climate on net crop revenue per acre. The results show that climate affects crop productivity. There is a non-linear relationship between temperature and revenue on one hand and between precipitation and revenue on the other. Estimated marginal impacts suggest that global warming is harmful for crop productivity. Predictions from global circulation models confirm that global warming will have a substantial impact on net crop revenue in Kenya. The results also show that the temperature component of global warming is much more important than precipitation. Findings call for monitoring of climate change and dissemination of information to farmers to encourage adaptations to climate change. Improved management and conservation of available water resources, water harvesting and recycling of wastewater could generate water for irrigation purposes especially in the arid and semi-arid areas.

  5. Edaphic and crop production changes resulting from pipeline installation in semiarid agricultural ecosystems

    SciTech Connect

    Zellmer, S.D.; Taylor, J.D.; Carter, R.P.

    1985-01-01

    The effects of pipeline installation on soil properties and crop production are being documented on three transects (pipe ditch, working side, and control) at four sites (dryland row crop, native pasture, dryland wheat, and irrigated cropland) in Beaver County, Oklahoma. Plant-cover data from the native pasture site show a 37% increase in cover on the pipe ditch during the initial growth season; no significant differences in cover were observed when the control and working side transects were compared. Wheat yield on the pipe ditch at the irrigated crop site was significantly higher, a fact attributed to increased moisture-retention capacity and lower bulk density of the pipe ditch soil. The significantly higher grain sorghum yield on the right-of-way at the dryland row crop site may have resulted from the reclamation practice of chisel plowing the right-of-way on croplands following pipeline construction. Data from the initial sampling and first year of monitoring of the Beaver County sites indicate pipeline installations in semiarid agro-ecosystems have either positive or negligible impacts on soil properties and crop production. 22 refs., 1 fig., 3 tabs.

  6. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950

    PubMed Central

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-01-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main crops

  7. Accidental Strangulation Due to Entrapment of Saree in Crop Thrasher Machine in an Elderly Women Working at Agricultural Field.

    PubMed

    Parchake, Manoj Bhausaheb; Kumre, Vikas; Kachare, Rajesh V

    2016-09-01

    Strangulation is generally considered as homicidal death and in accidental strangulation circumstantial evidence alone can point toward the accidental nature of incidence. In present case, a 71-year-old woman, wearing a saree (garment worn by traditional women in India) working in agricultural field, got entangled in the crop thrasher machine and got strangled. Immediately, she was taken to the nearest hospital, where she survived for 6 to 8 hours and then died. The autopsy reveals cross ribbon-shaped ligature mark on neck and anterior chest along with 1 puncture wound at the right lateral aspect of the neck. A lack of proper precaution and safety measures at agricultural field are other contributing factors. Accidental strangulation by saree is extremely rare, hence, this case is presented for its rarity and pattern of injury. PMID:27311083

  8. Recognising Differences in Weed and Crop Species Recognition Skills of Agriculture Students

    ERIC Educational Resources Information Center

    Burrows, Geoffrey E.

    2012-01-01

    Students in an agricultural science degree were surveyed to assess their ability to recognise plants of agricultural importance. The survey consisted of high quality images of 25 species. Students were surveyed at the start of their studies in first year, and at various times during their second year of studies. At the start of their studies…

  9. Integrating herbicides in a high-residue cover crop conservation agriculture setting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation agriculture systems provide a means to ensure long-term agricultural productivity, protect environmental quality, and reduce inputs into farming systems. Weed control in these systems rely on multiple tactics to achieve effective weed management while limiting chemical inputs. Practic...

  10. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  11. Grassland-cropping rotations: An avenue for agricultural diversification to reconcile high production with environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity...

  12. Exploiting MODIS Observation Geometry To Identify Crop Specific Time Series For Regional Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Lopez-Lozano, Raul

    2013-12-01

    Due to its spatial resolution, the MODIS instrument offers much potential to monitor specific crops from space. However, only some time series fall adequately in the target crop specific fields while others straddle across different land uses, which consequently dilutes the signal. According to the daily change in orbit, the MODIS observation footprint changes considerably from one day to the next, sampling the vicinity of the grid cell. This study proposes a method to identify which time series are suitable based on the temporal signal-to-noise ratio (SNR) of such daily observations, which are acquired with different observation geometries. The approach is demonstrated over a 30 by 30 km study site in South Dakota (USA) where the time series with high SNR are classified in an unsupervised way into clusters almost exclusively composed of crop specific time series.

  13. Effects of coal-fired thermal power plant discharges on agricultural soil and crop plants

    SciTech Connect

    Ajmal, M.; Khan, M.A.

    1986-04-01

    The physicochemical properties of the upstream and downstream waters from the Upper Ganga canal, discharged cooling tower water, machine washings, and scrubber and bottom ash effluents of a 530 MW Kasimpur coal-fired thermal power plant have been determined, and their effects directly on fertile soil and indirectly on pea (Pisum sativam) and wheat (Triticum aestivum) crops have also been studied. The effluents were alkaline in nature. The scrubber and bottom ash effluent contained large amounts of solids and had high biochemical and chemical oxygen demands. The soils irrigated with the different effluents exhibited an increase in pH, organic matter, calcium carbonate, water-soluble salts, cation exchange capacity, electrical conductivity, and nitrogen and phosphorus contents while potassium content decreased. The effects of 100, 50, and 0% (tap water control) dilutions of cooling tower, machine washings, and scrubber and bottom ash effluents on the germination and growth of pea and wheat crops were also monitored. Using the undiluted effluents, there was 100% germination for both crops when irrigation was done with cooling tower effluent. Germination was restricted to 90% for the two crops when irrigated with machine washings effluent, and to 80 and 70% for pea and wheat, respectively, when irrigated with scrubber and bottom ash effluent. Samples of upstream and downstream canal water were also used for irrigating soils with and without crop plants in order to ascertain the impact of effluents on canal water and its subsequent effect on crops. The soils irrigated with downstream canal water were found to contain slightly more calcium carbonate, phosphorus, and ammonia-nitrogen than those receiving upstream canal water. Though 100% germination was obtained in both cases, the growth of plants irrigated with the downstream canal water was slightly reduced.

  14. Irrigation water demand of selected agricultural crops in Germany between 1902 and 2010.

    PubMed

    Drastig, Katrin; Prochnow, Annette; Libra, Judy; Koch, Hagen; Rolinski, Susanne

    2016-11-01

    Irrigation water demand (IWD) is increasing worldwide, including in regions such as Germany that are characterized with low precipitation levels, yet grow water-demanding crops such as sugar beets, potatoes, and vegetables. This study aimed to calculate and analyze the spatial and temporal changes in the IWD of four crops-spring barley, oat, winter wheat, and potato-between 1902 and 2010 in Germany by using the modeling software AgroHyd Farmmodel. Climatic conditions in Germany continued to change over the investigation period, with an increase in temperature of 0.01K/yr and an increase in precipitation of 1mm/yr. Nevertheless, no significant increasing or decreasing trend in IWD was noted in the analysis. The IWD for the investigated crops in the area of the current "Federal Republic of Germany" over the 109years was 112mm/yr, varying between 100 and 127mm/yr. Changes in cropping pattern and cultivated area over the last century caused large differences in the IWD calculated for each administrative district. The mean annual IWD of over the study period (which was divided into 4 parts) varied between 13,455Mm(3)/yr in the earliest period (1902-1919) and 4717Mm(3)/yr in the latest period (1990-2010). Policy and management measures to adapt to climate change are currently being debated in Germany. The presented results suggest that the effects of the choice of crops (in this case, changes in cropping pattern in the German nation states) had a stronger influence on regional water resources than those of climate variability. Thus, the influence of climate change on water resources is relativized which brings an important input into the debate. PMID:27395071

  15. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    SciTech Connect

    Melintescu, A.; Galeriu, D.; Diabate, S.; Strack, S.

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  16. Improving Crop Classification Techniques Using Optical Remote Sensing Imagery, High-Resolution Agriculture Resource Inventory Shapefiles and Decision Trees

    NASA Astrophysics Data System (ADS)

    Melnychuk, A. L.; Berg, A. A.; Sweeney, S.

    2010-12-01

    Recognition of anthropogenic effects of land use management practices on bodies of water is important for remediating and preventing eutrophication. In the case of Lake Simcoe, Ontario the main surrounding landuse is agriculture. To better manage the nutrient flow into the lake, knowledge of the management of the agricultural land is important. For this basin, a comprehensive agricultural resource inventory is required for assessment of policy and for input into water quality management and assessment tools. Supervised decision tree classification schemes, used in many previous applications, have yielded reliable classifications in agricultural land-use systems. However, when using these classification techniques the user is confronted with numerous data sources. In this study we use a large inventory of optical satellite image products (Landsat, AWiFS, SPOT and MODIS) and ancillary data sources (temporal MODIS-NDVI product signatures, digital elevation models and soil maps) at various spatial and temporal resolutions in a decision tree classification scheme. The sensitivity of the classification accuracy to various products is assessed to identify optimal data sources for classifying crop systems.

  17. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  18. Evaporative loss from the interrow of irrigated crops in a semi-arid agricultural area

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil evaporation plays an important role in the water balance of irrigated crops, especially in arid and semi-arid regions. Irrigation scheduling may affect the fraction of evaporative loss (E) from the total evapotranspiration (ET), and thus affect the water use efficiency. During the second intens...

  19. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture.

    PubMed

    Gallagher, Morgan E; Hockaday, William C; Masiello, Caroline A; Snapp, Sieglinde; McSwiney, Claire P; Baldock, Jeffrey A

    2011-03-01

    Concerns about energy security and climate change have increased biofuel demand, particularly ethanol produced from cellulosic feedstocks (e.g., food crop residues). A central challenge to cropping for cellulosic ethanol is the potential environmental damage from increased fertilizer use. Previous analyses have assumed that cropping for carbohydrate in residue will require the same amount of fertilizer as cropping for grain. Using (13)C nuclear magnetic resonance, we show that increases in biomass in response to fertilization are not uniform across biochemical classes (carbohydrate, protein, lipid, lignin) or tissues (leaf and stem, grain, reproductive support). Although corn grain responds vigorously and nonlinearly, corn residue shows only modest increases in carbohydrate yields in response to high levels of fertilization (25% increase with 202 kg N ha(-1)). Lignin yields in the residue increased almost twice as much as carbohydrate yields in response to nitrogen, implying that residue feedstock quality declines as more fertilizer is applied. Fertilization also increases the decomposability of corn residue, implying that soil carbon sequestration becomes less efficient with increased fertilizer. Our results suggest that even when corn is grown for grain, benefits of fertilization decline rapidly after the ecosystem's N demands are met. Heavy application of fertilizer yields minimal grain benefits and almost no benefits in residue carbohydrates, while degrading the cellulosic ethanol feedstock quality and soil carbon sequestration capacity. PMID:21348531

  20. Iowa Commercial Pesticide Applicator Manual, Category 1C: Agricultural Crop Disease Control. CS-11.

    ERIC Educational Resources Information Center

    Nyvall, Robert F.; Ryan, Stephen O.

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. It summarizes the economically important diseases of field and forage crops such as corn, soybeans and alfalfa. Special attention is given to pesticide application methods and safety. (CS)

  1. Cover crop mixtures for promoting arbuscular mycorrhizal fungi in production agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal fungi (AMF) associate with an estimated 80-90 percent of flowering plants and virtually every crop species that supplies food to the world. AMF play a vital role in nutrient uptake and are particularly adept at increasing phosphorus availability to plants. With the growing e...

  2. Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Release of carbon dioxide through microbial respiration from the world’s crop residues (non-edible plant parts left in the field after harvest) represents an important form of carbon transfer from terrestrial ecosystems to the atmosphere. We hypothesized that alleviation of environmental stress (moi...

  3. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  4. New roller concepts for mechanical terminating cover crops in conservation agriculture in the southern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rollers may provide a viable option to herbicides for terminating cover crops; however, excessive vibration generated by rollers and transferred to tractors hinders adoption of this technology in the US. To avoid excessive vibration, producers must limit their operational speed, which increases time...

  5. A new expanded host range of Cucurbit yellow stunting disorder virus includes three agricultural crops.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucurbit yellow stunting disorder virus (CYSDV) was identified in the fall of 2006 affecting cucurbit production in the Imperial Valley of California, the adjacent Yuma, AZ region, as well as nearby Sonora, Mexico. There was nearly universal infection of fall melon crops in 2006 and 2007, and late,...

  6. Production and Adaptation Assessments of Agricultural Crops under Climate Change in Southeastern United States

    NASA Astrophysics Data System (ADS)

    Absar, M.; Touma, D. E.; Mei, R.; Rastogi, D.; Surendran Nair, S.; Ahmed, K. F.; Wu, W.; Preston, B. L.; Ashfaq, M.

    2013-12-01

    We use multiple Global Climate Models (GCMs) data from the 5th phase of the Coupled Model Inter-comparison Project (CMIP5) in a point based crop simulation model, Decision Support System for Agro-technology Transfer (DSSAT), to investigate the impact of climate variability and change on crop yields in the southeastern United States. The input data consists of maximum and minimum temperatures, precipitation and solar radiation at daily time-scale, covering 30 years (1975-2004) in the baseline period, and 90 years (2010-2100) in the future period under the Representative Concentration Pathway (RCP) 8.5. The DSSAT model is run for 1009 counties of 10 southeastern states, representing the study area. Default DSSAT crop and biophysical process parameter values are used with some minor adjustments based on suggestions from scientific literature. For the analyses of projected changes, we divide the 21st century into the near-term (2010-2039), mid-term (2040-2069) and long-term (2070-2100) periods and investigate the effect of changes in mean and extreme hydro-meteorological characteristics on crop yields by using future temperature, precipitation and CO2 data. We conduct two sets of experiments; the first set of experiments isolates the effect of temperature and precipitation on crop yields by using temperature and precipitation data from each of the three future periods while keeping CO2 at the baseline level (380ppm). The second set of experiments isolates the effect of CO2 on crop yields by using temperature and precipitation from the baseline period and using CO2 level as an average of the last 10 years in each of the three future periods (467ppm, 636ppm and 886ppm). Given the projected changes in the crop yields in the future, we focus on the adaptation strategies at the local level based on the optimal management practices such as irrigation, fertilization and planting date that will be needed to adapt to regional climate variability and change.

  7. Agriculture Crop Burning in Northwestern India and Its Impact on Atmospheric Pollution and Air Quality

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Chauhan, A.; Gonzalez Abad, G.

    2014-12-01

    Crop burning season, over northern India, occurs during October-November and April-May after harvesting season. The mechanized harvesting started in 1986, and every year crop residues are burnt in the northwestern parts of India. During post-monsoon season, October - November, the boundary layer is shallow; as a result the crop burning greatly impacts the regional air quality and climate of the northern parts of south Asia. Due to intense burning episodes, heavy smoke pollution-laden plumes are transported all along the Indo-Gangetic basin in the northern parts of India, depending upon diurnal changes in the wind patterns. We find that, in general, the dominant westerly winds transport the plumes and emissions far away from the source region up to the eastern parts of Indo-Gangetic basin, further dispersing over central India to the south. We use retrievals of formaldehyde and nitrogen dioxide and Aerosol Index from the Ozone Monitoring Instrument (OMI) onboard NASA Aura satellite together with Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA Terra and Aqua fire counts to assess the seasonal variation and geographical extent of the emissions due to burning of crop residues. In addition, our results, based on satellite measurements, indicate that the smoke plumes and biomass burning emissions are also transported over the Himalayan region and beyond, resulting in enhanced concentrations of aerosol loading and trace gases. Overall, our findings suggest that, during post-monsoon season, crop burning smoke plumes and emissions are the main cause of poor air quality, high atmospheric pollution and dense haze/smog, especially in the Indo-Gangetic basin.

  8. Production and Adaptation Assessments of Agricultural Crops under Climate Change in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Absar, S. M.; Touma, D. E.; Preston, B. L.; Ashfaq, M.

    2012-12-01

    We use multiple Global Climate Models (GCMs) data from the 5th phase of the Coupled Model Inter-comparison Project (CMIP5) in a point based crop simulation model, Decision Support System for Agro-technology Transfer (DSSAT), to investigate the impact of climate variability and change on crop yields in the southeastern United States. The input data consists of maximum and minimum temperatures, precipitation and solar radiation at daily time-scale, covering 40 years (1960-1999) in the baseline period, and 90 years (2010-2100) in the future period under the baseline emissions scenario of Representative Concentration Pathway (RCP) 8.5. The DSSAT model has been calibrated for 29 sites, representing the study area, using field experiment data. The input soil parameters for DSSAT include soil classification, surface slope, color, permeability, and drainage. For the analyses of projected changes, we divide the 21st century into the near-term (2010-2049) and long-term (2050-2100) periods and focus on comparing the yields of major crops grown at the selected sites, during each future period, with the corresponding yields in the baseline period. In particular, we investigate the effect of changes in mean and extreme hydro-meteorological characteristics on crop yields in the region. Given the projected changes in the crop yields in the future periods, we focus on the adaptation strategies at the local level based on the optimal management practices such as irrigation, fertilization, sowing date that will be needed to cope with climate variability and change in the region.

  9. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented... 7 Agriculture 6 2013-01-01 2013-01-01 false Extra long staple cotton crop insurance provisions... CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.105...

  10. 7 CFR 457.105 - Extra long staple cotton crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented... 7 Agriculture 6 2012-01-01 2012-01-01 false Extra long staple cotton crop insurance provisions... CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.105...

  11. Comparative energy analysis of agricultural crops used for producing ethanol and carbon dioxide emissions

    SciTech Connect

    Aurelio dos Santos, M.; Marland, G.

    1997-12-31

    The present study employs the methodology of energy balance for the analysis undertaken, highlighting the local conditions that influence the process of transformation of biomass into Ethanol, such as: technology, agricultural productivity, environmental conditions, etc.

  12. Identification of agricultural crops by computer processing of ERTS MSS data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Cipra, J. E.

    1973-01-01

    Quantitative evaluation of computer-processed ERTS MSS data classifications has shown that major crop species (corn and soybeans) can be accurately identified. The classifications of satellite data over a 2000 square mile area not only covered more than 100 times the area previously covered using aircraft, but also yielded improved results through the use of temporal and spatial data in addition to the spectral information. Furthermore, training sets could be extended over far larger areas than was ever possible with aircraft scanner data. And, preliminary comparisons of acreage estimates from ERTS data and ground-based systems agreed well. The results demonstrate the potential utility of this technology for obtaining crop production information.

  13. Soil heterotrophic respiration responses to meteorology, soil types and cropping systems in a temperate agricultural watershed.

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Viaud, Valérie; Fléchard, Chris

    2015-04-01

    Within the context of Climate Change, a better understanding of soil organic matter dynamics is of considerable importance in agro-ecosystems, due to their large mitigation potential. This study aims at better understanding the process of soil heterotrophic respiration at the annual scale and at the watershed scale, with these temporal and spatial scales allowing an integration of the most important drivers: cropping systems and management, topography, soil types, soil organic carbon content and meteorological conditions. Twenty-four soil CO2 flux measurement sites - comprising three PVC collars each - were spread over the Naizin-Kervidy catchment (ORE AgrHys, 4.9 km², W. France) in March 2014. These sites were selected in order to represent most of the diversity in drainage classes, soil types and cropping systems. Soil CO2 flux measurements were performed about every ten to fifteen days at each site, starting from 20 March 2014, using the dynamic closed chamber system Li-COR 8100. Soil temperature and soil moisture content down to 5 cm depth were measured simultaneously. An empirical model taking the influence of meteorological drivers (soil temperature and soil water content) on soil CO2 fluxes was applied to each site and the different responses were analyzed with regard to site characteristics (topography, soil organic carbon content, soil microbial biomass, crop type, crop management,…) in order to determine the most important driving variables of soil heterotrophic respiration. The modeling objective is then to scale the fluxes measured at all sites up to the full watershed scale.

  14. An automatic agricultural zone classification procedure for crop inventory satellite images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J.; Velasco, F. R. D.; Deoliveira, M. O. B.

    1982-01-01

    A classification procedure for assessing crop areal proportion in multispectral scanner image is discussed. The procedure is into four parts: labeling; classification; proportion estimation; and evaluation. The procedure also has the following characteristics: multitemporal classification; the need for a minimum field information; and verification capability between automatic classification and analyst labeling. The processing steps and the main algorithms involved are discussed. An outlook on the future of this technology is also presented.

  15. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan.

    PubMed

    Al-Kharouf, Samer J; Al-Hamarneh, Ibrahim F; Dababneh, Munir

    2008-07-01

    Khan Al-Zabeeb, an irrigated cultivated area lies above a superficial uranium deposits, is regularly used to produce vegetables and fruits consumed by the public. Both soil and plant samples collected from the study area were investigated for their natural radioactivity to determine the uranium uptake by crops and hence to estimate the effective dose equivalent to human consumption. Concentrations of (238)U, (235)U, (232)Th, (226)Ra, (222)Rn, (137)Cs and (40)K in nine soil profiles were measured by gamma-ray spectrometry whereas watermelon and zucchini crops were analyzed for their uranium content by means of alpha spectrometry after radiochemical separation. Correlations between measured radionuclides were made and their activity ratios were determined to evaluate their geochemical behavior in the soil profiles. Calculated soil-plant transfer factors indicate that the green parts (leaves, stems and roots) of the studied crops tend to accumulate uranium about two orders of magnitude higher than the fruits. The maximum dose from ingestion of 1 kg of watermelon pulp was estimated to be 3.1 and 4.7 nSv y(-1) for (238)U and (234)U, respectively. Estimations of the annual effective dose equivalent due to external exposure showed extremely low values. Radium equivalent activity and external hazard index were seen to exceed the permissible limits of 370 Bq kg(-1) and 1, respectively. PMID:18359539

  16. Variability of Total Below Ground Carbon Allocation amongst Common Agricultural Land Management Practices: a Case Study

    NASA Astrophysics Data System (ADS)

    Wacha, K. M.; Papanicolaou, T.; Wilson, C. G.

    2010-12-01

    Field measurements and numerical models are currently being used to estimate quantities of Total Belowground Carbon Allocation (TBCA) for three representative land uses, viz. corn, soybeans, and prairie bromegrass for CRP (Conservation Reserve Program) of an agricultural Iowa sub-watershed, located within the Clear Creek Watershed (CCW). Since it is difficult to measure TBCA directly, a mass balance approach has been implemented to estimate TBCA as follows: TBCA = FS + FE+ Δ(CS + CR + CL) - FA , where the term Fs denotes soil respiration; FE is the carbon content of the eroded/deposited soil; ΔCS, ΔCR, ΔCL denote the changes in carbon content of the mineral soil, plant roots, and litter layer, respectively; and FA is the above ground litter fall of dead plant material to the soil. The terms are hypothesized to have a huge impact on TBCA within agricultural settings due to intensive tillage practices, water-driven soil erosion/deposition, and high usage of fertilizer. To test our hypothesis, field measurements are being performed at the plot scale, replicating common agricultural land management practices. Soil respiration (FS) is being measured with an EGM-4 CO2 Gas Analyzer and SRC-1 Soil Respiration Chamber (PP Systems), soil moisture and temperature are recorded in the top 20 cm for each respective soil respiration measurement, and litter fall rates (FA) are acquired by collecting the residue in a calibrated pan. The change in carbon content of the soil (ΔCS), roots (ΔCR) and litter layer (ΔCL) are being analyzed by collecting soil samples throughout the life cycle of the plant. To determine the term FE for the three representative land management practices, a funnel collection system located at the plot outlet was used for collecting the eroded material after natural rainfall events. Field measurements of TBCA at the plot scale via the mass balance approach are used to calibrate the numerical agronomic process model DAYCENT, which simulates the daily

  17. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    NASA Astrophysics Data System (ADS)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  18. Rodent food quality and its relation to crops and other environmental and population parameters in an agricultural landscape.

    PubMed

    Eva, Janova; Marta, Heroldova; Ladislav, Cepelka

    2016-08-15

    The diet, its quality and quantity considerably influence population parameters of rodents. In this study, we used NIRS methods for estimation of nitrogen content in stomachs of rodent populations. The study was carried out in diverse arable landscape in South Moravia, Czech Republic. Rodents were sampled in cultural crops (alfalfa, barley, wheat, sunflower, maize and rape) as well as in fallow habitats (herbal set-aside and old orchard). Influence of habitat, date, year, individual parameters (body length, sex, breeding and age), and relative abundance on quality of consumed food was studied. Under conditions of higher population density, dominant species [wood mouse (Apodemus sylvaticus) and common vole (Microtus arvalis)] consumed food richer in nitrogen. Also the strong effect of crop and date (season) was found in both species. There was no significant effect of the other parameters studied on food quality (N-content). PMID:27099997

  19. Using satellite remote sensing and hydrologic modeling to improve understanding of crop management and agricultural water use at regional to global scales

    NASA Astrophysics Data System (ADS)

    Salmon, Jessica Meghan

    Croplands are essential to human welfare. In the coming decades, croplands will experience substantial stress from climate change, population growth, changing diets, urban expansion, and increased demand for biofuels. Food security in many parts of the world therefore requires informed crop management and adaptation strategies. In this dissertation, I explore two key dimensions of crop management with significant potential to improve adaptation pathways: irrigation and crop calendars. Irrigation, which is widely used to boost crop yields, is a key strategy for adapting to changes in drought frequency and duration. However, irrigation competes with household, industrial, and environmental needs for freshwater resources. Accurate information regarding irrigation patterns is therefore required to develop strategies that reduce unsustainable water use. To address this need, I fused information from remote sensing, climate datasets, and crop inventories to develop a new global database of rain-fed, irrigated, and paddy croplands. This database describes global agricultural water management with good realism and at higher spatial resolution than existing maps. Crop calendar management helps farmers to limit crop damage from heat and moisture stress. However, global crop calendar information currently lacks spatial and temporal detail. In the second part of my dissertation I used remote sensing to characterize global cropping patterns annually, from 2001-2010, at 0.08 degree spatial resolution. Comparison of this new dataset with existing sources of crop calendar data indicates that remote sensing is able to correct substantial deficiencies in available data sources. More importantly, the database provides previously unavailable information related to year-to-year variability in cropping patterns. Asia, home to roughly one half of the Earth's population, is expected to experience significant food insecurity in coming decades. In the final part of my dissertation, I used a

  20. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2011-01-01 2011-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern...

  1. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2014-01-01 2014-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern...

  2. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2013-01-01 2013-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern...

  3. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2012-01-01 2012-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern...

  4. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 CFR part 400, subpart T, and pay an additional premium, you may increase your prevented planting... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance provisions. 457.142... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern...

  5. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... coverage, as specified in 7 CFR part 400, subpart T, and pay an additional premium, you may increase you... 7 Agriculture 6 2010-01-01 2010-01-01 false Sunflower seed crop insurance provisions. 457.108... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.108 Sunflower...

  6. Geostatistical analysis of the soil and crop parameters in a field experiment on precision agriculture

    NASA Astrophysics Data System (ADS)

    Sidorova, V. A.; Zhukovskii, E. E.; Lekomtsev, P. V.; Yakushev, V. V.

    2012-08-01

    A thorough geostatistical analysis was performed of the spatial variability of the soil properties, the sowing parameters, and the wheat yield in a field experiment under precision agriculture conditions. It was found that most of the soil parameters are significantly correlated and can be successfully mapped using kriging procedures, which ensure the optimum development of agrochemical cartograms for agricultural fields. It was also shown that the sowing parameters had a significantly lower spatial correlation; their cartograms could be drawn, although with worse accuracy. The quality parameters of the wheat grain showed no spatial correlation.

  7. Mapping Crop Patterns in Central US Agricultural Systems from 2000 to 2014 Based on Landsat Data: To What Degree Does Fusing MODIS Data Improve Classification Accuracies?

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.

    2015-12-01

    Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.

  8. Low Energy Technology. A Unit of Instruction in Florida Agriculture. Crop Protection with Integrated Pest Management.

    ERIC Educational Resources Information Center

    Florida Univ., Gainesville. Inst. of Food and Agricultural Sciences.

    This unit of instruction on integrated pest management was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate their students and…

  9. Automated canopy estimator (ACE): Enhancing crop modelling and decision making in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Caribbean agriculture sector is dominated by small holdings, which are overly reliant on rainfall and highly dependent on manual means of optimization. The sector is therefore very vulnerable to the vagaries of climate variability and change, with rainfall variations being of particular concern...

  10. Object-Oriented Agricultural System Modeling: Component-Driven Nutrient Dynamics and Crop Yield Simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to sim...

  11. Simulating semiarid dryland cropping systems using the precision agricultural landscape modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Precision Agricultural Landscape Modeling System (PALMS) is a terrain and weather driven, and distributed parameter hydrological-biophysical model primarily used in the Midwestern United States. Recently, research was started to evaluate the effectiveness of PALMS on irrigated and on dryland cro...

  12. Runoff and sediment reduction from integration of native prairie filter strips into row-crop agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroecosystems provide multiple benefits including food, fiber, fuel, clean water and air, habitat, carbon sequestration, recreation, and aesthetics. But most agricultural landscapes are managed for only a few of these benefits. This project aimed to evaluate how the integration of diverse perennial...

  13. Teaching Diversified Organic Crop Production Using the Community Supported Agriculture Farming System Model

    ERIC Educational Resources Information Center

    Falk, Constance L.; Pao, Pauline; Cramer, Christopher S.

    2005-01-01

    An organic garden operated as a community supported agriculture (CSA) venture on the New Mexico State University (NMSU) main campus was begun in January 2002. Students enroll in an organic vegetable production class during spring and fall semesters to help manage and work on the project. The CSA model of farming involves the sale of shares to…

  14. Differential attachment to and subsequent contamination of agricultural crops by Salmonella enterica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    U.S. salmonellosis outbreaks have occurred following consumption of tomato and cantaloupe but not lettuce. We report differential contamination among agricultural seedlings by Salmonella enterica via soil. Members of the family Brassicaceae had a higher incidence of outbreak than carrot, lettuce, an...

  15. Kids, Crops, & Critters in the Classroom: An Agricultural Literacy Resource Guide for Grades K-3.

    ERIC Educational Resources Information Center

    Illinois Farm Bureau, Bloomington.

    This resource guide provides teachers of grades K-3 with ideas and materials to integrate agricultural concepts into classroom activities. The guide is organized into six categories: math, science, language arts, social studies, fine arts, and health/nutrition/safety. Each of the categories contains 10 lessons organized in the following topic…

  16. Kids, Crops, & Critters in the Classroom: An Agricultural Literacy Resource Guide for Grades 4-6.

    ERIC Educational Resources Information Center

    Illinois Farm Bureau, Bloomington.

    This resource guide provides teachers of grades 4-6 with ideas and materials to integrate agricultural concepts into classroom activities. The guide is organized into six categories: math, science, language arts, social studies, fine arts, and health/nutrition/safety. Each category contains 10 lessons organized in the following topic order:…

  17. Assessments of carbon and water cycling in multiple agricultural ecosystems in the Inland Pacific Northwest using eddy covariance flux measurements and integrated basin-crop model simulation

    NASA Astrophysics Data System (ADS)

    Chi, J.; Maureira, F.; Waldo, S.; O'Keeffe, P.; Pressley, S. N.; Stockle, C. O.; Lamb, B. K.

    2014-12-01

    Local meteorology, crop management practices and site characteristics have important impacts on carbon and water cycling in agricultural ecosystems. This study focuses on carbon and water fluxes measured using eddy covariance (EC) methods and crop simulation models in the Inland Pacific Northwest (IPNW), in association with the Regional Approaches to Climate Change (REACCH) program. The agricultural ecosystem is currently challenged by higher pressure on water resources as a consequence of population growth and increasing exposure to impacts associated with different types of crop managements. In addition, future climate projections for this region show a likely increase in temperature and significant reductions in precipitation that will affect carbon and water dynamics. This new scenario requires an understanding of crop management by assessing efficient ways to face the impacts of climate change at the micrometeorological level, especially in regards to carbon and water flow. We focus on three different crop management sites. One site (LIND) under crop-fallow is situated in a low-rainfall area. The other two sites, one no-till site (CAF-NT) and one conventional tillage site (CAF-CT), are located in an area of high-rainfall with continuous cropping. In this study, we used CropSyst micro-basin model to simulate the responses in carbon and water budgets at each site. Based on the EC processed results for net ecosystem exchange (NEE) of CO2, the CAF-NT site was a carbon sink during 2013 when spring garbanzo was planted; while the paired CAF-CT site, under similar crop rotation and meteorological conditions, was a carbon source during the same period. The LIND site was also a carbon sink where winter wheat was growing during 2013. Model results for CAF-NT showed good agreement with the EC carbon and water flux measurements during 2013. Through comparisons between measurements and modeling results, both short and long term processes that influence carbon and water

  18. Climate Change and Projected Impacts in Agriculture: an Example on Mediterranean Crops

    NASA Astrophysics Data System (ADS)

    Ferrise, R.; Moriondo, M.; Bindi, M.

    2009-04-01

    Recently, the availability of multi-model ensemble prediction methods has permitted the assignment of likelihoods to future climate projections. This allowed moving from the scenario-based approach to the risk-based approach in assessing the effects of climate change, thus providing more useful information for decision-makers that, as reported by Schneider (2001), need probability estimates to assess the seriousness of the projected impacts. The probabilistic approach to evaluate crop response to climate change mainly consists in applying an impact model (such as crop growth model) to a very large number of climate projections so to provide a probabilistic distribution of the variable selected to evaluate the impact. By comparing the outputs of the multi-simulation with a critical threshold (such as minimum yield below which it is not admissible to fall), it is possible to evaluate the risk related to future climate conditions. Unfortunately, such an approach is a time-consuming process due to the large number of model runs needed for such a procedure. An alternative method relies on the set up of impact response surfaces (RS) with respect to key climatic variables on which a probabilistic representation of projected changes in the same climatic variables may be overlaid (Fronzek et al. 2008). This approach was exploited within the ENSEMBLES EU Project aiming at assessing climate change impact on typical Mediterranean crops. This work presents the results of the project with a particular concerning about the assessment of risk, of durum wheat (T. turgidum L. subsp. durum (Desf.) Husn) and grapevine (Vitis vinifera L.) yield falling below fixed thresholds, using probabilistic information about future climate. Methodology The simple mechanistic crop growth models, SIRIUS Quality (Jamieson et al., 1998) and VITE-model (Bindi et al., 1997a,b), were selected to respectively simulate durum wheat and grapevine yields in present and future scenarios. SIRIUS Quality is a

  19. Identification and area estimation of agricultural crops by computer classification of Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E.; Cipra, J. E.; Anuta, P. E.; Etheridge, J. B.

    1979-01-01

    Landsat Multispectral Scanner (MSS) data covering a three-county area in northern Illinois were classified using computer-aided techniques as corn, soybeans, or 'other.' Recognition of test fields was 80% accurate. County estimates of the area of corn and soybeans agreed closely with those made by the USDA. Results of the use of a priori information in classification, techniques to produce unbiased area estimates, and the use of temporal and spatial features for classification are discussed. The extendability, variability, and size of training sets, wavelength band selection, and spectral characteristics of crops were also investigated.

  20. Determination of commonly used polar herbicides in agricultural drainage waters in Australia by HPLC.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Doble, Philip

    2007-03-01

    The present study describes the application of different extraction techniques for the preconcentration of ten commonly found acidic and non-acidic polar herbicides (2,4-D, atrazine, bensulfuron-methyl, clomazone, dicamba, diuron, MCPA, metolachlor, simazine and triclopyr) in the aqueous environment. Liquid-liquid extraction (LLE) with dichloromethane, solid-phase extraction (SPE) using Oasis HLB cartridges or SBD-XC Empore disks were compared for extraction efficiency of these herbicides in different matrices, especially water samples from contaminated agricultural drainage water containing high concentrations of particulate matter. Herbicides were separated and quantified by high performance liquid chromatography (HPLC) with an ultraviolet detector. SPE using SDB-XC Empore disks was applied to determine target herbicides in the Murrumbidgee Irrigation Area (NSW, Australia) during a two-week survey from October 2005 to November 2005. The daily aqueous concentrations of herbicides from 24-h composite samples detected at two sites increased after run-off from a storm event and were in the range of: 0.1-17.8 microg l(-1), < 0.1-0.9 microg l(-1) and 0.2-17.8 microg l(-1) at site 1; < 0.1-3.5 microg l(-1), < 0.1-0.2 microg l(-1) and < 0.2-3.2 microg l(-1) at site 2 for simazine, atrazine and diuron, respectively. PMID:17184816

  1. Spray Toxicity and Risk Potential of 42 Commonly Used Formulations of Row Crop Pesticides to Adult Honey Bees (Hymenoptera: Apidae).

    PubMed

    Zhu, Yu Cheng; Adamczyk, John; Rinderer, Thomas; Yao, Jianxiu; Danka, Robert; Luttrell, Randall; Gore, Jeff

    2015-12-01

    To combat an increasing abundance of sucking insect pests, >40 pesticides are currently recommended and frequently used as foliar sprays on row crops, especially cotton. Foraging honey bees may be killed when they are directly exposed to foliar sprays, or they may take contaminated pollen back to hives that maybe toxic to other adult bees and larvae. To assess acute toxicity against the honey bee, we used a modified spray tower to simulate field spray conditions to include direct whole-body exposure, inhalation, and continuing tarsal contact and oral licking after a field spray. A total of 42 formulated pesticides, including one herbicide and one fungicide, were assayed for acute spray toxicity to 4-6-d-old workers. Results showed significantly variable toxicities among pesticides, with LC50s ranging from 25 to thousands of mg/liter. Further risk assessment using the field application concentration to LC1 or LC99 ratios revealed the risk potential of the 42 pesticides. Three pesticides killed less than 1% of the worker bees, including the herbicide, a miticide, and a neonicotinoid. Twenty-six insecticides killed more than 99% of the bees, including commonly used organophosphates and neonicotinoids. The remainder of the 13 chemicals killed from 1-99% of the bees at field application rates. This study reveals a realistic acute toxicity of 42 commonly used foliar pesticides. The information is valuable for guiding insecticide selection to minimize direct killing of foraging honey bees, while maintaining effective control of field crop pests. PMID:26352753

  2. Integration of Multisensor Remote Sensing Data for the Retrieval of Consistent Times Series of High-Resolution NDVI Images for Crop Monitoring in Landscapes Dominated By Small-Scale Farming Agricultural

    NASA Astrophysics Data System (ADS)

    Sedano, F.; Kempeneers, P.

    2014-12-01

    There is a need for timely and accurate information of food supply and early warnings of production shortfalls. Crop growth models commonly rely on information on vegetation dynamics from low and moderate spatial resolution remote sensing imagery. While the short revisit period of these sensors captures the temporal dynamics of crops, they are not able to monitor small-scale farming areas where environmental factors, crop type and management practices often vary at subpixel level. Although better suited to retrieve fine spatial structure, time series of higher resolution imagery (circa 30 m) are often incomplete due to larger revisit periods and persistent cloud coverage. However, as the Landsat archive expands and more fine resolution Earth observation sensors become available, the possibilities of multisensor integration to monitor crop dynamics with higher level of spatial detail are expanding. We have integrated remote sensing imagery from two moderate resolution sensors (MODIS and PROBA-V) and three medium resolution platforms (Landsat 7- 8; and DMC) to improve the characterization of vegetation dynamics in agricultural landscapes dominated by small-scale farms. We applied a data assimilation method to produce complete temporal sequences of synthetic medium-resolution NDVI images. The method implements a Kalman filter recursive algorithm that incorporates models, observations and their respective uncertainties to generate medium-resolution images at time steps for which only moderate-resolution imagery is available. The results for the study sites show that the time series of synthetic NDVI images captured seasonal vegetation dynamics and maintained the spatial structure of the landscape at higher spatial resolution. A more detailed characterization of spatiotemporal dynamics of vegetation in agricultural systems has the potential to improve the estimates of crop growth models and allow a more precise monitoring and forecasting of crop productivity.

  3. Vertical distribution of agriculture crop residue burning aerosol observed by space-borne lidar CALIOP - A case study over the Indo-Gangetic Basin (IGB)

    NASA Astrophysics Data System (ADS)

    Mishra, A. K.; Shibata, T.

    2011-12-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). It is also one of the main causes for dense atmospheric brown clouds (ABCs) formation over South Asian region. Present study deals with spatial and vertical variability of aerosol optical and microphysical properties during the crop residue burning season (October and November) over the IGB. MODIS (MODerate resolution Imaging Spectroradiometer) fire location data and MODIS AOD data confirms the crop residue burning activities over irrigated cropland of the IGB during October and November, 2009. Large values (> 0.7) of MODIS AOD (aerosol optical depth) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) backscatter (>0.006 km-1 sr-1 below 1.0 km altitude) are suggesting enhanced atmospheric pollution associated with agriculture crop residue burning. The increase in tropospheric columnar NO2 and surface CO concentration during October and November also emphasized the significant contribution of crop residue burning activities in enhanced anthropogenic pollution over the IGB. Vertical distribution of backscatter coefficients showed trapping of biomass (crop residues) burning aerosol within boundary layer. Spatial variation of aerosol backscatter and AOD showed large value above north-west part of IGB, major area of crop residue burning activities. The results of this study will be very useful in quantification of optical properties of atmospheric brown clouds and its effect on climate.

  4. Impact of paper mill effluent on growth and development of certain agricultural crops.

    PubMed

    Medhi, U J; Talukdar, A K; Deka, S

    2011-03-01

    The physico-chemical characteristics of paper mill industry effluent were measured and some were found to be above the permissible limits prescribed by Indian irrigation water standard. A study was conducted in pots to investigate the effects of different concentrations (10, 20, 30, 40, 50, 60, 70, 80 and 100%) of paper mill effluent on growth and production of rice, mustard and peafor three years. The study reveals that the paper mill effluent has deleterious effect on the growth of crop at higher concentrations. However, at lower concentration (viz. 10 to 40% in rice, 10 to 50% in mustard and 10 to 60% in pea) of effluent, beneficial impact on general welfare of the crops was noticed. Growth and development was increased with increasing the concentration of the effluent up to 30% in rice, 40% in mustard and 50% in pea. Investigation showed that the growth and production of rice, mustard and pea was found maximum at a concentration of 30, 40 and 50% effluent respectively. PMID:21882653

  5. Application of seasonal climate forecasts in agricultural crop monitoring in Brazil

    NASA Astrophysics Data System (ADS)

    de Avila, A. M. H.; Pereira, V. R.; Lopes, F. A.

    2014-12-01

    This work is investigating the contribution of seasonal climate forecasts of Eta regional climate model to support crops in Brazil. The weather conditions are directed related with the crop yield, being a basic parameter for its forecast. The southern region has a subtropical climate and is the major national producer of rice and wheat and also is the second one for soybean, bean and corn. The Eta seasonal forecast model data for southern Brazil was evaluated from 2001 to 2010. Observed data from National and state meteorological agencies were used to evaluate the monthly model performance. The model performance was evaluated by calculating two parameters. The Root Mean Square Error (RMSE) was used to evaluate the monthly forecast averages and the observed precipitation standard deviation. The Skill Score Climatology (SSC) was used to compare the accuracy between the forecast and the climatology. The RMSE showed that in some locations the predicted values by the model were closer to the observed. The SSC showed a systematic error for the predicted values by the Eta seasonal model. This behavior indicates that the climatological analysis is more accurate to predict the monthly climate than the ETA model forecast. Also the consecutive negative bias was observed in some locations that can be corrected removing the systematic error.

  6. Agricultural production and groundwater depletion under climate variability in India - Results from a regional scale crop modeling approach

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Sobolowski, S.; Fishman, R.; Vasquez, V.; Raj, P.; Narula, K. K.; Modi, V.; Lall, U.

    2009-12-01

    In India, recent declines in national food security may point to systemic deficiencies of agricultural production. Over the past decade and in the face of declining public investments in irrigation projects, the growth of production has increasingly become reliant on the allocation of large volumes of groundwater in an unsustainable manner. As a result, shallow as well as deep fossil groundwater resources are increasingly depleted and the buffer that mitigates negative impacts on production in case of Monsoonal dry-spells / drought conditions is lost. In the face of future climate and food supply uncertainty, it is vital that the connections between climate variability, unsustainable irrigation practices and their impacts on regional scale agricultural production be quantified and better understood. In our analysis, we focus on rice production in the Telengana region in Andhra Pradesh, which is characterized by a semi-arid tropical climate that is driven by the bimodal seasonality of the south-western monsoon. Traditionally, agricultural production of rice was constrained by precipitation variations during the wet season (Kharif). However, the advent of inexpensive pump technology in the 1970's, coupled with governmentally subsidized electricity has allowed year-round rice production. Thus, the Monsoon rains must not only drive wet season production but must also sufficiently recharge groundwater in order to support dry season production. Observed Production time series are characterized by non-stationarity and heteroscedasticity. Using a subset of eight districts, a non-linear Gaussian Process regression model is developed and yearly crop production is modeled at the district level over 48 years. We show that interannual climate variations, in the form of the monsoon rains, play a significant role in determining the area of land set aside for dry season planting and thus affect total yearly production. The results suggest that a non-linear Bayesian regression

  7. Research report on development of sweet sorghum as an energy crop. Volume I. Agricultural Task to US Department of Energy

    SciTech Connect

    Arthur, M.F.; Davis, M.; Kresovich, S.; Lawhon, W.T.; Lipinsky, E.S.; Price, M.; Rudolph, A

    1980-05-31

    An interregional experimental agricultural task was undertaken to evaluate biomass and sugar yields of sweet sorghum using similar cultural practices. Climatic conditions varied from North Dakota to southern Texas and Florida having respective frost-free days of 121 and 300. Maximum yields obtained in 1978 and 1979 at the various experimental locations ranged from 12.0 to 40.5 t/ha for dry biomass and from 2.9 to 13.2 t/ha for total sugars. Assuming 582 1 of ethanol can be produced per metric ton of sugars, equivalent ethanol yields range from 1688 to 7682 1/ha. In addition to sweet sorghum, new sorghum hybrids, male-sterile corn, and sugarcane were investigated as potential sugar-stalk crops for producing ethanol from fermentation.

  8. Genetic engineering in agriculture and corporate engineering in public debate: risk, public relations, and public debate over genetically modified crops.

    PubMed

    Patel, Rajeev; Torres, Robert J; Rosset, Peter

    2005-01-01

    Corporations have long influenced environmental and occupational health in agriculture, doing a great deal of damage, making substantial profits, and shaping public debate to make it appear that environmental misfortunes are accidents of an otherwise well-functioning system, rather than systemic. The debate over the genetically modified (GM) crops is an example. The largest producer of commercial GM seeds, Monsanto, exemplifies the industry's strategies: the invocation of poor people as beneficiaries, characterization of opposition as technophobic or anti-progress, and portrayal of their products as environmentally beneficial in the absence of or despite the evidence. This strategy is endemic to contemporary market capitalism, with its incentives to companies to externalize health and environmental costs to increase profits. PMID:16350477

  9. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. PMID:25936555

  10. Light- and water-use efficiency model synergy: a revised look at crop yield estimation for agricultural decision-making

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Tu, K. P.

    2015-12-01

    Large-area crop yield models (LACMs) are commonly employed to address climate-driven changes in crop yield and inform policy makers concerned with climate change adaptation. Production efficiency models (PEMs), a class of LACMs that rely on the conservative response of carbon assimilation to incoming solar radiation absorbed by a crop contingent on environmental conditions, have increasingly been used over large areas with remote sensing spectral information to improve the spatial resolution of crop yield estimates and address important data gaps. Here, we present a new PEM that combines model principles from the remote sensing-based crop yield and evapotranspiration (ET) model literature. One of the major limitations of PEMs is that they are evaluated using data restricted in both space and time. To overcome this obstacle, we first validated the model using 2009-2014 eddy covariance flux tower Gross Primary Production data in a rice field in the Central Valley of California- a critical agro-ecosystem of the United States. This evaluation yielded a Willmot's D and mean absolute error of 0.81 and 5.24 g CO2/d, respectively, using CO2, leaf area, temperature, and moisture constraints from the MOD16 ET model, Priestley-Taylor ET model, and the Global Production Efficiency Model (GLOPEM). A Monte Carlo simulation revealed that the model was most sensitive to the Enhanced Vegetation Index (EVI) input, followed by Photosynthetically Active Radiation, vapor pressure deficit, and air temperature. The model will now be evaluated using 30 x 30m (Landsat resolution) biomass transects developed in 2011 and 2012 from spectroradiometric and other non-destructive in situ metrics for several cotton, maize, and rice fields across the Central Valley. Finally, the model will be driven by Daymet and MODIS data over the entire State of California and compared with county-level crop yield statistics. It is anticipated that the new model will facilitate agro-climatic decision-making in

  11. The untold story of the common Milkweed (Asclepias syriaca): A new industrial crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common milkweed (Asclepias syriaca L.) is a perennial shrub that is native to the Americas from coast to coast, but particularly abundant east of the Mississippi River and from Southern Canada to Mexico. The plant has been given many nonglamorous names by frustrated farmers including “The Wheat...

  12. Dynamic Patterns, Parameters, and Climatic Response of CO2 Exchange of Agricultural Crops: Monocotyledons VS. Dicotyledons

    NASA Astrophysics Data System (ADS)

    Gilmanov, T. G.; Wylie, B. K.; Howard, D. M.

    2012-12-01

    Net CO2 exchange data from long-term flux tower measurements in monocotyledonous (wheat, maize) and dicotyledonous (soybeans, alfalfa, peas, peanuts) crops were partitioned into photosynthesis (P) and respiration (R) using the light-soil temperature-VPD response method. Analysis of the resulting time series of P and R revealed patterns of temporal and phenological dynamics in these plant groups. We established differences in ranges and dynamic patterns of P and R as well as CO2 exchange parameters (quantum yield, photosynthetic capacity, respiration rate, light-use efficiency, curvature of the VPD response). Weekly P and R data combined with remotely sensed 7-day eMODIS NDVI allow identification of the quasi-linear relationships between P, R, and NDVI, as well as estimation of parameters of NDVI response (start of the growing season, duration of the linearity period, slope of NDVI response). While the linear-like patterns occur early in the season, later the flux response to NDVI becomes less pronounced, and for the whole season the flux-NDVI relationship assumes a hysteresis-like pattern. Introduction of VPD and soil moisture limitation as well as phenological controls (growing degree days) leads to more flexible models for P and R in relation to NDVI and on-site drivers. These models allow mapping of the cropland CO2 exchange at regional and larger scales (e.g., the Great Plains). Significant relationships of the crop GPP to the seasonally integrated NDVI were also established, providing an opportunity for mapping of crop productivity using geographically distributed historic NDVI data. On the other hand, long time series (6 to 12 years and longer) of weekly P and R data lead to models of annual photosynthesis and respiration in response to climatic factors that may be used for prognostic purposes. We developed a model of maize GPP on the Great Plains in relation to the sum of temperatures above 5 °C and the hydrologic year precipitation. The model describes 75

  13. Remote sensing in Iowa agriculture. [cropland inventory, soils, forestland, and crop diseases

    NASA Technical Reports Server (NTRS)

    Mahlstede, J. P. (Principal Investigator); Carlson, R. E.

    1973-01-01

    The author has identified the following significant results. Results include the estimation of forested and crop vegetation acreages using the ERTS-1 imagery. The methods used to achieve these estimates still require refinement, but the results appear promising. Practical applications would be directed toward achieving current land use inventories of these natural resources. This data is presently collected by sampling type surveys. If ERTS-1 can observe this and area estimates can be determined accurately, then a step forward has been achieved. Cost benefit relationship will have to be favorable. Problems still exist in these estimation techniques due to the diversity of the scene observed in the ERTS-1 imagery covering other part of Iowa. This is due to influence of topography and soils upon the adaptability of the vegetation to specific areas of the state. The state mosaic produced from ERTS-1 imagery shows these patterns very well. Research directed to acreage estimates is continuing.

  14. Operation of agricultural test fields for study of stressed crops by remote sensing

    NASA Technical Reports Server (NTRS)

    Toler, R. W.

    1974-01-01

    A test site for the study of winter wheat development and collection of ERTS data was established in September of 1973. The test site is a 10 mile square area located 12.5 miles west of Amarillo, Texas on Interstate Hwy. 40, in Randall and Potter counties. The center of the area is the Southwestern Great Plains Research Center at Bushland, Texas. Within the test area all wheat fields were identified by ground truth and designated irrigated or dryland. The fields in the test area other than wheat were identified as to pasture or the crop that was grown. A ground truth area of hard red winter wheat was established west of Hale Center, Texas. Maps showing the location of winter wheat fields in excess of 40 acres in size within a 10 mile radius were supplied NASA. Satellite data was collected for this test site (ERTS-1).

  15. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape

    PubMed Central

    Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2014-01-01

    Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01–0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. PMID:24980963

  16. Fine-scale spatial genetic structure of common and declining bumble bees across an agricultural landscape.

    PubMed

    Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire

    2014-07-01

    Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS  = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. PMID:24980963

  17. Multi-frequency and polarimetric radar backscatter signatures for discrimination between agricultural crops at the Flevoland experimental test site

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Villasenor, J.; Klein, J. D.

    1991-01-01

    We describe the calibration and analysis of multi-frequency, multi-polarization radar backscatter signatures over an agriculture test site in the Netherlands. The calibration procedure involved two stages: in the first stage, polarimetric and radiometric calibrations (ignoring noise) were carried out using square-base trihedral corner reflector signatures and some properties of the clutter background. In the second stage, a novel algorithm was used to estimate the noise level in the polarimetric data channels by using the measured signature of an idealized rough surface with Bragg scattering (the ocean in this case). This estimated noise level was then used to correct the measured backscatter signatures from the agriculture fields. We examine the significance of several key parameters extracted from the calibrated and noise-corrected backscatter signatures. The significance is assessed in terms of the ability to uniquely separate among classes from 13 different backscatter types selected from the test site data, including eleven different crops, one forest and one ocean area. Using the parameters with the highest separation for a given class, we use a hierarchical algorithm to classify the entire image. We find that many classes, including ocean, forest, potato, and beet, can be identified with high reliability, while the classes for which no single parameter exhibits sufficient separation have higher rates of misclassification. We expect that modified decision criteria involving simultaneous consideration of several parameters increase performance for these classes.

  18. The Future of Agricultural Pollination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter summarizes how agricultural production and bees are inter-dependent. Honey bees are the most commonly used agricultural pollinators in the world, but are threatened by an increasing number of hive pests. In addition, not all crops are well pollinated by honey bees (e.g., tomatoes, alfal...

  19. Assessing health in agriculture--towards a common research framework for soils, plants, animals, humans and ecosystems.

    PubMed

    Vieweger, Anja; Döring, Thomas F

    2015-02-01

    In agriculture and food systems, health-related research includes a vast diversity of topics. Nutritional, toxicological, pharmacological, epidemiological, behavioural, sociological, economic and political methods are used to study health in the five domains of soils, plants, livestock, humans and ecosystems. An idea developed in the early founding days of organic agriculture stated that the health of all domains is one and indivisible. Here we show that recent research reveals the existence and complex nature of such health links among domains. However, studies of health aspects in agriculture are often separated by disciplinary boundaries. This restrains the understanding of health in agricultural systems. Therefore we explore the opportunities and limitations of bringing perspectives together from the different domains. We review current approaches to define and assess health in agricultural contexts, comparing the state of the art of commonly used approaches and bringing together the presently disconnected debates in soil science, plant science, veterinary science and human medicine. Based on a qualitative literature analysis, we suggest that many health criteria fall into two paradigms: (1) the Growth Paradigm, where terms are primarily oriented towards continued growth; (2) the Boundary Paradigm, where terms focus on maintaining or coming back to a status quo, recognising system boundaries. Scientific health assessments in agricultural and food systems need to be explicit in terms of their position on the continuum between Growth Paradigm and Boundary Paradigm. Finally, we identify areas and concepts for a future direction of health assessment and research in agricultural and food systems. PMID:24777948

  20. Assessment of crop productivity over intensively managed agriculture regions in India and Australia using solar-induced fluorescence remote sensing data

    NASA Astrophysics Data System (ADS)

    Devadas, R.; Huete, A. R.; Patel, N. R.; Padalia, H.; Restrepo-Coupe, N.; Kuruvilla, A.

    2015-12-01

    Satellite based estimation of solar-induced terrestrial fluorescence (SIF) is considered to be a direct measure of photosynthetic functional status of the vegetation. Prior studies have shown SIF to more accurately retrieve the productivity of intensively managed croplands, as in the U.S. corn belt. In this study, we assessed and compared agricultural productivity over two intensive crop production regions in Australia and India using SIF data, traditional spectral measures, and crop yield data. Regional level wheat yield data were obtained for the Indo-Gangetic Plains (IGP) in India and the Murray Darling Basin (MDB) in Australia for analyses with GOME-2 SIF satellite and MODIS VI measurements, and gross primary productivity from flux towers. We investigated the importance of integrating traditional meteorological parameters and ground based data with time-series vegetation indices for scaling of SIF to obtain robust yield prediction models for application across years and continents. This study further explored the relationship of inter annual variations in crop phenology metrics through SIF retrievals and its relationship with crop yields. The IGP study region showed systematic cycles of double cropping. MDB region on the other hand showed cycles of pronounced winter cropping and a weaker and variable second cropping over the analysis period. For various winter wheat crop seasons in IGP, from 2007 to 2012, SIF explained and accounted between 48 to 74 per cent of the variations in regional wheat yields. Similar results were obtained in the case of MDB also, however, the relationship between SIF and yield estimates was weaker (R2 = 0.44). SIF measurements, as a surrogate of crop productivity, were considerably higher over the highly productive IGP region in almost all the years considered. The SIF data shows immense potential for modelling agricultural productivity, particularly as the resolution of SIF retrievals continues to improve.

  1. Collaboration between the US Forest Service and the USDA Agricultural Research Service on the complementary conservation of crop wild relatives in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two USDA agencies, the Forest Service (USFS) and the Agricultural Research Service (USDA-ARS) are cooperating on the complementary conservation of crop wild relatives (CWR) native to the United States. The USFS manages 193 million acres of National Forest System lands in 43 states and provides suppo...

  2. Development of drought and/or heat tolerant crop varieties, an adaptation approach to mitigate impact of climate change on agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As global climate change becomes inevitable, the sustainability of agricultural production in US and worldwide faces serious threat from extreme weather conditions, such as drought and high temperature (heat wave). Development of drought and/or heat tolerant crop varieties is one of the most effecti...

  3. Rapid Prototyping of NASA's Solar and Meteorological Data For Regional Level Modeling of Agricultural and Bio-fuel Crop Phenology and Yield Potential

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stackhouse, P. W.; Eckman, R. S.

    2006-12-01

    Global demand for food, feedstock and bio-fuel crops is expanding rapidly due to population growth, increasing consumption of these products (especially in developing countries), and more recently skyrocketing use of these crops to produce ethanol as a bio-fuel. As a result, there are growing concerns, both in the US and world wide, about the ability to meet the projected demand for agricultural/bio-fuel crops without expanding production areas into environmentally sensitive regions. Concurrently, there are increasing concerns over the negative impact of global warming on crop yields. Accurate ecophysiological crop models have been developed for many of the food and bio-fuel crops and serve as the back-bone in sophisticated Decision Support Systems (DSS). These DSS's are increasingly being used to address the balance between the need to increase production/efficiency and environmental concerns, as well as the impact of global warming on crop production. Realistic application of these agricultural DSS's requires accurate environmental data on time scales ranging from hours to decades. To date only sparse surface measurements are used that typically do not measure solar irradiance. NASA's Prediction of Worldwide Energy Resource (POWER) project, which has as one of its objectives the development of data products for agricultural applications, currently provides a climatological data base of meteorological parameters and surface solar energy fluxes on a global 1-degree latitude by 1- degree longitude grid. NASA is also developing capabilities to produce near-real time data sets specifically designed for application by agricultural DSS's. In this presentation, we discuss the development of 1-degree global data products which combine the climatological data in the POWER project archive (http://earth-www.larc.nasa.gov/power), near real time (2 to 3 day lag) meteorological data from the Goddard Earth Observing System (GEOS) quick-look products, and global solar energy

  4. Agricultural crop mapping and classification by Landsat images to evaluate water use in the Lake Urmia basin, North-west Iran

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Norouzi, Hamid; Madani, Kaveh; Kløve, Bjørn

    2016-04-01

    Lake Urmia, once one of the largest hypersaline lakes in the world has lost more than 90% of its surface body mainly due to the intensive expansion of agriculture, using more than 90% of all water in the region. Access to accurate and up-to-date information on the extent and distribution of individual crop types, associated with land use changes and practices, has significant value in intensively agricultural regions. Explicit information of croplands can be useful for sustainable water resources, land and agriculture planning and management. Remote sensing, has been proven to be a more cost-effective alternative to the traditional statistically-based ground surveys for crop coverage areas that are costly and provide insufficient information. Satellite images along with ground surveys can provide the necessary information of spatial coverage and spectral responses of croplands for sustainable agricultural management. This study strives to differentiate different crop types and agricultural practices to achieve a higher detailed crop map of the Lake Urmia basin. The mapping approach consists of a two-stage supervised classification of multi-temporal multi-spectral high resolution images obtained from Landsat imagery archive. Irrigated and non-irrigated croplands and orchards were separated from other major land covers (urban, ranges, bare-lands, and water) in the region by means of maximum Likelihood supervised classification method. The field data collected during 2015 and land use maps generated in 2007 and Google Earth comparisons were used to form a training data set to perform the supervised classification. In the second stage, non-agricultural lands were masked and the supervised classification was applied on the Landsat images stack to identify seven major croplands in the region (wheat and barley, beetroot, corn, sunflower, alfalfa, vineyards, and apple orchards). The obtained results can be of significant value to the Urmia Lake restoration efforts which

  5. The full GHG balance over two crop rotations at an agricultural site near Gebesee, Thuringia, Germany

    NASA Astrophysics Data System (ADS)

    Kutsch, Werner Leo; Brümmer, Christian; Don, Catharina; Dechow, Rene; Fuß, Roland; Freibauer, Annette; Schulze, Ernst-Detlef; Kolle, Olaf; Ziegler, Waldemar

    2013-04-01

    Gebesee in Thuringia is the eldest cropland eddy covariance (EC) site in Europe. The site has been part of CarboEurope, NitroEurope and IMECC and has been selected to be one of the German Level 1 sites within the European research infrastructure ICOS. Continuous measurements of NEE by EC, NPP by regular harvesting, lateral in- and outputs of carbon and nitrogen as well as climatic parameters have been conducted since 2001. Automated chamber measurements of N2O and CH4 were conducted since 2007. Fluxes of these greenhouse gases (GHG) for the years 2001 - 2006 were calculated based on a Fuzzy Logic model calibrated by means of the chamber measurements. In this study we present NEE, NBP and full GHG balances of over two rotation periods (2001 - 2004 and 2005 - 2009, respectively) comprising four times winter wheat, two times potatoes and one cropping period of oil seed rape, sugar beet and barley each. The GHG balance is dominated by moderate losses of soil organic matter (~120 +/- 50 g C m-2 y-1) and by N2O emissions of about 0.17 g N2O-N m-2 y-1 (50 g C-eq m-2 y-1). The on-site emissions of GHG balance about 43 % of the harvested carbon.

  6. Identifying crop specific signals for global agricultural monitoring based on the stability of daily multi-angular MODIS reflectance time series

    NASA Astrophysics Data System (ADS)

    Duveiller, G.; Lopez-Lozano, R.

    2013-12-01

    Global agricultural monitoring requires satellite Earth Observation systems that maximize the observation revisit frequency over the largest possible geographical coverage. Such compromise has thus far resulted in using a spatial resolution that is often coarser than desired. As a consequence, for many agricultural landscapes across the world, crop status can only be inferred from a mixed signal of the landscape (with a pixel size typically close to 1 km), composed of reflectance from neighbouring fields with potentially different crops, variable phenological behaviours and distinct management practices. MODIS has been providing, since 2000, a higher spatial resolution (~250m) that is closer to the size of individual fields in many agro-ecological landscapes. However, the challenge for operational crop specific monitoring remains to identify in time where a given crop has been sown during the current growing season. An innovative use of MODIS daily data is proposed for crop identification based on the stability of the multi-angular signal. MODIS is a whiskbroom sensor with a large swath. For any given place, consecutive MODIS observations are made with considerably different viewing angles according to the daily change in orbit. Consequently, the footprint of the observation varies considerably, thereby sampling the vicinity around the centre of the grid cell in which the time series is ultimately recorded in. If the consecutive observations that have sampled the vicinity provide similar NDVI values (for which BRDF effects are reduced), the resulting temporal signal is relatively stable. This stability indicated that the signal comes from a spatially homogeneous surface, such as a single large field covered by the same crop with similar agro-management practices. If the resulting temporal signal is noisy, it is probable that the consecutive daily observations have sampled different land uses, thus contaminating the signal. Such time series can therefore be

  7. Vegetation-index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by r...

  8. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion.

    PubMed

    Krzyzanowski, Flávio; de Souza Lauretto, Marcelo; Nardocci, Adelaide Cássia; Sato, Maria Inês Zanoli; Razzolini, Maria Tereza Pepe

    2016-10-15

    A deeper understanding about the risks involved in sewage sludge practice in agriculture is required. The aims of the present study were to determine the annual risk of infection of consuming lettuce, carrots and tomatoes cultivated in soil amended with sewage sludge. The risk to agricultural workers of accidental ingestion of sludge or amended soil was also investigated. A Quantitative Microbial Risk Assessment was conducted based on Salmonella concentrations from five WWTPs were used to estimate the probability of annual infection associated with crops and soil ingestion. The risk of infection was estimated for nine exposure scenarios considering concentration of the pathogen, sewage sludge dilution in soil, variation of Salmonella concentration in soil, soil attachment to crops, seasonal average temperatures, hours of post-harvesting exposure, Salmonella regrowth in lettuce and tomatoes, Salmonella inhibition factor in carrots, crop ingestion and frequency of exposure, sludge/soil ingestion by agricultural workers and frequency of exposure. Annual risks values varied across the scenarios evaluated. Highest values of annual risk were found for scenarios in which the variation in the concentration of Salmonella spp. in both soil and crops (scenario 1) and without variation in the concentration of Salmonella spp. in soil and variation in crops (scenario 3) ranging from 10(-3) to 10(-2) for all groups considered. For agricultural workers, the highest annual risks of infection were found when workers applied sewage sludge to agricultural soils (2.26×10(-2)). Sensitivity analysis suggests that the main drivers for the estimated risks are Salmonella concentration and ingestion rate. These risk values resulted from conservative scenarios since some assumptions were derived from local or general studies. Although these scenarios can be considered conservative, the sensitivity analysis yielded the drivers of the risks, which can be useful for managing risks from the

  9. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  10. Fullerene-enhanced accumulation of p,p'-DDE in agricultural crop species.

    PubMed

    De La Torre-Roche, Roberto; Hawthorne, Joseph; Deng, Yingqing; Xing, Baoshan; Cai, Wenjun; Newman, Lee A; Wang, Chen; Ma, Xingmao; White, Jason C

    2012-09-01

    The effect of C(60) fullerene exposure on the accumulation of dichlorodiphenyldichloroethylene (p,p'-DDE; DDT metabolite) by Cucurbita pepo L. (zucchini), Glycine max L. (soybean), and Solanum lycopersicum L. (tomato) was determined. The plants were grown in 125 mL jars of vermiculite amended with 0 or 40 mg of C(60) fullerenes. Prior to planting, the jars were amended with 40 mL solution containing 100 ng/mL of p,p'-DDE with 0 or 100 mg/L humic acid. During three weeks of growth, plants were watered with the same p,p'-DDE containing solutions. Total shoot p,p'-DDE levels in nonfullerene exposed tomato, soybean, and zucchini were 26.9, 131, and 675 ng, respectively; total root DDE content for the three plants was 402, 5970, and 5830 ng, respectively. Fullerenes increased the shoot p,p'-DDE content of zucchini by 29%; contaminant levels in soybean shoots were decreased by 48% but tomato shoot content was unaffected. The root and total plant p,p'-DDE content of all three species was significantly increased by fullerene exposure; enhanced contaminant uptake ranged from 30 to 65%. Humic acid, regardless of fullerene presence or plant type, significantly decreased the p,p'-DDE uptake. Fullerenes were detected in the roots of all plants but were not detected in plant shoots in the initial study. In a follow up study with zucchini designed to maximize biomass for extraction, over half the analyzed stems contained fullerenes at 60.5 to 4490 ng/g. These findings show that the carbon-based nanomaterials may significantly alter the accumulation and potentially the toxicity of cocontaminants in agricultural systems. PMID:22856886

  11. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  12. Potentials of RapidEye time series for improved classification of crop rotations in heterogeneous agricultural landscapes: experiences from irrigation systems in Central Asia

    NASA Astrophysics Data System (ADS)

    Conrad, Christopher; Machwitz, Miriam; Schorcht, Gunther; Löw, Fabian; Fritsch, Sebastian; Dech, Stefan

    2011-11-01

    In Central Asia, more than eight Million ha of agricultural land are under irrigation. But severe degradation problems and unreliable water distribution have caused declining yields during the past decades. Reliable and area-wide information about crops can be seen as important step to elaborate options for sustainable land and water management. Experiences from RapidEye classifications of crop in Central Asia are exemplarily shown during a classification of eight crop classes including three rotations with winter wheat, cotton, rice, and fallow land in the Khorezm region of Uzbekistan covering 230,000 ha of irrigated land. A random forest generated by using 1215 field samples was applied to multitemporal RapidEye data acquired during the vegetation period 2010. But RapidEye coverage varied and did not allow for generating temporally consistent mosaics covering the entire region. To classify all 55,188 agricultural parcels in the region three classification zones were classified separately. The zoning allowed for including at least three observation periods into classification. Overall accuracy exceeded 85 % for all classification zones. Highest accuracies of 87.4 % were achieved by including five spatiotemporal composites of RapidEye. Class-wise accuracy assessments showed the usefulness of selecting time steps which represent relevant phenological phases of the vegetation period. The presented approach can support regional crop inventory. Accurate classification results in early stages of the cropping season permit recalculation of crop water demands and reallocation of irrigation water. The high temporal and spatial resolution of RapidEye can be concluded highly beneficial for agricultural land use classifications in entire Central Asia.

  13. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950

    NASA Astrophysics Data System (ADS)

    Imbach, P.; Manrow, M.; Barona, E.; Barretto, A.; Hyman, G.; Ciais, P.

    2015-06-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage.

  14. Crop Biotechnology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of crop biotechnology on outcomes of agricultural practices and economics is readily evidenced by the escalating acreage of genetically engineered crops, all occurring in a relatively short time span. Until the mid 1990s, virtually no acreage was planted with commercial genetically mo...

  15. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds, and diseases.…

  16. Fruit Crop Pests. MEP 312.

    ERIC Educational Resources Information Center

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds, and diseases. Also in…

  17. Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk.

    PubMed

    Bird, David Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; Koeberl, Judith; La Jeunesse, Isabelle; Meyer, Swen; Prettenthaler, Franz; Soddu, Antonino; Woess-Gallasch, Susanne

    2016-02-01

    In Europe, there is concern that climate change will cause significant impacts around the Mediterranean. The goals of this study are to quantify the economic risk to crop production, to demonstrate the variability of yield by soil texture and climate model and to investigate possible adaptation strategies. In the Rio Mannu di San Sperate watershed, located in Sardinia (Italy) we investigate production of wheat, a rainfed crop. In the Chiba watershed located in Cap Bon (Tunisia), we analyze irrigated tomato production. We find, using the FAO model AquaCrop that crop production will decrease significantly in a future climate (2040-2070) as compared to the present without adaptation measures. Using "value-at-risk", we show that production should be viewed in a statistical manner. Wheat yields in Sardinia are modelled to decrease by 64% on clay loams, and to increase by 8% and 26% respectively on sandy loams and sandy clay loams. Assuming constant irrigation, tomatoes sown in August in Cap Bon are modelled to have a 45% chance of crop failure on loamy sands; a 39% decrease in yields on sandy clay loams; and a 12% increase in yields on sandy loams. For tomatoes sown in March; sandy clay loams will fail 81% of the time; on loamy sands the crop yields will be 63% less while on sandy loams, the yield will increase by 12%. However, if one assume 10% less water available for irrigation then tomatoes sown in March are not viable. Some adaptation strategies will be able to counteract the modelled crop losses. Increasing the amount of irrigation one strategy however this may not be sustainable. Changes in agricultural management such as changing the planting date of wheat to coincide with changing rainfall patterns in Sardinia or mulching of tomatoes in Tunisia can be effective at reducing crop losses. PMID:26187862

  18. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains

    NASA Astrophysics Data System (ADS)

    Pei, Hongwei; Scanlon, Bridget R.; Shen, Yanjun; Reedy, Robert C.; Long, Di; Liu, Changming

    2015-04-01

    Agricultural intensification is often considered the primary approach to meet rising food demand. Here we compare impacts of intensive cultivation on crop yield in the North China Plain (NCP) with less intensive cultivation in the US High Plains (USHP) and associated effects on water resources using spatial datasets. Average crop yield during the past decade from intensive double cropping of wheat and corn in the NCP was only 15% higher than the yield from less intensive single cropping of corn in the USHP, although nitrogen fertilizer application and percent of cropland that was irrigated were both ˜2 times greater in the NCP than in the USHP. Irrigation and fertilization in both regions have depleted groundwater storage and resulted in widespread groundwater nitrate contamination. The limited response to intensive management in the NCP is attributed in part to the two month shorter growing season for corn to accommodate winter wheat than that for corn in the USHP. Previous field and modeling studies of crop yield in the NCP highlight over application of N and water resulting in low nitrogen and water use efficiencies and indicate that cultivars, plant densities, soil fertility and other factors had a much greater impact on crop yields over the past few decades. The NCP-USHP comparison along with previous field and modeling studies underscores the need to weigh the yield returns from intensive management relative to the negative impacts on water resources. Future crop management should consider the many factors that contribute to yield along with optimal fertilization and irrigation to further increase crop yields while reducing adverse impacts on water resources.

  19. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Ines, Amor V. M.; Das, Narendra N.; Prakash Khedun, C.; Singh, Vijay P.; Sivakumar, Bellie; Hansen, James W.

    2015-07-01

    Drought is of global concern for society but it originates as a local problem. It has a significant impact on water quantity and quality and influences food, water, and energy security. The consequences of drought vary in space and time, from the local scale (e.g. county level) to regional scale (e.g. state or country level) to global scale. Within the regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) occurring individually or in combination at local scales, either in clusters or scattered. Even though the application of aggregated drought information at the regional level has been useful in drought management, the latter can be further improved by evaluating the structure and evolution of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface drought indices to explore the anatomy of an agricultural drought. Quantification of moisture supply in the root zone remains a gray area in research community, this challenge can be partly overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling framework for agricultural drought quantification, as it performs better in simulating crop yield. It was noted that the persistence of subsurface droughts is in general higher than surface droughts, which can potentially improve forecast accuracy. It was found that both surface and subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, the total water available in the soil profile seemed to have a greater impact on the yield. Further, agricultural drought should not be treated equal for all crops, and it should be calculated based on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of

  20. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Safai, P. D.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-09-01

    Agriculture crop residue burning in the tropics is a major source of the global atmospheric aerosols and monitoring their long-range transport is an important element in climate change studies. In this paper, we study the effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India during a smoke event that occurred between 09 and 17 November 2013, with the help of satellite measurements and model simulation data. Satellite data observations on aerosol properties suggested transport of particles from agriculture crop residue burning in Indo-Gangetic Plains (IGP) over large regions. Additionally, ECMWF winds at 850 hPa have been used to trace the source, path and spatial extent of smoke events. Most of the smoke aerosols, during the study period, travel from a west-to-east pathway from the source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO show a layer of thick smoke extending from surface to an altitude of about 3 km. Smoke aerosols emitted from biomass burning activity from Punjab have been found to be a major contributor to the deterioration of local air quality over the NE Indian region due to their long range transport.

  1. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy provisions... 7 Agriculture 6 2014-01-01 2014-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas...

  2. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy provisions... 7 Agriculture 6 2013-01-01 2013-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas...

  3. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy provisions... 7 Agriculture 6 2011-01-01 2011-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas...

  4. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Actual Production History (APH) regulations, 7 CFR part 400, subpart G, and applicable policy provisions... 7 Agriculture 6 2012-01-01 2012-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas...

  5. Making the Use of Remote Sensing for Agricultural Subsidy Control More Effective: Automatizing Photo Interpretation of Satellite Imagery over Southern Portugal in the Context of the European Common Agriculture Policy

    NASA Astrophysics Data System (ADS)

    Schmedtmann, J.; Campagnolo, M.

    2014-12-01

    Control with Remote Sensing (CwRS) is a standardized control method that has been developed by the Monitoring Agriculture Resources (MARS Unit) of the European Commission's Joint Research Centre (JRC). It relies on remote sensing time series data and is officially recognized by the EU as equivalent to actual farm visits. Member states agencies use CwRS to carry out part or all of their on-the-spot controls of EU farms to monitor Common Agriculture Policy (CAP) subsidies. The main component of CwRS is Computer-Aided Photo-Interpretation (CAPI), whose goal is determining the crop occupation of agricultural parcels listed in farmers' subsidies applications. In 2012, the CAP CwRS program enabled the oversight of 349,000 farmers for their area-aid applications, representing 89% of the total EU27 required controls. The goal of this study was to develop a simple and reproducible method to automatize the CAPI process. The main feature of this method is that it allows choosing a confidence level on the automatic classification of farmer's parcels. While higher confidence levels reduce the risk of misclassifications, lower levels increase the number of automatic control decisions that do not require the intervention of a photo interpreter, reducing the overall CwRS costs. We used extensive 2005 validated control data from the Portuguese Control and Paying Agency for Agriculture (IFAP) and a multi-temporal Landsat 7 time series to train and test our methodology. Our overall results indicate that for 95% confidence level, approximately 20% of decisions can be taken automatically and for 80% confidence level the percentage of automatic decisions increases to 55%. For each studied land cover class, the adjacent figure shows the effect of the confidence level on the percentage of parcels that can be classified automatically. Since our approach holds for multiple sensors, we believe that the current results will be further improved with additional data. Our results compare

  6. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  7. Bioenergy: Agricultural Crop Residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing cost of fossil fuels especially natural gas and petroleum as well as a desire to curtail greenhouse gas emissions are driving the expansion of bioenergy. Plant biomass (woody, grain and nongrain) is a potential energy source. Prior to the Industrial Revolution, plant biomass was a maj...

  8. Changes of water demand - possible adaptation of agricultural crops and management options to improve water use efficiency in the Marchfeld area

    NASA Astrophysics Data System (ADS)

    Thaler, S.; Eitzinger, J.; Dubrovsky, M.; Trnka, M.

    2009-04-01

    The main objective of this study was to determine the vulnerability of current agricultural cropping systems in the Marchfeld region to climate change. The investigation area Marchfeld is located in the north-eastern (NE) part of Austria and is characterized by a semi-arid climate with low annual rainfall. It is one of the driest regions in the country, but also one of the main field crop production areas. The soil conditions in Marchfeld demonstrate a significant spatial variability, which include soils with low to moderate water-storage capacities. Higher temperatures in the next decades imply higher evaporation and consequently higher water demand for the crops. The phenological development rates of the cultivars will accelerate and an increase of heat stress as well as drought stress can be expected. These points influence intense the water balance and subsequently the yield of the crops in the investigation area. In order to improve water use efficiency under those changing conditions, a shift of average sowing dates and an adjustment of tillage were analyzed. The DSSAT cropping system model was applied for winter wheat and spring barley to assess potential yield under climate scenarios for NE Austria. The scenarios were carried out with ECHAM5, HadCM3 and NCAR PCM global circulation models (GCMs) for present conditions (reference period 1961-1990) and 2035's (2021-2050), based on SRES-A1B emission scenarios. Yield model simulations were done for all defined scenarios (climate, management, crop) and different soil classes. The simulations contain the CO2 fertilizing effect, rain fed farming, adapted sowing date and contemporary crops without consideration of potential profit cuts caused by pest or diseases. Simulation results indicate that climate change will force a delay of the sowing date for winter wheat of maximal 14 days in October. In case of spring barley, climate change allows an earlier sowing date in spring (up to 14 days). Both crops show a

  9. A powered roller/crimper for walk-behind tractors to terminate cover crops in conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Roller/crimper implements have been used in large conservation farming systems to terminate cover crops near maturity and flatten them down to create a mulch through which cash crops can be planted directly into the cover residue. On small farms, tractors are usually small and less powerful relative...

  10. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    PubMed Central

    Calderone, Nicholas W.

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  11. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    PubMed

    Calderone, Nicholas W

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  12. Seed coating with arbuscular mycorrhizal fungi as an ecotechnologicalapproach for sustainable agricultural production of common wheat (Triticum aestivum L.).

    PubMed

    Oliveira, Rui S; Rocha, Inês; Ma, Ying; Vosátka, Miroslav; Freitas, Helena

    2016-01-01

    The exploitation of arbuscular mycorrhizal (AM) fungi has become of great interest in agriculture due to their potential roles in reducing the need for agrochemicals, while improving plant growth and nutrition. Nevertheless, the application of AM fungi by dispersing inocula in granular form to open agricultural fields is not feasible because nontargeted spreading of inocula over large surface areas results in high cost per plant. Seed coating has the potential to significantly reduce the amount of inoculum needed, resulting in cost reduction and increased efficiency. The aim of this study was to assess whether seed coating with AM fungal inoculum is a feasible delivery system for production of common wheat (Triticum aestivum L.). Wheat seeds were coated with inoculum of Rhizophagus irregularis BEG140 and grown under different fertilization conditions: (1) none, (2) partial, or (3) complete. Data indicated that mycorrhizal inoculation via seed coating significantly increased the dry weight of shoot and seed spikes of wheat associated with reduced fertilization. Assessment of nutritional status of wheat showed that plants inoculated with R. irregularis via seed coating displayed enhanced stem concentrations of potassium (K), sulfur (S), and zinc (Zn). There were no significant differences in root colonization between plants conventionally inoculated with R. irregularis in soil and those inoculated via seed coating. Seed coating with AM fungi may be as effective as conventional soil inoculation and may contribute to reduce the utilization of chemical fertilizers. The application of AM via seed coating is proposed as an ecotechnological approach for sustainable agricultural wheat production. PMID:27077274

  13. Herbicide Transport and Transformations in the Unsaturated Zone of Three Small Agricultural Basins with Corn and Soybean Row Crops

    NASA Astrophysics Data System (ADS)

    Hancock, T. C.; Vogel, J. R.; Sandstrom, M. W.; Capel, P. D.; Bayless, R. E.; Webb, R. M.

    2006-05-01

    In the United States, herbicides are among the most significant nonpoint-source pollutants and were applied to 95% of all fields in corn production and 97% of all fields in soybean production in 2003 and 2004. The United States Geological Survey (USGS) has conducted a study on select herbicides in the unsaturated zone under corn and soybean fields in three predominantly agricultural basins: Morgan Creek (Maryland), Leary Weber Ditch within Sugar Creek (Indiana), and Maple Creek (Nebraska). In 2004, the Morgan Creek and Leary Weber Ditch fields were in soybeans and the Maple Creek fields were in corn. The Maple Creek fields were irrigated, whereas those in Morgan Creek and Leary Weber Ditch were not. Similarities and differences in agricultural management practices, climatic conditions, and natural features, such as soil types and geology, were evaluated as part of the study. In general, the amounts of herbicides entering the unsaturated zone from rain in these basins were minor (1%) compared to amounts commonly applied to the land surface during agricultural practices. Few herbicides were detected on solid core samples from the unsaturated zones of these basins. An exception was found at a Morgan Creek site in an upland recharge area with sandier soils. Here, atrazine concentrations were highest in the near surface solids and decreased with depth. In the unsaturated-zone porewater of the Morgan Creek Basin, parent triazine and acetanilide herbicides were detected and only at the site in the upland recharge area at relatively low concentrations at depths greater than 4 meters, probably because these compounds had not been applied for several years. At the Morgan Creek and Leary Weber Ditch sites, acetanilide metabolites were frequently detected in the unsaturated-zone porewater. In general, the fraction of metolachlor ethane sulfonic acid (ESA) relative to the total mass of parent and metabolites increased with depth overall and at several individual sampling

  14. "More drop per crop" when moving from gravitational to drip irrigated agriculture? Experiences from a North Moroccan case study

    NASA Astrophysics Data System (ADS)

    Feltz, N.; Gaspart, F.; Vanclooster, M.

    2015-12-01

    In order to save agricultural water, the famous FAO's "more crop per drop" has been taken literally in many arid or semi-arid places around the world and policies that aim improving "efficiencies" (irrigation efficiency…) have been implemented, often leading to the promotion of water saving technologies. In 1865, studying coal consumption, W.S. Jevons highlighted that improving coal use efficiency could, as a paradox, lead to higher global coal use. Many economists later extended this idea to resource saving technologies in general, showing that, due to the "rebound effect", the adoption of more efficient technologies, in terms of use of resources, could lead to a higher global consumption of this resource if this adoption didn't go with adjustment measures. Regarding these considerations, the emerging question is to which extent water saving technologies (i.e. that aim improving water related efficiencies) are appropriate to save water at large scale. Our study addresses this question through the analysis of the conversion from surface to drip irrigation in Triffa's irrigated perimeter (Morocco). We aim addressing this question using the detailed analysis of two data sets. First, available data were collected for every farm within the study area from the local administrations. Second, interviews were conducted with farmers to complete the dataset and to characterize their behavior. This allowed assessing water related efficiencies at farm scale. Subsequently, models were implemented to link efficiencies with general attributes and thereby identify the main drivers of water related efficiencies in the study area. Finally, these models were used to upscale farm-scale assessment to the perimeter scale. Our results show that, under current conditions, moving from surface to drip irrigation leads to higher global water withdrawal. However, the aforementioned "rebound effect" does not allow explaining the higher pressure because of contextual specificities. Deeper

  15. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain

    PubMed Central

    Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  16. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  17. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils.

    PubMed

    Cid, Carolina Vergara; Rodriguez, Judith Hebelen; Salazar, María Julieta; Blanco, Andrés; Pignata, María Luisa

    2016-09-01

    Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments. PMID:26940382

  18. Multi-temporal UAV based data for mapping crop type and structure in smallholder dominated Tanzanian agricultural landscape

    NASA Astrophysics Data System (ADS)

    Nagol, J. R.; Chung, C.; Dempewolf, J.; Maurice, S.; Mbungu, W.; Tumbo, S.

    2015-12-01

    Timely mapping and monitoring of crops like Maize, an important food security crop in Tanzania, can facilitate timely response by government and non-government organizations to food shortage or surplus conditions. Small UAVs can play an important role in linking the spaceborne remote sensing data and ground based measurement to improve the calibration and validation of satellite based estimates of in-season crop metrics. In Tanzania most of the growing season is often obscured by clouds. UAV data, if collected within a stratified statistical sampling framework, can also be used to directly in lieu of spaceborne data to infer mid-season yield estimates at regional scales.Here we present an object based approach to estimate crop metrics like crop type, area, and height using multi-temporal UAV based imagery. The methods were tested at three 1km2 plots in Kilosa, Njombe, and Same districts in Tanzania. At these sites both ground based and UAV based data were collected on a monthly time-step during the year 2015 growing season. SenseFly eBee drone with RGB and NIR-R-G camera was used to collect data. Crop type classification accuracies of above 85% were easily achieved.

  19. Co-operative agreements and the EU Water Framework Directive in conjunction with the Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Heinz, I.

    2007-06-01

    This paper discusses the significance of voluntary arrangements for the water and agricultural policies in the European Union. The current implementation of the European Water Framework Directive (WFD) and the reform of the Common Agricultural Policy (CAP) require new approaches in water management. As many case studies have shown, co-operative agreements (CAs) between water companies, farmers and authorities can help to reduce environmental pressures on water bodies. The main reasons for that are: i) water companies are ready to advise and financially support farmers in changing production methods; ii) changes of farming practices are tailored to the site-specific requirements; iii) farmers and water companies are interested in minimising the costs and environmental pressures as they benefit, for example, from modernization of farming methods, and reductions in cost of water treatment, and iv) voluntarily agreed commitments to change farming practices are often stricter than statutory rules. Moreover, precautionary rather than remedial measures are preferred. Tackling diffuse pollution is one of the main concerns of the WFD. CAs can enhance the cost-effectiveness of actions within the programmes of measures so that good water status is achieved by 2015. In CAs all relevant stakeholders, located in catchment areas of agricultural usage, can be involved. Thus, they can help to foster integrated water resources management. In particular, disproportionate costs of changing farming practices can be identified. With regard to the recent CAP reform, financial support for farmers will be linked to compliance with environmental standards and further commitments. This concerns both direct payments and agri-environmental programmes. The experience gained in CAs can provide information on best agricultural practices. Informed farmers are more ready to meet environmental requirements. Because CAs implement the most cost-effective changes in farming practice, it can be assumed

  20. Co-operative agreements and the EU Water Framework Directive in conjunction with the Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Heinz, I.

    2008-05-01

    This paper discusses the significance of voluntary arrangements for the water and agricultural policies in the European Union. The current implementation of the European Water Framework Directive (WFD) and the reform of the Common Agricultural Policy (CAP) require new approaches in water management. As many case studies have shown, co-operative agreements (CAs) between water companies, farmers and authorities can help to reduce environmental pressures on water bodies. The main reasons for that are: i) water companies are ready to advise and financially support farmers in changing production methods; ii) changes of farming practices are tailored to the site-specific requirements; iii) farmers and water companies are interested in minimising the costs and environmental pressures as they benefit, for example, from modernization of farming methods, and reductions in cost of water treatment, and iv) voluntarily agreed commitments to change farming practices are often stricter than statutory rules. Moreover, precautionary rather than remedial measures are preferred. Tackling diffuse pollution is one of the main concerns of the WFD. CAs can enhance the cost-effectiveness of actions within the programmes of measures so that good water status is achieved by 2015. In CAs all relevant stakeholders, located in catchment areas of agricultural usage, can be involved. Thus, they can help to foster integrated water resources management. In particular, disproportionate costs of changing farming practices can be identified. With regard to the recent CAP reform, financial support for farmers will be linked to compliance with environmental standards and further commitments. This concerns both direct payments and agri-environmental programmes. The experience gained in CAs can provide information on best agricultural practices. Informed farmers are more ready to meet environmental requirements. Because CAs implement the most cost-effective changes in farming practice, it can be assumed