Science.gov

Sample records for agriculture forestry water

  1. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  2. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  3. Agriculture, Forestry and Rangeland Resources

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.

    1973-01-01

    The application of ERTS-1 imagery for providing information on agriculture, forestry, and rangeland resources is described. The use of the ERTS-1 system for stratification and sampling estimates of relatively small areas is discussed. Examples of maps to improve resource definition for land use planning, resource allocation, and resource development are provided. Inventories of various crops, as determined by photointerpretation of ERTS imagery are submitted in tabular form.

  4. Pesticide levels in surface waters in an agricultural-forestry basin in Southern Chile.

    PubMed

    Palma, Graciela; Sánchez, Alejandra; Olave, Yohana; Encina, Francisco; Palma, Rodrigo; Barra, Ricardo

    2004-11-01

    Residues of five pesticides in surface water were surveyed during 2001 and 2003 in the Traiguen river basin in Southern Chile. Simazine, hexazinone, 2,4-D, picloram herbicides and carbendazim fungicide were selected through a pesticide risk classification index. Six sampling stations along the river were set up based on agricultural and forestry land use. The water sampling was carried out before and after the pesticide application periods and in correspondence to some rain events. Pesticides were analyzed by HPLC with DAD detection in a multiresidue analysis. During 2001, in the first sampling campaign (March), the highest concentrations of pesticides were 3.0 microg l(-1) for simazine and hexazinone and 1.8 microg l(-1) for carbendazim. In the second sampling (September), the highest concentration were 9.7 microg l(-1) for 2,4-D, 0.3 microg l(-1) for picloram and 0.4 microg l(-1) for carbendazim. In the last sampling period (December), samples indicated contamination with carbendazim fungicide at levels of up to 1.2 microg l(-1). In sampling carried out on May 2003, no pesticides were detected. In October 2003, the highest concentrations of pesticides were 4.5 microg l(-1) for carbendazim and 2.9 microg l(-1) for 2,4-D. Data are discussed in function of land use and application periods of the products, showing a clear seasonal pattern pollution in the Traiguen river. Risk assessment for these pesticides was calculated by using a risk quotient (RQ = PNEC/PEC). For picloram the calculated RQ < was 0, which indicates that no adverse effects may occur due to the exposure to this herbicide in the Traiguen river basin. For 2,4-D, simazine, hexazinone, carbendazim RQ > 1, meaning that adverse effects could occur and it is necessary to reduce pesticide exposure in surface waters. It is recommended to continue with a pesticide monitoring program and the implementation of ecotoxicological testing with local and standardized species in order to consider the probability of

  5. The Sophia-Antipolis Conference: General presentation and basic documents. [remote sensing for agriculture, forestry, water resources, and environment management in France

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.

  6. Effects of land use on fresh waters: Agriculture, forestry, mineral exploitation, urbanisation

    SciTech Connect

    Solbe, J.F.

    1986-01-01

    This book offers a broad consideration of the effects of land use on fresh waters above and below ground. Experts address a wide range of issues in relation to the four major uses of land. Taken from an international conference held at the University of Stirling in 1985, coverage includes sewerage and waste-water treatment, long-term contamination of aquifers below cities, mineral exploitation, use of water in food production, wood production and more. Remedies and areas requiring further study are outlined.

  7. Agriculture and forestry: Identification, vigor, and disease

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    The agricultural and forestry areas which comprise the watershed of the Chesapeake Bay are described. Major problems of watershed creation and management with emphasis on the erosion problem are discussed. Remote sensing as it relates to the identification of plant species and vigor, pollution, disease, and insect infestation are examined. The application of infrared photography, multispectral sensing, and sequential survey is recommended to identify ecological changes and improve resources management.

  8. Agriculture, forestry, range, and soils, chapter 2, part C

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The feasibility of using microwave systems in agriculture, forestry, range, and soil moisture measurements was studied. Theory and preliminary results show the feasibility of measuring moisture status in the soil. For vegetational resources, crop identification for inventory and for yield and production estimates is most feasible. Apart from moisture- and water-related phenomena, microwave systems are also used to record structural and spatial data related to crops and forests.

  9. Modules in Agricultural Education for Forestry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the seven curriculum modules in this packet for forestry instruction contains a brief description of the module content, a list of the major divisions or units, the overall objectives, objectives by unit, content outline and suggested teaching methods, student application activities, and evaluation procedures. Module titles are Forest Fire…

  10. Moving from local to State water governance to resolve a local conflict between irrigated agriculture and commercial forestry in South Australia

    NASA Astrophysics Data System (ADS)

    Gillet, Virginie; McKay, Jennifer; Keremane, Ganesh

    2014-11-01

    In the Lower Limestone Coast, South Australia, a unique water allocation plan has been under consideration for several years. This plan is the first in Australia to consider forestry as a water affecting activity. Indeed, forestry plantations have a twofold impact on water-rainfall or aquifer recharge interception and direct extraction of groundwater in shallow water table areas-and alter the available water for irrigation as a result of the previous water budget. This paper examines how water is allocated across the competing requirements for water but also across the competing legal, economic and administrative scales embodied by the competing water users; and thus it also details the pre-judicial mechanism used to resolve the conflict over these competing scales. Qualitative and quantitative content analysis in Nvivo was applied to: (i) 180 local newspaper articles on the planning process, (ii) 65 submission forms filled in by the community during a public consultation on the draft water plan and (iii) 20 face-to-face interviews of keys stakeholders involved in the planning process. The social sustainability perspective taken in this study establishes the legal, economic and administrative competitive scales at stake in the conflict regarding water between forestry and irrigation. It also evidences the special feature of this paper, which is that to overcome these competitions and resolve the local conflict before judicial process, the water governance moved up in the administrative scale, from local/regional to State level. Initiated and initially prepared at regional level through the local Natural Resources Management Board, the water planning process was taken up to State level through the formation of an Interdepartmental Committee and the establishment of a Taskforce in charge of developing a policy. These were supported by an amendment of a State legislation on Natural Resources Management to manage the water impacts of forestry plantations.

  11. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  12. Alcohol production from agricultural and forestry residues

    SciTech Connect

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  13. Agriculture, Forestry and Fishing. Industry Training Monograph No. 1.

    ERIC Educational Resources Information Center

    Dumbrell, Tom

    Australia's agriculture, forestry, and fishing industry represents about 5% of the nation's total employment and growth in the last 10 years has averaged only about 0.3% per year. In 1996, it was estimated that 4.7% of government-funded training was directed toward this industry. A 1997 employer satisfaction survey indicated that 11% of…

  14. 45 CFR 1626.11 - H-2 agricultural and forestry workers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false H-2 agricultural and forestry workers. 1626.11... CORPORATION RESTRICTIONS ON LEGAL ASSISTANCE TO ALIENS § 1626.11 H-2 agricultural and forestry workers. (a... section. (b) Nonimmigrant forestry workers admitted to, or permitted to remain in, the United States...

  15. Remote sensing applications in agriculture and forestry. Applications of aerial photography and ERTS data to agricultural, forest and water resources management

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.

  16. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    SciTech Connect

    Mccarl, Bruce A.; Schneider, Uwe; Murray, Brian; Williams, Jimmy; Sands, Ronald D.

    2001-05-14

    This paper examines the relative contribution of agricultural and forestry activities in an emission reduction program, focusing in part on the relative desirability of sequestration in forests and agricultural soils. The analysis considers the effects of competition for land and other resources between agricultural activities, forestry activities and traditional production. In addition, the paper examines the influence of saturation and volatility.

  17. Building Better Rural Places: Federal Programs for Sustainable Agriculture, Forestry, Conservation and Community Development.

    ERIC Educational Resources Information Center

    Berton, Valerie; Butler, Jennifer

    This guide is written for those seeking help from federal programs to foster innovative enterprises in agriculture and forestry in the United States. The guide describes program resources in value-added and diversified agriculture and forestry, sustainable land management, and community development. Programs are included based upon whether they…

  18. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  19. 29 CFR 780.200 - Inclusion of forestry or lumbering operations in agriculture is limited.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... agriculture is limited. 780.200 Section 780.200 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry...

  20. 29 CFR 780.200 - Inclusion of forestry or lumbering operations in agriculture is limited.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... agriculture is limited. 780.200 Section 780.200 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry...

  1. 29 CFR 780.200 - Inclusion of forestry or lumbering operations in agriculture is limited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... agriculture is limited. 780.200 Section 780.200 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry...

  2. 29 CFR 780.200 - Inclusion of forestry or lumbering operations in agriculture is limited.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... agriculture is limited. 780.200 Section 780.200 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry...

  3. 29 CFR 780.200 - Inclusion of forestry or lumbering operations in agriculture is limited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... agriculture is limited. 780.200 Section 780.200 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... REGULATIONS EXEMPTIONS APPLICABLE TO AGRICULTURE, PROCESSING OF AGRICULTURAL COMMODITIES, AND RELATED SUBJECTS UNDER THE FAIR LABOR STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry...

  4. Risk of malignant lymphoma in Swedish agricultural and forestry workers.

    PubMed Central

    Wiklund, K; Lindefors, B M; Holm, L E

    1988-01-01

    The risk of malignant lymphoma after possible exposure to phenoxy acid herbicides was studied in 354,620 Swedish men who, according to a national census in 1960, were employed in agriculture or forestry. The cohort was divided into subcohorts according to assumed exposure and compared with 1,725,645 Swedish men having other economic activities. All were followed up in the Cancer-Environment Register between 1961 and 1979. Non-Hodgkin lymphoma was found in 861 men in the study cohort. The relative risk was not significantly increased in any subcohort, did not differ significantly between the subcohorts, and showed no time related increase in the total cohort or any subcohort. Hodgkin's disease was found in 355 men in the study cohort. Relative risks significantly higher than unity were found among fur farming and silviculture workers where the relative risks were 4.45 and 2.26, respectively. All five cases in the former group were engaged in mink farming. A time related rising trend in relative risk was found in the silviculture subcohort. Elsewhere the relative risk did not diverge from unity and no time related trend was discernible. PMID:3342183

  5. Climate Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    EPA Science Inventory

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  6. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a) Beginning... obtain approval of a permit under § 49.134 Rule for forestry and silvicultural burning permits....

  7. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Reservation, Oregon § 49.11021 Permits for general open burning, agricultural burning, and forestry and..., 2007, a person must apply for and obtain approval of a permit under § 49.134 Rule for forestry...

  8. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and... person must apply for and obtain approval of a permit under § 49.134 Rule for forestry and...

  9. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and... person must apply for and obtain approval of a permit under § 49.134 Rule for forestry and...

  10. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and... person must apply for and obtain approval of a permit under § 49.134 Rule for forestry and...

  11. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... Tribe of Idaho § 49.10411 Permits for general open burning, agricultural burning, and forestry and... person must apply for and obtain approval of a permit under § 49.134 Rule for forestry and...

  12. Climate change information supporting adaptation in forestry and agriculture - results and challenges

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála; Czimber, Kornél; Gribovszki, Zoltán; Bidló, András; Csáki, Péter; Kalicz, Péter; Haensler, Andreas; Jacob, Daniela; Mátyás, Csaba

    2015-04-01

    Recurrent droughts of the last decades have led to severe impacts in forestry and agriculture in the sensitive and vulnerable low-elevation regions of Southeast Europe. Observed impacts are very likely to occur with increasing probability under projected climate conditions throughout the 21st century. In order to suggest options for adaptation and mitigation, a GIS-based Decision Support System is under development in the frame of the joint EU-national research project "Agroclimate". Impact assessments and adaptation support services are based on the simulation results of 12 regional climate models (www.ensembles-eu.org) using the A1B emission scenario until 2100. The development of the Decision Support System requires the balancing of available climatic information and required data for research and economically relevant projection needs of the end users. Here, concrete examples of the development process will be shown for the stepwise analysis and comparison of the followings: 1. Provided climate services: • projected tendencies of temperature and precipitation means and extremes until the end of the 21st century, spread of the simulation results. 2. Required information for climate impact research: • types and characteristics of climate input data, • methods and functions for deriving possible climate change impacts in forestry and agriculture (e.g. on species distribution, growth, production, yield, soil water retention, ground water table, runoff, erosion, evapotranspiration and other ecosystem services and soil properties). 3. Required climate information from the end users' side for developing adaption strategies in the affected sectors: • types of climate indicators, • possible range of the expected impacts (in magnitude and probability). 4. Gaps between climate services and the needs of impact researchers and end users (e.g. spatial and temporal scales, interpretation techniques). Experiences of supporting climate change adaptation in forestry

  13. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  14. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  15. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  16. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... burning, and forestry and silvicultural burning. (a) Beginning January 1, 2007, a person must apply for... under § 49.134 Rule for forestry and silvicultural burning permits....

  17. Supervised Occupational Experience Record Book for Agricultural Resource Conservation, Environmental Management and Forestry.

    ERIC Educational Resources Information Center

    Nickles, Tom

    The record book was designed to meet the occupational experience recordkeeping requirements of vocational agriculture students enrolled in forestry, environmental management, or agriculture resource conservation programs in Ohio. It provides guidelines and forms for recording on-the-job, in-the-school lab, and occupational experience project data.…

  18. Library Cooperation at the NOVA University--the Nordic University in Agriculture, Forestry and Veterinary Medicine.

    ERIC Educational Resources Information Center

    Myllys, Heli

    The Nordic University in Agriculture, Forestry and Veterinary Medicine--the NOVA University-was established in 1995 to increase the cooperation between the Nordic agricultural universities. The NOVA libraries of the seven institutions and facilities involved wanted to show that they are a very useful partner in launching new ideas. They have the…

  19. Agriculture--Forestry. Kit No. 31. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Sloan, Lee

    An instructor's manual and student activity guide on forestry are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics, distributive…

  20. Agriculture--Forestry Seedlings. Kit No. 53. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Walker, Larkin V., Jr.

    An instructor's manual and student activity guide on forestry seedlings are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  1. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    SciTech Connect

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison M.; Zhang, Xuesong; Jones, Russ; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, B. J.; McFarland, Jim; Strzepek, K.; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  2. 77 FR 55755 - Small Business Size Standards: Agriculture, Forestry, Fishing, and Hunting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Register on July 18, 2008 (73 FR 41237). NAICS 11, Agriculture, Forestry, Fishing and Hunting, includes 46... business status caused by a large number of varying receipts based size standards (see 69 FR 13130 (March 4, 2004) and 57 FR 62515 (December 31, 1992)). At the beginning of the current comprehensive...

  3. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  4. Agriculture, Forestry, Fishing, and Veterinary Science. Financial Assistance for Study after Standard 10.

    ERIC Educational Resources Information Center

    Roodt, J., Comp.; And Others

    This guide, the seventh in a set of nine, presents a summary of financial assistance available to students of forestry, agriculture, fishing, and veterinary medicine for obtaining a certificate, diploma, or degree after Standard 10 at a university, college, or technikon located in South Africa. The bursaries, loans, and other forms of financial…

  5. A selected bibliography: Application of Landsat digital multispectral scanner data to agriculture, forestry, and range management

    USGS Publications Warehouse

    Rohde, Wayne G.

    1977-01-01

    This bibliography contains citations of selected publications and technical reports dealing with the application of Landsat digital data analysis techniques to agriculture, forestry, and range management problems. All of the citations were published between 1973 and 1977. The citations reference publications and reports which discuss specific analysis techniques and specific resource applications.

  6. Forestry Manual for Vocational Agriculture Instructors. 1976 Revision. Bulletin No. 7001.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    The ten chapters included in this forestry manual for vocational agriculture instructors are grouped into three parts. A course outline precedes part 1 and assists the teacher by providing performance objectives, major concepts to be developed, a subject matter outline, motivational ideas, suggested learning activities, and a list of resource…

  7. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    PubMed Central

    Wilson, Alphus D.

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191

  8. [Use of an aerosol generator (Guard) to control injurious insects in forestry, agriculture, and medical disinsection].

    PubMed

    Abdraziakov, O N; Ermishev, Iu V; Levkov, P A

    2012-01-01

    The Guard aerosol generator is a universal multioperational device without a field-of-use restriction in the application of permitted chemical and biological substances, by combining the function of a controlled dispersion aerosol generator and a remote small- and large-drop sprayer in one mechanism and can use aerosol pesticides. The drop fractionation range is as follows: 3-50, 50-100, 100-300, and 200-400 microm for aerosol, dead water, small-drop, and large-drop spraying, respectively, with smooth and step control of working liquid drops. Treatment using the Guard generator has been shown to be highly effective against agricultural and forestry pests. This paper describes the advantages of the Guard sprayer over those of the conventional air and ground ones. The long-term use of the Guard generator to control mosquitoes and ticks in the Tyumen region could substantially improve the epidemiological situation of tick-borne infections and protect children's recreation centers from attacks of bloodsuckers. PMID:22774514

  9. Identification of high payoff research for more efficient applicator helicopters in agriculture and forestry

    NASA Technical Reports Server (NTRS)

    Waters, K. T.

    1979-01-01

    The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.

  10. Optics in agriculture and forestry; Proceedings of the Meeting, Boston, MA, Nov. 16, 17, 1992

    SciTech Connect

    Deshazer, J.A.; Meyer, G.E.

    1993-01-01

    Topics addressed include near-infrared or color methods for agricultural applications; optical and imaging methods for biological product quality; specific optical methods for agriculture and forestry; imaging methods for plant seedling inspection; detection of living plants; and engineering applications of lasers, optics, and detectors in agribusiness. Particular attention is given to near-infrared spectrophotometry for soil property sensing, determination of wheat kernel hardness by optical measurements, an ultrasonic image analysis for beef tenderness, a grain velocity measurement using a linear image sensor, line-scan inspection of conifer seedlings, a neural network classification of sweet potato embryos, and application of smart submunition technology to agribusiness.

  11. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    NASA Astrophysics Data System (ADS)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between

  12. Integrating agricultural and forestry GHG mitigation responses into general economy frameworks: Developing a family of response functions

    SciTech Connect

    Gillig, Dhazn; McCarl, Bruce A.; Sands, Ronald D.

    2004-07-01

    An econometrically estimated family of response functions is developed for characterizing potential responses to greenhouse gas mitigation policies by the agriculture and forestry sectors. The response functions are estimated based on results of an agricultural/forestry sector model. They provide estimates of sequestration and emission reductions in forestry and agriculture along with levels of sectoral production, prices, welfare, and environmental attributes given a carbon price, levels of demand for agricultural goods, and the energy price. Six alternative mitigation policies representing types of greenhouse gas offsets allowed are considered. Results indicate that the largest quantity of greenhouse gas offset consistently appears with the mitigation policy that pays for all opportunities. Restricting carbon payments (emission tax or sequestration subsidy) only to aff/deforestation or only to agricultural sequestration substantially reduces potential mitigation. Higher carbon prices lead to more sequestration, less emissions, reduced consumer and total welfare, improved environmental indicators and increased producer welfare.

  13. Policy toward individual economic holdings and private enterprises in agriculture, forestry, and fisheries, November 1988.

    PubMed

    1989-01-01

    On 29 November 1988, Viet Nam adopted a policy allowing individual economic holdings and private enterprises in the areas of agriculture, forestry, and fisheries. The policy recognizes the positive effect of such holdings and charges the state with creating favorable conditions for them. Ownership and inheritance rights are recognized, and all citizens are entitled to apply for permission to use certain land for business purposes. The production of exports is encouraged, and such enterprises may engage in financial transactions, including borrowing money. PMID:12344312

  14. Application of ERTS-1 imagery in the fields of geology, agriculture, forestry, and hydrology to selected test sites in Iran

    NASA Technical Reports Server (NTRS)

    Ebtehadj, K.

    1973-01-01

    The preliminary study of the ERTS-1 imagery coverage of Iran, commenced on October 26, 1972. All of the images were carefully examined, and a photomosaic covering approximately ninety-five per cent of the country was prepared. A number of images of selected areas were studied in detail. In the field of geology, a number of large scale faults were identified, which do not figure on geological maps. Furthermore, a preliminary study was carried out on the recent sediments, their possible sources, and origin. A limited number of geological work maps were prepared as well. In the fields of agriculture and forestry, studies based on color composite prints of certain areas were undertaken, with a purpose of identifying potential arable areas. Investigations in the field of water resources resulted in the discovery of a number of small lakes, and streams. Furthermore, fluctuations of the water level in some lakes were observed.

  15. Ten Years' Chinese-Canadian Collaboration in Undergraduate Education in Fujian Agriculture and Forestry University of China: Curriculum Development

    ERIC Educational Resources Information Center

    Wang, Songliang; Caldwell, Claude; Wei, Liqing; Su, Haiyan

    2015-01-01

    The Fujian Agriculture and Forestry University-Nova Scotia Agricultural College (FAFU-NSAC) 2 + 2 undergraduate program initiated in 2003 is a model for creative collaboration between China and Canada in undergraduate education. This paper addresses the achievements of the program development and highlights the process for successful curriculum…

  16. {open_quotes}Industry overview: Agriculture and forestry{close_quotes}

    SciTech Connect

    Evans, G.

    1995-12-31

    The Climate Change negotiators left Berlin, very tired and bleary eyed, but with a Declaration which included agreements, among other things, to take a close look at what the likely effects of commitments will be and where those commitments will be going between now and 2000. Debate would then open on a new or amended legal instrument to meet the Objective of the Climate Change Convention, in the Twenty First Century. One hundred and fifty nations also declared that a new way of transfering technology could be tried on a pilot basis, thus, Joint Implementation also will move into the Twenty First Century. These two parts of the Berlin Declaration are very important to the role to be played by agriculture and forestry. Agriculture and forestry currently are playing a significant role and will continue this role in the stabilization of atmospheric concentrations of greenhouse gases. These two sectors, whether in an industrialized nation or in developing nation represent the only economically viable technologies for carbon sequestration, at this time. These sinks are constrained, however, by the reservoir capacity of the soils and are a function of temperature, moisture, soil, and history of use. The outlook is, therefore both one of optimisim and of pessimism. The view will have some global overtones, however, the focus is primarily within the U.S.

  17. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    PubMed

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. PMID:27067672

  18. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation. PMID:26306792

  19. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  20. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  1. Agriculture--Forestry, Biltmore Stick. Kit No. AG-107. Instructor's Manual and Student Learning Activity Guide. Revised.

    ERIC Educational Resources Information Center

    Simms, Barron; Johnson, Boston

    This two-volume set, consisting of an instructor's manual and a student learning activity guide, is designed for use in teaching vocational agriculture students basic forestry skills. Provided in the instructor's manual are guidelines concerning the duration of the activity; activity goals; a list of instructional objectives; a list of vocational…

  2. FEASIBILITY STUDY TO PRODUCE BIODIESEL FROM LOW COST OILS AND NEW CATALYSTS DERIVED FROM AGRICULTURAL & FORESTRY RESIDUES - PHASE I

    EPA Science Inventory

    This research will develop and demonstrate the feasibility of preparing reusable and recoverable solid, porous acid and base catalysts for biodiesel production using activated carbon generated from agricultural and forestry residues (i.e., a sustainable biomass).  These ne...

  3. The utility of ERTS-1 data for applications in agriculture and forestry. [Montana, Nebraska, Iowa, Georgia, California, and Texas

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    A comprehensive study has been undertaken to determine the extent to which ERTS-1 data could be used to detect, identify (classify), locate and measure features of applications interest in the disciplines of Agriculture and Forestry. The study areas included: six counties in five states in which were located examples of the most important crops and practices of American agriculture; and a portion of the Sam Houston National Forest, a typical Gulf coastal plain pine forest. The investigation utilized conventional image interpretation and computer-aided (spectral pattern recognition) analysis using both image products and computer compatible tapes. The emphasis was generally upon the computer-aided techniques. It was concluded that ERTS-1 data can be used to detect, identify, locate and measure a wide array of features of interest in agriculture and forestry.

  4. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  5. Innovative aspects for teaching the Geology and Climatology course in Agricultural and Forestry Engineering degrees

    NASA Astrophysics Data System (ADS)

    del Campillo, M. C.; Cañasveras, J. C.; Sánchez-Alcalá, I.; Sánchez-Rodríguez, A. R.; Alburquerque, J. A.; Castro, M. A.; Rey, M. A.; Barrón, V.; Torrent, J.

    2012-04-01

    Courses of the first year at Engineering are typically basic to understanding other subjects and in many cases less attractive for students. In order to innovate and incorporate some aims of the Bologna process, here we present the development of the course of Geology and Climatology given the first year of Agricultural and Forestry degrees at the University of Córdoba. Temporal distribution of activities was as follows: a) to the whole group: 35% of master class, 5% of conferences and 10% of field trip, b) to the medium group (<30 students) 20% of seminars and c) to the small group (<15 students) 25% laboratory and field practical class, and 5% final oral presentation of individual work. Students were assigned the performance of a professional work: characterization of the geology and climatology of an area that will need to know for the courses in the coming years (for example soil science, crop sciences and environmental sciences). Students have to a) complete a literature review of all work done to date, b) use and study the geological map (1:50000) published by the Geological Survey of Spain (IGME), visit the study area in which they had to pick up rocks and subsequently to characterize them, and c) obtain meteorological data from the Spanish Agency of Meteorology (AEMET) (minimum 30 years of precipitation, 15 years of temperatures and 10 years of other variables) for a complete characterization of the climate. The assessment system for students included: attend classes, participation in practicals and excursions, carry out exercices, oral presentation of the report and a final written test. Key factors that favored student participation and interest in the course were: a) the small number of students in classes dedicated to the practicals and seminars and the continuous advice from teachers, and b) the personal choice by the student of the work area, usually close to their origin and in many cases from family property. All of this has served to students, who

  6. Research Needs for Carbon Management in Agriculture, Forestry and Other Land Uses

    NASA Astrophysics Data System (ADS)

    Negra, C.; Lovejoy, T.; Ojima, D. S.; Ashton, R.; Havemann, T.; Eaton, J.

    2009-12-01

    Improved management of terrestrial carbon in agriculture, forestry, and other land use sectors is a necessary part of climate change mitigation. It is likely that governments will agree in Copenhagen in December 2009 to incentives for improved management of some forms of terrestrial carbon, including maintaining existing terrestrial carbon (e.g., avoiding deforestation) and creating new terrestrial carbon (e.g., afforestation, soil management). To translate incentives into changes in land management and terrestrial carbon stocks, a robust technical and scientific information base is required. All terrestrial carbon pools (and other greenhouse gases from the terrestrial system) that interact with the atmosphere at timescales less than centuries, and all land uses, have documented mitigation potential, however, most activity has focused on above-ground forest biomass. Despite research advances in understanding emissions reduction and sequestration associated with different land management techniques, there has not yet been broad-scale implementation of land-based mitigation activity in croplands, peatlands, grasslands and other land uses. To maximize long-term global terrestrial carbon volumes, further development of relevant data, methodologies and technologies are needed to complement policy and financial incentives. The Terrestrial Carbon Group, in partnership with UN-REDD agencies, the World Bank and CGIAR institutions, is reviewing literature, convening leading experts and surveying key research institutions to develop a Roadmap for Terrestrial Carbon: Research Needs for Implementation of Carbon Management in Agriculture, Forestry and Other Land Uses. This work will summarize the existing knowledge base for emissions reductions and sequestration through land management as well as the current availability of tools and methods for measurement and monitoring of terrestrial carbon. Preliminary findings indicate a number of areas for future work. Enhanced information

  7. Insights from EMF Associated Agricultural and Forestry Greenhouse Gas Mitigation Studies

    SciTech Connect

    McCarl, Bruce A.; Murray, Brian; Kim, Man-Keun; Lee, Heng-Chi; Sands, Ronald D.; Schneider, Uwe

    2007-11-19

    Integrated assessment modeling (IAM) as employed by the Energy Modeling Forum (EMF) generally involves a multi-sector appraisal of greenhouse gas emission (GHGE) mitigation alternatives and climate change effects typically at the global level. Such a multi-sector evaluation encompasses potential climate change effects and mitigative actions within the agricultural and forestry (AF) sectors. In comparison with many of the other sectors covered by IAM, the AF sectors may require somewhat different treatment due to their critical dependence upon spatially and temporally varying resource and climatic conditions. In particular, in large countries like the United States, forest production conditions vary dramatically across the landscape. For example, some areas in the southern US present conditions favorable to production of fast growing, heat tolerant pine species, while more northern regions often favor slower-growing hardwood and softwood species. Moreover, some lands are currently not suitable for forest production (e.g., the arid western plains). Similarly, in agriculture, the US has areas where citrus and cotton can be grown and other areas where barley and wheat are more suitable. This diversity across the landscape causes differential GHGE mitigation potential in the face of climatic changes and/or responses to policy or price incentives. It is difficult for a reasonably sized global IAM system to reflect the full range of sub-national geographic AF production possibilities alluded to above. AF response in the face of climate change altered temperature precipitation regimes or mitigation incentives will likely involve region-specific shifts in land use and agricultural/forest production. This chapter addresses AF sectoral responses in climate change mitigation analysis. Specifically, we draw upon US-based studies of AF GHGE mitigation possibilities that incorporate sub-national detail drawing largely on a body of studies done by the authors in association with

  8. Is the water footprint an appropriate tool for forestry and forest products: the Fennoscandian case.

    PubMed

    Launiainen, Samuli; Futter, Martyn N; Ellison, David; Clarke, Nicholas; Finér, Leena; Högbom, Lars; Laurén, Ari; Ring, Eva

    2014-03-01

    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity. PMID:23420472

  9. Climatological to Near Real Time Global Meteorological Data for Agricultural, Range, and Forestry Applications

    NASA Astrophysics Data System (ADS)

    Hoell, J. M.; Stackhouse, P. W.; Westberg, D. J.; Chandler, W. S.; Whitlock, C. H.; Zhang, T.

    2007-12-01

    December 31, 2004 (soon to be extended to June 30, 2005) and from July 1, 2006 through current time with a one-month delay; the temperature and dew point parameters are from the Goddard Earth Observing System (GEOS) version 4 analyses, and cover the time period from January 1, 1983 through current time with a one- month delay; and the daily averaged precipitation is based upon a merge of the GPCP and TRMM data files and cover the time period from January 1, 1997 through current time with a two-month delay. Results of validation studies for each of the parameters contained in the POWER web site will be presented that illustrate the strengths and weakness of the satellite/model meteorological and solar parameters. In particular, the POWER parameters have been compared to observations from a range of ground stations with particular emphases on results from automated weather stations that are often found in the US in agricultural, range, and forestry environments.

  10. [Depth of edge influence on agriculture-forestry boundary in arid valley of upper reaches of Minjiang River, China].

    PubMed

    Li, Liguang; He, Xingyuan; Li, Xiuzhen; Wen, Qingchun; Zhao, Yonghua; Hu, Zhibin; Chang, Yu; Zhu, Yaping

    2004-10-01

    By using moving split-window techniques (MSWT), this study estimated how far the edge effects penetrated the forest and agricultural fields in the arid valley of upper reaches of Minjiang River, southwestern China. Its aim was to provide general information on vegetation along edge to interior gradients in order to assist in interpretation and prediction of biological phenomena associated with agriculture-forestry boundary, and to improve current management practices in such areas. Three types of boundaries (10 transects) were investigated and sampled. The results showed that when the window width reached 6-10, the change of the SED curve on the graph tended to become stable, and one or two peaks occurred. The depth of edge influence was clearly different for different types of boundaries, and could be estimated within 50 m from the edge to interior. The depth of edge influence (DEI) on vegetation diversity almost varied between 12-30 m, mainly depending on the patch type, topography and microclimate, but seldom on slope orientation. Of the 6 forest transects in the three types of boundaries, the DEI was detected only in the forest part transects M2 and M6, but almost detectable in the agricultural part of all transects. MSWT was considered to be a useful tool for characterizing edge dynamics if enough data was available, and became a simple and powerful technique for analyzing the boundary. The results will provide further knowledge for understanding the interaction between forestry and agriculture in the arid valley. PMID:15624812

  11. Emissions of greenhouse gases from agriculture, land-use change, and forestry in the Gambia.

    PubMed

    Jallow, B P

    1995-01-01

    The Gambia has successfully completed a national greenhouse gas emissions inventory based on the results of a study funded by the United Nations Environment Programme (UNEP)/Global Environment Facility (GEF) Country Case Study Program. The concepts of multisectoral, multidisciplinary, and interdisciplinary collaboration were most useful in the preparation of this inventory. New data were gathered during the study period, some through regional collaboration with institutions such as Environment and Development in the Third World (ENDA-TM) Energy Program and the Ecological Monitoring Center in Dakar, Senegal, and some through national surveys and the use of remote sensing techniques, as in the Bushfires Survey. Most of the data collected are used in this paper. The Intergovernmental Panel on Climate Change/Organisation for Economic Co-operation and Development/International Energy Agency (IPCC/OECD/IEA) methodology is used to calculate greenhouse gas emissions. Many of the default data in the IPCC/OECD/IEA methodology have also been used. Overall results indicate that in the biomass sectors (agriculture, forestry, and land-use change) carbon dioxide (CO2) is emitted most, with a total of 1.7 Tg. This is followed by methane (CH4), 22.3 Gg; carbon monoxide (CO), 18.7 Gg; nitrogen oxides (NOx), 0.3 Gg; and nitrous oxide (N2O), 0.014 Gg. The Global Warming Potential (GWP) was used as an index to describe the relative effects of the various gases reported here. Based on the emissions in The Gambia in 1993, it was found that CO2 will contribute 75%, CH4 about 24.5%, and N2O 0.2% of the warming expected in the 100-year period beginning in 1993. The results in this analysis are limited by the shortcomings of the IPCC/OECD/IEA methodology and scarce national data. Because the methodology was developed outside of the developing world, most of its emissions factors and coefficients were developed and tested in environments that are very different from The Gambia. This is likely

  12. Career Preparation in Forestry: A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    Householder, Larry; Moore, Eddie A.

    This curriculum guide in forestry is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes six occupational subgroups: forest establishment, forest protection, logging (harvesting and transporting), wood utilization Christmas tree…

  13. Investigating the Time Lag Effect between Economic Recession and Suicide Rates in Agriculture, Fisheries, and Forestry Workers in Korea.

    PubMed

    Yoon, Jin-Ha; Junger, Washington; Kim, Boo-Wook; Kim, Young-Joo; Koh, Sang-Baek

    2012-12-01

    Previous studies on the vast increase in suicide mortality in Southeast Asia have indicated that suicide rates increase in parallel with a rise in unemployment or during periods of economic recession. This paper examines the effects of economic recession on suicidal rates amongst agriculture, fisheries, and forestry workers in Korea. Monthly time-series gross domestic product (GDP) data were linked with suicidal rates gathered from the cause of death records between1993-2008. Data were analyzed using generalized additive models to analyze trends, while a polynomial lag model was used to assess the unconstrained time lag effects of changes in GDP on suicidal rate. We found that there were significant inverse correlations between changes in GDP and suicide for a time lag of one to four months after the occurrence of economic event. Furthermore, it was evident that the overall relative risks of suicide were high enough to bring about social concern. PMID:23251845

  14. Practice and Reflection on Interactive Three-Dimensional Teaching System in Agricultural and Forestry Colleges

    ERIC Educational Resources Information Center

    Lei, Zhimin

    2013-01-01

    Ever since the new curriculum was implemented, Sichuan Agricultural University that is characterized by agricultural science has conducted ideological and political teaching reform, explored a basic route to integrate scientific outlook on development into theoretical teaching and initially formed a human-oriented interactive three-dimensional…

  15. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Commodity Credit Corporation Agricultural Water Enhancement Program AGENCY: Commodity Credit Corporation and... Agricultural Water Enhancement Program (AWEP) by amending section 1240I of the Food ] Security Act of 1985. The... technical assistance to agricultural producers to implement agricultural water enhancement activities...

  16. Relevance of ERTS-1 to the State of Ohio. [agriculture, forestry, land use, mining, and environmental quality management

    NASA Technical Reports Server (NTRS)

    Sweet, D. C.; Pincura, P. G.; Wukelic, G. E. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. During the first year of project effort the ability of ERTS-1 imagery to be used for mapping and inventorying strip-mined areas in south eastern Ohio, the potential of using ERTS-1 imagery in water quality and coastal zone management in the Lake Erie region, and the extent that ERTS-1 imagery could contribute to localized (metropolitan/urban), multicounty, and overall state land use needs were experimentally demonstrated and reported as significant project results. Significant research accomplishments were achieved in the technological development of manual and computerized methods to extract multi-feature information as well as singular feature information from ERTS-1 data as is exemplified by the forestry transparency overlay. Fabrication of an image transfer device to superimpose ERTS-1 data onto existing maps and other data sources was also a significant analytical accomplishment.

  17. Parsimonious modelling of water and suspended sediment flux from nested catchments affected by selective tropical forestry.

    PubMed Central

    Chappell, N A; McKenna, P; Bidin, K; Douglas, I; Walsh, R P

    1999-01-01

    The ability to model the suspended sediment flux (SSflux) and associated water flow from terrain affected by selective logging is important to the establishment of credible measures to improve the ecological sustainability of forestry practices. Recent appreciation of the impact of parameter uncertainty on the statistical credibility of complex models with little internal state validation supports the use of more parsimonious approaches such as data-based mechanistic (DBM) modelling. The DBM approach combines physically based understanding with model structure identification based on transfer functions and objective statistical inference. Within this study, these approaches have been newly applied to rainfall-SSflux response. The dynamics of the sediment system, together with the rainfall-river flow system, were monitored at five nested contributory areas within a 44 ha headwater region in Malaysian Borneo. The data series analysed covered a whole year at a 5 min resolution, and were collected during a period some five to six years after selective timber harvesting had ceased. Physically based and statistical interpretation of these data was possible given the wealth of contemporary and past hydrogeomorphic data collected within the same region. The results indicated that parsimonious, three-parameter models of rainfall-river flow and rainfall-SSflux for the whole catchment describe 80 and 90% of the variance, respectively, and that parameter changes between scales could be explained in physically meaningful terms. Indeed, the modelling indicated some new conceptual descriptions of the river flow and sediment-generation systems. An extreme rainstorm having a 10-20 year return period was present within the data series and was shown to generate new mass movements along the forestry roads that had a differential impact on the monitored contributory areas. Critically, this spatially discrete behaviour was captured by the modelling and may indicate the potential use of

  18. Evaluation and Reauthorization of the Special Supplemental Food Program for Women, Infants, and Children (WIC). Hearings before the Committee on Agriculture, Nutrition, and Forestry, United States Senate; and the Subcommittee on Nutrition of the Committee on Agriculture, Nutrition, and Forestry, United States Senate. Ninety-Eighth Congress Second Session, March 15 and April 9, 1984.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Agriculture, Nutrition, and Forestry.

    This document records hearings before the U.S. Senate Committee on Agriculture, Nutrition, and Forestry and its sub-committee on Nutrition. The hearings, dated March 15 and April 9, 1984, were conducted in order to evaluate and reauthorize the special supplemental food program for Women, Infants and Children (WIC), due to expire in 1984. Testimony…

  19. Establishing sustainable GHG inventory systems in African countries for Agriculture and Land Use, Land-use Change and Forestry (LULUCF)

    NASA Astrophysics Data System (ADS)

    Wirth, T. C.; Troxler, T.

    2015-12-01

    As signatories to the United Nations Framework Convention on Climate Change (UNFCCC), developing countries are required to produce greenhouse gas (GHG) inventories every two years. For many developing countries, including many of those in Africa, this is a significant challenge as it requires establishing a robust and sustainable GHG inventory system. In order to help support these efforts, the U.S. Environmental Protection Agency (EPA) has worked in collaboration with the UNFCCC to assist African countries in establishing sustainable GHG inventory systems and generating high-quality inventories on a regular basis. The sectors we have focused on for these GHG inventory capacity building efforts in Africa are Agriculture and Land Use, Land-use Change and Forestry (LULUCF) as these tend to represent a significant portion of their GHG emissions profile and the data requirements and methodologies are often more complex than for other sectors. To support these efforts, the U.S. EPA has provided technical assistance in understanding the methods in the IPCC Guidelines, assembling activity data and emission factors, including developing land-use maps for representing a country's land base, and implementing the calculations. EPA has also supported development of various tools such as a Template Workbook that helps the country build the institutional arrangement and strong documentation that are necessary for generating GHG inventories on a regular basis, as well as performing other procedures as identified by IPCC Good Practice Guidance such as quality assurance/quality control, key category analysis and archiving. Another tool used in these projects and helps country's implement the methods from the IPCC Guidelines for the Agriculture and LULUCF sectors is the Agriculture and Land Use (ALU) tool. This tool helps countries assemble the activity data and emission factors, including supporting the import of GIS maps, and applying the equations from the IPPC Guidelines to

  20. Is "the perfect model" really needed? - Analysis of the quality level of climate information necessary for supporting adaptation in agriculture and forestry

    NASA Astrophysics Data System (ADS)

    Gálos, Borbála; Ostler, Wolf-Uwe; Csáki, Péter; Bidló, András; Panferov, Oleg

    2016-04-01

    Recent results of climate science (e.g. IPCC AR5, 2013) and statements of climate policy (e.g. Paris Agreement) confirm that climate change is an ongoing issue. The consequences will be noticeable for a long time even if the 2 Degree goal is reached. Therefore, action plans are necessary for adaptation and mitigation on national and international level. Forestry and agriculture are especially threatened by the probable increase of the frequency and/or intensity of climate extremes. Severe impacts of recurrent droughts/heat waves that were observed in the last decades in the sensitive and vulnerable ecosystems and regions are very likely to occur with increasing probability throughout the 21st century. For the adequate climate impact assessments, for adaptation strategies as well as for supporting decisions in the above mentioned sectors the reliable information on the long-term climate tendencies and on ecosystem responses are required. Here are the two major problems: on the one hand the information on current climate and future climate developments are highly uncertain. On the other hand, due to limited knowledge on ecosystem responses, it is difficult to define how certain or accurate the provided climate data should be for the plausible application in agricultural/forestry research and practice. Considering agriculture and forestry, our research is focusing on the following questions: • What is the climate information demand of practice and impact research in the two sectors? • What quality level of climate information is necessary for adaptation support? • How does the accuracy of climate input affect the results of the climate impact assessments? The agriculture and forestry operate at two very different time scales and have a different reaction times and adaptation capacities. Agriculture requires short-term information on current conditions and short-/medium-term weather forecast. To assess the degree of information accuracy required by practical

  1. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    SciTech Connect

    1980-09-01

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  2. Academic Support Program in the Faculty of Agricultural and Forestry Engineering of the University of Cordoba (Spain)

    NASA Astrophysics Data System (ADS)

    Castro, Sergio; Navarro, Rafael M.; Camacho, Emilio; Gallardo, Rosa; García-Ferrer, Alfonso; Pérez-Marín, M. Dolores; Peña, Adolfo; Taguas, Encarnación V.

    2014-05-01

    The incorporation of new students to undergraduate degrees is performed in different stages through a long, sequential enrollment process. The student integration to the new context of higher education including group work and new teaching methodologies lead to notable adaptation difficulties to this new educational environment. In fact, the highest rate of student failure in the Bachelor degree usually happens during the first courses. The Unit of Quality Evaluation/Monitoring of School of Agricultural and Forest Engineering (ETSIAM) has detected that these failure rates at first and second degree course may be reduced through the involvement of students in a support learning process, by increasing their skills and motivation as well as the contact with the University environment in the context of their future professional horizon. In order to establish a program of this type, it has been launched an Academic Support Program (ASP) at the ETSIAM. This program aims to achieve and reinforce the basic academic and personal skills/competences require by the Bologna's process (BC) and specific competences of the engineers on the area of Agriculture and Forestry in the European context. The ASP includes diferent bloks of seminars, lectures, collaborative work and discussion groups among students, professionals, professors and researchers and it has been designed based on these competences and tranversal contents in both degrees. These activities are planned in a common time for both degrees, out of teaching classes. In addition, a virtual space in Moodle has been created for discussion forums and preparation activities. Additional information about schedules, speakers and companies, presentations and other material are also provided. In the preliminary implementation of the ASP, we will present the results corresponding to the first year of this academic support program. We have conducted a survey among the students in order to have a first feedback about the impact of

  3. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  4. Agriculture/forestry hydrology

    NASA Technical Reports Server (NTRS)

    Vanderoord, W. J. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The main vegetation units of the lower Mekong basin and the land development conditions were mapped by interpretation of LANDSAT 1 data. By interpretation of various shades of gray on satellite images, it was possible to map the density of the vegetation cover. Study of seasonal variations makes it possible to distinguish between mainly deciduous forests. In the Mekong basin area, these are generally related to the vegetation cover density.

  5. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J.

    1974-01-01

    In the area of crop specie identification, it has been found that temporal data analysis, preliminary stratification, and unequal probability analysis were several of the factors that contributed to high identification accuracies. Single data set accuracies on fields of greater than 80,000 sq m (20 acres) are in the 70- to 90-percent range; however, with the use of temporal data, accuracies of 95 percent have been reported. Identification accuracy drops off significantly on areas of less than 80,000 sq m (20 acres) as does measurement accuracy. Forest stratification into coniferous and deciduous areas has been accomplished to a 90- to 95-percent accuracy level. Using multistage sampling techniques, the timber volume of a national forest district has been estimated to a confidence level and standard deviation acceptable to the Forest Service at a very favorable cost-benefit time ratio. Range specie/plant community vegetation mapping has been accomplished at various levels of success (69- to 90-percent accuracy). However, several investigators have obtained encouraging initial results in range biomass (forage production) estimation and range readiness predictions. Soil association map correction and soil association mapping in new area appear to have been proven feasible on large areas; however, testing in a complex soil area should be undertaken.

  6. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    PubMed

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. PMID:25105754

  7. The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality.

    PubMed

    Laudon, Hjalmar; Kuglerová, Lenka; Sponseller, Ryan A; Futter, Martyn; Nordin, Annika; Bishop, Kevin; Lundmark, Tomas; Egnell, Gustaf; Ågren, Anneli M

    2016-02-01

    Protecting water quality in forested regions is increasingly important as pressures from land-use, long-range transport of air pollutants, and climate change intensify. Maintaining forest industry without jeopardizing sustainability of surface water quality therefore requires new tools and approaches. Here, we show how forest management can be optimized by incorporating landscape sensitivity and hydrological connectivity into a framework that promotes the protection of water quality. We discuss how this approach can be operationalized into a hydromapping tool to support forestry operations that minimize water quality impacts. We specifically focus on how hydromapping can be used to support three fundamental aspects of land management planning including how to (i) locate areas where different forestry practices can be conducted with minimal water quality impact; (ii) guide the off-road driving of forestry machines to minimize soil damage; and (iii) optimize the design of riparian buffer zones. While this work has a boreal perspective, these concepts and approaches have broad-scale applicability. PMID:26744050

  8. Water-table-dependent hydrological changes following peatland forestry drainage and restoration: Analysis of restoration success

    NASA Astrophysics Data System (ADS)

    Menberu, Meseret Walle; Tahvanainen, Teemu; Marttila, Hannu; Irannezhad, Masoud; Ronkanen, Anna-Kaisa; Penttinen, Jouni; Kløve, Bjørn

    2016-05-01

    A before-after-control approach was used to analyze the impact of peatland restoration on hydrology, based on high temporal resolution water-table (WT) data from 43 boreal peatlands representative of a south-boreal to north-boreal climate gradient. During the study, 24 forestry drained sites were restored and 19 pristine peatlands used as control sites. Different approaches were developed and used to analyze WT changes (mean WT position, WT fluctuation, WT hydrograph, recession, and storage characteristics). Restoration increased WT in most cases but particularly in spruce mires, followed by pine mires and fens. Before restoration, the WT fluctuation (WTF) was large, indicating peat temporary storage gain (SG). After restoration, the WT hydrograph recession limb slopes and SG coefficients (Rc) declined significantly. Drainage or restoration did not significantly affect mean diurnal WT fluctuations, used here as a proxy for evapotranspiration. Overall, the changes in WT characteristics following restoration indicated creation of favorable hydrological conditions for recovery of functional peatland ecosystems in previously degraded peatland sites. This was supported by calculation of bryophyte species abundance thresholds for WT. These results can be used to optimize restoration efforts in different peatland systems and as a qualitative conceptual basis for future restoration operations.

  9. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces

  10. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  11. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry?

    PubMed

    Bonanno, Giuseppe; Cirelli, Giuseppe Luigi; Toscano, Attilio; Lo Giudice, Rosa; Pavone, Pietro

    2013-05-01

    One of the greatest current challenges is to find cost-effective and eco-friendly solutions to the ever increasing needs of modern society. Some plant species are suitable for a multitude of biotechnological applications such as bioenergy production and phytoremediation. A sustainable practice is to use energy crops to clean up polluted lands or to treat wastewater in constructed wetlands without claiming further arable land for biofuel production. However, the disposal of combustion by-products may add significant costs to the whole process, especially when it deals with toxic waste. This study aimed to investigate the possibility of recycling ash from energy biomass as a fertilizer for agriculture and forestry. In particular, the concentrations of Cd, Cr, Cu, Mn, Pb and Zn were analyzed in the plant tissues and corresponding ash of the grasses Phragmites australis and Arundo donax, collected in an urban stream affected by domestic sewage. Results showed that the metal concentration in ash is 1.5-3 times as high as the values in plant tissues. However, metal enriched ash showed much lower element concentrations than the legal limits for ash reutilization in agriculture and forestry. This study found that biomass ash from constructed wetlands may be considered as a potential fertilizer rather than hazardous waste. Energy from biomass can be a really sustainable and clean option not only through the reduction of greenhouse gas emissions, but also through ash recycling for beneficial purposes, thus minimizing the negative impacts of disposal. PMID:23534998

  12. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects. PMID:27007730

  13. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  14. Relationship between structural features and water chemistry in boreal headwater streams--evaluation based on results from two water management survey tools suggested for Swedish forestry.

    PubMed

    Lestander, Ragna; Löfgren, Stefan; Henrikson, Lennart; Ågren, Anneli M

    2015-04-01

    Forestry may cause adverse impacts on water quality, and the forestry planning process is a key factor for the outcome of forest operation effects on stream water. To optimise environmental considerations and to identify actions needed to improve or maintain the stream biodiversity, two silvicultural water management tools, BIS+ (biodiversity, impact, sensitivity and added values) and Blue targeting, have been developed. In this study, we evaluate the links between survey variables, based on BIS+ and Blue targeting data, and water chemistry in 173 randomly selected headwater streams in the hemiboreal zone. While BIS+ and Blue targeting cannot replace more sophisticated monitoring methods necessary for classifying water quality in streams according to the EU Water Framework Directive (WFD, 2000/60/EC), our results lend support to the idea that the BIS+ protocol can be used to prioritise the protection of riparian forests. The relationship between BIS+ and water quality indicators (concentrations of nutrients and organic matter) together with data from fish studies suggests that this field protocol can be used to give reaches with higher biodiversity and conservation values a better protection. The tools indicate an ability to mitigate forestry impacts on water quality if the operations are adjusted to this knowledge in located areas. PMID:25787168

  15. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  16. Child Nutrition and the School Setting. Hearing before the Committee on Agriculture, Nutrition and Forestry, United States Senate. One Hundred Tenth Congress, First Session (March 6, 2007). Senate Hearing 110-41

    ERIC Educational Resources Information Center

    US Senate, 2007

    2007-01-01

    Statements were presented by: Honorable Tom Harkin, Chairman, U.S. Senator from Iowa, Chairman, Committee on Agriculture, Nutrition and Forestry; Honorable Robert B. Casey, Jr., U.S. Senator from Pennsylvania; Honorable Saxby Chambliss, U.S. Senator from Georgia; Honorable Richard G. Lugar; Honorable Ken Salazar, U.S. Senator from Colorado; Kelly…

  17. School Nutrition Programs. Hearing before the Committee on Agriculture, Nutrition, and Forestry, United States Senate, One Hundred Ninth Congress, First Session (March 15, 2005). Senate Hearing 109-124

    ERIC Educational Resources Information Center

    US Senate, 2005

    2005-01-01

    This is traditionally an annual hearing of the Committee with school nutrition managers who travel to Washington, DC. Their representatives testify to the Committee regarding the practical benefits of the nutrition policies under the legislative review of the Senate Agriculture, Nutrition and Forestry Committee. Testimony was presented by Senators…

  18. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  19. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  20. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  1. 7 CFR 1410.12 - Emergency Forestry Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Emergency Forestry Program. 1410.12 Section 1410.12 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS CONSERVATION RESERVE PROGRAM § 1410.12 Emergency Forestry Program. (a) In addition...

  2. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  3. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  4. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...; ] DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program and Cooperative... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... Agricultural Water Enhancement Program Legislative Authority The Agricultural Water Enhancement Program...

  5. 78 FR 32365 - National Urban and Community Forestry Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-30

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service National Urban and Community Forestry Advisory Council AGENCY... Urban and Community Forestry Advisory Council will meet on June 4, 5, and 6, 2013. The meeting will be... to local constituents urban forestry concerns, prepare for the 10-year action plan revisions,...

  6. 78 FR 42487 - National Urban and Community Forestry Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... Forest Service National Urban and Community Forestry Advisory Council AGENCY: Forest Service, USDA. ACTION: Notice: 2014 call for nominations. SUMMARY: The National Urban and Community Forestry Advisory... Agriculture, Forest Service's Urban and Community Forestry Web site: www.fs.fed.us/ucf/ nucfac....

  7. 76 FR 85 - National Urban and Community Forestry Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Forest Service National Urban and Community Forestry Advisory Council AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The National Urban and Community Forestry Advisory Council will meet... Agriculture, develop the 2011 plan of work, hear from some of the Urban and Community Forestry...

  8. 76 FR 9740 - National Urban and Community Forestry Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service National Urban and Community Forestry Advisory Council AGENCY... Community Forestry Advisory Council, (NUCFAC) will be filling five positions that have expired at the end of... the U.S. Forest Service's Urban and Community Forestry Web site: http://www.fs.fed.us/ucf/ ....

  9. 76 FR 16597 - Forestry Research Advisory Council Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... Office of the Secretary Forestry Research Advisory Council Charter Renewal AGENCY: Office of the Secretary, USDA. ACTION: Notice of the Forestry Research Advisory Council charter renewal. SUMMARY: The Secretary of Agriculture has renewed the charter of the Forestry Research Advisory Council (FRAC),...

  10. Deficit irrigation for reducing agricultural water use.

    PubMed

    Fereres, Elias; Soriano, María Auxiliadora

    2007-01-01

    At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons - from inadequate network design to excessive irrigation expansion relative to catchment supplies - it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60-100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas. PMID:17088360

  11. Forestry Occupations. A Curriculum Guide.

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    Developed as a part of a larger project to revise the total agricultural education curriculum in South Carolina, this curriculum guide is designed for a 2-year course in forestry occupations. A paradigm accompanies the document and illustrates a possible time frame and sequence. The units covered by the curriculum include an orientation to…

  12. Forestry Vehicle

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  13. Lightweight Vertical Take-Off & Landing Unmanned Aerial Systems For Local-Scale Forestry and Agriculture Remote Sensing Data Collection

    NASA Astrophysics Data System (ADS)

    Putman, E.; Sheridan, R.; Popescu, S. C.

    2015-12-01

    The evolution of lightweight Vertical Take-Off and Landing (VTOL) rotary Unmanned Aerial Vehicles (UAVs) and remote sensor technologies have provided researchers with the ability to integrate compact remote sensing systems with UAVs to create Unmanned Aerial Systems (UASs) capable of collecting high-resolution airborne remote sensing data. UASs offer a myriad of benefits. Some of the most notable include: (1) reduced operational cost; (2) reduced lead-time for mission planning; (3) high-resolution and high-density data collection; and (4) customization of data collection intervals to fit the needs of a specific project (i.e. acquiring data at hourly, daily, or weekly intervals). Such benefits allow researchers and natural resource managers to acquire airborne remote sensing data on local-scale phenomenon in ways that were previously cost-prohibitive. VTOL UASs also offer a stable platform capable of low speed low altitude flight over small spatial scales that do not require a dedicated runway. Such flight characteristics allow VTOL UASs to collect high-resolution data at very high densities, enabling the use of structure from motion (SFM) techniques to generate three-dimensional datasets from photographs. When combined, these characteristics make VTOL UASs ideal for collecting data over agricultural or forested research areas. The goal of this study is to provide an overview of several lightweight eight-rotor VTOL UASs designed for small-scale forest remote sensing data collection. Specific objectives include: (1) the independent integration of a lightweight multispectral camera, a lightweight scanning lidar sensor, with required components (i.e. IMU, GPS, data logger) and the UAV; (2) comparison of UAS-collected data to terrestrial lidar data and airborne multispectral and lidar data; (3) comparison of UAS SFM techniques to terrestrial lidar data; and (4) multi-temporal assessment of tree decay using terrestrial lidar and UAS SfM techniques.

  14. Mechanisms of water interaction with pore systems of hydrochar and pyrochar from poplar forestry waste.

    PubMed

    Conte, Pellegrino; Hanke, Ulrich M; Marsala, Valentina; Cimò, Giulia; Alonzo, Giuseppe; Glaser, Bruno

    2014-05-28

    The aim of this study was to understand the water-surface interactions of two chars obtained by gasification (pyrochar) and hydrothermal carbonization (hydrochar) of a poplar biomass. The two samples revealed different chemical compositions as evidenced by solid state (13)C NMR spectroscopy. In fact, hydrochar resulted in a lignin-like material still containing oxygenated functionalities. Pyrochar was a polyaromatic system in which no heteronuclei were detected. After saturation with water, hydrochar and pyrochar were analyzed by fast field cycling (FFC) NMR relaxometry. Results showed that water movement in hydrochar was mainly confined in very small pores. Conversely, water movement in pyrochar led to the conclusion that a larger number of transitional and very large pores were present. These results were confirmed by porosity evaluation derived from gas adsorption. Variable-temperature FFC NMR experiments confirmed a slow-motion regime due to a preferential diffusion of water on the solid surface. Conversely, the higher number of large pores in pyrochar allowed slow movement only up to 50 °C. As the temperature was raised to 80 °C, water interactions with the pore surface became weaker, thereby allowing a three-dimensional water exchange with the bulk liquid. This paper has shown that pore size distribution was more important than chemical composition in affecting water movement in two chemically different charred systems. PMID:24814907

  15. 29 CFR 780.201 - Meaning of “forestry or lumbering operations.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry Or Lumbering Operations § 780.201 Meaning of “forestry or lumbering operations.” The term “forestry or lumbering operations” refers to the... and in part 788 of this chapter which considers the section 13(a)(13) exemption for forestry...

  16. 29 CFR 780.201 - Meaning of “forestry or lumbering operations.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry Or Lumbering Operations § 780.201 Meaning of “forestry or lumbering operations.” The term “forestry or lumbering operations” refers to the... and in part 788 of this chapter which considers the section 13(a)(13) exemption for forestry...

  17. 29 CFR 780.201 - Meaning of “forestry or lumbering operations.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry Or Lumbering Operations § 780.201 Meaning of “forestry or lumbering operations.” The term “forestry or lumbering operations” refers to the... and in part 788 of this chapter which considers the section 13(a)(13) exemption for forestry...

  18. 29 CFR 780.201 - Meaning of “forestry or lumbering operations.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry Or Lumbering Operations § 780.201 Meaning of “forestry or lumbering operations.” The term “forestry or lumbering operations” refers to the... and in part 788 of this chapter which considers the section 13(a)(13) exemption for forestry...

  19. 29 CFR 780.201 - Meaning of “forestry or lumbering operations.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STANDARDS ACT Agriculture as It Relates to Specific Situations Forestry Or Lumbering Operations § 780.201 Meaning of “forestry or lumbering operations.” The term “forestry or lumbering operations” refers to the... and in part 788 of this chapter which considers the section 13(a)(13) exemption for forestry...

  20. Forestry administration and policies in the Philippines

    NASA Astrophysics Data System (ADS)

    Hyman, Eric L.

    1983-11-01

    This article begins by summarizing the importance of the forestry sector in the Philippine economy It provides an overview of the multiplicity of Philippine governmental institutions involved in forestry in 1982 Then it discusses forestry laws in the country and concludes by examining fifteen critical forest policy issues: sustained yield management; area-specific logging bans; increased use of wood wastes; revision of forest charges; unprocessed log export ban; rationalization of the forest industry, acceleration of reforestation; protection of watersheds; recognition of the social dimensions of slash- and-burn agriculture; fuelwood supply; public land classification for forestry and agriculture, development of plantations for dendrothermal electricity; multiple-use management; preservation of mangrove areas, and improvements in administration and implementation.

  1. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  2. Managing agricultural drainage ditches for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for the removal of surface and ground water to allow for crop production in poorly drained agricultural landscapes. Ditches also mediate the flow of pollutants from agroecosystems to downstream water bodies. This paper provides an overview of the science, ...

  3. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Tribal forestry program financial support. 163.36 Section 163.36 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.36 Tribal forestry program financial support. (a)...

  4. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Tribal forestry program financial support. 163.36 Section 163.36 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.36 Tribal forestry program financial support. (a)...

  5. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Tribal forestry program financial support. 163.36 Section 163.36 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.36 Tribal forestry program financial support. (a)...

  6. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Tribal forestry program financial support. 163.36 Section 163.36 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.36 Tribal forestry program financial support. (a)...

  7. 25 CFR 163.36 - Tribal forestry program financial support.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Tribal forestry program financial support. 163.36 Section 163.36 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.36 Tribal forestry program financial support. (a)...

  8. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  9. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  10. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  11. Denitrification of agricultural drainage line water via immobilized denitrification sludge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. One potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to 1...

  12. Army Industrial, Landscaping, and Agricultural Water Use

    SciTech Connect

    McMordie Stoughton, Kate; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  13. 29 CFR 788.18 - Preparing other forestry products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extensive agricultural or horticultural techniques. See 29 CFR 780.205 for further discussion. Gathering and... 29 Labor 3 2011-07-01 2011-07-01 false Preparing other forestry products. 788.18 Section 788.18... OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR...

  14. 29 CFR 788.18 - Preparing other forestry products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extensive agricultural or horticultural techniques. See 29 CFR 780.205 for further discussion. Gathering and... 29 Labor 3 2012-07-01 2012-07-01 false Preparing other forestry products. 788.18 Section 788.18... OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR...

  15. 7 CFR 701.45 - Forestry Incentives Program (FIP) contracts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Forestry Incentives Program (FIP) contracts. The regulations governing the FIP as of July 31, 2002, and contained in the 7 CFR parts 700 to 899, edition revised as of January 1, 2002, shall continue to apply to... 7 Agriculture 7 2012-01-01 2012-01-01 false Forestry Incentives Program (FIP) contracts....

  16. 29 CFR 788.18 - Preparing other forestry products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extensive agricultural or horticultural techniques. See 29 CFR 780.205 for further discussion. Gathering and... 29 Labor 3 2010-07-01 2010-07-01 false Preparing other forestry products. 788.18 Section 788.18... OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR...

  17. 7 CFR 701.45 - Forestry Incentives Program (FIP) contracts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Forestry Incentives Program (FIP) contracts. The regulations governing the FIP as of July 31, 2002, and contained in the 7 CFR parts 700 to 899, edition revised as of January 1, 2002, shall continue to apply to... 7 Agriculture 7 2014-01-01 2014-01-01 false Forestry Incentives Program (FIP) contracts....

  18. 7 CFR 701.45 - Forestry Incentives Program (FIP) contracts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Forestry Incentives Program (FIP) contracts. The regulations governing the FIP as of July 31, 2002, and contained in the 7 CFR parts 700 to 899, edition revised as of January 1, 2002, shall continue to apply to... 7 Agriculture 7 2013-01-01 2013-01-01 false Forestry Incentives Program (FIP) contracts....

  19. 7 CFR 701.45 - Forestry Incentives Program (FIP) contracts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART § 701.45 Forestry Incentives Program (FIP) contracts. The regulations governing the FIP as of July 31, 2002, and contained in the 7 CFR, parts 700 to... 7 Agriculture 7 2010-01-01 2010-01-01 false Forestry Incentives Program (FIP) contracts....

  20. 29 CFR 788.18 - Preparing other forestry products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extensive agricultural or horticultural techniques. See 29 CFR 780.205 for further discussion. Gathering and... 29 Labor 3 2013-07-01 2013-07-01 false Preparing other forestry products. 788.18 Section 788.18... OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR...

  1. 75 FR 57898 - National Urban and Community Forestry Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Forest Service National Urban and Community Forestry Advisory Council AGENCY: Forest Service, USDA. ACTION: Notice; Announcement for the 2011 U.S. Forest Service Urban and Community Forestry Challenge Cost...), is charged, by law, to provide recommendations to the Secretary of Agriculture on urban...

  2. 7 CFR 701.45 - Forestry Incentives Program (FIP) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Forestry Incentives Program (FIP) contracts. The regulations governing the FIP as of July 31, 2002, and contained in the 7 CFR parts 700 to 899, edition revised as of January 1, 2002, shall continue to apply to... 7 Agriculture 7 2011-01-01 2011-01-01 false Forestry Incentives Program (FIP) contracts....

  3. 29 CFR 788.18 - Preparing other forestry products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extensive agricultural or horticultural techniques. See 29 CFR 780.205 for further discussion. Gathering and... 29 Labor 3 2014-07-01 2014-07-01 false Preparing other forestry products. 788.18 Section 788.18... OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR...

  4. A GEO Global Agricultural Water Productivity Mapping System

    NASA Astrophysics Data System (ADS)

    Thenkabail, P. S.; Pozzi, W.; Miller, N. L.; Fekete, B.; Sheffield, J.; Dumenil-Gates, L.

    2009-12-01

    Agriculture is the main consumer of freshwater, and improved precision and accuracy of the terrestrial water cycle requires a more reliable way of monitoring agricultural water use and agricultural water productivity. Wisser et al 2008 reported that agricultural water consumption over the satellite-determined crop acreage (from AVHRR, SPOT VGT), particularly for India and China (Thenkabail et al 2006) was 30% higher than the commonly used Food and Agricultural Organization country-reported agricultural crop census data. We propose further quantification and clarification of this error through the following methodology: 1) greater accuracy in measuring actual area and precise spatial distribution of irrigated and rainfed cropland areas, along with identification of crop types and cropping intensities; 2) satellite monitoring of actual evapotranspiration (water use) by croplands; 3) reconciling agricultural plot information and evapotranspiration against calculated stores of water and water budgets, as derived from a Global Hydrologic Model Multi-Model Ensemble; and (d) modeling and pin-pointing areas of low and high water productivity (WP) to optimize agricultural water use and thus save large quanta of water. We propose producing global irrigated and rainfed areas at finer scales using Landsat 30 m imagery in fusion with MODIS 250 m imagery using the spectral matching technique (Thenkabail et al 2009). Crop water use (water transpired by the crop) and crop water productivity maps can be prepared for terrestrial areas, by using the surface energy balance model, in which evapotranspiration fraction is provided from Landsat ETM+ and\\or MODIS thermal data, combined with locally derived meteorological data such as wind speed, humidity, incoming radiation, and other surface values to derive turbulent diffusion and finally computing reference evapotranspiration (e.g., Penman-Montieth approach), so that sensible heat flux may be deducted from net radiation to derive

  5. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided. PMID:26995933

  6. Hydrology and water quality of the headwaters of the River Severn: Stream acidity recovery and interactions with plantation forestry under an improving pollution climate.

    PubMed

    Neal, Colin; Robinson, Mark; Reynolds, Brian; Neal, Margaret; Rowland, Philip; Grant, Simon; Norris, David; Williams, Bronwen; Sleep, Darren; Lawlor, Alan

    2010-10-01

    This paper presents new information on the hydrology and water quality of the eroding peatland headwaters of the River Severn in mid-Wales and links it to the impact of plantation conifer forestry further down the catchment. The Upper Hafren is dominated by low-growing peatland vegetation, with an average annual precipitation of around 2650 mm with around 250 mm evaporation. With low catchment permeability, stream response to rainfall is "flashy" with the rising limb to peak stormflow typically under an hour. The water quality is characteristically "dilute"; stormflow is acidic and enriched in aluminium and iron from the acid organic soil inputs. Baseflow is circum-neutral and calcium and bicarbonate bearing due to the inputs of groundwater enriched from weathering of the underlying rocks. Annual cycling is observed for the nutrients reflecting uptake and decomposition processes linked to the vegetation and for arsenic implying seasonal water-logging within the peat soils and underlying glacial drift. Over the decadal scale, sulphate and nitrate concentrations have declined while Gran alkalinity, dissolved organic carbon and iron have increased, indicating a reduction in stream acidification. Within the forested areas the water quality is slightly more concentrated and acidic, transgressing the boundary for acid neutralisation capacity as a threshold for biological damage. Annual sulphate and aluminium concentrations are double those observed in the Upper Hafren, reflecting the influence of forestry and the greater ability of trees to scavenge pollutant inputs from gaseous and mist/cloud-water sources compared to short vegetation. Acidification is decreasing more rapidly in the forest compared to the eroding peatland possibly due to the progressive harvesting of the mature forest reducing the scavenging of acidifying inputs. For the Lower Hafren, long-term average annual precipitation is slightly lower, with lower average altitude, at around 2520mm and evaporation

  7. Summer Youth Forestry Institute

    ERIC Educational Resources Information Center

    Roesch, Gabrielle E.; Neuffer, Tamara; Zobrist, Kevin

    2013-01-01

    The Summer Youth Forestry Institute (SYFI) was developed to inspire youth through experiential learning opportunities and early work experience in the field of natural resources. Declining enrollments in forestry and other natural resource careers has made it necessary to actively engage youth and provide them with exposure to careers in these…

  8. Agricultural Water Conservation via Conservation Tillage and Thermal Infrared

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Georgia water conservation is an issue that involves all citizens. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  9. Thermal Infrared Imagery for Better Water Conservation in Agricultural Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water conservation is an issue that involves all citizens in Georgia. Within the agricultural row crop community, water is a very important part of producing a harvestable and profitable product. Although irrigation is used only as a supplement to natural rainfall, it can greatly affect crop yield...

  10. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  11. Forestry: Program Planning Guide: Volume 7.

    ERIC Educational Resources Information Center

    Roth, Paul L.; And Others

    The program planning guide for forestry was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of forests, forest protection, logging, wood utilization, recreation, and special…

  12. Integrating agricultural policies and water policies under water supply and climate uncertainty

    NASA Astrophysics Data System (ADS)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  13. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  14. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  15. MODELING THE IMPACTS OF LAND USE CHANGE ON HYDROLOGY AND WATER QUALITY OF A PACIFIC NORTHWEST WATERSHED

    EPA Science Inventory

    In many parts of the world, aquatic ecosystems are threatened by hydrological and water quality alterations due to extraction and conversion of natural resources for agriculture, urban development, forestry, mining, transportation, and water resources development. To evaluate the...

  16. Climate, water and agriculture in the Tropics

    SciTech Connect

    Jackson, I.J.

    1989-01-01

    The broad view is established with a functional definition of the tropics to include the area lying within the region of the easterly trade winds and its extension to extratropical regions that are affected by tropical phenomena such as the southwest Indian monsoon and hurricanes. In the first five chapters Jackson discusses atmospheric water largely in physical terms-its origin and transport with relation to general circulation patterns and precipitation characteristics such as frequency, duration, and intensity, which are as important as total rainfall in the consideration of runoff, biological productivity, and land utilization. In the remainder of the book water-soil-plant relationships are discussed generally and specifically for selected crops and regions. Popular emotional appears currently decry the destruction of tropical wet forests. Jackson makes it clear that tropical lands exhibit a rich variation in climates and that problems of exploitation rooted in cultures, economics, politics, and population growth cannot be solved by the simple introduction of temperate zone science and technology. This volume is a hybrid between an intermediate level textbook and a review article for the knowledgeable investigator, planner, or administrator, and the values to be found in it will vary with the background and interests of the reader. A reference list of more than 800 titles, perhaps half of them dated in the present decade, is a major asset, especially when coupled with extensive author and subject indexes.

  17. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  18. Modeling the Impacts of Hydromodification on Water Quantity and Quality

    EPA Science Inventory

    Hydromodification activities are driven by human population growth and resource extraction and consumption including urbanization, agriculture, forestry, mining, water withdrawal, climate change, and flow regulation by dams and impoundments. These anthropogenic activities alter n...

  19. Agricultural water consumption decreasing nutrient burden at Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Wang, Xuejun; Zhen, Gengchong; Li, Ying; Zhang, Wei; He, Wei

    2016-02-01

    In this study, we discussed the impacts of human water consumption to the nutrient burden in a river estuary, and used Huanghe River as a case study. The agricultural water consumption from the Huanghe River has significantly decreased the natural water flows, and the amount of water consumption could be almost twice as high as the water entering into the estuary. According to our calculation, agricultural water usage decreased TN outflows by 6.5 × 104 Mg/year and TP outflows by 2.0 × 103 Mg/year. These account for 74% and 77% of the total output loads. It has been widely reported that the majority of the rivers in northern China were severely polluted by nutrients. Its implication on the budget of nutrient in the estuary ecosystem is not well characterized. Our study showed that the discharge of nutrients in the coast waters from polluted rivers was over concerned. Nutrients in the polluted rivers were transported back to the terrestrial systems when water was drawn for human water consumption. The magnitudes of changes in riverine nutrient discharges even exceed the water-sediment regulation trails in the Huanghe River. It has non-negligible impact on estimating the nutrient burden in costal water ecosystem.

  20. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland.

    PubMed

    Lawniczak, Agnieszka Ewa; Zbierska, Janina; Nowak, Bogumił; Achtenberg, Krzysztof; Grześkowiak, Artur; Kanas, Krzysztof

    2016-03-01

    Protected areas due to their long-term protection are expected to be characterized by good water quality. However, in catchments where arable fields dominate, the impact of agriculture on water pollution is still problematic. In Poland, recently, the fertilization level has decreased, mostly for economic reasons. However, this applies primarily to phosphorus and potassium. In order to evaluate the impact of agriculture on water quality in a protected area with a high proportion of arable fields in the aspect of level and type of fertilization, complex monitoring has been applied. The present study was carried out in Wielkopolska National Park and its buffer zone, which are protected under Natura 2000 as Special Areas of Conservation and Special Protection Areas. The aim of the study were (1) to assess the impact of agriculture, with special attention on fertilization, on groundwater, and running water quality and (2) to designate priority areas for implementing nitrogen reduction measures in special attention on protected areas. In our study, high nitrogen concentrations in groundwater and surface waters were detected in the agricultural catchments. The results demonstrate that in the watersheds dominated by arable fields, high nitrogen concentrations in groundwater were measured in comparison to forestry catchments, where high ammonium concentrations were observed. The highest nitrogen concentrations were noted in spring after winter freezing, with a small cover of vegetation, and in the areas with a high level of nitrogen application. In the studied areas, both in the park and its buffer zone, unfavorable N:P and N:K ratios in supplied nutrients were detected. Severe shortage of phosphorus and potassium in applied fertilizers is one of the major factors causing leaching of nitrogen due to limited possibilities of its consumption by plants. PMID:26887311

  1. Water quality issues associated with agricultural drainage in semiarid regions

    NASA Astrophysics Data System (ADS)

    Sylvester, Marc A.

    High incidences of mortality, birth defects, and reproductive failure in waterfowl using Kesterson Reservoir in the San Joaquin Valley, Calif., have occurred because of the bioaccumulation of selenium from irrigation drainage. These circumstances have prompted concern about the quality of agriculture drainage and its potential effects on human health, fish and wildlife, and beneficial uses of water. The U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory, University of California (Berkeley, Calif.) organized a 1-day session at the 1986 AGU Fall Meeting in San Francisco, Calif., to provide an interdisciplinary forum for hydrologists, geochemists, and aquatic chemists to discuss the processes controlling the distribution, mobilization, transport, and fate of trace elements in source rocks, soils, water, and biota in semiarid regions in which irrigated agriculture occurs. The focus of t h e session was the presentation of research results on the source, distribution, movement, and fate of selenium in agricultural drainage.

  2. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. PMID:25555206

  3. Managing Delmarva Agricultural Drainage Ditches for Water Quality Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are essential for draining storm and subsurface water from farmland on the Delmarva Peninsula. Ditches are unique ecosystems, having the features of both streams and wetlands. Ditches often provide the only wetland and aquatic habitats on farmland. Ditches carry, store,...

  4. Managing agricultural phosphorus for water quality protection: principles for progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The eutrophication of aquatic systems due to diffuse pollution of agricultural phosphorus (P) is a local, even regional, water quality problem that can be found world-wide. Sustainable management of P requires prudent tempering of agronomic practices, recognizing that additional steps are often requ...

  5. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  6. Multifunctional systems approaches to water management for agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of anthropogenic chemicals on water quality, wildlife, and human health has received increasing attention in recent years. One potential source of anthropogenic compounds is land-based recycling programs which apply municipal wastes (biosolids) to large tracts of agricultural land in lie...

  7. Chapter 2: Livestock and grazed land emissions. U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990-2005. Technical bulletin 1921

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : A total of 259 Tg CO2 eq. of greenhouse gasses (GHGs) were emitted from livestock, managed livestock waste, and grazed land in 2005. This represents about 49% of total emissions from the agricultural sector. Compared to the base line year (1990), emissions from this source were about 2% lower in...

  8. Conjunctive use of water resources for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2014-11-01

    The continuous increase in global population and simultaneous decrease in good quality water resources emphasizes the need of using surface water and groundwater resources conjunctively for irrigation. The conjunctive use allows the utilization of poor quality water, which cannot be used as such for the crop production due to its harmful effect on soil and crop health. This paper presents an overview on issues and methods of the conjunctive use of surface water and groundwater resources for sustainable irrigated agriculture. The background of the conjunctive water use and its applications for the management of poor quality water and management of rising watertable are presented. The management of conjunctive water use through the computer-based models is also covered in this review. The advantages and disadvantages of the approach have been described. Conclusions are provided based on this review which could be useful for all the stakeholders.

  9. Water supply patterns in two agricultural areas of Central Germany under climate change conditions

    NASA Astrophysics Data System (ADS)

    Tölle, M. H.; Moseley, C.; Panferov, O.; Busch, G.; Knohl, A.

    2012-04-01

    Increasing emissions of greenhouse gases and increasing prices for fossil fuels have highlighted the demand for CO2 "neutral" renewable energy sources, e.g. short rotation forestry systems used for bioenergy. These systems might be vulnerable to changes in temperature, precipitation and occurrence of extreme weather events. To estimate success or failure of such short rotation coppices in a certain area we need regional climate projections and risk assessment. Changes of water supply patterns in two agriculturally extensively used regions in Central Germany (around Göttingen and Großfahner) with different climate conditions but both in the temperate climate zone are explored. The study is carried out under present conditions as well as under projected climate change conditions (1971-2100) using A1B and B1 climate scenarios downscaled for Europe. Analysis of precipitation bias shows regional differences: a strong bias in Göttingen area and a weaker bias in the Großfahner area. A bias correction approach, Quantile mapping, is applied to the ensemble results for both areas for winter and summer seasons. By using quantile regression on the seasonal Standardized Precipitation Indices (SPIs) as indicator for water supply conditions we found that precipitation is expected to increase in winter in all quantiles of the distribution for Göttingen area during the 21th century. Heavy precipitation is also expected to increase for Großfahner area suggesting a trend to wetter extremes in winter for the future. This winter precipitation increase could trigger runoff and soil erosion risk enhancing the severity of floods. Increasing winter availability of water could enhance local water supply in spring. For both areas no significant change in summer was found over the whole time period. Although the climate change signal of the SPI indicate mild dryer conditions in summer at the end of the 21st century which may trigger water shortage and summer drying associated with above

  10. Agricultural hydrology and water quality II: Introduction to the featured collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  11. Career Preparation in Agricultural Resources: A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    Householder, Larry

    This curriculum guide in agricultural resources is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes eight occupational subgroups: fish, forestry, mining area restoration, outdoor recreation, soil, range, water, and wildlife. It is…

  12. APPLICATIONS OF AGRICULTURAL SYSTEM MODELS IN ASSESSING AND MANAGING CONTAMINATION OF THE SOIL-WATER-ATMOSPHERE CONTINUUM IN AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980's, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems that wi...

  13. Application of Agricultural System Models in Assessing and Managing Contamination of Soil-Water-Atmosphere Continuum in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last three decades, there has been a growing public concern about the adverse effects of modern agriculture on environmental quality and soil-water resources. In the mid-1980s, the USDA, Agricultural Research Service (ARS) identified the need for models of whole agricultural systems th...

  14. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  15. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  16. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  17. Denitrification of agricultural drainage line water via immobilized denitrification sludge.

    PubMed

    Hunt, Patrick G; Matheny, Terry A; Ro, Kyoung S; Stone, Kenneth C; Vanotti, Matias B

    2008-07-15

    Nonpoint source nitrogen is recognized as a significant water pollutant worldwide. One of the major contributors is agricultural drainage line water. A potential method of reducing this nitrogen discharge to water bodies is the use of immobilized denitrifying sludge (IDS). Our objectives were to (1) produce an effective IDS, (2) determine the IDS reaction kinetics in laboratory column bioreactors, and (3) test a field bioreactor for nitrogen removal from agricultural drainage line water. We developed a mixed liquor suspended solid (MLSS) denitrifying sludge using inoculant from an overland flow treatment system. It had a specific denitrification rate of 11.4 mg NO(3)-N g(-1) MLSS h(-1). We used polyvinyl alcohol (PVA) to immobilize this sludge and form IDS pellets. When placed in a 3.8-L column bioreactor, the IDS had a maximum removal rate (K(MAX)) of 3.64 mg NO(3)-N g(-1) pellet d(-1). In a field test with drainage water containing 7.8 mg NO(3)-N L(-1), 50% nitrogen removal was obtained with a 1 hr hydraulic retention time. Expressed as a 1 m(3) cubically-shaped bioreactor, the nitrogen removal rate would be 94 g NO(3)-N m(-2)d(-1), which is dramatically higher than treatment wetlands or passive carbonaceous bioreactors. IDS bioreactors offer potential for reducing nitrogen discharge from agricultural drainage lines. More research is needed to develop the bioreactors for agricultural use and to devise effective strategies for their implementation with other emerging technologies for improved water quality on both watershed and basin scales. PMID:18569323

  18. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  19. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  20. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    NASA Astrophysics Data System (ADS)

    Logsdon, S. D.; Schilling, K. E.

    2007-12-01

    our understanding of the relations of soil water to water table fluctuations in an agricultural field.

  1. Spatial dynamics of water management in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Muralidharan, Daya; Knapp, Keith C.

    2009-05-01

    Irrigated agriculture provides 40% of worldwide food supplies but uses large amounts of scarce freshwater and contributes to environmental degradation. At the very core of this problem lie decisions made by irrigators subject to biophysical relations. This research develops a microeconomic model of irrigation management taking into account the dynamics of plant growth over the season, spatial variability in infiltration of applied irrigation water, and fundamental principles from subsurface hydrology. The analysis shows that spatial variability in water infiltration common to traditional irrigation systems increases both applied irrigation water and deep percolation flows by very substantial amounts compared to uniform infiltration. The analysis demonstrates that efficient irrigation management can significantly reduce both applied water and deep percolation at relatively low costs, at least up to a certain level. A long-run analysis of optimal irrigation systems including capital costs indicates that traditional furrow systems are economically efficient over a wide range of water prices and deep percolation costs. Overall, the results indicate that optimal irrigation management can achieve significant resource conservation and pollution control with low loss in agricultural net benefits and without land retirement, investment in capital-intensive systems, or crop switching.

  2. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  3. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  4. Forestry: Forum summary

    NASA Technical Reports Server (NTRS)

    Whitmore, R.

    1981-01-01

    A synopsis of a forum addressing the use of LANDSAT data in forestry is given. Broad inventory studies, clear-cut monitoring, and insect and disease detection were among the subject areas discussed. Concerns regarding the vailability of data, cloud cover, resolution and classification accuracy, and product format were expressed by foresters.

  5. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  6. A taxonomic review of white grubs and leaf chafers (Coleoptera: Scarabaeidae: Melolonthinae) recorded from forestry and agricultural crops in Sub-Saharan Africa.

    PubMed

    Harrison, J du G; Wingfield, M J

    2016-04-01

    Integrated pest management (IPM) is difficult to implement when one knows little about the pest complex or species causing the damage in an agricultural system. To implement IPM on Sub-Saharan African melolonthine pests access to taxon specific knowledge (their identity) and what is known (their biology) of potential pest species is a crucial step. What is known about Sub-Saharan African melolonthine white grubs and chafers has not yet been amalgamated, and this review thus synthesizes all available literature for the Region. The comprehensive nature of the review highlights pest taxon trends within African melolonthines. To facilitate the retrieval of this information for IPM purposes, all relevant taxonomic and biological information is provided for the taxa covered including an on-line supplementary annotated-checklist of taxon, crop, locality and reference(s). Based on the literature reviewed, recommendations are made to promote effective and efficient management of African melolonthine scarab pests. An on-line supplementary appendix provides a list of specialists, useful internet resources, keys, catalogues and sampling methods for the larvae and adults of melolonthine scarab beetles for subsequent morphological or molecular work. PMID:26373377

  7. Remote sensing in Iowa agriculture: Identification and classification of Iowa's crops, soils and forestry resources using ERTS-1 and complimentary underflight imagery

    NASA Technical Reports Server (NTRS)

    Mahlstede, J. P. (Principal Investigator); Carlson, R. E.; Fenton, T. E.; Thomson, G. W.

    1974-01-01

    The author has identified the following significant results. Springtime ERTS-1 imagery covering pre-selected test sites in Iowa showed considerable detail with respect to broad soil and land use patterns. Additional imagery has been incorporated into a state mosaic. The mosaic was used as a base for soil association lines transferred from an existing map. The regions of greatest contrast are between the Clarion-Nicollet-Webster soil association area and adjacent areas. Landscape characteristics in this area result in land use patterns with a high percentage of pasture, hay, and timber. The soil association areas of the state that have patterns interpreted to be associated with intensive row crop production are: Moody, Galva-Primghar-Sac, Clarion-Nicollet-Webter, Tama-Muscatine, Dinsdale-Tama, Cresco-Lourdes, Clyde, Kenyon-Floyd-Clyde, and the Luton-Onawa-Salix area on the Missouri River floodplain. Forestland estimates have been attained for an area in central Iowa using wintertime ERTS-1 imagery. Visual analysis of multispectral, temporal imagery indicates that temporal analysis for cropland identification and acreage analyses procedures may be a very useful tool. Combinations of wintertime, springtime, and summertime ERTS-1 imagery separate most vegetation types. Timing can be critical depending upon crop development and harvesting times because of the dynamic nature of agricultural production.

  8. Assessment of agricultural return flows under changing climate and crop water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water rights, policy and emergent water markets in the semi-arid regions of the western USA, and worldwide, call for improved estimates of agricultural water budgets. Agricultural water is seen as a major potential water supply with high commodity value as municipalities seek water security under g...

  9. Optional water development strategies for the Yellow River Basin: Balancing agricultural and ecological water demands

    NASA Astrophysics Data System (ADS)

    Cai, Ximing; Rosegrant, Mark W.

    2004-08-01

    The Yellow River Basin is of the utmost importance for China in terms of food production, natural resources management, and socioeconomic development. Water withdrawals for agriculture, industry, and households in the past decade have seriously depleted environmental and ecological water requirements in the basin. This study presents a modeling scenario analysis of some water development strategies to harmonize water withdrawal demand and ecological water demand in the Yellow River Basin through water savings and interbasin water transfers. A global water and food analysis model including the Yellow River Basin as one of the modeling units is applied for the analysis. The model demonstrates that there is little hope of resolving the conflict between agriculture water demand and ecological water demand in the basin if the current water use practices continue. Trade-offs exist between irrigation water use and ecological water use, and these trade-offs will become more intense in future years with population growth, urbanization, and industrial development as well as growing food demand. Scenario analysis in this study concludes that increasing basin water use efficiency to 0.67 first and then supplementary water availability by interbasin water transfer through the South-North Water Transfer Project may provide a solution to water management of the Yellow River Basin in the next 25 years.

  10. Agricultural insecticides threaten surface waters at the global scale.

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-05-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  11. Agricultural insecticides threaten surface waters at the global scale

    PubMed Central

    Stehle, Sebastian; Schulz, Ralf

    2015-01-01

    Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTLSW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTLSW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. PMID:25870271

  12. TECHNICAL CONCEPTS RELATED TO CONSERVATION OF IRRIGATION AND RAIN WATER IN AGRICULTURAL SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty percent of freshwater withdrawals in the U.S. are for irrigated agriculture, which contributed 55$ billion to the economy in 2002. Increasing diversions of water for urban, environmental, and other uses will likely decrease water available to agriculture. Agricultural water conservation is tou...

  13. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  14. LOWER PAYETTE RIVER, IDAHO AGRICULTURE IRRIGATION WATER RETURN STUDY AND GROUND WATER EVALUATION, 1992-1993

    EPA Science Inventory

    This report covers the final 17 miles of the Payette River (17050112) and 32,000 acres of irrigated cropland referred to as the Lower Payette State Agricultural Water Quality Project. An in-depth surface and ground water monitoring effort was initiated in June 1992 and completed...

  15. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  16. Temporal stability of soil water content and soil water flux patterns across agricultural fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When an agricultural field is repeatedly surveyed for soil water content, sites often can be spotted where soil is consistently wetter or consistently dryer than average across the study area. Temporal stability presents significant interest for upscaling observed soil water content, improving soil ...

  17. Water Quality Benefits of Constructed Wetlands Integrated Within Agricultural Water Recycling Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Constructed wetlands have been integrated within innovative agricultural water recycling systems, and these systems are now being evaluated at three demonstration sites located in the northwest Ohio portion of the Maumee River Basin (Defiance, Fulton, and Van Wert Counties). The water recycling syst...

  18. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-09-01

    GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.

  19. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge. PMID:19934512

  20. Forestry in Tanzania

    SciTech Connect

    Dykstra, D.P.

    1983-01-01

    Forest types and plantations, and associated forest industries are described. Forests occupy 47% of the total land area, mostly open miombo woodland dominated by Julbernardia and Brachystegia, with small areas of tropical high forest, mangroves and plantations. About 97% of the total roundwood consumed is used as fuelwood or for charcoal. Early results from village forestry programmes (partially financed by SIDA), the less successful communal village plantations, and agroforestry practices are described briefly. Education, training and the importance of wildlife are discussed.

  1. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  2. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  3. Phosphorus and water budgets in an agricultural basin.

    PubMed

    Faridmarandi, Sayena; Naja, Ghinwa M

    2014-01-01

    Water and phosphorus (P) budgets of a large agricultural basin located in South Florida (Everglades Agricultural Area, EAA) were computed from 2005 to 2012. The annual surface outflow P loading from the EAA averaged 157.2 mtons originating from Lake Okeechobee (16.4 mtons, 10.4%), farms (131.0 mtons, 83.4%), and surrounding basins (9.8 mtons, 6.2%) after attenuation. Farms, urban areas, and the adjacent C-139 basin contributed 186.1, 15.6, and 3.8 mtons/yr P to the canals, respectively. The average annual soil P retention was estimated at 412.5 mtons. Water and P budgets showed seasonal variations with high correlation between rainfall and P load in drainage and surface outflows. Moreover, results indicated that the canals acted as a P sink storing 64.8 mtons/yr. To assess the P loading impact of farm drainage on the canals and on the outflow, dimensionless impact factors were developed. Sixty-two farms were identified with a high and a medium impact factor I1 level contributing 44.5% of the total drainage P load to the canals, while their collective area represented less than 23% of the EAA area (172 farms). Optimizing the best management practice (BMP) strategies on these farms could minimize the environmental impacts on the downstream sensitive wetlands areas. PMID:24955757

  4. Water chemistry responses to hydraulic manipulation of an agricultural wetland

    NASA Astrophysics Data System (ADS)

    Powers, S.; Stanley, E. H.

    2011-12-01

    Small impoundments are often crucial factors for the movement of sediment, organic matter, water-borne nutrients, and toxic materials through river networks. By recent accounting, at least 2.6 million small artificial water bodies exist in the US alone. A large proportion of those structures occur in regions with high intensity of agriculture, such as in the Midwestern grain belt. While small impoundments are aging structures which appear to serve few purposes, some hold ecological and biogeochemical value as artificial wetlands. We documented instantaneous net fluxes of solute (chloride, sulfate, nitrate, ammonium, and soluble reactive phosphorus) through an artificial flow-through wetland in agricultural southern Wisconsin over 6 years which spanned removal of a small dam. Phased dewatering and dam removal ultimately converted the artificial wetland to a canal-like state (increase in mean water velocity from 0.08 to 0.22 m s-1). Mean net flux for chloride across the system averaged nearly 0 g d-1, indicating conservative transport and successful characterization of hydrology. In contrast, net fluxes for other solute forms were altered following loss of the wetland: a persistent net sulfate sink (5-10% of inputs retained), suggestive of sulfate-reducing bacteria, was reduced; seasonal (summer) net sinks for nitrate and ammonium, suggestive of uptake by algae and denitrifying bacteria, were reduced; temporal variability for the net flux of soluble reactive phosphorus was reduced. Overall, loss of the artificial wetland caused by dam removal shifted seasonal and annual net fluxes of biologically available solute toward export. Nutrient retention by artificial wetlands could be important for elemental budgets in regions which have high nutrient loading to surface and ground water.

  5. Characterisation of areas under irrigated agriculture: mapping and water use

    NASA Astrophysics Data System (ADS)

    Peña Arancibia, Jorge; McVicar, Tim R.; Guerschman, Juan P.; Li, Lingtao T.

    2014-05-01

    The evolution of remote sensing and classification methods has enabled effective mapping, monitoring and management of irrigated agriculture. A random forest classification was implemented using learning samples inferred from Landsat TM/ETM data and monthly time-series of remotely-sensed observations from the MODerate resolution Imaging Spectroradiometer (MODIS). The covariates included in the method characterised: (i) the vegetation phenology via the recurrent and persistent fractions of photosynthetically active radiation (fPARrecandfPARper, respectively); (ii) vegetation water use via estimates of actual evapotranspiration (AET), rainfall (P) and the difference between AET and P . Maps of irrigated areas under different climates and cropping conditions were produced for the whole Murray-Darling Basin (Australia) for the years 2004 to 2010 with 0.96 observed agreement in terms of the Kappa Index (were a value of 1 indicates perfect agreement). An independent comparison of yearly irrigated area estimates and corresponding water use showed a linear relationship with good agreement (R2 >0.7) against available yearly metered water withdrawals and estimates of agricultural yields. A sequential covariate optimisation suggested that the most important predictors included the emergence-senescence period (as determined by the fPARrec and corresponding rates of change) and the AET surplus over P during this period. The latter can be important when determining more opportunistic irrigation practices due to unreliable water supply in areas with otherwise high annual rainfall. The procedure can be implemented to map irrigated areas at the global scale: the MODIS time-series used in the classification methodology are available globally since February 2000 and so are the Landsat archives which can be used to infer learning samples and irrigation practices elsewhere.

  6. Movement of agricultural chemicals between surface water and ground water, lower Cedar River basin, Iowa

    USGS Publications Warehouse

    Squillace, Paul J.; Caldwell, J.P.; Schulmeyer, P.M.; Harvey, C.A.

    1996-01-01

    Bank storage is probably an important source of agricultural chemicals discharged from the alluvial aquifer but becomes depleted with time after surface runoff. Herbicides discharged from the alluvial aquifer during periods of extended base flow entered the alluvial aquifer with ground-water recharge at some distance from the river. The movement of nitrate between surface water and ground water is minor, when compared to the herbicides, even though nitrite was detected in the Cedar River during runoff.

  7. Muddy Water and American Agriculture: How to Best Control Sedimentation From Agricultural Land?

    NASA Astrophysics Data System (ADS)

    Lovejoy, Stephen B.; Lee, John Gary; Beasley, David B.

    1985-08-01

    The role of agricultural sediment in water quality is well documented. While numerous policies have been advocated and initiated, it still appears to be a significant problem. The present analysis concentrates on the outcome of several policy alternatives in terms of sediment delivery and project costs. These results are obtained by combining social science investigation of probable farmer behavior under a variety of scenarios with a hydrologic simulation model which predicts the sediment delivery with different land uses. This integration of social science behavioral research with the hydrologic response simulation model provides a framework to assess the environmental effectiveness of alternative policies aimed at reducing sedimentation. While the results presented here are preliminary, this approach seems to offer great promise as a tool for federal, state and local conservation agencies in their efforts to efficiently and effectively use their limited resources to reduce soil loss.

  8. Network for Monitoring Agricultural Water Quantity and Water Quality in Arkansas

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Daniels, M.; Chen, Y.; Sharpley, A.; Teague, T. G.; Bouldin, J.

    2012-12-01

    A network of agricultural monitoring sites was established in 2010 in Arkansas. The state of Arkansas produces the most rice of any state in the US, the 3rd most cotton and the 3rd most broilers. By 2050, agriculture will be asked to produce food, feed, and fiber for the increasing world population. Arkansas agriculture is challenged with reduced water availability from groundwater decline and the associated increase in pumping costs. Excess nutrients, associated in part to agriculture, influence the hypoxic condition in the Gulf of Mexico. All sites in the network are located at the edge-of-field in an effort to relate management to water quantity and water quality. The objective of the network is to collect scientifically sound data at field scales under typical and innovative management for the region. Innovative management for the network includes, but is not limited to, variable rate fertilizer, cover crops, buffer strips, irrigation water management, irrigation planning, pumping plant monitoring and seasonal shallow water storage. Data collection at the sites includes quantifying water inputs and losses, and water quality. Measured water quality parameters include sediment and dissolved nitrate, nitrite and orthophosphate. The measurements at the edge-of-field will be incorporated into the monitoring of field ditches and larger drainage systems to result in a 3-tiered monitoring effort. Partners in the creation of this network include USDA-ARS, Arkansas State University, University of Arkansas, University of Arkansas at Pine Bluff, USDA-NRCS and agricultural producers representing the major commodities of the state of Arkansas. The network is described in detail with preliminary results presented.

  9. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  10. CLEAN FUELS FROM AGRICULTURAL AND FORESTRY WASTES

    EPA Science Inventory

    The report gives results of an experimental investigation of the operating parameters for a mobile waste conversion system based on the Georgia Tech Engineering Experiment Station's partial oxidation pyrolysis process. The object of the testing was to determine the combination of...

  11. Agricultural Occupations Programs Planning Guides

    ERIC Educational Resources Information Center

    Stitt, Thomas R.; And Others

    1977-01-01

    A set of program planning guides that include seven areas (1) Agricultural Production, (2) Agricultural Supplies and Services, (3) Agricultural Mechanics, (4) Agricultural Products, (5) Ornamental Horticulture, (6) Agricultural Resources, and (7) Forestry, were developed and introduced to high school applied biological and agricultural occupations…

  12. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  13. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  14. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  15. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  16. GlobWat - a global water balance model to assess water use in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Hoogeveen, J.; Faurès, J.-M.; Peiser, L.; Burke, J.; van de Giesen, N.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.

  17. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  18. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  19. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  20. A statewide network for monitoring agricultural water quality and water quantity in Arkansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arkansas produces the most rice, 3rd most cotton and 2nd most broilers of any state in the US. By 2050, agriculture will be asked to produce twice as much food, feed, and fiber for the projected world population, while challenged with reduced water availability from groundwater decline and increase...

  1. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    NASA Astrophysics Data System (ADS)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  2. An integrated stochastic approach to the assessment of agricultural water demand and adaptation to water scarcity

    NASA Astrophysics Data System (ADS)

    Foster, T.; Butler, A. P.; McIntyre, N.

    2012-12-01

    Increasing water demands from growing populations coupled with changing water availability, for example due to climate change, are likely to increase water scarcity. Agriculture will be exposed to risk due to the importance of reliable water supplies as an input to crop production. To assess the efficiency of agricultural adaptation options requires a sound understanding of the relationship between crop growth and water application. However, most water resource planning models quantify agricultural water demand using highly simplified, temporally lumped estimated crop-water production functions (CWPFs). Such CWPFs fail to capture the biophysical complexities in crop-water relations and mischaracterise farmers ability to respond to water scarcity. Application of these models in policy analyses will be ineffective and may lead to unsustainable water policies. Crop simulation models provide an alternative means of defining the complex nature of the CWPF. Here we develop a daily water-limited crop model for this purpose. The model is based on the approach used in the FAO's AquaCrop model, balancing biophysical and computational complexities. We further develop the model by incorporating improved simulation routines to calculate the distribution of water through the soil profile. Consequently we obtain a more realistic representation of the soil water balance with concurrent improvements in the prediction of water-limited yield. We introduce a methodology to utilise this model for the generation of stochastic crop-water production functions (SCWPFs). This is achieved by running the model iteratively with both time series of climatic data and variable quantities of irrigation water, employing a realistic rule-based approach to farm irrigation scheduling. This methodology improves the representation of potential crop yields, capturing both the variable effects of water deficits on crop yield and the stochastic nature of the CWPF due to climatic variability. Application to

  3. School Pesticide Provision to H.R. 1. Hearing before the Subcommittee on Department Operations, Oversight, Nutrition, and Forestry of the Committee on Agriculture. House of Representatives, One Hundred Seventh Congress, First Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Agriculture.

    This document is comprised of statements and materials submitted to a hearing on the school pesticide provision included in a Senate amendment to House Resolution 1 (H.R. 1), the Elementary and Secondary Education Act. The hearing was held July 18, 2001, before the Subcommittee on Department Operations, Oversight, Nutrition, and Forestry of the…

  4. Food, water, and fault lines: Remote sensing opportunities for earthquake-response management of agricultural water.

    PubMed

    Rodriguez, Jenna; Ustin, Susan; Sandoval-Solis, Samuel; O'Geen, Anthony Toby

    2016-09-15

    Earthquakes often cause destructive and unpredictable changes that can affect local hydrology (e.g. groundwater elevation or reduction) and thus disrupt land uses and human activities. Prolific agricultural regions overlie seismically active areas, emphasizing the importance to improve our understanding and monitoring of hydrologic and agricultural systems following a seismic event. A thorough data collection is necessary for adequate post-earthquake crop management response; however, the large spatial extent of earthquake's impact makes challenging the collection of robust data sets for identifying locations and magnitude of these impacts. Observing hydrologic responses to earthquakes is not a novel concept, yet there is a lack of methods and tools for assessing earthquake's impacts upon the regional hydrology and agricultural systems. The objective of this paper is to describe how remote sensing imagery, methods and tools allow detecting crop responses and damage incurred after earthquakes because a change in the regional hydrology. Many remote sensing datasets are long archived with extensive coverage and with well-documented methods to assess plant-water relations. We thus connect remote sensing of plant water relations to its utility in agriculture using a post-earthquake agrohydrologic remote sensing (PEARS) framework; specifically in agro-hydrologic relationships associated with recent earthquake events that will lead to improved water management. PMID:27241204

  5. Differences in Aquatic Communities Between Wetlands Created by an Agricultural Water Recycling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to s...

  6. Food vs. water: the magnitude and range of global tradeoffs in agricultural production and impact

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Flörke, M.; Mueller, N. D.; Foley, J. A.

    2013-12-01

    Water is integral to agricultural production, and agriculture is by far the largest human use of water, so food security and water sustainability are inexorably linked. When water goes to food production, however, the benefits and costs are not uniformly distributed across the globe. We quantify the magnitude and global range of the multidimensional tradeoffs among food production, water consumption, and water quality impairment. To evaluate the productivity of water consumption in agriculture, we quantified the magnitude and global range of crop water productivity, the amount of food produced per unit of water consumed, for 16 major food crops (Brauman et al., 2013). We now expand on this, contextualizing the impact of high or low water productivity with information about water availability. Using outputs from the WaterGAP3 model (Flörke et al., 2013, Verzano et al. 2012), we map the burden of agricultural water consumption on total water availability. To incorporate impacts of agriculture on water quality, we include areas of excess nutrient application (Mueller et al., 2012). The integrated information about yield, water consumption, water availability, and nutrient application shows that benefits and impacts to water quantity and quality are not evenly distributed. Analogous to previous investigations of 'yield gaps,' which identified areas where biophysical conditions are sufficient for achieving yields higher than those that are attained (Licker et al., 2010), we show that in many places, for the given impacts to water, food production could be increased.

  7. Forestry and Wood Technology. Curriculum Guide for Agriscience 383.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Dept. of Agricultural Education.

    This guide outlines the topics of instruction and goals/objectives of a semester-long half-unit laboratory course in forestry and wood technology (Agriscience 383) that is designed for students part of Texas' agricultural science and technology program for students in grades 10-12. Presented first are lists of the following: essential elements…

  8. Living with trees. Policies for forestry management in Zimbabwe

    SciTech Connect

    Bradley, E.P.; McNamara, K.

    1993-09-01

    This technical paper provides a broad analysis of forestry policy in Zimbabwe. Some two dozen contributors look at forestry as a provider of livelihood, homes and workplaces, and industrial commodities. The first section of the paper concentrates on the social and macroeconomic goals of forestry in Zimbabwe and on its place in rural agriculture. Contributors examine the issues of land tenure and the culture of common property, the practice of woodland management, and control of and participation in management and policy development. The second section focuses on the status of the forest industry in Zimbabwe and on its capacity to manage and expand existing commercial plantations. The paper explores the main issues the sector faces, including growing concentration of ownership versus the government`s objective of wider participation in the industry. They discuss the effects of trade liberalization on its competitive position, both among other agricultural sectors within Zimbabwe and with competitors outside the country. Included is a color map of Zimbabwe`s woodlands. Many forestry programs worldwide face the issues discussed in this work. It will be of interest to planners, policymakers, teachers, and students of rural development and forestry.

  9. Water quality monitoring of an agricultural watershed lake: the effectiveness of agricultural best management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beasley Lake is an oxbow lake located in the Lower Mississippi Alluvial Plain (the Delta), a region of intensive agricultural activity. Due to intensive row-crop agricultural practices, the 915 ha watershed was sediment impaired when monitoring began in 1995 and was a candidate to assess the effect...

  10. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  11. Increasing Efficiency of Water Use in Agriculture through Management of Soil Water Repellency to Optimize Soil and Water Productivity

    NASA Astrophysics Data System (ADS)

    Moore, Demie; Kostka, Stan; McMillan, Mica; Gadd, Nick

    2010-05-01

    Water's ability to infiltrate and disperse in soils, and soil's ability to receive, transport, retain, filter and release water are important factors in the efficient use of water in agriculture. Deteriorating soil conditions, including development of soil water repellency, negatively impact hydrological processes and, consequently, the efficiency of rainfall and irrigation. Soil water repellency is increasingly being identified in diverse soils and cropping systems. Recently research has been conducted on the use of novel soil surfactants (co-formulations of alkyl polyglycoside and block copolymer surfactants) to avoid or overcome soil water repellency and enhance water distribution in soils. Results indicate that this is an effective and affordable approach to maintaining or restoring soil and water productivity in irrigated cropping systems. Results from studies conducted in Australia and the United States to determine how this technology modifies soil hydrological behavior and crop yields will be presented. A range of soils and various crops, including potatoes, corn, apples and grapes, were included. Several rates were compared to controls for effect on soil moisture levels, soil water distribution, and crop yield. An economic analysis was also conducted in some trials. Treatments improved rootzone water status, significantly increased crop yield and quality, and in some cases allowed significant reductions in water requirements. Where assessed, a positive economic return was generated. This technology holds promise as a strategy for increasing efficiency of water use in agriculture.

  12. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  13. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  14. The impact of agricultural activities on water quality in oxbow lakes in the Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Mississippi Delta, agricultural activity is a major source of nonpoint source (NPS) pollutants. Sediment, nutrients and pesticides have been considered as priority NPS pollutants and greatly affect the water quality in this area. The impacts of agricultural activities on water quality in oxbo...

  15. Influence of integrated watershed-scale agricultural conservation practices on lake water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watershed-scale management efforts to improve conservation of water resources in agricultural watersheds depend upon the effectiveness of integrated multiple agricultural best management practices at this scale. This requires large-scale, long-term (>10 y) studies measuring key water quality paramet...

  16. Climate change, water rights, and agriculture: A case study in Idaho

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    Water supply is important to agriculture and other consumptive uses in the arid and semiarid climate zones, but it has become increasingly uncertain under a changing climate. More important, how agricultural output will be affected may depend on how water resources are allocated based on the dominant sharing rule, according to Xu et al., who conducted a case study in Idaho.

  17. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... these approvals will expire if not renewed. (1) Recordations, Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract Summaries, Control Number 2140-0024 See 78 FR... Surface Transportation Board Recordations, Water Carrier Tariffs, and Agricultural Contract...

  18. CONSERVATION AGRICULTURE: ENVIRONMENTAL BENEFITS OF REDUCED TILLAGE AND SOIL CARBON MANAGEMENT IN WATER LIMITED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural carbon (C) sequestration may be one of the most cost effective ways to slow processes of global warming and enhance plant available water. Numerous environmental benefits and enhanced water use efficiency result from agricultural activities that sequester soil C and contribute to crop p...

  19. Consulting Foresters' View of Professional Forestry Education

    ERIC Educational Resources Information Center

    Straka, Thomas J.; Childers, Christopher J.

    2006-01-01

    Consulting forestry is an attractive professional specialization and expanding employment opportunities have made it a popular option for forestry students. Association of Consulting Foresters members were asked to rank the importance of the traditional forestry and other courses in the standard accredited forestry curriculum, where additional…

  20. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  1. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources. PMID:22828292

  2. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  3. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  4. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  5. Horse paddocks - an emerging source of agricultural water pollution

    NASA Astrophysics Data System (ADS)

    Masud Parvage, Mohammed; Ulén, Barbro; Kirchmann, Holger

    2015-04-01

    Horse farms occupy about 4% of the total agricultural land in the EU but are not well investigated with regard to their impact on water quality. Horse paddocks commonly hold horses on a limited space and the animal density often exceeds the recommended density. Therefore, paddock soils receive significant amounts of phosphorus (P) and nitrogen (N) through feed residues and deposition of faeces and urine, which can lead to nutrient build-up in the soil and subsequent losses to aquatic systems. This study characterized the potential risk of phosphorus (P) and nitrogen (N) leaching losses from Swedish horse paddocks through three stage examination of soil and water P and N status. The experiment began with a pilot study where surface soil P status and eight years of drainage P data were examined from a paddock catchment and an adjacent arable catchment both receiving similar amount of P and N over years. Results showed that there were no signi?cant differences in water-soluble P (WSP) or total P data in soils but the drainage water P concentrations, being higher in the paddock catchment (0.33 mg P l-1, mainly in dissolved reactive form) than the arable catchment (0.10 mg P l-1). In the second experiment, soil P and N status were examined in different parts of horse paddocks (feeding, grazing, and excretion areas) to identify existence of any potential hotspots for losses within the paddock. In total, seven horse farms, covering different grazing densities and soil textures representative of Swedish horse paddocks were examined. The results showed that concentrations of WSP, plant available P or P-AL (P extracted in ammonium acetate lactate solution at pH 3.75), and total N were highest in feeding and excretion areas within the paddocks. It was also observed that the WSP concentration in the paddocks was strongly correlated with horse density (R2 = 0.80, p < 0.001) and P-AL with years of paddock management (R2 = 0.78, p < 0.001). In the final experiment, topsoil

  6. Climate change impacts on forestry

    PubMed Central

    Kirilenko, Andrei P.; Sedjo, Roger A.

    2007-01-01

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO2 are likely to drive significant modifications in natural and modified forests. Our review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. We concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand. PMID:18077403

  7. Climate change impacts on forestry

    SciTech Connect

    Kirilenko, A.P.; Sedjo, R.A.

    2007-12-11

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

  8. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-01

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth. PMID:25289879

  9. Soil water and shallow groundwater relations in an agricultural hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables can contribute water for plant use; therefore, plant-available water includes not only the water stored in the root zone, but also the water moving up from below the root zone. The purpose of this study was to quantify the amount of water moving upward to the root zone. Automate...

  10. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  11. The Contribution of Agricultural Trade for Saving Blue Water in Arid Regions

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Biewald, A.; Hoff, H.; Lotze-Campen, H.

    2011-12-01

    Trade can mitigate local water scarcity in water scarce regions, but does not always do so because of economic or other pressures to export water intensive products. To assess impacts of trade on blue and green water use in agriculture, we apply two dynamic, global and spatially explicit models. The vegetation and crop model LPJmL calculates water use and crop productivity. Based on the potential agricultural yield of LPJmL, the economic model MAgPIE_trade produces landuse pattern for the most important agricultural production in 10 economic world regions; bilateral trade is controlled by transport costs and trade barriers. We quantify the trade effect by comparing scenarios with and without trade for current and predicted future climatic conditions. The resulting differences in the spatial patterns (0.5° resolution) of agricultural production from MAgPIE_trade enables the quantification of the amount of goods produced for export. Using the consumptive green and blue water fluxes from LPJmL for each agricultural product, the export of virtual water uses are calculated so that water saving or consumption due to trade can be quantified. Although an interesting result in itself, an estimate for relaxation or intensification of water scarcity by trade is still missing. Here, the water shadow price from MAgPIE_trade as an indicator for water scarcity is related to the actual change in blue water usage. This relation is then taken as an indicator for the efficiency of trade on the local savings of blue water.

  12. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  13. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  14. Sustainability of agriculture under irrigation: Use and management of degraded water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid regions the use of saline and reclaimed waters for irrigation is increasingly necessary. Scarcity of fresh water for agriculture is increased by the water demands of the municipal and industrial sectors. In the majority of these regions there is a rapid decrease in fresh water availability ...

  15. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  16. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-03-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users can increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, such a dynamic allocation process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  17. Soil Water and Shallow Groundwater Relations in an Agricultural Hillslope

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shallow water tables contribute to soil water variations under rolling topography, and soil properties contribute to shallow water table fluctutations. Preferential flow through large soil pores can cause a rise in the water table with little increase in soil water except near the soil surface. Late...

  18. Water-saving techniques in Chinese agriculture: water-saving irrigation and straw mulching for winter wheat

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqiang; Zhu, Zixi; Zheng, Youfei; Fang, Wensong

    2004-01-01

    Based on the relationship between water balance and crop-water, water-saving irrigation model was integrated with monitoring and prediction of soil moisture, forming a system of decision-making of irrigation. It is demonstrated that straw mulching for winter wheat is an effective way to reduce soil evaporation at early stages and increase yield and improve water utilization efficiency. Combination of water-saving irrigation and straw mulching plays an important role in China water-saving agriculture.

  19. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  20. A MODELING-GIS APPROACH FOR THE ASSESSMENT OF SOIL AND GROUND WATER VULNERABILITY TO NONPOINT SOURCE IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Ground water pollution due to agriculture activities is a major source of concern. Vast agricultural lands constitute a nonpoint source for pollutants, such as pesticides and nitrogen fertilizers, which threatens ground water resources and the integrity of aquatic and terrestria...

  1. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  2. Transformation Of Arsenic In Agricultural Drainage Water Disposed Into An Evaporation Basin In California, USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, a high agricultural production area in USA. The irrigation drainage water contains elevated concentrations of trace elements, including S...

  3. Arsenic Speciation and Accumulation In Evapoconcentrating Waters Of Agricultural Evaporation Basins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To sustain agricultural productivity, evaporation basins (or ponds) have been widely used for the disposal of agricultural drainage in areas requiring subsurface drainage in the San Joaquin Valley of California, USA. The drainage water contains elevated concentration of trace elements including sele...

  4. Agricultural-to-hydropower water transfers: sharing water and benefits in hydropower-irrigation systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.

    2009-07-01

    This paper presents a methodology to assess agricultural-to-hydropower water transfers in water resources systems where irrigation crop production and hydropower generation are the main economic activities. In many countries, water for crop irrigation is often considered as a static asset: irrigation water is usually allocated by a system of limited annual rights to use a prescribed volume of water, which remains to a large extent independent of the availability of water in the basin. The opportunity cost (forgone benefits) of this static management approach may be important in river basins where large irrigation areas are present in the upstream reaches. Continuously adjusting allocation decisions based on the hydrologic status of the system will lead to the temporary reallocation of some (or all) of the irrigation water downstream to consumptive and/or non-consumptive users. Such a dynamic allocation process will increase the social benefits if the sum of the downstream productivities exceeds those of the upstream farmers whose entitlements are curtailed. However, this process will be socially acceptable if upstream farmers are compensated for increasing the availability of water downstream. This paper also presents a methodology to derive the individual contribution of downstream non-consumptive users, i.e. hydropower plants, to the financial compensation of upstream farmers. This dynamic management approach is illustrated with a cascade of multipurpose reservoirs in the Euphrates river basin. The analysis of simulation results reveals that, on average, the annual benefits obtained with the dynamic allocation process are 6% higher that those derived from a static allocation.

  5. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  6. [Association study between water quality of Chaohu Lake and resources input in agriculture of basin].

    PubMed

    Zhang, Yan; Gao, Xiang; Zhang, Hong

    2012-09-01

    In order to discuss the association between the water quality of Chaohu Lake and the resources input in agriculture of the basin, factors that may affect the lake eutrophication are chosen, such as surplus fertilizer, irrigated area with saved water, agricultural films, water and soil loss control and so on. The methods of correlation analysis and stepwise regression are used. Furthermore, a new method, combined with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, calculating the surplus fertilizer is designed. The results indicate that among various resources input in agriculture of the basin the surplus fertilizer, irrigated area with saved water and agricultural films have a great influence on Chaohu Lake eutrophication. And one year's lag phase between the water quality of Chaohu Lake and the surplus fertilizer is confirmed. Therefore, it is necessary to raise the utilization efficiency of fertilizer, to improve the irrigation way and to decrease the agricultural water consumption in order to conserve resources and to reduce the influence of agricultural production on the water quality of Chaohu Lake. PMID:23243852

  7. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  8. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  9. Simulations of Limited-Water Irrigation Management Options for Corn in Dryland Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diminishing land and water resources due to increasing demands from rapid population growth calls for increasing water use efficiency of irrigated crops. To produce more for every drop of water used in agriculture, it is important to develop location specific alternate agronomic practices vis-à-vis...

  10. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  11. Grasses for biofuels: A low water-use alternative for cold desert agriculture?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid regions, reductions in the amount of available agricultural water are fueling interest in alternative, low water-use crops. Perennial grasses have potential as low water-use biofuel crops. However, little is known about which perennial grasses can produce high quantity, high quality yields w...

  12. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    EPA Science Inventory

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  13. Overcoming agricultural pollution of water: The challenge of integrating agricultural and environmental policies in the European union. World Bank technical paper

    SciTech Connect

    Scheierling, S.M.

    1995-04-01

    In an effort to address the particular policy challenges posed by the agriculture/water quality dilemma, this study, focuses on the experience of the European Community (EC), where high levels of nitrate, phosphate, and pesticides in surface and groundwater are a source of increasing concern. Agricultural and water quality-related environmental policies at EC level, as well as national level, are examined, and new policy approaches that try to integrate agricultural and environmental considerations are discussed. This study thus provides insights into policy options for controlling agricultural water pollution, which might be useful in other parts of the world.

  14. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  15. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production. PMID:27344509

  16. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: long-term water quality database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Pasture Systems and Watershed Management Research Unit (PSWMRU) has developed a long-term water quality database to support water quality research within the 7.3 km**2 WE-38 experimental watershed in east-central Pennsyl...

  17. Agriculture and Rural Viability.

    ERIC Educational Resources Information Center

    North Carolina State Univ., Raleigh. Agricultural Experiment Station.

    Agriculture and the rural economic bases in mining, fisheries, forestry, and natural resource extraction are experiencing major social and economic changes. The farm and rural crises of the 1980s are not short-term aberrations, but symptoms of long-term trends that were partially hidden by the relatively good times for agriculture and rural areas…

  18. The Management Options of Water for the Development of Agriculture in Dry Areas

    NASA Astrophysics Data System (ADS)

    Irshad, M.; Inoue, M.; Ashraf, M.; Al-Busaidi, A.

    The natural resource base of land, water and vegetation in arid and semi arid areas is highly fragile and greatly vulnerable to degradation especially in the developing countries. The demand for water is constantly increasing as a result of population growth and the expansion of agriculture and industry. Fresh water resources are limited in the arid and semi-arid areas whereas the existing water resources are often overused and misused. The lack of water management in the arid areas generated numerous economic, social and ecological issues. Agriculture currently accounts for nearly 70-80% of water consumption in the developing countries. The productivity of water use in agriculture needs to enhance in order both to avoid exacerbating the water crisis and to prevent considerable food shortages. More efficient use of existing water resources and adequate management of soils could prove to be the effective tool for improving arid lands. The technologies, skills and capital resources required to overcome the poor and extreme distribution of water resources through storage and transfer are not available and widely used. As a consequence there is critically low access to water for agriculture, drinking and sanitation and the environment. Poor access to water is among the leading factors hindering sustainable development in semi-arid and arid regions. Conventional irrigation management should be revised to ensure maximum water productivity instead of land productivity for dry farming systems. Under conditions of increasing water scarcity, the key to sustaining rural livelihoods is improving the productivity and reliability of rainfed agriculture by using limited rainfall more productively, through optimal on-farm soil, water and crop management practices that conserve soil moisture and increase water use efficiency. Conserving and augmenting water supplies through rainwater harvesting and precision irrigation provide new opportunity for productive dry land farming

  19. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    NASA Astrophysics Data System (ADS)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    impact analyses and build an important basis of the future adaptation strategies in forestry, agriculture and water management. Funding: The research is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0013 and TÁMOP-4.1.1.C-12/1/KONV-2012-0012 (ZENFE) joint EU-national research projects. Keywords: climate indices, climate change impacts, forestry, regional climate modelling

  20. Comparison of pesticide residues in surface water and ground water of agriculture intensive areas

    PubMed Central

    2014-01-01

    The organochlorines (OClPs) and organophosphates (OPPs) pesticides in surface and ground water having intensive agriculture activity were investigated to evaluate their potential pollution and risks on human health. As per USEPA 8081 B method, liquid-liquid extraction followed by Gas-Chromatographic technique with electron capture detector and mass selective detector (GC-MS) were used for monitoring of pesticides. Among organochlorines, α,β,γ,δ HCH’s, aldrin, dicofol, DDT and its derivatives, α,β endosulphan’s and endosulphan-sulphate were analysed; dichlorovos, ethion, parathion-methyl, phorate, chlorpyrifos and profenofos were determined among organophosphates. As compared to ground water, higher concentrations of OClPs and OPPs were found in surface water. Throughout the monitoring study, α - HCH (0.39 μg/L in Amravati region),α - endosulphan (0.78 μg/L in Yavatmal region), chlorpyrifos (0.25 μg/L in Bhandara region) and parathion-methyl (0.09 μg/L in Amravati region) are frequently found pesticide in ground water, whereas α,β,γ-HCH (0.39 μg/L in Amravati region), α,β - endosulphan (0.42 μg/L in Amravati region), dichlorovos (0.25 μg/L in Yavatmal region), parathion-methyl (0.42 μg/L in Bhandara region), phorate (0.33 μg/L in Yavatmal region) were found in surface water. Surface water was found to be more contaminated than ground water with more number of and more concentrated pesticides. Among pesticides water samples are found to be more contaminated by organophosphate than organochlorine. Pesticides in the surface water samples from Bhandara and Yavatmal region exceeded the EU (European Union) limit of 1.0 μg/L (sum of pesticide levels in surface water) but were within the WHO guidelines for individual pesticides. PMID:24398360

  1. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  2. Impact of agriculture on surface water in Ireland Part I. General

    NASA Astrophysics Data System (ADS)

    Toner, Paul F.

    1986-02-01

    The inland freshwaters of Ireland are generally of good quality, a condition at least partly attributable to the relatively small population and industrial base, which are mainly located in coastal areas. The wastes generated by agricultural activities greatly exceed those resulting from domestic and industrial activities. However, the bulk of these agricultural wastes are attributable to grazing livestock and are not likely to lead to pollution of waters. The disposal of manure slurries from intensive rearing operations and silage making are the main agricultural operations which have been implicated in pollution incidents, e.g., fish kills and lake eutrophication. Contamination of surface waters with nitrate and pesticides is not a significant problem at this stage, which reflects the relatively low usage of artificial fertilizers and biocides in Ireland. It is suggested that, in the long term, the main effect of agriculture on Irish surface waters will be eutrophication.

  3. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. PMID:26994788

  4. 78 FR 2950 - Forestry Research Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Forest Service Forestry Research Advisory Council AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Forestry Research Advisory Council will meet in Washington, DC February 7-8, 2013. The... Apple, Designated Federal Officer, Forestry Research Advisory Council, USDA Forest Service Research...

  5. Irrigated Agriculture and Water Resources in the Western U.S. (Invited)

    NASA Astrophysics Data System (ADS)

    Trout, T. J.

    2013-12-01

    Agriculture in semi-arid areas such as the western U.S. was created by diverting and pumping water from rivers and groundwater. With that water, highly productive irrigated agriculture produces 40% of the crop value and the large majority of the fruits, vegetables, and nuts in the U.S. Irrigation water use and area is declining in the West, due both to overexploitation and increasing competing needs, although productivity continues to increase. The challenges for irrigated agriculture are to maximize productivity per unit of water consumed, minimize negative environmental impacts, and make water available to other needs while sustaining food production and rural economies. Meeting these challenges require both technical and policy advances.

  6. Real Forestry for Real Estate

    ERIC Educational Resources Information Center

    Gagnon, Jennifer; Fisher, Jason

    2013-01-01

    Virginia is poised to see an unprecedented change in forest land ownership. To provide new landowners with information on sustainable forest management, we developed a two-part program, Real Forestry for Real Estate. First, we assembled New Landowner Packets, which contain a variety of sustainable forest management resources. Second, two…

  7. Using activated biochars to treat well water in agricultural communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dibromochloropropane (1,2-dibromo-3-chloropropane or DBCP) is regulated by the U.S. Environmental Protection Agency under the National Primary Drinking Water Regulations to a maximum of 0.2 µg/L (0.2 ppb) in drinking water. DBCP was primarily used as an unclassified nematicide for vegetables and per...

  8. Soil and Water Challenges for Pacific Northwest Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil and water conservation has been a major concern in the Inland Pacific Northwest since the onset of farming 125 years ago. Some of the highest historic water erosion rates in the USA have occurred on steep slopes in the Palouse region where soil loss averaged 45 Mg ha-1 yr-1 and could reach 450 ...

  9. ET mapping for agricultural water management: present status and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an essential component of the water balance. Remote sensing based agrometeorological models are presently most suited for estimating crop water use at both field and regional scales. Numerous ET algorithms have been developed to make use of remote sensing data acquired by ...

  10. Agricultural water and energy use in the Senegal River Valley

    NASA Astrophysics Data System (ADS)

    Masiyandima, M. C.; Sow, A.

    2015-12-01

    Assessment of the productivity of irrigation water is important measuring the performance of irrigation schemes especially in water scarce areas. Equally important for performance is the energy cost of providing water for irrigation. Sahel irrigation schemes are dependent on pumping water from rivers into a network of gravity operated channels. In the Senegal River valley in Senegal the cost of pumping water and for irrigation has been estimated to be 20-25% of total rice production costs. Irrigation schemes in the valley are characterized by low water productivity. We analysed rice production, irrigation water use and energy use for supplying irrigation water at Pont Gendarme, Ndiawar and Ngallenka MCA irrigation schemes in the Senegal River valley. For the 2013 rainfall season the mean yield ranged between 6 and 8t ha-1. Dry season yield ranged between 1.7 and 6.8t ha-1. Energy use for irrigation in the Ndiawar irrigation scheme was 8kg MJ-1 and 6.4kg MJ-1 in the 2013 and 2014 rainfall seasons respectively. In 2014 (rainfall season) energy productivity of irrigation water was 8.5, 8.0 and 16.4 kg MJ-1 at Ngallenka MCA, Ndiawar and Pont Gendarme respectively. Dry season (2014) energy productivity at Ndiawar and Pont Gendarme was 3.4 and 11.2kg MJ-1 respectively. Productivity of irrigation water was similar for all schemes (0.37kg m-3 at Pont Gendarme, 0.42kg m-3 at Ngallenka MCA, and 0.41kg m-3 Ndiawar). Energy use for the supply of irrigation water in the rainfall season ranged from 403 to 1,002MJ ha-1. Dry season irrigation energy use was 589MJ ha-1 Pont Gendarme and 331MJ ha-1 at Ndiawar. Reducing water use in these schemes through better water management will result in lower production costs and increased margins for the farmers. The observations from 2013 - 2014 highlight the importance of using both water and energy productivity to assess performance of irrigation schemes.

  11. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  12. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  13. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  14. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  15. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  16. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  17. Assessment of rural ground-water contamination by agricultural chemicals in sensitive areas of Michigan

    SciTech Connect

    Ervin, J.L.; Kittleson, K.M.

    1988-04-01

    The vulnerability of drinking-water supplies to agricultural contamination in three Michigan counties is discussed. The results of nitrate and atrazine analysis of drinking water from 38 wells in those 3 counties is described. Widespread nitrate contamination was demonstrated in agricultural areas with vulnerable aquifers. In addition, atrazine, a widely used herbicide was found in 11 of the 38 wells samples, with concentrations and patterns not conforming to findings in other mid-western states. The need for a comprehensive inventory of the ground-water quality in rural areas of Michigan is emphasized in the report, which describes results from the first year of a 2-year study.

  18. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  19. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  20. Simultaneous concentration of bovine viruses and agricultural zoonotic bacteria from water using sodocalcic glass wool filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficienc...

  1. Implementation and monitoring measures to reduce agricultural impacts on water quality: US experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  2. Restoring abandoned agricultural lands in cold desert shrublands: tradeoffs between water availability and invasive species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of abandoned agricultural lands to create sustainable ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or su...

  3. Implementation and monitoring to reduce agricultural impacts on water quality: US experiance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  4. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO3-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO3-N concentrations in seep and stream water were affected by NO3-N processin...

  5. Modeling water outflow from tile-drained agricultural fields.

    PubMed

    Kuzmanovski, Vladimir; Trajanov, Aneta; Leprince, Florence; Džeroski, Sašo; Debeljak, Marko

    2015-02-01

    The estimation of the pollution risk of surface and ground water with plant protection products applied on fields depends highly on the reliable prediction of the water outflows over (surface runoff) and through (discharge through sub-surface drainage systems) the soil. In previous studies, water movement through the soil has been simulated mainly using physically-based models. The most frequently used models for predicting soil water movement are MACRO, HYDRUS-1D/2D and Root Zone Water Quality Model. However, these models are difficult to apply to a small portion of land due to the information required about the soil and climate, which are difficult to obtain for each plot separately. In this paper, we focus on improving the performance and applicability of water outflow modeling by using a modeling approach based on machine learning techniques. It allows us to overcome the major drawbacks of physically-based models e.g., the complexity and difficulty of obtaining the information necessary for the calibration and the validation, by learning models from data collected from experimental fields that are representative for a wider area (region). We evaluate the proposed approach on data obtained from the La Jaillière experimental site, located in Western France. This experimental site represents one of the ten scenarios contained in the MACRO system. Our study focuses on two types of water outflows: discharge through sub-surface drainage systems and surface runoff. The results show that the proposed modeling approach successfully extracts knowledge from the collected data, avoiding the need to provide the information for calibration and validation of physically-based models. In addition, we compare the overall performance of the learned models with the performance of existing models MACRO and RZWQM. The comparison shows overall improvement in the prediction of discharge through sub-surface drainage systems, and partial improvement in the prediction of the surface

  6. Analysis of economic impacts of climate change on agricultural water management in Europe

    NASA Astrophysics Data System (ADS)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  7. Price elasticity reconsidered: Panel estimation of an agricultural water demand function

    NASA Astrophysics Data System (ADS)

    Schoengold, Karina; Sunding, David L.; Moreno, Georgina

    2006-09-01

    Using panel data from a period of water rate reform, this paper estimates the price elasticity of irrigation water demand. Price elasticity is decomposed into the direct effect of water management and the indirect effect of water price on choice of output and irrigation technology. The model is estimated using an instrumental variables strategy to account for the endogeneity of technology and output choices in the water demand equation. Estimation results indicate that the price elasticity of agricultural water demand is -0.79, which is greater than that found in previous studies.

  8. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy. PMID:27074925

  9. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  10. Remotely Sensed Estimates of Evapotranspiration in Agricultural Areas of Northwestern Nevada: Drought, Reliance, and Water Transfers

    NASA Astrophysics Data System (ADS)

    Bromley, Matthew

    The arid landscape of northwestern Nevada is punctuated by agricultural communities that rely on water primarily supplied by the diversion of surface waters and secondarily by groundwater resources. Annual precipitation in the form of winter snowfall largely determines the amount of surface water that is available for irrigation for the following agricultural growing season. During years of insufficient surface water supplies, particular basins can use groundwater in order to meet irrigation needs. The amount of water used to irrigate agricultural land is influenced by land use changes, such as fallowing, and water right transfers from irrigation to municipal use. To evaluate agricultural water consumption with respect to variations in weather, water supply, and land use changes, monthly estimates of evapotranspiration (ET) were derived from Landsat multispectral optical and thermal imagery over a eleven-year period (2001 to 2011) and compared to variations in weather, water supply, and land use across four hydrographic areas in northwestern Nevada. Monthly ET was estimated using a land surface energy balance model, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), using Landsat 5 and Landsat 7 imagery combined with local atmospheric water demand estimates. Estimates of net ET were created by subtracting monthly precipitation from METRIC-derived ET, and seasonal estimates were generated by combining monthly ET for April-October (the regional agricultural growing season). Results highlight that a range of geographic, climatic, hydrographic, and anthropogenic factors influence ET. Hydrographic areas such as Mason Valley have the ability to mitigate deficiencies in surface water supplies by pumping supplemental groundwater, thereby resulting in low annual variability in ET. Conversely, the community of Lovelock has access to limited upstream surface water storage and is restricted by groundwater that is saline and unsuitable for

  11. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  12. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  13. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  14. Selection criteria for water disinfection techniques in agricultural practices.

    PubMed

    Haute, Sam van; Sampers, Imca; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    This paper comprises a selection tool for water disinfection methods for fresh produce pre- and postharvest practices. A variety of water disinfection technologies is available on the market and no single technology is the best choice for all applications. It can be difficult for end users to choose the technology that is best fit for a specific application. Therefore, the different technologies were characterized in order to identify criteria that influence the suitability of a technology for pre- or postharvest applications. Introduced criteria were divided into three principal components: (i) criteria related to the technology and which relate to the disinfection efficiency, (ii) attention points for the management and proper operation, and (iii) necessities in order to sustain the operation with respect to the environment. The selection criteria may help the end user of the water disinfection technology to obtain a systematic insight into all relevant aspects to be considered for preliminary decision making on which technologies should be put to feasibility testing for water disinfection in pre- and postharvest practices of the fresh produce chain. PMID:24279431

  15. Optimizing the use of limited water in agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 92% of freshwater withdrawals in Uzbekistan are used for irrigation, whereas in the United States, freshwater withdrawls account for about 33% of the total use. In Uzbekistan, most of the water suitable for irrigation has already been allocated. In the United States, groundwater depletion and ...

  16. Land use policy and agricultural water management of the previous half of century in Africa

    NASA Astrophysics Data System (ADS)

    Valipour, Mohammad

    2015-12-01

    This paper examines land use policy and agricultural water management in Africa from 1962 to 2011. For this purpose, data were gathered from Food and Agriculture Organization of the United Nations (FAO) and the World Bank Group. Using the FAO database, ten indices were selected: permanent crops to cultivated area (%), rural population to total population (%), total economically active population in agriculture to total economically active population (%), human development index, national rainfall index (mm/year), value added to gross domestic product by agriculture (%), irrigation water requirement (mm/year), percentage of total cultivated area drained (%), difference between national rainfall index and irrigation water requirement (mm/year), area equipped for irrigation to cultivated area or land use policy index (%). These indices were analyzed for all 53 countries in the study area and the land use policy index was estimated by two different formulas. The results show that value of relative error is <20 %. In addition, an average index was calculated using various methods to assess countries' conditions for agricultural water management. Ability of irrigation and drainage systems was studied using other eight indices with more limited information. These indices are surface irrigation (%), sprinkler irrigation (%), localized irrigation (%), spate irrigation (%), agricultural water withdrawal (10 km3/year), conservation agriculture area as percentage of cultivated area (%), percentage of area equipped for irrigation salinized (%), and area waterlogged by irrigation (%). Finally, tendency of farmers to use irrigation systems for cultivated crops has been presented. The results show that Africa needs governments' policy to encourage farmers to use irrigation systems and raise cropping intensity for irrigated area.

  17. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  18. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  19. Increasing the potential of agricultural water harvesting in Africa

    NASA Astrophysics Data System (ADS)

    Irvine, Brian; Kirkby, Mike; Woldearegay, Kifle

    2014-05-01

    The WAHARA project aims to increase the potential of water harvesting in Africa. The WAHARA project draws on expertise and field data from four study sites in Ethiopia, Tunisia, Burkina Faso and Zambia. The project is transdisciplinary working closely with stakeholders to ensure that the water harvesting technologies selected and tested meet their needs. The effectiveness of WH technologies will be assessed under different environmental and socio-economic conditions. Each study site offers a number of WH technologies and aim to trial technologies from other study sites. The results from the study sites will inform the adaptation of the PESERA model and the potential of WH for the whole of Africa This presentation highlights the climate range in which the field trials are being carried out and the technologies being trialed in northern Ethiopia. Conceptual models for each technology are considered and incorporated into the PESERA model. The model is applied for the study site with both field based and catchment based technologies being assessed. The transferability and potential of individual and combined technologies will be considered across climate gradients and soil type for Africa. A quick assessment tool has been developed and offers an initial assessment of water harvesting potential. The tool can be used to quickly assess which kinds of WHT could be used in specific areas in Africa and is available to interested parties.

  20. Global forestry emission projections and abatement costs

    NASA Astrophysics Data System (ADS)

    Böttcher, H.; Gusti, M.; Mosnier, A.; Havlik, P.; Obersteiner, M.

    2012-04-01

    In this paper we present forestry emission projections and associated Marginal Abatement Cost Curves (MACCs) for individual countries, based on economic, social and policy drivers. The activities cover deforestation, afforestation, and forestry management. The global model tools G4M and GLOBIOM, developed at IIASA, are applied. GLOBIOM uses global scenarios of population, diet, GDP and energy demand to inform G4M about future land and commodity prices and demand for bioenergy and timber. G4M projects emissions from afforestation, deforestation and management of existing forests. Mitigation measures are simulated by introducing a carbon tax. Mitigation activities like reducing deforestation or enhancing afforestation are not independent of each other. In contrast to existing forestry mitigation cost curves the presented MACCs are not developed for individual activities but total forest land management which makes the estimated potentials more realistic. In the assumed baseline gross deforestation drops globally from about 12 Mha in 2005 to below 10 Mha after 2015 and reach 0.5 Mha in 2050. Afforestation rates remain fairly constant at about 7 Mha annually. Although we observe a net area increase of global forest area after 2015 net emissions from deforestation and afforestation are positive until 2045 as the newly afforested areas accumulate carbon rather slowly. About 200 Mt CO2 per year in 2030 in Annex1 countries could be mitigated at a carbon price of 50 USD. The potential for forest management improvement is very similar. Above 200 USD the potential is clearly constrained for both options. In Non-Annex1 countries avoided deforestation can achieve about 1200 Mt CO2 per year at a price of 50 USD. The potential is less constrained compared to the potential in Annex1 countries, achieving a potential of 1800 Mt CO2 annually in 2030 at a price of 1000 USD. The potential from additional afforestation is rather limited due to high baseline afforestation rates assumed

  1. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  2. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L.

    2007-01-01

    [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ???90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (???1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs. Copyright 2007 by the American Geophysical Union.

  3. Managing agricultural phosphorus for water quality: lessons from the USA and China.

    PubMed

    Sharpley, Andrew; Wang, Xiaoyan

    2014-09-01

    The accelerated eutrophication of freshwaters and to a lesser extent some coastal waters is primarily driven by phosphorus (P) inputs. While efforts to identify and limit point source inputs of P to surface waters have seen some success, nonpoint sources remain difficult to identify, target, and remediate. As further improvements in wastewater treatment technologies becomes increasingly costly, attention has focused more on nonpoint source reduction, particularly the role of agriculture. This attention was heightened over the last 10 to 20 years by a number of highly visible cases of nutrient-related water quality degradation; including the Lake Taihu, Baltic Sea, Chesapeake Bay, and Gulf of Mexico. Thus, there has been a shift to targeted management of critical sources of P loss. In both the U.S. and China, there has been an intensification of agricultural production systems in certain areas concentrate large amounts of nutrients in excess of local crop and forage needs, which has increased the potential for P loss from these areas. To address this, innovative technologies are emerging that recycle water P back to land as fertilizer. For example, in the watershed of Lake Taihu, China one of the largest surface fresh waters for drinking water supply in China, local governments have encouraged innovation and various technical trials to harvest harmful algal blooms and use them for bio-gas, agricultural fertilizers, and biofuel production. In any country, however, the economics of remediation will remain a key limitation to substantial changes in agricultural production. PMID:25193824

  4. Relation of nitrate concentrations in water to agricultural land use and soil type in Dakota County, Minnesota, 1990

    USGS Publications Warehouse

    Almendinger, James Edward

    1991-01-01

    Nitrate is commonly found in ground water in agricultural areas throughout the Midwest. The emphasis of this report is to relate differences in nitrate concentrations in ground water to agricultural land use and soil type. In addition, nitrate concentrations in streams, shallow ground water near the water table, and deeper ground water from 10 to 30 feet below the water table are tabulated for selected sites in Dakota County.

  5. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  6. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  7. Potential drawbacks associated with agricultural irrigation with treated wastewaters from desalinated water origin and possible remedies.

    PubMed

    Lahav, Ori; Kochva, Malka; Tarchitzky, Jorge

    2010-01-01

    Over 90% of the water supplied in the coastal region in Israel in 2013 (600 Mm(3) y(-1)) will be from desalination plants. The wastewater generated from this water (>400 Mm(3) y(-1)) is planned, after proper treatment, to be reused for agricultural irrigation, making this low-salinity water the main agricultural-sector future water source. In this respect both the Mg(2 + ) concentration and the Sodium Adsorption Ratio value of the water are of concern. We show that the typical Na(+) concentration addition to wastewater (between approximately 100 and approximately 165 mg L(-1)) is much higher than the combined addition of Ca(2 + ) and Mg(2 + ) (between 0 and several mg L(-1)). Since desalinated water is typically supplied with low Ca(2 + ) and Mg(2 + ) concentrations ( approximately 35 and 0 mg L(-1) respectively), the treated wastewater is characterized by very low Mg(2 + ) concentrations, low salinity and very high SAR values, typically >6 and up to 10 (meq L(-1))(0.5). SAR values can be lowered by adding either Ca(2 + ) or Mg(2 + ) to desalinated water. Adding Mg(2 + ) is preferable from both health (minimizing cardiovascular disease hazards) and agriculture (inexpensive Mg fertilization) aspects. The low cost of Mg(2 + ) addition at the post-treatment stage of desalination plants corroborates the request for Mg(2 + ) addition in regions where treated wastewater from desalinated water origin is planned to be reused for irrigation. PMID:20453317

  8. Living with trees: Policies for forestry management in Zimbabwe. World Bank technical paper

    SciTech Connect

    Bradley, P.N.; McNamara, K.

    1993-01-01

    Living with Trees, is an account of the results of a joint World Bank and Zimbabwe Forestry Commission study, in which the status, use and future of Zimbabwes forest, woodland and tree resources are reviewed. The first chapter is, in effect, an executive summary, capturing the major themes of the review and presenting them within a framework which targets the key policy issues affecting forestry in Zimbabwe. The second chapter is a national overview and deals with land, agriculture and economic structural adjustments, which are key policy concerns in Zimbabwe. Within the national context, chapter 2 also reflects on the form and role of the Forestry Commission. This provides a macroeconomic setting for the subsequent chapters which detail social and industrial forestry issues.

  9. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  10. School Breakfast and School Lunch Programs. Hearing before the Committee on Agriculture, Nutrition, and Forestry. United States Senate, One Hundred Fifth Congress, First Session on the School Breakfast and Lunch Programs.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Agriculture, Nutrition, and Forestry.

    These hearing transcripts present testimony to the Senate Committee on Agriculture regarding the School Lunch and Breakfast Programs. Statements were made by several senators, the president of the American School Food Service Association (Connecticut); a school food service program director (Florida); the director of nutrition and education for…

  11. Nutrition Education: USDA Provides Services through Multiple Programs, but Stronger Linkages among Efforts Are Needed. Report to the Committee on Agriculture, Nutrition, and Forestry, U.S. Senate. GAO-04-528

    ERIC Educational Resources Information Center

    Bellis, David D.

    2004-01-01

    To help improve nutrition, the U.S. Department of Agriculture (USDA) provides nutrition education through five of its programs: Expanded Food and Nutrition Education Program (EFNEP); Food Stamp Program (FSP); Special Supplemental Nutrition Program for Women, Infants, and Children (WIC); National School Lunch Program (NLP); and Child and Adult Care…

  12. Projected water consumption in future global agriculture: scenarios and related impacts.

    PubMed

    Pfister, Stephan; Bayer, Peter; Koehler, Annette; Hellweg, Stefanie

    2011-09-15

    Global stress on water and land resources is increasing as a consequence of population growth and higher caloric food demand. Many terrestrial ecosystems have already massively been degraded for providing agricultural land, and water scarcity related to irrigation has damaged water dependent ecosystems. Coping with the food and biomass demand of an increased population, while minimizing the impacts of crop production, is therefore a massive upcoming challenge. In this context, we developed four strategies to deliver the biotic output for feeding mankind in 2050. Expansion on suitable and intensification of existing areas are compared to assess associated environmental impacts, including irrigation demand, water stress under climate change, and the productivity of the occupied land. Based on the agricultural production pattern and impacts of the strategies we identified the trade-offs between land and water use. Intensification in regions currently under deficit irrigation can increase agricultural output by up to 30%. However, intensified crop production causes enormous water stress in many locations and might not be a viable solution. Furthermore, intensification alone will not be able to meet future food demand: additionally, a reduction of waste by 50% along the food supply chain or expansion of agricultural land is required for satisfying current per-capita meat and bioenergy consumption. Suitable areas for such expansion are mainly located in Africa, followed by South America. The increased land stress is of smaller concern than the water stress modeled for the intensification case. Therefore, a combination of waste reduction with expansion on suitable pastures generally results as the best option, along with some intensification on selected areas. Our results suggested that minimizing environmental impacts requires fundamental changes in agricultural systems and international cooperation, by producing crops where it is most environmentally efficient and not

  13. Phosphorus release from agriculture to surface waters: past, present and future in China.

    PubMed

    Chen, M; Chen, J

    2008-01-01

    So far, there is no clear picture at national level regarding the severity, spatial distribution, trend and driving forces of phosphorus (P) release from agriculture to surface waters in China, which presents a major obstacle for surface water quality management and relevant policy-making. By applying a proposed Activity-Unit-Balance (AUB) methodology, this paper retrospects and prospects phosphorus release from agricultural activities to surface waters from 1978 to 2050 in China. Modelling results reveal that P load from agriculture has increased 3.4 times during 1978-2005 and will increase by 1.8 times during 2005-2050. Although major contribution factors are mineral fertiliser application (MFA) and livestock feeding activities (LFAs), LFAs will be the single largest source of increased total P load in the next decades. Most importantly, agricultural pollution in China is spatially overlapped with industrial and domestic pollution, and regions in the southeast to "Heihe-Tengchong" line have to be confronted with an austere challenge to control and manage industrial and domestic pollution as well as pollution from agriculture at present and in future. PMID:18495999

  14. Impact of climate change on the water cycle of agricultural landscapes in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Witte, Irene; Ingwersen, Joachim; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    For agricultural production and life in general, water is a necessity. To ensure food and drinking water security in the future an understanding of the impact of climate change on the water cycle is indispensable. The objective of this PhD research is to assess how higher temperatures, higher atmospheric CO2 concentration and changing precipitation patterns will alter the water cycle of agricultural landscapes in Southwest Germany. As representative key characteristics data evaluation will focus on water use efficiency (WUE) and groundwater recharge. The main research question is whether the positive effect of elevated atmospheric CO2 on WUE will be overcompensated by a decrease in net primary production due to warming and to altered seasonal water availability caused by higher rainfall variability. Elevated atmospheric CO2 stimulates plant growth and improves WUE, whereas higher temperatures are expected to reduce net primary production and groundwater recharge. Another research question referring to groundwater recharge is whether groundwater recharge will increase in winter and decrease in summer in Southwest Germany. Changed groundwater recharge directly affects drinking water supply and is an indicator for possible temporary water shortages in agricultural production. A multi-model ensemble composed of 16 combinations of four crop growth models, two water regime models and two nitrogen models will be calibrated and validated against sets of field data. Field data will be provided by FOR 1965 from 2009-2015 for the Kraichgau region and the Swabian Alb, two contrasting areas with regard to climate and agricultural intensity. By using a multi model ensemble uncertainties in predictions due to different model structures (epistemic uncertainty) can be quantified. The uncertainty related to the randomness of inputs and parameters, the so-called aleatory uncertainty, will be additionally assessed for each of the 16 models. Hence, a more reliable range of future

  15. Effects of controlled agricultural practices on water quality in the Minnesota sand-plain aquifer

    USGS Publications Warehouse

    Anderson, H.W., Jr.; Stoner, J.D.

    1989-01-01

    Recent studies of Minnesota's sand plains indicate that ground-water chemistry is related to agricultural practices. Surficial sand-plain aquifers cover 8,000,000 acres of Minnesota and are a major source of water for domestic use, irrigation, and some municipal systems. The sand-plain aquifers consist of sand and gravel deposits that are from 20 to greater than 100 feet thick and are covered by a thin sandy loam that generally is less than 2 feet thick. Sand-plain aquifers are recharged by the downward percolation of precipitation through the soil root zone and the unsaturated zone in the sand to the water table. The water table is the upper surface of the zone of saturation and forms the top of the sand-plain aquifer. Sand-plain aquifers are susceptible to contamination by agricultural chemicals (fertilizers and pesticides), if downward-percolating recharge water contains these chemicals. The concentrations of nitrate, pesticides, and some other chemical constituents fluctuate seasonally and differ with depth below the water table (Anderson, 1989). Despite the availability of water-quality data for about 260 wells that were collected during previous studies in three U.S. Geological Survey (USGS) project areas in Minnesota, it is not known how concentrations of agricultural chemicals in ground water relate to the rate and timing of fertilizer and pesticide application or to the tillage practices used. Field-scale research is needed to determine the effects of different farming practices on the concentrations of nitrate, pesticides, and other agricultural chemicals in ground water in the unsaturated and saturated zones.

  16. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  17. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    PubMed

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process. PMID:24663224

  18. Estimating the Agricultural Water Consumption of the Yellow River Basin Based on Remote Sensing data

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2015-12-01

    Water shortage for agricultural water use is a major problem in the Yellow River Basin. This research uses NDVI value, meteorological data, supervised classification in remote sensing image classification and actual statistical data to estimate and verify the wheat and maize distribution and their water demand in the Yellow River Basin. The validation of the estimate method is performed by comparing the distribution of CIESIN statistic data for 1990. To obtain the accurate water demand, the study used and compared two methods of calculating the total water demand. The first one is to make the crop water requirement per unit area multiply by estimated crops total area of the basin. The second one is to sum the calculated water demand of each province. The research found that the remote sensing data can be used to estimate the crop area, while it overestimates the water consumption by both of the two methods.

  19. Integrated Control Strategy of Schistosomiasis in The People's Republic of China: Projects Involving Agriculture, Water Conservancy, Forestry, Sanitation and Environmental Modification.

    PubMed

    Yang, Y; Zhou, Y-B; Song, X-X; Li, S-Z; Zhong, B; Wang, T-P; Bergquist, R; Zhou, X-N; Jiang, Q-W

    2016-01-01

    Among the three major schistosome species infecting human beings, Schistosoma japonicum is the only endemic species in The People's Republic of China. Schistosomiasis is endemic in 78 countries and regions and poses a severe threat to public health and socioeconomic development. Through more than 60years of hard work and endeavour, The People's Republic of China has made considerable achievements and reduced the morbidity and prevalence of this disease to the lowest level ever recorded, especially since the introduction of the new integrated control strategy in 2004. This review illustrates the strategies implemented by giving successful examples of schistosomiasis control from the different types of remaining endemic areas. The challenge to control or eliminate S. japonicum is analysed in order to provide useful information to policy makers and scientists. PMID:27137449

  20. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  1. Drainage water phosphorus losses in the great lakes basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  2. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  3. 78 FR 30847 - Forestry Research Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Apple, Designated Federal Officer, Forestry Research Advisory Council, USDA Forest Service Research and... INFORMATION CONTACT: Daina Apple, Forest Service Office of the Deputy Chief for Research and Development,...

  4. 77 FR 26734 - Forestry Research Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Daina Apple, Designated Federal Officer, Forestry Research Advisory Council, USDA Forest Service... proposed agenda items to (202) 205- 1530. FOR FURTHER INFORMATION CONTACT: Daina Apple, Forest...

  5. Evaluation for sustainable agriculture water use from River, Reservoirs and Groundwater in the 20th century

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Yamada, H.; Hanasaki, N.; Kanae, S.

    2011-12-01

    High water stress due to economic growth and climate change (ex. global warming) will be falling into 2 billion people to 4 billion people in the future. Agricultural water use accounting for about 70% of global water consumption might continue to increase due to production of foods and biofuels occurred by population growth in the future. In particular, water demand, food and biofuel production have an inextricable link. It is very important to evaluate these relationship for sustainable water use from past to the future. In this study, we focused on the objective to assess the impact of water withdrawal from various sources (stream flow, medium-sized reservoirs and nonrenewable nonlocal blue water) in the 20th century by considering irrigation area and climate change. Irrigation water withdrawal is the most important water use sector accounting for about 90% of total water withdrawal. First, we make the global spatial database of equipped irrigation area change and medium-sized reservoirs capacity. Then, water withdrawal from each sources for 50 years from 1950 to 2000 were simulated in global-scale at a resolution of 1.0 degree x 1.0 degree using an integrated global water resources model (hereafter, the H08 model). The H08 model can simulate both natural or anthropogenic water flow and anthropogenic water withdrawals. For comparison with our results, distribution of agricultural, industrial and domestic water withdrawals from 1950 to 2000 were estimated by distributing the country-based withdrawal data from AQUASTAT with irrigation area, urban population and total population, respectively. Groundwater withdrawal was then estimated by distributing the country-based withdrawal data based on statistical data from WRI, IGRAC and AQUASTAT with the total water withdrawal. As a result, agricultural water withdrawal change from nonrenewable nonlocal blue water during the past 50 years agreed well with the observed groundwater abstraction based on statistical data. In

  6. Nutrient content at the sediment-water interface of tile-fed agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive network of tile drains present in the Midwest USA accelerate losses of nutrients to receiving ditches, rivers and eventually to the Gulf of Mexico. Nutrient inputs from agricultural watersheds and their role in affecting water quality have received increased attention recently; however, be...

  7. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost...

  8. RESEARCH NEEDS TO SUSTAIN AGRICULTURE ON THE HIGH PLAINS WITH LIMITED IRRIGATION WATER SUPPLIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated agriculture in the West is facing declining water supplies. Many aquifers are being pumped at non-sustainable rates. Increasing realization of the inter-connectivity of surface and groundwater supplies are resulting in legal restrictions on groundwater use. Downstream (or upstream) user...

  9. Annual precipitation and effects of runoff-nutrient from agricultural watersheds on water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining surface water quality from agricultural nonpoint sources is of great concern across the Platte river basin in Nebraska. Recent changes in the earth climate create abrupt changes in domestic weather (i.e., precipitation, temperature, etc.) which can alter the impact of these nonpoint source...

  10. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  11. Current developments in soil water sensing for climate, environment, hydrology and agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the four dimensional spatio-temporal status and dynamics of soil water content is becoming indispensable to solutions of agricultural, environmental, climatological and engineering problems at all scales. In agronomy alone, science is severely limited by scant or inaccurate knowledge of...

  12. AGRICULTURAL WATER CONSERVATION POLICY IN AN URBANIZING ENVIRONMENT: THE ARIZONA BMP PROGRAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arizona legislature authorized in 2002 an agricultural water conservation program based on best management practices. The program is voluntary and an alternative to one based on allotments that have been in operation since 1980. The program requires the farmers to adopt conservation practices f...

  13. On-site denitrification beds could reduce indirect greenhouse gas emissions from agricultural drainage waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) laden agricultural drainage waters are non-point sources of indirect nitrous oxide (N2O) emissions, which represent a significant fraction of total N2O emissions in the USA. On-site denitrification beds filled with woodchips were used to reduce NO3- under carbon rich anaerobic conditi...

  14. Development of a Solid Phase Extraction Method for Agricultural Pesticides in Large-Volume Water Samples

    EPA Science Inventory

    An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...

  15. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  16. Determining agricultural land use scenarios in a mesoscale Bavarian watershed for modelling future water quality

    NASA Astrophysics Data System (ADS)

    Mehdi, B. B.; Ludwig, R.; Lehner, B.

    2012-06-01

    Land use scenarios are of primordial importance when implementing a hydrological model for the purpose of determining the future quality of water in a watershed. This paper provides the background for researching potential agricultural land use changes that may take place in a mesoscale watershed, for water quality research, and describes why studying the farm scale is important. An on-going study in Bavaria examining the local drivers of change in land use is described.

  17. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    SciTech Connect

    Lansford, R.R.; Roach, F.; Gollehon, N.R.; Creel, B.J.

    1981-07-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict for water now used by the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. In the Green River Basin, we found that Duchesne and Uintah Counties, Utah, would experience the greatest economic impacts when agricultural water supplies were reduced by 50%. In the Upper Yellowstone River Basin, Treasure and Rosebud Counties, Montana, would experience the greatest total income and employment reductions when water supplies were reduced less than or equal to 40%. When these supplies were reduced by more than 40%, Stillwater, Carbon, Yellowstone, and Big Horn Counties, Montana, would experience the greatest reductions.

  18. Can improved agricultural water use efficiency save India’s groundwater?

    NASA Astrophysics Data System (ADS)

    Fishman, Ram; Devineni, Naresh; Raman, Swaminathan

    2015-08-01

    Irrigated agriculture is placing increasing pressure on finite freshwater resources, especially in developing countries, where water extraction is often unregulated, un-priced and even subsidized. To shift agriculture to a more sustainable use of water without harming the food security and livelihoods of hundreds of millions of smallholders, substantial improvements of water use efficiency will be required. Here, we use detailed hydroclimatic and agricultural data to estimate the potential for the widespread adoption of efficient irrigation technologies to halt the depletion of India’s groundwater resources. Even though we find substantial technical potential for reversing water table declines, we show that the impacts are highly sensitive to assumptions about farmers’ water use decisions. For example, we find that widespread adoption of proven technologies that include drip and sprinkler irrigation has the potential to reduce the amount of excessive extraction of groundwater by two thirds. However, under more realistic assumptions about farmers’ irrigation choices, half of these reductions are lost due to the expansion of irrigated area. Our results suggest that without the introduction of incentives for conservation, much of the potential impact of technology adoption on aquifers may be lost. The analysis provides quantitative input to the debate of incentive versus technology based water policies.

  19. Evaluation of nitrate removal in buffer zone supply by water from agricultural drained catchment

    NASA Astrophysics Data System (ADS)

    Fesneau, Corinne; Tournebize, Julien; Chaumont, Cedric; Guenne, Angeline

    2010-05-01

    The European Directive 2000/60/CE states objectives of a good ecological and chemical status from water body until 2015. The Cemagref project focuses on the constructed wetlands (CW) which can be used as buffer zones to lower the impact of agricultural practices on hydrosystems and decrease or even stop the transfer of contaminants via the surface waters. The experiments are carried out on a drained area where the runoff is limited and waters from the soil profile are concentrated at the drain pipes outlet. The constructed wetland studied is located at Aulnoy (77) at 70 km north-east of Paris, within the Orgeval catchment (France). Our aim is to assess the efficiency of constructed wetlands on the removal of agricultural nitrates. We are also interested in the hydrological balance of CW and agricultural catchment. The buffer zone is connected to a drained agricultural catchment of 35 hectares. The crops in the agricultural plots mainly consist in cereals (corn, maize), vegetables (horse bean, pea), sugar beet and rape. Nitrogen fertilizers are applied following normal agricultural practices. The site is monitored since 2005 for discharge and nitrate concentration in order to infer water and nitrate budgets. The buffer zone includes a pond (860m2) and a reservoir (3305 m2). The storage volume is estimated to 8000m3 which corresponds to about 10% of drainage runoff. Our study reveals potential nitrate removal because a decrease of nitrate average contents has been documented between inlet and outlet CW over a measurement period of 4 years. Average values of 57 mg/l, 40 mg/l and 27 mg/l are respectively measured at the main drain, in the pond mean and in the reservoir; that is a reduction close to 50% of nitrate fluxes. The semi-potential denitrification experiments confirm the denitrification capacity of buffer zone sediments. This constructed wetland allows the treatment of waters from agricultural drainage and provides results in line with the expectations of "good

  20. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  1. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2015-10-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  2. Identifying spatial and seasonal patterns of river water quality in a semiarid irrigated agricultural Mediterranean basin.

    PubMed

    Darwiche-Criado, Nadia; Jiménez, Juan José; Comín, Francisco A; Sorando, Ricardo; Sánchez-Pérez, José Miguel

    2015-12-01

    A detailed understanding of the study area is essential to achieve key information and optimize the monitoring, analysis, and evaluation of water quality of natural ecosystems that have been highly transformed into agricultural areas. Using classification techniques like the hierarchical cluster analysis (CA) and partial triadic analysis (PTA), we assessed the sources of water pollution and the seasonal influence of human activities in water composition in a river basin from northeastern Spain. The results suggested that a strong connection existed between water quality and the seasonality of the human activities. The CA showed the spatial relationship between water chemistry and the adjacent land uses. The PTA associated the analyzed variables to their pollutant source. Electrical conductivity (EC), Cl(-), SO4(2-)-S, Na(+), and Mg(2+) ions were related with agricultural sources, whereas NH4(+)-N, PT, and PO4(3-)-P were linked with urban polluted sites. Concentration of NO3(-)-N was associated with urban land use. Differences in water composition according to the irrigation intensity were also found during the irrigation season. The statistical tools used in this work, especially the PTA, allowed us to jointly analyze the spatial and seasonal components of water pollutant trends. We obtained a more comprehensive knowledge of water quality patterns in the study area, which will be essential when taking measures to minimize the effects of water pollution. PMID:26429137

  3. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  4. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  5. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  6. Using Multi-Criteria Analysis for the Study of Human Impact on Agro-Forestry Ecosystem in the Region of Khenchela (algeria)

    NASA Astrophysics Data System (ADS)

    Bouzekri, A.; Benmessaoud, H.

    2016-06-01

    The objective of this work is to study and analyze the human impact on agro-forestry-pastoral ecosystem of Khenchela region through the application of multi-criteria analysis methods to integrate geographic information systems, our methodology is based on a weighted linear combination of information on four criteria chosen in our analysis representative in the vicinity of variables in relation to roads, urban areas, water resources and agricultural space, the results shows the effect of urbanization and socio-economic activity on the degradation of the physical environment and found that 32% of the total area are very sensitive to human impact.

  7. Simulating Irrigation Requirements And Water Withdrawals: The Role Of Agricultural Irrigation In Basin Hydrology And Non-Sustainable Water Use

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Douglas, E. M.; Schumann, A. H.; Vörösmarty, C. J.

    2006-05-01

    The development of irrigation can cause drastic alterations of the water cycle both through changed evaporation patterns, water abstractions, and (in the case of paddy rice), increased percolation rates. The interactions of irrigation development and large-scale water cycles have traditionally not been accounted for in macroscale hydrological models. We use a modified version an existing water balance model (the WBM model) to explicitly consider the effects of irrigation on regional and continental water cycles. The irrigation module is based on the FAO-CROPWAT approach and uses a daily soil moisture balance to simulate crop consumptive water use. Time series of irrigated areas and the distribution of crops and cropping patterns are derived from a combination of remotely sensed data and national and sub-national statistics. An assessment is made of (1) how irrigation water is supplied and (2) how much of this water is abstracted in excess of the renewable water supply in the basin considering different time horizons. Using different scenarios of water availability and irrigation water demand, the response of irrigation water use to water supply and the potential threats to food security are investigated. Case studies in a few river basins that are heavily influenced by irrigated agriculture and that represent different regions of the world will be presented.

  8. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  9. Impact of agriculture on surface water in Ireland Part II. Prospects for the future

    NASA Astrophysics Data System (ADS)

    Sherwood, Marie

    1986-02-01

    Agricultural activity is estimated to be responsible for only 6% (8 km) of the total length (135 km) of seriously polluted river channel, but for over 30% (294 km) of the slightly or moderately polluted length (963 km) of channel recorded to date in the state. This article examines the present sources and causes of pollution from agricultural wastes, and speculates on the likely direction of future trends. The most common sources of surface water pollution are animal manures, silage effluent, runoff from land following spreading, and fertilizers.

  10. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  11. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  12. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. PMID:23998504

  13. Adaptation Forestry in Minnesota's Northwoods

    NASA Astrophysics Data System (ADS)

    Cornett, M.; White, M.; Etterson, J.; Kavajecz, L.; Mead, J.; Handler, S.; Swanston, C.; Hall, K.

    2014-12-01

    Forest restoration and management goals are shifting in northern Minnesota in light of new information on climate trends. Adaptation forestry encompasses a combination of practices designed to favor native populations and species likely to persist under warmer, drier conditions. The overarching project goal is to increase the adaptive capacity of northern forests such that they continue to sustain a variety of services, including carbon sequestration, fiber production, watershed protection, and wildlife habitat. We are currently testing the feasibility and efficacy of adaptation forestry in the northern Great Lakes region in three common forest types: Boreal-Mixed, Pine, and Hardwoods. 12 sites (2,000 acres total) recently subjected to a range of structural treatments (gap creation, shelterwood, and clear-cut with reserves) were coupled with "adaptation plantings" of species that are likely to thrive under changed climate conditions (e.g., red oak, bur oak, white pine). Seedlings, ~110,000 total, originated from two source locations, one that reflects current adaptation to the climate of northern Minnesota and another from a more southern source in central Minnesota. To date, we have assessed results from two growing seasons by tracking survival, growth and phenological characteristics of planted seedlings. This project is a first step in determining whether adaptation management can be used as a tool to help northern forests transition to an uncertain future. Cooperation with state, federal, and academic partners may ultimately influence the adaptive capacity across millions of acres in the Great Lakes region.

  14. Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model

    NASA Astrophysics Data System (ADS)

    Dong, Cong; Huang, Guohe; Tan, Qian; Cai, Yanpeng

    2014-03-01

    Water resources are fundamental for support of regional development. Effective planning can facilitate sustainable management of water resources to balance socioeconomic development and water conservation. In this research, coupled planning of water resources and agricultural land use was undertaken through the development of an inexact-stochastic programming approach. Such an inexact modeling approach was the integration of interval linear programming and chance-constraint programming methods. It was employed to successfully tackle uncertainty in the form of interval numbers and probabilistic distributions existing in water resource systems. Then it was applied to a typical regional water resource system for demonstrating its applicability and validity through generating efficient system solutions. Based on the process of modeling formulation and result analysis, the developed model could be used for helping identify optimal water resource utilization patterns and the corresponding agricultural land-use schemes in three sub-regions. Furthermore, a number of decision alternatives were generated under multiple water-supply conditions, which could help decision makers identify desired management policies.

  15. Relative Contributions of Habitat and Water Quality to the Integrity of Fish Communities in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of agricultural drainage ditches focuses on removing water from agricultural fields and ignores the potential impacts of these hydrological and geomorphological modifications on the water quality and aquatic biota. There is a need to identify methods of incorporating environmental conside...

  16. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  17. Application of remote sensing in forestry

    NASA Technical Reports Server (NTRS)

    Lauer, D. T.

    1973-01-01

    The use of remote sensing techniques in forestry studies is investigated. In particular, inventory, monitoring, detection, and management are discussed. Data show that infrared imagery appears to be the best technique for forestry studies. Data also show that color photographs are more easily interpreted than black and white ones.

  18. 29 CFR 780.217 - Forestry activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Forestry activities. 780.217 Section 780.217 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL... as It Relates to Specific Situations Hatchery Operations § 780.217 Forestry activities. Operations...

  19. 29 CFR 780.217 - Forestry activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Forestry activities. 780.217 Section 780.217 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL... as It Relates to Specific Situations Hatchery Operations § 780.217 Forestry activities. Operations...

  20. 29 CFR 780.217 - Forestry activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Forestry activities. 780.217 Section 780.217 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL... as It Relates to Specific Situations Hatchery Operations § 780.217 Forestry activities. Operations...

  1. 29 CFR 780.217 - Forestry activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Forestry activities. 780.217 Section 780.217 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL... as It Relates to Specific Situations Hatchery Operations § 780.217 Forestry activities. Operations...

  2. 29 CFR 780.217 - Forestry activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Forestry activities. 780.217 Section 780.217 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL... as It Relates to Specific Situations Hatchery Operations § 780.217 Forestry activities. Operations...

  3. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  4. Cattle, clean water, and climate change: policy choices for the Brazilian Agricultural Frontier.

    PubMed

    Bell, Andrew Reid; Lemos, Maria Carmen; Scavia, Donald

    2010-11-15

    In the Amazonian agricultural frontier, pasture for cattle ranching is an important and potentially hazardous form of land use because of sediment erosion as pastures degrade. This relationship between ranching, sediment load, and water quality is likely to further exacerbate environmental impacts, particularly in the context of climate change. We examine the role that river basin councils (RBCs) - a water governance option of Brazil's 1997 National Water Act - might play in managing this nonpoint-source pollution in the Amazônian state of Rondônia. We implement a simple coupled rancher-water system model to compare two potential governance options: a bulk water cleanup charge (BWC) implemented by RBCs and a land-use fine (LUF) for failing to maintain riparian buffers. We find no significant advantage of BWC over LUF in reducing sediment loading while keeping ranching profitable, under a changing climate. We also fail to find in Rondônia the important stake in water issues that has driven water reform elsewhere in Brazil. Moreover, the comparative success of reforestation programs suggests these programs may, in fact, have the potential to manage nonpoint-source agricultural pollution in the region. PMID:20961050

  5. Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins.

    PubMed

    Partyka, Melissa L; Bond, Ronald F; Chase, Jennifer A; Kiger, Luana; Atwill, Edward R

    2016-03-01

    Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins. PMID:27065413

  6. Integrated Modelling on Flow and Water Quality Under the Impacts of Climate Change and Agricultural Activities

    NASA Astrophysics Data System (ADS)

    SHI, J.

    2014-12-01

    Climate change is expected to have a significant impact on flooding in the UK, inducing more intense and prolonged storms. Frequent flooding due to climate change already exacerbates catchment water quality. Land use is another contributing factor to poor water quality. For example, the move to intensive farming could cause an increase in faecal coliforms entering the water courses. In an effort to understand better the effects on water quality from land use and climate change, the hydrological and estuarine processes are being modelled using SWAT (Soil and Water Assessment Tool), linked to a 2-D hydrodynamic model DIVAST(Depth Integrated Velocity and Solute Transport). The coupled model is able to quantify how much of each pollutant from the catchment reaches the harbour and the impact on water quality within the harbour. The work is focused on the transportation and decay of faecal coliforms from agricultural runoff into the rivers Frome and Piddle in the UK. The impact from the agricultural land use and activities on the catchment river hydrology and water quality are evaluated. The coupled model calibration and validation showed the good model performance on flow and faecal coliform in the watershed and estuary.

  7. Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley

    NASA Astrophysics Data System (ADS)

    Harrison, John; Matson, Pamela

    2003-09-01

    Although nitrous oxide (N2O) emission from agricultural runoff is thought to constitute a globally important source of this greenhouse gas, N2O flux from polluted aquatic systems is poorly understood and scarcely reported, especially in low-latitude (0°-30°) regions where rapid agricultural intensification is occurring. We measured N2O emissions, dissolved N2O concentrations, and factors likely to control rates of N2O production in drainage canals receiving agricultural and mixed agricultural/urban inputs from the intensively farmed Yaqui Valley of Sonora, Mexico. Average per-area N2O flux in both purely agricultural and mixed urban/agricultural drainage systems (16.5 ng N2O-N cm-2 hr-1) was high compared to other fresh water fluxes, and extreme values ranged up to 244.6 ng N2O-N cm-2 hr-1. These extremely high N2O fluxes occurred during green algae blooms, when organic carbon, nitrogen, and oxygen concentrations were high, and only in canals receiving pig-farm and urban inputs, suggesting an important link between land-use and N2O emissions. N2O concentrations and fluxes correlated significantly with water column concentrations of nitrate, particulate organic carbon and nitrogen, ammonium, and chlorophyll a, and a multiple linear regression model including ammonium, dissolved organic carbon, and particulate organic carbon was the best predictor of [N2O] (r2 = 52%). Despite high per-area N2O fluxes, our estimate of regional N2O emission from surface drainage (20,869 kg N2O-N yr-1; 0.046% of N-fertilizer inputs) was low compared to values predicted by algorithms used in global budgets.

  8. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  9. Agricultural Disaster Assistance Act of 2012

    THOMAS, 112th Congress

    Rep. Lucas, Frank D. [R-OK-3

    2012-07-31

    09/10/2012 Received in the Senate and Read twice and referred to the Committee on Agriculture, Nutrition, and Forestry. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  10. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods.

    PubMed

    Barbosa, Guilherme Lages; Gadelha, Francisca Daiane Almeida; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M; Halden, Rolf U

    2015-06-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  11. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods

    PubMed Central

    Lages Barbosa, Guilherme; Almeida Gadelha, Francisca Daiane; Kublik, Natalya; Proctor, Alan; Reichelm, Lucas; Weissinger, Emily; Wohlleb, Gregory M.; Halden, Rolf U.

    2015-01-01

    The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m2) of 41 ± 6.1 kg/m2/y had water and energy demands of 20 ± 3.8 L/kg/y and 90,000 ± 11,000 kJ/kg/y (±standard deviation), respectively. In comparison, conventional production yielded 3.9 ± 0.21 kg/m2/y of produce, with water and energy demands of 250 ± 25 L/kg/y and 1100 ± 75 kJ/kg/y, respectively. Hydroponics offered 11 ± 1.7 times higher yields but required 82 ± 11 times more energy compared to conventionally produced lettuce. To the authors’ knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture. PMID:26086708

  12. Modelling the economic consequences of the EU Water Framework Directive for Dutch agriculture.

    PubMed

    Helming, John; Reinhard, Stijn

    2009-10-01

    The EU Water Framework Directive (WFD) requires member states to take measures to ensure that bodies of water will be in good chemical and ecological condition by 2015. Important measures to achieve this goal include reducing emissions of nitrogen (N) and phosphate (P(2)O(5)) from manure and mineral fertilizers into the environment. In regions with a high livestock density, this measure is expected to affect agricultural production and income. To quantify these effects, an environmental economic model is required that can assess alternatives capable of reducing N and P(2)O(5) potential emissions to water. In this paper, we develop a model that is capable of analysing changes in potential emissions to water of N and P(2)O(5) and apply it to the Netherlands, a country with large nutrient emissions. Compared to a 2015 reference scenario based on current efforts to reduce nutrient emissions, we found that the WFD measures will increase regional transport and export of manure and reduce the number of animals in the Netherlands. Fodder adjustments (defined as lower N and P(2)O(5) input in purchased fodder) to decrease nutrient excretion in manure were a less attractive option than amongst others export, transportation of manure to another region, land use changes or reduction of the number of livestock. Compared to the reference scenario in 2015, total agricultural income will decrease by about 81.5 million euros per year (about 49 euros /ha per year), although the effects will differ among parts of the Netherlands and agricultural sectors. The average predicted decrease in N emissions from agricultural sites, vulnerable to leaching into bodies of water will be almost 20% or approximately 14.7 kg N/ha per year. The reduction in N emissions to air from animal sheds, manure storage systems, application of animal manure and mineral fertilisers to the crops and grazing animals equals 6.5% or 5 kg ammonia (NH(3)) per hectare. PMID:19716645

  13. Dissolved Organic Carbon as a Drinking Water Constituent of Concern in California Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Bachand, P. A.; Deverel, S.; Kendall, C.

    2007-12-01

    Dissolved organic carbon (DOC) from the breakdown of plant and animal material is a concern for drinking water quality in California due to the potential formation of carcinogenic byproducts during disinfection. Agricultural DOC loading to surface water is a significant concern, but the sources and reactivity in agricultural runoff remains poorly understood. Here we present data on DOC dynamics in surface water from the Willow Slough watershed, a 425\\- km2 agricultural catchment in the Sacramento Valley, California. Samples collected weekly during 2006 and 2007 were analyzed for DOC concentration, optical properties (UV absorbance and fluorescence), 13C\\- DOC isotopes, and trihalomethane formation potential (a regulated disinfection byproduct formed during chlorination). DOC concentrations at the watershed mouth ranged from 2 to 4 mg/L during winter and spring, with a clear increase in DOC concentrations to more than 7 mg L following the onset of summer irrigation. The 13C\\- DOC values revealed a large range (-19 to -27 ‰), with lowest values during winter baseflow and higher values during summer and winter storms. Spectral slopes also varied seasonally (0.012 to 0.020), with steeper slopes during winter baseflow. Both isotopic and optical data provide evidence for algal\\- derived DOC during the winter baseflow and terrestrial sources during winter storms and summer irrigation. Total THM formation potential was higher in winter than summer, and is strongly correlated to DOC concentrations in surface waters (r2 = 0.87). In contrast to the total THM formation potential, the specific THM formation potential (e.g., total THM normalized to DOC) decreased during the summer irrigation season, suggesting a change in reactivity related to DOC source or degradation. Additional data from plant leachates and ground water will be discussed, as well as the implications of watershed management on DOC dynamics and reactivity in agriculturally-dominated landscapes.

  14. Land-use change affects water recycling in Brazil's last agricultural frontier.

    PubMed

    Spera, Stephanie A; Galford, Gillian L; Coe, Michael T; Macedo, Marcia N; Mustard, John F

    2016-10-01

    Historically, conservation-oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land-use and land-cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land-use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km(3) less (-3%) water than if the land cover had been native Cerrado vegetation. ET from single-cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double-cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December-May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system. PMID:27028754

  15. Overview and forecast on forestry productions worldwide.

    PubMed

    Wenjun, Zhang

    2007-02-01

    Our world is largely dependent upon the forestry productions. Through the exploitation of forest reserves, we manufacture various industrial products, furniture, and obtain fuel and energy. Forestry productions should be conducted without large-scale deforestation and environmental degradation. In present study we perform a review and forecast analysis on forestry productions worldwide, with the objectives of providing an insight into the trend for several types of forestry productions in the future, and providing referential data for sustainable forestry productions and environmental management. Polynomial functions are used to fit trajectories of forestry productions since 1961 and forecasts during the coming 20 years are given in detail. If the past pattern continues, world fibreboard production would dramatically grow and reach 224,300,000 +/- 44,400,000 m(3) by the year 2020, an increase up to 240.7 to 408.9% as compared to the present level. Roundwood production of the world would change by -55.5 to 70.4% and reach 3,526,600,000 +/- 2,066,800,000 m(3) by 2020. In 2020 world production of sawlogs and veneer logs would change by -100 to 164.6% and reach 1,212,900,000 +/- 1,242,600,000 m(3). Global wood fuel production would change by -68.9 to 1.4% and reach 1,130,900,000 +/- 600,800,000 m(3) by 2020. Forestry productions in developed countries would largely surpass productions in developing countries in the near future. World forestry production grew since 1961 excluding wood fuel. Roundwood and wood fuel account for the critical proportions in the forestry productions. Wood fuel production has being declined and rapid growing of roundwood production has slowed in recent years. Widespread use of regenerative wood substitutes and worldwide afforestation against deforestation will be among the most effective ways to reduce deforestation and environment degradation associated with forestry productions. PMID:17219238

  16. Water governance, agricultural development and community-level resilience to climate change

    NASA Astrophysics Data System (ADS)

    Evans, T.; Cox, M.; McCord, P.; Caylor, K. K.; Washington-Ottombre, C.; Soderberg, K.; Sadri, S.

    2012-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial research focuses on agricultural decision-making and practices to assess current and future demand for water based on crop types and irrigation practices. Equally important is the role of environmental governance as expressed through institutions which, in case the case of water systems, are the rules implemented to allocate water resources across different user groups. In water-limited environments, institutions play a critical role in addressing the challenges posed by water demand exceeding water supply. A pressing global concern is whether institutions that evolved over the last several decades are well suited to meet potential future water demands in the context of climate change and increasing rates of water abstraction. A related question is whether social and cultural conditions enable adaptive governance that can modify institutions to different water availability scenarios. In order to assess cross-scale resilience of households and communities reliant on irrigated agriculture to climate change, methodological tools are needed to characterize these issues of "institutional fit" and institutional change. We have developed a framework for characterizing institutional dynamics as a platform for the cross-site analysis of human-water governance. To demonstrate the utility of this framework we present a coding process applying this framework to irrigation schemes in Kenya. We present findings from research on rural agriculturalists in Kenya investigating irrigation practices and institutions designed to allocate water across communities. Initial indications are that current institutional regimes are suitable for current hydrological

  17. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.

    2016-08-01

    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.

  18. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  19. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    NASA Astrophysics Data System (ADS)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-05-01

    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  20. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios.

    PubMed

    Miguel Ayala, Laura; van Eupen, Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G; Lisboa, Leila S; Beltrao, Norma E

    2016-11-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent water bodies. These impacts might be intensified by projected climate change in tropical areas. A Water Footprint Assessment (WFA) serves as a tool to assess environmental impacts of water and fertiliser use. The aim of this study was to understand potential impacts on environmental sustainability of agricultural intensification close to a protected forest area of the Amazon under climate change. We carried out a WFA to calculate the water footprint (WF) related to soybean production, Glycine max, to understand the sustainability of the WF in the Tapajós river basin, a region in the Brazilian Amazon with large expansion and intensification of soybean. Based on global datasets, environmental hotspots - potentially unsustainable WF areas - were identified and spatially plotted in both baseline scenario (2010) and projection into 2050 through the use of a land-use change scenario that includes climate change effects. Results show green and grey WF values in 2050 increased by 304% and 268%, respectively. More than one-third of the watersheds doubled their grey WF in 2050. Soybean production in 2010 lies within sustainability limits. However, current soybean expansion and intensification trends lead to large impacts in relation to water pollution and water use, affecting protected areas. Areas not impacted in terms of water pollution dropped by 20.6% in 2050 for the whole catchment, while unsustainability increased 8.1%. Management practices such as water consumption regulations to stimulate efficient water use, reduction of crop water use and evapotranspiration, and optimal fertiliser application control could be key factors in achieving sustainability within a river basin. PMID

  1. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    USGS Publications Warehouse

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  2. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  3. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  4. Water quality and agricultural practices: the case study of southern Massaciuccoli reclaimed land (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Pistocchi, Chiara; Baneschi, Ilaria; Basile, Paolo; Cannavò, Silvia; Guidi, Massimo; Risaliti, Rosalba; Rossetto, Rudy; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico

    2010-05-01

    Owing to increasing anthropogenic impacts, lagoons and wetlands are being exposed to environmental degradation. Therefore, the sustainable management of these environmental resources is a fundamental issue to maintain either the ecosystems and the human activity. The Massaciuccoli Lake is a coastal lake of fresh to brackish water surrounded by a marsh, which drains a total catchment of about 114 km2. Large part of the basin has been reclaimed since 1930 by means of pumping stations forcing water from the drained areas into the lake. The system is characterized by: high complexity of the hydrological setting; subsidence of the peaty soils in the reclaimed area (2 to 3 m in 70 years), that left the lake perched; reclaimed land currently devoted mainly to conventional agriculture (e.g.: maize monoculture) along with some industrial sites, two sewage treatment plants and some relevant urban settlements; social conflicts among different land users because of the impact on water quality and quantity. The interaction between such a fragile natural system and human activities leads to an altered ecological status mainly due to eutrophication and water salinisation. Hence, the present work aims at identifying and assessing the sources of nutrients (phosphorous in particular) into the lake, and characterising land use and some socio-economic aspects focusing on agricultural systems, in order to set up suitable mitigation measures. Water quantity and quality in the most intensively cultivated sub-catchment, placed 0.5 to 3 m under m.s.l. were monitored in order to underlain the interaction between water and its nutrient load. Questionnaires and interviews to farmers were conducted to obtain information about agricultural practices, farm management, risks and constraints for farming activities. The available information about the natural system and land use were collected and organised in a GIS system: a conceptual model of surface water hydrodinamics was build up and 14

  5. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    NASA Astrophysics Data System (ADS)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  6. Estimated demand for agricultural water for irrigation use in New Jersey, 1990

    USGS Publications Warehouse

    Titus, E.O.; Clawges, R.M.; Qualls, C.L.

    1990-01-01

    As part of an effort to determine if an adequate supply of agricultural water for irrigation use will be available to farmers, the U.S. Geological Survey prepared preliminary estimates of demand for agricultural water for irrigation use for the year 1990 on the basis of six possible scenarios. These scenarios incorporate normal and drought climatic conditions and three alternative estimates of the total acreage of farmland that may be irrigated in 1990. Preliminary estimates of water demand based on soil-moisture deficits were made using methods for calculating climatic water budgets. These estimates ranged from 3.0 billion gal/growing season (May through September), under normal climatic conditions and a 2% annual decline in irrigated acreage since 1984, to 28. 9 billion gal/growing season, under drought conditions and a 2% annual increase in irrigated acreage since 1984. Preliminary estimates of water demand made for the 1986 growing season reasonably approximate reported water use for that period. (USGS)

  7. Water flowing north of the border: export agriculture and water politics in a rural community in Baja California.

    PubMed

    Zlolniski, Christian

    2011-01-01

    Favored by neoliberal agrarian policies, the production of fresh crops for international markets has become a common strategy for economic development in Mexico and other Latin American countries. But as some scholars have argued, the global fresh produce industry in developing countries in which fresh crops are produced for consumer markets in affluent nations implies “virtual water flows,” the transfer of high volumes of water embedded in these crops across international borders. This article examines the local effects of the production of fresh produce in the San Quintín Valley in northwestern Mexico for markets in the United States. Although export agriculture has fostered economic growth and employment opportunities for indigenous farm laborers, it has also led to the overexploitation of underground finite water resources, and an alarming decline of the quantity and quality of water available for residents’ domestic use. I discuss how neoliberal water policies have further contributed to water inequalities along class and ethnic lines, the hardships settlers endure to secure access to water for their basic needs, and the political protests and social tensions water scarcity has triggered in the region. Although the production of fresh crops for international markets is promoted by organizations such as the World Bank and Inter-American Development Bank as a model for economic development, I argue that it often produces water insecurity for the poorest, threatening the UN goal of ensuring access to clean water as a universal human right. PMID:22171411

  8. Water and energy footprint of irrigated agriculture in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Daccache, A.; Ciurana, J. S.; Rodriguez Diaz, J. A.; Knox, J. W.

    2014-12-01

    Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m3 kg-1) and energy (CO2 kg-1) productivity and identify vulnerable areas or ‘hotspots’. For a selected key crops in the region, irrigation accounts for 61 km3 yr-1 of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 t Mm-3 and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km3 of water but would correspondingly increase CO2 emissions by around +135%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km3 yr-1 (+137%) whilst CO2 emissions would rise by +270%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.

  9. Key to GHG fluxes from organic soils: site characteristics, agricultural practices or water table management?

    NASA Astrophysics Data System (ADS)

    Tiemeyer, Bärbel

    2015-04-01

    Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding the groundwater level and the agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. Furthermore, re-wetting measures generally decrease carbon dioxide emissions, but may strongly increase methane emissions. We synthesized 250 annual GHG budgets for 120 different sites in 13 German peatlands. Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Land management ranged from very intensive use with arable land or grassland with up to five cuts per year to partially or completely re-wetted peatlands. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, controlled the GHG emissions of the agricultural sites. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. Agricultural management such as the number of cuts had only a minor influence on the GHG budgets. At the level of individual peatlands, higher water levels always decreased carbon dioxide emissions. In nearly all cases, the trade-off between reduced carbon dioxide and increased methane emissions turned out in favour of the re

  10. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  11. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  12. Assessment of suspended matter transport in a large agricultural catchment using the MOHID water modelling system

    NASA Astrophysics Data System (ADS)

    David, Bailly; David, Brito; Chantha, Oeurng; Ramiro, Neves; Sabine, Sauvage; Sánchez-Pérez, José-Miguel

    2010-05-01

    Suspended sediment transport from agricultural catchments to stream networks is responsible for impaired water quality, reservoir sedimentation and the transport of sediment-bound pollutants (pesticides, particulate nutrients, metals and other adsorbed toxic substances). The dynamic of pollutants adsorbed on sediment and associated with particulate organic carbon, from land areas into stream network arises mainly from erosion and sedimentation processes. It is known that up to 90% of suspended sediment is transported during flood event and therefore quick flood events have a major impact on pollutant transport. This study - part of the EU AguaFlash (http://www.aguaflash-sudoe.eu/) project - examined and quantified suspended sediment dynamics from catchment to river (erosion, transport, deposition on hillside and in the river). Semi-distributed, physics-based watershed or reservoir models are generally used to simulate sediment dynamics. One of the limitations of this kind of modelling is that transport along agricultural field and the possibility of deposition of suspended sediments in hillslopes are not considered. Consequently, all sediments eroded are assumed to be accumulated in the river and the sediment and associated pollutant dynamics are over- or under-estimated. In our approach, the mechanistic physics-based water modelling system MOHID (http://www.mohid.com) was used to quantify soil erosion and sediment transport processes at the local and macroscopic scale. This paper present the erosion and transport mathematical model and modelling strategy used and compares our initial results with filed data obtained on an 1100 km² intensive agricultural catchment (Save catchment, South-west France) during 2007-2009 and with simulation data produced using SWAT (Soil and Water Assessment Tool, 2005 version). The contribution of the MOHID model compared with that of the semi-distributed SWAT model is discussed. Keywords: Erosion, suspended sediment, transport

  13. Growing water scarcity in agriculture: future challenge to global water security.

    PubMed

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems. PMID:24080619

  14. Processes responding to restoration in forestry-drained peatlands

    NASA Astrophysics Data System (ADS)

    Tarvainen, Oili; Laine, Anna; Tolvanen, Anne

    2014-05-01

    Almost one third, nearly 100 000 km2, of the total land area is covered by peatlands in Finland, which is a higher relative cover than in any other country in the world. Over a half of the peatland area has been drained for forestry, and many invaluable wetland habitat types are severely degraded. Restoration of forestry-drained peatlands is a relatively new measure, and long term results are still relatively scarce. Reinstating the ecological function with its feedback cycles can be a slow and gradual process. Nevertheless, since forestry-drained peatlands are not destroyed habitats in terms of their ecosystem functions, they can be expected to be reinstated through the returning of the crucial element, the high water-table level and its natural variability. To evaluate the development of peatland function and structure after restoration, indicators which respond at different speed to restoration are therefore useful. Vegetation indicators are commonly assessed to indicate restoration progress, but they can be slow to respond. Changes in the mineralization and decomposition rates may indicate sooner, if processes typical for undrained peatlands are initiating after restoration. However, despite the increasing amount of information on the vegetation structure after restoring forestry-drained peatlands, there is no sufficient information on the ecological processes, which may be reasons behind the existing difference between restored and pristine peatlands. Information on the ecological processes and the speed of their recovery helps to evaluate whether the restored peatlands have turned their development towards natural situation, despite that the structure does not yet show sufficient recovery. We studied how restoration affects the hydrology, peat forming processes, and vegetation in boreal fen type of peatlands. Fens drained for forestry 30 - 40 year earlier were restored in northern Finland in 2007 by harvesting trees and by damming and filling ditches. After

  15. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John

    Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydrological functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity ( WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage capacity) can help differentiate storage-type-RWH systems from “conventional dams”. The Agricultural Production Simulator Model (APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m -3 up to 2.3 kg m -3 on average) by mitigating ISDS.

  16. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  17. Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap Province, Turkmenistan

    NASA Astrophysics Data System (ADS)

    Thevs, Niels; Ovezmuradov, Kurban

    2013-04-01

    The Amu Darya is the main water source for whole Turkmenistan, but also for the regions Khorezm and Karakalpakistan in Uzbekistan. Due to the arid climate in the Amu Darya river basin, agriculture depends on irrigation with river water being the major source of water. Also the natural ecosystems depend on river water. Until end of the 1970s, the Amu Darya flew into the Aral Sea and, together with the Syr Darya, sustained its water level. From the 1960s until today the area under irrigation has been strongly enlarged. During Soviet Union times, mainly cotton was planted on the newly reclaimed land. After independence, new land was reclaimed, in order to grow wheat. In the course of this land reclamation, the downstream section of the Amu Darya, i.e. in Karakalpakistan faces severe water shortage. Today, the Amu Darya only occasionally reaches the previous shore line of the Aral Sea. Against this background, it is necessary that water consumption along the Amu Darya is limited and water is used efficiently, in order to ensure water supply for downstream water users. The province Lebap in Turkmenistan is located at the middle reaches of the Amu Darya. Thus, it is an example of an administrative unit, which consumes water from the Amu Darya and which should release a sufficient amount of water downstream. Furthermore, Lebap harbours one of the last near-natural riparian forests of Central Asia, i.e. the Amu Darya State Reserve, which also is a water consumer. Therefore, we estimate the water consumption of agriculture (cotton, wheat, rice, and house gardens) and the natural ecosystems within Lebap Province. Water consumption refers to the actual evapo-transpiration. We use Landsat ETM and TM satellite images, in order to produce maps of the actual evapo-transpiration. Afterwards, a land cover map is laid over the ETa maps, in order to retrieve the ETa of the different crops and natural ecosystems. These results are compared with the water norms and quotas given for

  18. Design and merit of a river-aquifer model for optimal use of agricultural water

    NASA Astrophysics Data System (ADS)

    Morel-seytoux, H. J.; Daly, C. J.; Illangasekare, T.; Bazaraa, A.

    1981-05-01

    A stream-aquifer model was needed to assess the impact of alternate strategies of management for maximum beneficial agricultural use of water. The design of the model is discussed in detail in this paper. The design of a model specific to a particular area of the South Platte river basin in eastern Colorado was complex. The complexity resulted from the size of the system, from the need to simulate the system both at an operational time scale (week) and at a long-term planning horizon (10 yr.) and from the administration of a complicated water rights structure.

  19. Droughts in the US: Modeling and Forecasting for Agriculture-Water Management and Adaptation

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Devineni, N.; Lall, U.

    2012-12-01

    More than half of all US counties are currently mired in a drought that is considered the worst in decades. A persistent drought can not only lead to widespread impacts on water access with interstate implications (as has been shown in the Southeast US and Texas), chronic scarcity can emerge as a risk in regions where fossil aquifers have become the primary source of supply and are being depleted at rates much faster than recharge (e.g., Midwestern US). The standardized drought indices on which the drought declarations are made in the US so far consider only the static decision frameworks—where only the supply is the control variable and not the water consumption. If a location has low demands, drought as manifest in the usual indices does not really have "proportionate" social impact. Conversely, a modest drought as indicated by the traditional measures may have significant impacts where demand is close to the climatological mean value of precipitation. This may also lead to drought being declared too late or too soon. Against this fact, the importance of improved drought forecasting and preparedness for different sectors of the economy becomes increasingly important. The central issue we propose to address through this paper is the construction and testing of a drought index that considers regional water demands for specific purposes (e.g., crops, municipal use) and their temporal distribution over the year for continental US. Here, we have highlighted the use of the proposed index for three main sectors: (i) water management organizations, (ii) optimizing agricultural water use, and (iii) supply chain water risk. The drought index will consider day-to-day climate variability and sectoral demands to develop aggregate regional conditions or disaggregated indices for water users. For the daily temperature and precipitation data, we are using NLDAS dataset that is available from 1949 onwards. The national agricultural statistics services (NASS) online database has

  20. Stochastic and recursive calibration for operational, large-scale, agricultural land and water use management models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Kimball, J. S.; Jencso, K. G.

    2015-12-01

    Managing the impact of climatic cycles on agricultural production, on land allocation, and on the state of active and projected water sources is challenging. This is because in addition to the uncertainties associated with climate projections, it is difficult to anticipate how farmers will respond to climatic change or to economic and policy incentives. Some sophisticated decision support systems available to water managers consider farmers' adaptive behavior but they are data intensive and difficult to apply operationally over large regions. Satellite-based observational technologies, in conjunction with models and assimilation methods, create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents at seasonal scales.We present an integrated modeling framework that can be driven by satellite remote sensing to enable robust regional assessment and prediction of climatic and policy impacts on agricultural production, water resources, and management decisions. The core of this framework is a widely used model of agricultural production and resource allocation adapted to be used in conjunction with remote sensing inputs to quantify the amount of land and water farmers allocate for each crop they choose to grow on a seasonal basis in response to reduced or enhanced access to water due to climatic or policy restrictions. A recursive Bayesian update method is used to adjust the model parameters by assimilating information on crop acreage, production, and crop evapotranspiration as a proxy for water use that can be estimated from high spatial resolution satellite remote sensing. The data assimilation framework blends new and old information to avoid over-calibration to the specific conditions of a single year and permits the updating of parameters to track gradual changes in the agricultural system.This integrated framework provides an operational means of monitoring and forecasting what crops will be grown

  1. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  2. Managing Swedish forestry's impact on mercury in fish: Defining the impact and mitigation measures.

    PubMed

    Eklöf, Karin; Lidskog, Rolf; Bishop, Kevin

    2016-02-01

    Inputs of anthropogenic mercury (Hg) to the environment have led to accumulation of Hg in terrestrial and aquatic ecosystems, contributing to fish Hg concentrations well above the European Union standards in large parts of Fennoscandia. Forestry operations have been reported to increase the concentrations and loads of Hg to surface waters by mobilizing Hg from the soil. This summary of available forestry effect studies reveals considerable variation in treatment effects on total Hg (THg) and methylmercury (MeHg) at different sites, varying from no effect up to manifold concentration increases, especially for the bioavailable MeHg fraction. Since Hg biomagnification depends on trophic structures, forestry impacts on nutrient flows will also influence the Hg in fish. From this, we conclude that recommendations for best management practices in Swedish forestry operations are appropriate from the perspective of mercury contamination. However, the complexity of defining effective policies needs to be recognized. PMID:26744051

  3. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  4. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  5. An appraisal of policies and institutional frameworks impacting on smallholder agricultural water management in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Nyagumbo, I.; Rurinda, J.

    Policies and institutional frameworks associated with and / or impacting on agricultural water management (AWM) in smallholder farming systems in Zimbabwe were analyzed through literature reviews, feedback from stakeholder workshops, key informant interviews and evaluation of policy impacts on implemented case study projects/programmes. The study showed that Zimbabwe has gone a long way towards developing a water management policy addressing both equity and access, through the Water and ZINWA of 1998. However, lack of incentives for improving efficient management and utilization of water resources once water has reached the farm gate was apparent, apart from punitive economic instruments levied on usage of increased volumes of water. For example, the new water reforms of 1998 penalized water savers through loss of any unused water in their permits to other users. In addition, the ability of smallholder farmers to access water for irrigation or other purposes was influenced by macro and micro-economic policies such as Economic Structural and Adjustment Programme (ESAP), Zimbabwe Programme for Economic and Social Transformation (ZIMPREST), prevailing monetary and fiscal policies, as well as the Land and Agrarian Reform policies. For instance, the implementation of ESAP from 1991 to 95 resulted in a decline in government support to management of communal irrigation schemes, and as a result only gravity-fed schemes survived. Also AWM projects/programmes that were in progress were prematurely terminated. While considerable emphasis was placed on rehabilitation of irrigation infrastructure since the fast track land reform in 1998, the policies remained rather silent on strategies for water management in rainfed systems. The piecemeal nature and fragmentation of policies and institutional frameworks scattered across government ministries and sectors were complex and created difficulties for smallholder farmers to access water resources. Poor policy implementation

  6. Potential use of aquarius scatterometer observations to estimate vegetation water content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information about vegetation water content (VWC) is useful in agriculture, forestry and hydrology. It will be also employed in several of the soil moisture retrieval algorithms. All of these algorithms utilize variations of the same radiative transfer equation that accounts for vegetation attenuatio...

  7. Hydrogeology and potential effects of changes in water use, Carson Desert agricultural area, Churchill County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.; Johnson, Ann K.; Welch, Alan H.

    1996-01-01

    Operating Criteria and Procedures for Newlands Project irrigation and Public Law 101-618 could result in reductions in surface water used for agriculture in the Carson Desert, potentially affecting ground-water supplies from shallow, intermediate, and basalt aquifers. A near-surface zone could exist at the top of the shallow aquifer near the center and eastern parts of the basin where underlying clay beds inhibit vertical flow and could limit the effects of changes in water use. In the basalt aquifer, water levels have declined about 10 feet from pre-pumping levels, and chloride and arsenic concentrations have increased. Conceptual models of the basin suggest that changes in water use in the western part of the basin would probably affect recharge to the shallow, intermediate, and basalt aquifers. Lining canals and removing land from production could cause water-level declines greater than 10 feet in the shallow aquifer up to 2 miles from lined canals. Removing land from production could cause water levels to decline from 4 to 17 feet, depending on the distribution of specific yield in the basin and the amount of water presently applied to irrigated fields. Where wells pump from a near-surface zone of the shallow aquifer, water level declines might not greatly affect pumping wells where the thickness of the zone is greatest, but could cause wells to go dry where the zone is thin.

  8. The challenge of climate change in Spain: Water resources, agriculture and land

    NASA Astrophysics Data System (ADS)

    Vargas-Amelin, Elisa; Pindado, Pablo

    2014-10-01

    Climate change effects are becoming evident worldwide, but some water scarce regions present higher vulnerability. Spain, located in the Mediterranean region, is expected for instance to be highly vulnerable given its unbalanced distribution between water resources availability and existing demands. This article presents an introduction to the main threats of climate change mainly on water resources, but it also assesses effects in interlinked areas such as agriculture, soil and land management. Contents focus on measures and initiatives promoted by the central government and address efforts to establish multi-sectoral coordinating bodies, specific adaptation plans and measures for the different sectors. The article highlights some political aspects, such as the complexity of involved competent authorities in water and land management, the need to strengthen public participation and the conflicts arising from the defence of regional interests. It also makes a link to current EU policies; summarises foreseeable problems derived from climate change effects, and provides some recommendations in the different areas covered.

  9. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  10. Supplementary calcium ameliorates ammonium toxicity by improving water status in agriculturally important species

    PubMed Central

    Hernández-Gómez, Elvia; Valdez-Aguilar, Luis A.; Cartmill, Donita L.; Cartmill, Andrew D.; Alia-Tajacal, Irán

    2015-01-01

    Fertilization of agricultural plants with ammonium (NH4+) is often desirable because it is less susceptible to leaching than nitrate (NO3−), reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with NH4+, and increasing the tolerance to NH4+ may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to NH4+ fertilization. Although NH4+ at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing NH4+ resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The NH4+-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to NH4+ may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received NO3−N had a low concentration of NH4+ in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that NH4+ caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca partially restored growth of leaves by improving root Lo and water relations, and our results suggest that it may be used as a tool to increase the tolerance to NH4

  11. Supplementary calcium ameliorates ammonium toxicity by improving water status in agriculturally important species.

    PubMed

    Hernández-Gómez, Elvia; Valdez-Aguilar, Luis A; Cartmill, Donita L; Cartmill, Andrew D; Alia-Tajacal, Irán

    2015-01-01

    Fertilization of agricultural plants with ammonium [Formula: see text] is often desirable because it is less susceptible to leaching than nitrate [Formula: see text] reducing environmental pollution, risk to human health and economic loss. However, a number of important agricultural species exhibit a reduction in growth when fertilized with [Formula: see text] and increasing the tolerance to [Formula: see text] may be of importance for the establishment of sustainable agricultural systems. The present study explored the feasibility of using calcium (Ca) to increase the tolerance of bell pepper (Capsicum annuum) to [Formula: see text] fertilization. Although [Formula: see text] at proportions ≥25 % of total nitrogen (N) decreased leaf dry mass (DM), supplementary Ca ameliorated this decrease. Increasing [Formula: see text] resulted in decreased root hydraulic conductance (Lo) and root water content (RWC), suggesting that water uptake by roots was impaired. The [Formula: see text]-induced reductions in Lo and RWC were mitigated by supplementary Ca. Ammonium induced increased damage to the cell membranes through lipid peroxidation, causing increased electrolyte leakage; Ca did not reduce lipid peroxidation and resulted in increased electrolyte leakage, suggesting that the beneficial effects of Ca on the tolerance to [Formula: see text] may be more of a reflection on its effect on the water status of the plant. Bell pepper plants that received [Formula: see text] had a low concentration of [Formula: see text] in the roots but a high concentration in the leaves, probably due to the high nitrate reductase activity observed. Ammonium nutrition depressed the uptake of potassium, Ca and magnesium, while increasing that of phosphorus. The results obtained in the present study indicate that [Formula: see text] caused growth reduction, nutrient imbalance, membrane integrity impairment, increased activity of antioxidant enzymes and affected water relations. Supplementary Ca

  12. Using Coastal Fog to Support Sustainable Water Use in a California Agricultural System

    NASA Astrophysics Data System (ADS)

    Baguskas, S. A.; Loik, M. E.

    2015-12-01

    Impacts of climate change threaten California farmers in a number of ways, most importantly through a decline in freshwater availability, concurrent with a rise in water demand. The future of California's multibillion-dollar agricultural industry depends on increasing water use efficiency on farms. In coastal California, the growing season of economically important crops overlaps with the occurrence of coastal fog, which buffers the summer dry season through shading effects and direct water inputs. While the impacts of coastal fog on plant biology have been extensively studied in natural ecosystems, very few studies have evaluated its direct effects on the water and energy budgets of agricultural systems. The objective of this study was to develop a mechanistic understanding of the relationships between coastal fog and the water and energy budgets of croplands in order to improve estimates of crop-scale evapotranspiration rates, which has potential to curtail groundwater use based on local cloud meteorology. We established three sites on strawberry farms along a coastal-inland gradient in the Salinas Valley, California. At each site, we installed a passive fog collector and a micrometeorological station to monitor variation in microclimate conditions. Flow meters were installed in drip lines to quantify irrigation amount and timing. To assess plant response to foggy and non-foggy conditions, we collected measurements of photosynthesis and transpiration rates at the leaf and canopy-scale between June-September 2015. We found that canopy-level transpiration rates on foggy days were reduced by half compared to sunny, clear days (1.5 and 3 mmol H2O m-2 s-1, respectively). Whereas the amount of direct fog water inputs to the soil did not differ significantly between foggy and clear days, average photosynthetically active radiation between 0900-1100 hr. was reduced from 1500 to 500 μmol photons m-2 s-1 between these sampling periods. Our results provide convincing

  13. Spanish for Agricultural Purposes: The Basic Manual.

    ERIC Educational Resources Information Center

    Mainous, Bruce H.; And Others

    This manual, part of a one-semester course for North American agriculture specialists preparing to work in Latin America, is built around specimens of agricultural writing in Spanish. The manual contains 12 lessons on general agriculture, sugar production, grain production, geography, forestry, animal husbandry, soy bean production, agricultural…

  14. Influence of instream habitat and water chemistry on amphibians within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The widespread use of stream channelization and subsurface tile drainage for draining agricultural fields has led to the development of numerous channelized agricultural headwater streams within agricultural watersheds of the Midwestern United States, Canada, and Europe. Channelized agricultural he...

  15. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade

    NASA Astrophysics Data System (ADS)

    Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W.

    2011-01-01

    The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the blue (irrigation water) and green (precipitation water) virtual water content, i.e. the inverse of water productivity, for 11 of the world's major crop types. Based on these, we also quantify the water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints, which is needed due to the different sources and opportunity costs of these two water pools, shows that green water globally dominates both the internal and external WFP (84% of the global WFP and 94% of the external WFP rely on green water). Accordingly, some of the major exporters of the crops considered here (e.g. Argentina, Canada) export mainly green virtual water, but traditional rice exporters such as India and Pakistan mainly export blue virtual water. The external WFPs are found to be relatively small (6% of the total global blue WFP, 16% of the total global green WFP). Nevertheless, current trade saves significant water volumes and land areas (~263 km3 and ~41 Mha, respectively, equivalent to 5% of the sowing area of the crops considered here and 3.5% of the annual precipitation on this area). Linking the proportions of external to internal blue/green WFP with the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above average WFPs. Thus, countries with high levels of per capita water consumption

  16. Simulation-based optimization framework for reuse of agricultural drainage water in irrigation.

    PubMed

    Allam, A; Tawfik, A; Yoshimura, C; Fleifle, A

    2016-05-01

    A simulation-based optimization framework for agricultural drainage water (ADW) reuse has been developed through the integration of a water quality model (QUAL2Kw) and a genetic algorithm. This framework was applied to the Gharbia drain in the Nile Delta, Egypt, in summer and winter 2012. First, the water quantity and quality of the drain was simulated using the QUAL2Kw model. Second, uncertainty analysis and sensitivity analysis based on Monte Carlo simulation were performed to assess QUAL2Kw's performance and to identify the most critical variables for determination of water quality, respectively. Finally, a genetic algorithm was applied to maximize the total reuse quantity from seven reuse locations with the condition not to violate the standards for using mixed water in irrigation. The water quality simulations showed that organic matter concentrations are critical management variables in the Gharbia drain. The uncertainty analysis showed the reliability of QUAL2Kw to simulate water quality and quantity along the drain. Furthermore, the sensitivity analysis showed that the 5-day biochemical oxygen demand, chemical oxygen demand, total dissolved solids, total nitrogen and total phosphorous are highly sensitive to point source flow and quality. Additionally, the optimization results revealed that the reuse quantities of ADW can reach 36.3% and 40.4% of the available ADW in the drain during summer and winter, respectively. These quantities meet 30.8% and 29.1% of the drainage basin requirements for fresh irrigation water in the respective seasons. PMID:26921569

  17. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  18. Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins

    USGS Publications Warehouse

    Coupe, R.H.; Kalkhoff, S.J.; Capel, P.D.; Gregoire, C.

    2012-01-01

    Background: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10 000 Mg in 1992 to more than 80 000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonic acid (AMPA) on a watershed scale is lacking. Results: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff and flow route. Conclusions: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. ?? 2011 Society of Chemical Industry.

  19. Assessment of the soil water content temporal variations in an agricultural area of Galicia (NW Spain)

    NASA Astrophysics Data System (ADS)

    Mestas-Valero, Roger Manuel; Miras-Avalos, Jose Manuel; Paz-González, Antonio

    2010-05-01

    The direct and continuous assessment of the temporal variation on soil water content is of paramount importance for agricultural practices and, in particular, for the management of water resources. Soil water content is affected by many factors such as topography, particle size, clay and organic matter contents, and tillage systems. There are several techniques to measure or estimate soil water content. Among them, Frequency Domain Reflectometry (FDR) stands out. It is based on measuring the dielectrical constant of the soil environment. This technique allows to describe water dynamics in time and space, to determine the main patterns of soil moisture, the water uptake by roots, the evapotranspiration and the drainage. Therefore, the aim of this study was to assess the daily variation of soil water content in the root-influenced zone in plots devoted to maize and grassland as a function of the soil water volumetric content. The studied site is located in an experimental field of the Centre for Agricultural Research (CIAM) in Mabegondo located in the province of A Coruña, Spain (43°14'N, 8°15'W; 91 masl). The study was carried out from June 2008 to September 2009 in a field devoted to maize (Zea mays, L.) and another field devoted to grassland. The soil of these sites is silt-clay textured. Long-term mean annual temperature and rainfall figures are 13.3 °C and 1288 mm, respectively. During the study period, maize crop was subjected to conventional agricultural practices. A weekly evaluation of the phenological stage of the crop was performed. An EnviroSCAN FDR equipment, comprising six capacitance sensors, was installed in the studied sites following the manufacturer's recommendations, thus assuring a proper contact between the probe and the soil. Soil water content in the root-influenced zone (40 cm depth in grassland and 60 cm depth in maize were considered) was hourly monitored in 20 cm ranges (0-20 cm, 20-40 cm, and 40-60 cm) using FDR. Evaluations were

  20. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  1. Assessment of Filter Materials for Removal of Contaminants From Agricultural Drainage Waters

    NASA Astrophysics Data System (ADS)

    Allred, B. J.

    2007-12-01

    Fertilizer nutrients and pesticides applied on farm fields, especially in the Midwest U.S., are commonly intercepted by buried agricultural drainage pipes and then discharged into local streams and lakes, oftentimes resulting in an adverse environmental impact on these surface water bodies. Low cost filter materials have the potential to remove nutrient and pesticide contaminants from agricultural drainage waters before these waters are released from the farm site. Batch tests were conducted to find filter materials potentially capable of removing nutrient (nitrate and phosphate) and pesticide (atrazine) contaminants from subsurface drainage waters. For each batch test, stock solution (40 g) and filter material (5 g) were combined in 50 mL Teflon centrifuge tubes and mixed with a rotator for 24 hours. The stock solution contained 50 mg/L nitrate-N, 0.25 mg/L phosphate-P, 0.4 mg/L atrazine, 570 mg/L calcium sulfate, and 140 mg/L potassium chloride. Calcium sulfate and potassium chloride were added so that the stock solution would contain anions and cations normally found in agricultural drainage waters. There were six replicate batch tests for each filter material. At the completion of each test, solution was removed from the centrifuge tube and analyzed for nitrate-N, phosphate-P, and atrazine. A total of 38 filter materials were tested, which were divided into five classes; high carbon content substances, high iron content substances, high aluminum content substances, surfactant modified clay/zeolite, and coal combustion products. Batch test results generally indicate, that with regard to the five classes of filter materials; high carbon content substances adsorbed atrazine very effectively; high iron content substances worked especially well removing almost all of the phosphate present; high aluminum content substances lowered phosphate levels; surfactant modified clay/zeolite substantially reduced both nitrate and atrazine; and coal combustion products

  2. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land?

    PubMed

    Quilliam, Richard S; van Niekerk, Melanie A; Chadwick, David R; Cross, Paul; Hanley, Nick; Jones, Davey L; Vinten, Andy J A; Willby, Nigel; Oliver, David M

    2015-04-01

    Eutrophication is a major water pollution issue and can lead to excessive growth of aquatic plant biomass (APB). However, the assimilation of nutrients into APB provides a significant target for their recovery and reuse, and harvesting problematic APB in impacted freshwater bodies offers a complementary approach to aquatic restoration, which could potentially deliver multiple wider ecosystem benefits. This critical review provides an assessment of opportunities and risks linked to nutrient recovery from agriculturally impacted water-bodies through the harvesting of APB for recycling and reuse as fertilisers and soil amendments. By evaluating the economic, social, environmental and health-related dimensions of this resource recovery from 'waste' process we propose a research agenda for closing the loop on nutrient transfer from land to water. We identify that environmental benefits are rarely, if ever, prioritised as essential criteria for the exploitation of resources from waste and yet this is key for addressing the current imbalance that sees environmental managers routinely undervaluing the wider environmental benefits that may accrue beyond resource recovery. The approach we advocate for the recycling of 'waste' APB nutrients is to couple the remediation of eutrophic waters with the sustainable production of feed and fertiliser, whilst providing multiple downstream benefits and minimising environmental trade-offs. This integrated 'ecosystem services approach' has the potential to holistically close the loop on agricultural nutrient loss, and thus sustainably recover finite resources such as phosphorus from waste. PMID:25669857

  3. Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production.

    PubMed

    Estrada-Acosta, M; Jiménez, M; Chaidez, C; León-Félix, J; Castro-Del Campo, N

    2014-07-01

    The implementation of good agricultural practices (GAP) from irrigation water to the tomato packaging process enhances the safety of fresh produce and its value throughout the food chain. The aim of the present study was to show that fresh produce farms that apply and enforce GAP could reduce the presence of Salmonella in finished produce. Samples were collected biweekly from six packing houses from the central region of Sinaloa, México, for the isolation of Salmonella spp by the ISO 6579:2002 method, and the isolated strains were serotyped and genotyped by the Kauffmman-White scheme and pulsed field gel electrophoresis (PFGE), respectively. Salmonella strains were detected in 13 (36.1 %) irrigation water samples, while only two tomato samples were positive (5.5 %). Eight different serotypes were identified in irrigation water, and Salmonella Oranienburg (34 %) was the most prevalent; however, only Salmonella Agona and Salmonella Weltevreden were present on tomatoes. Salmonella Oranienburg was the most widely dispersed and variable serotype, with 10 different PFGE profiles. Salmonella Weltevreden was isolated from both types of samples, albeit with distinct genetic profiles, implying that the sources of contamination differ. These results confirm the utility of implementing good agricultural practices to reduce Salmonella contamination in irrigation water and the packaging process. PMID:24682661

  4. Feasibility of point-nonpoint source trading for managing agricultural pollutant loadings to coastal waters

    NASA Astrophysics Data System (ADS)

    Crutchfield, Stephen R.; Letson, David; Malik, Arun S.

    1994-10-01

    A recent focus of water quality policy discussions has been the trading of pollution abatement between point and nonpoint sources. Point-nonpoint trading would allow point sources to sponsor nonpoint source controls rather than install further controls of their own. If nonpoint source loadings are significant and the marginal costs of their control are lower than for additional point source controls, water quality goals could be met at lower cost with trading. We isolate difficulties particular to incentive policies such as point-nonpoint trading and then screen coastal watersheds for those satisfying conditions that play a major role in determining whether trading can improve water quality. We follow the recent Coastal Zone Act Reauthorization Amendments in emphasizing agriculture, the single largest cause of nonpoint source pollution. Our screening analysis provides an initial, empirical assessment of the feasibility of trading for managing agricultural land use to protect coastal water quality. We also illustrate the additional analysis required to quantify the potential for successful trading in those watersheds which meet our screening criteria.

  5. Estimation of soil water content for engineering and agricultural applications using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Grote, Katherine Rose

    2003-10-01

    Near-surface water content is important for a variety of applications in engineering, agriculture, ecology, and environmental monitoring and is an essential input parameter for hydrological and atmospheric models. Water content is both spatially and temporally variable and is difficult to characterize using conventional measurement techniques, which are invasive, time-consuming to collect, and provide only a limited number of point measurements. The purpose of this study is to investigate ground penetrating radar (GPR) techniques for improved estimation of water content. GPR techniques have potential for providing accurate, high-resolution estimates of water content quickly and non-invasively, but the efficacy of these techniques for field-scale applications has not been previously determined. This study begins with a literature review of the application of GPR techniques for water content estimation, followed by a description of the principles employed in GPR surveying and the general methodology for converting electromagnetic GPR measurements to water content estimates. Next, a pilot experiment using GPR techniques for water content estimation is described; this experiment was performed under very controlled conditions and used common-offset GPR reflections to estimate the water content in sandy test pits. This experiment showed that GPR techniques can estimate water content very accurately (within 0.017 cm3/cm3 of the volumetric water content estimates obtained gravimetrically) and provided motivation for the second, less-controlled experiment. The second study used common-offset GPR reflections to estimate water content in a transportation engineering application, where the GPR data were used to monitor the water content in sub-asphalt aggregate layers and to estimate deformation under dynamic loading. This experiment showed that GPR data could be used to accurately monitor changes in the horizontal and vertical distributions of sub-asphalt water content with

  6. Optimization of integrated water quality management for agricultural efficiency and environmental conservation.

    PubMed

    Fleifle, Amr; Saavedra, Oliver; Yoshimura, Chihiro; Elzeir, Mohamed; Tawfik, Ahmed

    2014-01-01

    The scarcity of water resources in Egypt has necessitated the use of various types of lower quality water. Agricultural drainage water is considered a strategic reserve for meeting increasing freshwater demands. In this study, a novel model series was applied to a drainage basin in the Nile Delta to optimize integrated water quality management for agriculture and the aquatic environment. The proposed model series includes a waste load allocation model, an export coefficient model, a stream water quality model, and a genetic algorithm. This model series offers an optimized solution for determining the required removal levels of total suspended solids (TSS), the chemical oxygen demand (COD) at point and non-point pollution sources, and the source flows that require treatment to meet a given water quality target. The model series was applied during the summer and winter to the El-Qalaa basin in the western delta of the Nile River. Increased pollutant removal and treated fractions at point and non-point sources reduced violations of the TSS standards from 732.6 to 238.9 mg/L in summer and from 543.1 to 380.9 mg/L in winter. Likewise, violations of the COD standards decreased from 112.4 mg/L to 0 (no violations) in summer and from 91.7 mg/L to no violations in winter. Thus, this model is recommended as a decision support tool for determining a desirable waste load allocation solution from a trade-off curve considering costs and the degree of compliance with water quality standards. PMID:24671393

  7. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  8. Edge-of-field research to quantify the impacts of agricultural practices on water quality in Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage is needed to sustain agricultural production to meet the demands of a growing global population, but it also transports nutrients from fields to surface water bodies. The State of Ohio is facing the tremendous challenge of maintaining agricultural production while protecting the environment...

  9. Monitoring and APEX modeling of no-till and reduced-till in tile drained agricultural landscapes for water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evaluation of agricultural practices through monitoring and modeling is necessary for the development of more effective conservation programs and policies. No-till and reduced-till are both agricultural conservation practices widely promoted for their proven ability to conserve water and reduce ...

  10. 76 FR 43651 - Forestry Research Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... August 1, 2011 to Daina Apple, Designated Federal Officer, Forestry Research Advisory Council, USDA... their names and proposed agenda items to (202) 205-1530. FOR FURTHER INFORMATION CONTACT: Daina...

  11. 75 FR 46903 - Forestry Research Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... send their names and proposals by August 31, 2010 to Daina Apple, Designated Federal Officer, Forestry... INFORMATION CONTACT: Daina Apple, Forest Service Office of the Deputy Chief for Research and Development,...

  12. Monthly water balance model for climate change analysis in agriculture with R

    NASA Astrophysics Data System (ADS)

    Kalicz, Péter; Herceg, András; Gribovszki, Zoltán

    2015-04-01

    For Hungary regional climate models projections suggest a warmer climate and some changes in annual precipitation distribution. These changes force the whole agrarian sector to consider the traditional cropping technologies. This situation is more serious in forestry because some forest populations are on their xeric distributional limits (Gálos et. al, 2014). Additionally, a decision has an impact sometimes longer than one hundred years. To support the stakeholder there is a project which develops a GIS (Geographic Information System) based decision support system. Hydrology plays significant role in this system because water is often one of the most important limiting factor in Hungary. A modified Thorntwaite-type monthly water balance model was choosen to produce hydrological estimations for the GIS modules. This model is calibrated with the available data between 2000 and 2008. Beside other meteorological data we used mainly an actual evapotranspiration map in the calibration phase, which was derived with the Complementary-relationship-based evapotranspiration mapping (CREMAP; Szilágyi and Kovács, 2011) technique. The calibration process is pixel based and it has several stochastic steps. We try to find a flexible solution for the model implementation which easy to automatize and can be integrate in GIS systems. The open source R programming language was selected which well satisfied these demands. The result of this development is summarized as an R package. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project. References Gálos B., Antal V., Czimber K., Mátyás Cs. (2014) Forest ecosystems, sewage works and droughts - possibilities for climate change adaptation. In: Santamarta J.C., Hernandez-Gutiérrez L.E., Arraiza M.P. (eds) 2014. Natural Hazards and Climate Change/Riesgos Naturales y Cambio Climático. Madrid: Colegio de Ingenieros de Montes. ISBN 978-84-617-1060-7, D.L. TF 565-2014, 91-104 pp Szilágyi J., Kovács Á. (2011

  13. Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham M.; Huggins, David R.

    2011-07-01

    SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could

  14. Identification of Entamoeba moshkovskii in Treated Waste Water Used for Agriculture.

    PubMed

    Fonseca, Jairo Andres; Heredia, Rubén Darío; Ortiz, Carolina; Mazo, Martín; Clavijo-Ramírez, Carlos Arturo; Lopez, Myriam Consuelo

    2016-03-01

    We conducted an observational study to determine the prevalence of Entamoeba spp., in samples collected in a waste water treatment plant that provides water for agricultural irrigation. Samples were collected weekly over a period of 10 weeks at representative contamination stages from within the treatment plant. Protozoan identification was performed via light microscopy and culture. PCR amplification of small subunit rRNA gene sequences of E. histolytica/dispar/moshkovskii was performed in culture positive samples. Light microscopy revealed the presence of Entamoeba spp., in 70% (14/20) of the raw waste water samples and in 80% (8/10) of the treated water samples. PCR amplification after culture at both 24 and 37°C revealed that 100% (29/29) of the raw waste water samples and 78.6% (11/14) of the treated waste water were positive for E. moshkovskii. We report the first isolation of E. moshkovskii in Colombia, confirmed by PCR. Recent reports of E. moshkovskii pathogenic potential suggest this finding could constitute a public health risk for people exposed to this water. PMID:26732073

  15. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    PubMed Central

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-01-01

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178

  16. Set up of an automatic water quality sampling system in irrigation agriculture.

    PubMed

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2013-01-01

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178

  17. Quantifying subsurface mixing of water and nutrients in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Van der Velde, Y.; Torfs, P.; Van Der Zee, S.; Uijlenhoet, R.

    2011-12-01

    The distribution of time it takes water from the moment of rainfall to reach the catchment outlet is widely used to characterize catchment-scale groundwater-surface water interactions, catchment vulnerability to pollution spreading and pollutant loads from catchments to downstream waters. However, this distribution tends to vary in time driven by rainfall and evapotranspiration, which compromises the applicability of a single travel time distribution as catchment characteristic. Recent studies suggested that subsurface mixing controls to what extent dynamics in rainfall and evpotranspiration are translated into dynamics of travel time distributions of individual water flows. This new insight in hydrologic functioning of catchments requires new definitions and concepts that link dynamics of catchment travel time distributions to the degree of subsurface mixing. We propose the concept of Refresh Rate Functions (RRF) and will demonstrate how RRFs directly quantify subsurface mixing within a catchment, allow for deriving transient as well as temporally averaged travel time distributions of a catchment and are largely independent of weather or climate. The presented analyses will use a unique dataset of high-frequent nitrate concentrations in an agricultural catchment in the Netherlands to reveal the effects of mixing dynamics inside a catchment on stream water nitrate concentrations. These measurements will be compared with calculations by a spatially distributed groundwater model and conceptual models of water flow and solute transport. Remarkable findings are the large contrasts in discharge behavior expressed in travel time between lowland and sloping catchments and the strong relation between evapotranspiration and stream water nitrate concentration dynamics.

  18. Relationships Among Macroinvertebrate Community Variables and Water Quality Parameters in Modified Agricultural Receiving Streams in the Midwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States have been highly modified to receive agricultural drainage. Effective implementation of conservation practices to reduce nutrient and pesticide loadings requires information about the influence of water quality on biotic communities. We evaluate...

  19. Geology and forestry classification from ERTS-1 digital data

    NASA Technical Reports Server (NTRS)

    Lawrence, R. D.; Herzog, J. H.

    1975-01-01

    Computer classifications into seven and ten classes of two areas in central Oregon of interest to geology and forestry demonstrate the extraction of information from ERTS-1 data. The area around Newberry Caldera was classified into basalt, rhyolite obsidian, pumice flats, Newberry pumice, ponderosa pine, lodgepole pine, and water classes. The area around Mt. Washington was classified into two basalts, three forest, two clearcut, burn, snow, and water classes. Both also include an unclassified category. Significant details that cannot be extracted from photographic reconstitutions of the data emerge from these classifications, such as moraine locations and paleowind directions. Spectral signatures for the various rocks are comparable to those published elsewhere.

  20. Water Governance and Adaptation to Disturbances in Irrigated Semi-Arid Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Evans, T. P.; McCord, P. F.; McBride, L.; Gower, D.; Caylor, K. K.

    2013-12-01

    Climate and other physical drivers of environmental systems are modifying the global availability of water for irrigation. At the same time population growth is placing an increased demand on water resources as local municipalities promote agricultural production as a mechanism to support human welfare and development. Substantial has research focused on household-level agricultural decision-making and adaptation. But equally important are institutional dynamics, or the rules implemented to allocate water resources across different user groups. Previous work has identified design principles for common-pool resource systems that tend to lead to sustained governance regimes. Likewise, past research has addressed the issue of "institutional fit", or locally adapted governance arrangements characterized through governance structure. However, much of the complexity behind institutional dynamics and adaptive capacity lies in the translation of data to information to knowledge, and how this sequence contributes to effective cross-scale water management and decision-making - an arena that has arguably received less attention in the water management literature. We investigate the interplay between governance regimes, data/information and institutional dynamics in irrigation systems in semi-arid regions of Kenya. In particular, we articulate the role of knowledge and data in institutional dynamics at multiple levels of analysis. How do users at different decision-making levels incorporate social and hydrological information in water governance? What data is needed to develop the information and knowledge users need for effective management? While governance structure is certainly a critical component of water management systems - we emphasize the interplay between the data-information-knowledge sequence and institutional dynamics. We present findings from household and manager-level surveys examining irrigation practices and the institutions designed to equitably allocate

  1. Desert agricultural terrace systems at EBA Jawa (Jordan) - Layout, water availability and efficiency

    NASA Astrophysics Data System (ADS)

    Meister, Julia; Krause, Jan; Müller-Neuhof, Bernd; Portillo, Marta; Reimann, Tony; Schütt, Brigitta

    2016-04-01

    Located in the arid basalt desert of northeastern Jordan, the Early Bronze Age (EBA) settlement of Jawa is by far the largest and best preserved archaeological EBA site in the region. Recent surveys in the close vicinity revealed well-preserved remains of three abandoned agricultural terrace systems. In the presented study these archaeological features are documented by detailed mapping and the analysis of the sediment records in a multi-proxy approach. To study the chronology of the terrace systems optically stimulated luminescence (OSL) is used. In order to evaluate the efficiency of the water management techniques and its impact on harvest yields, a crop simulation model (CropSyst) under today's climatic conditions is applied, simulating crop yields with and without (runoff) irrigation. In order to do so, a runoff time series for each agricultural terrace system and its catchment is generated, applying the SCS runoff curve number method (CN) based on rainfall and soil data. Covering a total area of 38 ha, irrigated terrace agriculture was practiced on slopes, small plateaus, and valleys in the close vicinity of Jawa. Floodwater from nearby wadis or runoff from adjacent slopes was collected and diverted via surface canals. The terraced fields were arranged in cascades, allowing effective water exploitation through a system of risers, canals and spillways. The examined terrace profiles show similar stratigraphic sequences of mixed unstratified fine sediments that are composed of small-scale relocated sediments with local origin. The accumulation of these fines is associated with the construction of agricultural terraces, forcing infiltration and storage of the water within the terraces. Two OSL ages of terrace fills indicate that the construction of these terrace systems started as early as 5300 ± 300 a, which fits well to the beginning of the occupation phase of Jawa at around 3.500 calBC, thus making them to the oldest examples of its kind in the Middle East

  2. Eco-efficiency of agricultural water systems: Methodological approach and assessment at meso-level scale.

    PubMed

    Todorovic, Mladen; Mehmeti, Andi; Scardigno, Alessandra

    2016-01-01

    This study presents a methodological framework for the meso-level eco-efficiency assessment of agricultural water systems using a life-cycle system-based approach. The methodology was applied to the Sinistra Ofanto irrigation scheme, located in Southern Italy, where about 28,165 ha are under irrigation. The environmental performance of the system was evaluated through a set of selected mid-point environmental impact categories while the economic performance was measured using the total value added to the system's final products due to water use and the adopted management practices. Both economic performance and environmental performance were measured at different stages and for each stakeholder in the value chain. A distinction was made between foreground and background systems referring, respectively, to the processes that occurred inside the water system boundaries and those used for the production of supplementary resources. The analysis revealed that the major environmental burdens are: i) the freshwater resource depletion (i.e. excessive groundwater pumping), ii) climate change (i.e. direct emissions due to fertilizer use and diesel combustion), and iii) eutrophication (as a result of excessive application of N and P fertilizers). A considerable impact was observed on the background system where energy, fuel and agrochemicals were produced thereby confirming the prominent role of background processes in the comprehensive eco-efficiency assessment. The presented methodology aimed at the quantitative assessment of the eco-efficiency level rather than at the identification of the most affected environmental category. Hence, the results can be used to compare the performance of the system from one year to the next, among different stakeholders (water users) and/or to assess the impact of adopting innovative technologies and management practices. Moreover, the presented approach is useful for comparing the performance among different agricultural water systems and

  3. Characterization of Dissolved Solids in Water Resources of Agricultural Lands near Manila, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day. The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 90 to 289 tons per day with a mean of 142 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 51,900 tons. Of this 51,900 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley. The variation of 87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the 87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the 87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos Shale

  4. Soil water and carbon management for agricultural resilience in a key node in the global virtual water trade network: Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Speratti, A. B.; Lathuilliere, M. J.; Dalmagro, H. J.; Couto, E. G.

    2015-12-01

    The Amazon region is globally connected through agricultural exports, with the Brazilian state of Mato Grosso in particular emerging as a key node in the global virtual water trade network in recent years, based largely on rainfed agriculture. The anticipated growth in the world's population suggests that virtual water trade will only become more important to global food security. In this presentation we will evaluate strategies for improving the resilience of rainfed agriculture in the region, particularly for the nearly 12 million hectares of sandy soil with low water holding capacity within Mato Grosso that has largely been converted to agricultural use. We will review land use change trajectories and present results from soil water balance modeling and carbon fluxes for a range of future scenarios, including continued agricultural extensification, potential strategies for agricultural intensification, and novel water and carbon management strategies including biochar use in sandy soils to improve soil water holding capacities and soil carbon sequestration. We will also consider the role that irrigation might play in the future in the Amazon for improving agricultural resilience to climate change and feedbacks between irrigation and land use change pressures, noting that groundwater resources in the region are presently among the least exploited on the planet.

  5. Impacts of Biofuel-Induced Agricultural Land Use Changes on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Zheng, H.

    2015-12-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin (RRNB), an international river basin shared by the US and Canada. The influence of the land use changes on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%. Potential impacts of the future biofuel crop scenarios on watershed hydrology and water quality in the RRNB were also simulated through integrated economic-hydrologic modeling.

  6. Potential of the Conservation Reserve Program to control agricultural surface water pollution

    NASA Astrophysics Data System (ADS)

    Lant, Christopher L.

    1991-07-01

    The Conservation Reserve Program (CRP), initiated by the Conservation Title of the Food Security Act of 1985, is the primary federal program to control nonpointsource pollution in agricultural watersheds of the United States. However, the program is designed primarily to reduce soil erosion rather than to retire croplands in a manner optimal for controlling runoff of sediment and associated pollutants. This study estimates potential enrollment of streamside and floodplain croplands in this ten-year retirement program in order to gauge the potential of the CRP as a water-quality improvement policy. A contingent choice survey design was employed in Fayette County, Illinois, to demonstrate that there is substantial potential for retirement of streamside and floodplain croplands in the CRP. Enrollments in each program climb from less than 6% to over 83% of eligible croplands as the annual rental rate is increased from 20 to 200/acre. Potential retirement of streamside and floodplain croplands declines, however, if tree planting, drainage removal, or a 20-year contract are required. The potential of a CRP-based water-quality program to improve water quality and aquatic ecosystems in agricultural watersheds is thus substantial but constrained by the economic trade-offs that farmers make between crop production and conservation incentives in determining the use of their riparian lands.

  7. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  8. Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes

    USGS Publications Warehouse

    Kharaka, Y.K.; Ambats, G.; Presser, T.S.; Davis, R.A.

    1996-01-01

    Seleniferous agricultural drainage wastewater has become a new major source of pollution in the world. In the USA, large areas of farmland in 17 western states, generate contaminated salinized drainage with Se concentrations much higher than 5 ??g/l, the US Environmental Protection Agency water-quality criterion for the protection of aquatic life; Se values locally reach 4200 ??g/l in western San Joaquin Valley, California. Wetland habitats receiving this drainage have generally shown Se toxicosis in aquatic birds causing high rates of embryonic deformity and mortality, or have indicated potential ecological damage. Results of our laboratory flow experiments indicate that nanofiltration, the latest membrane separation technology, can selectively remove > 95% of Se and other multivalent anions from > 90% of highly contaminated water from the San Joaquin Valley, California. Such membranes yield greater water output and require lower pressures and less pretreatment, and therefore, are more cost effective than traditional reverse osmosis membranes. Nanofiltration membranes offer a potential breakthrough for the management of Se contaminated wastes not only from agricultural drainage, but from other sources also.

  9. Climate Risks on Water and Agriculture in the Indus Basin of Pakistan

    NASA Astrophysics Data System (ADS)

    Yang, Y. E.; Brown, C. M.; Yu, W.

    2012-12-01

    Pakistan relies on the largest contiguous irrigation system in the world, known as the Indus Basin Irrigation System (IBIS) for its basic food security and water supply for all sectors of the economy. The basin that supports this irrigation system consists of the Indus River mainsteam and its major tributaries. The integrated systems framework used in this analysis provides a broad and unique approach to estimating the hydrologic and crop impacts of climate change risks, the macro-economic and household-level responses and an effective method for assessing a variety of adaptation investments and policies. In assessing the impacts, several different modeling environments must be integrated to provide a more nuanced and complete picture of how water and agriculture inter-relate. Moreover, such a framework allows for extensive scenario analysis to identify and understand key sensitivities. This is critical to making decisions in a highly uncertain future. Finally, through this integration of multiple disciplines, a richer and more robust set of adaptation investment options and policies for the agriculture and water sectors can be identified and tested. Continued refinements to the assessment approach developed in this volume will further help to sharpen critical policies and interventions by the Pakistan government. Fig 2. Impacts of climate change on GDP, Ag-GDP and Household income in the Indus Basin Fig1. The Indus River Basin

  10. The Effect of Aquatic Vegetation on Water Quality in the Everglades Agricultural Area Canals

    NASA Astrophysics Data System (ADS)

    Gomez, S. M.; Bhadha, J. H.; Lang, T. A.; Josan, M. S.; Daroub, S. H.

    2011-12-01

    The canals in the Everglades Agricultural Area contain an abundance of floating aquatic vegetation (FAV) and submerged aquatic vegetation (SAV). These FAV flourish in waters with high phosphorus (P) concentrations and prevent the co-precipitation of P with the limestone bedrock (CaCO3). To test the effects of FAV and SAV and the presence of sediments on water quality in the canals, a lysimeter study was set up and stocked with FAV (water lettuce) and SAV (filamentous algae). There were four treatments with four replicates Treatment one contained limerock, sediment from the canals, and FAV. Treatment two contained limerock, sediment, and SAV. Treatment three contained limerock and FAV, while treatment four had limerock and SAV. After 7 days, the buckets were drained and replaced the water with new, high P canal water. Water samples were taken at 0, 0.25, 1, 3, and 7 days after each weekly water exchange. To test water quality soluble reactive P, total P, total dissolved P, Ca, and total organic carbon were analyzed. The impact of FAV and SAV and canal sediments on water quality will be discussed. We hypothesize water lettuce treatments will initially result in a reduction in P-concentration in all species, but will only serve as a short-term sink because of their high turn-over rate and production of labile high-P sediment (floc). In addition, we hypothesize the treatments with no sediment will have more P reduction because of the availability for P to co-precipitate with CaCO3.

  11. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  12. SPECTRA CHARACTERISTICS OF WATER EXTRACTABLE ORGANIC MATTER FROM SOILS OF DIFFERENT LAND USES IN A SUBARCTIC ALASKA ENVIRONMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to determine characteristics of soil water extractable organic matter (WEOM) under different land uses in a subarctic environment. Soil (Volkmar, Aquic Eutrocrepts) samples were taken in October, 2005 from forestry, agricultural, and USDA Conservation Reserve Prog...

  13. Paper versus plastic, water versus carbon and sustainable agriculture in the US

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2011-12-01

    It is increasingly recognized that food and energy security are inextricably linked to climate and climate change, resulting in the so-called climate, energy, food nexus, with the water cycle at its hub. The ability to provide sufficient and consistent energy and food for this generation, while not depleting soil, climate and water resources for future generations involves interconnected feedbacks along the paths of this wheel. In the US corn belt, for example, agricultural water management in the form of subsurface drainage lowers the regional water table to enhance crop production, while at the same time providing a conduit for the more efficient export of nitrate-nitrogen to the Gulf of Mexico and increasing rates of decomposition and subsidence in organic-rich soils. The use of control structures to regulate drainage water has the potential to reduce nitrate and carbon dioxide losses, while at the same time increasing the emissions of other greenhouse gases. Increased biofuels production offers the potential to increase domestic energy security, but at the cost of increased water demand and threats to food security. Just as budding US consumer environmentalists of the last decade struggled with the question of paper versus plastic for bagging their groceries, today's informed consumers are being asked to tacitly choose between water and carbon. The local foods movement encourages consumption of locally-produced foods as a means of reducing carbon emissions associated with food transportation, among other perceived benefits. At the same time, the concept of virtual water trade recognizes that importing the water embedded in production in the form of food can balance a local water deficit. Taking into account the virtual water of food production and carbon emissions of food transportation, the spatial arrangement of the current US crop portfolio minimizes neither water nor carbon footprints. Changes in crop distribution result in trade-offs between the per capita

  14. Water availability, water demand, and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Andersson, J. C. M.; Zehnder, A. J. B.; Jewitt, G. P. W.; Yang, H.

    2009-07-01

    Water productivity in smallholder rain-fed agriculture is of key interest for food and livelihood security. A frequently advocated approach to enhance water productivity is to adopt water harvesting and conservation technologies (WH). This study estimates water availability for in situ WH and supplemental water demands (SWD) in smallholder agriculture in the Thukela River Basin, South Africa. It incorporates process dynamics governing runoff generation and crop water demands, an explicit account of the reliability of in situ WH, and uncertainty considerations. The agro-hydrological model SWAT (Soil and Water Assessment Tool) was calibrated and evaluated with the SUFI-2 algorithm against observed crop yield and discharge in the basin. The water availability was based on the generated surface runoff in smallholder areas. The SWD was derived from a scenario where crop water deficits were met from an unlimited external water source. The reliability was calculated as the percentage of years in which the water availability ≥ the SWD. It reflects the risks of failure induced by the temporal variability in these factors. The results show that the smallholder crop water productivity is low in the basin (spatiotemporal median: 0.08-0.22 kg m-3, 95% prediction uncertainty band (95PPU). Water is available for in situ WH (spatiotemporal median: 0-17 mm year-1, 95PPU) which may aid in enhancing the crop water productivity by meeting some of the SWD (spatiotemporal median: 0-113 mm year-1, 95PPU). However, the reliability of in situ WH is highly location specific and overall rather low. Of the 1850 km2 of smallholder lands, 20-28% display a reliability ≥25%, 13-16% a reliability ≥50%, and 4-5% a reliability ≥75% (95PPU). This suggests that the risk of failure of in situ WH is relatively high in many areas of the basin.

  15. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    NASA Astrophysics Data System (ADS)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  16. Long-term fluctuations of water resources availability and its implications for a sustainable management of arid agricultural coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Schütze, Niels

    2015-04-01

    Freshwater scarcity and ongoing population growth associated with increasing water demands are major challenges for water management in coastal arid regions. Excessive use of groundwater for irrigation in agriculture puts those regions at risk of saltwater intrusion which limits agricultural opportunities. Additionally, some arid regions are characterised by a cyclic climate in which longer periods of dry years are followed by longer periods of wet years. This results also in long-term fluctuations of groundwater replenishment rates and water resources availability which may reach the same order of magnitude like long-term average values. Therefore, these long-term fluctuations should be considered for water resources management planning and operation. In order to evaluate their impact a simulation-based integrated water management system for coastal arid regions is used. The management system couples a groundwater module, assessing the water resources availability, and an agricultural module, controlling irrigation and cultivation within an optimisation module which allow for multi-objective optimisation of the water management regarding profitable and sustainable water resources and agricultural management on farm and regional scale. To achieve a fast and robust operation of the water management system, surrogate models are used which emulate the behaviour of physically based process models and a hierarchical optimisation scheme is applied. The water management system is driven by different scenarios of the water resources availability which were generated by using time series analyses and modelling of local groundwater replenishment rates. An application is performed for the south Batinah coastal region in the Sultanate of Oman which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Several scenarios of water resources availability are used to compare long-term and adaptive

  17. Natural radioactivity levels of geothermal waters and their influence on soil and agricultural activities.

    PubMed

    Murat Saç, Müslim; Aydemir, Sercan; Içhedef, Mutlu; Kumru, Mehmet N; Bolca, Mustafa; Ozen, Fulsen

    2014-01-01

    All over the world geothermal sources are used for different purposes. The contents of these waters are important to understand positive/negative effects on human life. In this study, natural radioactivity concentrations of geothermal waters were investigated to evaluate the effect on soils and agricultural activities. Geothermal water samples were collected from the Seferihisar Geothermal Region, and the radon and radium concentrations of these waters were analysed using a collector chamber method. Also soil samples, which are irrigated with geothermal waters, were collected from the surroundings of geothermal areas, and natural radioactivity concentrations of collected samples (U, Th and K) were determined using an NaI(Tl) detector system. The activity concentrations of radon and radium were found to be 0.6-6.0 and 0.1-1.0 Bq l(-1), respectively. Generally, the obtained results are not higher compared with the geothermal waters of the world. The activity concentrations in soils were found to be in the range of 3.3-120.3 Bq kg(-1) for (226)Ra (eU), 0.3-108.5 Bq kg(-1) for (232)Th (eTh), 116.0-850.0 Bq kg(-1) for (40)K (% K). PMID:24026900

  18. Black water sludge reuse in agriculture: are heavy metals a problem?

    PubMed

    Tervahauta, Taina; Rani, Sonia; Hernández Leal, Lucía; Buisman, Cees J N; Zeeman, Grietje

    2014-06-15

    Heavy metal content of sewage sludge is currently the most significant factor limiting its reuse in agriculture within the European Union. In the Netherlands most of the produced sewage sludge is incinerated, mineralizing the organic carbon into the atmosphere rather than returning it back to the soil. Source-separation of black water (toilet water) excludes external heavy metal inputs, such as industrial effluents and surface run-offs, producing sludge with reduced heavy metal content that is a more favorable source for resource recovery. The results presented in this paper show that feces is the main contributor to the heavy metal loading of vacuum collected black water (52-84%), while in sewage the contribution of feces is less than 10%. To distinguish black water from sewage in the sludge reuse regulation, a control parameter should be implemented, such as the Hg and Pb content that is significantly higher in sewage sludge compared to black water sludge (from 50- to 200-fold). The heavy metals in feces and urine are primarily from dietary sources, and promotion of the soil application of black water sludge over livestock manure and artificial fertilizers could further reduce the heavy metal content in the soil/food cycle. PMID:24794814

  19. A preliminary appraisal of the impact of agriculture on ground-water availability in Southwest Georgia

    USGS Publications Warehouse

    Pollard, L.D.; Grantham, R.G.; Blanchard, H.E.

    1978-01-01

    Irrigated acreage in the 20-county study area in southwest Georgia increased from 130,000 acres in 1976 to 261,000 in 1977. Acreage irrigated entirely by ground water increased 85 percent for the same period. The largest quantity of ground water used for irrigation was in the Dougherty Plain district, where 92 percent of supplemental irrigation water comes from wells. The total amount of water pumped for irrigation in the Dougherty Plain in 1977 was more than 42 billion gallons, 30 billion gallons more than in 1976. There were no detectable concentrations of selected organic compounds and trace metals used in agricultural chemicals above the recommended limits for public consumption in 19 wells sampled for chemical analyses. Although nitrate concentrations were not above the recommended limits for drinking water, the presence of nitrate in amounts ranging from 0.3 to 7.8 milligrams per liter in wells in the Dougherty Plain possibly indicate the downward movement of soluble nitrate, a byproduct of fertilizer, into the ground-water reservoir. (Woodard-USGS)

  20. Water quality response to riparian restoration in an agricultural watershed in Vermont, USA.

    PubMed

    Meals, D W

    2001-01-01

    Achievement of management goals for Lake Champlain (Vermont/New York, USA and Quebec, Canada) will require reduction of agricultural phosphorus loads, the dominant nonpoint source in the Basin. Cost-effective phosphorus reduction strategies need reliable treatment techniques beyond basic cropland and waste management practices. The Lake Champlain Basin Agricultural Watersheds National Monitoring Program (NMP) Project evaluates the effectiveness of livestock exclusion, streambank protection, and riparian restoration practices in reducing concentrations and loads of nutrients, sediment, and bacteria in surface waters. Treatment and control watersheds in northwestern Vermont have been monitored since 1994 according to a paired-watershed design. Monitoring consists of continuous stream discharge recording, flow-proportional sampling for total P, total Kjeldahl N, and total suspended solids, grab sampling for indicator bacterial, and land use/agricultural monitoring. Strong statistical calibration between the control and treatment watersheds has been achieved. Installation of riparian fencing, protected stream crossings, and streambank bioengineering was completed in 1997. Early post-treatment data suggest significant reduction in P concentrations and loads and in bacteria counts in the treated watershed. Monitoring is scheduled to continue through 2000. PMID:11379130

  1. Dynamics of Nitrogen loads in surface water of an agricultural watershed by modelling approach, the Save, Southwest France.

    NASA Astrophysics Data System (ADS)

    Ferrant, S.; Oeurng, C.; Sauvage, S.; Durand, P.; Probst, J. L.; Sanchez-Perez, J. M.

    2009-04-01

    Agriculture is known to have a great impact of nutrients enrichment on continental water resources. In south-West of France (Gascogne region), water resource are essentially surface water and shallow aquifer. Nitrogen dynamic in river is complex and highly variable throughout season and year, depending on hydrology, landuse, removal in stream. In this context, agricultural impacts on nitrogen concentration are a matter of concern for agricultural decision-maker. In order to introduce sustainable land use concepts in this hilly, clayey and agricultural shallow soil context, the hydrological simulation model SWAT2005 has been tested as a valuable tool to evaluate the consequences of such land use changes on water and nutrient balance components. This semi-distributed hydrological model coupled with agronomical model EPIC is able to simulate the impact of each agricultural landuse at the outlet of the Save catchment (1100 km2). Hydrological parameters model are calibrated based on 14-year historical record (1994-2008). Nitrogen losses have been measured during 2 years (2006-2008) at the outlet and are used to validate the model calibration. Agricultural data at communal scale coupled with Spot image analyses have been used to evaluate agricultural distribution and pressure in SWAT. The aim of this modelling exercise is to simulate nitrogen cycle in whole agricultural Hydrological Response Units (HRU), depending on plant growth and culture rotation, to simulate accurately nitrate load in river. The ability of SWAT to reproduce nitrogen transfert and transformation at this scale and in this agricultural context will be evaluated by a discussion of importance of each nitrogen cycle process in nitrogen losses. SWAT could be a useful tool to test agricultural scenario to improve the nitrogen management in river.

  2. Water for food and nature in drought-prone tropics: vapour shift in rain-fed agriculture.

    PubMed Central

    Rockström, Johan

    2003-01-01

    This paper quantifies the eco-hydrological challenge up until 2050 of producing food in balance with goods and services generated by water-dependent ecosystems in nature. Particular focus is given to the savannah zone, covering 40% of the land area in the world, where water scarcity constitutes a serious constraint to sustainable development. The analysis indicates an urgent need for a new green revolution, which focuses on upgrading rain-fed agriculture. Water requirements to produce adequate diets for humans are shown to be relatively generic irrespective of hydro-climate, amounting to a global average of 1,300 m(3) cap(-1) yr(-1). Present food production requires an estimated 6,800 km(3) yr(-1) of consumptive green water (5,000 km(3) yr(-1) in rain-fed agriculture and 1,800 km(3) yr(-1) from irrigated crops). Without considering water productivity gains, an additional 5,800 km(3) yr(-1) of water is needed to feed a growing population in 2,050 and eradicate malnutrition. It is shown that the bulk of this water will be used in rain-fed agriculture. A dynamic analysis of water productivity and management options indicates that large 'crop per drop' improvements can be achieved at the farm level. Vapour shift in favour of productive green water flow as crop transpiration could result in relative water savings of 500 km(3) yr(-1) in semi-arid rain-fed agriculture. PMID:14728794

  3. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  4. Climate change and its effect on agriculture, water resources and human health sectors in Poland

    NASA Astrophysics Data System (ADS)

    Szwed, M.; Karg, G.; Pińskwar, I.; Radziejewski, M.; Graczyk, D.; Kedziora, A.; Kundzewicz, Z. W.

    2010-08-01

    Multi-model ensemble climate projections in the ENSEMBLES Project of the EU allowed the authors to quantify selected extreme-weather indices for Poland, of importance to climate impacts on systems and sectors. Among indices were: number of days in a year with high value of the heat index; with high maximum and minimum temperatures; length of vegetation period; and number of consecutive dry days. Agricultural, hydrological, and human health indices were applied to evaluate the changing risk of weather extremes in Poland in three sectors. To achieve this, model-based simulations were compared for two time horizons, a century apart, i.e., 1961-1990 and 2061-2090. Climate changes, and in particular increases in temperature and changes in rainfall, have strong impacts on agriculture via weather extremes - droughts and heat waves. The crop yield depends particularly on water availability in the plant development phase. To estimate the changes in present and future yield of two crops important for Polish agriculture i.e., potatoes and wheat, some simple empirical models were used. For these crops, decrease of yield is projected for most of the country, with national means of yield change being: -2.175 t/ha for potatoes and -0.539 t/ha for wheat. Already now, in most of Poland, evapotranspiration exceeds precipitation during summer, hence the water storage (in surface water bodies, soil and ground) decreases. Summer precipitation deficit is projected to increase considerably in the future. The additional water supplies (above precipitation) needed to use the agro-potential of the environment would increase by half. Analysis of water balance components (now and in the projected future) can corroborate such conclusions. As regards climate and health, a composite index, proposed in this paper, is a product of the number of senior discomfort days and the number of seniors (aged 65+). The value of this index is projected to increase over 8-fold during 100 years. This is an

  5. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  6. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Knox, Jerry W.; Ozdogan, Mutlu; Gumma, Murali Krishna; Congalton, Russell G.; Wu, Zhuoting; Milesi, Cristina; Finkral, Alex; Marshall, Mike; Mariotto, Isabella; You, Songcai; Giri, Chandra; Nagler, Pamela

    2012-01-01

    of changing dietary consumption patterns, a changing climate and the growing scarcity of water and land (Beddington, 2010). The impact from these changes wi ll affect the viability of both dryland subsistence and irrigated commodity food production (Knox, et al., 2010a). Since climate is a primary determinant of agricultural productivity, any changes will influence not only crop yields, but also the hydrologic balances, and supplies of inputs to managed farming systems as well as potentially shifting the geographic location for specific crops . Unless concerted and collective action is taken, society risks worldwide food shortages, scarcity of water resources and insufficient energy. This has the potential to unleash public unrest, cross-border conflicts and migration as people flee the worst-affected regions to seck refuge in "safe havens", a situation that Beddington described as the "perfect storm" (2010).

  7. Risk-Cost-Benefit Analysis Of Atrazine In Drinking Water From Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Aklilu, T. A.; Jagath, K. J.; Arthur, C. J.

    2004-12-01

    This study provides a new methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector and a more holistic insight to pesticide management issues. Regression models are developed to predict the stream atrazine concentrations and finished water atrazine concentration at high-risk community water supplies in the US using surface water. The predicted finished water atrazine concentrations are then used in health risk assessment. The computed health risks are compared with the total surplus in the US corn market for different atrazine application rates using the demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums (preferences) for chemical-free to reduced chemical corn provided interesting results on the potential for future pesticide and land use management. This is an interdisciplinary work that has attempted to integrate and consider the interaction between weed sciences, economics, water quality, human health risk and human reaction to changes in different pesticide use scenarios. The results showed that this methodology provides a scientific framework for future decision-making and policy evaluation in pesticide management, especially when better regional and national data are available.

  8. USDA Agriculture and Forestry Greenhouse Gas Inventory: 1990-2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) concentrations in the atmosphere have increased by approximately 43%, 152%, and 20% respectively since about 1750. In 2013, total U.S. greenhouse gas emissions were 6,673 million metric tons of carbon dioxide equivalents (MMT CO2 eq.), ris...

  9. Linking nitrogen management, seep chemistry, and stream water quality in two agricultural headwater watersheds.

    PubMed

    Williams, Mark R; Buda, Anthony R; Elliott, Herschel A; Collick, Amy S; Dell, Curtis; Kleinman, Peter J A

    2015-05-01

    Riparian seepage zones in headwater agricultural watersheds represent important sources of nitrate-nitrogen (NO-N) to surface waters, often connecting N-rich groundwater systems to streams. In this study, we examined how NO-N concentrations in seep and stream water were affected by NO-N processing along seep surface flow paths and by upslope applications of N from fertilizers and manures. The research was conducted in two headwater agricultural watersheds, FD36 (40 ha) and RS (45 ha), which are fed, in part, by a shallow fractured aquifer system possessing high (3-16 mg L) NO-N concentrations. Data from in-seep monitoring showed that NO-N concentrations generally decreased downseep (top to bottom), indicating that most seeps retained or removed a fraction of delivered NO-N (16% in FD36 and 1% in RS). Annual mean N applications in upslope fields (as determined by yearly farmer surveys) were highly correlated with seep NO-N concentrations in both watersheds (slope: 0.06; = 0.79; < 0.001). Strong positive relationships also existed between seep and stream NO-N concentrations in FD36 (slope: 1.01; = 0.79; < 0.001) and in RS (slope: 0.64; = 0.80; < 0.001), further indicating that N applications control NO-N concentrations at the watershed scale. Our findings clearly point to NO-N leaching from upslope agricultural fields as the primary driver of NO-N losses from seeps to streams in these watersheds and therefore suggest that appropriate management strategies (cover crops, limiting fall/winter nutrient applications, decision support tools) be targeted in these zones. PMID:26024271

  10. Water hyacinths as a resource in agriculture and energy production: a literature review.

    PubMed

    Gunnarsson, Carina C; Petersen, Cecilia Mattsson

    2007-01-01

    Water hyacinths are becoming a problem in lakes, ponds and waterways in many parts of the world. This paper contains a literature study of different ways to use water hyacinths, mainly in agricultural or alternative energy systems. The literature review indicated that water hyacinths can be rich in nitrogen, up to 3.2% of DM and have a C/N ratio around 15. The water hyacinth can be used as a substrate for compost or biogas production. The sludge from the biogas process contains almost all of the nutrients of the substrate and can be used as a fertiliser. The use of water hyacinth compost on different crops has resulted in improved yields. The high protein content makes the water hyacinth possible to use as fodder for cows, goats, sheep and chickens. Water hyacinth, due to its abundant growth and high concentrations of nutrients, has a great potential as fertiliser for the nutrient deficient soils of Africa and as feed for livestock. Applying the water hyacinths directly without any other processing than sun drying, seems to be the best alternative in small-scale use due to the relatively small losses of nutrients and workload required. To meet the ever-growing energy demand, biogas production could be one option but it requires investments and technological skills that would impose great problems in developing countries where the water hyacinth is often found. Composting as an alternative treatment has the advantage of a product that is easy to work into the soil compared with dried water hyacinths, because of the decomposed structure. Harvesting and transport of water hyacinths can be conducted manually on a small scale and does not require a new harvesting technique to be introduced. Transporting of fresh water hyacinths means, if used as fertiliser in amounts large enough to enhance or effect crop growth, an unreasonably large labour requirement. Based on the labour need and the limited access to technology, using dried water hyacinths, as green manure is a

  11. The Effect of El Niño on Agricultural Water Balances in Guatemala

    NASA Astrophysics Data System (ADS)

    Pedreros, D.; Michaelsen, J.; Carvalho, L. V.; Funk, C. C.; Husak, G. J.

    2010-12-01

    More than half the population of Guatemala lives in rural areas and depends on subsistence agriculture for their well being. This region is vulnerable to many climatic events, one of which is El Niño. This study looks at the effects of El Nino on rainfall patterns at regional scales and specifically quantifies the effects on agricultural water balances in Guatemala. Analysis is focused on maize crops during the Primera growing season (May - July). The study builds on rainfall and water balance modeling techniques developed by the Famine Early Warning Systems Network (FEWS NET). The results corroborate previous work, showing that there is a negative relationship between El Niño and rainfall, primarily on the Pacific side of the region and mainly during the months of August and September. The study also found that the related rainfall variations influence long-term (May - October) maize growing areas and could affect the start of the short-term Postrera season (August - October) by extending the Canícula. Correlation between rainfall and the Oceanic Niño Index (ONI) for the month of August in Central America.

  12. Hydrologic and water-quality impacts of agricultural land use changes incurred from bioenergy policies

    NASA Astrophysics Data System (ADS)

    Lin, Zhulu; Anar, Mohammad J.; Zheng, Haochi

    2015-06-01

    The US Energy Independence and Security Act (EISA) of 2007 has contributed to widespread changes in agricultural land uses. The impact of these land use changes on regional water resources could also be significant. Agricultural land use changes were evaluated for the Red River of the North Basin, an international river basin shared by the US and Canada. The influence of the land use change on spring snowmelt flooding and downstream water quality was also assessed using watershed modeling. The planting areas for corn and soybean in the basin increased by 62% and 18%, while those for spring wheat, forest, and pasture decreased by 30%, 18%, and 50%, from 2006 to 2013. Although the magnitude of spring snowmelt peak flows in the Red River did not change from pre-EISA to post-EISA, our uncertainty analysis of the normalized hydrographs revealed that the downstream streamflows had a greater variability under the post-EISA land use scenario, which may lead to greater uncertainty in predicting spring snowmelt floods in the Red River. Hydrological simulation also showed that the sediment and nutrient loads at the basin's outlet in the US and Canada border increased under the post-EISA land use scenario, on average sediment increasing by 2.6%, TP by 14.1%, nitrate nitrogen by 5.9%, and TN by 9.1%.

  13. At-grade stabilization structure impact on surface water quality of an agricultural watershed.

    PubMed

    Minks, Kyle R; Ruark, Matthew D; Lowery, Birl; Madison, Fred W; Frame, Dennis; Stuntebeck, Todd D; Komiskey, Matthew J; Kraft, George J

    2015-04-15

    Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters. PMID:25657061

  14. The Fate and Transport of Glyphosate and AMPA into Surface Waters of Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Coupe, R.; Kalkhoff, S.; Capel, P.; Gregoire, C.

    2010-12-01

    Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops, but is particularly heavily used on crops which are genetically modified to be glyphosate tolerant: predominately soybeans, corn, potatoes, and cotton. Glyphosate is used extensively in almost all agricultural areas of the United States, and annual application has increased from less than 10,000 Mg in 1992 to more than 80,000 Mg in 2007. The greatest areal use is in the Midwest where glyphosate is applied on genetically modified corn and soybeans. Although use is increasing, the characterization of glyphosate transport on the watershed scale is lacking. Glyphosate, and its degradate AMPA [aminomethylphosphoric acid], was frequently detected in the surface waters of four agricultural watersheds. The load as a percent of use of glyphosate ranged from 0.009 to 0.86 percent and can be related to three factors: source strength, hydrology, and flowpath. Glyphosate use within a watershed results in some occurrence in surface water at the part per billion level; however watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff, and a flowpath that does not include transport through the soil.

  15. Carbon Sequestration Potential in Irrigated Agriculture: Greenhouse Gas Emissions and the Contribution of Water.

    NASA Astrophysics Data System (ADS)

    Rolston, D. E.; Hopmans, J. W.; van Kessel, C.; Six, J.; Paw U, K.; Plant, R.; Lee, J.; Kochendorfer, J.; Ideris, A. J.; MacIntyre, J.; Louie, D.; Matista, T.; Evatt, J.; Poch, R.; King, A. P.

    2006-12-01

    This study aimed to quantify CO2 and N2O release from an irrigated field in California's Sacramento Valley in an effort to determine greenhouse gas mitigation potentials through minimum tillage (MT) practices. Surface CO2 and N2O flux were monitored on the 30 ha, laser-leveled field site from September 2003 through August 2006. Additional field-representative flux data was collected from eddy-covariance masts and continuously sampling auto-chambers. Irrigation and run-off waters were collected and analyzed for total suspended solids (TSS), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), nitrate-N, ammonium-N, total C and total N in the sediment. Overall, we found very little difference in CO2 flux, water composition, or sediment composition between the two tillage treatments. N2O flux was negligible in both systems until a fertilization and irrigation event occurred in each growing season, at which point the MT treatment showed slightly higher fluxes. NO3-N levels in the run-off exceeded drinking water quality standards only in irrigation events following fertilizer application. Collected CO2 and N2O data from this site will enable us to predict greenhouse gas emissions from similar agricultural systems in the California landscape. Our results indicate that the role of irrigation water in C budgets of agricultural systems is a significant factor in determining total C sequestration potential, but that short-term MT may not significantly decrease the contribution to global warming by irrigated agroecosystems and thus may not be a beneficial strategy for greenhouse gas mitigation.

  16. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters.

    PubMed

    Borin, Maurizio; Tocchetto, Davide

    2007-07-15

    The performance of a constructed surface flow wetland in reducing diffuse N pollution coming from croplands is being investigated in an ongoing experiment, begun in 1998 in NE Italy. The 0.32 ha wetland is vegetated with Phragmites australis (Cav.) Trin. and Typha latifolia (L.). It receives drainage water from 6 ha of land managed for an experiment on drainage systems, where maize, sugarbeet, winter wheat and soybean are cultivated. During the period 1998-2002, the wetland received from 4698 to 8412 mm of water per year (on average, about 9 times the environmental rainfall); its water regimen was discontinuous and flooding occurred on a variable number of days per year (from 13 to 126). Nitric nitrogen was the most important form of element load. Its concentration in the inflow water over time was rather discontinuous, with median values ranging from 0.2 (in 2001) to 4.5 (in 2000) mg L(-1). Inflow nitric N concentrations were occasionally in the 5-15 mg L(-1) range. Concentrations reduced passing through the wetland, with a more evident effect in the last year. Over 5 years, the wetland received slightly more than 2000 kg ha(-1) of nitrogen, 87% in nitric form mostly from farmland drainage. The remaining 13% of N was applied as organic slurry directly onto the wetland, with 5 distributions during 1998 to assess wetland performance in treating occasional organic loads. Field drainage loads had a discontinuous time pattern and occurred mostly during autumn-winter, with the exception of the 2001-2002 season which was a very dry. The wetland discharged 206 kg ha(-1) of N, over the 5-year period, with an apparent removal efficiency of about 90%. The disappearance was mostly due to plant uptake (1110 kg ha(-1)) and soil accumulation (570 kg ha(-1)), with the contribution of denitrification being estimated at around 7%. PMID:17270250

  17. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    NASA Astrophysics Data System (ADS)

    Yokoyama, F.

    2015-04-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area.

  18. Using land-cover change as dynamic variables in surface-water and water-quality models

    USGS Publications Warehouse

    Karstensen, Krista A.; Warner, Kelly L.; Kuhn, Anne

    2010-01-01

    Land-cover data are typically used in hydrologic modeling to establish or describe land surface dynamics. This project is designed to demonstrate the use of land-cover change data in surface-water and water-quality models by incorporating land-cover as a variable condition. The project incorporates three different scenarios that vary hydrologically and geographically: 1) Agriculture in the Plains, 2) Loon habitat in New England, and 3) Forestry in the Ozarks.

  19. U.S. Biofuel Policies and Domestic Shifts in Agricultural Land Use and Water Balances

    NASA Astrophysics Data System (ADS)

    Teter, J.; Yeh, S.; Mishra, G. S.

    2014-12-01

    Policies promoting domestic biofuels production could lead to significant changes in cropping patterns. Types of direct and indirect land use change include: switching among crops (displacement), expanding cropped area (extensification), and altering water/soil management practices (e.g. irrigation, tillage) (intensification). Most studies of biofuels water use impacts calculate the water intensity of biofuels in liters of irrigated/total evapotranspired water per unit energy of biofuels. But estimates based on this approach are sensitive to assumptions (e.g. co-product allocation, system boundaries), and do not convey policy-relevant information, as highlighted by the issue of land use change. We address these shortcomings by adopting a scenario-based approach that combines economic modeling with crop-water modeling of major crops and biofuel feedstocks. This allows us to holistically compare differences in water balances across policy scenarios in an integrated economic/agricultural system. We compare high spatial resolution water balance estimates under three hypothetical policy scenarios: 1) a counterfactual no-policy scenario, 2) modified Renewable Fuels Standard mandates (M-RFS2), & 3) a national Low Carbon Fuel Standard plus a modified RFS2 scenario (LCFS+RFS2). Differences between scenarios in crop water balances (i.e. transpiration, evaporation, runoff, groundwater infiltration, & irrigation) are regional and are a function of changes in land use patterns (i.e. displacement, intensification, & extensification), plus variation in crop water-use characteristics. Cropped land area increases 6.2% and 1.6% under M-RFS2 and LCFS+RFS2 scenarios, respectively, by 2030. Both policy scenarios lead to reductions in net irrigation volumes nationally compared to the no-policy scenario, though more irrigation occurs in regions of the Midwest and West. The LCFS+RFS2 reduces net irrigation water use by 3.5 times more than M-RFS2. However, both policies drive

  20. Assessing irrigated agriculture's surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling.

    PubMed

    Peña-Arancibia, Jorge L; Mainuddin, Mohammed; Kirby, John M; Chiew, Francis H S; McVicar, Tim R; Vaze, Jai

    2016-01-15

    Globally, irrigation accounts for more than two thirds of freshwater demand. Recent regional and global assessments indicate that groundwater extraction (GWE) for irrigation has increased more rapidly than surface water extraction (SWE), potentially resulting in groundwater depletion. Irrigated agriculture in semi-arid and arid regions is usually from a combination of stored surface water and groundwater. This paper assesses the usefulness of remotely-sensed (RS) derived information on both irrigation dynamics and rates of actual evapotranspiration which are both input to a river-reach water balance model in order to quantify irrigation water use and water provenance (either surface water or groundwater). The assessment is implemented for the water-years 2004/05-2010/11 in five reaches of the Murray-Darling Basin (Australia); a heavily regulated basin with large irrigated areas and periodic droughts and floods. Irrigated area and water use are identified each water-year (from July to June) through a Random Forest model which uses RS vegetation phenology and actual evapotranspiration as predicting variables. Both irrigated areas and actual evapotranspiration from irrigated areas were compared against published estimates of irrigated areas and total water extraction (SWE+GWE).The river-reach model determines the irrigated area that can be serviced with stored surface water (SWE), and the remainder area (as determined by the Random Forest Model) is assumed to be supplemented by groundwater (GWE). Model results were evaluated against observed SWE and GWE. The modelled SWE generally captures the observed interannual patterns and to some extent the magnitudes, with Pearson's correlation coefficients >0.8 and normalised root-mean-square-error<30%. In terms of magnitude, the results were as accurate as or better than those of more traditional (i.e., using areas that fluctuate based on water resource availability and prescribed crop factors) irrigation modelling. The RS