Science.gov

Sample records for agriculture national nutrient

  1. National Nutrient Database for Standard Reference - Find Nutrient Value of Common Foods by Nutrient

    MedlinePlus

    ... Department of Agriculture Agricultural Research Service National Nutrient Database for Standard Reference Release 28 NDL Home Food ... Sort by: Measure by: * required field ​ National Nutrient Database for Standard Reference Release 28 slightly revised May, ...

  2. A national scale monitoring network for nutrients in agriculture dominated headwaters in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Rozemeijer, J.; Klein, J.

    2012-04-01

    Although specific monitoring networks exist in the Netherlands which assess the leaching of nutrients to surface waters and groundwater, none of them was capable to quantify the effects of nutrient reduction schemes to agriculture dominated headwaters. Thus, an important link was missing which relates the nutrient concentrations measured in shallow groundwater at farm scale to nutrient concentrations measured at the scale of Water Framework Directive water bodies. A new network was composed using existing monitoring locations and water quality time series owned by the 24 water boards in the Netherlands. Only monitoring locations were selected where no other pollution sources , such as water sewage treatment plants were influencing water quality. Eventually, 168 monitoring locations were selected to assess compliance to environmental standards and 80 for trend analysis. Compliance was tested applying environmental quality standards (EQS) based on summer averaged concentrations, which are set by the water boards and which are water type and location dependent. Compliance was strongly weather dependent, and only 24% of the locations complied for N and P under all weather conditions. Trends were assessed using a combination of seasonal Mann-Kendall tests and Theil-Sen robust lines for individual time series, and aggregating those trends to acquire median and average trend slopes for the sand, clay and peat regions in the Netherlands. Significant downward trends were demonstrated for N and P over the whole period (slopes between -0,55 mgN/l and -0.015 and 0.02 mg P/l per 10 year). Slopes were even more pronounced for winter concentrations of N (-0.89 mg N/l per 10 year). The slopes were relevant and environmentally significant in relation to the height of the EQS and were attributed to the effective reduction of nutrient leaching as the result of adapted farming practices. The presentation will highlight and evaluate choices in the design of the newly composed network

  3. NATIONAL NUTRIENTS DATABASE

    EPA Science Inventory

    Resource Purpose:The Nutrient Criteria Program has initiated development of a National relational database application that will be used to store and analyze nutrient data. The ultimate use of these data will be to derive ecoregion- and waterbody-specific numeric nutrient...

  4. Precision Agriculture and Nutrient Cycling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture (PA) refers to the practice of managing agronomic inputs according to specific needs across the landscape. The major impediment to implement the adoption of PA is the development of decision-support systems. One way to achieve this objective is to integrate crop simulation mode...

  5. Nutrient Attenuation Under Natural Conditions in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are common practice in agricultural landscapes with poorly drained soils. Even though high concentrations of nutrients and other agricultural chemicals have been reportedly associated with agricultural drainage ditches, processes affecting nutrient transport in these ditches are not...

  6. Recovery of agricultural nutrients from biorefineries.

    PubMed

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. PMID:26948442

  7. Nutrient prices and concentrations in midwestern agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Policies to reduce nutrient emissions from agriculture rest on the assumption that it is very difficult to link inputs on farms to nutrient outputs. As a result, conservation programs fund the installation of best management practices that attempt to avoid, trap, or otherwise control nutrient emissi...

  8. Nutrients in the Nation?s streams and groundwater: National Findings and Implications

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Hamilton, Pixie A.

    2010-01-01

    A comprehensive national analysis of the distribution and trends of nutrient concentrations in streams and groundwater from 1992 through 2004 is provided by the National Water-Quality Assessment (NAWQA) Program of the United States Geological Survey (USGS). Findings describe the distribution and causes of varying nutrient concentrations in streams and groundwater throughout the Nation and examine the primary sources that contribute to elevated concentrations. Results show that excessive nutrient enrichment is a widespread cause of ecological degradation in streams and that nitrate contamination of groundwater used for drinking water, particularly shallow domestic wells in agricultural areas, is a continuing human-health concern. Finally, despite major Federal, State and local nonpoint-source nutrient control efforts for streams and watersheds across the Nation, USGS trend analyses for 1993?2003 suggest limited national progress to reduce the impacts of nonpoint sources of nutrients during this period. Instead, concentrations have remained the same or increased in many streams and aquifers across the Nation, and continue to pose risks to aquatic life and human health. This Fact Sheet highlights selected national findings and their implications, and serves as a companion product to the complete analysis reported in the USGS Circular titled ?The Quality of Our Nation?s Waters?Nutrients in the Nation?s Streams and Groundwater, 1992?2004.?

  9. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    NASA Astrophysics Data System (ADS)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities

  10. Assessing Nutrient Transport Following Dredging of Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are vital for many agricultural landscapes in the U.S. Previous research has indicated that dredging agricultural drainage ditches may degrade water quality. In this study, we monitored nutrient transport in two drainage ditches for six years (2003-2008), during which t...

  11. INCORPORATING NUTRIENT SENSING TECHNOLOGY IN PRODUCTION AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest impediment to using manual soil sampling followed by laboratory measurement for crop nutrient management is the time and expense associated with sampling, transportation, and analysis of the sample. While improvements in fertilizer nutrient use efficiency have been made relying on these...

  12. Nutrient Transport in Dredged Reaches of Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are a vital component of many of the more productive agricultural landscapes in the United States. These systems often require intensive management to ensure adequate removal of water from the system, but little is known about how ditch management affects nutrient losse...

  13. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  14. Agricultural water consumption decreasing nutrient burden at Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Tong, Yindong; Wang, Xuejun; Zhen, Gengchong; Li, Ying; Zhang, Wei; He, Wei

    2016-02-01

    In this study, we discussed the impacts of human water consumption to the nutrient burden in a river estuary, and used Huanghe River as a case study. The agricultural water consumption from the Huanghe River has significantly decreased the natural water flows, and the amount of water consumption could be almost twice as high as the water entering into the estuary. According to our calculation, agricultural water usage decreased TN outflows by 6.5 × 104 Mg/year and TP outflows by 2.0 × 103 Mg/year. These account for 74% and 77% of the total output loads. It has been widely reported that the majority of the rivers in northern China were severely polluted by nutrients. Its implication on the budget of nutrient in the estuary ecosystem is not well characterized. Our study showed that the discharge of nutrients in the coast waters from polluted rivers was over concerned. Nutrients in the polluted rivers were transported back to the terrestrial systems when water was drawn for human water consumption. The magnitudes of changes in riverine nutrient discharges even exceed the water-sediment regulation trails in the Huanghe River. It has non-negligible impact on estimating the nutrient burden in costal water ecosystem.

  15. 77 FR 1979 - National Organic Program (NOP); Sunset Review (2012) for Nutrient Vitamins and Minerals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...This proposed rule would address a recommendation submitted to the Secretary of Agriculture (Secretary) by the National Organic Standards Board (NOSB) on April 29, 2011. The recommendation pertains to the 2012 Sunset Review of the listing for nutrient vitamins and minerals on the U.S. Department of Agriculture's (USDA) National List of Allowed and Prohibited Substances (National List). As......

  16. Nutrient Losses from Row Crop Agriculture in Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient losses from agriculture in the Midwestern United States have been identified as contributing to water quality problems such as hypoxia in the Gulf of Mexico, and eutrophication in the great lakes. Fields and catchments in the Cedar Creek sub-watershed of the St. Joseph River basin were mon...

  17. Nutrient Losses from Row Crop Agriculture in Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Topic: USDA CEAP: Research Results and Recommendations Nutrient losses from row crop agriculture are known to contribute to water quality problems such as eutrophication and the zone of hypoxia in the Gulf of Mexico. Fields and catchments in the Cedar Creek sub-watershed of the St. Joseph River ba...

  18. Development of sample handling procedures for foods under USDA's National Food and Nutrient Analysis Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Food and Nutrient Analysis Program (NFNAP) was implemented in 1997 to update and improve the quality of food composition data maintained in the United States Department of Agriculture (USDA) National Nutrient Database for Standard Reference. NFNAP was designed to sample and analyze fre...

  19. Estimating nutrient releases from agriculture in China: an extended substance flow analysis framework and a modeling tool.

    PubMed

    Chen, M; Chen, J; Sun, F

    2010-10-01

    Agriculture related pollution has attracted the attention of policy makers as well as scientists in China as its contribution to water impairment has increased, and quantitative information at the national and regional levels is being sought to support decision making. However, traditional approaches are either time-consuming, expensive (e.g. national surveys) or oversimplified and crude (e.g. coefficient methods). Therefore, this study proposed an extended substance flow analysis (SFA) framework to estimate nutrient releases from agricultural and rural activities in China by depicting the nutrient flows in Chinese agro-ecosystems. The six-step process proposed herein includes: (a) system definition; (b) model development; (c) database development; (d) model validation; (e) results interpretation; and (f) uncertainty analysis. The developed Eubolism (Elementary Unit based nutrient Balance mOdeLIng in agro-ecoSysteM) model combined a nutrient balance module with an emission inventory module to quantify the nutrient flows in the agro-ecosystem. The model was validated and then applied to estimate the total agricultural nutrient loads, identify the contribution of different agricultural and rural activities and different land use types to the total loads, and analyze the spatial pattern of agricultural nutrient emissions in China. These results could provide an entire picture of agricultural pollution at the national level and be used to support policy making. Furthermore, uncertainties associated with the structure of the elementary units, spatial resolution, and inputs/parameters were also analyzed to evaluate the robustness of the model results. PMID:20691463

  20. Nutrient mitigation efficiency in agricultural drainage ditches: An influence of landscape properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage systems are integral parts of the agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental conventional and controlled (with weirs) agricultural drainage ditche...

  1. Critical source times for nutrient loss in agricultural catchment streams

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Shore, Mairead; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger; Murphy, Paul; Jordan, Phil

    2014-05-01

    Identifying periods of the year when there is a high risk of incidental nutrient loss from farms via runoff to streams underpins current nutrient management legislation in Europe. This research explored high-temporal resolution nutrient transfer patterns relative to the time that manure and fertiliser are prohibited from being spread (the mandatory spreading 'closed' period) in five Irish agricultural catchments. Catchment nutrient losses during the 12 week closed periods in 2009-10, 2010-11 and 2011-12 were compared with losses during the remainder of the year, and with losses in the two week 'shoulder' periods immediately before and after the closed period. The closed period losses were assumed to be residual from soil nutrient stores and the 'shoulder' periods were considered to also include incidental losses. Nutrient loss was measured at sub-hourly frequency as total phosphorus (P) and total oxidised nitrogen (mostly nitrate-N) fluxes in streamflow. The streamflow fluxes showed that the proportion of the annual nitrate-N loss occurring during the closed periods (33-61%) was high compared with the remainder of the year. Six to ten times more nitrate-N loss occurred in the two weeks after, compared with the two weeks before, the closed period. These two week 'shoulder' period losses were, on average, less than or equal to 2.5 kg nitrate-N/ha and 9% of total annual nitrate-N loss in streamflow. On average, 40-53% of the annual P loss occurred during the closed periods but in a runoff-prone catchment in a year with a wet summer, the closed period was the less risky period. Similar to nitrate-N, two to twenty times more P loss occurred in the two weeks after, compared with the two weeks before, the closed period. These shoulder period losses were, on average, less than or equal to 0.027 kg/ha and 4.2% of total annual P loss in streamflow. The proportion of the shoulder period loss that could be attributed to recently spread nutrients was not known but can be

  2. PLANT SENESCENCE: A MECHANISM FOR NUTRIENT RELEASE IN TEMPERATE AGRICULTURAL WETLANDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture drainage ditches are primary intercept wetlands in amelioration of nutrient pollution from agricultural fields. Drainage ditches, as integral components of the agricultural landscape, remove surface run-off and act as major conduits of nutrients from agricultural lands to receiving water...

  3. Prehistoric agricultural depletion of soil nutrients in Hawai'i.

    PubMed

    Hartshorn, A S; Chadwick, O A; Vitousek, P M; Kirch, P V

    2006-07-18

    We investigated the fate of soil nutrients after centuries of indigenous dryland agriculture in Hawai'i using a coupled geochemical and archaeological approach. Beginning approximately 500 years ago, farmers began growing dryland taro and sweet potato on the leeward slopes of East Maui. Their digging sticks pierced a subsurface layer of cinders, enhancing crop access to the soil water stored below the intact cinders. Cultivation also catalyzed nutrient losses, directly by facilitating leaching of mobile nutrients after disturbing a stratigraphic barrier to vertical water movement, and indirectly by increasing mineral weathering and subsequent uptake and harvest. As a result, centuries of cultivation lowered volumetric total calcium, magnesium, sodium, potassium, and phosphorus content by 49%, 28%, 75%, 37%, and 32%, respectively. In the absence of written records, we used the difference in soil phosphorus to estimate that prehistoric yields were sufficient to meet local demand over very long time frames, but the associated acceleration of nutrient losses could have compromised subsequent yields. PMID:16832047

  4. Prehistoric agricultural depletion of soil nutrients in Hawai'i

    PubMed Central

    Hartshorn, A. S.; Chadwick, O. A.; Vitousek, P. M.; Kirch, P. V.

    2006-01-01

    We investigated the fate of soil nutrients after centuries of indigenous dryland agriculture in Hawai‘i using a coupled geochemical and archaeological approach. Beginning ≈500 years ago, farmers began growing dryland taro and sweet potato on the leeward slopes of East Maui. Their digging sticks pierced a subsurface layer of cinders, enhancing crop access to the soil water stored below the intact cinders. Cultivation also catalyzed nutrient losses, directly by facilitating leaching of mobile nutrients after disturbing a stratigraphic barrier to vertical water movement, and indirectly by increasing mineral weathering and subsequent uptake and harvest. As a result, centuries of cultivation lowered volumetric total calcium, magnesium, sodium, potassium, and phosphorus content by 49%, 28%, 75%, 37%, and 32%, respectively. In the absence of written records, we used the difference in soil phosphorus to estimate that prehistoric yields were sufficient to meet local demand over very long time frames, but the associated acceleration of nutrient losses could have compromised subsequent yields. PMID:16832047

  5. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer

  6. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be

  7. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  8. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams.

    PubMed

    Black, Robert W; Moran, Patrick W; Frankforter, Jill D

    2011-04-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. PMID:20577796

  9. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  10. Sustainable Agriculture Course Delivered Nationally via Satellite.

    ERIC Educational Resources Information Center

    Salvador, R. J.; And Others

    1993-01-01

    Describes an instructional model for a sustainable agriculture telecourse offered nationally by Iowa State University. Includes preproduction activities; technology employed; budget; time requirements; course content; student postevaluation results. Provides information and suggestions for individuals and institutions considering production or…

  11. USDA’s National Food and Nutrient Analysis Program: Analytical Quality Control Procedures for Food Composition Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representative food samples collected under the United States Department of Agriculture's (USDA) National Food and Nutrient Analysis Program (NFNAP) are analyzed for composition of nutrients and other bioactive components. Standard procedures have been developed to describe how these primary food s...

  12. USDA NATIONAL NUTRIENT DATABASE FOR STANDARD REFERENCE

    EPA Science Inventory

    The USDA Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States. It provides the foundation for most food composition databases in the public and private sectors.

  13. Nutrient removal of agricultural drainage water using algal turf scrubbers and solar power

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoration of the Chesapeake Bay poses significant challenges because of increasing population pressure, conversion of farmland to urban/suburban development, and the expense of infrastructure needed to achieve significant and sustained nutrient reductions from agricultural and urban sources. One ...

  14. Nutrient content at the sediment-water interface of tile-fed agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extensive network of tile drains present in the Midwest USA accelerate losses of nutrients to receiving ditches, rivers and eventually to the Gulf of Mexico. Nutrient inputs from agricultural watersheds and their role in affecting water quality have received increased attention recently; however, be...

  15. Informing Lake Erie agriculture nutrient management via scenario evaluation

    USGS Publications Warehouse

    Scavia, Donald; Kalcic, Margaret; Muenich, Rebecca Logsdon; Aloysius, Noel; Arnold, Jeffrey; Boles, Chelsie; Confesor, Remegio; DePinto, Joseph; Gildow, Marie; Martin, Jay; Read, Jennifer; Redder, Todd; Robertson, Dale; Sowa, Scott P.; Wang, Yu-Chen; White, Michael; Yen, Haw

    2016-01-01

    Therefore, the overall goal of this study was to identify potential options for agricultural management to reduce phosphorus loads and lessen future HABs in Lake Erie. We applied multiple watershed models to test the ability of a series of land management scenarios, developed in consultation with agricultural and environmental stakeholders, to reach the proposed targets. 

  16. Nutrient Mitigation Efficiency in Agricultural Drainage Ditches: An Influence of Landscape Management.

    PubMed

    Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun

    2016-06-01

    Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches. PMID:27022936

  17. How agricultural landscape features control the transfer of nutrient and eutrophication risk in headwater catchments?

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Delmas, Magalie; Dorioz, Jean-Marcel; Garnier, Josette; Moatar, Florentina; Gascuel-Odoux, Chantal

    2014-05-01

    The degradation of surface water quality due to nitrogen and phosphorus pollution is a major concern for drinking water quality and ecosystems health. Numerous studies have demonstrated that headwater catchments are large contributors of nutrient loads to downstream waters bodies. In terms of scientific understanding of the processes controlling nutrient transfers, headwater catchments are relevant spatial units to study the role of landscape features because of the relatively low contribution of point sources and in-stream processes compared to larger river networks. This paper presents an analysis of the variability in space and time of observed N and P loads for a dataset of 160 headwater catchments at a national level (France). A multivariate statistical analysis was performed to relate observed N and P loads to spatial attributes describing agricultural landscapes and the physical characteristics of the catchments: climate, topography, soils, etc. We identified factors controlling N and P loads and N:P:Si ratios in freshwaters; and specifically spatially described factors, by considering river corridors and interaction between soils and land use attributes. The same catchment dataset is used to calibrate the Nutting model, i.e. a statistical model developed to estimate nutrient emission to surface water, using readily available data in France (Dupas et al., 2013). Nutting is a statistical model linking N/P sources and catchment land and river attributes to estimate mean interannual nitrate-N, total-N, dissolved-P and total-P loads. It allows to extrapolate nutrient loads in unmonitored catchments at a national level and to estimate the risk of eutrophication in freshwaters considering Redfield's (1963) N:P:Si ratios. Results show that N is in excess over silica in 93% of French headwater bodies, and that phosphorus is in excess over silica in 26%-65% of French headwater catchments. This means that between 26% and 63% of French headwaters are at risk of

  18. Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.

    2011-12-01

    The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.

  19. Sources of nutrients to windward agricultural systems in pre-contact Hawai'i.

    PubMed

    Palmer, Molly A; Graves, Michael; Ladefoged, Thegn N; Chadwick, Oliver A; Duarte, T Ka'eo; Porder, Stephen; Vitousek, Peter M

    2009-09-01

    Prior to European contact in 1778, Hawaiians developed intensive irrigated pondfield agricultural systems in windward Kohala, Hawai'i. We evaluated three potential sources of nutrients to windward systems that could have sustained intensive agriculture: (1) in situ weathering of primary and secondary minerals in upland soils; (2) rejuvenation of the supply of rock-derived nutrients on eroded slopes and in alluvium; and (3) transport of rock-derived nutrients to crops via irrigation water. Our results show that most windward soils are infertile and suggest that weathering of minerals within upland soils was insufficient to sustain intensive agriculture without substantial cultural inputs. Erosion enhances weathering and so increases nutrient supply, with soils of the largest alluvial valleys (>200 m deep) retaining 37% of calcium from parent material (compared to 2% in upland sites). However, soils of smaller valleys that also supported pre-contact agricultural systems are substantially less enriched. Isotopic 87Sr/86Sr analyses of stream water demonstrate that at low to moderate stream flow over 90% of dissolved strontium derives from weathering of basalt rather than deposition of atmospheric sources; most other dissolved cations also derive from basalt weathering. We calculate that irrigation water could have supplied approximately 200 kg ha(-1) yr(-1) of calcium to pondfield systems, nearly 100 times more than was supplied by weathering in soils on stable geomorphic surfaces. In effect, irrigation waters brought nutrients from rocks to the windward crops. PMID:19769093

  20. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  1. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    NASA Astrophysics Data System (ADS)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U

  2. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Under Secretary for Research, Education, and Economics § 2.68 Administrator, National Agricultural..., Education, and Economics to the Administrator, National Agricultural Statistics Service: (1) Prepare crop... Secretary for Research, Education, and Economics; (iv) Stationing representatives at such institutions...

  3. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Under Secretary for Research, Education, and Economics § 2.68 Administrator, National Agricultural..., Education, and Economics to the Administrator, National Agricultural Statistics Service: (1) Prepare crop... Secretary for Research, Education, and Economics; (iv) Stationing representatives at such institutions...

  4. Recent trends in nutrient concentrations in Swedish agricultural rivers.

    PubMed

    Ulén, B; Fölster, J

    2007-02-15

    In five out of twelve Swedish agricultural rivers examined during the period 1993-2004, significant trends for decreasing concentrations of reactive inorganic nitrogen (RIN) were indicated after flow normalisation. These decreases were constant (equal to 2-4% per year), most apparent in the Scania region, and weakly correlated to reductions in livestock density (Pearson correlation coefficient -0.825). The number of grazing cattle livestock units per unit area of arable land decreased on average by 14% and that of non-grazing cattle by 17% during 1985-2003. Based on estimates of root-zone leaching, increased area of set-aside and recent EU subsidisation of catch crops (with/without spring tillage) were suggested to be additional substantial causes but these changes were only rapid very recently (years 2000-2001). A significant and constant decrease in reactive phosphorus (RP) (3% per year) was observed in one river, mainly during the season of low flow, with reduced load from point sources suggested to be the main reason. Significant and constant reductions equal to 3-8% per year in concentrations of non-reactive phosphorus (NRP) were calculated for five rivers. These improvements were weakly correlated to the length of grassed buffer zones along the watercourses in arable parts of the river basin (Pearson correlation coefficient -0.845). Establishment of such zones also took place more recently, and together with constructed wetlands represent on average 0.5% of the agricultural area. PMID:17239939

  5. USDA National Nutrient Database for Standard Reference, release 28

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA National Nutrient Database for Standard Reference, Release 28 contains data for nearly 8,800 food items for up to 150 food components. SR28 replaces the previous release, SR27, originally issued in August 2014. Data in SR28 supersede values in the printed handbooks and previous electronic...

  6. USDA National Nutrient Database for Standard Reference, Release 25

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA National Nutrient Database for Standard Reference, Release 25(SR25)contains data for over 8,100 food items for up to 146 food components. It replaces the previous release, SR24, issued in September 2011. Data in SR25 supersede values in the printed handbooks and previous electronic releas...

  7. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Zahra; Abbott, Benjamin W.; Troccaz, Olivier; Baudry, Jacques; Pinay, Gilles

    2016-03-01

    Direct and indirect effects from human activity have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. Despite an abundance of studies investigating the impact of agricultural activity on water quality, our understanding of what determines the capacity of a watershed to remove or retain nutrients remains limited. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments by investigating the relationship between catchment characteristics, stream discharge, and water chemistry. We analyzed a 5-year, high-frequency water chemistry data set from three catchments in western France ranging from 2.3 to 10.8 km2. The relationship between hydrology and solute concentrations differed between the three catchments and was associated with hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness had relatively invariant carbon and nutrient chemistry across hydrologic conditions, indicating high resilience to human disturbance. Conversely, the catchments with smoother, thinner soils responded to both intra- and interannual hydrologic variation with high concentrations of phosphate (PO43-) and ammonium (NH4+) in streams during low flow conditions and strong increases in dissolved organic carbon (DOC), sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land-use configuration) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on water quality was both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent

  8. Regional scale variability in sediment and nutrient delivery from small agricultural watersheds.

    PubMed

    Verstraeten, Gert; Poesen, Jean

    2002-01-01

    Although many studies have pointed out the various controlling factors of sediment and nutrient delivery on a plot or watershed scale, little is known on the spatial variability of sediment and nutrient delivery on a regional scale. This study was conducted to reveal regional variations in sediment-associated nutrient delivery in central Belgium. Sediment deposited in 13 small retention ponds was sampled and analyzed for total phosphorus (TP), K, Mg, and Ca content. The TP content of the sediment deposits varied from 510 to 2001 mg P per kg sediment. Nutrients are predominantly fixed on the very fine sediment fraction (<16 microm), which is the reason why the nutrient trap efficiency of the ponds is only a fraction of the sediment trap efficiency. Average nutrient trap efficiency of the studied ponds varies between 4 and 31%, whereas sediment trap efficiency varies between 10 and 72%. For watersheds ranging from 7 to 4873 ha, sediment yield ranged between 1.2 and 20.6 Mg ha(-1) yr(-1), whereas TP export varied from 1.8 to 39.7 kg ha(-1) yr(-1). The observed spatial variability in nutrient losses is primarily attributed to regional variations in erosion and sediment yield values and to a far lesser degree to the spatial variations in fertilizer application. Redistribution of manure in the framework of an agricultural policy may increase the rate of nutrient delivery by ways of erosion and sediment transport. PMID:12026090

  9. Retention and transport of nutrients in a mature agricultural impoundment

    NASA Astrophysics Data System (ADS)

    Powers, S. M.; Julian, J. P.; Doyle, M. W.; Stanley, E. H.

    2013-03-01

    Small impoundments intended for irrigation, livestock watering, and hydropower are numerous in agricultural regions of the world. Many of these artificial water bodies are well positioned to intercept fertilizer runoff and pollutants but could be vulnerable to long-term sedimentation, management intervention, or failure. We examined solute retention in a mature, sediment-filled, run-of-river impoundment created by a small, >100 year old dam in agricultural Wisconsin, United States. To do so, we measured instantaneous net fluxes of inorganic and organic solutes through the system, which contained wetlands. The impoundment was a persistent net sink for sulfate and, during the warm season only, a net sink for nitrate, ammonium, and soluble reactive phosphorus. There was also a negative relationship between nitrate and sulfate retention, suggestive of nitrate-stimulated sulfate production. Impoundment hydraulics were then altered by a management manipulation (dam removal) that caused mean water travel time to decrease by approximately 40%. Following manipulation, autoregressive modeling of solute time series indicated a decrease in mean net retention of nitrate, sulfate, ammonium, and soluble reactive phosphorus. There was also a decrease in the variability (coefficient of variation) of instantaneous net exports of dissolved organic nitrogen and dissolved organic phosphorus. These biogeochemical changes were consistent with predictions based on hydraulics (reduced water travel time), with the exception of ammonium release immediately following reservoir dewatering. Our results emphasize the biogeochemical importance of reservoir-wetland ecosystems, which are expanding with impoundment sedimentation but are threatened by infrastructure aging. We suggest that reservoir wetlands be considered in the management of dams and surface water pollution.

  10. Relating management practices and nutrient export in agricultural watersheds of the United States

    USGS Publications Warehouse

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  11. Factors Influencing Nutrient Losses from Agriculture in the St. Joseph River Watershed, Northeast Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient losses from agricultural watersheds in Indiana have been implicated in the hypoxic zone in the Gulf of Mexico as well as massive algal blooms in Lake Erie. We monitored water quality from fields and drainage ditches in the St. Joseph River Watershed, Northeast Indiana. The complex ‘pot-ho...

  12. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural runoff often contains pollutants with potential antagonistic impacts on periphyton, such as nutrients and atrazine. The individual influence of these pollutants on periphyton has been extensively studied, but their impact when introduced in a more realistic scenario of multiple agricult...

  13. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    PubMed Central

    Wood, Stephen A.; Almaraz, Maya; Bradford, Mark A.; McGuire, Krista L.; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A.; Tully, Katherine L.; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. PMID:25926815

  14. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture.

    PubMed

    Wood, Stephen A; Almaraz, Maya; Bradford, Mark A; McGuire, Krista L; Naeem, Shahid; Neill, Christopher; Palm, Cheryl A; Tully, Katherine L; Zhou, Jizhong

    2015-01-01

    Tropical smallholder agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture. PMID:25926815

  15. A Method for Source-load Allocation of Nutrients in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Burkart, M. R.; James, D. E.

    2001-12-01

    Identification of pollutant sources is critical to solving water resource contamination problems. Non-point sources of agricultural pollution provide substantial challenges to quantifying and allocating the sources of contaminants to streams. A method is presented for identifying the spatial variability of nitrogen and phosphorus sources and allocating proportional responsibility for source-reduction. The method is applied to data at scales ranging from hydrologic regions (2-digit hydrologic accounting units) of the Mississippi drainage basin to the public land survey grid in two small (14-digit) watersheds. A mass balance of nutrient sources and losses is estimated using georeferenced data derived from national to local digital data bases. Nitrogen excess is estimated by balancing sources associated with inorganic fertilizer, manure, crop fixation, mineralization of organic matter, and atmospheric redeposition of ammonia with losses from crop harvest, plant senescence, denitrification, and volatilization of manure and inorganic fertilizer. Phosphorus sources from inorganic fertilizer and manure are balanced with losses due to crop harvest. Allocation in regional units allows targeting of major pollutant source areas while smaller aggregation areas define greater ranges of source-loads useful for specific allocation. Manure sources control the distribution of excess nutrients at many scales, particularly in watersheds with uniform cropping systems. Absolute values of excess N sources provide substantially different allocation patterns than proportional values of total source-loads. Selection of aggregation scale is critical to source-load allocation needed to define TMDLs, monitor loads, and establish water-quality remediation strategies. >http://www.nstl.gov/pubs/burkart/trends/index.html

  16. Towards a nutrient export risk matrix approach to managing agricultural pollution at source

    NASA Astrophysics Data System (ADS)

    Hewett, C. J. M.; Quinn, P. F.; Whitehead, P. G.; Heathwaite, A. L.; Flynn, N. J.

    A generic Nutrient Export Risk Matrix (NERM) approach is presented. This provides advice to farmers and policy makers on good practice for reducing nutrient loss and, hopefully, persuades them to implement such measures. Combined with a range of nutrient transport modelling tools and field experiments, NERMs can play an important role in reducing nutrient export from agricultural land. The Phosphorus Export Risk Matrix (PERM) is presented as an example NERM. The PERM integrates hydrological understanding of runoff with a number of agronomic and policy factors into a clear problem-solving framework. This allows farmers and policy makers to visualise strategies for reducing phosphorus loss through proactive land management. The risk of pollution is assessed by a series of informed questions relating to farming intensity and practice. This information is combined with the concept of runoff management to point towards simple, practical remedial strategies which do not compromise farmers’ ability to obtain sound economic returns from their crop and livestock.

  17. Evaluation of nutrient variability in highly consumed "fast foods" under the National Food and Nutrient Analysis Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA's National Food and Nutrient Analysis Program generates means and standard errors (S.E.) of nutrients in foods from nationally representative sample sets used in dietary assessment and consumer education. However, genetic makeup, growing/shipping/storage conditions, preparation techniques, and ...

  18. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land?

    PubMed

    Quilliam, Richard S; van Niekerk, Melanie A; Chadwick, David R; Cross, Paul; Hanley, Nick; Jones, Davey L; Vinten, Andy J A; Willby, Nigel; Oliver, David M

    2015-04-01

    Eutrophication is a major water pollution issue and can lead to excessive growth of aquatic plant biomass (APB). However, the assimilation of nutrients into APB provides a significant target for their recovery and reuse, and harvesting problematic APB in impacted freshwater bodies offers a complementary approach to aquatic restoration, which could potentially deliver multiple wider ecosystem benefits. This critical review provides an assessment of opportunities and risks linked to nutrient recovery from agriculturally impacted water-bodies through the harvesting of APB for recycling and reuse as fertilisers and soil amendments. By evaluating the economic, social, environmental and health-related dimensions of this resource recovery from 'waste' process we propose a research agenda for closing the loop on nutrient transfer from land to water. We identify that environmental benefits are rarely, if ever, prioritised as essential criteria for the exploitation of resources from waste and yet this is key for addressing the current imbalance that sees environmental managers routinely undervaluing the wider environmental benefits that may accrue beyond resource recovery. The approach we advocate for the recycling of 'waste' APB nutrients is to couple the remediation of eutrophic waters with the sustainable production of feed and fertiliser, whilst providing multiple downstream benefits and minimising environmental trade-offs. This integrated 'ecosystem services approach' has the potential to holistically close the loop on agricultural nutrient loss, and thus sustainably recover finite resources such as phosphorus from waste. PMID:25669857

  19. Biochar application to sandy and loamy soils for agricultural nutrient management

    NASA Astrophysics Data System (ADS)

    Gronwald, Marco; Don, Axel; Tiemeyer, Baerbel; Helfrich, Mirjam

    2014-05-01

    Soil fertility of agricultural soils is challenged by nutrients losses and increasing soil acidification. Furthermore, leached nutrients negatively affect the quality of ground and surface water 1]. In addition to the possible soil carbon sequestration by applying biochars, many positive soil-improving properties are attributed to biochars. The application of biochars to agricultural - especially sandy - soils could reduce leaching of nutrients and may improve their availability 1,2]. Thus, biochar application to agricultural fields could be an ecologically and economically viable option to improve soils' fertility. However, biochar properties strongly depend on their feedstock and production process 3]. Various types of biochars (pyrolysis char, hydrochar (produced at 200 and 250° C); feedstocks: digestate, Miscanthus and wood chips) were used to determine sorption kinetics and sorption isotherms for the major nutrients Ca, Mg, K, NH4 and NO3 as a function of biochar types in different soil substrates (sand, loess). In addition, the biochars were washed to create free binding sites on the chars' surface that simulate aged char. We compared the simulated aged char with biochars that was aged in-situ at a field experiment for seven months. The first results showed that pyrochars have the largest retention potential for NO3 and hydrochars have retention potential for NH4. Washing of biochars turned them from a PO4 and NH4 source into an adsorber, especially for hydrochars. Highest leaching was observed for biochars from digestates likely due to the high nutrient content of digestates. But the different ions may lead to pH-dependent interactions between each other and the chars' surface that override the adsoption effects. In this context, cation-bridge and ligand bindings 4,5] need to be further investigated. Most of the fresh, unwashed biochars were a source of nutrients with hardly any detectable nutrient retention. Pyrochars showed the highest potential for anion

  20. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments

    NASA Astrophysics Data System (ADS)

    Thomas, Z.; Abbott, B. W.; Troccaz, O.; Baudry, J.; Pinay, G.

    2015-09-01

    Direct and indirect effects from agriculture, urbanization, and resource extraction have dramatically increased nutrient loading to aquatic inland and estuarine ecosystems. The capacity of a watershed to remove or retain nutrients is a function of biotic and abiotic conditions across the terrestrial-aquatic gradient including soil, groundwater, riparian zone, and surface water. The goal of this study was to identify proximate and ultimate controls on dissolved organic carbon and nutrient dynamics in small agricultural catchments. We analysed a five-year, high frequency water chemistry dataset from 3 catchments ranging from 2.3 to 10.8 km2 in northwestern France. Catchments differed in the relationship between hydrology and solute concentrations, associated with catchment characteristics such as hedgerow density, agricultural activity, and geology. The catchment with thicker soil and higher surface roughness appeared to have greater transient storage and residence time, buffering the catchment to fluctuations in water chemistry, reflected in relatively invariant carbon and nutrient chemistry across hydrologic conditions. Conversely, the catchments with smoother, thinner soils responded to both intra- and inter-annual hydrologic variation with high concentrations of PO43- and NH4+ during low flow conditions and strong increases in DOC, sediment, and particulate organic matter during high flows. Despite contrasting agricultural activity between catchments, the physical context (geology, topography, and land use) appeared to be the most important determinant of catchment solute dynamics based on principle components analysis. The influence of geology and accompanying topographic and geomorphological factors on elemental fluxes is both direct and indirect because the distribution of agricultural activity in these catchments is largely a consequence of the geologic and topographic context. This link between inherent catchment buffering capacity and probability of human

  1. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  2. The nitrogen fate beyond the current nutrient mitigation measures: sustainability of an integrated agriculture

    NASA Astrophysics Data System (ADS)

    Thieu, V.; Billen, G. F.; Garnier, J.; Lancelot, C.; Gypens, N.

    2010-12-01

    Located in the North-Western Europe the terrestrial continuum that includes the Seine, Somme, and Scheldt River basins offers an interesting example of a transborder territory (France, Belgium, and Netherlands) with high-intensity anthropogenic pressures. It well-illustrates the rapid development of modern agriculture in industrialised countries and the resulting severe alteration of water resources and jeopardising the capacity of rural territories to produce drinking water. The corresponding nutrient loads delivered then into the Southern Bight of the North Sea, strongly affect the ecological functioning of the coastal zone. An integrated ‘river-ocean’ assessment, coupling two deterministic models - the SENEQUE RIVESTRAHLER model simulating nutrient dynamic in the drainage network and the MIRO model describing the ecological functioning coastal ecosystem - points out the relevance of current policy based measures (improvement of waste water treatment) to mitigate phosphorous emissions, while the nitrogen pollution related to agriculture will remain critical despite the implementation of classical management measure (good agricultural practices). Therefore and irrespectively of the current political agenda, a more radical alternative is established, consisting of a generalised shift to an integrated agriculture of all agricultural areas in the three basins, excluding the use of synthetically compounded fertilisers and the importation of livestock feed. Such scenario aims at evaluating whether agriculture, by essence, can conciliate (i) the demand for food and feed by local populations, (ii) a good ecological functioning of aquatic ecosystems and (iii) a balanced nutrient status for the adjacent coastal area. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy

  3. Predicting Sediment and Nutrient Loads for Selected Agricultural Watersheds in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Ren, J.; Campbell, J. B.; Shao, Y.

    2015-12-01

    Changing agricultural land use and land management practices are regarded as one of the main factors driving water quality degradation. Landscapes of the Midwestern United States have experienced significant changes in expansion of corn production in response to the growing demand for corn-based ethanol. This study integrated remote sensing-derived products and the Soil and Water Assessment Tool (SWAT) within a geographic information system (GIS) modeling environment to estimate sediment and nutrient loads associated with land use change and land management practices within three selected watersheds in the Midwestern United States. The SWAT models were calibrated during a 6-year period (2000-2005) to forecast, and then validate, estimated stream flows. Then, our SWAT models were applied to estimate sediment and nutrient loadings for several future agricultural and climate scenarios.

  4. Effects of Agricultural and Conservation Practices on Nutrients Losses from the St. Joseph River Watershed, Northeast Indiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture has been identified as a primary contributor to nutrients that cause algal blooms in the Gulf of Mexico and Lake Erie. Since 2002, we have been monitoring water quality from agricultural drainage ditches in the St. Joseph River watershed to assess the impacts of agricultural and conserva...

  5. The role of precision agriculture for improved nutrient management on farms.

    PubMed

    Hedley, Carolyn

    2015-01-01

    Precision agriculture uses proximal and remote sensor surveys to delineate and monitor within-field variations in soil and crop attributes, guiding variable rate control of inputs, so that in-season management can be responsive, e.g. matching strategic nitrogen fertiliser application to site-specific field conditions. It has the potential to improve production and nutrient use efficiency, ensuring that nutrients do not leach from or accumulate in excessive concentrations in parts of the field, which creates environmental problems. The discipline emerged in the 1980s with the advent of affordable geographic positioning systems (GPS), and has further developed with access to an array of affordable soil and crop sensors, improved computer power and software, and equipment with precision application control, e.g. variable rate fertiliser and irrigation systems. Precision agriculture focusses on improving nutrient use efficiency at the appropriate scale requiring (1) appropriate decision support systems (e.g. digital prescription maps), and (2) equipment capable of varying application at these different scales, e.g. the footprint of a one-irrigation sprinkler or a fertiliser top-dressing aircraft. This article reviews the rapid development of this discipline, and uses New Zealand as a case study example, as it is a country where agriculture drives economic growth. Here, the high yield potentials on often young, variable soils provide opportunities for effective financial return from investment in these new technologies. PMID:24816925

  6. Climate change and agricultural development: adapting Polish agriculture to reduce future nutrient loads in a coastal watershed.

    PubMed

    Piniewski, Mikołaj; Kardel, Ignacy; Giełczewski, Marek; Marcinkowski, Paweł; Okruszko, Tomasz

    2014-09-01

    Currently, there is a major concern about the future of nutrient loads discharged into the Baltic Sea from Polish rivers because they are main contributors to its eutrophication. To date, no watershed-scale studies have properly addressed this issue. This paper fills this gap by using a scenario-modeling framework applied in the Reda watershed, a small (482 km²) agricultural coastal area in northern Poland. We used the SWAT model to quantify the effects of future climate, land cover, and management changes under multiple scenarios up to the 2050s. The combined effect of climate and land use change on N-NO3 and P-PO4 loads is an increase by 20-60 and 24-31 %, respectively, depending on the intensity of future agricultural usage. Using a scenario that assumes a major shift toward a more intensive agriculture following the Danish model would bring significantly higher crop yields but cause a great deterioration of water quality. Using vegetative cover in winter and spring (VC) would be a very efficient way to reduce future P-PO4 loads so that they are lower than levels observed at present. However, even the best combination of measures (VC, buffer zones, reduced fertilization, and constructed wetlands) would not help to remediate heavily increased N-NO3 loads due to climate change and agricultural intensification. PMID:24154850

  7. Methods of Imputation used in the USDA National Nutrient Database for Standard Reference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To present the predominate methods of imputing used to estimate nutrient values for foods in the USDA National Nutrient Database for Standard Reference (SR20). Materials and Methods: The USDA Nutrient Data Laboratory developed standard methods for imputing nutrient values for foods wh...

  8. Agricultural management change effects on river nutrient yields in a catchment of Central Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Y.

    2009-04-01

    Modelling efforts are strongly recommended nowadays by European legislation for investigating non-structural mitigation measures against water pollution on catchment scale. Agricultural diffuse pollution is considered to be the main responsible human activity for the Eutrophication of inland waters with nitrogen (N) and phosphorus (P). The physically-based water quality model SWAT is implemented in an agricultural medium-size agricultural catchment of Central Greece with the purpose to simulate the baseline situation and subsequently to predict the effects that realistic non-structural interventions, applied on the agricultural land, have on water quality and crop yields. SWAT was successfully calibrated according to measured flows and water quality data and subsequently scenarios were developed by changing chemical fertilizer application rates and timing on corn, cotton and wheat cultivations. All scenarios resulted in a decrease of nutrient emissions to surface waters but with a simultaneous small decrease in crop yields. The model predicted explicitly the consequences of non-structural mitigation measures against water pollution sustaining that the understanding of land management changes in relation to its driving factors provides essential information for sustainable management of the agricultural sector in an agricultural country like Greece.

  9. A palaeolimnological investigation into nutrient impact and recovery in an agricultural catchment.

    PubMed

    O'Dwyer, Barry; Crockford, Lucy; Jordan, Phil; Hislop, Lindsay; Taylor, David

    2013-07-30

    Widespread deterioration in water quality as a result of anthropogenic activity has led to the development and implementation of measures aimed at the protection of water resources in the EU. To date, however, relatively little attention has been paid to the effectiveness of these measures. Evidence from an enrichment-sensitive lake permitted reconstructions of changes in ecological and chemical water quality over the last c. 150-200 years, a period that includes a mid to late 20th century intensification of agriculture that was widely experienced across the European Union and the subsequent implementation of measures aimed at protecting water resources against pollution from farming. The data show the development of a more nutrient-tolerant diatom community from early in the 20th century, while the main trophic changes occurred from the 1950s, with the site becoming eutrophic by the 1960s. Heightened enrichment is thought to be linked to enhanced levels of phosphorus (P) transfers from the surrounding grassland catchment owing to an intensification of agricultural activities locally. Most recently, since the late 1990s and particularly post-2007, evidence suggests a decrease in aquatic enrichment, despite continued increases in agricultural intensification. This decoupling is likely to mark a successful implementation in 2006 of measures aimed at decreasing diffuse nutrient transfers from catchments linked to agri-environmental policies in Europe. The research highlights the importance of enrichment-sensitive water bodies as sentinel sites in the monitoring of both external and internal nutrient loadings as agricultural activities and other pressures change within the context of implementing regulatory responses to earlier declines in water quality. PMID:23490624

  10. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  11. Developing unique tracers to distinguish nutrient contributions from agriculture and wastewater sources in the Choptank River and Anacostia River watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutrophication is a major problem for the Chesapeake Bay ecosystem. The efficacy of the restoration efforts implemented is restricted by the inability to differentiate nutrient sources. This study assessed the use of stable tracers in order to discriminate between urban and agricultural nutrient sou...

  12. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions

    NASA Astrophysics Data System (ADS)

    Strokal, Maryna; Ma, Lin; Bai, Zhaohai; Luan, Shengji; Kroeze, Carolien; Oenema, Oene; Velthof, Gerard; Zhang, Fusuo

    2016-02-01

    Transitions in Chinese agriculture resulted in industrial animal production systems, disconnected from crop production. We analyzed side-effects of these transitions on total dissolved nitrogen (TDN) and phosphorus (TDP) inputs to rivers. In 2000, when transitions were ongoing, 30%-70% of the manure was directly discharged to rivers (range for sub-basins). Before the transition (1970) this was only 5%. Meanwhile, animal numbers more than doubled. As a result, TDN and TDP inputs to rivers increased 2- to 45-fold (range for sub-basins) during 1970-2000. Direct manure discharge accounts for over two-thirds of nutrients in the northern rivers and for 20%-95% of nutrients in the central and southern rivers. Environmental concern is growing in China. However, in the future, direct manure inputs may increase. Animal production is the largest cause of aquatic eutrophication. Our study is a warning signal and an urgent call for action to recycle animal manure in arable farming.

  13. Climatic and agricultural factors in nutrient exports from two watersheds in Ohio.

    PubMed

    Moog, Douglas B; Whiting, Peter J

    2002-01-01

    Export of agricultural nutrients and sediment to lakes and oceans is of great environmental concern in many agricultural watersheds. Recent years have seen efforts to reduce loads through agricultural practices such as conservation tillage, efficient fertilization, and reservation of erodible areas. Monitoring the efficacy of such efforts is complicated by the fact they take place against a varying climatic and hydrologic background. In this study, statistical analysis was used to identify those climatic, hydrologic, and agricultural variables that best explained variations in nitrate, phosphorus, and total suspended solids over the period 1976-1995 in two large agricultural watersheds that feed Lake Erie, those of the Maumee and Sandusky Rivers. The dominant variable was stream discharge; after curvefits to remove its influence, the residual loads were tested via stepwise linear regression to reveal the most significant explanatory variables. Loads of nitrate, total suspended solids, and total phosphorus tended to decrease when previous months were wet, except in the summer, and to decrease when snow cover was extensive. It is speculated that stores of nitrate in the soil were lost during wet periods through increased crop uptake and/or leaching. Nitrogen fertilizer application in the Maumee watershed decreased following dry periods, but not enough to decrease stream loads. Soluble reactive phosphorus loads were negatively correlated to conservation tillage and reserves, and positively correlated to fertilizer and manure sources. Results for total phosphorus were similar to those for total suspended solids, on which most transported phosphorus is adsorbed. PMID:11837447

  14. Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater treatment.

    PubMed

    Spångberg, J; Tidåker, P; Jönsson, H

    2014-09-15

    Human excreta are potential sources of plant nutrients, but are today usually considered a waste to be disposed of. The requirements on wastewater treatment plants (WWTPs) to remove nitrogen and phosphorus are increasing and to meet these requirements, more energy and chemicals are needed by WWTPs. Separating the nutrient-rich wastewater fractions at source and recycling them to agriculture as fertiliser is an alternative to removing them at the WWTP. This study used life cycle assessment methodology to compare the environmental impact of different scenarios for recycling the nutrients in the human excreta as fertiliser to arable land or removing them in an advanced WWTP. Three scenarios were assessed. In blackwater scenario, blackwater was source-separated and used as fertiliser. In urine scenario, the urine fraction was source-separated and used as fertiliser and the faecal water treated in an advanced WWTP. In NP scenario, chemical fertiliser was used as fertiliser and the toilet water treated in an advanced WWTP. The emissions from the WWTP were the same for all scenarios. This was fulfilled by the enhanced reduction in the WWTP fully removing the nutrients from the excreta that were not source-separated in the NP and urine scenarios. Recycling source-separated wastewater fractions as fertilisers in agriculture proved efficient for conserving energy and decreasing global warming potential (GWP). However, the blackwater and urine scenarios had a higher impact on potential eutrophication and potential acidification than the WWTP-chemical fertiliser scenario, due to large impacts by the ammonia emitted from storage and after spreading of the fertilisers. The cadmium input to the arable soil was very small with urine fertiliser. Source separation and recycling of excreta fractions as fertiliser thus has potential for saving energy and decreasing GWP emissions associated with wastewater management. However, for improved sustainability, the emissions from storage and

  15. Influence of Environmental Factors on Biotic Responses to Nutrient Enrichment in Agricultural Streams1

    PubMed Central

    Maret, Terry R; Konrad, Christopher P; Tranmer, Andrew W

    2010-01-01

    The influence of environmental factors on biotic responses to nutrients was examined in three diverse agricultural regions of the United States. Seventy wadeable sites were selected along an agricultural land use gradient while minimizing natural variation within each region. Nutrients, habitat, algae, macroinvertebrates, and macrophyte cover were sampled during a single summer low-flow period in 2006 or 2007. Continuous stream stage and water temperature were collected at each site for 30 days prior to sampling. Wide ranges of concentrations were found for total nitrogen (TN) (0.07-9.61 mg/l) and total phosphorus (TP) (<0.004-0.361 mg/l), but biotic responses including periphytic and sestonic chlorophyll a (RCHL and SCHL, respectively), and percent of stream bed with aquatic macrophyte (AQM) growth were not strongly related to concentrations of TN or TP. Pearson’s coefficient of determination (R2) for nutrients and biotic measures across all sites ranged from 0.08 to 0.32 and generally were not higher within each region. The biotic measures (RCHL, SCHL, and AQM) were combined in an index to evaluate eutrophic status across sites that could have different biotic responses to nutrient enrichment. Stepwise multiple regression identified TN, percent canopy, median riffle depth, and daily percent change in stage as significant factors for the eutrophic index (R2 = 0.50, p < 0.001). A TN threshold of 0.48 mg/l was identified where eutrophic index scores became less responsive to increasing TN concentrations, for all sites. Multiple plant growth indicators should be used when evaluating eutrophication, especially when streams contain an abundance of macrophytes. PMID:22457568

  16. Incidental nutrient transfers: Assessing critical times in agricultural catchments using high-resolution data.

    PubMed

    Shore, Mairead; Jordan, Phil; Melland, Alice R; Mellander, Per-Erik; McDonald, Noeleen; Shortle, Ger

    2016-05-15

    Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers. PMID:26933967

  17. Assessing the Success of Regional Measures for Lowering Agricultural Nutrient Pollution in Headwater Streams.

    PubMed

    Barry, C D; Foy, R H

    2016-07-01

    Lowland waters in Northern Ireland experience elevated agricultural phosphorus (P) inputs, and in response a variety of control measures targeting farm nutrient management have been implemented. Their efficacy in lowering nitrogen (N) and P exports and improving water quality is examined in 40 headwater streams from 1990 to 2009, and to 2014 for 24 of these. Over this period manure production in the study catchments declined by 7%, but regional chemical fertilizer inputs declined by 37% for N and 79% for P, and the regional nutrient surplus was lowered by 18% for N and 49% for P. Diminished pollution by organic wastes meant that 85% of streams exhibited chemistry suitable for salmonids in 2009 compared to 40% in 1990. Flow-weighted mean concentrations (FWMCs) of nutrients declined between 1990 and 2009, and their correlations with catchment stocking rates became stronger over time. For catchments with manure inputs <16.6 kg P ha, total P and nitrate FWMCs declined from 123 ± 19 μg P L and 1.92 ± 0.5 mg N L in 1990 at rates of 2.2 ± 0.5 and 30 ± 10 μg L yr, respectively. For catchments with higher manure inputs the respective rates of decline were greater at 5.8 ± 1.0 μg P L yr and 160 ± 20 μg N L yr from 1990 concentrations of 270 ± 25 μg P L and 5.99 ± 0.4 mg N L. Although now lower, P concentrations in the more highly stocked catchments still exceed regional nutrient standards so that the identification of further factors impinging on nutrient losses is critical if such standards are to be achieved. PMID:27380082

  18. The relative influence of nutrients and habitat on stream metabolism in agricultural streams

    USGS Publications Warehouse

    Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L.

    2010-01-01

    Stream metabolism was measured in 33 streams across a gradient of nutrient concentrations in four agricultural areas of the USA to determine the relative influence of nutrient concentrations and habitat on primary production (GPP) and respiration (CR-24). In conjunction with the stream metabolism estimates, water quality and algal biomass samples were collected, as was an assessment of habitat in the sampling reach. When data for all study areas were combined, there were no statistically significant relations between gross primary production or community respiration and any of the independent variables. However, significant regression models were developed for three study areas for GPP (r 2 = 0.79-0.91) and CR-24 (r 2 = 0.76-0.77). Various forms of nutrients (total phosphorus and area-weighted total nitrogen loading) were significant for predicting GPP in two study areas, with habitat variables important in seven significant models. Important physical variables included light availability, precipitation, basin area, and in-stream habitat cover. Both benthic and seston chlorophyll were not found to be important explanatory variables in any of the models; however, benthic ash-free dry weight was important in two models for GPP. ?? 2009 The Author(s).

  19. A hindcast and forecast of management of agricultural nutrient losses in Denmark: a change in paradigm (Invited)

    NASA Astrophysics Data System (ADS)

    kronvang, B.; Blicher-Mathiesen, G.; Windolf, J.; Grant, R.

    2013-12-01

    Four major Action Plans on the Aquatic Environment have been implemented in Denmark since 1987 with the aim to reduce by 50% the nitrogen (N) loading and by 80% the phosphorus (P) loading to the aquatic environment. At the same time the Danish National Aquatic Monitoring and Assessment Programme (NOVA) was launched with the aim to follow the effects of the obligatory implemented management strategies in Danish agriculture. Monitoring of the effects took place in 5 small agricultural catchments in soil water, groundwater and surface waters with annual interviews of farmers practices at field level as well as a general monitoring of nutrient concentrations in groundwater, streams, rivers, lakes and estuaries all over Denmark. Considerable changes in agricultural practice (storage of slurry, ban on slurry spreading in autumn and winter, strict requirements to N-use in animal manure, N-norms to all crops to be fixed to 10% below economic optimum, etc.) have resulted in a reduction of the net N-surplus from 136 to 75 kg N ha-1 yr-1 (45%) and the net P-surplus from 19 to around 0 kg P ha-1 yr-1 (100%) during the period 1985-2011..Twenty-five years of experience gathered from NOVA have shown that the losses of total N (TN) and total P (TP) to the marine environment from both point sources and diffuse sources has decreased with 50% and 50%, respectively. The reduction in TN losses alone amounts to 40%, whereas no general reduction in TP from diffuse losses can be detected. Despite the great efforts in improving the management of N and P in Danish agriculture the sector is today still the major source of both N (80%) and P (50%) in Danish streams, lakes and coastal waters. The ecological conditions in Danish streams, lakes and estuaries are still below the at least good ecological quality required by the EU Water Framework Directive adopted in year 2000. As global demand for food is increasing the Danish Government last year initiated a commission to publish a white book on

  20. The National Food and Nutrient Analysis Program: A decade of progress

    PubMed Central

    Haytowitz, David B.; Pehrsson, Pamela R.; Holden, Joanne M.

    2009-01-01

    The National Food and Nutrient Analysis Program (NFNAP) was designed to expand the quantity and improve the quality of data in the United States Department of Agriculture (USDA) food composition databases through the collection and analysis of nationally representative samples of foods and beverages. This paper describes some of the findings from the NFNAP and its impact on the food composition databases produced by USDA. The NFNAP employs statistically valid sampling plans, comprehensive quality control, and USDA analytical oversight as part of the program to generate new and updated analytical data for food components. USDA food consumption and composition data were used to target those foods that are major contributors of nutrients of public health significance to the U.S. diet (454 Key Foods). Foods were ranked using a scoring system, divided into quartiles, and reviewed to determine the impact of changes in their composition compared to historical values. Foods were purchased from several types of locations, such as retail outlets and fast food restaurants in different geographic areas as determined by the sampling plan, then composited and sent for analysis to commercial laboratories and cooperators, along with quality control materials. Comparisons were made to assess differences between new NFNAP means generated from original analytical data and historical means. Recently generated results for nationally representative food samples show marked changes compared to database values for selected nutrients from unknown or non-representative sampling. A number of changes were observed in many high consumption foods, e.g. the vitamin A value for cooked carrots decreased from 1,225 to 860 RAE/100g; the fat value for fast food French fried potatoes increased by 13% (14.08 to 17.06 g/100g). Trans fatty acids in margarine have decreased as companies reformulate their products in response to the required addition of trans fatty acids content on the nutrition label

  1. Effects of physical and morphometric factors on nutrient removal properties in agricultural ponds.

    PubMed

    Saito, M; Onodera, S; Okubo, K; Takagi, S; Maruyama, Y; Jin, G; Shimizu, Y

    2015-01-01

    Effects of physical and morphometric factors on nutrient removal properties were studied in small agricultural ponds with different depths, volumes, and residence times in western Japan. Average residence time was estimated to be >15 days, and it tended to decrease from summer to winter because of the increase in water withdrawal for agricultural activity. Water temperature was clearly different between the surface and bottom layers; this indicates that thermal stratification occurred in summer. Chlorophyll-a was significantly high (>20 μg/L) in the surface layer (<0.5 m) and influenced by the thermal stratification. Removal ratios of dissolved total nitrogen (DTN) and dissolved total phosphorus in the ponds were estimated to be 53-98% and 39-98% in August and 10-92% and 36-57% in December, respectively. Residence time of the ponds was longer in August than in December, and DTN removal, in particular, was more significant in ponds with longer residence time. Our results suggest residence time is an important factor for nitrogen removal in small agricultural ponds as well as large lakes. PMID:26676006

  2. Trends in nutrient concentrations in Latvian rivers and the response to the dramatic change in agriculture

    NASA Astrophysics Data System (ADS)

    Stålnacke, P.; Grimvall, A.; Libiseller, C.; Laznik, M.; Kokorite, I.

    2003-12-01

    In recent years, the use of fertilisers in the Baltic countries (Estonia, Latvia, and Lithuania) has decreased at an unprecedented rate. The import of mineral fertilisers and feed stuff became almost non-existent, and extensive slaughtering of livestock reduced the amount of manure. In Latvia, the purchase of mineral fertilisers decreased by a factor of 15 between 1987 and 1996 and the number of livestock decreased with a factor of almost 4 during the same time period. Such abrupt and comprehensive changes in land use have never before occurred in the history of modern European agriculture. Here, the impact that this dramatic reduction has had on concentrations of nutrients in Latvian rivers is examined. To discern temporal changes, statistical analyses were undertaken on time series of nutrient concentrations and relationships between concentrations and runoff at 12 sampling sites in ten Latvian rivers covering drainage areas from 334 to 64,000 km 2. Considering the study period 1987-1998, only four of the 12 sites showed statistically significant downward trends (one-sided test at the 5% level) in the dissolved inorganic nitrogen (DIN=NO 3-N+NO 2-N+NH 4-N) data. There are probably two main explanations for the weak DIN trends. Firstly, long water-transit times in the soilwater and groundwater may have caused substantial time lag between changes in input and output of nitrate in the studied catchments. Secondly, the loss of DIN might have been dominated by mineralisation of large pools of organic nitrogen that have accumulated over several years. These inferences are supported by (i) a hydrograph recession analysis and (ii) indications of DIN transformation processes, presumably denitrification, in smaller streams and channels, based on measurements in small agricultural catchments (1-4 km 2) in Estonia and Latvia. Formal testing of trends in phosphorus data revealed that marked drops occurred in riverine concentrations at six sites in 1987-1998. A joint analysis

  3. USDA's National Food and Nutrient Analysis Program: The Development of Food Sampling Plans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National nutrient databases depend on the generation of original analytical data to estimate nutrient values for key foods in the national food supply. For a given country, the generation of representative analytical values of these key foods requires the collection of units according to predetermin...

  4. Water and Nutrient Balances in a Large Tile-Drained Agricultural Catchment: A Distributed Modeling Study

    SciTech Connect

    Li, Hongyi; Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2010-11-16

    This paper presents the development and implementation of a distributed model of coupled water nutrient processes, based on the representative elementary watershed (REW) approach, to the Upper Sangamon River Basin, a large, tile-drained agricultural basin located in central Illinois, mid-west of USA. Comparison of model predictions with the observed hydrological and biogeochemical data, as well as regional estimates from literature studies, shows that the model is capable of capturing the dynamics of water, sediment and nutrient cycles reasonably well. The model is then used as a tool to gain insights into the physical and chemical processes underlying the inter- and intra-annual variability of water and nutrient balances. Model predictions show that about 80% of annual runoff is contributed by tile drainage, while the remainder comes from surface runoff (mainly saturation excess flow) and subsurface runoff. It is also found that, at the annual scale nitrogen storage in the soil is depleted during wet years, and is supplemented during dry years. This carryover of nitrogen storage from dry year to wet year is mainly caused by the lateral loading of nitrate. Phosphorus storage, on the other hand, is not affected much by wet/dry conditions simply because the leaching of it is very minor compared to the other mechanisms taking phosphorous out of the basin, such as crop harvest. The analysis then turned to the movement of nitrate with runoff. Model results suggested that nitrate loading from hillslope into the channel is preferentially carried by tile drainage. Once in the stream it is then subject to in-stream denitrification, the significant spatio-temporal variability of which can be related to the variation of the hydrologic and hydraulic conditions across the river network.

  5. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices.

    PubMed

    Vagstad, N; French, H K; Andersen, H E; Behrendt, H; Grizzetti, B; Groenendijk, P; Lo Porto, A; Reisser, H; Siderius, C; Stromquist, J; Hejzlar, J; Deelstra, J

    2009-03-01

    This article presents a comparative study of modelled changes in nutrient losses from two European catchments caused by modifications in agricultural practices. The purpose was not to compare the actual models used, but rather to assess the uncertainties a manager may be faced with after receiving decision support from consultants using different models. Seven modelling teams were given the same data about two catchments and their management characteristics and were asked to model the same changes in management practices using the model of their own choice. This can potentially cause accumulated 'errors' due to differences in the modelling teams' interpretation of relevant processes and definitions of boundary conditions (inputs). The study was carried out within the framework of the EUROHARP project, which aimed at harmonising procedures for quantifying diffuse losses of nitrogen and phosphorus from agriculture. Models are important for assessing river basin management plans (RBMPs) as required e.g. under the EC Water Framework Directive and Action Plans under the EC Nitrates Directive. This article illustrates some challenges with respect to interpreting such modelling results. The selected management scenarios include changes in fertiliser application levels, changes in livestock numbers and changes in land-use and crop rotation systems. Seven models were applied for the same scenarios in the Enza catchment in Italy and the Zelivka catchment in the Czech Republic. All models had been calibrated and validated with respect to historical data of climatic conditions, water quality and discharge measurements. The modelling results reveal a variation in predicted effects of the management scenarios, causing different conclusions with respect to choice of best management practice for reducing nutrient losses. The study demonstrates that it is important that care is taken by modellers and involved decision makers throughout the entire modelling process, both with regard

  6. THE NATIONAL AGRICULTURAL WORKERS SURVEY (NAWS)

    EPA Science Inventory

    The U.S. Department of Labor is the only national information source on the demographics, and working and living conditions of U.S. farm workers. Since the NAWS began surveying farm workers in 1988, it has collected information from over 25,000 workers. The survey samples all cro...

  7. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils. PMID:23260239

  8. (Negative) Impacts of Intensive Agriculture in the Neighborhood of the National Park Lower Oder Valley

    NASA Astrophysics Data System (ADS)

    Chmieleski, Jana; Herrmann, Frank

    2014-05-01

    National Parks are areas of special interest with regard to biodiversity, development of wilderness but also water quality as well as socio-economic functions as education and recreation. Agricultural use is restricted to small parts of the area. But which problems arise from intensive agriculture directly outside of the National Park area? Referred to as water pollution and nutrient leaching trough groundwater pathways, shifting of nutrients via soil erosion there are a lot of problems arising and are increasing due to intensification of land use, for instance for bioenergy crops (maize). How this can be quali- and quantified? The German National Park Lower Oder Valley protects the floodplain and the riparian zone of the river Oder as well as old deciduous forest on the mineral plateau. The shape is elongated and narrow. The edge with non-protected is large. In the Northern part are industrial areas. Large areas more and more are used for bioenergy crops. This results in high nitrate and phosphorous concentrations in soil and interflow/groundwater. Often this water is gathered in drainage canals which end up in natural small waterways. Outside the National Park the waterways often are drains but inside the Park area they are (semi-)natural. These waterways are of high interest with redarding to nature conservation aspects - since they are in (very) good structural conditions (Water Frame Work evaluation). How to deal with this discrepancy? In order to quali- and quantify nutrient concentration and transport as well as to detect the change of vegetation and habitats in the whole National Park we set up an environmental observatory by installing transect measurements as well as point measurements.

  9. Agricultural conservation planning framework: 1. Developing multi-practice watershed planning scenarios and assessing nutrient reduction potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We show that spatial data on soils, land use, and high-resolution topography, combined with knowledge of conservation practice effectiveness, can be leveraged to identify and assess alternatives to reduce nutrient discharge from small (HUC12) agricultural watersheds. Databases comprising soil attrib...

  10. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their

  11. 76 FR 62755 - National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Office of the Secretary National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting Notice AGENCY: Research, Education, and Economics, United States Department of Agriculture..., and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education,...

  12. Loads and Transport Processes of Nutrients and Pesticides in Five Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Ator, S. W.; Lampe, D. C.; Baker, N. T.; Sandstrom, M. W.; Coupe, R. H.; Dileanis, P. D.

    2006-05-01

    A comparative study of five agricultural watersheds spanning a range of climatic and hydrologic conditions was completed as part of a larger study on the transport of nutrients and pesticides in multiple environmental compartments of small watersheds. Attention was given to the role of the unsaturated zone, ground water, the ground-water/surface-water interface, overland flow, and rain to account for the loads and to determine which compounds move through the environment in similar ways. In ephemeral streams, with little or no connection to shallow ground water such as in semi-arid settings, most of the chemical transport occurs following precipitation events. In contrast, some heavily irrigated agricultural watersheds, also in semi-arid environments but where the source of irrigation water is imported surface water, experience increases in ground-water levels and year-round stream flow as a result of ground water discharge to the stream through either the stream bed or through seeps (base flow). In those systems, total nitrogen is likely to be the most important agricultural compound with respect to the annual load, while pesticide transport may be minimal. Streams with a combination of base flow and substantial overland flow are more likely to transport significant quantities of phosphorus and pesticides relative to streams dominated by ground-water base flow. Streams fed by other subsurface processes, such as discharge from tile drains, are more like the ground-water base-flow-dominated systems with respect to nitrogen, phosphorus, and pesticides. In most cases, overland flow processes transport the greatest amount of unaltered pesticide compounds. However, some pesticide degradates, such as the daughter products of atrazine and metolachlor, are transported more effectively, or accumulate to a greater degree, in the unsaturated zone and ground water relative to the parent compounds, and a substantial amount of the annual load is contributed by ground water. Rain

  13. Fatty Acid Data in the USDA National Nutrient Databank: Data handling and currency issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modifications in the USDA National Nutrient Databank System have facilitated the Nutrient Data Laboratory (NDL) in upgrading fatty acid handling. High priority was given to enabling fatty acid data to be entered in units as received (e.g. percent methyl esters, percent fatty acid of total fat) and t...

  14. Brook trout nutritional analysis for inclusion into the USDA National Nutrient Database for Standard Reference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many species of wild game and fish that are legal to hunt or catch do not have nutrition information in the USDA National Nutrient Database for Standard Reference (SR). Among those species that lack nutrition information are brook trout. The research team worked with the Nutrient Data Laboratory wit...

  15. USEPA'S APPROACH FOR ESTABLISHING NATIONAL NUTRIENT CRITERIA FOR ESTUARIES AND COASTAL WATER

    EPA Science Inventory

    The USEP A is developing procedures for establishing nutrient criteria to aid states and tribes in setting nutrient standards for the nation's water bodies and coastal waters. Criteria are being developed separately by water body type (e.g. lakes and reservoirs, rivers and stream...

  16. Formulation and Recipe Calculations in the USDA National Nutrient Databank System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the presentation are to: 1) familiarize representatives of the Office of Pesticide Programs of the Environmental Protection Agency with the Nutrient Data Laboratory's USDA National Nutrient Database for Standard Reference and its relationship to the Food Surveys Research Group's Fo...

  17. Delayed sample filtration and storage effects on dissolved nutrients measured in agricultural runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standard water quality analysis methods recommend that sediment-laden runoff waters sampled to determine dissolved nutrient concentrations be filtered immediately after collection. Few research studies have examined the influence of delayed filtration on sample stability or nutrient loss assessment...

  18. Alternan research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Northern Regional Research Laboratory (later the National Center for Agricultural Utilization Research, or NCAUR) began operations on December 16, 1940. By the late 1940’s, Dr. Allene Jeanes was leading a team in an extensive research program on dextrans. Dextrans are glucan polysaccharides th...

  19. Alternan Research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Northern Regional Research Laboratory (later the National Center for Agricultural Utilization Research, or NCAUR) began operations on December 16, 1940. By the late 1940’s, Dr. Allene Jeanes was leading a team in an extensive research program on dextrans. Dextrans are glucan polysaccharides th...

  20. Effects of fresh and aged biochars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils

    NASA Astrophysics Data System (ADS)

    Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.

    2015-01-01

    Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with biochar amendments to the soils. Biochars are characterised by a high adsorption capacity, i.e., they may retain nutrients such nitrate and ammonium. However, biochar properties strongly depend on feedstock and the production process. We investigated the nutrient retention capacity of biochars derived from pyrolysis (pyrochar) as well as from hydrothermal carbonization (hydrochar; produced at 200 and 250 °C) from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of biochar degradation on its nutrient retention capacity using a seven-month in-situ field incubation of pyrochar and hydrochar. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-biochar mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the biochars' adsorption capacity after field application of the biochars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80% to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of biochar applications to temperate zone soils to minimize

  1. Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils

    NASA Astrophysics Data System (ADS)

    Gronwald, M.; Don, A.; Tiemeyer, B.; Helfrich, M.

    2015-06-01

    Leaching of nutrients from agricultural soils causes major environmental problems that may be reduced with amendments of chars derived from pyrolysis (pyrochars) or hydrothermal carbonization (hydrochars). Chars are characterized by a high adsorption capacity - i.e. they may retain nutrients such as nitrate and ammonium. However, the physicochemical properties of the chars and hence their sorption capacity likely depend on feedstock and the production process. We investigated the nutrient retention capacity of pyrochars and hydrochars from three different feedstocks (digestates, Miscanthus, woodchips) mixed into different soil substrates (sandy loam and silty loam). Moreover, we investigated the influence of char degradation on its nutrient retention capacity using a 7-month in situ field incubation of pyrochar and hydrochar mixed into soils at three different field sites. Pyrochars showed the highest ability to retain nitrate, ammonium and phosphate, with pyrochar from woodchips being particularly efficient in nitrate adsorption. Ammonium adsorption of pyrochars was controlled by the soil type of the soil-char mixture. We found some ammonium retention on sandy soils, but no pyrochar effect or even ammonium leaching from the loamy soil. The phosphate retention capacity of pyrochars strongly depended on the pyrochar feedstock with large phosphate leaching from digestate-derived pyrochar and some adsorption capacity from woodchip-derived pyrochar. Application of hydrochars to agricultural soils caused small, and often not significant, effects on nutrient retention. In contrast, some hydrochars did increase the leaching of nutrients compared to the non-amended control soil. We found a surprisingly rapid loss of the chars' adsorption capacity after field application of the chars. For all sites and for hydrochar and pyrochar, the adsorption capacity was reduced by 60-80 % to less or no nitrate and ammonium adsorption. Thus, our results cast doubt on the efficiency of

  2. USDA National Nutrient Database for Standard Reference, Release 23

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Nutrient Database for Standard Reference, Release 23 contains data for over 7,600 food items for up to 146 food components when a complete profile is available for a food item. It replaces the previous release, SR22, issued in September 2009. Data in SR23 supersede values in the printed h...

  3. USDA NATIONAL NUTRIENT DATABASE FOR STANDARD REFERENCE, RELEASE 19

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Nutrient Database for Standard Reference, Release 19 contains data for 7,291 food items for up to 140 food components when a complete profile is available for a food item. It replaces the previous release, SR18, issued in August 2005. Data in SR19 supersede values in the printed Handbooks a...

  4. USDA National Nutrient Database for Standard Reference, Release 24

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Nutrient Database for Standard Reference, Release 24 contains data for over 7,900 food items for up to 146 food components. It replaces the previous release, SR23, issued in September 2010. Data in SR24 supersede values in the printed Handbooks and previous electronic releases of the databa...

  5. USDA National Nutrient Database for Standard Reference, Release 21

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Nutrient Database for Standard Reference, Release 21 contains data for 7,414 food items for up to 140 food components when a complete profile is available for a food item. It replaces the previous release, SR20, issued in September 2007. Data in SR21 supersede values in the printed Handbook...

  6. USDA National Nutrient Database for Standard Reference, Release 22

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Nutrient Database for Standard Reference, Release 22 contains data for over 7,500 food items for up to 143 food components when a complete profile is available for a food item. It replaces the previous release, SR21, issued in September 2008. Data in SR22 supersede values in the printed Han...

  7. USDA National Nutrient Database for Standard Reference, Release 20

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Nutrient Database for Standard Reference, Release 20 contains data for 7,517 food items for up to 140 food components when a complete profile is available for a food item. It replaces the previous release, SR19, issued in August 2006. Data in SR20 supersede values in printed USDA handbooks ...

  8. Municipal water reuse for urban agriculture in Namibia: Modeling nutrient and salt flows as impacted by sanitation user behavior.

    PubMed

    Woltersdorf, L; Scheidegger, R; Liehr, S; Döll, P

    2016-03-15

    Adequate sanitation, wastewater treatment and irrigation infrastructure often lacks in urban areas of developing countries. While treated, nutrient-rich reuse water is a precious resource for crop production in dry regions, excessive salinity might harm the crops. The aim of this study was to quantify, from a system perspective, the nutrient and salt flows a new infrastructure connecting water supply, sanitation, wastewater treatment and nutrient-rich water reuse for the irrigation of agriculture, from a system perspective. For this, we developed and applied a quantitative assessment method to understand the benefits and to support the management of the new water infrastructure in an urban area in semi-arid Namibia. The nutrient and salt flows, as affected by sanitation user behavior, were quantified by mathematical material flow analysis that accounts for the low availability of suitable and certain data in developing countries, by including data ranges and by assessing the effects of different assumptions in cases. Also the nutrient and leaching requirements of a crop scheme were calculated. We found that, with ideal sanitation use, 100% of nutrients and salts are reclaimed and the slightly saline reuse water is sufficient to fertigate 10 m(2)/cap/yr (90% uncertainty interval 7-12 m(2)/cap/yr). However, only 50% of the P contained in human excreta could be finally used for crop nutrition. During the pilot phase fewer sanitation users than expected used slightly more water per capita, used the toilets less frequently and practiced open defecation more frequently. Therefore, it was only possible to reclaim about 85% of nutrients from human excreta, the reuse water was non-saline and contained less nutrient so that the P was the limiting factor for crop fertigation. To reclaim all nutrients from human excreta and fertigate a larger agricultural area, sanitation user behavior needs to be improved. The results and the methodology of this study can be generalized and

  9. National land-cover data and national agricultural census estimates of agricultural land use in the northeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The landscape of the northeastern United States is diverse and patchy, a complex mixture of forest, agriculture, and developed lands. Many urgent social and environmental issues require spatially-referenced information on land use, a need filled by the National Land-Cover Data (NLCD). The accuracy o...

  10. A Metagenomic Perspective on Changes to Nutrient-cycling Genes Following Forest-to-agriculture Conversion in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Womack, A. M.; Rodrigues, J.; Nüsslein, K.; Bohannan, B. J. M.

    2014-12-01

    Forest-to-agriculture conversion has been shown to alter nutrient cycling and the community composition of soil microorganisms. However, few studies have looked simultaneously at how the abundance, composition, and diversity of microbial genes involved in nutrient cycling change with conversion. We used shotgun metagenomic sequencing to analyze soil from primary rainforest and converted cattle pasture sampled at the Fazenda Nova Vida in Rondônia, Brazil. The diversity, richness, and evenness of nutrient cycling genes were significantly higher in the pasture, and the composition of nutrient cycling communities differed significantly between land use types. These results largely mirror taxonomic shifts following Amazon rainforest conversion, which tends to increase diversity, richness, and evenness of soil microbial communities. The abundance of genes related to N cycling and methane flux differed between land use types. Methanotrophy genes decreased in abundance in the pasture, whereas methanogenesis genes were not significantly different between land use types. These changes could underlie the commonly observed shift from methane sink to source following forest-to-agriculture conversion. Multiple genes in the nitrogen cycle also differed with land use, including genes related to N-fixation and ammonification. Metagenomics provides a unique perspective on the consequences of land use change on microbial community structure and function.

  11. Feasibility of Estimating Relative Nutrient Contributions of Agriculture using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2008-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  12. Feasibility of Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2010-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  13. Update of the National Research Council 1996/2000 nutrient requirements of beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately every 20 years the National Research Council - under the National Academies of Science revises the publication "Nutrient Requirements of Beef Cattle." This presentation, by members of the revision team, gave an overview of the planned revisions to the publication, and let practicing n...

  14. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams.

    PubMed

    Ciparis, Serena; Iwanowicz, Luke R; Voshell, J Reese

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO(4)-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations >1 ng/L. Relatively high concentrations of DIN (>1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R(2) = 0.56-0.81) and E2Eq (R(2) = 0.39-0.75). Relationships between watershed densities of AFOs and PO(4)-P were weaker, but were also significant (R(2) = 0.27-0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO(4)-P than streams without WWTP discharges, and PO(4)-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms. PMID:22088420

  15. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams

    USGS Publications Warehouse

    Ciparis, S.; Iwanowicz, L.R.; Voshell, J.R.

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO 4-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17??-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations >1ng/L. Relatively high concentrations of DIN (>1000??g/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R 2=0.56-0.81) and E2Eq (R 2=0.39-0.75). Relationships between watershed densities of AFOs and PO 4-P were weaker, but were also significant (R 2=0.27-0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO 4-P than streams without WWTP discharges, and PO 4-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms. ?? 2011 Elsevier B.V.

  16. Effects of watershed densities of animal feeding operations on nutrient concentrations and estrogenic activity in agricultural streams

    USGS Publications Warehouse

    Ciparis, Serena; Iwanowicz, Luke R.; Voshell, J. Reese

    2012-01-01

    Application of manures from animal feeding operations (AFOs) as fertilizer on agricultural land can introduce nutrients and hormones (e.g. estrogens) to streams. A landscape-scale study was conducted in the Shenandoah River watershed (Virginia, USA) in order to assess the relationship between densities of AFOs in watersheds of agricultural streams and in-stream nutrient concentrations and estrogenic activity. The effect of wastewater treatment plants (WWTPs) on nutrients and estrogenic activity was also evaluated. During periods of high and low flow, dissolved inorganic nitrogen (DIN) and orthophosphate (PO4-P) concentrations were analyzed and estrogens/estrogenic compounds were extracted and quantified as17β-estradiol equivalents (E2Eq) using a bioluminescent yeast estrogen screen. Estrogenic activity was measurable in the majority of collected samples, and 20% had E2Eq concentrations > 1 ng/L. Relatively high concentrations of DIN (> 1000 μg/L) were also frequently detected. During all sampling periods, there were strong relationships between watershed densities of AFOs and in-stream concentrations of DIN (R2 = 0.56–0.81) and E2Eq (R2 = 0.39–0.75). Relationships between watershed densities of AFOs and PO4-P were weaker, but were also significant (R2 = 0.27–0.57). When combined with the effect of watershed AFO density, streams receiving WWTP effluent had higher concentrations of PO4-P than streams without WWTP discharges, and PO4-P was the only analyte with a consistent relationship to WWTPs. The results of this study suggest that as the watershed density of AFOs increases, there is a proportional increase in the potential for nonpoint source pollution of agricultural streams and their receiving waters by nutrients, particularly DIN, and compounds that can cause endocrine disruption in aquatic organisms.

  17. Changes in nutrient and pesticide concentrations in urban and agricultural areas of the South Platte River Basin, Colorado, Wyoming, and Nebraska, 1994-2000

    USGS Publications Warehouse

    Sprague, Lori A.; Greve, Adrienne I.

    2003-01-01

    As part of the National Water-Quality Assessment (NAWQA) Program, the U.S. Geological Survey (USGS) monitored two sites on the main-stem South Platte River? an urban site in Denver and a mixed urban/agricultural site near Kersey?to determine changes in nutrient and pesticide concentrations from 1994 through 2000. Concentrations of nitrate, nitrite, ammonia, and orthophosphorus decreased at the Denver site during the study period, likely due to an increase in instream dilution of wastewater-treatment plant (WWTP) discharge and upgrades at the WWTPs. In contrast, only concentrations of orthophosphorus decreased at the Kersey site; agricultural inputs between Denver and Kersey may have offset the observed decreases in other nutrients upstream. During the extreme low-flow conditions in 1994, when there was relatively little snowmelt to dilute instream pesticide concentrations, total median pesticide concentrations at both sites were the highest of the study period. During the less extreme conditions in 1997 through 2000, greater amounts of snowmelt likely led to lower total median pesticide concentrations at both sites. Because pesticide-use data are not available, the contribution of changes in the amount and type of pesticides applied on the land to changes in the concentration of pesticides in the river is not known but likely was substantial. In general, insecticides predominated at the Denver site, whereas herbicides predominated at the Kersey site.

  18. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Director, National Institute of Food and Agriculture. 2.66 Section 2.66 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Research, Education,...

  19. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Director, National Institute of Food and Agriculture. 2.66 Section 2.66 Agriculture Office of the Secretary of Agriculture DELEGATIONS OF AUTHORITY BY THE SECRETARY OF AGRICULTURE AND GENERAL OFFICERS OF THE DEPARTMENT Delegations of Authority by the Under Secretary for Research, Education,...

  20. 78 FR 52496 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... Meeting Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, Office of the Secretary, USDA. ACTION: Notice of meeting..., Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension,...

  1. 78 FR 14071 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ..., Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION... to fill 10 vacancies on the National Agricultural Research, Extension, Education, and Economics... October 1, 2012. ADDRESSES: National Agricultural Research, Extension, Education, and Economics...

  2. 77 FR 11064 - National Agricultural Research, Extension, Education, and Economics Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Office of the Secretary National Agricultural Research, Extension, Education, and Economics Advisory Board Notice of Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting..., Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension,...

  3. 77 FR 58978 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... Office of the Secretary Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION: Notice of meeting. SUMMARY..., and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education,...

  4. 78 FR 25691 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ..., Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION... the National Agricultural Research, Extension, Education, and Economics Advisory Board. DATES: All... Agriculture, National Research, Extension, Education, and Economics Advisory Board Office, 1400...

  5. Water and nutrient dynamics at various spatial scales of a tropical agricultural watershed in Eastern Amazon region, Brazil: First Results

    NASA Astrophysics Data System (ADS)

    Wickel, A. J.; Van de Giesen, N.; Sa, T.; Vlek, P. L.; Vielhauer, K.; Denich, M.

    2002-05-01

    As a part of the German-Brazilian Studies project on Human Impacts on Floodplains In the Tropics (SHIFT) the small agricultural "Cumaru" watershed (16 km2), Eastern Amazon region, Brazil, was monitored at various spatial scales for a period of one and a half year. The overall aim of this project is to provide sustainable alternatives to slash-and-burn agriculture. With the current study an attempt is made to close the water and nutrient balance for two sub-watersheds (1 km2) and the fields surrounding their source. In order to understand the processes of water and nutrient dynamics from a field to watershed scale, a wide variety of hydrological and micro-meteorological measurements were made. An automatic weather station, throughfall gauges, TDR-profiles, a piezometer network, and weirs were installed to monitor the main components of the water balance. A digital database of topography, soils, hydrological properties, land use, and vegetation was made to serve as the base input of the various models that are intended to be used. In order to evaluate nutrient dynamics samples were taken of rain-, soil-, ground- and runoff-water at various temporal scales. The modeling of water yield and runoff response will be performed with the physically based TOPOG model. This model is capable of solving water, energy, solute and sediment balances of a catchment in a fully distributed way. Regional (shallow) groundwater modeling will be done with a Finite Element Model (MicroFEM). Preliminary measurement and modeling results indicate that the regional water balance is mainly determined by shallow groundwater flow. A strong nutrient fixation is observed throughout the soil profile, and in the riparian forest zone.

  6. Environmental and Biological Data of the Nutrient Enrichment Effects on Stream Ecosystems Project of the National Water Quality Assessment Program, 2003-04

    USGS Publications Warehouse

    Brightbill, Robin A.; Munn, Mark D.

    2008-01-01

    In 2000, the U.S. Environmental Protection Agency began the process of developing regional nutrient criteria for streams and rivers. In response to concerns about nutrients by the U.S. Environmental Protection Agency and others, the U.S. Geological Survey National Water Quality Assessment Program began studying the effects of nutrient enrichment on agricultural stream ecosystems to aid in the understanding of how nutrients affect the biota in agricultural streams. Streams within five study areas were sampled either in 2003 or 2004. These five study areas were located within six NAWQA study units: the combined Apalachicola-Chattahoochee-Flint River Basin (ACFB) and Georgia-Florida Coastal Plain Drainages (GAFL), Central Columbia Plateau?Yakima River Basin (CCYK), Central Nebraska Basins (CNBR), Potomac River?Delmarva Peninsula (PODL), and the White-Miami River Basin (WHMI). Data collected included nutrients (nitrogen and phosphorous) and other chemical parameters, biological samples (chlorophyll, algal assemblages, invertebrate assemblages, and some fish assemblages), stream habitat, and riparian and basin information. This report describes and presents the data collected from these study areas.

  7. Biological-Community Composition in Small Streams and its Relations to Habitat, Nutrients, and Land Use in Agriculturally Dominated Landscapes in Indiana and Ohio, 2004, and Implications for Assessing Nutrient Conditions in Midwest Streams

    USGS Publications Warehouse

    Caskey, Brian J.; Frey, Jeffrey W.

    2009-01-01

    The objective of this study was to relate algal-, invertebrate-, and fish-community composition to habitat, nutrients, and land-use variables in small streams in agriculturally dominated landscapes of the Midwest in Indiana and Ohio. Thirty sample locations were selected from a single ecoregion; all were small wadable streams within agriculturally dominated landscapes with similar substrate and canopy. Biological and nutrient samples were collected during stable flow conditions in August 2004. Canonical correspondence analysis was used to determine which variables most influenced each community. Total phosphorus concentrations significantly influenced the depositional-targeted habitat algal-diatom community and the richest-targeted habitat invertebrate community. Multivariate statistical analysis showed that habitat variables were more influential to the richest-targeted habitat algal-diatom and fish communities than nutrient concentrations. Although the nutrient concentrations measured during this study indicate that most streams were not eutrophic, the biological communities were dominated by eutrophic species, suggesting streams sampled were eutrophic. Consequently, it was concluded that biological relations to nutrients in agriculturally dominated landscapes are complex and habitat variables should be included in biological assessments of nutrient conditions in agriculturally dominated landscapes.

  8. Effect of tile effluent on nutrient concentration and retention efficiency in agricultural drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage is a common water management practice in many agricultural landscapes in the Midwestern United States. Drainage ditches regularly receive water from agricultural fields through these tile drains. This field-scale study was conducted to determine the impact of tile discharge on ambient ...

  9. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. PMID:27289141

  10. EXAMINING PHYTOSTEROLS IN NUTS AND SEEDS FOR THE USDA NATIONAL NUTRIENT DATABASE FOR STANDARD REFERENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: The current release of the USDA National Nutrient Database for Standard Reference (SR) includes total phytosterols for 30 of the 128 nut and seed items. Twenty-two of those have values for individual sterols – Beta-sitosterol, stigmasterol, and campesterol. The current literature was st...

  11. AGGREGATIONS OF LEVEL III ECOREGIONS FOR NATIONAL NUTRIENT ASSESSMENT AND MANAGEMENT

    EPA Science Inventory

    Aggregations of level III Ecoregions for the National Nutrient Assessment and Management Strategy: This map of draft aggregation of level III ecoregions of the conterminous United States defines broad areas within which there are general similarities in the quality and types of e...

  12. HOW EFFECTIVE ARE RIPARIAN BUFFERS IN CONTROLLING NUTRIENT EXPORT FROM AGRICULTURAL WATERSHEDS?

    EPA Science Inventory

    Riparian buffers are being established in many parts of the world as part of nonpoint source pollution management strategies. A large number of studies have documented the potential of riparian buffers to reduce export of nutrients, especially nitrogen, in shallow ground water of...

  13. Role of runoff generation mechanisms on nutrient runoff from an agricultural hillslope in central Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The variable source area (VSA) concept provides the underlying paradigm for managing nutrient losses in runoff in the northeastern U.S. This study sought to explain factors controlling runoff generation and losses of nitrogen and phosphorus along a single hillslope with contrasting soils and nutrie...

  14. Effect of subsurface flow on nutrient transport between a eutrophic coastal lake and agricultural reclamation land

    NASA Astrophysics Data System (ADS)

    Onodera, S. I.; Saito, M.; Jin, G.; Hayakawa, A.; Maruyama, Y.

    2014-12-01

    We examined to confirm the effect of surface water-groundwater interaction on the nutrient transport in Hachiro-gata Lake of coastal Akita prefecture and nutrient transport with the water flow. The area of Hachiro-gata lake have decreased since 1960s due to the land reclamation. The reclamation land covered mainly at the east and south side to the Hachiro-gata Lake. The elevation of the reclamation land is about 3m lower than the lake water level. It suggests water flow in the underground between the lake and land would have the stable direction from the lake to the land. Because the eutrophication often occurs in Hachiro-gata Lake, the nutrient would be accumulated in sediment. We installed three piezometers at the bankside of the lake and reclamation land, respectively. The water levels were monitored from September to December in 2013 and May to August in 2014. In addition, water samples were collected in September and December in 2013, May in 2014. We confirmed water flow from the lake to the land with the hydraulic gradient from 0.05 to 0.1. In addition, DOC and phosphorus concentrations of groundwater were higher in the land than in the lake water. The lake water has recently eutrophic condition, and so many organic matter originated from phytoplankton are deposited. The porewater in the lake sediment near the bank had the high nutrient and DOC concentrations. Based on this research, we can make a hypothesis of nutrient transport from the lake to the land with groundwater flow.

  15. Nutrient requirements for dairy cattle of the National Research Council versus some commonly used ration software.

    PubMed

    Eastridge, M L; Bucholtz, H F; Slater, A L; Hall, C S

    1998-11-01

    The first edition of the Nutrient Requirements of Dairy Cattle was published by the National Research Council (NRC) in 1945. The current document is the sixth revised edition, published in 1989, and it appears that we are a few years from another edition being in print. Software designed to evaluate and formulate rations for dairy cattle commonly determine nutrient requirements using the NRC as a standard. However, the generation of new knowledge in dairy nutrition occurs more rapidly than the release of the NRC publication, and the developers of the software often modify the requirements based on more recently published research, geographical peculiarities, or factors not explicitly considered by NRC. The first step in evaluating or formulating rations is the prediction of dry matter intake (DMI). The primary variables used by NRC to predict DMI are body weight (BW) and fat-corrected milk (FCM) yield; however, developers of software programs often use different equations based on personal preference, availability of research data with given equations, and incorporation of other factors in addition to BW and FCM yield. The additional factors are included to provide a more dynamic estimation of DMI and, therefore, reduce the difference between predicted and actual DMI. Nutrients required for maintenance, lactation, and growth must be consumed in adequate quantities (e.g., kilograms or calories), but the dietary concentration of nutrients for a given animal group may differ because of DMI. Even when nutrients are fed above the requirements, dietary concentrations of nutrients may be important in some situations to minimize the risk of underfeeding caused by variability in the nutrient composition of feedstuffs and to account for interactions of certain nutrients (e.g., minerals). New research discoveries need to be incorporated into ration formulation strategies promptly, and the strategies used for ration formulation need to be dynamic. PMID:9839245

  16. Hydrological variability and agricultural drainage ditch nutrient mitigation capacity: Inorganic nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The application of inorganic nitrogen fertilizers on agricultural landscapes has the potential to generate environmental degradation concerns at fine to coarse scales across the catchment and landscape. Inorganic nitrogen species (nitrate, nitrite, ammonia) are typically associated with subsurface f...

  17. Production of Endoglucanase, Beta-glucosidase and Xylanase by Bacillus licheniformis Grown on Minimal Nutrient Medium Containing Agriculture Residues

    PubMed Central

    Seo, J.; Park, T. S.; Kim, J. N.; Ha, Jong K.; Seo, S.

    2014-01-01

    Bacillus licheniformis was grown in minimal nutrient medium containing 1% (w/v) of distillers dried grain with soluble (DDGS), palm kernel meal (PKM), wheat bran (WB) or copra meal (CM), and the enzyme activity of endoglucanase, β-glucosidase, xylanase and reducing sugars was measured to investigate a possibility of using cost-effective agricultural residues in producing cellulolytic and hemicellulolytic enzymes. The CM gave the highest endoglucanase activity of 0.68 units/mL among added substrates at 48 h. CM yielded the highest titres of 0.58 units/ml of β-glucosidase, compared to 0.33, 0.23, and 0.16 units/mL by PKM, WB, and DDGS, respectively, at 72 h. Xylanase production was the highest (0.34 units/mL) when CM was added. The supernatant from fermentation of CM had the highest reducing sugars than other additional substrates at all intervals (0.10, 0.12, 0.10, and 0.11 mg/mL respectively). It is concluded that Bacillus licheniformis is capable of producing multiple cellulo- and hemicellololytic enzymes for bioethanol production using cost-effective agricultural residues, especially CM, as a sole nutrient source. PMID:25050035

  18. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... promote and support the development of a viable and sustainable global agricultural system. Such work may... committees concerned with agricultural science, education, and development activities, including library...

  19. Examining soil erosion and nutrient accumulation in forested and agriculture lands of the low mountainous area of Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, A. T.; Gomi, T.; Takahisa, F.; Phung, K. V.

    2011-12-01

    We examined soil erosion and nutrient accumulations in the Xuanmai area located in the low mountainous region of Northern Vietnam, based on field investigations and remote sensing approaches. The study area had been degraded by land-use change from forest to agriculture in the last 20 years. In contrast, around the study area, the Vietnam government promoted reforestation projects. Such changes in land-use conditions, which may or may not be associated with vegetation ground cover conditions, potentially alter soil erosion and nutrient accumulation. We selected 10 dominant land-use types including forested land (e.g., Pinus massoniana and Acacia mangium plantation) agriculture land (e.g., Cassava), and bare land. We established three 1 x 1 m plots in each land-use type in September 2010. Vegetation biomass, litter cover, soil erosion (height of soil pedestal), and soil physical (soil bulk density and particle size distribution) and chemical properties (Total soil carbon, nitrate, and phosphorus) were measured. Height of soil pedestal can be a record of soil erosion by rain splash during rainy periods from April to August (prior to our field study). We also conducted remote sensing analysis using Landsat TM images obtained in 1993, 2000, and 2007 for identifying temporal patterns of land-use types. We found that the intensity of soil erosion depended primary on current vegetation ground cover condition with no regard of land-use. Hence, nutrient accumulation varied among vegetation ground cover and soil erosion. Remote sensing analysis suggested that shrub and bare lands had been altered from forested land more recently. Our finding suggested that variability of soil nutrient conditions can be associated with long-term soil erosion and production processes. Findings of our study are that: (1) current vegetation and litter ground cover affected the amount of surface soil erosion, and (2) legacy of land-use can be more critical for soil nutrient accumulation. Both

  20. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  1. Fats and oils in the USDA National Nutrient Database for Standard Reference – Uses of data and currency issues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the presentation are to: 1) provide a brief overview of the USDA National Nutrient Databank System and National Nutrient Database for Standard Reference (SR); 2) describe the use of oils data by the USDA and other scientific organizations; 3) describe recent fats and oils sampling ...

  2. Trophic status and assessment of non-point nutrient enrichment of Lake Crescent Olympic National Park

    USGS Publications Warehouse

    Boyle, Terence P.; Beeson, David R.

    1991-01-01

    A limited effort study was conducted in Lake Crescent, Olympic National Park to determine the trophic status and assess whether non-point nutrients were leaching into the lake and affecting biological resources. The concentration of chlorophyll a, total nitrogen concentration, and Secchi disk transparency used as parameters of the Trophic Status Index revealed that Lake Crescent in Olympic National Park was in the oligotrophic range. Evaluation of the nitrogen to phosphorous ration revealed that nitrogen was the nutrient limiting to overall lake productivity. Single species and community bioassays indicated that other nutrients, possibly iron, had some secondary control over community composition of the algal community. Assessment of six near-shore sites for the presence and effects of non-point nutrients revealed that La Poel Point which formerly was the site of a resort had slightly higher algal bioassay and periphyton response than the other sites. No conditions that would require immediate action by resource management of Olympic National Park were identified. The general recommendations for a long term lake monitoring plan are discussed.

  3. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County, Pennsylvania

    USGS Publications Warehouse

    Hall, D.W.; Risser, D.W.

    1993-01-01

    Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1,25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year, 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987-1990.

  4. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.

    2016-01-01

    Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.

  5. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds.

    PubMed

    Kalkhoff, S J; Hubbard, L E; Tomer, M D; James, D E

    2016-07-15

    Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996-2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3kgNO3-Nha(-1)y(-1)). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51kgTPha(-1)yr(-1)), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April-June, and <20% of the annual loads were transported later in the growing season from July-September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport. PMID:27054493

  6. 77 FR 27013 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Solicitation for membership. SUMMARY: In accordance with the Federal Advisory... nominations to fill 9 vacancies on the National Agricultural Research, Extension, Education, and...

  7. Project AProWa: a national view on managing trade-offs between agricultural production and conservation of aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Dietzel, Anne; Rahn, Eric; Stamm, Christian

    2014-05-01

    Swiss agriculture is legally committed to fulfill several, partially conflicting goals such as agricultural production on the one hand and the conservation of natural resources on the other hand. In the context of the research project AProWa ("Agricultural Production and Water"), the relationships between the production aspect and the conservation of aquatic ecosystems is analyzed with a holistic approach. Agricultural production and the protection of water resources have high potential for conflicts: Farmers use ground and surface water to irrigate their fields. On the other hand, drainage systems enable the production on otherwise unfavorably wet soils. These in turn often affect ground water recharge and divert precipitation directly into surface waters, which changes their hydrological regime. Typically, drainage systems also elevate the input of nutrients and pesticides into the water bodies. In general, applied fertilizers, plant protection products, veterinary drugs and phytohormones of cultivated plants are introduced into the ground and surface waters through different processes such as drift, leaching, runoff, preferential flow or erosion. They influence the nutrient cycles and ecological health of aquatic systems. The nutrient and pesticide loss processes themselves can be altered by tillage operations and other agricultural practices. Furthermore, the competition for space can lead to additional conflicts between agriculture and the protection of aquatic ecosystems. For example, channelized or otherwise morphologically changed rivers do not have a natural discharge pattern and are often not suitable for the local flora and fauna; but naturally meandering rivers need space that cannot be used for agriculture. In a highly industrialized and densely populated country like Switzerland, all these potential conflicts are of importance. Although it is typically seen as a water-rich country, local and seasonal overexploitation of rivers through water extraction

  8. Evaluating the Impact of Legacy P and Agricultural Conservation Practices on Nutrient Loads from the Maumee River Watershed.

    PubMed

    Muenich, Rebecca Logsdon; Kalcic, Margaret; Scavia, Donald

    2016-08-01

    The recent resurgence of hypoxia and harmful algal blooms in Lake Erie, driven substantially by phosphorus loads from agriculture, have led the United States and Canada to begin developing plans to meet new phosphorus load targets. To provide insight into which agricultural management options could help reach these targets, we tested alternative agricultural-land-use and land-management scenarios on phosphorus loads to Lake Erie. These scenarios highlight certain constraints on phosphorus load reductions from changes in the Maumee River Watershed (MRW), which contributes roughly half of the phosphorus load to the lake's western basin. We evaluate the effects on phosphorus loads under nutrient management strategies, reduction of fertilizer applications, employing vegetative buffers, and implementing widespread cover crops and alternative cropping changes. Results indicate that even if fertilizer application ceased, it may take years to see desired decreases in phosphorus loads, especially if we experience greater spring precipitation or snowmelt. Scenarios also indicate that widespread conversions to perennial crops that may be used for biofuel production are capable of substantially reducing phosphorus loads. This work demonstrates that a combination of legacy phosphorus, land management, land use, and climate should all be considered when seeking phosphorus-loading solutions. PMID:27322563

  9. Object-Oriented Agricultural System Modeling: Component-Driven Nutrient Dynamics and Crop Yield Simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to sim...

  10. Integrated agricultural system modeling using OMS3: component driven runoff and nutrient dynamics simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Challenges in agro-ecosystem conservation management have created demand for state-of-the-art, integrated, and flexible modeling tools. For example, agricultural system modeling tools are needed which are robust and fast enough to be applied on large watershed scales, but which are also able to simu...

  11. Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, the hypoxic zone in the Gulf of Mexico, measuring 20,720 km**2, was one of the two largest reported since measurement of the zone began in 1985. The extent of the hypoxic zone is related to nitrogen and phosphorous loadings originating on agricultural fields in the upper Midwest. This stud...

  12. Annual precipitation and effects of runoff-nutrient from agricultural watersheds on water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining surface water quality from agricultural nonpoint sources is of great concern across the Platte river basin in Nebraska. Recent changes in the earth climate create abrupt changes in domestic weather (i.e., precipitation, temperature, etc.) which can alter the impact of these nonpoint source...

  13. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remediation of excess nitrogen (N) in agricultural runoff can be enhanced by establishing wetland vegetation but the role of denitrification in N removal is not well understood in drainage ditches. We quantified differences in N retention during experimental runoff events followed by stagnant period...

  14. Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance

    EPA Science Inventory

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...

  15. Innovative best management practices for improving nutrient reductions in agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the burgeoning human population increases pressures on agriculture for increasing yields, the concomitant strain on the aquatic environment downstream is elevated through non-point source pollution. Traditional management practices of conservation tillage, terracing, and cover crops are good prac...

  16. Closing the prediction gap between agricultural nutrient losses and riparian zone ecology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecological health of the Chesapeake Bay is an ongoing concern and, as the more obvious and direct contributors are mitigated, focus is moving upstream to the agricultural headwaters of the basin. TMDLs and Watershed Implementation Plans (WIPs) have been developed by all states in the basin to co...

  17. Field drains as a route of rapid nutrient export from agricultural land receiving biosolids.

    PubMed

    Heathwaite, A L; Burke, S P; Bolton, L

    2006-07-15

    We report research on the environmental risk of incidental nutrient transfers from land to water for biosolids amended soils. We show that subsurface (drainflow) pathways of P transport may result in significant concentrations, up to 10 mg total P l(-1), in the drainage network of an arable catchment when a P source (recent biosolids application) coincides with a significant and active transport pathway (rainfall event). However, the high P concentrations were short-lived, with drainage ditch total P concentrations returning to pre-storm concentrations within a few days of the storm event. In the case of the drainflow concentrations reported here, the results are unusual in that they describe an 'incidental event' for a groundwater catchment where such events might normally be expected to be rare owing to the capacity of the hydrological system to attenuate nutrient fluxes for highly adsorbed elements such as P. Consequently, there is a potential risk of P transfers to shallow groundwater systems. We suggest that the findings are not specific to biosolids-alone, which is a highly regulated industry, but that similar results may be anticipated had livestock waste or mineral fertilizer been applied, although the magnitude of losses may differ. The risk appears to be more one of timing and the availability of a rapid transport pathway than of P source. PMID:16603229

  18. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale; Schwarz, Gregory

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  19. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin. PMID:27243625

  20. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... persons throughout the world in the performance of agricultural research and extension activities to... disadvantaged farmers or ranchers in agricultural production (7 U.S.C. 2279(h)). (10) Develop surveys and...

  1. 7 CFR 2.68 - Administrator, National Agricultural Statistics Service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... persons throughout the world in the performance of agricultural research and extension activities to... disadvantaged farmers or ranchers in agricultural production (7 U.S.C. 2279(h)). (10) Develop surveys and...

  2. Organic Fertilization and Sufficient Nutrient Status in Prehistoric Agriculture? – Indications from Multi-Proxy Analyses of Archaeological Topsoil Relicts

    PubMed Central

    Lauer, Franziska; Prost, Katharina; Gerlach, Renate; Pätzold, Stefan; Wolf, Mareike; Urmersbach, Sarah; Lehndorff, Eva; Eckmeier, Eileen; Amelung, Wulf

    2014-01-01

    Neolithic and Bronze Age topsoil relicts revealed enhanced extractable phosphorus (P) and plant available inorganic P fractions, thus raising the question whether there was targeted soil amelioration in prehistoric times. This study aimed (i) at assessing the overall nutrient status and the soil organic matter content of these arable topsoil relicts, and (ii) at tracing ancient soil fertilizing practices by respective stable isotope and biomarker analyses. Prehistoric arable topsoils were preserved in archaeological pit fillings, whereas adjacent subsoils served as controls. One Early Weichselian humic zone represented the soil status before the introduction of agriculture. Recent topsoils served as an additional reference. The applied multi-proxy approach comprised total P and micronutrient contents, stable N isotope ratios, amino acid, steroid, and black carbon analyses as well as soil color measurements. Total contents of P and selected micronutrients (I, Cu, Mn, Mo, Se, Zn) of the arable soil relicts were above the limits for which nutrient deficiencies could be assumed. All pit fillings exhibited elevated δ15N values close to those of recent topsoils (δ15N>6 to 7‰), giving first hints for prehistoric organic N-input. Ancient legume cultivation as a potential source for N input could not be verified by means of amino acid analysis. In contrast, bile acids as markers for faecal input exhibited larger concentrations in the pit fillings compared with the reference and control soils indicating faeces (i.e. manure) input to Neolithic arable topsoils. Also black carbon contents were elevated, amounting up to 38% of soil organic carbon, therewith explaining the dark soil color in the pit fillings and pointing to inputs of burned biomass. The combination of different geochemical analyses revealed a sufficient nutrient status of prehistoric arable soils, as well as signs of amelioration (inputs of organic material like charcoal and faeces-containing manure). PMID

  3. Organic fertilization and sufficient nutrient status in prehistoric agriculture?--Indications from multi-proxy analyses of archaeological topsoil relicts.

    PubMed

    Lauer, Franziska; Prost, Katharina; Gerlach, Renate; Pätzold, Stefan; Wolf, Mareike; Urmersbach, Sarah; Lehndorff, Eva; Eckmeier, Eileen; Amelung, Wulf

    2014-01-01

    Neolithic and Bronze Age topsoil relicts revealed enhanced extractable phosphorus (P) and plant available inorganic P fractions, thus raising the question whether there was targeted soil amelioration in prehistoric times. This study aimed (i) at assessing the overall nutrient status and the soil organic matter content of these arable topsoil relicts, and (ii) at tracing ancient soil fertilizing practices by respective stable isotope and biomarker analyses. Prehistoric arable topsoils were preserved in archaeological pit fillings, whereas adjacent subsoils served as controls. One Early Weichselian humic zone represented the soil status before the introduction of agriculture. Recent topsoils served as an additional reference. The applied multi-proxy approach comprised total P and micronutrient contents, stable N isotope ratios, amino acid, steroid, and black carbon analyses as well as soil color measurements. Total contents of P and selected micronutrients (I, Cu, Mn, Mo, Se, Zn) of the arable soil relicts were above the limits for which nutrient deficiencies could be assumed. All pit fillings exhibited elevated δ15N values close to those of recent topsoils (δ15N>6 to 7‰), giving first hints for prehistoric organic N-input. Ancient legume cultivation as a potential source for N input could not be verified by means of amino acid analysis. In contrast, bile acids as markers for faecal input exhibited larger concentrations in the pit fillings compared with the reference and control soils indicating faeces (i.e. manure) input to Neolithic arable topsoils. Also black carbon contents were elevated, amounting up to 38% of soil organic carbon, therewith explaining the dark soil color in the pit fillings and pointing to inputs of burned biomass. The combination of different geochemical analyses revealed a sufficient nutrient status of prehistoric arable soils, as well as signs of amelioration (inputs of organic material like charcoal and faeces-containing manure). PMID

  4. Reference Materials for Determination of the Nutrient Composition of Foods: Results from USDA's National Food and Nutrient Analysis Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certified reference materials (CRMs) play a critical role in validating the accuracy of nutrient data for food samples. A number of available food CRMs of differing matrix composition have assigned concentrations for various nutrients, along with associated uncertainty intervals (UIs) for those valu...

  5. MODEL ANALYSIS OF RIPARIAN BUFFER EFFECTIVENESS FOR REDUCING NUTRIENT INPUTS TO STREAMS IN AGRICULTURAL LANDSCAPES

    EPA Science Inventory

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality...

  6. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Secretary for Research, Education, and Economics § 2.66 Director, National Institute of Food and Agriculture... agencies reporting to the Under Secretary for Research, Education, and Economics in the administration of... to agriculture, uses of solar energy with respect to agriculture, home economics, and rural energy...

  7. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  8. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  9. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  10. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Food and agricultural sciences areas targeted for... AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Program Description § 3402.4 Food and agricultural sciences areas targeted for National Needs Graduate...

  11. NUTRIENT COMPOSITION OF A NATIONALLY REPRESENTATIVE SURVEY OF READY-TO-EAT ROTISSERIE CHICKEN PURCHASED FROM RETAIL ESTABLISHMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient data for chicken reported in the USDA National Nutrient Database for Standard Reference (SR) was last updated in 1979 and does not contain values for whole, ready-to-eat rotisserie chicken. The objectives of this study were to update this database, compare current (2004) rotisserie chicken ...

  12. 76 FR 22667 - Solicitation of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics... to fill 8 vacancies on the National Agricultural Research, Extension, Education, and Economics..., National Research, Extension, Education, and Economics Advisory Board Office, 1400 Independence Avenue,...

  13. Short-term and long-term impacts of dredging on nutrient transport in agricultural ditches of the Lake Erie Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches are a common landscape feature in the Midwestern United States. Compared to natural streams in more pristine environments, little is known about nutrient fate and transport in these highly enriched systems, especially following human induced manipulations. Drainage di...

  14. Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management: Kickoff Workshop

    EPA Science Inventory

    The purpose of this presentation is to brief meeting participants on the "Centers for Water Research on National Priorities Related to a Systems View of Nutrient Management" solicitation's components, objectives and goals.

  15. Agricultural Biotechnology Technician. National Voluntary Occupational Skill Standards.

    ERIC Educational Resources Information Center

    National Future Farmers of America Foundation, Madison, WI.

    The skill standards in this document were developed as a result of meetings between representatives of the agricultural industry and educational institutions to determine the skills and educational preparation required of an agricultural biotechnology technician, verified by technicians working in laboratories, greenhouses, animal facilities, and…

  16. The Strategic Plan for Agricultural Education. A National Mobilization Plan for Revolutionary Change in Agricultural Education.

    ERIC Educational Resources Information Center

    1990

    Bold, innovative thinking must be encouraged in the changing field of agricultural education. More than ever, the community needs fresh ideas. The agricultural education community will lose nothing of the past by working together to embrace the challenges and opportunities of the future as long as the essential values are not discarded. The…

  17. Role of native shrubs of the Sahel in mitigating water and nutrient stresses of agricultural crops

    NASA Astrophysics Data System (ADS)

    Bayala, R.; Ghezzehei, T. A.; Bogie, N. A.; Diedhiou, I.; Dick, R.

    2015-12-01

    In the semi arid zone of the Sahel native woody shrubs are present in many farmers' fields. The native density of these shrubs is fairly low at around 200 to 300 individuals per hectare. An ongoing study in the Peanut Basin, Senegal has shown a vast improvement in crop yields when annual food crops are planted with the shrub Guiera senegalensis, especially in years of low or irregular precipitation. Shrubs in field plots established in 2003 where a rotation of peanuts and millet are grown are planted at a much higher density of 1500-1830 individuals per hectare. In order to increase the density of shrubs on the landscape, the shrubs must be cultivated. We monitored soil moisture, soil temperature, and growth of recently transplanted individuals at a field station in Thies, Senegal.This study seeks to determine the growth characteristics and water use of young shrubs in order to inform possible future plantations of the shrubs in a more intensely managed agroecosystem. If this technique of intercropping is to be expanded we must not exceed the carrying capacity of the landscape. In vulnerable ecosystems where natural resources are scarce and farming inputs are low, we must work to determine ways of exploiting the adaptation of local agroecosystems to increase the sustainability of agriculture in the region.

  18. Fate and Transport of Agricultural Nutrients in Macro-porous Soils

    NASA Astrophysics Data System (ADS)

    Royem, A. A.; Walter, M. T.

    2010-12-01

    The major objective of this study is to address water quality problems associated with application of liquid manure to subsurface-drained agricultural lands. There are over 600 large and medium sized confined animal feeding operations (CAFOs) in New York, most of which utilize land application to manage this waste stream. Due to the regions shallow soil and humid weather, most fields have been equipped with tile drainage. The concern is that handling the manure is a liquefied state may enhance the likelihood of contamination of the tile drainage discharge and its potential impacts on downstream water quality. Laboratory studies were used to investigate how manure liquidity (percent solids) affects the transport of manure constituents through varying macropore sizes in the soil. Soil columns of 3 different macropore sizes (0, 1, 3 millimeter) were constructed, subjected to simulated rainfall over several weeks, and effluent was collected from both the soil matrix and macropores separately. Effluent samples were analyzed for soluble reactive phosphorus (SRP). As expected, the preliminary results show enhanced SRP transport through macropores with decreasing percent solids (i.e., more liquidy manure). The implications at field and watershed scales are still being investigated.

  19. Quantifying subsurface mixing of water and nutrients in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Van der Velde, Y.; Torfs, P.; Van Der Zee, S.; Uijlenhoet, R.

    2011-12-01

    The distribution of time it takes water from the moment of rainfall to reach the catchment outlet is widely used to characterize catchment-scale groundwater-surface water interactions, catchment vulnerability to pollution spreading and pollutant loads from catchments to downstream waters. However, this distribution tends to vary in time driven by rainfall and evapotranspiration, which compromises the applicability of a single travel time distribution as catchment characteristic. Recent studies suggested that subsurface mixing controls to what extent dynamics in rainfall and evpotranspiration are translated into dynamics of travel time distributions of individual water flows. This new insight in hydrologic functioning of catchments requires new definitions and concepts that link dynamics of catchment travel time distributions to the degree of subsurface mixing. We propose the concept of Refresh Rate Functions (RRF) and will demonstrate how RRFs directly quantify subsurface mixing within a catchment, allow for deriving transient as well as temporally averaged travel time distributions of a catchment and are largely independent of weather or climate. The presented analyses will use a unique dataset of high-frequent nitrate concentrations in an agricultural catchment in the Netherlands to reveal the effects of mixing dynamics inside a catchment on stream water nitrate concentrations. These measurements will be compared with calculations by a spatially distributed groundwater model and conceptual models of water flow and solute transport. Remarkable findings are the large contrasts in discharge behavior expressed in travel time between lowland and sloping catchments and the strong relation between evapotranspiration and stream water nitrate concentration dynamics.

  20. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark

    NASA Astrophysics Data System (ADS)

    Gachango, F. G.; Pedersen, S. M.; Kjaergaard, C.

    2015-12-01

    Constructed wetlands have been proposed as cost-effective and more targeted technologies in the reduction of nitrogen and phosphorous water pollution in drainage losses from agricultural fields in Denmark. Using two pig farms and one dairy farm situated in a pumped lowland catchment as case studies, this paper explores the feasibility of implementing surface flow constructed wetlands (SFCW) based on their cost effectiveness. Sensitivity analysis is conducted by varying the cost elements of the wetlands in order to establish the most cost-effective scenario and a comparison with the existing nutrients reduction measures carried out. The analyses show that the cost effectiveness of the SFCW is higher in the drainage catchments with higher nutrient loads. The range of the cost effectiveness ratio on nitrogen reduction differs distinctively with that of catch crop measure. The study concludes that SFCW could be a better optimal nutrients reduction measure in drainage catchments characterized with higher nutrient loads.

  1. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng

    2009-05-01

    Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.

  2. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, Bas; Broers, Hans Peter; Berendrecht, Wilbert; Rozemeijer, Joachim; Osté, Leonard; Griffioen, Jasper

    2016-05-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas or for reducing export loads to downstream water bodies. This paper introduces new insights in nutrient sources and transport processes in a polder in the Netherlands situated below sea level using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring programme at six locations within the drainage area. Seasonal trends and short-scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N loss from agricultural lands. The NO3 loads appear as losses via tube drains after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration and turbidity almost doubled during operation of the pumping station, which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but retention of TP due to sedimentation of particulate P then results in the absence of rainfall induced TP concentration peaks. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is primarily due to the artificial pumping regime

  3. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system

    NASA Astrophysics Data System (ADS)

    van der Grift, B.; Broers, H. P.; Berendrecht, W. L.; Rozemeijer, J. C.; Osté, L. A.; Griffioen, J.

    2015-08-01

    Many agriculture-dominated lowland water systems worldwide suffer from eutrophication caused by high nutrient loads. Insight in the hydrochemical functioning of embanked polder catchments is highly relevant for improving the water quality in such areas. This paper introduces new insights in nutrient sources and transport processes in a low elevated polder in the Netherlands using high-frequency monitoring technology at the outlet, where the water is pumped into a higher situated lake, combined with a low-frequency water quality monitoring program at six locations within the drainage area. Seasonal trends and short scale temporal dynamics in concentrations indicated that the NO3 concentration at the pumping station originated from N-loss from agricultural lands. The NO3 loads appear as losses with drain water discharge after intensive rainfall events during the winter months due to preferential flow through the cracked clay soil. Transfer function-noise modelling of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be related to rainfall. The total phosphorus (TP) concentration almost doubled during operation of the pumping station which points to resuspension of particulate P from channel bed sediments induced by changes in water flow due to pumping. Rainfall events that caused peaks in NO3 concentrations did not results in TP concentration peaks. The by rainfall induced and NO3 enriched quick interflow, may also be enriched in TP but this is then buffered in the water system due to sedimentation of particulate P. Increased TP concentrations associated with run-off events is only observed during a rainfall event at the end of a freeze-thaw cycle. All these observations suggest that the P retention potential of polder water systems is highly due to the artificial pumping regime that buffers high flows. As the TP concentration is affected by operation of the pumping station, timing of sampling

  4. Nutrients and Food Composition: Data Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than 100 years the U.S. Department of Agriculture (USDA) has supported the generation and compilation of food composition data. Today the Agricultural Research Service, USDA develops and maintains the National Nutrient Data Bank, a repository of food composition data which provides the foun...

  5. Relation of nutrient concentrations, nutrient loading, and algal production to changes in water levels in Kabetogama Lake, Voyageurs National Park, northern Minnesota, 2008-09

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.; Kiesling, Richard L.

    2011-01-01

    Nutrient enrichment has led to excessive algal growth in Kabetogama Lake, Voyageurs National Park, northern Minnesota. Water- and sediment-quality data were collected during 2008-09 to assess internal and external nutrient loading. Data collection was focused in Kabetogama Lake and its inflows, the area of greatest concern for eutrophication among the lakes of Voyageurs National Park. Nutrient and algal data were used to determine trophic status and were evaluated in relation to changes in Kabetogama Lake water levels following changes to dam operation starting in 2000. Analyses were used to estimate external nutrient loading at inflows and assess the potential contribution of internal phosphorus loading. Kabetogama Lake often was mixed vertically, except for a few occasionally stratified areas, including Lost Bay in the northeastern part of Kabetogama Lake. Stratification, combined with larger bottom-water nutrient concentrations, larger sediment phosphorus concentrations, and estimated phosphorus release rates from sediment cores indicate that Lost Bay may be one of several areas that may be contributing substantially to internal loading. Internal loading is a concern because nutrients may cause excessive algal growth including potentially toxic cyanobacteria. The cyanobacterial hepatotoxin, microcystin, was detected in 7 of 14 cyanobacterial bloom samples, with total concentrations exceeding 1.0 microgram per liter, the World Health Organization's guideline for finished drinking water for the congener, microcystin-LR. Comparisons of the results of this study to previous studies indicate that chlorophyll-a concentrations and trophic state indices have improved since 2000, when the rules governing dam operation changed. However, total-phosphorus concentrations have not changed significantly since 2000.

  6. AmeriFlux US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site)

    SciTech Connect

    Matamala, Roser

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-IB1 Fermi National Accelerator Laboratory- Batavia (Agricultural site). Site Description - Two eddy correlation systems are installed at Fermi National Accelerator Laboratory: one on a restored prairie (established October 2004) and one on a corn/soybean rotation agricultural field (established in July 2005). The prairie site had been farmed for more than 100 years, but was converted to prairie in 1989. The agricultural site has likely been farmed for more than 100 years, but the first documented instance of agricultural activity dates back to a picture taken in 1952.

  7. Expanding Data on the Nutrient Content of Hispanic/Latino Foods in the USDA National Nutrient Database for Standard Reference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Hispanic-Americans have become the largest minority group in the United States, increasing the need for accurate and current data on nutrient composition of Hispanic/Latino foods. These data will also support NIH’s Hispanic Communities Health Study (HCHS). Methods and Materials: A pil...

  8. Diet History Questionnaire: Development of the DHQ Nutrient Database

    Cancer.gov

    The nutrient and food group database, created for analyzing the DHQ, is based on national dietary intake data from the 1994-96 US Department of Agriculture's Continuing Survey of Food Intake by Individuals (CSFII).

  9. 7 CFR 3402.4 - Food and agricultural sciences areas targeted for National Needs Graduate and Postdoctoral...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Food and agricultural sciences areas targeted for..., AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE FOOD AND AGRICULTURAL SCIENCES NATIONAL NEEDS... sciences areas targeted for National Needs Graduate and Postdoctoral Fellowship Grants Program...

  10. Nutrient intake: A cross-national analysis of trends and economic correlates.

    PubMed

    Dave, Dhaval; Doytch, Nadia; Kelly, Inas Rashad

    2016-06-01

    Nutrition is a key input in the health production function, and a better understanding of how we eat can aid in guiding effective policy change towards better population health. This study documents prevalence rates, trends in, and potential correlates of nutrient intake for panels of countries, categorized by geographical regions and levels of development. We assemble data from 209 countries, spanning 51 years (1961-2011), based on original data compilations using 960 country-years for BMI, 370 country-years for glucose, and 321 country-years for cholesterol. Our estimates inform the nature and scope of nutrient intake on a global scale, and contribute towards an understanding of the drivers of the general upward trend in food intake and obesity. The cross-national trends, across countries spanning the spectrum of economic development and geographic regions, suggest that simply analyzing aggregate caloric intake masks the heterogeneity in trends for the various food groups. Food groups analyzed include cereals, sugars and sweeteners, vegetable oils, meat, starch, milk, fruits, animal fats, alcoholic beverages, oil crops, pulses, vegetables, fish, and eggs. Fixed effects regression analyses reveal that caloric intake is strongly associated with hunger depth, body mass index, cholesterol levels, and glucose levels. Moreover, changes in real GDP per capita, labor force participation, and health care inputs in a nation can partly explain the increase in caloric intake. We note that substantial heterogeneity remains. PMID:27161358

  11. Proceedings of the Annual National Agricultural Education Research Meeting (12th, Atlanta, Georgia, December 6, 1985).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings include the following papers: "An Assessment of the National FFA Public Service Announcement Program" (Sutphin, Dillon, and Rush); "Educational Objectives and Administrative Criteria for the National FFA Contest Program" (Smith and Kahler); "A National Profile of Agricultural Teacher Educators and State Supervisors of Vocational…

  12. 153 Cong. Rec. H3004 - CELEBRATING NATIONAL AGRICULTURE WEEK

    Code of Federal Regulations, 2010 CFR

    2007-03-23

    ..., 17 pounds of carbon dioxide and 16 pounds of distillers grains. Wet grains go to dairy and cattle... agricultural products sold, and first in cattle and calf inventory. According to the Nebraska Department of... impact of livestock production by reducing waste and/or the chemicals found in animal...

  13. High School Agricultural Communications Competencies: A National Delphi Study.

    ERIC Educational Resources Information Center

    Akers, Cindy L.; Vaughn, Paul R.; Haygood, Jacqui D.

    2003-01-01

    In a three-round Delphi study, agriscience faculty (n=75, 43, 41) refined and categorized competencies in 11 topic areas for a high school agricultural communications course. Appropriate topics and competencies for beginning and intermediate levels were identified. (Contains 12 references.) (SK)

  14. Impact of Data from the National Food and Nutrient Analysis Program on the Reported Composition of Highly Consumed Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Food and Nutrient Analysis Program (NFNAP) was designed to expand the quantity and improve the quality of data in USDA food composition databases through the analysis of nationally representative samples of foods and beverages. This paper describes some of the findings from the NFNAP an...

  15. 76 FR 18798 - Comment Request for Information Collection for The National Agricultural Workers Survey: Revision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Agricultural Workers Survey: Revision to an Approved Collection (OMB 1205-0453) AGENCY: Employment and Training... Collection. Agency: Employment and Training Administration. Title: National Agricultural Workers Survey. OMB... Workers Survey (NAWS) regarding: (1) The amount of time per day farm workers are engaged working...

  16. A National Study of the Supply and Demand for Teachers of Vocational Agriculture in 1980.

    ERIC Educational Resources Information Center

    Craig, David G.

    A national study (the sixteenth annual study of its kind) examined the supply and demand for teachers of vocational agriculture in 1980. To obtain data pertaining to supply and demand for vocational agriculture teachers, researchers mailed questionnaires and follow-up letters and made telephone calls to all institutions preparing teachers in…

  17. 75 FR 32736 - Notice of Solicitation for Members of the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ..., Extension, Education and Economics Advisory Board AGENCY: Research, Education and Economics, USDA. ACTION... National Agricultural Research, Extension, Education and Economics Advisory Board. DATES: Deadline for..., Extension, Education, and Economics Advisory Board Office, 1400 Independence Avenue, SW., Room...

  18. 75 FR 68598 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ..., Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION... to 9 member positions of the National Agricultural Research, Extension, Education, and Economics..., Education, and Economics Advisory Board; Research Extension, Education, and Economics Advisory Board...

  19. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  20. Modeling land-based nitrogen loads from groundwater-dominated agricultural watersheds to estuaries to inform nutrient reduction planning

    NASA Astrophysics Data System (ADS)

    Jiang, Yefang; Nishimura, Peter; van den Heuvel, Michael R.; MacQuarrie, Kerry T. B.; Crane, Cindy S.; Xing, Zisheng; Raymond, Bruce G.; Thompson, Barry L.

    2015-10-01

    Excessive nitrate loads from intensive potato production have been linked to the reoccurring anoxic events in many estuaries in Prince Edward Island (PEI), Canada. Community-led watershed-based nutrient reduction planning has been promoted as a strategy for water quality restoration and initial nitrate load criteria have been proposed for the impacted estuaries. An integrated modeling approach was developed to predict base flow nitrate loads to inform the planning activities in the groundwater-dominated agricultural watersheds. Nitrate load is calculated as base flow multiplied by the average of nitrate concentration at the receiving watershed outlet. The average of nitrate concentration is estimated as the integration of nitrate leaching concentration over the watershed area minus a nitrate loss coefficient that accounts for long-term nitrate storage in the aquifer and losses from the recharge to the discharge zones. Nitrate leaching concentrations from potato rotation systems were estimated with a LEACHN model and the land use areas were determined from satellite image data (2006-2009) using GIS. The simulated average nitrate concentrations are compared with the arithmetic average of nitrate concentration measurements in each of the 27 watersheds for model calibration and in 138 watersheds for model verifications during 2006-2009. Sensitivity of the model to the variations of land use mapping errors, nitrate leaching concentrations from key sources, and nitrate loss coefficient was tested. The calibration and verification statistics and sensitivity analysis show that the model can provide accurate nitrate concentration predictions for watersheds with drainage areas more than 5 km2 and nitrate concentration over 2 mg N L-1, while the model resolution for watersheds with drainage areas below 5 km2 and/or nitrate concentration below 2 mg N L-1 may not be sufficient for nitrate load management purposes. Comparisons of normalized daily stream discharges among the

  1. A National-Scale Comparison of Resource and Nutrient Demands for Algae-Based Biofuel Production by Lipid Extraction and Hydrothermal Liquefaction

    SciTech Connect

    Venteris, Erik R.; Skaggs, Richard; Wigmosta, Mark S.; Coleman, Andre M.

    2014-03-01

    Algae’s high productivity provides potential resource advantages over other fuel crops. However, demand for land, water, and nutrients must be minimized to avoid impacts on food production. We apply our national-scale, open-pond, growth and resource models to assess several biomass to fuel technological pathways based on Chlorella. We compare resource demands between hydrothermal liquefaction (HTL) and lipid extraction (LE) to meet 1.89E+10 and 7.95E+10 L yr-1 biofuel targets. We estimate nutrient demands where post-fuel biomass is consumed as co-products and recycling by anaerobic digestion (AD) or catalytic hydrothermal gasification (CHG). Sites are selected through prioritization based on fuel value relative to a set of site-specific resource costs. The highest priority sites are located along the Gulf of Mexico coast, but potential sites exist nationwide. We find that HTL reduces land and freshwater consumption by up to 46% and saline groundwater by around 70%. Without recycling, nitrogen (N) and phosphorous (P) demand is reduced 33%, but is large relative to current U.S. agricultural consumption. The most nutrient-efficient pathways are LE+CHG for N and HTL+CHG for P (by 42%). Resource gains for HTL+CHG are offset by a 344% increase in N consumption relative to LE+CHG (with potential for further recycling). Nutrient recycling is essential to effective use of alternative nutrient sources. Modeling of utilization availability and costs remains, but we find that for HTL+CHG at the 7.95E+10 L yr-1 production target, municipal sources can offset 17% of N and 40% of P demand and animal manures can generally meet demands.

  2. NASA Applied Sciences' DEVELOP National Program: Summer 2010 Florida Agriculture

    NASA Technical Reports Server (NTRS)

    Cooley, Zachary C.; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    The main agricultural areas in South Florida are located within the fertile land surrounding Lake Okeechobee. The Atlantic Watershed monthly rainfall anomalies showed a weak but statistically significant correlation to the Oceanic Nino Index (ONI). No other watershed s anomalies showed significant correlations with ONI or the Southern Oscillation Index (SOI). During La Nina months, less sea breeze days and more disturbed days were found to occur compared to El Nino and neutral months. The increase in disturbed days can likely by attributed to the synoptic pattern during La Nina, which is known to be favorable for tropical systems to follow paths that affect South Florida. Overall, neither sea breeze rainfall patterns nor total rainfall patterns in South Florida s main agricultural areas were found to be strongly influenced by the El Nino Southern Oscillation during our study time.

  3. National conference on agricultural limestone. Bulletin Y-166

    SciTech Connect

    Not Available

    1981-09-01

    Twenty-three papers were presented on various facets of the agricultural limestone (aglime) industry - from the quarry to the farmers. They are organized under the following section headings: introduction and overview; status of current use and need; agronomic situation; a total approach to marketing aglime, producing aglime; and a look to the future. Panel discussions were held on the topics, responding to the seasonal nature of aglime use and regional reviews of the status and opportunities for aglime use. (JGB)

  4. Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture within the United States is varied and produces a large value ($200 billion in 2002) of production across a wide range of plant and animal production systems. Because of this diversity, changes in climate will likely impact agriculture throughout the United States. Climate affects crop, ...

  5. Predicting nutrient responses to mitigation at catchment to national scale: the UK research platform (Invited)

    NASA Astrophysics Data System (ADS)

    Johnes, P.

    2013-12-01

    Nutrient enrichment of waters from land-based and atmospheric sources presents a significant management challenge, requiring effective stakeholder engagement and policy development, properly underpinned by robust scientific evidence. The challenge is complex, raising significant questions about the specific sources, apportionment and pathways that determine nutrient enrichment and the key priorities for effective management and policy intervention. This paper presents outputs from 4 major UK research programmes: the Defra Demonstration Test Catchments programme (DTC), the Environment Agency's Catchment Sensitive Farming monitoring and evaluation programme (CSF), Natural Resources Wales Welsh Catchment Initiative (WCI) and the NERC Environmental Virtual Observatory programme (EVOp). Funded to meet this challenge, they are delivering new understanding of the rates and sources of pollutant fluxes from land to water, their impacts on ecosystem goods and services, and likely trends under future climate and land use change from field to national scale. DTC, a 12m investment by the UK Government, has set up long-term, high resolution research platforms equipped with novel telemetered sensor networks to monitor stream ecosystem responses to on-farm mitigation measures at a representative scale for catchment management. Ecosystem structural and functional responses and bulk hydrochemistry are also being monitored using standard protocols. CSF has set up long-term, enhanced monitoring in 8 priority catchments, with monthly monitoring in a further 72 English catchments and 6 Welsh priority catchments, to identify shifts in pollutant flux to waters resulting from mitigation measures in priority areas and farming sectors. CSF and WCI have contributed to >50 million of targeted farm improvements to date, representing a significant shift in farming practice. Each programme has generated detailed evidence on stream ecosystem responses to targeted mitigation. However, to provide

  6. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution. PMID:27441855

  7. Aragonite saturation states and nutrient fluxes in coral reef sediments in Biscayne National Park, FL, USA

    USGS Publications Warehouse

    Lisle, John T.; Reich, Christopher D.; Halley, Robert B.

    2014-01-01

    Some coral reefs, such as patch reefs along the Florida Keys reef tract, are not showing significant reductions in calcification rates in response to ocean acidification. It has been hypothesized that this recalcitrance is due to local buffering effects from biogeochemical processes driven by seagrasses. We investigated the influence that pore water nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) have on aragonite saturation states (Ωaragonite) in the sediments and waters overlying the sediment surfaces of sand halos and seagrass beds that encircle Alinas and Anniversary reefs in Biscayne National Park. Throughout the sampling period, sediment pore waters from both bottom types had lower oxidation/reduction potentials (ORP), with lower pH relative to the sediment surface waters. The majority (86.5%) of flux rates (n = 96) for ΣNOx–, PO43–, NH4+, SiO2, DIC and TA were positive, sometimes contributing significant concentrations of the respective constituents to the sediment surface waters. The Ωaragonite values in the pore waters (range: 0.18 to 4.78) were always lower than those in the overlying waters (2.40 to 4.46), and 52% (n = 48) of the values were aragonite in 75% (n = 16) of the samples, but increased it in the remainder. The elevated fluxes of nutrients, DIC and TA into the sediment–water interface layer negatively alters the suitability of this zone for the settlement and development of calcifying larvae, while enhancing the establishment of algal communities.

  8. Dietary nutrients associated with short and long sleep duration. Data from a nationally representative sample.

    PubMed

    Grandner, Michael A; Jackson, Nicholas; Gerstner, Jason R; Knutson, Kristen L

    2013-05-01

    Short sleep duration is associated with weight gain and obesity, diabetes, cardiovascular disease, psychiatric illness, and performance deficits. Likewise, long sleep duration is also associated with poor physical and mental health. The role of a healthy diet in habitual sleep duration represents a largely unexplored pathway linking sleep and health. This study evaluated associations between habitual sleep parameters and dietary/nutritional variables obtained via the National Health and Nutrition Examination Survey (NHANES), 2007-2008. We hypothesized that habitual very short (<5h) short (5-6h) and long (9+h) sleep durations are associated with intake of a number of dietary nutrient variables. Overall, energy intake varied across very short (2036kcal), short (2201kcal), and long (1926kcal) sleep duration, relative to normal (2151kcal) sleep duration (p=0.001). Normal sleep duration was associated with the greatest food variety (17.8), compared to very short (14.0), short (16.5) and long (16.3) sleep duration (p<0.001). Associations between sleep duration were found across nutrient categories, with significant associations between habitual sleep duration and proteins, carbohydrates, vitamins and minerals. In stepwise analyses, significant contributors of unique variance included theobromine (long sleep RR=0.910, p<0.05), vitamin C (short sleep RR=0.890, p<0.05), tap water (short sleep RR=0.952, p<0.001; very short (<5h) sleep RR=0.941, p<0.05), lutein+zeaxanthin (short sleep RR=1.123, p<0.05), dodecanoic acid (long sleep RR=0.812, p<0.05), choline (long sleep RR=0.450, p=0.001), lycopene (very short (<5h) sleep RR=0.950, p<0.05), total carbohydrate (very short (<5h) sleep RR=0.494, p<0.05; long sleep RR=0.509, p<0.05), selenium (short sleep RR=0.670, p<0.01) and alcohol (long sleep RR=1.172, p<0.01). Overall, many nutrient variables were associated with short and/or long sleep duration, which may be explained by differences in food variety. Future studies should

  9. Reconstructing the seawater nutrient history of Biscayne National Park, FL, using phosphorus recorded in coral skeleton

    NASA Astrophysics Data System (ADS)

    Harazin, K. M.; Lavigne, M.; Sherrell, R. M.; Delong, K. L.; Reich, C. D.

    2009-12-01

    The phosphorus to calcium ratio (P/Ca) of tropical surface coral skeleton has been proposed as a novel paleo-nutrient proxy, evidenced by a strong correlation between coralline P/Ca and ambient seawater phosphate1. Time-series coral P/Ca records have thus far been limited to modern corals from upwelling regions with high nutrient concentrations (~0.2-0.6 µmol/kg). Demonstration of P/Ca reliability on centennial timescales in low-nutrient environments would expand the applicability of this new proxy. A 10-year mean of P/Ca [9.1 ±2.6 μmol P/mol Ca] in a modern Montastrea faveolata coral from Biscayne National Park, Florida, and contemporaneous mean seawater phosphate [0.032 ±0.018 μmol/kg] plot on the low end of a global P/Ca calibration regression for Montastrea. In upwelling regions, several seawater properties covary seasonally, preventing isolation of a possible influence of secondary variables (e.g. SST) on coral P. We test the seasonal temperature dependence of skeletal P/Ca incorporation at this new site, where variations in seawater phosphate at low levels (~0.01-0.09 µmol/kg) are independent of the strong seasonal variation in SST (~15-33°C). The lack of correlation (r2=0.001) suggests that SST is not a major influence on P incorporation in Montastrea. Coral growth rates in Biscayne National Park, Florida reefs have generally declined through the last century in response to a poorly understood combination of multiple stressors2. To test whether anthropogenic nutrient loading (as traced by phosphate) could have played a role in the decline of coral growth in Biscayne National Park, we reconstructed the seawater phosphate history of the park through the last 120 y by making sub-seasonal P/Ca measurements in eight discrete (5-10 year) down-core time windows in a M. faveolata coral. Coral P/Ca values were similar to modern values (~6-16 µmol/mol P/Ca) through the entire period, indicating that phosphate concentrations at this reef location remained below

  10. Monitoring food and nutrient availability in a nationally representative sample of Bolivian households.

    PubMed

    Pérez-Cueto, F J Armando; Naska, Androniki; Monterrey, Javier; Almanza-Lopez, Magaly; Trichopoulou, Antonia; Kolsteren, Patrick

    2006-03-01

    The study objective was to estimate food and nutrient availability in Bolivian households using data from the nationally representative under the Programme for the household surveys undertaken yearly from 1999 to 2002 Improvement of Surveys and the Measurement of Living Conditions in Latin America and the Caribbean (MECOVI). In the present study, we analysed data from four repeated, cross-sectional surveys and applied European Data Food Networking (DAFNE) methodology for post-harmonising the data. Raw data of 19 483 households in Bolivia (3035 in 1999, 4857 in 2000, 5845 in 2001 and 5746 in 2002) were retrieved from the databases of the national household surveys. Results showed that the Bolivian diet is characterised by higher availability of foods of plant origin (cereals, fruits, potatoes and vegetables). Meat, milk and their products follow in the dietary preferences of Bolivians. Disparities in food availability within the country were also observed. Rural households systematically recorded lower amounts of food available, in comparison with the urban ones. Households of higher social status recorded higher availability values for all food groups, except for potatoes and cereals. Findings suggest that Bolivian households of lower socio-economic status prefer energy-dense and cheaper food sources. We concluded the dietary and socio-demographic data collected in the MECOVI household surveys could serve nutrition surveillance purposes. In addition, the application of DAFNE methodology for post-harmonising the data allows both national and international comparisons. PMID:16512943

  11. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precipitation patterns and nutrient inputs impact transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Io...

  12. Nutrient Database improvement project: Separable components and proximate composition of retail cuts from the beef chuck

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...

  13. Monitoring the effects of climate and agriculture intensity on nutrient fluxes in lowland streams: a comparison between temperate Denmark and subtropical Uruguay

    NASA Astrophysics Data System (ADS)

    Goyenola, Guillermo; Meerhof, Mariane; Teixeira de Mello, Franco; González-Bergonzoni, Ivan; Graeber, Daniel; Vidal, Nicolas; Mazzeo, Nestor; Ovesen, Niels; Jeppesen, Erik; Thodsen, Hans; Kronvang, Brian

    2014-05-01

    Climate is changing towards more extreme conditions all over the world. At the same time, land use is becoming more intensive worldwide and particularly in many developing countries, whereas several developed countries are trying to reduce the impacts of intensive agricultural production and lower the excessive nutrient loading and eutrophication symptoms in water bodies. In 2009, we initiated a comparative research project between the subtropical region (Uruguay) and the temperate region (Denmark) to compare the hydrology and nutrient fluxes in paired micro-catchments with extensive production or intensive agriculture. The four selected streams drained catchments of similar size (7 to 19 km2). We have established similarly equipped monitoring stations in the four micro-catchments in spring (November 2009, Uruguay; March 2010, Denmark) to monitor the effects of land use and agriculture intensity on stream hydrology and nutrient concentrations and fluxes under different climate conditions. We have conducted high frequency measurements in the four lowland streams with underwater probes (turbidity, pH, conductivity and oxygen measured every 15 minutes), fortnight grab sampling of water and automatic sampling of composite water samples for nutrient analysis (total and dissolved nitrogen and phosphorus; sampled every four hours and accumulated fortnightly). Moreover, water level and meteorological information (precipitation, air temperature, global radiation, humidity) has been recorded every 10 minutes and instantaneous flow measurements have been conducted at regular intervals, to facilitate the calculation of instantaneous discharge from continuous records of water level (stage-discharge relationships). We will show results of ca. 2 years from this comparative study between Uruguay and Denmark, and the importance of differences in climate and land use will be discussed.

  14. Prospects for Rural America as the Nation Matures: An Agricultural Economist's Prognosis.

    ERIC Educational Resources Information Center

    Breimyer, Harold F.

    1990-01-01

    Examines socioeconomic forces affecting U.S. rural population. Describes signs of nation's maturity, changing national issues, and elements of rural diversity and social stratification. Discusses role of transportation, demise of animal agriculture, industrial and economic changes. Emphasizes conjectural nature of conclusions about society's…

  15. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 – 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  16. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  17. Water-quality assessment of the Trinity River Basin, Texas - Nutrients in streams draining an agricultural and an urban area, 1993-95

    USGS Publications Warehouse

    Land, Larry F.; Shipp, Allison A.

    1996-01-01

    Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.

  18. A mesocosm study of the effects of wet-dry cycles on nutrient release from constructed wetlands in agricultural landscapes.

    PubMed

    Smith, Allyson S; Jacinthe, Pierre-Andre

    2014-01-01

    Given the projection that wet-dry periods will be more frequent in the US Midwest, a study was conducted to understand the impact of these hydro-climatic alterations on nutrient dynamics in wetlands constructed on former croplands in the region. Soil cores were collected from two constructed wetlands and a wooded riparian area (surface: 0-20 cm; subsurface: 40-60 cm) downslope from an agricultural field. Cores were either kept moist or subjected to a 5-week drying treatment, after which all cores were flooded for 36 days. Initial nitrate flux was significantly (p < 0.001) higher in the dry than in the moist treatment (44.5 vs. 1.9 mg N m(-2) per day), likely due to mineralization of organic matter. The NO3(-) released was rapidly denitrified (N2O flux: 18.9 mg N m(-2) per day), except in the subsurface soil cores in which processing of available N (N2O flux: 0.33 mg N m(-2) per day) was limited by low microbial activity (4 times lower CO2 production rate). The dry treatment also resulted in significantly (p < 0.01) higher inorganic P (Pi) flux (3.1 versus 1 mg P m(-2) per day in moist cores), with water-extractable soil P being the best predictor (r(2): 0.93, p < 0.03) of that flux. Despite a decline in redox potential (as low as -36.4 mv) and progressive increase in pore-water dissolved Fe, no relationship between floodwater Pi and dissolved Fe was observed, suggesting either limited contribution of reductive dissolution to Pi dynamics or rapid adsorption of the Pi released within the cores. Compared to the moist cores, geochemical modeling showed a consistent shift toward greater solubility of the calcium-phosphate minerals controlling pore-water Pi concentration in the dry treatment cores. These results suggest that dissolution of Ca-phosphate minerals could be a key factor controlling Pi mobility in constructed wetlands subjected to wet-dry cycles. PMID:24270400

  19. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on water quality in the Little Conestoga Creek headwaters, 1983-89

    USGS Publications Warehouse

    Koerkle, E.H.; Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.

    1996-01-01

    Water quality in the headwaters of the Little Conestoga Creek, Lancaster County, Pa., was investigated from April 1986 through September 1989 to determine possible effects of agricultural nutrient management on water quality. Nutrient management, an agricultural Best-Management Practice, was promoted in the 5.8-square-mile watershed by the U.S. Department of Agriculture Rural Clean Water Program. Nonpoint-source- agricultural contamination was evident in surface water and ground water in the watershed; the greatest contamination was in areas underlain by carbonate rock and with intensive row-crop and animal production. Initial implementation of nutrient management covered about 30 percent of applicable land and was concentrated in the Nutrient-Management Subbasin. By 1989, nutrient management covered about 45 percent of the entire Small Watershed, about 85 percent of the Nutrient- Management Subbasin, and less than 10 percent of the Nonnutrient-Management Subbasin. The number of farms implementing nutrient management increased from 14 in 1986 to 25 by 1989. Nutrient applications to cropland in the Nutrient- Management Subbasin decreased by an average of 35 percent after implementation. Comparison of base- flow surface-water quality from before and after implementation suggests that nutrient management was effective in slowing or reversing increases in concentrations of dissolved nitrate plus nitrite in the Nutrient-Management Subbasin. Although not statistically significant, the Mann-Whitney step-trend coefficient for the Nutrient-Management Subbasin was 0.8 milligram per liter, whereas trend coefficients for the Nonnutrient-Management Subbasin and the Small Watershed were 0.4 and 1.4 milligrams per liter, respectively, for the period of study. Analysis of covariance comparison of concurrent concentrations from the two sub- basins showed a significant decrease in concen- trations from the Nutrient-Management Subbasin compared to the Nonnutrient-Management Subbasin

  20. Reference materials to evaluate measurement systems for the nutrient composition of foods: results from USDA's National Food and Nutrient Analysis Program (NFNAP).

    PubMed

    Phillips, Katherine M; Wolf, Wayne R; Patterson, Kristine Y; Sharpless, Katherine E; Holden, Joanne M

    2007-09-01

    Over a 6.5-year period a total of 2554 values were reported by nine laboratories for 259 certified or reference nutrient concentrations in 26 certified reference materials (CRM) submitted to contract laboratories, blinded, as part of the qualifying process for analytical contracts and in the routine sample stream as part of the National Food and Nutrient Analysis Program. Each value was converted to a Z'-score, reflecting the difference from the assigned value related to the combined expected analytical uncertainty plus the uncertainty in the CRM value. Z'-scores >/3.0/ were considered unacceptable. For some nutrients (Na, folate, dietary fiber, pantothenic acid, thiamin, tocopherols, carotenoids, monounsaturated, and polyunsaturated fatty acids), >20% of Z'-scores were >/3.0/. For total fat, vitamin C, and niacin >25% of Z'-scores were >/2.0/. Components for which CRM data were best (more than 90% of Z'-scores

  1. USDA Nutrient Data Set for Retail Veal Cuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Agriculture (USDA) Nutrient Data Laboratory (NDL), in collaboration with Colorado State University, conducted a research study designed to update and expand the data on veal cuts in the USDA National Nutrient Database for Standard Reference (SR). This research has been necess...

  2. Mushroom intake is associated with better nutrient intake and diet quality: 2001-2010 National Health and Nutrition Examination Survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association between mushroom consumption and nutrient intake or diet quality has not been reported. The purpose of this study was to determine the associations between these variables in a nationally representative sample of adults. Dietary intake was determined using a 24-hour recall on adult 1...

  3. Atmospheric deposition of nutrients, pesticides, and mercury in Rocky Mountain National Park, Colorado, 2002

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.; Foreman, William T.; Krabbenhoft, David P.

    2003-01-01

    Nutrients, current-use pesticides, and mercury were measured in atmospheric deposition during summer in Rocky Mountain National Park in Colorado to improve understanding of the type and magnitude of atmospheric contaminants being deposited in the park. Two deposition sites were established on the east side of the park: one at an elevation of 2,902 meters near Bear Lake for nutrients and pesticides, and one at an elevation of 3,159 meters in the Loch Vale watershed for mercury. Concentrations of nutrients in summer precipitation at Bear Lake ranged from less than 0.007 to 1.29 mg N/L (milligrams of nitrogen per liter) for ammonium and 0.17 to 4.59 mg N/L for nitrate and were similar to those measured at the Loch Vale National Atmospheric Deposition Network station, where nitrogen concentrations in precipitation are among the highest in the Rocky Mountains. Atrazine, dacthal, and carbaryl were the most frequently detected pesticides at Bear Lake, with carbaryl present at the highest concentrations (0.0079 to 0.0952 ?g/L (micrograms per liter), followed by atrazine (less than 0.0070 to 0.0604 ?g/L), and dacthal (0.0030 to 0.0093 ?g/L). Mercury was detected in weekly bulk deposition samples from Loch Vale in concentrations ranging from 2.6 to 36.2 ng/L (nanograms per liter). Concentrations in summer precipitation were combined with snowpack data from a separate study to estimate annual deposition rates of these contaminants in 2002. Annual bulk nitrogen deposition in 2002 was 2.28 kg N/ha (kilograms of nitrogen per hectare) at Bear Lake and 3.35 kg N/ha at Loch Vale. Comparison of wet and bulk deposition indicated that dry deposition may account for as much as 28 percent of annual nitrogen deposition, most of which was deposited during the summer months. Annual deposition rates for three pesticides were estimated as 45.8 mg/ha (milligrams per hectare) of atrazine, 14.2 mg/ha of dacthal, and 54.8 mg/ha of carbaryl. Because of much higher pesticide concentrations in

  4. Trapping runoff, sediment and nutrients at the edge-of-field: Using constructed wetlands to control runoff and improve water quality in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Deasy, Clare; Quinton, John; Stoate, Chris

    2010-05-01

    Across Europe, many rivers and lakes are polluted. In the UK, the Biodiversity Action Plan estimates that over 70% of lakes are eutrophic. Diffuse pollution from agriculture is currently of extreme concern, but pollution and flood risk can be mitigated by management activities. The use of in-field mitigation options such as reduced tillage has been found to be effective at reducing runoff, sediment and nutrient loss in overland flow, but pollutants can still be lost from hillslopes unchecked via subsurface flow pathways, some of which may contribute very high loads of nutrients to streams. Edge-of-field mitigation approaches, which can tackle both surface and subsurface pathways at locations where they discharge into ditches and streams, therefore have greater potential as runoff control measures than in-field measures alone. In the UK, the implementation, effectiveness and functioning of seven new wetlands constructed at the edges of agricultural fields is currently being assessed. The constructed wetlands, of different designs, which are fed by different flow types and are located on different farm and soil types, are continuously monitored for discharge and turbidity at inlets and outlets, while storm sampling allows assessment of sediment and nutrient transfer into and out of the wetland at times when there is a high risk of pollutant transfer. Pond surveys and sediment sampling will take place annually, and tracer experiments will be carried out in the course of the project. The data will be used to generate information on sediment and nutrient load reductions or wetland effectiveness, wetland sediment and nutrient budgets, and water and sediment residence times. In this paper we present the initial results, including novel high-resolution data from the first monitored events. Early outputs suggest that constructed wetlands which receive surface runoff inputs can retain flood waters and may reduce flood peaks, wetlands built to take drain outfalls may be

  5. Assessment of nutrients and suspended sediment conditions in and near the Agassiz National Wildlife Refuge, Northwest Minnesota, 2008–2010

    USGS Publications Warehouse

    Nustad, Rochelle A.; Galloway, Joel M.

    2012-01-01

    In response to concerns about water-quality impairments that may affect habitat degradation in Agassiz National Wildlife Refuge in northwest Minnesota, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service collected streamflow data, discrete nutrient and suspended- sediment samples, and continuous water-quality data from 2008 to 2010. Constituent loads were estimated for nutrients and suspended sediment using sample data and streamflow data. In addition, a potential water-quality and streamflow monitoring program design was developed for Agassiz National Wildlife Refuge. Results from this study can be used by resource managers to address identified impairments and protect wildlife habitat and public water supply, and may contribute toward developing more effective water-management plans for Agassiz National Wildlife Refuge.

  6. Classification and Mapping of Agricultural Land for National Water-Quality Assessment

    USGS Publications Warehouse

    Gilliom, Robert J.; Thelin, Gail P.

    1997-01-01

    Agricultural land use is one of the most important influences on water quality at national and regional scales. Although there is great diversity in the character of agricultural land, variations follow regional patterns that are influenced by environmental setting and economics. These regional patterns can be characterized by the distribution of crops. A new approach to classifying and mapping agricultural land use for national water-quality assessment was developed by combining information on general land-use distribution with information on crop patterns from agricultural census data. Separate classification systems were developed for row crops and for orchards, vineyards, and nurseries. These two general categories of agricultural land are distinguished from each other in the land-use classification system used in the U.S. Geological Survey national Land Use and Land Cover database. Classification of cropland was based on the areal extent of crops harvested. The acreage of each crop in each county was divided by total row-crop area or total orchard, vineyard, and nursery area, as appropriate, thus normalizing the crop data and making the classification independent of total cropland area. The classification system was developed using simple percentage criteria to define combinations of 1 to 3 crops that account for 50 percent or more or harvested acreage in a county. The classification system consists of 21 level I categories and 46 level II subcategories for row crops, and 26 level I categories and 19 level II subcategories for orchards, vineyards, and nurseries. All counties in the United States with reported harvested acreage are classified in these categories. The distribution of agricultural land within each county, however, must be evaluated on the basis of general land-use data. This can be done at the national scale using 'Major Land Uses of the United States,' at the regional scale using data from the national Land Use and Land Cover database, or at

  7. Agriculture and future riverine nitrogen export to US coastal regions: Insights from the Nutrient Export from WaterSheds Model

    EPA Science Inventory

    We examine contemporary (2000) and future (2030) estimates of coastal N loads in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future estimates are based on Millennium Ecosystem Assessment (MEA) scenarios and two additional scenarios that reflect “...

  8. Nutrient composition and nutritional importance of green leaves and wild food resources in an agricultural district, Koutiala, in southern Mali.

    PubMed

    Nordeide, M B; Hatløy, A; Følling, M; Lied, E; Oshaug, A

    1996-11-01

    This paper discusses the nutrient composition and the nutritional importance of green leaves and wild gathered foods in an area with surplus food production in Mali. In this West African country, there is little information about the nutrient composition and the nutritional quality of foods in general, and of wild gathered foods in particular. Food frequency was collected in two cross-sectional surveys. Focus group discussions with women in the area were used to collect information about seasonality, availability and preparation of various foods. Selected food samples were collected for chemical analysis of nutrient composition. The food samples of green leaves (Adansonia digitata, Amaranthus viridis, Tamarindus indica, Allium cepa), seeds and flour (Parkia biglobosa) and fruits (Tamarindus indica) were analysed for water, energy, fat, protein, minerals, amino acids and carotenoids. Availability and use of the foods varied with seasons. In the rainy season, wild gathered foods (e.g. A. digitata) were used as much as fresh cultivated foods (e.g., A. viridis and A. cepa). The wild food resources were more frequently used in rural than in urban areas, with A. digitata as the dominating green leaves. Green leaves were rich in energy, protein and minerals (calcium, iron). Leaves of A. viridis were, in particular, rich in beta-carotene (3290 micrograms/100 g). Chemical score in dried green leaves varied from 47 (A. cepa) to 81 (A. digitata), with lysine as the first limiting amino acid. P. biglobosa fermented seeds, with 35% fat and 37% protein were a complementary source of lysine in the diet. Based on the seasonality, the frequency of use and the nutrient contents of selected green leaves and wild gathered foods in Koutiala district, it is concluded that these traditional and locally produced foods are valuable and important nutrient contributors in the diet both in rural and urban areas, but most important in rural areas. PMID:8933199

  9. Multiple Stressors in Agricultural Streams: A Mesocosm Study of Interactions among Raised Water Temperature, Sediment Addition and Nutrient Enrichment

    PubMed Central

    Piggott, Jeremy J.; Lange, Katharina; Townsend, Colin R.; Matthaei, Christoph D.

    2012-01-01

    Changes to land use affect streams through nutrient enrichment, increased inputs of sediment and, where riparian vegetation has been removed, raised water temperature. We manipulated all three stressors in experimental streamside channels for 30 days and determined the individual and pair-wise combined effects on benthic invertebrate and algal communities and on leaf decay, a measure of ecosystem functioning. We added nutrients (phosphorus+nitrogen; high, intermediate, natural) and/or sediment (grain size 0.2 mm; high, intermediate, natural) to 18 channels supplied with water from a nearby stream. Temperature was increased by 1.4°C in half the channels, simulating the loss of upstream and adjacent riparian shade. Sediment affected 93% of all biological response variables (either as an individual effect or via an interaction with another stressor) generally in a negative manner, while nutrient enrichment affected 59% (mostly positive) and raised temperature 59% (mostly positive). More of the algal components of the community responded to stressors acting individually than did invertebrate components, whereas pair-wise stressor interactions were more common in the invertebrate community. Stressors interacted often and in a complex manner, with interactions between sediment and temperature most common. Thus, the negative impact of high sediment on taxon richness of both algae and invertebrates was stronger at raised temperature, further reducing biodiversity. In addition, the decay rate of leaf material (strength loss) accelerated with nutrient enrichment at ambient but not at raised temperature. A key implication of our findings for resource managers is that the removal of riparian shading from streams already subjected to high sediment inputs, or land-use changes that increase erosion or nutrient runoff in a landscape without riparian buffers, may have unexpected effects on stream health. We highlight the likely importance of intact or restored buffer strips, both

  10. Little River Experimental Watershed, Georgia: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In September 2007, USDA’s Cooperative State Research, Education, and Extension Service (CSREES), now the National Institute of Food and Agriculture (NIFA), and the Natural Resources Conservation Service (NRCS) jointly funded two integrated research and outreach grants to conduct a synthesis of resul...

  11. The National Program for Occupational Safety and Health in Agriculture. 1992 Project Facts.

    ERIC Educational Resources Information Center

    National Inst. for Occupational Safety and Health (DHHS/PHS), Cincinnati, OH.

    This book contains information about a project instituted in 1990 by the National Institute for Occupational Safety and Health (NIOSH) to prevent work-related diseases and injuries among agricultural workers. Included are facts about 25 projects within NIOSH and 42 cooperative agreements between NIOSH and institutions in 25 states. These…

  12. 76 FR 13124 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ..., Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION..., Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet March 30-31, 2011. The public may file written...

  13. 75 FR 61692 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ..., Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION..., Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet October 27-29, 2010. The public may file written...

  14. 76 FR 25298 - Solicitation of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...-3684. Correction In the Federal Register of April 22, 2011, in FR Doc. 2011-9638, on page 22667, in the... Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics... to the National Agricultural Research, Extension, Education, and Economics Advisory Board. The...

  15. 78 FR 25691 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ..., Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION..., Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet May 28-30, 2013. The public may file written...

  16. 75 FR 12171 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ..., Education, and Economics Advisory Board Meeting AGENCY: Research, Education, and Economics, USDA. ACTION..., Extension, Education, and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education, and Economics Advisory Board will meet March 29-31, 2010. The public may file written...

  17. ERIC First Analysis: Agricultural Policy. 1986-87 National High School Debate Resolutions.

    ERIC Educational Resources Information Center

    Wagner, David L.; Fraleigh, Douglas

    Designed to serve as a framework in which high school debate students, coaches, and judges can evaluate the issues, arguments, and evidence concerning which agricultural policies best serve the United States, this booklet provides guidelines for research on the 1986-87 debate resolutions selected by the National Federation of State High School…

  18. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  19. 75 FR 68000 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Hiawatha National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... National Park Service Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service... inventory of human remains in the control of the U.S. Department of Agriculture, Forest Service, Hiawatha... assessment of the human remains was made by U.S. Department of Agriculture, Forest Service,...

  20. Martian base agriculture: The effect of low gravity on water flow, nutrient cycles, and microbial biomass dynamics

    NASA Astrophysics Data System (ADS)

    Maggi, Federico; Pallud, Céline

    2010-11-01

    The latest advances in bioregenerative strategies for long-term life support in extraterrestrial outposts such as on Mars have indicated soil-based cropping as an effective approach for waste decomposition, carbon sequestration, oxygen production, and water biofiltration as compared to hydroponics and aeroponics cropping. However, it is still unknown if cropping using soil systems could be sustainable in a Martian greenhouse under a gravity of 0.38 g. The most challenging aspects are linked to the gravity-induced soil water flow; because water is crucial in driving nutrient and oxygen transport in both liquid and gaseous phases, a gravitational acceleration lower than g = 9.806 m s -2 could lead to suffocation of microorganisms and roots, with concomitant emissions of toxic gases. The effect of Martian gravity on soil processes was investigated using a highly mechanistic model previously tested for terrestrial crops that couples soil hydraulics and nutrient biogeochemistry. Net leaching of NO3- solute, gaseous fluxes of NH 3, CO 2, N 2O, NO and N 2, depth concentrations of O 2, CO 2 and dissolved organic carbon (DOC), and pH in the root zone were calculated for a bioregenerative cropping unit under gravitational acceleration of Earth and for its homologous on Mars, but under 0.38 g. The two cropping units were treated with the same fertilizer type and rate, and with the same irrigation regime, but under different initial soil moisture content. Martian gravity reduced water and solute leaching by about 90% compared to Earth. This higher water holding capacity in soil under Martian gravity led to moisture content and nutrient concentrations that favoured the metabolism of various microbial functional groups, whose density increased by 5-10% on Mars as compared to Earth. Denitrification rates became substantially more important than on Earth and ultimately resulted in 60%, 200% and 1200% higher emissions of NO, N 2O and N 2 gases, respectively. Similarly, O 2 and DOC

  1. 75 FR 45656 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Siuslaw National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service.... Department of Agriculture, Forest Service, Siuslaw National Forest, Waldport, OR. The human remains...

  2. Effects of Enrichment on Expression of Key Nutrient Regulons in Extremophiles in Hydrothermal Springs at Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Knowlton, M.; Elser, J. J.; Poret-peterson, A. T.

    2011-12-01

    To cope with nutrient limitation, micro-organisms have evolved diverse means to increase acquisition of nutrients such as ammonium, nitrate, and phosphate and trace metals when they become limiting. These strategies typically involve production of compound-specific transporters (i.e., ammonium transporters) or extracellular enzymes (i.e., alkaline phosphatase). Genes that encode these proteins are often under the control of shared regulatory proteins called regulons. Regulons of genes for N, P, or Fe metabolism ultimately affect the transport of vital nutrients into and out of cells and thus help organisms deal with nutrient limitation. Regulons for N, P, and Fe have been found and studied ex situ for model organisms under various nutrient-limiting conditions but are relatively unstudied in the field, especially in hydrothermal systems. The aim of this study was to characterize transcription patterns of genes for N, P, and Fe processing under experimental nutrient enrichment in a complex microbial community from an alkaline hot spring located in Yellowstone National Park. Microbial mat samples and hot spring water were placed in bottles, subjected to a fully factorial manipulation of N (125 μM N as ammonium nitrate), phosphorus (7.8 μM P as sodium phosphate), and Fe (7.8 x 10-2 μM Fe as ferric citrate), and incubated overnight at in situ temperatures. Following incubation, hot spring water was filtered and preserved for nutrient analyses and biomass subsamples were snap-frozen for molecular analysis. Chemical analysis showed a total removal of NH4 and PO4 from the water in all treatments. NO3 decreased slightly in most treatments (control, +N, +P, +Fe, +PFe, and +NPFe) but increased in the others (+NFe and +NP). Interestingly, Fe concentrations were lower in amended samples (+Fe, +NFe, +PFe, and +NPFe) than in unamended samples (control, +N, +P, +NP). To assess the transcriptional responses, primers were designed to target genes controlled by the ferric uptake

  3. Comparison of models used for national agricultural ammonia emission inventories in Europe: Liquid manure systems

    NASA Astrophysics Data System (ADS)

    Reidy, B.; Dämmgen, U.; Döhler, H.; Eurich-Menden, B.; van Evert, F. K.; Hutchings, N. J.; Luesink, H. H.; Menzi, H.; Misselbrook, T. H.; Monteny, G.-J.; Webb, J.

    Ammonia (NH 3) emissions from agriculture commonly account for >80% of the total NH 3 emissions. Accurate agricultural NH 3 emission inventories are therefore required for reporting within the framework of the Gothenburg Protocol of the UN Convention on Long-range Transboundary Air Pollution. To allow a co-ordinated implementation of the Protocol, different national inventories should be comparable. A core group of emission inventory experts therefore developed a network and joint programme to achieve a detailed overview of the best inventory techniques currently available and compiled and harmonized the available knowledge on emission factors (EFs) for nitrogen (N)-flow emission calculation models and initiated a new generation of emission inventories. As a first step in summarizing the available knowledge, six N-flow models, used to calculate national NH 3 emissions from agriculture in different European countries, were compared using standard datasets. Two scenarios for slurry-based systems were run separately for dairy cattle and for pigs, with three different levels of model standardisation: (a) standardised inputs to all models (FF scenario); (b) standard N excretion, but national values for EFs (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario showed very good agreement among models, indicating that the underlying N flows of the different models are highly similar. As a result of the different national EFs and N excretion rates, larger differences among the results were observed for the FN and the NN scenarios. Reasons for the differences were primarily attributed to differences in the agricultural practices and climatic factors reflected in the EFs and the N excretion rates. The scientific debate necessary to understand the variation in the results generated awareness and consensus concerning available scientific data and the importance of specific processes not yet included in some models.

  4. Evidence for the use of low-grade weirs in drainage ditches to improve nutrient reductions from agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The essential function of drainage ditches is to remove water from the agricultural landscape to avoid crop senescence through flooding and soil saturation. Commonly used slotted board risers provide drainage management strategies over the dormant season; however, by introducing innovative, low-gra...

  5. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: National Health and Nutrition Examination Survey 2005-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient adequacy of tree nut consumers has not been examined. The National Health and Nutrition Examination Survey 2005–2010 data were used to assess the association of tree nut consumption by adults 19+ years with nutrient adequacy and diet quality. Covariate adjusted usual intake was determined u...

  6. Whole-grain consumption is associated with diet quality and nutrient intake in adults: the National Health and Nutrition Examination Survey, 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of whole grains and its association with nutrient intake has not been assessed in a recent nationally representative population. The objective was to examine the association of consumption of whole grains, using the new whole-grain definition, with diet quality and nutrient intake in...

  7. 75 FR 52014 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Cherokee National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ..., Cherokee National Forest, Cleveland, TN AGENCY: National Park Service, Interior. ACTION: Notice. Notice is... control of the U.S. Department of Agriculture, Forest Service, Cherokee National Forest, Cleveland, TN... with the Cherokee Tribes. The Cherokee are represented by the Cherokee Nation, Oklahoma; Eastern...

  8. Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals.

    PubMed

    Zhang, Fu-Shen; Yamasaki, S; Nanzyo, M

    2002-02-01

    The chemical characteristics of 89 municipal waste ashes, including food scrap ash (FSA), animal waste ash (AWA), horticulture waste ash (HWA), sewage sludge ash (SSA) and incinerator bottom ash (IBA), from various locations in Japan were examined with the aim of evaluating their suitability for use in agriculture. Although the waste ashes came from different sources and consisted of various materials, the gross elemental composition was similar. Acid neutralization capacity (liming effect) for the waste ashes was equivalent to 10-30% of CaO and followed the sequence SSA > IBA > AWA > FSA > HWA. Average P concentrations for the five types of waste ashes ranged from 10 to 29 g kg(-1) and average K concentrations ranged from 14 to 63 g kg(-1), respectively. Metal contents in the waste ashes were compared with levels in Japanese agricultural soils. K in the waste ashes was 1.3-6 times higher and Ca was 3-12 times higher; contents of the other metals in FSA, AWA and HWA were generally less than five times higher, but Ni, Cu, Zn, Cd, Sn, Pb in SSA or IBA were approximately 10-200 times higher than those in soils. Moreover, the ceiling amounts of waste ashes that may be applied to main Japanese agricultural soils were calculated by using soil contamination standards for Cu. Water solubility of P and metals in the waste ashes were also examined. PMID:11846166

  9. Nutrient, sediment, and pesticide data collected at four small agricultural basins in the Beaver Creek watershed, West Tennessee, 1990-1995

    USGS Publications Warehouse

    Williams, Shannon D.; Harris, Robin M.

    1996-01-01

    In 1989, the U.S. Geological Survey began a cooperative study with the Tennessee Department of Agriculture to assess the impact of agricultural activities on water quality in the Beaver Creek watershed in West Tennessee. Quantification of the transport of nutrients, sediment, and pesticides from agricultural fields was one of the objectives of the study. This report presents nutrient, sediment, and pesticide data collected during selected storm events from 1990 through 1995 at four relatively small, agricultural basins (28 to 422 acres) in the Beaver Creek watershed. Approximately 3,000 water samples (500 to 1,000 at each site) were analyzed for nitrogen and phosphorus species. Total nitrogen (N) concentrations ranged from 0.2 to 41.2 milligrams per liter (mg/L). Median concentrations for samples from each site ranged from 2.0 to 2.7 mg/L for total nitrogen, 1.2 to 1.9 mg/L for organic nitrogen, 0.05 to 0.14 mg/L for ammonia (measured as N), and 0.2 to 0.8 mg/L for nitrate plus nitrite (measured as N). Total phosphorus (P) concentrations ranged from 0.03 to 16.0 mg/L. Median concentrations for samples from each site ranged from 0.80 to 1.2 mg/L for total phosphorus and 0.15 to 0.72 for orthophosphate (measured as P). Approximately 6,000 water samples (1,300 to 1,800 at each site) were analyzed for suspended sediment. Suspended-sediment concentrations ranged from 8.0 to 98,353 mg/L. Concentrations exceeded 1,000 mg/L in 33 percent of the samples collected and exceeded 10,000 mg/L in 6 percent of the samples. Median concentrations ranged from 347 to 713 mg/L at the four sites. Several herbicides and insecticides were detected in water samples. Maximum concentrations detected were 37 micrograms per liter for metolachlor, 3.2 for trifluralin, 150 for fluometuron, and 430 for aldicarb. Aldicarb metabolites were also detected in several samples. The maximum aldicarb sulfoxide and aldicarb sulfone concentrations detected were 68.4 and 14.3 micrograms per liter

  10. Nation-wide trend in nitrate concentration of agricultural groundwater of Korea

    NASA Astrophysics Data System (ADS)

    Lim, J.; Kim, J.; Lee, S.; Lee, K.

    2013-12-01

    Nation-wide monitoring of groundwater in agricultural areas of Korea showed that about 27% of the total 3000 wells violate the groundwater standard of their relevant usage. Concerning nitrate concentration, 22% of the total wells are shown to exceed the relevant standard. The agricultural use of nitrates in organic and chemical fertilizers has been known as a major source of groundwater pollution. In the aim of protecting groundwater quality across the nation, this study analyzed the land use relationship with the nitrate concentration and the trend in water quality at each groundwater monitoring well. As the data had been collected from all over the nation, the characteristics of the data were needed to be scrutinized. With the analysis of variance (ANOVA), the data is tested for whether they are from the same population or not. Then, for the data from the same population, the Tobit regression model of multivariate analysis is applied in finding the relationship between the various types of land use and the nitrate concentration. For trend analysis of the water quality, nonparametric method of the Mann-Kendall test is applied. Both the seasonal characteristic and the total trend exclusive of the seasonal variation are analyzed. This study is expected to provide a sound basis in implementing effective actions for water quality protection in agricultural areas.

  11. Modeling and assessing the impact of reclaimed wastewater irrigation on the nutrient loads from an agricultural watershed containing rice paddy fields.

    PubMed

    Kim, Sang Min; Park, Seung Woo; Lee, Jeong Jae; Benham, Brian L; Kim, Hak Kwan

    2007-02-15

    Two models were used in concert to predict nutrient loads in a waterbody receiving irrigation return flows from a rice paddy production system. Two irrigation scenarios were simulated, one using reclaimed wastewater as the irrigation water source, the other using water from a surface reservoir designed to supply irrigation water. Total nitrogen (TN) and total phosphorus (TP) loads in irrigation return flows from the rice paddy fields were simulated using the field-scale water quality model Chemical, Runoff and Erosion from Agricultural Management System model for rice paddy fields (CREAMS-PADDY). The output from CREAMS-PADDY was then used as input data for Hydrological Simulation Program-FORTRAN (HSPF) model. HSPF was used to evaluate TN and TP loads in the receiving waterbody at the watershed-scale. CREAMS-PADDY and HSPF were calibrated for both hydrology and water quality using observed data. Both CREAMS-PADDY and HSPF showed good agreement between the observed and simulated data during the calibration and validation periods. Simulation indicated that TN and TP loads from the study paddy fields increased by 207% and 1022% when reclaimed wastewater was used for irrigation compared to conventional irrigation. Irrigating paddy fields (18.8% of the 385 ha study watershed) with reclaimed wastewater increased the TN load at the watershed outlet by 10.3% and TP by 14.0%. The increase in nutrient loads was the result of the high nutrient concentration in the reclaimed wastewater. The procedures used in this research can be used to develop wastewater reuse strategies that minimize environmental impacts on watershed water quality. PMID:17365296

  12. The USDA Ground Beef Calculator - an augmentation to the USDA National Nutrient Database for Standard Reference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground beef is unusual in that a wide range of products, differing in lean and fat content, are available in most U.S. retail stores. Providing consumers and industry with nutrient information for such a range of products presents a unique challenge. In order to provide consumers and industry with t...

  13. 77 FR 59287 - National Organic Program (NOP); Sunset Review (2012) for Nutrient Vitamins and Minerals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ..., AMS published a proposed rule on the 2012 Sunset Review for nutrient vitamins and minerals (77 FR 1980... handling should be continued (75 FR 14500).\\1\\ The ANPR indicated that the exemption for the use of... the Federal Register as follows: March 17, 2010 (75 FR 12723), September 20, 2010 (75 FR 57194),...

  14. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; hydrology of a small carbonate site near Ephrata, Pennsylvania, prior to implementation of nutrient management

    USGS Publications Warehouse

    Koerkle, E.H.; Hall, D.W.; Risser, D.W.; Lietman, P.L.; Chichester, D.C.

    1997-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture and Pennsylvania Department of Environmental Protection, investigated the effects of agricultural best-management practices on water quality in the Conestoga River headwaters watershed. This report describes environmental factors and the surface-water and ground-water quality of one 47.5-acre field site, Field-Site 2, from October 1984 through September 1986, prior to implementation of nutrient management. The site is partially terraced agricultural cropland underlain by carbonate rock. Twenty-seven acres are terraced, pipe-drained, and are under no-till cultivation. The remaining acreage is under minimum-till cultivation. Corn is the primary crop. The average annual rate of fertilization at the site was 480 pounds per acre of nitrogen and 110 pounds per acre of phosphorus. An unconfined limestone and dolomitic aquifer underlies the site, Depth to bedrock ranges from 5 to 30 feet below land surface. Estimated specific yields range from 0.05 to 0.10, specific capacities of wells range from less than 1 to about 20 gallons per minute per foot of drawdown, and estimates of transmissivities range from 10 to 10,000 square feet per day. Average ground-water recharge was estimated to be about 23 inches per year. The specific capacity and transmissivity data indicate that two aquifer regimes are present at the site. Wells drilled into dolomites in the eastern part of the site have larger specific capacities (averaging 20 gallons per minute per foot of drawdown) relative to specific capacities (averaging less than 1 gallon per minute per foot of drawdown) of wells drilled into limestones in the western part of the site. Median concentrations of soil-soluble nitrate and soluble phosphorus in the top 4 feet of silt- or silty-clay-loam soil ranged from 177 to 329 and 8.5 to 35 pounds per acre, respectively. Measured runoff from the pipe-drained terraces ranged from 10 to 48,000 cubic feet and was

  15. ArcNEMO, a spatially distributed nutrient emission model developed in Python to quantify losses of nitrogen and phosphorous from agriculture to surface waters

    NASA Astrophysics Data System (ADS)

    Van Opstal, Mattias; Tits, Mia; Beckers, Veronique; Batelaan, Okke; Van Orshoven, Jos; Elsen, Annemie; Diels, Jan; D'heygere, Tom; Van Hoof, Kor

    2014-05-01

    Pollution of surface water bodies with nitrogen (N) and phosphorous (P) from agricultural sources is a major problem in areas with intensive agriculture in Europe. The Flemish Environment Agency requires information on how spatially explicit policy measures on manure and fertilizer use, and changes in land use and soil management affect the N and P concentration in the surface waters in the region of Flanders, Belgium. To assist in this, a new spatially distributed, mechanistic nutrient emission model was developed in the open-source language Python. The model is called ArcNEMO (Nutrient Emission MOdel). The model is fully integrated in ArcGIS, but could be easily adapted to work with open-source GIS software. In Flanders, detailed information is available each year on the delineation of each agricultural parcel and the crops grown on them. Parcels are linked to farms, and for each farm yearly manure and fertilizer use is available. To take full advantage of this information and to be able to simulate nutrient losses to the high-density surface water network, the model makes use of grid cells of 50 by 50m. A fertilizer allocation model was developed to calculate from the yearly parcel and farm data the fertilizer and manure input per grid cell for further use in the ArcNEMO-model. The model architecture was chosen such that the model can be used to simulate spatially explicit monthly discharge and losses of N and P to the surface water for the whole of Flanders (13,500 km²) over periods of 10-20 years. The extended time period is necessary because residence times in groundwater and the rates of organic matter turnover imply that water quality reacts slowly to changes of land use and fertilization practices. Vertical water flow and nutrient transport in the unsaturated zone are described per grid cell using a cascading bucket-type model with daily time steps. Groundwater flow is described by solving the 2D-groundwater flow equation using an explicit numerical

  16. Almond consumption is associated with better nutrient intake, nutrient adequacy, and diet quality in adults: National Health and Nutrition Examination Survey 2001-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine the association between almond consumption, the most widely consumed tree nut in the US, and nutrient intake, nutrient adequacy, diet quality, and weight/adiposity in adults. Data from adults (N=24,808), 19+ years, participating in the NHANES 2001-2010 were u...

  17. Federal Agency and Federal Library Reports. Library of Congress; Center for the Book; Federal Library and Information Center Committee; National Commission on Libraries and Information Science; National Agricultural Library; National Library of Medicine;United States Government Printing Office; National Technical Information Service; National Archives and Records Administration; National Center for Education Statistics Library Statistics Program; National Library of Education; Educational Resources Information Center.

    ERIC Educational Resources Information Center

    Fischer, Audrey; Cole, John Y.; Tarr, Susan M.; Vlach, Rosalie B.; Carey, Len; Mehnert, Robert; Sherman, Andrew M.; Davis, Linda; Vecchiarelli, Marion H.; Chute, Adrienne; Dunn, Christina

    2002-01-01

    Includes reports from Library of Congress, Center for the Book, Federal Library and Information Center Committee, National Commission on Libraries and Information Science, National Agricultural Library, National Library of Medicine, Government Printing Office, National Technical Information Service, National Archives and Records Administration,…

  18. Population array and agricultural data arrays for the Los Alamos National Laboratory

    SciTech Connect

    Jacobson, K.W.; Duffy, S.; Kowalewsky, K.

    1998-07-01

    To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculating the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory.

  19. Changes in nutrient levels for three fresh pork loin cuts between 1992-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since pork nutrient composition changes have occurred over the past two decades, a collaborative study was conducted by scientists at the U.S. Department of Agriculture (USDA), Texas Tech University and the National Pork Board to determine current nutrient values. The purpose was to obtain analytic...

  20. Integrating Academics into Agriculture Programs: A Delphi Study to Determine Perceptions of the National Agriscience Teacher Ambassador Academy Participants

    ERIC Educational Resources Information Center

    Myers, Brian E.; Thompson, Gregory W.

    2009-01-01

    This study investigated the perceptions of participants in the National Agriscience Teacher Ambassador Academy as to the next steps the agricultural education profession should take to move forward in the area of integrating academic subject matter into agricultural education courses. All members of the 2007 Academy participated in the study.…

  1. 78 FR 59953 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Coconino National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service... Service, Interior. ACTION: Notice. SUMMARY: The U.S. Department of Agriculture (USDA), Forest...

  2. Proceedings of the Annual National Agricultural Education Research Meeting (9th, St, Louis, Missouri, December 3, 1982).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings contain the texts of 29 papers presented at the ninth Annual Agricultural Education Research Meeting. During the five sessions of the conference, various areas of agricultural education were addressed, such as inservice education, job satisfaction and morale, teacher concerns, national issues, program improvement, preservice…

  3. Effects of agricultural best-management practices on the Brush Run Creek headwaters, Adams County, Pennsylvania, prior to and during nutrient management

    USGS Publications Warehouse

    Langland, M.J.; Fishel, D.K.

    1996-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, investigated the effects of agricultural best-management practices on surface-water quality as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. This report characterizes a 0.63-square- mile agricultural watershed underlain by shale, mudstone, and red arkosic sandstone in the Lower Susquehanna River Basin. The water quality of the Brush Run Creek site was studied from October 1985 through September 1991, prior to and during the implementation of nutrient management designed to reduce sediment and nutrient discharges into Conewago Creek, a tributary to the Chesapeake Bay. The original study area was 0.38 square mile and included an area immediately upstream from a manure lagoon. The study area was increased to 0.63 square mile in the fall of 1987 after an extensive tile-drain network was discovered upstream and downstream from the established streamflow gage, and the farm owner made plans to spray irrigate manure to the downstream fields. Land use for about 64 percent of the 0.63 square mile watershed is cropland, 14 percent is pasture, 7 percent is forest, and the remaining 15 percent is yards, buildings, water, or gardens. About 73 percent of the cropland was used to produce corn during the study. The average annual animal population consisted of 57,000 chickens, 1,530 hogs, and 15 sheep during the study. About 59,340 pounds of nitrogen and 13,710 pounds of phosphorus were applied as manure and commercial fertilizer to fields within the subbasin during the 3-year period prior to implementation of nutrient management. During nutrient management, about 14 percent less nitrogen and 57 percent less phosphorus were applied as commercial and manure fertilizer. Precipitation totaled 209 inches, or 13 percent less than the long-term normal, during the 6-year study. Concentrations of total ammonia in

  4. Processes, Controls, and Potential for In-situ Nutrient Removal During Managed Aquifer Recharge in an Agricultural Basin

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Fisher, A. T.; Los Huertos, M.; Lockwood, B.

    2008-12-01

    We are conducting research on rates and dynamics of water quality improvement that occur during managed aquifer recharge (MAR), with a focus on reducing the load of nitrate exported during recharge. Nitrate is the most common nonpoint source pollutant in surface and ground water in the United States, and is a problem particularly in basins developed for agriculture. Our study site is located in central coastal California, where diversion from a slough (wetland) is permitted during periods of high flow for use in MAR. Diverted water is recharged into an eolian and fluvial, unconfined aquifer using a 3-km2 percolation pond, then subsequently recovered and distributed to local farmers. As a result of agricultural and other activities in the basin, diverted slough water is often rich in nitrate (historical values as high as 4 mM); similarly high nitrate values have been measured in water from the underlying aquifer. Prior to the start of the 2007-08 water year, we surveyed, sampled, and instrumented the recharge pond in order to quantify local seepage rates and sample recharging water to assess changes in water quality during infiltration through the base of the pond. Nests of piezometers and lysimeters were screened at depths of 50 to 150 cm beneath the base of the pond and sampled weekly throughout the recharge season. Total MAR was 7.4 × 105 m3 (600 ac-ft) during the 2007-08 water year, with initial nitrate concentrations of 10 μM to 100 μM in the diverted water. Point-specific infiltration rates were greater than 10 m/day in some locations below the pond, and much lower in other locations. Nitrate concentrations were reduced by 50 to 90% beneath the pond, with the greatest reductions occurring at lower concentrations and slower infiltration rates. Suboxic conditions developed beneath the pond during recharge, which is consistent with removal of nitrate by denitrification. Dissolved organic carbon concentrations were elevated during the recharge season throughout

  5. Agricultural Education: A Look at the Profession. Proceedings of the Annual National Agricultural Education Research Meeting (10th, Anaheim, California, December 2, 1983).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings contain the agenda, discussants' reports, and 30 papers from the 1983 National Agricultural Education Research Meeting. A discussant's report precedes each group of three papers on one theme and critiques the strengths and weaknesses of the research reported. The 10 themes and representative topics of papers are adult education…

  6. Discharge and nutrient transport between lakes in a hydrologically complex area of Voyageurs National Park, Minnesota, 2010-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Wakeman, Eric; Maki, Ryan P.

    2016-01-01

    An acoustic Doppler velocity meter (ADVM) was deployed in the narrows between Namakan and Kabetogama Lakes in Voyageurs National Park, Minnesota, from November 3, 2010, through October 3, 2012. The ADVM can account for wind, seiche, and changing flow direction in hydrologically complex areas. The objectives were to (1) estimate discharge and document the direction of water flow, (2) assess whether specific conductance can be used to determine flow direction, and (3) document nutrient and chlorophyll a concentrations at the narrows. The discharge direction through the narrows was seasonal. Water generally flowed out of Kabetogama Lake and into Namakan Lake throughout the ice-covered season. During spring, water flow was generally from Namakan Lake to Kabetogama Lake. During the summer and fall, the water flowed in both directions, affected in part by wind. Water flowed into Namakan Lake 70% of water year 2011 and 56% of water year 2012. Nutrient and chlorophyll a concentrations were highest during the summer months when water-flow direction was unpredictable. The use of an ADVM was effective for assessing flow direction and provided flow direction under ice. The results indicated the eutrophic Kabetogama Lake may have a negative effect on the more pristine Namakan Lake. The results also provide data on the effects of the current water-level management plan and may help determine if adjustments are necessary to help protect the aquatic ecosystem of Voyageurs National Park.

  7. Simulating Water and Nutrient Transport in an Urbanizing Agricultural Watershed with Lake-Level Regulation Using a Coupled Modeling Approach

    NASA Astrophysics Data System (ADS)

    Chen, X.; Motew, M.; Booth, E.; Carpenter, S. R.; Steven, L. I.; Kucharik, C. J.

    2015-12-01

    The Yahara River basin located in southern Wisconsin is a watershed with long-term eutrophication issues due largely to a thriving dairy industry upstream of the Madison chain of lakes. Steady phosphorus loading from manure production and other sources has contributed directly to blue-green algae blooms and poor water quality in the lakes and river system, and is often viewed as the most important environmental problem to solve in the region. In this study, the daily streamflow and monthly nitrogen (N), sediment and phosphorus (P) transport, as well as the lake levels in the Yahara River basin are simulated using a physically-based hydrologic routing model: the Terrestrial Hydrology Model with Biogeochemistry (THMB). The original model includes representation of water and nitrogen transport but as part of this work, P transport and lake regulation are added into the model. The modified THMB model is coupled with the AgroIBIS-VSF agroecosystem model to represent dynamic coupling between agricultural management in the watershed, and N, P, and sediment transport to lakes and streams. We will present model calibration and validation results that demonstrate the hydrologic routing capability of THMB for a spatial resolution of 220m, several orders of magnitude finer than attempted previously with THMB. The calibrated modeling system is being used to simulate the impacts of climate change and land management on biogeochemistry in the Yahara watershed under four different pathways of change to the year 2070 (Yahara 2070). These scenarios are Abandonment and Renewal, Accelerated Innovation, Connected Communities and Nested Watersheds, which are used to better understand how future decision-making influences the provisioning and trade-offs of ecosystem services.

  8. Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment.

    PubMed

    Andrus, J Malia; Winter, Diane; Scanlan, Michael; Sullivan, Sean; Bollman, Wease; Waggoner, J B; Hosmer, Alan J; Brain, Richard A

    2013-08-01

    Numerous studies characterizing the potential effects of atrazine on algal assemblages have been conducted using micro- or mesocosms; however, few evaluations focused on in situ lotic algal communities, potentially confounding risk assessment conclusions. This exploratory study, conducted at several sites in the midwestern United States where atrazine is commonly used, presents in situ observations of native algal communities relative to atrazine exposure and other parameters. Planktonic and periphytic algae from three streams in three Midwestern states, having historically differing atrazine levels, were sampled over a 16-week period in 2011 encompassing atrazine applications and the summer algal growth period at each site. Changes in abundance, diversity, and composition of algal communities were placed in the context of hydrological, climatic, and water quality parameters (including components sometimes present in agricultural runoff) also collected during the study. Diatoms dominated communities at each of the three sites and periphyton was much more abundant than phytoplankton. As expected, significant variations in algal community and environmental parameters were observed between sites. However, correspondence analysis plots revealed that patterns of temporal variation in algal communities at each site and in periphyton or phytoplankton were dominated by seasonal environmental gradients. Significant concordance in these seasonal patterns was detected among sites and between phytoplankton and periphyton communities (via procrustes Protest analysis), suggesting synchronicity of algal communities across a regional scale. While atrazine concentrations generally exhibited seasonal trends at the study watersheds; no effects on algal abundance, diversity or assemblage structure were observed as a result of atrazine pulses. This lack of response may be due to exposure events of insufficient concentration or duration (consistent with previously reported results) or

  9. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils

    PubMed Central

    Willmann, Martin; Gerlach, Nina; Buer, Benjamin; Polatajko, Aleksandra; Nagy, Réka; Koebke, Eva; Jansa, Jan; Flisch, René; Bucher, Marcel

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi) in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU) pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighboring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labeled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighboring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signaling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells. PMID:24409191

  10. Characterization of major-ion chemistry and nutrients in headwater streams along the Appalachian National Scenic Trail and within adjacent watersheds, Maine to Georgia

    USGS Publications Warehouse

    Argue, Denise M.; Pope, Jason P.; Dieffenbach, Fred

    2012-01-01

    An inventory of water-quality data on field parameters, major ions, and nutrients provided a summary of water quality in headwater (first- and second-order) streams within watersheds along the Appalachian National Scenic Trail (Appalachian Trail). Data from 1,817 sampling sites in 831 catchments were used for the water-quality summary. Catchment delineations from NHDPlus were used as the fundamental geographic units for this project. Criteria used to evaluate sampling sites for inclusion were based on selected physical attributes of the catchments adjacent to the Appalachian Trail, including stream elevation, percentage of developed land cover, and percentage of agricultural land cover. The headwater streams of the Appalachian Trail are generally dilute waters, with low pH, low acid neutralizing capacity (ANC), and low concentrations of nutrients. The median pH value was slightly acidic at 6.7; the median specific conductance value was 23.6 microsiemens per centimeter, and the median ANC value was 98.7 milliequivalents per liter (μeq/L). Median concentrations of cations (calcium, magnesium, sodium, and potassium) were each less than 1.5 milligrams per liter (mg/L), and median concentrations of anions (bicarbonate, chloride, fluoride, sulfate, and nitrate) were less than 10 mg/L. Differences in water-quality constituent levels along the Appalachian Trail may be related to elevation, atmospheric deposition, geology, and land cover. Spatial variations were summarized by ecological sections (ecosections) developed by the U.S. Forest Service. Specific conductance, pH, ANC, and concentrations of major ions (calcium, chloride, magnesium, sodium, and sulfate) were all negatively correlated with elevation. The highest elevation ecosections (White Mountains, Blue Ridge Mountains, and Allegheny Mountains) had the lowest pH, ANC, and concentrations of major ions. The lowest elevation ecosections (Lower New England and Hudson Valley) generally had the highest pH, ANC, and

  11. Rice consumption is associated with better nutrient intake and diet quality in adults: National Health and Nutrition Examination Survey (NHANES) 2005-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to determine the association of rice consumption with nutrient intake and diet quality in a recent nationally representative sample of United States adults. The National Health and Nutrition Examination survey data (2005-2010) were used to assess the association of rice co...

  12. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  13. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    NASA Technical Reports Server (NTRS)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  14. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    PubMed

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written. PMID:24650856

  15. Freshwater and Nutrient Fluxes to Coastal Waters of Everglades National Park - A Synthesis

    USGS Publications Warehouse

    McPherson, Benjamin F.; Torres, Arturo E.

    2006-01-01

    Freshwater in the Everglades and the Big Cypress Swamp drains south and southwest into coastal regions where it mixes with seawater to create the salinity gradients characteristic of productive estuarine and marine systems. Studies in Florida Bay have shown that over the last 100-200 years, salinity and seagrass distributions have fluctuated substantially in response to natural climatic cycles. The timing of this change coincides at least in part with the canal construction and landscape alterations in the Everglades that have altered the quantity, timing, distribution, and quality of surface water that flows south into the coastal waters. Federal and State agencies have undertaken a massive Everglades restoration project that will require changes in water management throughout the Everglades, and this will affect water flows to the coastal region. A major concern involves how changes in water flow could affect salinity and nutrient availability in coastal waters.

  16. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems.

    PubMed

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999

  17. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    PubMed Central

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999

  18. Improving Managed Aquifer Recharge Operation to Reduce Nutrient Load in an Agricultural Basin: Delineation of Processes, Controls, and In-situ Potential

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Fisher, A.; Wheat, G.; Sharkey, J.; Los Huertos, M.; Lear, J.

    2007-12-01

    Nitrate is the most common nonpoint source pollutant in surface and ground water in the United States, and is a problem particularly in basins developed for agriculture. There is growing municipal and environmental demand for fresh water in basins that have been influenced by decades of agricultural activity. The goal of this research is to assess the potential for a managed aquifer recharge (MAR) system to improve water quality, with an emphasis on reducing the nitrate load to underlying aquifers. The Pajaro Valley Water Management Agency (PVWMA), in central coastal California, currently operates a MAR project that is permitted to divert and recharge up to 2.5 x 106 m3/yr (2000 ac-ft/year) from a slough (wetland) to augment available ground water supplies. As a result of agricultural runoff and infiltration, diverted slough water is often rich in nitrate, as is the water in the underlying aquifer. However, nitrate concentrations in water samples recovered from the aquifer soon after MAR percolation are often relatively low, suggesting that nitrate may be removed as water percolates from the pond into the aquifer. Autonomous Osmosampler systems were deployed in the recharge pond and four nearby monitoring wells, as part of a pilot study, to collect fluid samples during and after pond operation. Samples collected with these instruments recorded the chemical arrival of water in the aquifer soon after percolation began, in some cases showing a 50% reduction in the concentration of nitrate. The chemical response in the aquifer recorded by the Osmosamplers was consistent with pressure data collected simultaneously in the monitoring wells, demonstrating that Osmosamplers should be useful tools for investigating changes in water quality associated with MAR operation. As this research project becomes fully developed during the 2007-08 water year, we will install Osmosampler systems in ground water monitoring wells surrounding the pond, and will collect shallow fluid

  19. USDA’s Food and Nutrient Analysis Program: Update of the USDA Projects and Progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than 100 years the U.S. Department of Agriculture (USDA) has supported the generation and compilation of food composition data. Today the Agricultural Research Service, USDA develops and maintains the National Nutrient Data Bank, a repository of food composition data which provides the foun...

  20. Compilation and Estimation of Nutrient Values in Foods: Development of Standard Procedures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than 100 years the US Department of Agriculture (USDA) has supported the generation and compilation of food composition data. Today the Agricultural Research Service, USDA develops and maintains the National Nutrient Data Bank, a repository of food composition data which provides the founda...

  1. Vegetation water content mapping in a diverse agricultural landscape: National Airborne Field Experiment 2006

    NASA Astrophysics Data System (ADS)

    Cosh, Michael H.; Tao, Jing; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2010-05-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE'06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE'06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/m2. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy.

  2. The National Strategic Plan and Action Agenda for Agricultural Education: Reinventing Agricultural Education for the Year 2020. Creating the Preferred Future for Agricultural Education.

    ERIC Educational Resources Information Center

    National Council for Agricultural Education, Alexandria, VA.

    The Reinventing Agricultural Education for the Year 2020 initiative, a project conducted during 1996-1999 with a diverse group of more than 10,000 people from across the United States, resulted in this strategic plan designed to achieve the mission set by the initiative. That mission has a two-part focus: preparing students for career success in…

  3. The Fertile Grounds Initiative: A new way to close nutrient flows at regional level resulting in better agricultural productivity and less environmental losses

    NASA Astrophysics Data System (ADS)

    van Beek, Christy; van Duivenbooden, Niek; Noij, Gert-Jan

    2014-05-01

    The threat of declining soil fertility levels is well known. Yet, and despite numerous efforts, we seem incapable of changing the current situation of sink areas in developed countries and depletion areas in developing countries. With negative consequences (i.e. loss in productive capacity and loss in environmental quality) in both areas. Moreover, due to globalization and urbanization nutrient flows become increasingly disconnected. Soil nutrient depletion cannot simply be compensated for with mineral fertilisers, for the following reasons: • mineral fertilisers are often not affordable for smallholders and fertiliser subsidy systems are not always successful • mineral fertilisers do not contain organic matter and therefore do not halt the degradation of the soil • mineral fertilisers work best in combination with organic sources of nutrients (compost, farm yard manure, etc.) • To halt soil degradation an integrated approach is needed, including reducing losses of nutrients and organic matter from soils at risk. Presently, more actors are getting involved in reallocation of nutrients, especially in the energy and waste sector. Time has come for a new approach to bring together demands and supplies for nutrients. We therefore present the Fertile Grounds Initiative: a broker for nutrient supply and demand in the region. The Fertile Grounds Initiative is based on the findings that: • Organic ánd mineral nutrients are required for increased and sustainable production; • Nutrients have a value and should be treated as such; • Due to globalization and urbanization nutrient flows are ever more polarized between depletion and concentration areas; • The demand for energy poses new threats and opportunities for nutrient management. In the Fertile Grounds Initiative nutrient suppliers from the energy sector, waste management, fertilizer companies, etc. and demands for nutrients from farmers are brought together in a dynamic platform. This platform acts as a

  4. To err may be human, but IU calculations for provitamin A carotenoids in the USDA national nutrient database are not in error

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is an invited reply to a letter to the editor of the American Journal of Clinical Nutrition in which the authors allege that an error exists in the method used to calculate Vitamin A values in international units (IU) in the USDA National Nutrient Database for Standard Reference (SR). ...

  5. Control Materials for Validating Measurement of Vitamin D in Key Foods for the USDA National Food and Nutrient Analysis Program (NFNAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of the USDA's NFNAP, data for vitamin D in the National Nutrient Database for Standard Reference are being updated and expanded, focusing on high priority foods contributing to vitamin D intake. Fish and vitamin D fortified orange juice, breakfast cereals, milk, sliced American cheese, and y...

  6. Fruit juice consumption is associated with improved nutrient adequacy in children and adolescents: The National Health and Nutrition Examination Survey (NHANES) 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of the study was to examine the contribution of 100% fruit juice consumption to dietary adequacy of shortfall nutrients by children and adolescents. This was a cross-sectional study and used data from the 2003–2006 National Health and Nutrition Examination Survey (NHANES). Participants were...

  7. Total Fat, n-3 Fatty Acids and Vitamin D3 in Selected Fish Species Sampled Under USDA’s National Food and Nutrient Analysis Program (NFNAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of the USDA’s National Food and Nutrient Analysis Program (NFNAP), new analytical data were determined for the 20 most frequently consumed raw fish identified for FDA’s voluntary nutrition labeling. Samples of 21 fish species were purchased from 12 supermarkets nationwide according to a sta...

  8. Food sources of total energy and nutrients among U.S. infants and toddlers: National Health and Nutrition Examination Survey 2005–2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the dietary intakes of infants and toddlers is important because early life nutrition influences future health outcomes. The aim of this study was to determine the dietary sources of total energy and 16 nutrients in a nationally representative sample of U.S. infants and toddlers aged 0...

  9. Consumption of whole grains is associated with improved diet quality and nutrient intake in children and adolescents: the National Health and Nutrition Examination Survey 1999–2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the association of consumption of whole grains (WG) with diet quality and nutrient intake in children and adolescents by a secondary analysis of cross-sectional data. The 1999-2004 National Health and Nutrition Examination Survey was used to study children ...

  10. Vitamin D3 Content of Fortified Yogurt and Milk as Determined for the USDA National Food and Nutrient Analysis Program (NFNAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In response to recent interest in vitamin D composition of foods, USDA-NDL is updating and expanding data in the National Nutrient Database for Standard Reference. In 2007, the USDA sampled vitamin D3 fortified yogurt and milk from 12 and 24 supermarkets, respectively, selected from a nationwide sta...

  11. Mangoes are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National Health and Nutrition Examination Survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies assessing mango consumption and the association with nutrient intake, diet quality, and health biomarkers are lacking. This study assessed these associations using a nationally representative sample of children 2-18 years old (n=11,974; 50% female) and adults 19+ years (n=17,568; 48.8% femal...

  12. Farmers' use of nutrient management: lessons from watershed case studies.

    PubMed

    Osmond, Deanna L; Hoag, Dana L K; Luloff, Al E; Meals, Donald W; Neas, Kathy

    2015-03-01

    Nutrient enrichment of water resources has degraded coastal waters throughout the world, including in the United States (e.g., Chesapeake Bay, Gulf of Mexico, and Neuse Estuary). Agricultural nonpoint sources have significant impacts on water resources. As a result, nutrient management planning is the primary tool recommended to reduce nutrient losses from agricultural fields. Its effectiveness requires nutrient management plans be used by farmers. There is little literature describing nutrient management decision-making. Here, two case studies are described that address this gap: (i) a synthesis of the National Institute of Food and Agriculture, the Conservation Effects Assessment Project, and (ii) field surveys from three nutrient-impaired river basins/watersheds in North Carolina (Neuse, Tar-Pamlico, and Jordan Lake drainage areas). Results indicate farmers generally did not fully apply nutrient management plans or follow basic soil test recommendations even when they had them. Farmers were found to be hesitant to apply N at university-recommended rates because they did not trust the recommendations, viewed abundant N as insurance, or used recommendations made by fertilizer dealers. Exceptions were noted when watershed education, technical support, and funding resources focused on nutrient management that included easing management demands, actively and consistently working directly with a small group of farmers, and providing significant resource allocations to fund agency personnel and cost-share funds to farmers. Without better dialogue with farmers and meaningful investment in strategies that reward farmers for taking what they perceive as risks relative to nutrient reduction, little progress in true adoption of nutrient management will be made. PMID:26023957

  13. Evaluation of Nutrient Balances as an Indicator for the Impact of Agriculture on Environment - A comparison of Case Studies from the U.S. and Poland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient nutrient use is critical to ensure economically and environmentally sound food production while minimizing the impacts of nutrients on ground water, the risk of eutrophication in surface waters, and the emission of trace gases. Increasing concerns for future sustainability have led to deve...

  14. Positions Held by Teachers, Teacher Educators, and State Supervisors about Selected National Issues in Agricultural Education.

    ERIC Educational Resources Information Center

    Sutphin, H. Dean; Newcomb, L. H.

    1983-01-01

    Opinions about nine issues were examined: agricultural education's purpose, desired clientele, content, supervised occupational experience (SOE) requirements, types of SOE for production and nonproduction agriculture, Future Farmers of America membership, class instruction in FFA, and title for agricultural programs. The extent of consensus on a…

  15. REVIEW OF CURRENT RESEARCH DIRECTIONS FOR PRODUCING BIOLOGICAL ETHANOL AT THE NATIONAL CENTER FOR AGRICULTURAL UTILIZATION RESEARCH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Center for Agricultural Utilization Research has been actively developing technologies for converting lignocellulose to ethanol for more than 20 years. Major past accomplishments include: Development of a strong acid hydrolysis and fermentation process for converting corn cobs into et...

  16. Delivery Strategies to Enhance the Sustainability of Training: Lessons from the Food and Agriculture Organization of the United Nations

    ERIC Educational Resources Information Center

    de Rosa, Cecilia; Nadeau, Andrew; Hernandez, Emilio; Kafeero, Fred; Zahiga, Jacques

    2016-01-01

    The Food and Agriculture Organization of the United Nations (FAO) utilizes training as a major component of the support it provides to its member countries in Africa. In the past, stand-alone training events targeting individual actors were the norm. However, an external evaluation indicated that this type of training scores low in terms of…

  17. Future Directions in Rural Development Policy. Findings and Recommendations of the National Commission on Agriculture and Rural Development Policy.

    ERIC Educational Resources Information Center

    Reid, J. Norman; Rowley, Thomas D.

    The National Commission on Agriculture and Rural Development Policy, established by Congress to provide broad, long-range policy perspectives, examined rural development policy issues and made many field visits to observe rural conditions and rural development projects. The Commission recognized the diversity of rural communities and identified…

  18. 76 FR 43718 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Gila National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Federal Register for these sites (63 FR 39293-39294, July 22, 1998; 70 FR 44686-44687, August 3, 2005; 70 FR 56483-56484, September 27, 2005; and 71 FR 38413, July 6, 2006). The human remains and associated... National Park Service Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service,...

  19. MANPOWER REQUIREMENTS AND DEMAND IN AGRICULTURE BY REGIONS AND NATIONALLY, WITH ESTIMATION OF VOCATIONAL TRAINING AND EDUCATIONAL NEEDS AND PRODUCTIVITY.

    ERIC Educational Resources Information Center

    ARCUS, PETER; HEADY, EARL O.

    THE PURPOSE OF THIS STUDY IS TO ESTIMATE THE MANPOWER REQUIREMENTS FOR THE NATION FOR 144 REGIONS THE TYPES OF SKILLS AND WORK ABILITIES REQUIRED BY AGRICULTURE IN THE NEXT 15 YEARS, AND THE TYPES AND AMOUNTS OF EDUCATION NEEDED. THE QUANTITATIVE ANALYSIS IS BEING MADE BY METHODS APPROPRIATE TO THE PHASES OF THE STUDY--(1) INTERRELATIONS AMONG…

  20. Journals Significant to Rural Development Received at the National Agricultural Library. Rural Information Center Publication Series, No. 48. Revised Edition.

    ERIC Educational Resources Information Center

    Heise, Dorothy A., Comp.

    This directory lists 227 journals in the National Agricultural Library's (NAL) collection that are related to social and economic aspects of rural development. The directory includes both United States and international journals. Each citation includes title, NAL call number, NAL holdings information, the International Standard Serial Number…

  1. Distance Learning for Food Security and Rural Development: A Perspective from the United Nations Food and Agriculture Organization.

    ERIC Educational Resources Information Center

    McLean, Scott; Gasperini, Lavinia; Rudgard, Stephen

    2002-01-01

    The distance learning experiences of the United Nations Food and Agriculture Organization led to the following suggestions for applying distance learning strategies to the challenges of food security and rural development: use distance learning for the right reasons, be sensitive to context, use existing infrastructure, engage stakeholders, and…

  2. Persistence and Decay of Web Citations Used in Theses and Dissertations Available at the Sokoine National Agricultural Library, Tanzania

    ERIC Educational Resources Information Center

    Sife, Alfred S.; Bernard, Ronald

    2013-01-01

    A study was conducted to examine the persistence and decay of web citations in theses and dissertations available at the Sokoine National Agricultural Library. Specifically, the study assessed the accessibility status of cited URLs, identified error messages and top level domains of inaccessible URLs, and calculated the half-life of web citations.…

  3. Proceedings of the Annual National Agricultural Education Association Meeting (11th, New Orleans, Louisiana, November 30, 1984).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    This document contains the texts of 27 presentations given at the National Agricultural Education Research Meeting. The papers in the proceedings are grouped under 10 themes with a critique for each group. The themes (with speakers' names in parentheses) are as follows: supervised occupational experiences (Gregory W. Fletcher, David L. Williams,…

  4. National-Scale Hydrologic Classification & Agricultural Decision Support: A Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Minsker, B.; Sivapalan, M.

    2012-12-01

    Classification frameworks can help organize catchments exhibiting similarity in hydrologic and climatic terms. Focusing this assessment of "similarity" upon specific hydrologic signatures, in this case the annual regime curve, can facilitate the prediction of hydrologic responses. Agricultural decision-support over a diverse set of catchments throughout the United States depends upon successful modeling of the wetting/drying process without necessitating separate model calibration at every site where such insights are required. To this end, a holistic classification framework is developed to describe both climatic variability (humid vs. arid, winter rainfall vs. summer rainfall) and the draining, storing, and filtering behavior of any catchment, including ungauged or minimally gauged basins. At the national scale, over 400 catchments from the MOPEX database are analyzed to construct the classification system, with over 77% of these catchments ultimately falling into only six clusters. At individual locations, soil moisture models, receiving only rainfall as input, produce correlation values in excess of 0.9 with respect to observed soil moisture measurements. By deploying physical models for predicting soil moisture exclusively from precipitation that are calibrated at gauged locations, overlaying machine learning techniques to improve these estimates, then generalizing the calibration parameters for catchments in a given class, agronomic decision-support becomes available where it is needed rather than only where sensing data are located.lassifications of 428 U.S. catchments on the basis of hydrologic regime data, Coopersmith et al, 2012.

  5. International Symposium on Analysis Program for Constructing Database about Nutrient Composition of Foods, Seoul, Korea, May 11-15, 2009.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than 100 years the US Department of Agriculture (USDA) has supported the generation and compilation of food composition data. Today the Agricultural Research Service, USDA develops and maintains the National Nutrient Data Bank, a repository of food composition data which provides the found...

  6. Changes of crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product

    NASA Astrophysics Data System (ADS)

    Stern, Alan J.; Doraiswamy, Paul C.; Raymond Hunt, E.

    2012-01-01

    Crop rotation is one of the important decisions made independently by numerous farm managers, and is a critical variable in models of crop growth and soil carbon. In Iowa and much of the Midwestern United States (US), the typical management decision is to rotate corn and soybean crops for a single field; therefore, the land-cover changes each year even though the total area of agricultural land-use remains the same. The price for corn increased from 2001 to 2010, which increased corn production in Iowa. We tested the hypothesis that the production increase was the result of changes in crop rotation in Iowa using the annual remote sensing classification (the cropland data layer) produced by the United States Department of Agriculture, National Agricultural Statistics Service. It was found that the area planted in corn increased from 4.7 million hectares in 2001 to 5.7 million hectares in 2007, which was correlated with the market price for corn. At the county level, there were differences in how the increase in corn production was accomplished. Northern and central counties had little land to expand cultivation and generally increased corn production by converting to a corn-corn rotation from the standard corn-soybean rotation. Southern counties in Iowa increased corn production by expanding into land that was not under recent cultivation. These changes affect the amount of soil carbon sequestration.

  7. Food Sources of Total Energy and Nutrients among U.S. Infants and Toddlers: National Health and Nutrition Examination Survey 2005–2012

    PubMed Central

    Grimes, Carley A.; Szymlek-Gay, Ewa A.; Campbell, Karen J.; Nicklas, Theresa A.

    2015-01-01

    Understanding the dietary intakes of infants and toddlers is important because early life nutrition influences future health outcomes. The aim of this study was to determine the dietary sources of total energy and 16 nutrients in a nationally representative sample of U.S. infants and toddlers aged 0–24 months. Data from the 2005–2012 National Health and Nutrition Examination Survey were analyzed. Dietary intake was assessed in 2740 subjects using one 24-h dietary recall. The population proportion was used to determine the contribution of foods and beverages to nutrient intakes. Overall infant formulas and baby foods were the leading sources of total energy and nutrients in infants aged 0–11.9 months. In toddlers, the diversity of food groups contributing to nutrient intakes was much greater. Important sources of total energy included milk, 100% juice and grain based mixed dishes. A number of foods of low nutritional quality also contributed to energy intakes including sweet bakery products, sugar-sweetened beverages and savory snacks. Overall non-flavored milks and ready-to-eat cereals were the most important contributors to micronutrient intakes. In conclusion this information can be used to guide parents regarding appropriate food selection as well as inform targeted dietary strategies within public health initiatives to improve the diets of infants and toddlers. PMID:26287236

  8. The National Agricultural Text Digitizing Project: Toward the Electronic Library. Report of the Pilot Project, Phases 1-2, 1986-1992.

    ERIC Educational Resources Information Center

    Eaton, Nancy L.; Andre, Pamela Q. J.

    The National Agricultural Text Digitizing Project (NATDP) began in 1986 with cooperation between the National Agricultural Library and the University of Vermont, and then expanded to include 45 land-grant university libraries and 1 special library. The first activity was to evaluate the new technology of optical scanning. The project was designed…

  9. 76 FR 78225 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Agricultural Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA. ACTION: Appointment of members. SUMMARY: In accordance with the Federal Advisory Committee..., Education, and Economics Advisory Board. DATES: Appointments by the Secretary of Agriculture are for a 1,...

  10. Agricultural Exports and the Environment: A Cross-National Study of Fertilizer and Pesticide Consumption

    ERIC Educational Resources Information Center

    Longo, Stefano; York, Richard

    2008-01-01

    The mass consumption of agrochemicals, including manufactured fertilizers and pesticides, by industrialized agricultural systems worldwide threatens human health and the health of ecosystems. The production of these agricultural inputs is a highly energy- and capital-intensive process, and their application contributes to a variety of direct and…

  11. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  12. Trends in food consumption and nutrient intake in Germany between 2006 and 2012: results of the German National Nutrition Monitoring (NEMONIT).

    PubMed

    Gose, Maria; Krems, Carolin; Heuer, Thorsten; Hoffmann, Ingrid

    2016-04-01

    The German National Nutrition Monitoring (NEMONIT) is a longitudinal and nationwide study to assess changes in food consumption and nutrient intake in Germany. A sample of 1840 participants (baseline age: 14-80 years) was drawn from the nationally representative German National Nutrition Survey (NVS) II (2005-2007). The participants have been interviewed by telephone annually since 2008. Food consumption was assessed by two 24-h recalls in the NVS II and the 4 years of NEMONIT (2008-2012/2013), respectively. Energy and nutrient intakes were calculated using the German Nutrient Database 3.02. Diet quality was evaluated using the Healthy Eating Index-NVS (HEI-NVS) II. Time trends were analysed by generalised estimating equation. Consumption of fruit/fruit products and fruit juice/nectar among men and women decreased, whereas consumption of water, soft drinks and coffee/tea increased over the 6-year period. Furthermore, increased consumption of confectionery and animal fats was observed among women. HEI-NVS II did not change since NVS II in both sexes. There were no changes in energy and protein intakes, but carbohydrate intake declined while fat intake increased over time. Regarding micronutrients, a decreasing intake of thiamin, riboflavin and vitamin B6 was observed in both sexes, but intake of Mg, Fe and niacin increased among women over time. In conclusion, food consumption and nutrient intake remained relatively stable between 2005-2007 and 2012/2013 within this German cohort. A few favourable and unfavourable changes were observed. Compared with national dietary guidelines, consumption of food of plant origin remained too low and consumption of meat/meat products remained too high in Germany. PMID:26934826

  13. Estimating the effects of agricultural conservation practices on phosphorus loads in the Mississippi-Atchafalaya River basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Mississippi-Atchafalaya River basin (MARB) is important in terms of both the national economy and the nutrients discharged to the basin and the Gulf of Mexico. Conservation practices are installed on cropland to reduce the nutrient losses. A recent study by the Conservation Effec...

  14. An overview of the contribution of dairy and cheese intakes to nutrient intakes in the Irish diet: results from the National Adult Nutrition Survey.

    PubMed

    Feeney, Emma L; Nugent, Anne P; Mc Nulty, Breige; Walton, Janette; Flynn, Albert; Gibney, Eileen R

    2016-02-28

    Dairy products are important contributors to nutrient intakes. However, dairy intakes are reportedly declining in developed populations, potentially due to concerns regarding Na and SFA in dairy foods, particularly cheese. This could impact other nutrient intakes. The present study used data from the National Adult Nutrition Survey (NANS) to (1) examine dairy intakes, with a specific focus on cheese, and (2) to examine the contribution of cheese to population nutrient intakes. The NANS captured detailed dietary intake data from a nationally representative sample (n 1500) between 2008 and 2010 using 4-d semi-weighed food diaries; 99·9% of the population reported dairy intake. Mean daily population dairy intake was 290·0 (SD 202·1) g. Dairy products provided 8·7% of the population intake of reported dietary Na, 19·8% SFA, 39% Ca, 34·5% vitamin B12 and 10·5% Mg. Cheese alone provided 3·9% Na intake, 9·1% Ca, 12·6% retinol, 8·3% SFA, 3·7% protein, 3·4% vitamin B12 and 3·2% riboflavin. High dairy consumers had greater Ca and Mg intakes per 10 MJ, greater total energy intake, greater percentage of energy from carbohydrate and SFA and lower Na intakes compared with low dairy consumers. Similar trends were observed for high consumers of cheese for most nutrients except Na. These results demonstrate that dairy and cheese are important contributors to nutrient intakes of public health interest, such as Ca and B12. Our analysis also demonstrated that food-based dietary guidelines recommending lower-fat versions of dairy products are warranted. PMID:26675882

  15. Evaluating analytic and risk assessment tools to estimate sediment and nutrients losses from agricultural lands in the southern region of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source pollution from agricultural fields is a critical problem associated with water quality impairment in the USA and a low-oxygen environment in the Gulf of Mexico. The use, development and enhancement of qualitative and quantitative models or tools for assessing agricultural runoff qua...

  16. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of nutrient management on quality of surface runoff at a small carbonate-rock site near Ephrate, Pennsylvania, 1984-90

    USGS Publications Warehouse

    Hall, D.W.; Lietman, P.L.; Koerkle, E.J.

    1997-01-01

    The U.S. Geological Survey and the Pennsylvania Department of Environmental Protection conducted a study from 1984 to 1990 to determine theeffects of the implementation and practice of nutrient management [an agricultural best-management practice (BMP)] on the quality of surface runoff and ground water at a 55-acre crop and livestock farm in carbonate terrain nearEphrata, Pa. Implementation of nutrient management at Field-Site 2 resulted in application decreases of 33 percent for nitrogen and 29 percent for phosphorus. There wereno significant changes in nitrogen or phosphorusloads for a given amount of runoff from the pre-BMP to the post-BMP periods. However, less than 2 percent of the applied nutrients weredischarged with runoff throughout the study period.After the implementation of nutrient management, statistically significant decreases in concentrations of nitrate in ground-water samples occurred at threeof the four wells monitored throughout the pre- and post-BMP periods. The largest decreases in nitrate concentrations occurred at wells where samples hadthe largest nitrate concentrations prior to nutrient management. Changes in nitrogen applications to the contributing areas of five wells were correlated with nitrate concentrations of the well water. The correlations between the timing and amount of applied nitrogen and changes in ground-water quality met the four conditions that are characteristic of a cause-effect relation: an association, consistency, responsiveness, and a mechanism. Changes in ground-water nitrate concentrations lagged behind changes in loading of nitrogen fertilizers (primarily manure) by approximately 4 to 19 months.

  17. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    PubMed Central

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  18. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    PubMed

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095

  19. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets

    NASA Astrophysics Data System (ADS)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha‑1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  20. Hydrology and the effects of selected agricultural best-management practices in the Bald Eagle Creek Watershed, York County, Pennsylvania, prior to and during nutrient management : Water-Quality Study for the Chesapeake Bay Program

    USGS Publications Warehouse

    Langland, Michael J.; Fishel, David K.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Susquehanna River Basin Commission and the Pennsylvania Department of Environmental Resources, conducted a study as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program to determine the effects of nutrient management of surface-water quality by reducing animal units in a 0.43-square-mile agricultural watershed in York County. The study was conducted primarily from October 1985 through September 1990 prior to and during the implementation of nutrient-management practices designed to reduce nutrient and sediment discharges. Intermittent sampling continued until August 1991. The Bald Eagle Creek Basin is underlain by schist and quartzite. About 87 percent of the watershed is cropland and pasture. Nearly 33 percent of the cropland was planted in corn prior to nutrient management, whereas 22 percent of the cropland was planted in corn during the nutrient-management phase. The animal population was reduced by 49 percent during nutrient management. Average annual applications of nitrogen and phosphorus from manure to cropland were reduced by 3,940 pounds (39 percent) and 910 pounds (46 percent), respectively, during nutrient management. A total of 94,560 pounds of nitrogen (538 pounds per acre) and 26,400 pounds of phosphorus (150 pounds per acre) were applied to the cropland as commercial fertilizer and manure during the 5-year study. Core samples from the top 4 feet of soil were collected prior to and during nutrient management and analyzed from concentrations of nitrogen and phosphorus. The average amount of nitrate nitrogen in the soil ranged from 36 to 135 pounds per acre, and soluble phosphorus ranged from 0.39 to 2.5 pounds per acre, prior to nutrient management. During nutrient management, nitrate nitrogen in the soil ranged from 21 to 291 pounds per acre and soluble phosphorus ranged from 0.73 to 1.7 pounds per acre. Precipitation was about 18 percent below normal and streamflow was about 35

  1. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park.

    PubMed

    Muñoz-Carpena, R; Ritter, A; Li, Y C

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO3-, N-NH4+, P-PO4(3-), Total P, F-and Cl-) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO3-, P-PO4(3-)and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F-and Cl- are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying land

  2. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  3. Nutrient biofortification of food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, b...

  4. Limnology of Blue Mesa, Morrow Point, and Crystal Reservoirs, Curecanti National Recreation area, during 1999, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir, Colorado

    USGS Publications Warehouse

    Bauch, Nancy J.; Malick, Matt

    2003-01-01

    The U.S. Geological Survey and the National Park Service conducted a water-quality investigation in Curecanti National Recreation Area in Colorado from April through December 1999. Current (as of 1999) limnological characteristics, including nutrients, phytoplankton, chlorophyll-a, trophic status, and the water quality of stream inflows and reservoir outflows, of Blue Mesa, Morrow Point, and Crystal Reservoirs were assessed, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir was conducted. The three reservoirs are in a series on the Gunnison River, with an upstream to downstream order of Blue Mesa, Morrow Point, and Crystal Reservoirs. Physical properties and water-quality samples were collected four times during 1999 from reservoir, inflow, and outflow sites in and around the recreation area. Samples were analyzed for nutrients, phytoplankton and chlorophyll-a (reservoir sites only), and suspended sediment (stream inflows only). Nutrient concentrations in the reservoirs were low; median total nitrogen and phosphorus concentrations were less than 0.4 and 0.06 milligram per liter, respectively. During water-column stratification, samples collected at depth had higher nutrient concentrations than photic-zone samples. Phytoplankton community and density were affected by water temperature, nutrients, and water residence time. Diatoms were the dominant phytoplankton throughout the year in Morrow Point and Crystal Reservoirs and during spring and early winter in Blue Mesa Reservoir. Blue-green algae were dominant in Blue Mesa Reservoir during summer and fall. Phytoplankton density was highest in Blue Mesa Reservoir and lowest in Crystal Reservoir. Longer residence times and warmer temperatures in Blue Mesa Reservoir were favorable for phytoplankton growth and development. Shorter residence times and cooler temperatures in the downstream reservoirs probably limited phytoplankton growth and development. Median chlorophyll-a concentrations were higher

  5. [The role of national rural organization and agricultural extension services in relation to women].

    PubMed

    Martius Von Harder, G

    1985-01-01

    Rural extension services are designed to provide rural dwellers with information needed to further technical or social development and to solve problems. Extension agents should be fully aware of their responsibility for the advice they provide. The number of rural and agricultural development and extension agencies has multiplied greatly in the past 2 decades. Agricultural extension is the principal component of most rural development strategies. Training given to men is usually economic, while that for women is devoted to household and social functioning. Programs for women usually lag general development programs. Training of women is usually not included in agricultural extension programs, especially in countries practicing segregation of the sexes. Agricultural extension programs are generally limited to cultivation techniques and neglect transformation and storage of crops and seed preparation for increased production. Measures that could improve productivity of women's agriculture-related work are expected to be delivered through the intermediacy of their husbands, but the husbands may not appreciate the import of such messages if they are not familiar with their wives' work. Agricultural training should consider all stages of production, should be delivered to the individuals actually performing the tasks, and should be ecologically appropriate. The overall objective of agricultural extension is to increase production, but most programs do not specify who is to use the surplus or to benefit from it. The rural population or the urban population may be the prime beneficiary, or cash crops may be produced for export. Although increased production should benefit the rural population through a better food supply, in reality most extension programs are devoted to cash crops for export and are less than fully successful because of problems of crop distribution and marketing and other shortcomings. Where men and women perform the same agricultural work, it should

  6. National Diet and Nutrition Survey: UK food consumption and nutrient intakes from the first year of the rolling programme and comparisons with previous surveys

    PubMed Central

    Whitton, Clare; Nicholson, Sonja K; Roberts, Caireen; Prynne, Celia J; Pot, Gerda; Olson, Ashley; Fitt, Emily; Cole, Darren; Teucher, Birgit; Bates, Beverley; Henderson, Helen; Pigott, Sarah; Deverill, Claire; Swan, Gillian; Stephen, Alison M

    2011-01-01

    The National Diet and Nutrition Survey (NDNS) is a cross-sectional survey designed to gather data representative of the UK population on food consumption, nutrient intakes and nutritional status. The objectives of this paper were to identify and describe food consumption and nutrient intakes in the UK from the first year of the NDNS Rolling Programme (2008-09) and compare these with the 2000-01 NDNS of adults aged 19-64y and the 1997 NDNS of young people aged 4-18y. Differences in median daily food consumption and nutrient intakes between the surveys were compared by sex and age group (4-10y, 11-18y and 19-64y). There were no changes in energy, total fat or carbohydrate intakes between the surveys. Children 4-10y had significantly lower consumption of soft drinks (not low calorie), crisps and savoury snacks and chocolate confectionery in 2008-09 than in 1997 (all P< 0.0001). The percentage contribution of non-milk extrinsic sugars (NMES) to food energy was also significantly lower than in 1997 in children 4-10y (P< 0.0001), contributing 13.7-14.6% in 2008-09 compared with 16.8% in 1997. These changes were not as marked in older children and there were no changes in these foods and nutrients in adults. There was still a substantial proportion (46%) of girls 11-18y and women 19-64y (21%) with mean daily iron intakes below the Lower Reference Nutrient Intake (LRNI). Since previous surveys there have been some positive changes in intakes especially in younger children. However, further attention is required in other groups, in particular adolescent girls. PMID:21736781

  7. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004.

    PubMed

    O'Neil, Carol E; Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A

    2010-01-01

    Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and nutrient intake and diet quality using a nationally representative sample of adults. Adults 19+ years (y) (n=13,292) participating in the 1999-2004 National Health and Nutrition Examination Survey were used. Intake was determined from 24-hour diet recalls; tree nut consumers were defined as those consuming > or =(1/4) ounce/day (7.09 g). Means, standard errors, and ANOVA (adjusted for covariates) were determined using appropriate sample weights. Diet quality was measured using the Healthy Eating Index-2005. Among consumers, mean intake of tree nuts/tree nut butters was 1.19 +/- 0.04 oz/d versus 0.01 +/- 0.00 oz/d for non-consumers. In this study, 5.5 +/- 0.3 % of individuals 19-50 y (n=7,049) and 8.4 +/- 0.6 % of individuals 51+ y (n=6,243) consumed tree nuts/tree nut butters. Mean differences (p<0.01) between tree nut consumers and non-consumers of adult shortfall nutrients were: fiber (+5.0 g/d), vitamin E (+3.7 mg AT/d), calcium (+73 mg/d), magnesium (+95 mg/d), and potassium (+260 mg/d). Tree nut consumers had lower sodium intake (-157 mg/d, p<0.01). Diet quality was significantly higher in tree nut consumers (58.0+/-0.4 vs. 48.5+/-0.3, p<0.01). Tree nut consumption was associated with a higher overall diet quality score and improved nutrient intakes. Specific dietary recommendations for nut consumption should be provided for consumers. PMID:20200000

  8. Constraints and opportunities for implementing nutrition-specific, agricultural and market-based approaches to improve nutrient intake adequacy among infants and young children in two regions of rural Kenya.

    PubMed

    Hotz, Christine; Pelto, Gretel; Armar-Klemesu, Margaret; Ferguson, Elaine F; Chege, Peter; Musinguzi, Enock

    2015-12-01

    Several types of interventions can be used to improve nutrient intake adequacy in infant and young child (IYC) diets, including fortified foods, home fortification, nutrition education and behaviour change communication (BCC) in addition to agricultural and market-based strategies. However, the appropriate selection of interventions depends on the social, cultural, physical and economic context of the population. Derived from two rural Kenyan populations, this analysis combined information from: (1) a quantitative analysis to derive a set of food-based recommendations (FBRs) to fill nutrient intake gaps in IYC diets and identify 'problem nutrients' for which intake gaps require solutions beyond currently available foods and dietary patterns, and (2) an ethnographic qualitative analysis to identify contextual factors posing opportunities or constraints to implementing the FBRs, including perceptions of cost, convenience, accessibility and appropriateness of the recommended foods for IYC diets and other social or physical factors that determine accessibility of those foods. Opportunities identified included BCC to increase the acceptability and utilisation of green leafy vegetables (GLV) and small fish and agronomic interventions to increase the productivity of GLV and millet. Value chains for millet, beans, GLV, milk and small fish should be studied for opportunities to increase their accessibility in local markets. Processor-level interventions, such as partially cooked fortified dry porridge mixes or unfortified cereal mixes incorporating millet and beans, may increase the accessibility of foods that provide increased amounts of the problem nutrients. Multi-sectoral actors and community stakeholders should be engaged to assess the feasibility of implementing these locally appropriate strategies. PMID:26778801

  9. Improving nutrient management practices in agriculture: The role of risk-based beliefs in understanding farmers' attitudes toward taking additional action

    NASA Astrophysics Data System (ADS)

    Wilson, Robyn S.; Howard, Gregory; Burnett, Elizabeth A.

    2014-08-01

    A recent increase in the amount of dissolved reactive phosphorus (DRP) entering the western Lake Erie basin is likely due to increased spring storm events in combination with issues related to fertilizer application and timing. These factors in combination with warmer lake temperatures have amplified the spread of toxic algal blooms. We assessed the attitudes of farmers in northwest Ohio toward taking at least one additional action to reduce nutrient loss on their farm. Specifically, we (1) identified to what extent farm and farmer characteristics (e.g., age, gross farm sales) as well as risk-based beliefs (e.g., efficacy, risk perception) influenced attitudes, and (2) assessed how these characteristics and beliefs differ in their predictive ability based on unobservable latent classes of farmers. Risk perception, or a belief that negative impacts to profit and water quality from nutrient loss were likely, was the most consistent predictor of farmer attitudes. Response efficacy, or a belief that taking action on one's farm made a difference, was found to significantly influence attitudes, although this belief was particularly salient for the minority class of farmers who were older and more motivated by profit. Communication efforts should focus on the negative impacts of nutrient loss to both the farm (i.e., profit) and the natural environment (i.e., water quality) to raise individual perceived risk among the majority, while the minority need higher perceived efficacy or more specific information about the economic effectiveness of particular recommended practices.

  10. 7 CFR 2.66 - Director, National Institute of Food and Agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... grants for basic research on cancer in animals and birds (7 U.S.C. 3902). (30) Administer programs and... major cancer and heart and other circulatory disease research efforts with agricultural research efforts to identify compounds in vegetables and fruits that prevent these diseases (7 U.S.C. 3174a)....

  11. 78 FR 44092 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Register of May 2, 2013 in FR Doc. 2013-10392, on pages 25691-25692 in the date section, correct to read as... Economics Advisory Board AGENCY: Agricultural Research Service, USDA. ACTION: Solicitation for membership..., Extension, Education, and Economics Advisory Board. The notice was published in the Federal Register on...

  12. Calapooia watershed, Oregon: National Institute of Food and Agriculture - Conservation Effects Assessment Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall goals of Assessing Trade-offs Between Crop Production and Ecological Services were to quantify linkages between conservation practices and biophysical responses including water quality and biological indicators, and to develop a model to assess tradeoffs between agricultural practices th...

  13. Biobased products research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  14. Seeking Solutions for Tomorrow's Challenges. Proceedings of the Annual National Agricultural Education Research Meeting (13th, Dallas, Texas, December 5, 1986).

    ERIC Educational Resources Information Center

    Kahler, Alan A., Ed.

    This proceedings volume contains a total of 39 papers. The following 28 selected titles are cited as those most clearly relevant to education: "A National Study of Teacher Educators and State Supervisors in Agricultural Education" (Foster, Horner); "A Profile of the Effective Vocational Agriculture Teacher" (Rheault, Miller); "Analysis of Needs:…

  15. Learning Our Way into Communication: The Making of the Communication and Information Strategy "with" the National Agricultural Advisory Services Programme in Uganda

    ERIC Educational Resources Information Center

    Ramirez, Ricardo

    2005-01-01

    This paper reports on the making of the Communication and Information Strategy with the National Agricultural Advisory Services Programme (NAADS) in Uganda. The NAADS is a new organization in government responsible for the implementation of a demand-driven agricultural extension approach. The new extension approach calls for fundamental changes in…

  16. Vitamin B12 status in women of childbearing age in the UK and its relationship with national nutrient intake guidelines: results from two National Diet and Nutrition Surveys

    PubMed Central

    Adaikalakoteswari, Antonysunil; Venkataraman, Hema; Maheswaran, Hendramoorthy; Saravanan, Ponnusamy

    2016-01-01

    Objective To assess serum B12, folate and the associated homocysteine (Hcy) levels among women of childbearing age in the UK and examine their association with dietary intake in relation to the UK Recommended Nutrient Intakes (RNIs) for B12 and folate. Design Cross-sectional study. Setting Data from two publicly available National Diet and Nutrition Surveys (NDNS 2000/2001 and 2008/2012) were used. These were population-based surveys of randomly selected samples of adults which were carried out in their households. Participants Women of childbearing age (aged 19–39 years), representative of the UK population. Those who were pregnant or breastfeeding were excluded. Outcome measures The associations between micronutrient intakes and blood levels of B12, folate and Hcy were assessed by correlation and stepwise linear regression. B12 intake was divided into quintiles and plotted against blood B12 and Hcy concentrations to determine the threshold of any associations. Results 299 women from the first NDNS cohort had complete intake and biomarker data. The prevalence of serum vitamin B12 (≤150 pmol/L) and serum folate (≤10 nmol/L) deficiency and hyperhomocysteinemia (≥12 µmol/L) was 12.4%, 6.4% and 21.2%, respectively, despite seemingly adequate B12 intakes (median 3.8 μg/day, 96% consumed more than the UK RNI of 1.5 μg/day). B12 concentrations increased across all quintiles of intake with serum levels in quintiles 4 and 5 (median intake 4.9 and 7.1 μg/day, respectively) significantly higher than quintile 1. However, Hcy concentrations levelled off between quintiles 4 and 5. Comparison of micronutrient intake between the two surveys found that folate intake has reduced in the more recent cohort. Conclusions The UK RNI for B12 intake should be increased for women of childbearing age with intakes of around 5–7 μg/day likely to be associated with stable biomarker levels. B12 levels should also be measured in women preconceptionally or in early

  17. Defining the Social Context through Agricultural Research. Proceedings of the Annual National Agricultural Education Research Meeting (20th, Nashville, Tennessee, December 3, 1993).

    ERIC Educational Resources Information Center

    Scanlon, Dennis C., Ed.; Bruening, Thomas H., Ed.

    Selected papers are as follows: "Agriculture, Environmental Science and the Relationship of Agriculture to Academic Courses as Perceived by 10th Grade Students" (Newsom-Stewart; Sutphin); "Factors Related to Recruitment and Retention of Ethnic Minority Youth in the Ohio 4-H Program" (Bankston, Cano); "Hispanics in Agriculture" (Nichols, Nelson);…

  18. Implementation and monitoring measures to reduce agricultural impacts on water quality: US experience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  19. Implementation and monitoring to reduce agricultural impacts on water quality: US experiance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As European nations move toward compliance with the EU Water Framework Directive, national efforts to manage and regulate agricultural impacts on water quality in the US can provide useful guidance. Concentration of livestock and poultry production in the US has changed the distribution of nutrient...

  20. Nutrient contribution of total and lean beef in diets of US children and adolescents: National Health and Nutrition Examination Survey 1999-2004.

    PubMed

    O'Neil, Carol E; Zanovec, Michael; Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A

    2011-03-01

    This study examined the nutritional contribution of total beef and lean beef (LB) to the diet of US children and adolescents using the US Department of Agriculture definition of LB as defined in MyPyramid. Twenty-four hour dietary recall data from children 4-8 years of age [y] (n=2474), 9-13 y (n=3273), and adolescents 14-18 y (n=4044) participating in the NHANES 1999-2004 were assessed. LB was defined as beef with ≤9.28 grams [g] fat/100 g (excess was discretionary fat). Means and standard errors were determined using appropriate sample weights. Consumption of LB contributed significantly to intake of protein and many key nutrients such as vitamins B6 and B12, zinc, iron, niacin, phosphorus, and potassium by US children and adolescents without providing significantly to intakes of total fat, saturated fatty acids, or sodium. PMID:21093990

  1. Nutrient Data Bases--Considerations for Educators.

    ERIC Educational Resources Information Center

    Hoover, Loretta W.; Pelican, Suzanne

    1984-01-01

    Examines sources and limitations of nutrient data and databases, and discusses some educational issues surrounding their selection and use in nutrient analysis programs. Tables illustrating the state of development of methods for nutrients in food, and selected United States Department of Agriculture (USDA) databases. (JN)

  2. Evaluation of the Agro-EcoSystem-Watershed (AgES-W)model for estimating nutrient dynamics on a midwest agricultural watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to satisfy the requirements of Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model dev...

  3. Recycling biosolids and lake-dredged materials to pasture-based animal agriculture: Alternative nutrient sources for forage productivity and sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic sewage sludge or biosolids and lake-dredged materials are examples of materials that can be used to cut fertilizer costs in pasture-based animal agriculture. Sustainable biosolids and lake-dredged materials management is based upon controlling and influencing the quantity, quality and chara...

  4. THE ROLE OF STORMWATER BMPS IN MITIGATING THE EFFECTS OF NUTRIENT OVERENRICHMENT IN THE URBAN WATERSHED

    EPA Science Inventory

    Nutrient overenrichment from agricultural and urban point and nonpoint sources, including urban stormwter, is a leading cause of impairment to our nation's rivers, lakes, and coastal waters. For waters that do not currently meet existing water quality standards, The USEPA's TMDL ...

  5. Expansion of USDA’s Food and Nutrient Databases to Meet Evolving Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the major source of food composition data in the United States, the USDA National Nutrient Database for Standard Reference (SR) is an important resource for nutrition professionals. SR evolved from its predecessor, Agriculture Handbook 8, Composition of Foods, which was available in hard copy. ...

  6. Mapping irrigated lands at 250-m scale by merging MODIS data and National Agricultural Statistics

    USGS Publications Warehouse

    Pervez, Md Shahriar; Brown, Jesslyn F.

    2010-01-01

    Accurate geospatial information on the extent of irrigated land improves our understanding of agricultural water use, local land surface processes, conservation or depletion of water resources, and components of the hydrologic budget. We have developed a method in a geospatial modeling framework that assimilates irrigation statistics with remotely sensed parameters describing vegetation growth conditions in areas with agricultural land cover to spatially identify irrigated lands at 250-m cell size across the conterminous United States for 2002. The geospatial model result, known as the Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset (MIrAD-US), identified irrigated lands with reasonable accuracy in California and semiarid Great Plains states with overall accuracies of 92% and 75% and kappa statistics of 0.75 and 0.51, respectively. A quantitative accuracy assessment of MIrAD-US for the eastern region has not yet been conducted, and qualitative assessment shows that model improvements are needed for the humid eastern regions where the distinction in annual peak NDVI between irrigated and non-irrigated crops is minimal and county sizes are relatively small. This modeling approach enables consistent mapping of irrigated lands based upon USDA irrigation statistics and should lead to better understanding of spatial trends in irrigated lands across the conterminous United States. An improved version of the model with revised datasets is planned and will employ 2007 USDA irrigation statistics.

  7. Official FFA Manual for the National Organization for Students of Vocational Agriculture.

    ERIC Educational Resources Information Center

    Future Farmers of America, Washington, DC.

    Topics covered in the 1975 Future Farmers of America (FFA) official manual are: a historical sketch of the organization, a description of the FFA organization, the national FFA center, national constitution and bylaws, the eight essentials of a good chapter, organizing a local chapter, chapter program activities, chapter meetings, parliamentary…

  8. Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000

    PubMed Central

    Haberl, Helmut; Kastner, Thomas; Schaffartzik, Anke; Ludwiczek, Nikolaus; Erb, Karl-Heinz

    2012-01-01

    Global trade of biomass-related products is growing exponentially, resulting in increasing ‘teleconnections’ between producing and consuming regions. Sustainable management of the earth's lands requires indicators to monitor these connections across regions and scales. The ‘embodied human appropriation of NPP’ (eHANPP) allows one to consistently attribute the HANPP resulting from production chains to consumers. HANPP is the sum of land-use induced NPP changes and biomass harvest. We present the first national-level assessment of embodied HANPP related to agriculture based on a calculation using bilateral trade matrices. The dataset allows (1) the tracing of the biomass-based products consumed in Austria in the year 2000 to their countries of origin and quantifying the HANPP caused in production, and (2) the assigning of the national-level HANPP on Austria's territory to the consumers of the products on the national level. The dataset is constructed along a consistent system boundary between society and ecosystems and can be used to assess Austria's physical trade balance in terms of eHANPP. Austria's eHANPP-trade balance is slightly negative (imports are larger than exports); import and export flows are large in relation to national HANPP. Our findings show how the eHANPP approach can be used for quantifying and mapping the teleconnections related to a nation's biomass metabolism. PMID:23576842

  9. Revised U.S. nutrient management standard

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    A newly revised National Nutrient Management Standard could have "a continental impact on how we use nutrients" on potentially hundreds of millions of acres of farmland in the United States, Dave White, chief of the U.S. Department of Agriculture's Natural Resources Conservation Service (USDA/NRCS), said at a 13 December news briefing. NRCS uses the voluntary standard, which was last updated in 2006, to help producers better manage the application of nutrients—including fertilizers, animal manures, legumes, and crop cover—on agricultural land. Proper application of nitrogen and phosphorous is of particular concern, White said, adding that the new standard has an increased emphasis on the "four R's" of nutrient management: using the right amount of fertilizer and the right source, and applying the fertilizer in the right place at the right time. In addition, he said, the new standard emphasizes a number of technological tools for fertilizer and farmland management that have become available since the last update of the standards.

  10. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  11. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  12. Effect of climate, intra and inter-annual variability, on nutrients emission (C,N, P) in stream water: lessons from an agricultural long term observatory of the temperate zone

    NASA Astrophysics Data System (ADS)

    Gascuel-Odoux, Chantal; Remi, Dupas; Patrick, Durand; Ophélie, Fovet; Gerard, Gruau; Anne, Jaffrezic; Guillaume, Humbert; Philippe, Merot; Gu, Sen

    2016-04-01

    Agriculture greatly contributes to modify C, N and P cycles, particularly in animal breeding regions due to high inputs. Climatic conditions, intra and inter-annual variabilities, modify nutrient stream water emissions, acting in time on transfer and transformation, accumulation and mobilization processes, connecting and disconnecting in time different compartments (soil, riparian areas, groundwater). In agricultural catchments, nutrient perturbations are dominated by agricultural land use, and decoupling human activities and climate effects is far from easy. Climate change generally appears as a secondary driver compared to land use. If studied, generally only one nutrient is considered. Only long term, high frequency and multiple element data series can decouple these two drivers. The Kervidy-Naizin watershed belongs to the AgrHyS environmental research observatory (http://www6.inra.fr/ore_agrhys_eng), itself included in RBV (French catchment network of the CZO). On this catchment, 6 years of daily data on DOC, NO3, SRP, TP concentrations allow us to analyze the effect of seasonal and inter-annual climatic variabilities on water quality (C, N, P). Different papers have been published on the effect of climate on nitrate (Molenat et al, 2008), SRP and TP (Dupas et al, 2015) and DOC (Humbert et al, 2015). We will present first results comparing the effect of climate on these three major solute forms of C, N and P. While C and P dynamics are very close and controlled by fluctuation of water table downslope, i.e. in riparian areas, mobilizing C and P in time, nitrate dynamics is controlled by GW dynamics upslope acting as the major N reservoir. As example, the dryness conditions in summer appears a key factor of the C and P emissions in autumn. All the three solute forms interact when anoxic conditions are observed in riparian zones. These basic processes explain how climatic variability can influence and explain interactions between C, N and P emissions in stream

  13. Focusing Agricultural Education Research: The Challenge of the 1990's and Beyond. Proceedings of the National Agricultural Education Research Meeting (17th, Cincinnati, Ohio, November 30, 1990).

    ERIC Educational Resources Information Center

    Martin, Robert A., Comp.

    Selected titles among the 51 papers accepted for presentation or publication by the 1990 meeting of a yearly forum for agricultural research presentation include the following: "Effectiveness of Beginning Scholars Program in Attracting High Ability Students to the College of Agriculture and Home Economics" (Lester, Graham); "Analysis of Enrollment…

  14. Peak Performance...Reaching for Excellence in Agricultural Education Research. Proceedings of the Annual National Agricultural Education Research Meeting (22nd, Denver, Colorado, December 1, 1995). Volume XXII.

    ERIC Educational Resources Information Center

    Birkenholz, Robert J., Ed.; Schumacher, Leon G., Ed.

    The theme of this conference reflects the continuing need to conduct and report research that addresses significant problems and issues in Agricultural Education. Selected research papers are as follows: "Opportunities and Obstacles for Distance Education in Agricultural Education (AE)" (Murphy, Terry); "Faculty Needs Associated with Agricultural…

  15. 21st Century Research for Agricultural Education. Proceedings of the National Agricultural Education Research Conference (27th, San Diego, California, December 6, 2000).

    ERIC Educational Resources Information Center

    Miller, Greg, Ed.

    These proceedings contain 48 presentations and 15 poster abstracts. Papers include "Computer Tasks Required in Selected Undergraduate Agriculture Courses" (Johnson, Ferguson, Vokinnns, Lester); "College of Agriculture Faculty Perceptions of Electronic Technologies in Teaching" (Dooley, Murphy); "Steering Through Turbulent Waters While Developing a…

  16. Adding Value through Research in Agricultural Education. Proceedings of the Annual National Agricultural Education Research Meeting (19th, St. Louis, Missouri, December 4, 1992).

    ERIC Educational Resources Information Center

    Mundt, John P., Comp.

    Among 53 conference papers, are the following: "Perceptions of Administrators, Guidance Counselors, and Science Teachers Concerning Pilot Agriscience Courses" (Johnson, Newman); "Relationship of Supervised Agricultural Experience Program Participation and Student Achievement in Agricultural Education (AE)" (Cheek et al.); "Student Achievement,…

  17. Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  18. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  19. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  20. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-10-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions which result from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of inorganic NH3 fertilizer applied, soil processes, local meteorology, and ambient air concentrations. Initial fertilizer application often occurs when crops are planted. A state-level evaluation of EPIC-simulated, cumulative planted area compares well with similar USDA reported estimates. EPIC-annual, inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6% low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric particle nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  1. Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments

    NASA Astrophysics Data System (ADS)

    Cooter, E. J.; Bash, J. O.; Benson, V.; Ran, L.

    2012-05-01

    While nitrogen (N) is an essential element for life, human population growth and demands for energy, transportation and food can lead to excess nitrogen in the environment. A modeling framework is described and implemented, to promote a more integrated, process-based and system-level approach to the estimation of ammonia (NH3) emissions resulting from the application of inorganic nitrogen fertilizers to agricultural soils in the United States. The United States Department of Agriculture (USDA) Environmental Policy Integrated Climate (EPIC) model is used to simulate plant demand-driven fertilizer applications to commercial cropland throughout the continental US. This information is coupled with a process-based air quality model to produce continental-scale NH3 emission estimates. Regional cropland NH3 emissions are driven by the timing and amount of fertilizer applied, local meteorology, and ambient air concentrations. An evaluation of EPIC-simulated crop management activities associated with fertilizer application at planting compared with similar USDA state-level event estimates shows temporally progressive spatial patterns that agree well with one another. EPIC annual inorganic fertilizer application amounts also agree well with reported spatial patterns produced by others, but domain-wide the EPIC values are biased about 6 % low. Preliminary application of the integrated fertilizer application and air quality modeling system produces a modified geospatial pattern of seasonal NH3 emissions that improves current simulations of observed atmospheric nitrate concentrations. This modeling framework provides a more dynamic, flexible, and spatially and temporally resolved estimate of NH3 emissions than previous factor-based NH3 inventories, and will facilitate evaluation of alternative nitrogen and air quality policy and adaptation strategies associated with future climate and land use changes.

  2. Agriculture and the Future. National Workplace Literacy Program. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Yakima Valley Opportunities Industrialization Center, WA.

    This document consists of an evaluation report and a curriculum guide from a National Workplace Literacy project designed to demonstrate the process and effects of literacy classes held in work environments through the Yakima Valley (Washington) Opportunities Industrialization Center. The report notes the following results: (1) of 1,976 workers…

  3. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: The National Airborne Field Experiment 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE’06), it is challenging to provide accurate high resolution vegetation i...

  4. National and State Needs for Foreign Language Learning in Government, Business, Tourism, and Agriculture.

    ERIC Educational Resources Information Center

    Hoegl, Juergen K.

    There is growing evidence that the need for cultural understanding and foreign language competence in the United States and in Illinois is not being met. This need must be addressed through state educational reform. The deterioration in foreign language capabilities affects national security and is a direct result of declining enrollment in…

  5. Socio-economic dietary inequalities in UK adults: an updated picture of key food groups and nutrients from national surveillance data.

    PubMed

    Maguire, Eva R; Monsivais, Pablo

    2015-01-14

    Socio-economic differences in diet are a potential contributor to health inequalities. The present study provides an up-to-date picture of socio-economic differences in diet in the UK, focusing on the consumption of three food groups and two nutrients of public health concern: fruit and vegetables; red and processed meat; oily fish; saturated fats; non-milk extrinsic sugars (NMES). We analysed data for 1491 adults (age ≥ 19 years) from the National Diet and Nutrition Survey 2008-2011. Socio-economic indicators were household income, occupational social class and highest educational qualification. Covariate-adjusted estimates for intakes of fruit and vegetables, red and processed meat, and both nutrients were estimated using general linear models. Covariate-adjusted OR for oily fish consumption were derived with logistic regression models. We observed consistent socio-economic gradients in the consumption of the three food groups as estimated by all the three indicators. Contrasting highest and lowest levels of each socio-economic indicator, we observed significant differences in intakes for the three food groups and NMES. Depending on the socio-economic indicator, highest socio-economic groups consumed up to 128 g/d more fruit and vegetables, 26 g/d less red and processed meat, and 2·6% points less NMES (P< 0·05 for all). Relative to lowest socio-economic groups, highest socio-economic groups were 2·4 to 4·0 times more likely to eat oily fish. No significant patterns in saturated fat consumption were apparent. In conclusion, socio-economic differences were identified in the consumption of food groups and one nutrient of public health importance. Aligning dietary intakes with public health guidance may require interventions specifically designed to reduce health inequalities. PMID:25399952

  6. The Impact of Using Alternative Forages on the Nutrient Value within Slurry and Its Implications for Forage Productivity in Agricultural Systems

    PubMed Central

    Crotty, Felicity V.; Fychan, Rhun; Theobald, Vince J.; Sanderson, Ruth; Chadwick, David R.; Marley, Christina L.

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha−1) with 100 kg N ha−1 inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha−1 year−1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha−1 yr−1). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks. PMID

  7. The impact of using alternative forages on the nutrient value within slurry and its implications for forage productivity in agricultural systems.

    PubMed

    Crotty, Felicity V; Fychan, Rhun; Theobald, Vince J; Sanderson, Ruth; Chadwick, David R; Marley, Christina L

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha⁻¹) with 100 kg N ha⁻¹ inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha⁻¹ year-1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha⁻¹ yr⁻¹). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks

  8. Adaption of the LUCI framework to account for detailed farm management: a case study exploring potential for achieving locally and nationally significant greenhouse gas, flooding and nutrient mitigation without compromising livelihoods on New Zealand farm

    NASA Astrophysics Data System (ADS)

    Jackson, Bethanna; Trodahl, Martha; Maxwell, Deborah; Easton, Stuart

    2016-04-01

    This talk discusses recent progress in adapting the Land Utilisation and Capability Indicator (LUCI) framework to take account of the impact of detailed farm management on greenhouse gas emissions and on water, sediment and nutrient delivery to waterways. LUCI is a land management decision support framework which examines the impact of current and potential interventions on a variety of outcomes, including flood mitigation, water supply, greenhouse gas emissions, biodiversity, erosion, sediment and nutrient delivery to waterways, and agricultural production. The potential of the landscape to provide benefits is a function of both the biophysical properties of individual landscape elements and their configuration. Both are respected in LUCI where possible. For example, the hydrology, sediment and chemical routing algorithms are based on physical principles of hillslope flow, taking information on the storage and permeability capacity of elements within the landscape from soil and land use data and honoring physical thresholds, mass and energy balance constraints. LUCI discretizes hydrological response units within the landscape according to similarity of their hydraulic properties and preserves spatially explicit topographical routing. Implications of keeping the "status quo" or potential scenarios of land management change can then be evaluated under different meteorological or climatic events (e.g. flood return periods, rainfall events, droughts), cascading water through the hydrological response units using a "fill and spill" approach. These and other component algorithms are designed to be fast-running while maintaining physical consistency and fine spatial detail. This allows it to operate from subfield level scale to catchment, or even national scale, simultaneously. It analyses and communicates the spatial pattern of individual provision and tradeoffs/synergies between desired outcomes at detailed resolutions and provides suggestions on where management

  9. Diabetes on the Navajo nation: what role can gardening and agriculture extension play to reduce it?

    PubMed

    Lombard, Kevin A; Forster-Cox, Susan; Smeal, Dan; O'Neill, Mick K

    2006-01-01

    Diabetes has emerged as a serious health problem in the Navajo nation, the largest Indigenous tribe in the US. Persons with diabetes are at greater risk for developing other diseases such as cardiovascular disease. Navajos with diabetes almost certainly face a diminished quality of life if their diabetes is not managed properly. Aside from genetics, the incidence of diabetes is highly correlated with income, poor diet, and limited physical exercise. A review of the literature also implicates dietary shifts initiated by historical events and contemporary trends. Numerous studies have shown that moderate consumption of fruits and vegetables, combined with exercise, reduces the risk of or delays the onset of many diseases including diabetes. As part of a larger holistic approach, home and community garden projects have successfully addressed nutrition and food security issues on a grassroots scale. The Navajos have a tradition of farming and therefore expanding Navajo diabetes interventions to include the promotion of community and home gardens provides multiple opportunities. The benefits of these actions include: (i) a variety of nutritious food grown locally; (ii) physical activity attained through the act of daily gardening tasks; (iii) positive income garnered in terms of savings in food otherwise purchased at stores and excess produce canned, or if desired, sold at a farmer's market or trading post; and (iv) positive mental outlook through a combined sense of accomplishment at harvest time, bonding with the earth, and spiritual growth. The objectives of this article were to review the development of diabetes on the Navajo nation though historical and contemporary literature, to provide insight into the role of diet and exercise in the progression of the disease, and to offer cases and suggestions in the role that home and community gardening can play in diabetes reduction. A concluding discussion proposes a multidisciplinary approach to tackling diabetes on the

  10. Sensor needs for agricultural and carbon management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a wide variety of sensors and platforms available for agricultural and carbon management. Two areas of concern are monitoring plant nutrients and crop residue over agricultural watersheds. Excess plant nutrients and agricultural chemicals may runoff into the water supply, degrading water ...

  11. Agricultural nitrate monitoring in a lake basin in Central Italy: a further step ahead towards an integrated nutrient management aimed at controlling water pollution.

    PubMed

    Garnier, Monica; Recanatesi, Fabio; Ripa, Maria Nicoletta; Leone, Antonio

    2010-11-01

    Water pollution from point sources has been considerably reduced over the last few decades. Nevertheless, some water quality problems remain, which can be attributed to non-point pollution sources, and in particular to agriculture. In this paper the results of a study intended to assess the consequences, in terms of NO3 water pollution, of growing a crop, whose impact in terms of P pollution is already well known, are presented. The potential consequences, in terms of water pollution from nitrates of a BMP expressly applied to reduce P pollution are also discussed. The study site is the Lake Vico basin, Central Italy, which has suffered a shift in trophic state since the mid 1990s, caused by P compounds used for intensive cultivation of hazelnut trees. The results of the monitoring campaign described in this paper allow to assert that hazelnut tree cropping has probably caused a considerable increase in nitrate concentration in the groundwater, although not in the lake water, because of the specific hydrogeological characteristics of the basin. The main conclusion is that monitoring is essential to single out environmental characteristics peculiar of a specific area, which even the most sophisticated model would not have been able to highlight. This is why monitoring and model simulations should be integrated. PMID:19911291

  12. Parameterization of Natural Depressions in Distributed Hydrologic Models: Implications for Scaling up Predictions of Sediment and Nutrient Yields in Ungauged Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Chien, H.; Mackay, S.; Cabot, P. E.; Karthikeyan, K.

    2005-12-01

    Digital Elevation Models (DEMs) are widely used in distributed hydrologic modeling. In general, interior depressions within catchments are viewed as errors in the DEM, even though they are hydrologically significant features. Natural depressions in catchments are capable of trapping surface runoff and associated sediment, but they are difficult to identify and represent, especially in ungauged basins. We examined the errors associated with the removal of such depressions on predictions from hydrologic models, Soil and Water Assessment Tool (SWAT) and Agricultural Policy/Environmental eXtender (APEX). Automated water and sediment samplers were installed in the outlets of three natural depressions in a small catchment in the North Fork of Pheasant Branch watershed in Dane County, Wisconsin, to collect surface runoff and sediment yields for the period 2003-2004. The data showed that when daily precipitation is over 26 mm, surface runoff with suspended sediment overtops the depressions. SWAT and APEX were calibrated to this data to examine the influence of nested depressions on sediment yields. The hypothesis addressed in this study is: sediment transport parameters can be used as proxies for the functioning of surface depression and to obtain the correct sediment response. The alternative is to explicitly prescribe depressions as reservoirs with more geometric details of depressions if the hypothesis failed. Initial model results showed that the adjustment of sediment transport parameters mimics the response of the depressions and significantly reduces sediment yields. Implications of a simple proxy of sediment deposition for scaling to larger, ungauged basins will be discussed.

  13. Tree Nut Consumption Is Associated with Better Nutrient Adequacy and Diet Quality in Adults: National Health and Nutrition Examination Survey 2005–2010

    PubMed Central

    O’Neil, Carol E.; Nicklas, Theresa A.; Fulgoni, Victor L.

    2015-01-01

    Nutrient adequacy of tree nut consumers has not been examined. The National Health and Nutrition Examination Survey 2005–2010 data were used to assess the association of tree nut consumption by adults 19+ years (n = 14,386) with nutrient adequacy and diet quality. Covariate adjusted usual intake was determined using two 24-h dietary recalls and the National Cancer Institute method. Percentages of the consumption groups below the Estimated Average Requirement (EAR) or above the Adequate Intake (AI) were determined. Diet quality was determined using the Healthy Eating Index-2005 (HEI) score. Usual intake data showed consumers of tree nuts had a lower percentage (p < 0.0001) of the population below the EAR for vitamins A (22 ± 5 vs. 49 ± 1), E (38 ± 4 vs. 94 ± 0.4) and C (17 ± 4 vs. 44 ± 1); folate (2.5 ± 1.5 vs. 12 ± 0.6); calcium (26 ± 3 vs. 44 ± 1); iron (3 ± 0.6 vs. 9 ± 0.4); magnesium (8 ± 1 vs. 60 ± 1); and zinc (1.5 ± 1 vs. 13 ± 1). Tree nut consumers had a higher percentage (p < 0.0001) of the population above the AI for fiber (33 ± 3 vs. 4 ± 0.3) and potassium (12 ± 3 mg vs. 2 ± 0.2 mg). HEI-2005 total score was higher (p < 0.0001) in tree nut consumers (61 ± 0.7 vs. 52 ± 0.3) than non-consumers. Health professionals should encourage the use of tree nuts as part of a dietary approach to healthy eating. PMID:25599274

  14. AGRICULTURAL CHEMICAL USAGE DATA

    EPA Science Inventory

    This report, which summarizes the use of agricultural chemicals is issued by the National Agricultural Statistics Service (NASS) as part of its series on Agricultural Chemical Usage. Other publications in the series present statistics for on-farm agricultural chemical usage for f...

  15. Hydrology and the hypothetical effects of reducing nutrient applications of water quality in the Bald Eagle Creek Headwaters, southeastern Pennsylvania prior to implementation of agricultural best-management practices

    USGS Publications Warehouse

    Fishel, D.K.; Langland, M.J.; Truhlar, M.V.

    1991-01-01

    The report characterizes a 0.43-square-mile agricultural watershed in York County, underlain by albite-chlorite and oligoclase-mica schist in the Lower Susquehanna River basin, that is being studied as part of the U.S. Environmental Protection Agency's Chesapeake Bay Program. The water quality of Bald Eagle Creek was studied from October 1985 through September 1987 prior to the implementation of Best-Management Practices to reduce nutrient and sediment discharge into Muddy Creek, a tributary to the Chesapeake Bay. About 88 percent of the watershed is cropland and pasture, and nearly 33 percent of the cropland is used for corn. The animal population is entirely dairy cattle. About 85,640 pounds of nitrogen (460 pounds per acre) and 21,800 pounds of phosphorus (117 pounds per acre) were applied to fields; 52 percent of the nitrogen and 69 percent of the phosphorus was from commercial fertilizer. Prior to fertilization, nitrate nitrogen in the soil ranged from 36 to 136 pounds per acre and phosphorus ranged from 0.89 to 5.7 pounds per acre in the top 4 feet of soil. Precipitation was about 18 percent below normal and streamflow about 35 percent below normal during the 2-year study. Eighty-four percent of the 20.44 inches of runoff was base flow. Median concentrations of total nitrogen and dissolved phosphorous in base flow were 0.05 and 0.04 milligrams per liter as phosphorus, respectively. Concentrations of dissolved nitrate in base flow increased following wet periods after crops were harvested and manure was applied. During the growing season, concentrations decreased similarly to those observed in carbonate-rock areas as nutrient uptake and evapotranspiration by corn increased. About 4,550 pounds of suspended sediment, 5,250 pounds of nitrogen, and 66.6 pounds of phosphorus discharged in base flow during the 2-year period. The suspended sediment load was about 232,000 pounds in stormflow from 26 storms that contributed 51 percent of the total stormflow. The

  16. Global forest cover mapping for the United Nations Food and Agriculture Organization forest resources assessment 2000 program

    USGS Publications Warehouse

    Zhu, Z.; Waller, E.

    2003-01-01

    Many countries periodically produce national reports on the status and changes of forest resources, using statistical surveys and spatial mapping of remotely sensed data. At the global level, the Food and Agriculture Organization (FAO) of the United Nations has conducted a Forest Resources Assessment (FRA) program every 10 yr since 1980, producing statistics and analysis that give a global synopsis of forest resources in the world. For the year 2000 of the FRA program (FRA2000), a global forest cover map was produced to provide spatial context to the extensive survey. The forest cover map, produced at the U.S. Geological Survey (USGS) EROS Data Center (EDC), has five classes: closed forest, open or fragmented forest, other wooded land, other land cover, and water. The first two forested classes at the global scale were delineated using combinations of temporal compositing, modified mixture analysis, geographic stratification, and other classification techniques. The remaining three FAO classes were derived primarily from the USGS global land cover characteristics database (Loveland et al. 1999). Validated on the basis of existing reference data sets, the map is estimated to be 77% accurate for the first four classes (no reference data were available for water), and 86% accurate for the forest and nonforest classification. The final map will be published as an insert to the FAO FRA2000 report.

  17. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems

    NASA Astrophysics Data System (ADS)

    Reidy, B.; Webb, J.; Misselbrook, T. H.; Menzi, H.; Luesink, H. H.; Hutchings, N. J.; Eurich-Menden, B.; Döhler, H.; Dämmgen, U.

    Six N-flow models, used to calculate national ammonia (NH 3) emissions from agriculture in different European countries, were compared using standard data sets. Scenarios for litter-based systems were run separately for beef cattle and for broilers, with three different levels of model standardisation: (a) standardized inputs to all models (FF scenario); (b) standard N excretion, but national values for emission factors (EFs) (FN scenario); (c) national values for N excretion and EFs (NN scenario). Results of the FF scenario for beef cattle produced very similar estimates of total losses of total ammoniacal-N (TAN) (±6% of the mean total), but large differences in NH 3 emissions (±24% of the mean). These differences arose from the different approaches to TAN immobilization in litter, other N losses and mineralization in the models. As a result of those differences estimates of TAN available at spreading differed by a factor of almost 3. Results of the FF scenario for broilers produced a range of estimates of total changes in TAN (±9% of the mean total), and larger differences in the estimate of NH 3 emissions (±17% of the mean). The different approaches among the models to TAN immobilization, other N losses and mineralization, produced estimates of TAN available at spreading which differed by a factor of almost 1.7. The differences in estimates of NH 3 emissions decreased as estimates of immobilization and other N losses increased. Since immobilization and denitrification depend also on the C:N ratio in manure, there would be advantages to include C flows in mass-flow models. This would also provide an integrated model for the estimation of emissions of methane, non-methane VOCs and carbon dioxide. Estimation of these would also enable an estimate of mass loss, calculation of the N and TAN concentrations in litter-based manures and further validation of model outputs.

  18. Research in Agricultural Education: A Foundation for Excellence. Proceedings of the National Agricultural Education Research Meeting (15th, St. Louis, Missouri, December 2, 1988).

    ERIC Educational Resources Information Center

    American Vocational Association, Alexandria, VA. Agricultural Education Div.

    This document contains 36 papers, most with critiques. Selected titles include "Qualitative Evaluation of the Strengths and Weaknesses of Pennsylvania's 4-H Program" (Etling); "Cognition Level of Instruction and Student Performance among Selected Ohio Production Agriculture Programs" (Cano, Newcomb); "Critical Thinking Skills of Agriculture…

  19. Tidal fluxes of nutrients and suspended sediments at the North Inlet Winyah Bay National Estuarine Research Reserve

    NASA Astrophysics Data System (ADS)

    Gardner, L. R.; Kjerfve, B.

    2006-12-01

    Beginning June of 1993 suites of 13 water samples have been collected at Oyster Landing, North Inlet (SC), every 20 days covering two consecutive tidal cycles at 2.07 h intervals. In order to ascertain whether this large (and still growing) water chemistry data set can be used to determine tidal fluxes of nutrients and sediments, we coupled measured concentrations to estimates of instantaneous tidal discharge based on a basin water storage curve and hindcast tides. The mean advective fluxes of all constituents, including salt, showed statistically significant exports. This result, however, is largely due to an ebb bias in the sampling protocol, which resulted in 52% of the samples being collected on ebb tide versus a theoretical percentage of 48%. When this bias was corrected by reducing the mean discharge (-610 l s -1) to a value (-125 l s -1) that produced a balance between the mean advective and dispersive salt fluxes, the advective fluxes of the other constituents were reduced to values that are not significantly different from zero. In addition to a statistically significant dispersive influx of salt, significant dispersive exports were found for DON, NH 4, DOP, PO 4 and DOC. All particulate constituents (PN, PP, ISS and OSS) yielded dispersive fluxes that were not significantly different from zero. Annual material budgets for the Oyster Landing basin based on the dispersive fluxes of all constituents (except salt) are generally similar in magnitude and direction to those measured by [Dame, R.F., Spurrier, J.D., Williams, T.M., Kjerfve, B., Zingmark, R.G., Wolaver, T.G., Chrzanowski, T.H., McKeller, H.N., Vernberg, F.J., 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA. Marine Ecology Progress Series 72, 153-166.] in the nearby and ecologically similar Bly Creek basin, indicating that the dispersive fluxes determined in this study are realistic. We offer suggestions for improving the reliability and usefulness of future

  20. Transforming the Roles of a Public Extension Agency to Strengthen Innovation: Lessons from the National Agricultural Extension Project in Bangladesh

    ERIC Educational Resources Information Center

    Chowdhury, Ataharul Huq; Odame, Helen Hambly; Leeuwis, Cees

    2014-01-01

    Purpose: The rapidly evolving nature of agricultural innovation processes in low-income countries requires agricultural extension agencies to transform the classical roles that previously supported linear information dissemination and adoption of innovation. In Bangladesh, strengthening agricultural innovation calls for facilitation of interactive…

  1. Sodium Content of Foods Contributing to Sodium Intake: Comparison between Selected Foods from the CDC Packaged Food Database and the USDA National Nutrient Database for Standard Reference

    PubMed Central

    Maalouf, Joyce; Cogswell, Mary E.; Yuan, Keming; Martin, Carrie; Gillespie, Cathleen; Ahuja, Jaspreet KC; Pehrsson, Pamela; Merritt, Robert

    2015-01-01

    The sodium concentration (mg/100g) for 23 of 125 Sentinel Foods (e.g. white bread) were identified in the 2009 CDC Packaged Food Database (PFD) and compared with data in the USDA’s 2013 National Nutrient Database for Standard Reference(SR 26). Sentinel Foods are foods identified by USDA to be monitored as primary indicators to assess the changes in the sodium content of commercially processed foods from stores and restaurants. Overall, 937 products were evaluated in the CDC PFD, and between 3 (one brand of ready-to-eat cereal) and 126 products (white bread) were evaluated per selected food. The mean sodium concentrations of 17 of the 23 (74%) selected foods in the CDC PFD were 90%–110% of the mean sodium concentrations in SR 26 and differences in sodium concentration were statistically significant for 6 Sentinel Foods. The sodium concentration of most of the Sentinel Foods, as selected in the PFD, appeared to represent the sodium concentrations of the corresponding food category. The results of our study help improve the understanding of how nutrition information compares between national analytic values and the label and whether the selected Sentinel Foods represent their corresponding food category as indicators for assessment of change of the sodium content in the food supply. PMID:26484010

  2. Whole grain intake and its association with intakes of other foods, nutrients and markers of health in the National Diet and Nutrition Survey rolling programme 2008-11.

    PubMed

    Mann, Kay D; Pearce, Mark S; McKevith, Brigid; Thielecke, Frank; Seal, Chris J

    2015-05-28

    Epidemiological evidence suggests an inverse association between whole grain consumption and the risk of non-communicable diseases, such as CVD, type 2 diabetes, obesity and some cancers. A recent analysis of the National Diet and Nutrition Survey rolling programme (NDNS-RP) has shown lower intake of whole grain in the UK. It is important to understand whether the health benefits associated with whole grain intake are present at low levels of consumption. The present study aimed to investigate the association of whole grain intake with intakes of other foods, nutrients and markers of health (anthropometric and blood measures) in the NDNS-RP 2008-11, a representative dietary survey of UK households. A 4-d diet diary was completed by 3073 individuals. Anthropometric measures, blood pressure levels, and blood and urine samples were collected after diary completion. Individual whole grain intake was calculated with consumers categorised into tertiles of intake. Higher intake of whole grain was associated with significantly decreased leucocyte counts. Significantly higher concentrations of C-reactive protein were seen in adults in the lowest tertile of whole grain intake. No associations with the remaining health markers were seen, after adjustments for sex and age. Over 70% of this population did not consume the minimum recommend intake associated with disease risk reduction, which may explain small variation across health markers. Nutrient intakes in consumers compared with non-consumers were closer to dietary reference values, such as higher intakes of fibre, Mg and Fe, and lower intakes of Na, suggesting that higher intake of whole grain is associated with improved diet quality. PMID:25893512

  3. Determination of Subject Matter Units Taught in Wisconsin and the Extent of Contribution Made Toward Meeting the National Objectives of Vocational Agriculture.

    ERIC Educational Resources Information Center

    Pumper, Fred John

    The primary purpose of this study was to identify the subject matter units taught, ascertain the length of time allotted to teaching of the subject matter units, and ascertain the extent of contribution made by categories of subject matter toward attaining national objectives of vocational agriculture in Wisconsin. The study also included a…

  4. An Internal Evaluation of the National FFA Agricultural Mechanics Career Development Event through Analysis of Individual and Team Scores from 1996-2006

    ERIC Educational Resources Information Center

    Franklin, Edward A.; Armbruster, James

    2012-01-01

    The purpose of this study was to conduct an internal evaluation of the National FFA Agricultural Mechanics Career Development Event (CDE) through analysis of individual and team scores from 1996-2006. Data were analyzed by overall and sub-event areas scores for individual contestants and team event. To facilitate the analysis process scores were…

  5. The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National data comparing nutrient intakes and anthropometric measures in children and adolescents in the United States who skip breakfast or consume different types of breakfasts are limited. The objective was to examine the relationship between breakfast skipping and type of breakfast consumed with ...

  6. Agricultural and urban pollution

    NASA Technical Reports Server (NTRS)

    Brehmer, M. L.

    1972-01-01

    The degradation produced by the introduction of agricultural and urban wastes into estuarine systems, with emphasis on the Chesapeake Bay area, is discussed. The subjects presented are: (1) effects of sediment loading and (2) organic and nutrient loading problems. The impact of high turbidity on the biological life of the bay is analyzed. The sources of nutrients which produce over-enrichment of the waters and the subsequent production of phytoplankton are examined.

  7. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  8. Nutrient use efficiency in plants: an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In modern agriculture use of essential plant nutrients in crop production is very important to increase productivity and maintain sustainability of the cropping system. Use of nutrients in crop production is influenced by climatic, soil, plant and social-economical condition of the farmers. Overall,...

  9. Nutrient mass balance and trends, Mobile River Basin, Alabama, Georgia, and Mississippi

    USGS Publications Warehouse

    Harned, D.A.; Atkins, J.B.; Harvill, J.S.

    2004-01-01

    A nutrient mass balance - accounting for nutrient inputs from atmospheric deposition, fertilizer, crop nitrogen fixation, and point source effluents; and nutrient outputs, including crop harvest and storage - was calculated for 18 subbasins in the Mobile River Basin, and trends (1970 to 1997) were evaluated as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program. Agricultural nonpoint nitrogen and phosphorus sources and urban nonpoint nitrogen sources are the most important factors associated with nutrients in this system. More than 30 percent of nitrogen yield in two basins and phosphorus yield in eight basins can be attributed to urban point source nutrient inputs. The total nitrogen yield (1.3 tons per square mile per year) for the Tombigbee River, which drains a greater percentage of agricultural (row crop) land use, was larger than the total nitrogen yield (0.99 tons per square mile per year) for the Alabama River. Decreasing trends of total nitrogen concentrations in the Tombigbee and Alabama Rivers indicate that a reduction occurred from 1975 to 1997 in the nitrogen contributions to Mobile Bay from the Mobile River. Nitrogen concentrations also decreased (1980 to 1995) in the Black Warrior River, one of the major tributaries to the Tombigbee River. Total phosphorus concentrations increased from 1970 to 1996 at three urban influenced sites on the Etowah River in Georgia. Multiple regression analysis indicates a distinct association between water quality in the streams of the Mobile River drainage basin and agricultural activities in the basin.

  10. Prevalence of musculoskeletal symptoms among agricultural workers in the United States: an analysis of the National Health Interview Survey, 2004-2008.

    PubMed

    Lee, Soo-Jeong; Tak, Sangwoo; Alterman, Toni; Calvert, Geoffrey M

    2014-01-01

    Ergonomic risks from agricultural tasks can compromise musculoskeletal health of workers. This study estimated prevalence of musculoskeletal symptoms in a sample representing almost 2 million US agricultural industry workers. This study used National Health Interview Survey data from 2004 to 2008. Weighted prevalence was calculated by demographic and employment factors. Prevalence ratios were calculated using generalized linear models with the Poisson distribution assumption. Prevalence rates of low back and neck pain in the previous 3 months were 24.3% and 10.5%, respectively, among agricultural workers. Monthly prevalence of joint pain was 17.0% for hips/knees, 9.8% for shoulders, 9.5% for wrists/hands, 5.4% for elbows, and 4.7% for ankles/toes. Agricultural workers had a significantly higher prevalence of shoulder pain than all other industry workers (prevalence ratios [PR] = 1.28, 95% confidence interval [CI]: 1.02-1.61). This study provides detailed national estimates of musculoskeletal symptom prevalence to understand the burden and the need for intervention among agricultural workers. PMID:24959759

  11. Association between Nutrient Intake and Obesity in Type 2 Diabetic Patients from the Korean National Diabetes Program: A Cross-Sectional Study

    PubMed Central

    Kim, So Hun; Hong, Seong Bin; Suh, Young Ju; Choi, Yun Jin; Lee, Hyoung Woo; Park, Ie Byung; Chon, Suk; Woo, Jeong-Taek; Baik, Sei Hyun; Park, Yongsoo; Kim, Dae Jung; Lee, Kwan Woo; Kim, Young Seol

    2012-01-01

    The aim of the study was to assess the association between usual dietary nutrient intake and obesity in Korean type 2 diabetic patients. We examined 2,832 type 2 diabetic patients from the Korean National Diabetes Program cohort who completed dietary assessment and clinical evaluation in this cross-sectional study. In men, higher dietary fiber intake was associated with a lower odds of being obese (Ptrend = 0.003) and in women, higher protein intake was associated with a lower odds of being obese (Ptrend = 0.03) after adjustment for age, diabetes duration, HbA1c, alcohol drinking, income, education level, and calorie intake. In men, higher fiber intake was associated with lower odds of obesity after further adjustment for diastolic blood pressure, physical activity, and possible confounding nutritional intake and medication. The multivariable adjusted odds ratio for the highest quintile of fiber intake was 0.37 (Ptrend < 0.001). In women, protein intake was not associated with obesity after further adjustment. In conclusion, higher intake of dietary fiber is associated with lower odds of being obese in type 2 diabetic men, suggesting a role for dietary fiber in the management and prevention of obesity in type 2 diabetes (ClinicalTrials.gov: NCT 01212198). PMID:23091316

  12. Agricultural Research Service

    MedlinePlus

    ... Trending Research Topics Scientific Software/Models Scientific Collaborations Databases and Datasets People & Locations Find a person Find ... Tools Plant Hardiness Zone Map USDA National Nutrient Database Back to Top of Page Social Media Links ...

  13. Riparian Land Use/Land Cover Data for Five Study Units in the Nutrient Enrichment Effects Topical Study of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Johnson, Michaela R.; Buell, Gary R.; Kim, Moon H.; Nardi, Mark R.

    2007-01-01

    This dataset was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study for five study units distributed across the United States: Apalachicola-Chattahoochee-Flint River Basin, Central Columbia Plateau-Yakima River Basin, Central Nebraska Basins, Potomac River Basin and Delmarva Peninsula, and White, Great and Little Miami River Basins. One hundred forty-three stream reaches were examined as part of the NEET study conducted 2003-04. Stream segments, with lengths equal to the logarithm of the basin area, were delineated upstream from the downstream ends of the stream reaches with the use of digital orthophoto quarter quadrangles (DOQQ) or selected from the high-resolution National Hydrography Dataset (NHD). Use of the NHD was necessary when the stream was not distinguishable in the DOQQ because of dense tree canopy. The analysis area for each stream segment was defined by a buffer beginning at the segment extending to 250 meters lateral to the stream segment. Delineation of land use/land cover (LULC) map units within stream segment buffers was conducted using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were mapped using a classification strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal transect sampling lines offset from the stream segments were generated and partitioned into the underlying LULC types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear LULC data filled in the spatial-scale gap between the 30-meter resolution of the National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The final data consisted of 12 geospatial datasets: LULC within 25 meters of the stream reach

  14. Research Fresh from Florida. Proceedings of the National Agricultural Education Research Conference (26th, Orlando, Florida, December 11, 1999).

    ERIC Educational Resources Information Center

    American Association for Agricultural Education.

    The following are among the 47 papers included: "Academic Performance and Retention of College of Agriculture Students" (Garton, Dyer, King); "Perceptions of Recent Graduates and Employers about Undergraduate Programs in the College of Agriculture and Natural Resources at Michigan State University" (Heyboer, Suvedi); "Survey of Early Leavers"…

  15. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Ritter, A.; Muñoz-Carpena, R.

    2006-02-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the interaction between the shallow aquifer and surface water is a key component for fine-tuning the process. The Frog Pond is an intensively instrumented agricultural 2023 ha area adjacent to ENP. The interactions among 21 multivariate daily time series (ground and surface water elevations, rainfall and evapotranspiration) available from this area were studied by means of dynamic factor analysis, a novel technique in the field of hydrology. This method is designed to determine latent or background effects governing variability or fluctuations in non-stationary time series. Water levels in 16 wells and two drainage ditch locations inside the area were selected as response variables, and canal levels and net recharge as explanatory variables. Elevations in the two canals delimiting the Frog Pond area were found to be the main factors explaining the response variables. This influence of canal elevations on water levels inside the area was complementary and inversely related to the distance between the observation point and each canal. Rainfall events do not affect daily water levels significantly but are responsible for instantaneous or localized groundwater responses that in some cases can be directly associated with the risk of flooding. This close coupling between surface and groundwater levels, that corroborates that found by other authors using different methods, could hinder on-going environmental restoration efforts in the area by bypassing the function of wetlands and other surface features. An empirical model with a reduced set of parameters was successfully developed and validated in the area by interpolating the results from the dynamic factor analysis across the spatial domain (coefficient of efficiency across the domain: 0.66-0.99). Although

  16. Chickpeas and hummus are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National Health and Nutrition Examination Survey 2003-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiologic studies assessing chickpea/hummus consumption and the association with nutrient intake, diet quality, and health biomarkers are lacking. The association between chickpea/hummus consumption and nutrient intake, dietary quality, and health biomarkers was examined in adults using data fro...

  17. Food sources of energy and nutrients among children in the United States: National Health and Nutrition Examination survey 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent detailed analyses of data on dietary sources of energy and nutrients in US children are lacking. The objective of this study was to identify food sources of energy and 28 nutrients for children in the United States. Analyses of food sources were conducted using a single 24-h recall collected ...

  18. Nutrient intake, diet quality, and weight/adiposity parameters in breakfast patterns compared with no breakfast in adults: National Health and Nutrition Examination Survey 2001-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of different breakfast consumption patterns on nutrient intake, diet quality, and weight/adiposity status is unknown. The objective was to compare nutrient intake, diet quality, and weight/adiposity measures of consumers assigned to different breakfast patterns with breakfast skippers. Th...

  19. Agriculture, Levels 1-4. Agriculture & Commercial Horticulture, Levels 1-4. Commercial Horticulture, Levels 1-3. Environmental Conservation, Levels 2-4. National Vocational Qualifications.

    ERIC Educational Resources Information Center

    Business and Technology Education Council, London (England).

    Britain's National Vocational Qualifications (NVQs) are work qualifications that measure what an employee or potential employee can do as well as how much he or she knows and understands about a particular job. Used as written proof of usable workplace skills that can be put to profitable use by an employer, NVQs range from basic Level 1, for…

  20. Nutrient export in tile drainage: Comparing manure injection to fertigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage of agricultural land is implicated as a major source of nutrients to the Mississippi River. To protect water quality, land application of manure should maximize crop nutrient use and minimize nutrient loss. Weather constraints and regulations restrict the period during which...

  1. Nutrient Management Certification for Delaware: Developing a Water Quality Curriculum

    ERIC Educational Resources Information Center

    Hansen, David J.; Binford, Gregory D.

    2004-01-01

    Water quality is a critical environmental, social, and political issue in Delaware. In the late 1990s, a series of events related to water quality issues led to the passage of a state nutrient management law. This new law required nutrient management planning and established a state certification program for nutrient users in the agricultural and…

  2. Whole Farm Nutrient Balance Calculator for New York Dairy Farms

    ERIC Educational Resources Information Center

    Soberon, Melanie A.; Ketterings, Quirine M.; Rasmussen, Caroline N.; Czymmek, Karl J.

    2013-01-01

    Nutrient loss and accumulation as well as associated environmental degradation have been a concern for animal agriculture for many decades. Federal and New York (NY) regulations apply to Concentrated Animal Feeding Operations and a comprehensive nutrient management plan (CNMP) is required for regulated farms. The whole farm nutrient mass balance…

  3. Urban conservation agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables are important sources of vitamins and nutrients for human nutrition. United States Department of Agriculture recommends filling half of the food plates with vegetables in every meal. While it is important in promoting good health, access to fresh vegetables is limited especially in urban ...

  4. 77 FR 39506 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, Tongass National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... Forest at the address below by August 2, 2012. ADDRESSES: Forrest Cole, Supervisor, Tongass National... contact Forrest Cole, Supervisor, Tongass National Forest, 648 Mission Street Federal Building,...

  5. Agricultural sustainability: concepts, principles and evidence.

    PubMed

    Pretty, Jules

    2008-02-12

    Concerns about sustainability in agricultural systems centre on the need to develop technologies and practices that do not have adverse effects on environmental goods and services, are accessible to and effective for farmers, and lead to improvements in food productivity. Despite great progress in agricultural productivity in the past half-century, with crop and livestock productivity strongly driven by increased use of fertilizers, irrigation water, agricultural machinery, pesticides and land, it would be over-optimistic to assume that these relationships will remain linear in the future. New approaches are needed that will integrate biological and ecological processes into food production, minimize the use of those non-renewable inputs that cause harm to the environment or to the health of farmers and consumers, make productive use of the knowledge and skills of farmers, so substituting human capital for costly external inputs, and make productive use of people's collective capacities to work together to solve common agricultural and natural resource problems, such as for pest, watershed, irrigation, forest and credit management. These principles help to build important capital assets for agricultural systems: natural; social; human; physical; and financial capital. Improving natural capital is a central aim, and dividends can come from making the best use of the genotypes of crops and animals and the ecological conditions under which they are grown or raised. Agricultural sustainability suggests a focus on both genotype improvements through the full range of modern biological approaches and improved understanding of the benefits of ecological and agronomic management, manipulation and redesign. The ecological management of agroecosystems that addresses energy flows, nutrient cycling, population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape scale. Sustainable agriculture outcomes can be positive for food

  6. Impact of the agricultural research service watershed assessment studies on the conservation effects assessment project cropland national assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA initiated the Conservation Effects Assessment Project (CEAP) in 2002 to analyze societal and environmental benefits gained from the increased conservation program funding provided in the 2002 Farm Bill. The Natural Resources Conservation Service (NRCS), Agricultural Research Service (ARS), and...

  7. Agricultural Catchments: Evaluating Policies and Monitoring Adaptive Management

    NASA Astrophysics Data System (ADS)

    Jordan, P.; Shortle, G.; Mellander, P. E.; Shore, M.; McDonald, N.; Buckley, C.

    2014-12-01

    Agricultural management in river catchments must combine the objectives of economic profit and environmental stewardship and, in many countries, mitigate the decline of water quality and/or maintain high water quality. Achieving these objectives is, amongst other activities, in the remit of 'sustainable intensification'. Of concern is the efficient use of crop nutrients, phosphorus and nitrogen, and minimising or offsetting the effects of transfers from land to water - corner-stone requirements of many agri-environmental regulations. This requires a robust monitoring programme that can audit the stages of nutrient inputs and outputs in river catchments and indicate where the likely points of successful policy interventions can be observed - or confounded. In this paper, a catchment, or watershed, experimental design and results are described for monitoring the nutrient transfer continuum in the Irish agricultural landscape against the backdrop of the European Union Nitrates and Water Framework Directives. This Agricultural Catchments Programme experimental design also serves to indicate water quality pressure-points that may be catchment specific as agricultural activities intensify to adapt to national efforts to build important parts of the post-recession economy.

  8. Vegetable cost metrics show that potatoes and beans provide most nutrients per penny.

    PubMed

    Drewnowski, Adam; Rehm, Colin D

    2013-01-01

    Vegetables are important sources of dietary fiber, vitamins and minerals in the diets of children. The United States Department of Agriculture (USDA) National School Lunch Program has new requirements for weekly servings of vegetable subgroups as well as beans and peas. This study estimated the cost impact of meeting the USDA requirements using 2008 national prices for 98 vegetables, fresh, frozen, and canned. Food costs were calculated per 100 grams, per 100 calories, and per edible cup. Rank 6 score, a nutrient density measure was based on six nutrients: dietary fiber; potassium; magnesium; and vitamins A, C, and K. Individual nutrient costs were measured as the monetary cost of 10% daily value of each nutrient per cup equivalent. ANOVAs with post hoc tests showed that beans and starchy vegetables, including white potatoes, were cheaper per 100 calories than were dark-green and deep-yellow vegetables. Fresh, frozen, and canned vegetables had similar nutrient profiles and provided comparable nutritional value. However, less than half (n = 46) of the 98 vegetables listed by the USDA were were consumed >5 times by children and adolescents in the 2003-4 National Health and Nutrition Examination Survey database. For the more frequently consumed vegetables, potatoes and beans were the lowest-cost sources of potassium and fiber. These new metrics of affordable nutrition can help food service and health professionals identify those vegetable subgroups in the school lunch that provide the best nutritional value per penny. PMID:23691007

  9. Vegetable Cost Metrics Show That Potatoes and Beans Provide Most Nutrients Per Penny

    PubMed Central

    Drewnowski, Adam; Rehm, Colin D.

    2013-01-01

    Vegetables are important sources of dietary fiber, vitamins and minerals in the diets of children. The United States Department of Agriculture (USDA) National School Lunch Program has new requirements for weekly servings of vegetable subgroups as well as beans and peas. This study estimated the cost impact of meeting the USDA requirements using 2008 national prices for 98 vegetables, fresh, frozen, and canned. Food costs were calculated per 100 grams, per 100 calories, and per edible cup. Rank 6 score, a nutrient density measure was based on six nutrients: dietary fiber; potassium; magnesium; and vitamins A, C, and K. Individual nutrient costs were measured as the monetary cost of 10% daily value of each nutrient per cup equivalent. ANOVAs with post hoc tests showed that beans and starchy vegetables, including white potatoes, were cheaper per 100 calories than were dark-green and deep-yellow vegetables. Fresh, frozen, and canned vegetables had similar nutrient profiles and provided comparable nutritional value. However, less than half (n = 46) of the 98 vegetables listed by the USDA were were consumed >5 times by children and adolescents in the 2003–4 National Health and Nutrition Examination Survey database. For the more frequently consumed vegetables, potatoes and beans were the lowest-cost sources of potassium and fiber. These new metrics of affordable nutrition can help food service and health professionals identify those vegetable subgroups in the school lunch that provide the best nutritional value per penny. PMID:23691007

  10. Agricultural Chartbook 1988. Agriculture Handbook No. 673.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    These charts present an overview of the current economic health of American agriculture. The charts move from the national and international arenas to farm economic health measures and crop and livestock trends. A small amount of descriptive narrative accompanies most of the charts. Charts depicting the economic picture of U.S. agriculture include…

  11. Agriculture Education. Agriculture Structures.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agriculture structures. The guide presents units of study in the following areas: (1) shop safety, (2) identification and general use of hand tools, (3) power tools, (4) carpentry, (5) blueprint…

  12. Development and application of an agricultural intensity index to invertebrate and algal metrics from streams at two scales

    USGS Publications Warehouse

    Waite, Ian R.

    2013-01-01

    Research was conducted at 28-30 sites within eight study areas across the United States along a gradient of nutrient enrichment/agricultural land use between 2003 and 2007. Objectives were to test the application of an agricultural intensity index (AG-Index) and compare among various invertebrate and algal metrics to determine indicators of nutrient enrichment nationally and within three regions. The agricultural index was based on total nitrogen and phosphorus input to the watershed, percent watershed agriculture, and percent riparian agriculture. Among data sources, agriculture within riparian zone showed significant differences among values generated from remote sensing or from higher resolution orthophotography; median values dropped significantly when estimated by orthophotography. Percent agriculture in the watershed consistently had lower correlations to invertebrate and algal metrics than the developed AG-Index across all regions. Percent agriculture showed fewer pairwise comparisons that were significant than the same comparisons using the AG-Index. Highest correlations to the AG-Index regionally were −0.75 for Ephemeroptera, Plecoptera, and Trichoptera richness (EPTR) and −0.70 for algae Observed/Expected (O/E), nationally the highest was −0.43 for EPTR vs. total nitrogen and −0.62 for algae O/E vs. AG-Index. Results suggest that analysis of metrics at national scale can often detect large differences in disturbance, but more detail and specificity is obtained by analyzing data at regional scales.

  13. Global nutrient limitation in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Badgley, Grayson; Blyth, Eleanor

    2012-09-01

    Most vegetation is limited in productivity by nutrient availability, but the magnitude of limitation globally is not known. Nutrient limitation is directly relevant not only to ecology and agriculture, but also to the global carbon cycle by regulating how much atmospheric CO2the terrestrial biosphere can sequester. We attempt to identify total nutrient limitation in terrestrial plant productivity globally using ecophysiological theory and new developments in remote sensing for evapotranspiration and plant productivity. Our map of nutrient limitation qualitatively reproduces known regional nutrient gradients (e.g., across Amazonia), highlights differences in nutrient addition to croplands (e.g., between "developed" and "developing" countries), identifies the role of nutrients on the distribution of major biomes (e.g., tree line migration in boreal North America), and compares similarly to a ground-based test along the Long Substrate Age Gradient in Hawaii, U.S.A. (e.g., foliar and soil nutrients, litter decomposition). Nonetheless, challenges in representing light and water use efficiencies, disturbance, and comparison to ground data with multiple interacting nutrients provide avenues for further progress on refining such a global map. Global average reduction in terrestrial plant productivity was within 16-28%, depending on treatment of disturbance; these values can be compared to global carbon cycle model estimates of carbon uptake reduction with nutrient cycle inclusion.

  14. Evapotranspiration from selected fallowed agricultural fields on the Tule Lake National Wildlife Refuge, California, during May to October 2000

    USGS Publications Warehouse

    Bidlake, W.R.

    2002-01-01

    An investigation of evapotranspiration, vegetation quantity and composition, and depth to the water table below the land surface was made at three sites in two fallowed agricultural lots on the 15,800-hectare Tule Lake National Wildlife Refuge in northern California during the 2000 growing season. All three sites had been farmed during 1999, but were not irrigated since the 1999 growing season. Vegetation at the lot C1B and lot 6 stubble sites included weedy species and small grain plants. The lot 6 cover crop site supported a crop of cereal rye that had been planted during the previous winter. Percentage of coverage by live vegetation ranged from 0 to 43.2 percent at the lot C1B site, from approximately 0 to 63.2 percent at the lot 6 stubble site, and it was estimated to range from 0 to greater than 90 percent at the lot 6 cover crop site. Evapotranspiration was measured using the Bowen ratio energy balance technique and it was estimated using a model that was based on the Priestley-Taylor equation and a model that was based on reference evapotranspiration with grass as the reference crop. Total evapotranspiration during May to October varied little among the three evapotranspiration measurement sites, although the timing of evapotranspiration losses did vary among the sites. Total evapotranspiration from the lot C1B site was 426 millimeters, total evapotranspiration from the lot 6 stubble site was 444 millimeters, and total evapotranspiration from the lot 6 cover crop site was 435 millimeters. The months of May to July accounted for approximately 78 percent of the total evapotranspiration from the lot C1B site, approximately 63 percent of the evapotranspiration from the lot 6 stubble site, and approximately 86 percent of the total evapotranspiration from the lot 6 cover crop site. Estimated growing season precipitation accounted for 16 percent of the growing-season evapotranspiration at the lot C1B site and for 17 percent of the growing-season evapotranspiration

  15. A Nationwide Examination of Middle School Enrollment in Agricultural Education and Membership in the National FFA Organization.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; And Others

    The purpose of this study was to determine the status of middle and junior high school agricultural education and FFA (Future Farmers of America) programs. In spring 1991. questionnaires were sent to all state FFA Executive Secretaries (n=53); 52 returned questionnaires. Three teachers in each of 9 states identified as having middle or junior high…

  16. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  17. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  18. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States1

    PubMed Central

    Preston, Stephen D; Alexander, Richard B; Schwarz, Gregory E; Crawford, Charles G

    2011-01-01

    Abstract We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. PMID:22457574

  19. The North Wyke Farm Platform, a UK national capability for research into sustainability of temperate agricultural grassland management: progress and developments

    NASA Astrophysics Data System (ADS)

    Harris, Paul; Dungait, Jennifer; Griffith, Bruce; Shepherd, Anita; Sint, Hadewij; Blackwell, Martin; Cardenas, Laura; Collins, Adrian; Goulding, Keith; Lee, Michael; Orr, Robert

    2015-04-01

    The North Wyke Farm Platform (NWFP) at Rothamsted Research in the South-West of England, is a large, farm-scale experiment for collaborative research, training and knowledge exchange in agro-environmental sciences; with the aim of addressing agricultural productivity and ecosystem responses to different management practices. The 63 ha NWFP site, captures the spatial and/or temporal data necessary to develop a better understanding of the dynamic processes and underlying mechanisms that can be used to model how agricultural grassland systems respond to different management inputs. Here, via beef and sheep production, the underlying principle is to manage each of three farmlets (each consisting of five man-made, hydrologically-isolated sub-catchments) in three contrasting ways: (i) improvement through use of mineral fertilizers; (ii) improvement through use of legumes; and (iii) improvement through innovation. The connectivity between the timing and intensity of the different management operations, together with the transport of nutrients and potential pollutants from the NWFP is evaluated using various data collection and data modelling exercises. The primary data collection strategy involves the use of a ground-based, wireless sensor network, where in each of the fifteen sub-catchments, water characteristics such as flow, turbidity and chemistry are measured at a flume laboratory that captures the sub-catchment's water drainage (via a system of directed French drains). This sensor network also captures: precipitation, soil moisture and soil temperature data for each sub-catchment; greenhouse gas data across key subsets of the fifteen sub-catchments; and meteorological data (other than precipitation) at a single site only (representative of the NWFP site, as a whole). Such high temporal resolution data sets (but with limited spatial resolution) are coupled with a secondary data collection strategy, for high spatial resolution data sets (but with limited temporal

  20. An analysis of developments and challenges in nutrient management in china.

    PubMed

    Ma, L; Zhang, W F; Ma, W Q; Velthof, G L; Oenema, O; Zhang, F S

    2013-07-01

    During the past 50 years, China has successfully realized food self-sufficiency for its rapidly growing population. Currently, it feeds 22% of the global population with 9% of the global area of arable land. However, these achievements were made at high external resource use and environmental costs. The challenge facing China is to further increase food production while drastically decreasing the environmental costs of food production. Here we review the major developments in nutrient management in China over the last 50 years. We briefly analyze the current organizational structure of the "advisory system" in agriculture, the developments in nutrient management for crop production, and the developments in nutrient management in animal production. We then discuss the nutrient management challenges for the next decades, considering nutrient management in the whole chain of crop production-animal production-food processing-food consumption by households. We argue that more coherent national policies and institutional structures are required for research extension education to be able to address the immense challenges ahead. Key actions include nutrient management in the whole food chain concomitant with a shift in objectives from food security only to food security, resource use efficiency, and environmental sustainability; improved animal waste management based on coupled animal production and crop production systems; and much greater emphasis on technology transfer from science to practice through education, training, demonstration, and extension services. PMID:24216347

  1. Hungry for Nutrient Data? Navigating the USDA Nutrient Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Most nutrition professionals are familiar with the basics of the SR onlin...

  2. Information from USDA's Nutrient Data Bank.

    PubMed

    Haytowitz, D B

    1995-07-01

    The United States Department of Agriculture's Nutrient Data Bank contains a wealth of information on the composition of foods. These data are made available to the public through Agriculture Handbook No. 8, Composition of Foods: Raw, Processed, Prepared, its computerized form-the USDA Nutrient Data Base for Standard Reference, and other publications. Food components in Agriculture Handbook No. 8 include proximate components, minerals, vitamins, fatty acids, cholesterol, phytosterols, and amino acids. Other tables and data sets containing food components of special interest such as vitamins D and K, selenium, and sugars, are also available. This paper describes how to obtain the data in either printed or electronic form. Information on obtaining the data through the Nutrient Data Bank Bulletin Board or the Internet is also presented. PMID:7616313

  3. Effect of measurement network densities and stratification on the uncertainty of implied emission factors for national N2O budgets from agricultural mineral soils

    NASA Astrophysics Data System (ADS)

    Dechow, Rene; Gebbert, Soeren

    2015-04-01

    Among other GHG sources that are reported under the United Nations Framework Convention on Climate Change (UNFCCC) national budgets of nitrous oxide emissions from agricultural soils are often characterized by the highest estimation uncertainties within the sectors "agriculture" and "land use and land use change". The majority of recent national emission inventories in Europe are based on Tier 1 approaches. Nitrous oxide emissions from mineral soils are highly influenced by anthropogenic and environmental conditions like soil properties and climate. Specification of those controlling factors on a national to regional scale can highly influence the spatial emission pattern and might cause systematic errors when using Tier 1 emission factors. Regionally stratified emission factors reflecting conditions that determine the N2O flux rates from agricultural soils could significantly improve the accuracy of national nitrous oxide emission inventories (Tier 2). If these stratified emission factors are based on measurement networks the density and stratification of measurement networks with respect to spatial variability of soil properties and climate is an important driver of emission factor uncertainty. In the last two decades, intensive effort has been spend on the experimentally determination of nitrous oxide emissions at plot scale and related drivers resulting in numerous published data sets that were collected and analyzed within meta-studies and European and international projects. We give an overview on recently available data on direct nitrous oxide emissions on agricultural land in Europe. Mixed linear models are trained on these data sets. These models estimate N2O emissions in response to management, meteorological data and soil properties. Based on the developed mixed linear models the effect of N2O measurement network density and stratification on bias and uncertainty of national implied emission factors from agricultural soils are quantified by Monte Carlo

  4. Fresh pear consumption is associated with better nutrient intake, diet quality, and weight parameters in adults: National Health and Nutrition Examination Survey 2001-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No studies have examined the association of consuming fresh pears on nutrient intake or adequacy, diet quality, and cardiovascular risk factors (CVRF). The purpose of this study was to examine these association in adults (n=24,808) participating the NHANES 2001-2010. Covariate adjusted linear regres...

  5. Improved nutrient intake and diet quality associated with lean beef consumption in the US: National Health and Nutrition Examination Survey (NHANES) 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dietary guidelines recommend consuming meats in its lowest fat form. NHANES 1999–2004 24-hr dietary recall data were used to compare nutrient intake and diet quality (HEI-2005) between highest lean/lowest fat (HLLF) beef consumers, and lowest lean/highest fat (LLHF) beef consumers aged 4+ y (n e...

  6. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and ...

  7. 75 FR 38145 - Announcing the New National Electronic Job Registry for Use in the H-2A Temporary Agricultural...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Employment and Training Administration Announcing the New National Electronic Job Registry for Use in the H... that the National Electronic Job Registry (job registry) in which H-2A job orders will be posted and... the job registry, please contact the iCERT System Team, Office of Foreign Labor ] Certification...

  8. Scale effect in nutrient transport along a rural river system: the River Eden, Cumbria, northwest, England

    NASA Astrophysics Data System (ADS)

    Oladapo Tijani, Fatai; Bathurst, James; Quinn, Paul

    2015-04-01

    Only a limited amount of information derived from studies conducted at small catchment scales can be transferred to large scales because of the non-linear scale effects, thus necessitating studies (including nutrient concentrations and yields) across a range of scales. Here we present results from an investigation of spatial scale pattern and temporal variability of nutrient concentration in the River Eden in northwest England, a nested catchment stretching from Gais Gill (1.1 km2) to Great Corby (1373 km2). The monitoring involved seasonal campaigns and spot sampling of river water quality, using two United Kingdom national catchment study platforms. These are the Catchment Hydrology And Sustainable Management (CHASM) project, that provides a large spatial scale study platform along the Eden, and the Demonstration Test Catchment (DTC) project that provides high resolution data for contrasting land uses that could help to explain, in detail, the mechanisms for transport of nutrients to the river. Nitrate concentration shows a clear increasing trend with the catchment area and there is highly significant difference (P<0.001) among the catchments. Compared with the headwater areas, phosphorus (P) and suspended sediment (SS) concentrations are significantly higher (P<0.05) downstream but do not show a very clear spatial pattern. An alternative explanation was therefore sought for their distribution along the river. Generally, intensity of agricultural activities appears to influence the concentrations of these water quality parameters. The field data show that the amount of nutrients and suspended sediment is higher in catchments with higher farming activities. This underscores the importance of the distribution of agricultural land use as a driving force in nutrient transport in River Eden. Agricultural production generally increases downstream and may therefore appear to support a spatial scale dependency in nutrient yield. Higher nitrate concentration is associated

  9. Theme: In-Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Elliot, Jack, Ed.; And Others

    1991-01-01

    Seven theme articles review the history and philosophy of vocational agriculture, its relationship to the national goals for education, the place of sustainable agriculture and supervised experience in the curriculum, diversifying the curriculum, and fisheries education programs in Alaska. (SK)

  10. Comparison of production-phase environmental impact metrics derived at the farm- and national-scale for United States agricultural commodities

    NASA Astrophysics Data System (ADS)

    Costello, Christine; Xue, Xiaobo; Howarth, Robert W.

    2015-11-01

    Agricultural production is critical for human survival and simultaneously contributes to ecosystem degradation. There is a need for transparent, rapid methods for evaluating the environmental impacts of agricultural production at the system-level in order to develop sustainable food supplies. We have developed a method for estimating the greenhouse gas (GHG), land use and reactive nitrogen inputs associated with the agricultural production phase of major crop and livestock commodities produced in the United States (US). Materials flow analysis (MFA) and life cycle assessment (LCA) techniques were applied to national inventory datasets. The net anthropogenic nitrogen inputs (NANI) toolbox served as the primary accounting tool for LCA and MFA. NANI was updated to create links between nitrogen fertilizer and nitrogen fixation associated with feed crops and animal food commodities. Results for the functional units kilogram (kg) of product and kg of protein for 2002 data fall within ranges of published LCA results from farm-scale studies across most metrics. Exceptions include eutrophication potential for milk and GHGs for chicken and eggs, these exceptions arise due to differing methods and boundary assumptions; suggestions for increasing agreement are identified. Land use for livestock commodities are generally higher than reported by other LCA studies due to the inclusion of all land identified as pasture or grazing land in the US in this study and given that most of the estimates from other LCAs were completed in Europe where land is less abundant. The method provides a view of the entire US agricultural system and could be applied to any year using publically available data. Additionally, utilizing a top-down approach reduces data collection and processing time making it possible to develop environmental inventory metrics rapidly for system-level decision-making.

  11. A national system for monitoring the population of agricultural pests using an integrated approach of remote sensing data from in situ automated traps and satellite images

    NASA Astrophysics Data System (ADS)

    Diofantos, Hadjimitsis G.; Panayiotis, Philimis; Elias, Psimolophitis; Georgiou, George K.; Kyriacos, Themistocleous

    2010-10-01

    A national system for monitoring the population increase of agricultural pest "Lobesia Botrana" (vine moth/fly that attacks grapes) in Cyprus has been developed. The system comprises of automated delta traps with GPS that use wireless(Wi-Fi) camera, automated image analysis for identification of the specific fly species, Wi-Fi technology for transferring the data using mobile telephony network to a central station for result presentation and analysis. A GIS database was developed and included details of the pilot vineyards, environmental conditions and daily data of the number of captured flies from each automated trap. The results were compared with MODIS and LANDSAT satellite thermal images since the appearance of the vine fly is greatly dependent on the microclimate temperatures (degree days). Results showed that satellite data can estimate accurately the appearance of the vine fly. The proposed system can be an important tool for the improvement of a national Integrated Pest Management (IPM) system and it can also be used for monitoring other agricultural pests and insects.

  12. Application of a calibrated/validated Agricultural Policy/Environmental eXtender model to assess sediment and nutrient delivery from the Wildcat Creek Mississippi River Basin Initiative – Cooperative Conservation Partnership

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Wildcat Creek, a tributary to the Wabash River was identified by the USDA Natural Resources Conservation Service (NRCS) as a priority watershed for its high sediment and nutrient loading contributions to the Mississippi River. As part of the Mississippi River Basin Initiative (MRBI), the incorpo...

  13. 4 Rs are not enough: We need 7 Rs for nutrient management and conservation to increase nutrient use efficiency and reduce off-site transport of nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cox (2010) reported that under business as usual, the environmental impacts of nutrient losses from agriculture will not be resolved and that precision conservation and precision regulation are two mechanisms to reduce the environmental impacts of nutrient losses. This is in agreement with the rece...

  14. NRMRL'S NUTRIENT-RELATED RISK MANAGEMENT RESEARCH

    EPA Science Inventory

    Anthropogenic loadings of nutrients into our Nation's atmosphere, aquatic, and terrestrial ecosystems have increased dramatically within the past few decades. Environmental impairments associated with this over fertilization include aquatic habitat loss due to low dissolved oxyge...

  15. Agricultural Research Service

    MedlinePlus

    ... Quality Review Office of Technology Transfer National Program Research Areas Animal Production and Protection Crop Production and Protection Natural Resources and Sustainable Agricultural Systems Nutrition, Food Safety, and Quality Overseas ...

  16. A Comparative Cost Analysis of Commodity Foods from the U. S. Department of Agriculture in the National School Lunch Program

    ERIC Educational Resources Information Center

    Peterson, Cora

    2009-01-01

    Schools that participate in the National School Lunch Program receive a portion of their federal funding as commodity foods rather than cash payments. This research compared the product costs and estimated total procurement costs of commodity and commercial foods from the school district perspective using data from 579 Minnesota ordering sites in…

  17. 78 FR 34125 - Notice of Inventory Completion: U.S. Department of Agriculture, Forest Service, San Juan National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ..., CO. In 1937, I. F. ``Zeke'' Flora conducted excavations without a permit in the burial crevice of the... Cultural Items published in the Federal Register. A portion of the Flora collection at the Falls Creek Rock... custody of the Mesa Verde National Park at the request of the Forest Service. Flora transferred...

  18. 77 FR 6535 - Notice of the Advisory Committee on Agriculture Statistics; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... National Agricultural Statistics Service Notice of the Advisory Committee on Agriculture Statistics; Meeting AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice of meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, the National Agricultural Statistics Service...

  19. 78 FR 56653 - Notice of the Advisory Committee on Agriculture Statistics Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... National Agricultural Statistics Service Notice of the Advisory Committee on Agriculture Statistics Meeting AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act, the National Agricultural Statistics Service...

  20. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  1. Nutrient contribution of total and lean beef in diets of US children and adolescents: National Health and Nutrition Examination Survey 1999–2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the nutritional contribution of total beef and lean beef (LB) to the diet of US children and adolescents using the US Department of Agriculture definition of LB as defined in MyPyramid. Twenty-four hour dietary recall data from children 4-8 years of age [y] (n=2474), 9-13 y (n=32...

  2. Agricultural trade and the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Bennett, E.; Riskin, S.; Porder, S.

    2012-12-01

    Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for twelve countries from 1961 to 2007. We then used case studies of P fertilizer use in the world's three major soybean export regions: Iowa (USA), Mato Grosso (Brazil), and Buenos Aires (Argentina) to examine the influence of historical P management and soil types on agriculture's environmental consequences. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P per ha between 1961 and 2007 for the twelve study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that

  3. Nutrient Content of Single – Muscle Pork Cuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two objectives of this study were to determine the nutrient profiles of four fresh pork cuts (fabricated from individual muscles extracted from subprimals) for dissemination in the USDA National Nutrient Database for Standard Reference (SR) and determine cooking yields and nutrient retention fac...

  4. DETECTING TEMPORAL CHANGE IN WATERSHED NUTRIENT YIELDS

    EPA Science Inventory

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increase...

  5. Monitoring nutrient loss in runoff from dairy cattle lots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue. For dairy, nutrients can be lost from cropland, pastures, barnyards, and outdoor cattle lots. We monitored nutrient runoff for 3.5 years from plots representing cattle lots and corn silage cropland, and tested t...

  6. Nutrient Transport in Tile-Fed Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches receive water and associated contaminants from agricultural fields via surface runoff or sub-surface tile drains. Little consideration has been given to the processes affecting nutrient transport once in surface water. The objective of this research was to evaluate the nutrient fa...

  7. Nutrient Concentrations and Their Relations to the Biotic Integrity of Nonwadeable Rivers in Wisconsin

    USGS Publications Warehouse

    Robertson, Dale M.; Weigel, Brian M.; Graczyk, David J.

    2008-01-01

    Excessive nutrient [phosphorus (P) and nitrogen (N)] input from point and nonpoint sources is frequently associated with degraded water quality in streams and rivers. Point-source discharges of nutrients are fairly constant and are controlled by the U.S. Environmental Protection Agency's (USEPA) National Pollutant Discharge Elimination System. To reduce inputs from nonpoint sources, agricultural performance standards and regulations for croplands and livestock operations are being proposed by various States. In addition, the USEPA is establishing regionally based nutrient criteria that can be refined by each State to determine whether actions are needed to improve water quality. More confidence in the environmental benefits of the proposed performance standards and nutrient criteria would be possible with improved understanding of the biotic responses to a range of nutrient concentrations in different environmental settings. To achieve this general goal, the U.S. Geological Survey and the Wisconsin Department of Natural Resources collected data from 282 streams and rivers throughout Wisconsin during 2001 through 2003 to: (1) describe how nutrient concentrations and biotic-community structure differ throughout the State, (2) determine which environmental characteristics are most strongly related to the distribution of nutrient concentrations and biotic-community structure, (3) determine reference conditions for water quality and biotic indices for streams and rivers in the State, (4) determine how the biotic communities in streams and rivers in different areas of the State respond to differences in nutrient concentrations, (5) determine the best regionalization scheme to describe the patterns in reference conditions and the corresponding responses in water quality and the biotic communities (primarily for smaller streams), and (6) develop algorithms to estimate nutrient concentrations in streams and rivers from a combination of biotic indices. The ultimate goal of

  8. Nutrient Enrichment of Coastal Receiving Waters from Catchments Across the USA

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Bricker, S. B.; Smith, R. A.; Alexander, R. B.; Schwarz, G. B.

    2005-05-01

    Though the abundant supply of reactive nutrients to the landscape provides many benefits to society in terms of food and energy production, the environmental consequences of nutrient over-enrichment are severe, particularly in the coastal zone. We assess eutrophication of surface waters, considered to be the most widespread water quality problem in the USA. We highlight hot spots of mass loadings of nutrients to coastal receiving waters based on results from several spatially referenced regression models applied at the national scale. We explore inter-annual variability and long-term trends of nutrient delivery from several key catchments to sensitive estuaries based on long-term monitoring data. We assess the coastal response and ecological effects resulting from these nutrient loads, considering differences such as the physicochemical characteristics and hydrological residence times of estuaries. Further, we discuss the need to understand precursor source of nitrogen to receiving waters. For example, recent research on algal blooms in both the east and west coasts of the US shows that the growth of toxic and harmful algae is stimulated specifically by urea, an organic nitrogen compound dominant in nitrogen inputs from agricultural and urban runoff, over inorganic nitrogen sources such as ammonium and nitrate that are dominant in nitrogen inputs from atmospheric deposition.

  9. Nutrient limitations to secondary forest regrowth

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Martinelli, Luiz A.

    The old, highly weathered soils of the lowland forest within the Amazon Basin generally exhibit conservative P cycles and leaky N cycles. This generalization applies to mature forests, but accelerating land use change is altering Amazonian landscapes. About 16% of the original forest area has been cleared, and about 160,000 km2 is in secondary forest cover. Secondary forests are common in agricultural regions, but few persist in one place for much more than 5 years. The nutrients within ephemeral forests are important for smallholder traditional slash-and-burn agriculture and in alternatives developed to conserve nutrients. Forest clearing causes an initial loss of nutrients through timber harvesting, fire, erosion, soil gaseous emissions, and hydrologic leaching, with N losses exceeding P losses. In contrast, the Ca, Mg, and K present in woody biomass are largely conserved as ash following fire, redistributing these nutrients to the soil. After the initial postclearing pulse of nutrient availability, rates of N cycling and loss consistently decline as cattle pastures age. Fertilization experiments have demonstrated that growth of young forests in abandoned agricultural land is nutrient limited. Several N cycling indicators in a secondary forest chronosequence study also demonstrated a conservative N cycle in young forests. Variable N limitation in young forests helps explain a negative relationship observed between the burn frequency during previous agricultural phases and the rate of forest regrowth. Recuperation of the N cycle gradually occurs during decades of secondary forest succession, such that mature lowland forests eventually recover abundant N relative to a conservative P cycle.

  10. Agricultural Chemicals in Leary Weber Ditch Basin, Hancock County, Indiana, 2003-04

    USGS Publications Warehouse

    Baker, Nancy T.; Lathrop, Timothy R.

    2006-01-01

    Leary Weber Ditch Basin, Hancock County, Indiana, is part of an Agricultural Chemicals: Source, Transport, and Fate study conducted by the National Water-Quality Assessment Program of the U.S. Geological Survey. Water-quality samples were collected in Leary Weber Ditch and in the major hydrologic compartments of the Leary Weber Ditch Basin during 2003 and 2004. Hydrologic compartments that contribute water and agricultural chemicals to Leary Weber Ditch are rain water, overland-flow water, soil water, tile-drain water, and ground water. Samples were analyzed for selected pesticides, nutrients, and major ions.

  11. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  12. Agricultural Mechanics Laboratory Management Competencies.

    ERIC Educational Resources Information Center

    Johnson, Donald M.; Schumacher, Leon G.

    A study was conducted to determine the laboratory management competencies needed by secondary agriculture instructors. Information was gathered through an initial mailing to all postsecondary, college, and university agricultural mechanics specialists serving on the National Future Farmers of America Agricultural Mechanics Contest Committee,…

  13. Responses of forest cover and agricultural land changes to local and national drivers of land development in the Miombo Woodlands of western Tanzania

    NASA Astrophysics Data System (ADS)

    Mayes, M. T.; Mustard, J. F.; Melillo, J. M.

    2013-12-01

    Among dry tropical forest ecosystems globally, the Miombo Woodlands of western Tanzania have experienced extensive forest cover changes in the past two decades that remain poorly understood at regional (100s km2) spatial scales. Recent studies have associated large areas of forest loss in the Miombo with agricultural activities, such as increased tobacco cultivation since the 1990s. However, the dynamics of forest regrowth and net changes in forest cover have not been well characterized. Landscape phenology is complex due to high seasonal and inter-annual variability in vegetation productivity, forest structure, smallholder land use practices, and fire dynamics. Improved characterization of forest and agricultural land cover phenology is needed to use remote sensing more effectively for studying land changes in the Miombo. This project assesses patterns of forest loss and regrowth, and analyzes their relationships to climate, landscape biophysical factors, and agricultural policies and activities in Tabora Province in western Tanzania, from 1990-2013. We develop new satellite remote sensing methods for mapping dry tropical forest and non-forest land cover, based on differences in their seasonal phenology patterns in Landsat imagery quantified using spectral mixture analysis (SMA). Using z-score metrics on SMA fraction images, we find that forest regions have significantly lower sums of substrate and non-photosynthetic vegetation pixel fractions than non-forest regions. We validate our algorithm with field data from 2012-2013 and show that it provides reasonable estimates of forest and non-forest land cover in analyses of imagery from single or multiple dates. Our main objectives are to evaluate whether patterns of forest loss and regrowth show spatial relationships with localized land use practices and environmental factors, or if land changes reflect influences of national to global-scale drivers. For local drivers, we examine if areas of forest loss and regrowth

  14. Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade

    NASA Astrophysics Data System (ADS)

    Fader, M.; Gerten, D.; Thammer, M.; Heinke, J.; Lotze-Campen, H.; Lucht, W.; Cramer, W.

    2011-01-01

    The need to increase food production for a growing world population makes an assessment of global agricultural water productivities and virtual water flows important. Using the hydrology and agro-biosphere model LPJmL, we quantify at 0.5° resolution the blue (irrigation water) and green (precipitation water) virtual water content, i.e. the inverse of water productivity, for 11 of the world's major crop types. Based on these, we also quantify the water footprints (WFP) of all countries, for the period 1998-2002, distinguishing internal and external WFP (virtual water imported from other countries) and their blue and green components, respectively. Moreover, we calculate water savings and losses, and for the first time also land savings and losses, through international trade with these products. The consistent separation of blue and green water flows and footprints, which is needed due to the different sources and opportunity costs of these two water pools, shows that green water globally dominates both the internal and external WFP (84% of the global WFP and 94% of the external WFP rely on green water). Accordingly, some of the major exporters of the crops considered here (e.g. Argentina, Canada) export mainly green virtual water, but traditional rice exporters such as India and Pakistan mainly export blue virtual water. The external WFPs are found to be relatively small (6% of the total global blue WFP, 16% of the total global green WFP). Nevertheless, current trade saves significant water volumes and land areas (~263 km3 and ~41 Mha, respectively, equivalent to 5% of the sowing area of the crops considered here and 3.5% of the annual precipitation on this area). Linking the proportions of external to internal blue/green WFP with the per capita WFPs allows recognizing that only a few countries consume more water from abroad than from their own territory and have at the same time above average WFPs. Thus, countries with high levels of per capita water consumption

  15. The role of arbuscular mycorrhizas in reducing soil nutrient loss.

    PubMed

    Cavagnaro, Timothy R; Bender, S Franz; Asghari, Hamid R; Heijden, Marcel G A van der

    2015-05-01

    Substantial amounts of nutrients are lost from soils via leaching and as gaseous emissions. These losses can be environmentally damaging and expensive in terms of lost agricultural production. Plants have evolved many traits to optimize nutrient acquisition, including the formation of arbuscular mycorrhizas (AM), associations of plant roots with fungi that acquire soil nutrients. There is emerging evidence that AM have the ability to reduce nutrient loss from soils by enlarging the nutrient interception zone and preventing nutrient loss after rain-induced leaching events. Until recently, this important ecosystem service of AM had been largely overlooked. Here we review the role of AM in reducing nutrient loss and conclude that this role cannot be ignored if we are to increase global food production in an environmentally sustainable manner. PMID:25840500

  16. Application of nitrogen and phosphorus criteria for streams in agricultural landscapes.

    PubMed

    Chambers, P A; Benoy, G A; Brua, R B; Culp, J M

    2011-01-01

    Efforts to control eutrophication of water resources in agriculturally dominated ecosystems have focused on managing on-farm activities to reduce nutrient loss; however, another management measure for improving water quality is adoption of environmental performance criteria (or 'outcome-based standards'). Here, we review approaches for setting environmental quality criteria for nutrients, summarize approaches developed in Canada for setting 'ideal' and 'achievable' nutrient criteria for streams in agricultural watersheds, and consider how such criteria could be applied. As part of a 'National Agri-Environmental Standards Initiative', the Government of Canada committed to the development of non-regulatory environmental performance standards that establish total P (TP) and total N (TN) concentrations to protect ecological condition of agricultural streams. Application of four approaches for defining ideal standards using only chemistry data resulted in values for TP and TN spanning a relatively narrow range of concentrations within a given ecoregion. Cross-calibration of these chemically derived standards with information on biological condition resulted in recommendations for TP and TN that would likely protect aquatic life from adverse effects of eutrophication. Non-point source water quality modelling was then conducted in a specific watershed to estimate achievable standards, i.e. chemical conditions that could be attained using currently available and recommended management practices. Our research showed that, taken together, short-term achievable standards and ultimate ideal standards could be used to set policy targets that should, if realized, lower N and P concentrations in Canadian agricultural streams and improve biotic condition. PMID:22156121

  17. Grassland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in grassland environments is facing multiple stresses from: shifting demographics, declining and fragmented agricultural landscapes, declining environmental quality, variable and changing climate, volatile and increasing energy costs, marginal economic returns, and globalization. Degrad...

  18. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands

    NASA Astrophysics Data System (ADS)

    Oenema, Oene; van Liere, Lowie; Schoumans, Oscar

    2005-03-01

    The ecological status of many surface waters in the Netherlands (NL) is poor, due to relatively high discharges of N and P from agriculture, industry and wastewater treatment plants. Agriculture is suggested to be a major source, as discharges from industry and wastewater treatment plants have sharply decreased from the 1980s onwards. Agricultural land covers more than 60% of the total surface area in NL, and most of this land is managed intensively and is intersected by a dense network of ditches (total length ˜300,000 km), streams and lakes. On average, groundwater levels are shallow to very shallow. It has been suggested that nutrient balances of agricultural land are easy to measure proxies for nutrient discharges from agricultural land, though the relationships between nutrient balances and nutrient discharges into groundwater and surface water are not well-established. Thus, we explored the effects of lowering N and P surpluses in NL agriculture on the quality of groundwater and surface waters. Effects of N surpluses in the range of 40-300 kg ha -1 yr -1, and of P surpluses in the range of 0.4-17.5 kg of P per ha per year were examined using an integrated set of mathematical models and databases. Results indicate that nitrate leaching to groundwater and N and P discharges to surface waters are related to both N and P surpluses, hydrological condition, land use and soil type. On a national scale, decreasing N surplus by 1 kg ha -1, decreased nitrate leaching to groundwater on average by 0.08 kg ha -1 and N leaching to surface waters on average by 0.12 kg ha -1. Decreases of N and P concentrations in surface waters upon lowering surpluses were smaller than the calculated discharges. Decreases in N and P concentrations were much smaller in the coastal zone and Lake IJsselmeer, than in regional waters (ditches and small streams). The small improvement in the quality of surface waters upon lowering surpluses in agriculture is related to the relative importance of

  19. Implications of nutrient management data collected on Wisconsin dairy farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With recent passage of government regulations pertaining to environmental impacts of animal agriculture, dairy farmers in the USA are seeking new ways to track and improve their use of agricultural nutrients. A study of fifty-four representative Wisconsin dairy farms was conducted to evaluate the in...

  20. Agricultural Production.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This brochure describes the philosophy and scope of a secondary-level course in agricultural production. Addressed in the individual units of the course are the following topics: careers in agriculture and agribusiness, animal science and livestock production, agronomy, agricultural mechanics, supervised occupational experience programs, and the…

  1. Assessment of nutrient enrichment by use of algal-, invertebrate-, and fish-community attributes in wadeable streams in ecoregions surrounding the Great Lakes

    USGS Publications Warehouse

    Frey, Jeffrey W.; Bell, Amanda H.; Hambrook Berkman, Julie A.; Lorenz, David L.

    2011-01-01

    The algal, invertebrate, and fish taxa and community attributes that best reflect the effects of nutrients along a gradient of low to high nutrient concentrations in wadeable, primarily midwestern streams were determined as part of the U.S. Geological Suvey's National Water-Quality Assessment (NAWQA) Program. Nutrient data collected from 64 sampling sites that reflected reference, agricultural, and urban influences between 1993 and 2006 were used to represent the nutrient gradient within Nutrient Ecoregion VI (Cornbelt and Northern Great Plains), VII (Mostly Glaciated Dairy Region), and VIII (Nutrient Poor Largely Glaciated Upper Midwest and Northeast). Nutrient Ecoregions VII and VIII comprise the Glacial North diatom ecoregion (GNE) and Nutrient Ecoregion VI represents the Central and Western Plains diatom ecoregion (CWPE). The diatom-ecoregion groupings were used chiefly for data analysis. The total nitrogen (TN) and total phosphorus (TP) data from 64 sites, where at least 6 nutrient samples were collected within a year at each site, were used to classify the sites into low-, medium-, and high-nutrient categories based upon the 10th and 75th percentiles of for sites within each Nutrient Ecoregion. In general, TN and TP concentrations were 3-5 times greater in Nutrient Ecoregion VI than in Nutrient Ecoregions VII and VIII. A subgroup of 54 of these 64 sites had algal-, invertebrate-, and fish-community data that were collected within the same year as the nutrients; these sites were used to assess the effects of nutrients on the biological communities. Multidimensional scaling was used to determine whether the entire region could be assessed together or whether there were regional differences between the algal, invertebrate, and fish communities. The biological communities were significantly different between the northern sites, primarily in the GNE and the southern sites, primarily in the CWPE. In the higher nutrient concentration gradient in the streams of the

  2. Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).

    PubMed

    Kaur, Ravinder; Minhas, P S; Jain, P C; Singh, P; Dubey, D S

    2009-07-01

    The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with agricultural lands in the Mewat district. Geo-spatial analysis showed that due to seepage of these degraded waters from unlined drains and canals, ground waters of about 39.6% of Mewat district were salt affected (EC(m)ean = 7.05 dS/m and SAR(m)ean = 7.71). Besides, sub-surface drinking waters of almost the entire Mewat district were contaminated with undesirable concentrations of chromium (Cr 2.0-3.23 ppm

  3. Field Spectroscopy for Vegetation Evaluation Along the Nutrient and Elevation Gradient above the Tree Line in the KRKONOŠE Mountains National Park

    NASA Astrophysics Data System (ADS)

    Červená, L.; Kupková, L.; Suchá, R.

    2016-06-01

    This paper examines the relations between vegetation spectra measured in the field along the nutrient and elevation gradient in the most valuable parts of The Krkonoše Mountains tundra and selected parameters describing vegetation state and condition (fAPAR, plant cover and average vegetation height). The main goal was to find relations and indices based on spectral measurements that could be used for vegetation evaluation and classification in practice and management. The vegetation parameters and spectral properties were also compared for two datasets - one acquired in July and second in August 2015. The best correlations were obtained for plant cover (R2 above 0.8 for July dataset and above 0.7 for August dataset) and two types of indices - using the wavelengths of red edge, e.g. OSAVI or mND705, and indices for vegetation water content estimates using the wavelengths in shortwave infrared region of the spectra in combination with wavelengths above 800 nm, e. g. NDII. The worst results were found for fAPAR with maximal values of R2 just above 0.4 with the indices using the wavelengths around 700 nm. For vegetation height the results differ between July and August data - R2 around 0.62 in July and only 0.47 in August for vegetation indices using the wavelengths of visible and red edge regions.

  4. Creating the Future through Research. Proceedings of the National Agricultural Education Research Meeting (Las Vegas, Nevada, December 10, 1997). Volume XXIV.

    ERIC Educational Resources Information Center

    Connors, James J., Ed.; Murphy, Tim H., Ed.

    The following are among the 51 papers and 7 poster sessions included: "Agriculture in the Classroom" (Hillison); "Effects of an Elementary Agri-Science Program on Student Perceptions of and Performance in Agriculture and Science" (Howell); "Current Status of Preservice Teacher Education Programs in Agriculture" (Swortzel); "Problems and Challenges…

  5. Emerging Educational and Agricultural Trends and their Impact on the Secondary Agricultural Education Program

    ERIC Educational Resources Information Center

    Stewart, Ralsa Marshall, Jr.; Moore, Gary E.; Flowers, Jim

    2004-01-01

    The primary purpose of this study was to identify the emerging trends in education and agriculture and to determine their implications on the secondary agricultural education program. For this study, the researchers did a national solicitation for nominations with 1,160 national agricultural education leaders, state agricultural education leaders,…

  6. Complexity of human and ecosystem interactions in an agricultural landscape

    USGS Publications Warehouse

    Coupe, Richard H.; Barlow, Jeannie R.; Capel, Paul D.

    2012-01-01

    The complexity of human interaction in the commercial agricultural landscape and the resulting impacts on the ecosystem services of water quality and quantity is largely ignored by the current agricultural paradigm that maximizes crop production over other ecosystem services. Three examples at different spatial scales (local, regional, and global) are presented where human and ecosystem interactions in a commercial agricultural landscape adversely affect water quality and quantity in unintended ways in the Delta of northwestern Mississippi. In the first example, little to no regulation of groundwater use for irrigation has caused declines in groundwater levels resulting in loss of baseflow to streams and threatening future water supply. In the second example, federal policy which subsidizes corn for biofuel production has encouraged many producers to switch from cotton to corn, which requires more nutrients and water, counter to national efforts to reduce nutrient loads to the Gulf of Mexico and exacerbating groundwater level declines. The third example is the wholesale adoption of a system for weed control that relies on a single chemical, initially providing many benefits and ultimately leading to the widespread occurrence of glyphosate and its degradates in Delta streams and necessitating higher application rates of glyphosate as well as the use of other herbicides due to increasing weed resistance. Although these examples are specific to the Mississippi Delta, analogous situations exist throughout the world and point to the need for change in how we grow our food, fuel, and fiber, and manage our soil and water resources.

  7. Agricultural Waste.

    PubMed

    Xue, Ling; Zhang, Panpan; Shu, Huajie; Chang, Chein-Chi; Wang, Renqing; Zhang, Shuping

    2016-10-01

    In recent years, the quantity of agricultural waste has been rising rapidly all over the world. As a result, the environmental problems and negative impacts of agricultural waste are drawn more and more attention. Therefore, there is a need to adopt proper approaches to reduce and reuse agricultural waste. This review presented about 200 literatures published in 2015 relating to the topic of agricultural waste. The review examined research on agricultural waste in 2015 from the following four aspects: the characterization, reuse, treatment, and management. Researchers highlighted the importance to reuse agricultural waste and investigated the potential to utilize it as biofertilizers, cultivation material, soil amendments, adsorbent, material, energy recycling, enzyme and catalyst etc. The treatment of agricultural waste included carbonization, biodegradation, composting hydrolysis and pyrolysis. Moreover, this review analyzed the differences of the research progress in 2015 from 2014. It may help to reveal the new findings and new trends in this field in 2015 comparing to 2014. PMID:27620093

  8. Vocational Agriculture Education. Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Smith, Eddie; And Others

    To assist teachers in agricultural mechanics in providing comprehensive instruction to their students, this curriculum guide treats both the mechanical skills and knowlege necessary for this specialized area. Six sections are included, as follow: orientation and safety; agricultural mechanics skills; agricultural power and machinery; agricultural…

  9. Biosurfactants in agriculture.

    PubMed

    Sachdev, Dhara P; Cameotra, Swaranjit S

    2013-02-01

    Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant-microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics. PMID:23280539

  10. Influence of herbaceous riparian buffers on physical habitat, water chemistry, and stream communities within channelized agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used agricultural conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The ecological impacts of herbaceous riparian buffers on the channelized agricultural headwater streams that are comm...

  11. Duodenal luminal nutrient sensing

    PubMed Central

    Rønnestad, Ivar; Akiba, Yasutada; Kaji, Izumi; Kaunitz, Jonathan D

    2016-01-01

    The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent ‘de-orphanization’ of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa. PMID:25113991

  12. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive agricultural practices, such as tillage, monocropping, seasonal fallow periods, and inorganic nutrient application have been shown to reduce arbuscular mycorrrhizal fungi (AMF) populations and thus may reduce benefits frequently provided to crops by AMF, such as nutrient acquisition, disea...

  13. 77 FR 4984 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative AGENCY: National Institute of Food and Agriculture, USDA....

  14. 75 FR 25199 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative (AFRI) AGENCY: National Institute of Food and Agriculture,...

  15. 77 FR 31302 - Advisory Committee on Agriculture Statistics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... National Agricultural Statistics Service Advisory Committee on Agriculture Statistics AGENCY: National Agricultural Statistics Service, USDA. ACTION: Notice of Renewal of the Charter for the Advisory Committee on Agriculture Statistics. SUMMARY: The U.S. Department of Agriculture (USDA) is seeking renewal of the...

  16. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    PubMed

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  17. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    PubMed Central

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  18. USDA food and nutrient databases provide the infrastructure for food and nutrition research, policy, and practice.

    PubMed

    Ahuja, Jaspreet K C; Moshfegh, Alanna J; Holden, Joanne M; Harris, Ellen

    2013-02-01

    The USDA food and nutrient databases provide the basic infrastructure for food and nutrition research, nutrition monitoring, policy, and dietary practice. They have had a long history that goes back to 1892 and are unique, as they are the only databases available in the public domain that perform these functions. There are 4 major food and nutrient databases released by the Beltsville Human Nutrition Research Center (BHNRC), part of the USDA's Agricultural Research Service. These include the USDA National Nutrient Database for Standard Reference, the Dietary Supplement Ingredient Database, the Food and Nutrient Database for Dietary Studies, and the USDA Food Patterns Equivalents Database. The users of the databases are diverse and include federal agencies, the food industry, health professionals, restaurants, software application developers, academia and research organizations, international organizations, and foreign governments, among others. Many of these users have partnered with BHNRC to leverage funds and/or scientific expertise to work toward common goals. The use of the databases has increased tremendously in the past few years, especially the breadth of uses. These new uses of the data are bound to increase with the increased availability of technology and public health emphasis on diet-related measures such as sodium and energy reduction. Hence, continued improvement of the databases is important, so that they can better address these challenges and provide reliable and accurate data. PMID:23269654

  19. Agriculture, summary

    NASA Technical Reports Server (NTRS)

    Baldwin, R.

    1975-01-01

    Applications of remotely sensed data in agriculture are enumerated. These include: predictions of forage for range animal consumption, forest management, soil mapping, and crop inventory and management.

  20. 7 CFR 3434.5 - Agriculture-related fields.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Agriculture-related fields. 3434.5 Section 3434.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS § 3434.5...

  1. 7 CFR 3434.5 - Agriculture-related fields.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Agriculture-related fields. 3434.5 Section 3434.5 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HISPANIC-SERVING AGRICULTURAL COLLEGES AND UNIVERSITIES CERTIFICATION PROCESS § 3434.5...

  2. Mechanism of nutrient sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term nutrient sensing has emerged to describe the molecular mechanisms by which nutrients and their metabolites interact with various cell surface receptors, intracellular signaling proteins, and nuclear receptors, and modulate the activity of a complex network of signaling pathways that regulat...

  3. Relationships of macroinvertebrate communities with nutrients, pesticides, and physicochemical parameters in channelized headwater streams in Indiana and Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams in the midwestern United States have been modified or constructed to transport agricultural runoff downstream. Effective implementation of agricultural conservation practices to reduce nutrient and pesticide loadings requires information about the influence of water chemistry ...

  4. Scale Effect in Nutrient Transport along a Rural River System: THE River Eden, Cumbria, Northwest, England

    NASA Astrophysics Data System (ADS)

    Tijani, F. O.; Bathurst, J. C.; Quinn, P. F.

    2014-12-01

    Only a limited amount of information derived from studies conducted at small catchment scales can be transferred to large scales because of the non-linear scale effects, thus necessitating studies (including nutrient concentrations and yields) across a range of scales. Here we present results from an investigation of spatial scale pattern and temporal variability of nutrient concentration in the River Eden in northwest England, a nested catchment stretching from Gais Gill (1.1 km2) to Great Corby (1373 km2). The monitoring involved seasonal campaigns and spot sampling of river water quality, using two United Kingdom national catchment study platforms. Nitrate concentration shows a clear increasing trend with the catchment area and there is highly significant difference (P<0.001) among the catchments. Compared with the headwater areas, phosphorus (P) and suspended sediment (SS) concentrations are significantly higher (P<0.05) downstream but do not show a very clear spatial pattern. An alternative explanation was therefore sought for their distribution along the river. Generally, intensity of agricultural activities appears to influence the concentrations of these water quality parameters. The field data show that the amount of nutrients and suspended sediment is higher in catchments with higher farming activities and this increase downstream. This underscores the importance of the distribution of agricultural land use as a driving force in nutrient transport in River Eden. Higher nitrate concentration is associated with the period of low flow (strongest negative relationship, R2 = 0.97, was recorded in autumn sampling campaign at a gauging station). In contrast, phosphorus and suspended sediment are positively associated with discharge (strongest relationship (R2= 0.97) for total P were recorded in spring campaign at a gauging station). Similarly the dryness or wetness of a season affects the nutrient concentrations. Thus, it appears that hydrology and land use

  5. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  6. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  7. Findings from the National Agricultural Workers Survey (NAWS) 1990. A Demographic and Employment Profile of Perishable Crop Farm Workers. Research Report No. 1.

    ERIC Educational Resources Information Center

    Mines, Richard; And Others

    This report provides information on the characteristics and work patterns of United States agricultural workers performing seasonal agricultural services (SAS) during fiscal year 1990. SAS crops include the majority of nursery products, cash grains, field crops, and all fruits and vegetables. More than 2,000 personal interviews with SAS workers…

  8. An Examination of Middle School Enrollment in Agricultural Education and Membership in the National FFA Organization in the United States. Summary of Research 73.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; And Others

    The status of middle and junior high school agricultural education and Future Farmers of America (FFA) programs in the United States was the focus of a study. Data were collected through a census of the FFA executive secretaries and a survey of a purposive sample of 27 successful middle or junior high school agricultural education programs in 9…

  9. Research: Accomplishments, Opportunities, Challenges. Proceedings of the Annual National Agricultural Education Research Conference (28th, New Orleans, LA, December 12, 2001).

    ERIC Educational Resources Information Center

    Kotrlik, Joe W., Ed.; Burnett, Michael F., Ed.

    This document contains 48 papers from a conference on agricultural education research. The following papers are among those included: "Analysis of the Relationships between Computer Experiences, Self-Efficacy, and Knowledge of Undergraduate Students Entering a Land-Grant College of Agriculture" (Donald M. Johnson, Melissa L. Lester, James A.…

  10. Geochemistry and characteristics of nitrogen transport at a confined animal feeding operation in a coastal plain agricultural watershed, and implications for nutrient loading in the Neuse River basin, North Carolina, 1999-2002

    USGS Publications Warehouse

    Spruill, T.B.; Tesoriero, A.J.; Mew, H.E., Jr.; Farrell, K.M.; Harden, S.L.; Colosimo, A.B.; Kraemer, S.R.

    2005-01-01

    Chemical, geologic, hydrologic, and age-dating information collected between 1999 and 2002 were used to examine the transport of contaminants, primarily nitrogen, in ground water and the pathways to surface water in a coastal plain setting in North Carolina. Data were collected from more than 35 wells and 4 surface-water sampling sites located in a 0.59 square-mile basin to examine detailed hydrogeology and geochemical processes affecting nutrient fate and transport. Two additional surface-water sampling sites were located downstream from the primary study site to evaluate basin-scale effects. Chemical and flow data also were collected at an additional 10 sites in the Coastal Plain portion of the Neuse River basin located between Kinston and New Bern, North Carolina, to evaluate loads transported in the Neuse River and primary tributary basins. At the Lizzie Research Station study site in North Carolina, horizontal flow is induced by the presence of a confining unit at shallow depth. Age-dating, chemical, and piezometric data indicate that horizontal flow from the surficial aquifer is the dominant source of ground water to streamflow. Nitrogen applied on cultivated fields at the Lizzie Research Station is substantially reduced as it moves from recharge to discharge areas. Denitrification in deeper parts of the aquifer and in riparian zones is indicated by a characterization of redox conditions in the aquifer and by the presence of excess nitrogen gas. Direct ground-water discharge of nitrate to surface water during base-flow conditions is unlikely to be significant because of strongly reducing conditions that occur in the riparian zones of these streams. Nitrate loads from a drainage tile at the study site may account for much of the nitrate load in the receiving stream, indicating that a major source of nutrients from ground water to this stream is artificial drainage. During base-flow conditions when the streams are not flowing, it is hypothesized that the

  11. AGRICULTURAL SIMULATION MODEL (AGSIM)

    EPA Science Inventory

    AGSIM is a large-scale econometric simulation model of regional crop and national livestock production in the United States. The model was initially developed to analyze the aggregate economic impacts of a wide variety issues facing agriculture, such as technological change, pest...

  12. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding

  13. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; description and water quality of the Little Conestoga Creek headwaters prior to the implementation of nutrient management

    USGS Publications Warehouse

    Fishel, D.K.; Brown, M.J.; Kostelnik, K.M.; Howse, M.A.

    1992-01-01

    The headwaters of the Conestoga River are being studied to determine the effects of agricultural Best-Management Practices on surface-water and ground-water quality. As part of this study, a 5.82-square-mile area of the Little Conestoga Creek headwaters (Small Watershed) was monitored during 1984-86, prior to implementation of Best-Management Practices. This report describes the land use and hydrology of this study area and characterizes its surface-water and ground-water quality during the pre-Best-Management Practice phase. During base-flow conditions, median concentrations of dissolved nitrite plus nitrate nitrogen as nitrogen increased from 2.7 to 8.1 milligrams per liter as the stream flowed through the intensively-farmed carbonate valley. Median total phosphorus increased from 0.05 to 0.20 milligram per liter. Concentrations of dissolved nitrate nitrogen as nitrogen measured in ground water in carbonate rocks in the valley were as great as 25 milligrams per liter and consistently exceeded 10 milligrams per liter. Statistical analysis showed that it will require substantial reductions in concentrations and discharges of nitrogen and phosphorus in base flow to obtain statistically measurable improvements in water quality. If concentrations and discharges of total nitrogen in base flow at the five sites are reduced by 15 to 33 percent, and by 63 to 70 percent, respectively, then the Wilcoxon Mann-Whitney rank-sum test will be able to detect an improvement in water quality 95 percent of the time. Likewise, if concentrations of total phosphorus are reduced by 36 to 54 percent, or discharges of total phosphorus are reduced by 52 to 69 percent at the five sites, then an improvement in water quality will be able to be detected 95 percent of the time.

  14. Scaling up food production in the Upper Mississippi river basin: modeling impacts on water quality and nutrient cycling

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.; Yan, E.; Demissie, Y.

    2010-12-01

    Agricultural production imposes significant environmental stress on the landscape, both in the intensity and extent of agricultural activities. Among the most significant impacts, agriculture dominates the natural reactive nitrogen cycle, with excess reactive nitrogen leading to the degraded quality of inland and coastal waters. In the U.S., policymakers and stakeholders nationwide continue to debate strategies for decreasing environmental degradation from agricultural lands. Such strategies aim to optimize the balance among competing demands for food, fuel and ecosystem services. One such strategy increasingly discussed in the national debate is that of localizing food production around urban areas, developing what some have recently called “foodsheds”. However, the environmental impacts of localizing food production around population centers are not well-understood given the hard-to-generalize variety seen in management practices currently employed among local farms marketing food crops directly to consumers. As a first, landscape level study of potential impacts from scaling up this type of agriculture, we use the USDA Soil and Water Assessment Tool (SWAT) model to quantify environmental impacts from developing foodsheds for all population centers in the Upper Mississippi river basin. Specifically, we focus on nutrient cycling and water quality impacts determining direct greenhouse gas emissions and changes to nutrient runoff from increased food production in this watershed. We investigate a variety of scenarios in which food production is scaled up to the regional level using different types of farm management practices, ranging from conventional production of fruits and vegetables, to production of these products from small-scale, diversified systems integrating conservation easements. In addition to impacts on nutrient cycling and water quality, we also characterize relative levels of productivity in conjunction with overall demand for food associated

  15. Food and Agriculture Organization: A Clearinghouse for Agricultural Information.

    ERIC Educational Resources Information Center

    Joling, Carole

    1989-01-01

    Describes the functions of the United Nations Food and Agriculture Organization (FAO), which is an international clearinghouse for agricultural information. The discussion focuses on the information formats provided by the agency and the dissemination channels used for FAO information. Lists of finding aids for FAO materials and libraries…

  16. Geomorphic stream restoration as an approach for reducing nutrients in degraded urban watersheds

    EPA Science Inventory

    Elevated nitrate levels in streams and groundwater pose human and ecological threats. Stream restoration may improve the nutrient removal capacity of streams, yet few studies have investigated the effectiveness of restoration as a nutrient BMP despite significant national effort...

  17. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  18. Comparison of Health Status and Nutrient Intake between Depressed Women and Non-depressed Women: Based on the 2013 Korea National Health and Nutrition Examination Survey.

    PubMed

    Won, Myeong Suk; Kim, Sunghee; Yang, Yoon Jung

    2016-04-01

    This study aimed to provide supporting data for the management of dietary habits in depression by comparing health and nutrition in adult Korean women according to depression status. A total of 2,236 women aged between 19 and 64 years who participated in the 2013 Korea National Health and Nutrition Examination Survey were divided into a depression group (n = 315) and a non-depression group (n = 1,921). Among 19-29-year-old women, the depression group showed higher proportions of individuals with impairment of everyday activities, menopause, and suicidal thoughts than the non-depression group. The depression group showed lower intake of cereal, chocolate, meat, and carbonated drinks, as well as a lower index of nutritional quality (INQ) for protein, iron, and niacin. Among 30-49-year-old women, the depression group showed higher proportions of individuals with impairment of everyday activities, chronic disease, stress, and suicidal thoughts. The depression group showed lower intake of rice with mixed grains and higher intake of instant and cup noodles than the non-depression group. Among 50-64-year-old women, the depression group showed higher proportions of individuals with impairment of everyday activities, menopause, stress, and suicidal thoughts. The depression group showed lower intake of vegetables, mushrooms, and seaweed, lower nutritional intake of fat, saturated fat, and n-3 fatty acids, as well as a lower INQ for niacin and a lower Recommended Food Score. For all age groups, individuals with depression showed poorer health and nutritional intake than healthy individuals, demonstrating a correlation of depression with health and nutritional intake. PMID:27152301

  19. Trends in nutrient intakes and consumption while eating-out among Korean adults based on Korea National Health and Nutrition Examination Survey (1998-2012) data

    PubMed Central

    Kwon, Yong-Seok

    2014-01-01

    BACKGROUND/OBJECTIVES Eating-out among Korean people has become an important part of modern lifestyle due to tremendous growth of the food service industry and various social and economic changes. This study examined trends in meal patterns and meal sources while eating-out among Korean adults aged 19 years and older. SUBJECTS/METHODS Data were from the 1998-2012 KNHNES (Korea National Health and Nutrition Examination Survey) by the 24-hour dietary recall method. This study included 55,718 adults aged 19 years and older. For analysis of eating-out frequency, data were categorized by source of meals and serving place. RESULTS Average frequency of meals consumed away from home increased from 1998 to 2012, although it remained lower than that of meals at home. In addition, male, unmarried, employed, higher educated, and high income individuals more frequently consumed meals away from home. Moreover, sodium intake while eating-out significantly increased from 2,370 mg in 1998 to 2,935 mg in 2012. Lastly, percentage contributions of daily total protein intake, fat intake, and sodium intake from eating-out increased to more than half (53-55%) in 2012 compared with 47-48% in 1998. CONCLUSIONS As eating-out has grown in popularity, greater recognition of public health and nutritional education aimed at promoting healthy food choices is needed. In addition to developing consumer education for overall healthier eating patterns, individuals who are younger, unmarried, higher educated, and males are especially at risk and require attention. PMID:25489407

  20. Comparison of Health Status and Nutrient Intake between Depressed Women and Non-depressed Women: Based on the 2013 Korea National Health and Nutrition Examination Survey

    PubMed Central

    Won, Myeong Suk; Kim, Sunghee

    2016-01-01

    This study aimed to provide supporting data for the management of dietary habits in depression by comparing health and nutrition in adult Korean women according to depression status. A total of 2,236 women aged between 19 and 64 years who participated in the 2013 Korea National Health and Nutrition Examination Survey were divided into a depression group (n = 315) and a non-depression group (n = 1,921). Among 19–29-year-old women, the depression group showed higher proportions of individuals with impairment of everyday activities, menopause, and suicidal thoughts than the non-depression group. The depression group showed lower intake of cereal, chocolate, meat, and carbonated drinks, as well as a lower index of nutritional quality (INQ) for protein, iron, and niacin. Among 30–49-year-old women, the depression group showed higher proportions of individuals with impairment of everyday activities, chronic disease, stress, and suicidal thoughts. The depression group showed lower intake of rice with mixed grains and higher intake of instant and cup noodles than the non-depression group. Among 50–64-year-old women, the depression group showed higher proportions of individuals with impairment of everyday activities, menopause, stress, and suicidal thoughts. The depression group showed lower intake of vegetables, mushrooms, and seaweed, lower nutritional intake of fat, saturated fat, and n-3 fatty acids, as well as a lower INQ for niacin and a lower Recommended Food Score. For all age groups, individuals with depression showed poorer health and nutritional intake than healthy individuals, demonstrating a correlation of depression with health and nutritional intake. PMID:27152301