Science.gov

Sample records for agriculture research station

  1. Human Nutrition Research Conducted at State Agricultural Experiment Stations and 1890/Tuskegee Agricultural Research Programs.

    ERIC Educational Resources Information Center

    Driskell, Judy A.; Myers, John R.

    1989-01-01

    Cooperative State Research Service-administered and state-appropriated State Agriculture Experiment Station funds for human nutrition research increased about two-fold from FY70-FY86, while the percentage of budget expended for this research decreased. (JOW)

  2. About soil cover heterogeneity of agricultural research stations' experimental fields

    NASA Astrophysics Data System (ADS)

    Rannik, Kaire; Kõlli, Raimo; Kukk, Liia

    2013-04-01

    Depending on local pedo-ecological conditions (topography, (geo) diversity of soil parent material, meteorological conditions) the patterns of soil cover and plant cover determined by soils are very diverse. Formed in the course of soil-plant mutual relationship, the natural ecosystems are always influenced to certain extent by the other local soil forming conditions or they are site specific. The agricultural land use or the formation of agro-ecosystems depends foremost on the suitability of soils for the cultivation of feed and food crops. As a rule, the most fertile or the best soils of the area, which do not present any or present as little as possible constraints for agricultural land use, are selected for this purpose. Compared with conventional field soils, the requirements for the experimental fields' soil cover quality are much higher. Experimental area soils and soil cover composition should correspond to local pedo-ecological conditions and, in addition to that, represent the soil types dominating in the region, whereas the fields should be as homogeneous as possible. The soil cover heterogeneity of seven arable land blocks of three research stations (Jõgeva, Kuusiku and Olustvere) was studied 1) by examining the large scale (1:10 000) digital soil map (available via the internet), and 2) by field researches using the transect method. The stages of soils litho-genetic and moisture heterogeneities were estimated by using the Estonian normal soils matrix, however, the heterogeneity of top- and subsoil texture by using the soil texture matrix. The quality and variability of experimental fields' soils humus status, was studied more thoroughly from the aspect of humus concentration (g kg-1), humus cover thickness (cm) and humus stocks (Mg ha-1). The soil cover of Jõgeva experimental area, which presents an accumulative drumlin landscape (formed during the last glacial period), consist from loamy Luvisols and associated to this Cambisols. In Kuusiku area

  3. Counter-Geographies: The Campaign against Rationalisation of Agricultural Research Stations in New South Wales, Australia

    ERIC Educational Resources Information Center

    Gibson, Chris; Dufty, Rae; Phillips, Samantha; Smith, Heather

    2008-01-01

    This paper discusses an example of community action mounted in a rural region of New South Wales, Australia, in response to proposals by the State Government to rationalise agricultural research stations operated by the Department of Primary Industries. Informed by a Foucaultian understanding of power and the concept of governmentality,…

  4. Agricultural Experiment Stations and Branch Stations in the United States

    ERIC Educational Resources Information Center

    Pearson, Calvin H.; Atucha, Amaya

    2015-01-01

    In 1887, Congress passed the Hatch Act, which formally established and provided a funding mechanism for agricultural experiment stations in each state and territory in the United States. The main purpose of agricultural experiment stations is to conduct agricultural research to meet the needs of the citizens of the United States. The objective of…

  5. The Tropical Fruit Research Program of the USDA-ARS Tropical Agriculture Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical and subtropical fruit crops are of major importance in commercial and subsistence agriculture. The globalization of the economy and the increased demand for healthy and more diverse food products have opened a large market for many of these fruit crops. Despite this fact, increased produc...

  6. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  7. Evaluation and characterization in bananas (Musa ssp.) at the USDA-ARS Tropical Agriculture Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana, Musa spp., is a key horticultural crop in tropical regions of the world where they provide sustenance and serve as cash crops. The plantain subgroup in particular, is an important staple in the Caribbean, Central America and some countries in South America. One of the integral research comp...

  8. The emergence of modern statistics in agricultural science: analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919-1933.

    PubMed

    Parolini, Giuditta

    2015-01-01

    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher's methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians' tools and expertise into the station research programme. Fisher's statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them.

  9. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  10. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  11. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  12. Agricultural Market News Programming of Wisconsin Radio and Television Stations.

    ERIC Educational Resources Information Center

    Kroupa, Eugene A.; And Others

    This study was designed to determine what Wisconsin's 92 AM and 107 FM radio and 18 television stations were providing as agricultural market information programming. Data were collected via a two-phase survey. It was found that the number of stations giving farm and market news were 79% of AM, 56% of FM, and 1% of television stations based on a…

  13. 78 FR 42928 - Draft Environmental Assessment for the Cotton Quality Research Station Land Transfer

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Research Service Draft Environmental Assessment for the Cotton Quality... Environmental Assessment for the Cotton Quality Research Station Land Transfer. SUMMARY: In accordance with the... facilities at the Cotton Quality Research Station (CQRS) from the USDA Agricultural Research Service (ARS)...

  14. 78 FR 23885 - Agricultural Research Service

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... Agricultural Research Service Notice of Intent To Grant Exclusive License AGENCY: Agricultural Research Service..., Agricultural Research Service, intends to grant to Headwall Photonics, Inc. of Fitchburg, Massachusetts, an... published Notice, the Agricultural Research Service receives written evidence and argument which...

  15. The work of the Animal Research Station, Cambridge.

    PubMed

    Polge, Chris

    2007-06-01

    This paper traces the history of the Animal Research Station, Cambridge from its establishment in 1932 to its closure in 1986. The author worked there for forty years and was Director from 1979. Originally set up as a field station for Cambridge University's School of Agriculture, the Station was expanded after World War II as the Agricultural Research Council's Unit of Animal Reproduction. Beginning with semen and artificial insemination, research at the Station soon embraced superovulation and embryo transfer in farm animals. Many other technologies were also developed here, including IVF in pigs, cloning by nuclear transplantation of early embryonic cells, and the first genetically modified farm animals in Britain. This account recalls the Directors of the Station and their research teams together with details of their pioneering contribution to reproductive biology.

  16. Space Station Biological Research Project.

    PubMed

    Johnson, C C; Wade, C E; Givens, J J

    1997-06-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  17. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  18. Opportunities for research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.

    1992-01-01

    NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences

  19. RAPIDS remote sensing receiving station: key of agriculture production machine

    NASA Astrophysics Data System (ADS)

    Moll, Bob; Wouters, Frank

    2001-02-01

    12 The Netherlands based National Aerospace laboratory NLR and the co-located Geomatics Business Park use the output of RAPIDS, a small 2.7m dish satellite data receiver system, on a daily basis. The satellite Earth observation data are real time downlinked from the three Spot satellites and the ERS-2 radar satellite and subsequently processed into images. After georeferencing and cutting into mapsheets, the data are sent to a value adding company, which is an expert in image interpretation and classification for e.g. agricultural purposes. The so extracted agricultural information is collected in a database that can be accessed by the subscribers day after day. A semi-automatic georeferencing system has been integrated so the output data of the RAPIDS station can be implemented in, for example, a GIS directly. The database/GIS is a valuable tool for decision making with respect to land use, crop monitoring, flood monitoring, etc.

  20. International Space Station Research Racks

    NASA Video Gallery

    The International Space Station has a variety of multidisciplinary laboratory facilities and equipment available for scientists to use. This video highlights the capabilities of select facilities. ...

  1. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  2. Challenges for global agricultural research.

    PubMed

    Blake, R O

    1992-03-01

    The Green Revolution of the 60s can not be expected to continue to feed the world as its population continues to grow. Innovations in plant varieties, chemical inputs, and irrigation did result in more food; however, the cost of this innovation was loss of soil and fertility, poisoning of ground water, waterlogging, and salination of fields. If the world's food production system is to be sustainable and environmentally safe as well as capable of producing 50% more food in the next 20 years, then a lot of research must still be done. Now, instead of 2 international research centers, there are 17. All these centers are operated under the Consultative Group on International Agricultural Research (CGIAR). Another 12 center are currently being set up or cooperating with CGIAR. The scientists are also being asked to develop cost and labor effective ways to improve the soil and conserve water. This change of priorities has come about partly from external pressure, but mostly from: the realization that agricultural productivity must continue to grow at unprecedented rates for the next 4 decades; chemical inputs are often to expensive, unavailable, or dangerous, there is very little room for expanding irrigation; national /agricultural research and extension centers have become underfunded, overly politicized, and ineffective; developing countries can not rely solely upon their fertile land to feed their people, they must bring marginal land into production. To accomplish all this, the World Bank must take a leadership role. It is the only organization with enough money and political power to effectively bring everyone together.

  3. Research from the Coastal Plain Experiment Station, Tifton, Georgia, to minimize contamination in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists with the United States Department of Agriculture - Agricultural Research Service and scientists with the University of Georgia located at the Coastal Plain Experiment Station in Tifton, Georgia have been conducting research on aflatoxin contamination of peanut since the early 1960's. Ear...

  4. Microgravity Particle Research on the Space Station

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W. (Editor); Mckay, Christopher P. (Editor); Schwartz, Deborah E. (Editor)

    1987-01-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  5. Microgravity particle research on the Space Station

    SciTech Connect

    Squyres, S.W.; Mckay, C.P.; Schwartz, D.E.

    1987-12-01

    Science questions that could be addressed by a Space Station Microgravity Particle Research Facility for studying small suspended particles were discussed. Characteristics of such a facility were determined. Disciplines covered include astrophysics and the solar nebula, planetary science, atmospheric science, exobiology and life science, and physics and chemistry.

  6. Priorities for Research in Agricultural Education.

    ERIC Educational Resources Information Center

    Silva-Guerrero, Luis; Sutphin, H. Dean

    1990-01-01

    Twenty agricultural education experts identified research topics and categories, which were then rated by 34 research experts (92 percent) and 49 department heads (79 percent). Highest ratings went to biotechnology, high technology, and agribusiness; agricultural education curriculum; and long-term impact and cost effectiveness of agricultural…

  7. Exobiology research on Space Station Freedom.

    PubMed

    Huntington, J L; Stratton, D M; Scattergood, T W

    1995-03-01

    The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

  8. Exobiology research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Stratton, D. M.; Scattergood, T. W.

    1995-01-01

    The Gas-Grain Simulation Facility (GGSF) is a multidisciplinary experiment laboratory being developed by NASA at Ames Research Center for delivery to Space Station Freedom in 1998. This facility will employ the low-gravity environment of the Space Station to enable aerosol experiments of much longer duration than is possible in any ground-based laboratory. Studies of fractal aggregates that are impossible to sustain on Earth will also be enabled. Three research areas within exobiology that will benefit from the GGSF are described here. An analysis of the needs of this research and of other suggested experiments has produced a list of science requirements which the facility design must accommodate. A GGSF design concept developed in the first stage of flight hardware development to meet these requirements is also described.

  9. Science Research Facilities - Versatility for Space Station

    NASA Technical Reports Server (NTRS)

    Giannovario, J. A.; Schelkopf, J. D.; Massey, K.; Solly, M.

    1986-01-01

    The Space Station Science Lab Module (SLM) and its interfaces are designed to minimize complexity and maximize user accommodations. The facilities provided encompass life sciences research, the control of external payloads, the servicing of customer equipment, and general scientific investigations. The SLM will have the unprecedented ability to diagnose, service, and replace equipment while in orbit. In addition, the SLM will have significant operational advantages over previous spacecraft in terms of available volume, power, and crew interaction possibilities.

  10. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  11. Research centrifuge accommodations on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Arno, Roger D.; Horkachuk, Michael J.

    1990-01-01

    Life sciences research using plants and animals on the Space Station Freedom requires the ability to maintain live subjects in a safe and low stress environment for long durations at microgravity and at one g. The need for a centrifuge to achieve these accelerations is evident. Programmatic, technical, and cost considerations currently favor a 2.5 meter diameter centrifuge located either in the end cone of a Space Station Freedom node or in a separate module. A centrifuge facility could support a mix of rodent, plant, and small primate habitats. An automated cage extractor could be used to remove modular habitats in pairs without stopping the main rotor, minimizing the disruption to experiment protocols. The accommodation of such a centrifuge facility on the Space Station represents a significant demand on the crew time, power, data, volume, and logistics capability. It will contribute to a better understanding of the effects of space flight on humans, an understanding of plant growth in space for the eventual production of food, and an understanding of the role of gravity in biological processes.

  12. Biological research on a Space Station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Johnson, Catherine C.

    1990-01-01

    A Space Station can provide reliable, long duration access to ug environments for basic and applied biological research. The uniqueness of access to near-weightless environments to probe fundamental questions of significance to gravitational and Space biologists can be exploited from many vantage points. Access to centrifuge facilities that can provide 1 g and hypo-g controls will permit identification of gravity-dependent or primary effects. Understanding secondary effects of the ug environment as well will allow a fuller exploitation of the Space environment.

  13. International Space Station -- Human Research Facility (HRF)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)

  14. Geologic research in support of sustainable agriculture

    USGS Publications Warehouse

    Gough, L.P.; Herring, J.R.

    1993-01-01

    The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.

  15. Gaps in agricultural climate adaptation research

    NASA Astrophysics Data System (ADS)

    Davidson, Debra

    2016-05-01

    The value of the social sciences to climate change research is well recognized, but notable gaps remain in the literature on adaptation in agriculture. Contributions focus on farmer behaviour, with important research regarding gender, social networks and institutions remaining under-represented.

  16. The Omics Revolution in Agricultural Research

    PubMed Central

    2015-01-01

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10–14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research. PMID:26468989

  17. The Omics Revolution in Agricultural Research.

    PubMed

    Van Emon, Jeanette M

    2016-01-13

    The Agrochemicals Division cosponsored the 13th International Union of Pure and Applied Chemistry International Congress of Pesticide Chemistry held as part of the 248th National Meeting and Exposition of the American Chemical Society in San Francisco, CA, USA, August 10-14, 2014. The topic of the Congress was Crop, Environment, and Public Health Protection; Technologies for a Changing World. Over 1000 delegates participated in the Congress with interactive scientific programming in nine major topic areas including the challenges and opportunities of agricultural biotechnology. Plenary speakers addressed global issues related to the Congress theme prior to the daily technical sessions. The plenary lecture addressing the challenges and opportunities that omic technologies provide agricultural research is presented here. The plenary lecture provided the diverse audience with information on a complex subject to stimulate research ideas and provide a glimpse of the impact of omics on agricultural research.

  18. USDA-Agricultural Research Service Irrigation Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ARS irrigation research program at the Delta Center is part of the USDA-ARS Cropping Systems and Water Quality Research Unit located at Columbia, Missouri. It began in 2000 with cooperative research between ARS scientists at Columbia and Delta Center faculty. By 2003 the program had expanded eno...

  19. The Search for Energy Alternatives: Responses Received by State Agricultural Experiment Stations.

    ERIC Educational Resources Information Center

    Cross, William M.

    Directors of the 51 agricultural experiment stations in the United States (including Guam) were mailed questionnaires inquiring as to the extent of requests which had been received for information about wind, solar, and other energy alternatives such as wood and gasahol. There was a total response of 88% with three mailings. The returned…

  20. Animal research facility for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    An integrated animal research facility is planned by NASA for Space Station Freedom which will permit long-term, man-tended experiments on the effects of space conditions on vertebrates. The key element in this facility is a standard type animal habitat which supports and maintains the animals under full bioisolation during transport and during the experiment. A holding unit accommodates the habitats with animals to be maintained at zero gravity; and a centrifuge, those to be maintained at artificial gravity for control purposes or for gravity threshold studies. A glovebox permits handling of the animals for experimental purposes and for transfer to a clean habitat. These facilities are described, and the aspects of environmental control, monitoring, and bioisolation are discussed.

  1. USDA Agricultural Research at Penn State

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The building directly across from the Creamery, the one you've probably never been in or even thought about much? That federal building has been there since 1936, when this part of campus was all agricultural fields and not much else. Back then it held the U.S. Regional Pasture Research Laboratory, ...

  2. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  3. Research careers for microbiologists in the USDA Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Department of Agriculture (USDA) and the Agricultural Research Service (ARS) employees microbiologists in a wide variety of diverse positions. This includes work involving animal health, infectious diseases and food safety. Various agencies within the USDA are responsible for monit...

  4. Omics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Love, John

    2015-01-01

    The International Space Station (ISS) is an orbiting laboratory whose goals include advancing science and technology research. Completion of ISS assembly ushered a new era focused on utilization, encompassing multiple disciplines such as Biology and Biotechnology, Physical Sciences, Technology Development and Demonstration, Human Research, Earth and Space Sciences, and Educational Activities. The research complement planned for upcoming ISS Expeditions 45&46 includes several investigations in the new field of omics, which aims to collectively characterize sets of biomolecules (e.g., genomic, epigenomic, transcriptomic, proteomic, and metabolomic products) that translate into organismic structure and function. For example, Multi-Omics is a JAXA investigation that analyzes human microbial metabolic cross-talk in the space ecosystem by evaluating data from immune dysregulation biomarkers, metabolic profiles, and microbiota composition. The NASA OsteoOmics investigation studies gravitational regulation of osteoblast genomics and metabolism. Tissue Regeneration uses pan-omics approaches with cells cultured in bioreactors to characterize factors involved in mammalian bone tissue regeneration in microgravity. Rodent Research-3 includes an experiment that implements pan-omics to evaluate therapeutically significant molecular circuits, markers, and biomaterials associated with microgravity wound healing and tissue regeneration in bone defective rodents. The JAXA Mouse Epigenetics investigation examines molecular alterations in organ specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight. Lastly, Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), NASA's first foray into human omics research, applies integrated analyses to assess biomolecular responses to physical, physiological, and environmental stressors associated

  5. Nutrition Research: Basis for Station Requirements

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Rice, Barbara; Smith, Scott M.

    2011-01-01

    Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.

  6. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  7. ISS Update: ISTAR -- International Space Station Testbed for Analog Research

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries interviews Sandra Fletcher, EVA Systems Flight Controller. They discuss the International Space Station Testbed for Analog Research (ISTAR) activity that...

  8. Metabolomics, a Powerful Tool for Agricultural Research

    PubMed Central

    Tian, He; Lam, Sin Man; Shui, Guanghou

    2016-01-01

    Metabolomics, which is based mainly on nuclear magnetic resonance (NMR), gas-chromatography (GC) or liquid-chromatography (LC) coupled to mass spectrometry (MS) analytical technologies to systematically acquire the qualitative and quantitative information of low-molecular-mass endogenous metabolites, provides a direct snapshot of the physiological condition in biological samples. As complements to transcriptomics and proteomics, it has played pivotal roles in agricultural and food science research. In this review, we discuss the capacities of NMR, GC/LC-MS in the acquisition of plant metabolome, and address the potential promise and diverse applications of metabolomics, particularly lipidomics, to investigate the responses of Arabidopsis thaliana, a primary plant model for agricultural research, to environmental stressors including heat, freezing, drought, and salinity. PMID:27869667

  9. A.C. Hildreth: Initiating USDA agricultural research in Cheyenne

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight months after the October, 1929 Stock Market crash, 36-year-old Aubrey Claire Hildreth resigned his position at the University of Maine Agricultural Station and left the blueberries and cranberries of Orono, Maine, to travel with his family to Cheyenne to assume the duties of Station Superinten...

  10. Epigenetics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Love, John; Cooley, Vic

    2016-01-01

    The International Space Station (ISS) is a state-of-the orbiting laboratory focused on advancing science and technology research. Experiments being conducted on the ISS include investigations in the emerging field of Epigenetics. Epigenetics refers to stably heritable changes in gene expression or cellular phenotype (the transcriptional potential of a cell) resulting from changes in a chromosome without alterations to the underlying DNA nucleotide sequence (the genetic code), which are caused by external or environmental factors, such as spaceflight microgravity. Molecular mechanisms associated with epigenetic alterations regulating gene expression patterns include covalent chemical modifications of DNA (e.g., methylation) or histone proteins (e.g., acetylation, phorphorylation, or ubiquitination). For example, Epigenetics ("Epigenetics in Spaceflown C. elegans") is a recent JAXA investigation examining whether adaptations to microgravity transmit from one cell generation to another without changing the basic DNA of the organism. Mouse Epigenetics ("Transcriptome Analysis and Germ-Cell Development Analysis of Mice in Space") investigates molecular alterations in organ-specific gene expression patterns and epigenetic modifications, and analyzes murine germ cell development during long term spaceflight, as well as assessing changes in offspring DNA. NASA's first foray into human Omics research, the Twins Study ("Differential effects of homozygous twin astronauts associated with differences in exposure to spaceflight factors"), includes investigations evaluating differential epigenetic effects via comprehensive whole genome analysis, the landscape of DNA and RNA methylation, and biomolecular changes by means of longitudinal integrated multi-omics research. And the inaugural Genes in Space student challenge experiment (Genes in Space-1) is aimed at understanding how epigenetics plays a role in immune system dysregulation by assaying DNA methylation in immune cells

  11. Levitation Technology in International Space Station Research

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  12. Post-harvest entomology research in the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Throne, James E; Hallman, Guy J; Johnson, Judy A; Follett, Peter A

    2003-01-01

    This is a review of current post-harvest entomology research conducted by the Agricultural Research Service, the research branch of the US Department of Agriculture. The review covers both durable and perishable commodities. Research on biochemistry, genetics, physiology, monitoring and control of insects infesting stored grain, dried fruits and nuts, and processed commodities is reviewed. Research on development of quarantine treatments, particularly for fruit flies, is also reviewed, including research on thermal and irradiation treatments and a discussion of risk management for quarantine pests. Two areas of research are covered more extensively: a project to map the genome of the red flour beetle, Tribolium castaneum, and the use of near-infrared spectroscopy for detection of hidden infestations in grain, quantification of insect fragments in food, determination of quality in dried fruits, identification of insect species and age-grading insects. Future research directions are identified.

  13. Operations research investigations of satellite power stations

    NASA Technical Reports Server (NTRS)

    Cole, J. W.; Ballard, J. L.

    1976-01-01

    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components.

  14. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations

  15. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  16. Arthropod genomics research in the United States Department of Agriculture-Agricultural Research Service: Current impacts and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service (ARS) is the intramural research agency of the United States Department of Agriculture (USDA) which employs scientists to conduct basic and applied research aimed to develop and transfer solutions to agricultural problems of high national priority and to ensure food...

  17. Energy integrated farm system: North Dakota State University Agricultural Experiment Station

    SciTech Connect

    Not Available

    1984-01-01

    North Dakota State University Agricultural Experiment Station, a dairy farm with wheat, barley, sugar beet, and soybean crops, is designed to conserve energy through energy integrated concepts including wind break and solar energy for heating buildings, methane digestion, and energy conservation crop practices. The integrated energy concepts to be demonstrated are: generation of methane from manure; use of a milk-to-water heat exchanger and rock-bed heat storage in dairy operations; use of a solar collector energy system for space heat in the dairy barn (calf warming); efficient solid-liquid separation in manure collection system; use of digester effluent as bedding and fertilizer; and energy conservation by improved agriculture practices, such as conservation tillage, pest management, and soil testing for efficient use of fertilizer.

  18. Viewing Agricultural Education Research through a Qualitative Lens

    ERIC Educational Resources Information Center

    Dooley, Kim E.

    2007-01-01

    The Journal of Agricultural Education has primarily published research that uses quantitative research methods. Perhaps this is due partly to the lack of a qualitative research conceptual framework to guide our profession. Most researchers in agricultural education were academically prepared to conduct empirical research. Those who are in the…

  19. Animal research on the Space Station

    NASA Technical Reports Server (NTRS)

    Bonting, S. L.; Arno, R. D.; Corbin, S. D.

    1987-01-01

    The need for in-depth, long- and short-term animal experimentation in space to qualify man for long-duration space missions, and to study the effects of the absence and presence of Earth's gravity and of heavy particle radiation on the development and functioning of vertebrates is described. The major facilities required for these investigations and to be installed on the Space Station are: modular habitats for holding rodents and small primates in full bioisolation; a habitat holding facility; 1.8 and 4.0 m dia centrifuges; a multipurpose workbench; and a cage cleaner/disposal system. The design concepts, functions, and characteristics of these facilities are described.

  20. Microgravity as a research tool to improve US agriculture

    NASA Astrophysics Data System (ADS)

    Bula, R. J.; Stankovic, Bratislav

    2000-01-01

    Crop production and utilization are undergoing significant modifications and improvements that emanate from adaptation of recently developed plant biotechnologies. Several innovative technologies will impact US agriculture in the next century. One of these is the transfer of desirable genes from organisms to economically important crop species in a way that cannot be accomplished with traditional plant breeding techniques. Such plant genetic engineering offers opportunities to improve crop species for a number of characteristics as well as use as source materials for specific medical and industrial applications. Although plant genetic engineering is having an impact on development of new crop cultivars, several major constraints limit the application of this technology to selected crop species and genotypes. Consequently, gene transfer systems that overcome these constraints would greatly enhance development of new crop materials. If results of a recent gene transfer experiment conducted in microgravity during a Space Shuttle mission are confirmed, and with the availability of the International Space Station as a permanent space facility, commercial plant transformation activity in microgravity could become a new research tool to improve US agriculture. .

  1. Potential for remote sensing of agriculture from the international space station

    SciTech Connect

    Morgenthaler, George W.; Khatib, Nader

    1999-01-22

    Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make 'precision agriculture', i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during 'daylight hours' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural 'truth' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural 'truth' site in eastern Colorado. The 'truth' site was highly instrumented for measuring trace gas concentrations (NO{sub x}, SO{sub x}, CO{sub 2}, O

  2. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The goals of space biology research to be conducted aboard the Space Station in 1990s include long-term studies of reproduction, development, growth, physiology, behavior, and aging in both animals and plants. They also include studies of the mechanisms by which gravitational stimuli are sensed, processed, and transmitted to a responsive site, and of the effect of microgravity on each component. The Space Station configuration will include a life sciences research facility, where experiment cyles will be on a 90-day basis (since the Space Station missions planned for the 1990s call for 90-day intervals). A modular approach is taken to accomodate animal habitats, plant growth chambers, and other specimen holding facilities; the modular habitats would be transportable between the launch systems, habitat racks, a workbench, and a variable-gravity centrifuge (included for providing artificial gravity and accurately controlled acceleration levels aboard Space Station).

  3. Optical Dust Characterization in Manned Mars Analogue Research Stations

    NASA Technical Reports Server (NTRS)

    Bos, B. J.; Krebs, Carolyn (Technical Monitor)

    2003-01-01

    Martian dust has been identified as a potentially serious hazard to any manned Mars landing mission. NASA and other organizations realize this risk and continue to support Martian dust research through the Matador project led by researchers at the University of Arizona. The Mars Society can contribute to this work by beginning a regimen of monitoring and measuring dust properties at its Mars analogue research stations. These research facilities offer the unique opportunity to study the transport and distribution of dust particles within a crewed habitat supporting active geologic exploration. Information regarding the amount, location and size of dust particles that may accumulate in a Mars habitat will be required to design a real Mars habitat and habitat equipment. Beginning such an effort does not require a large outlay of equipment and can be accomplished using crewmembers experienced with station operations. Various optical techniques, such as dark-field illumination, coupled with image processing algorithms enable the collection of dust grain relative size and frequency information. Such approaches can be applied in several different zones within the research stations to evaluate the various dust reduction and isolation procedures implemented during a particular crew rotation. As the stations simulation fidelity increases, the applicability of such data to a functional Mars lander will increase. This presentation describes the optical equipment and procedures for measuring dust properties in Mars analogue research stations that can be implemented during the next field season.

  4. Who Talks to Whom in Malawi's Agricultural Research Information Network?

    ERIC Educational Resources Information Center

    Mapila, Mariam A. T. J.; Yauney, Jason; Thangata, Paul; Droppelmann, Klaus; Mazunda, John

    2016-01-01

    Purpose: The sector-wide approach currently dominates as the strategy for developing the agricultural sector of many African countries. Although recognised that collaborative agricultural research is vital in ensuring success of sector-wide agricultural development strategies; there have been few efforts to understand the dynamics of national…

  5. International Space Station Research Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Kamigaichi, Shigeki; Sorokin, Igor V.; Zell, Martin; Fuglesang, Christer; Sabbagh, Jean; Pignataro, Salvatore

    2012-01-01

    The ISS partnership has seen a substantial increase in research accomplished, crew efforts devoted to research, and results of ongoing research and technology development. The ISS laboratory is providing a unique environment for research and international collaboration that benefits humankind. Benefits come from the engineering development, the international partnership, and from the research results. Benefits can be of three different types: scientific discovery, applications to life on Earth, and applications to future exploration. Working across all ISS partners, we identified key themes where the activities on the ISS improve the lives of people on Earth -- not only within the partner nations, but also in other nations of the world. Three major themes of benefits to life on earth emerged from our review: benefits to human health, education, and Earth observation and disaster response. Other themes are growing as use of the ISS continues. Benefits to human health range from advancements in surgical technology, improved telemedicine, and new treatments for disease. Earth observations from the ISS provide a wide range of observations that include: marine vessel tracking, disaster monitoring and climate change. The ISS participates in a number of educational activities aimed to inspire students of all ages to learn about science, technology, engineering and mathematics. To date over 63 countries have directly participated in some aspect of ISS research or education. In summarizing these benefits and accomplishments, ISS partners are also identifying ways to further extend the benefits to people in developing countries for the benefits of humankind.

  6. Summary of the 2009-2010 Season at the Mars Desert Research Station

    NASA Astrophysics Data System (ADS)

    Nelson, J. V.; Westenberg, A.

    2011-03-01

    The Mars Desert Research Station in Hanksville, Utah is the most accessible, cost-effective martian analog station available. Each year the station is host to dozens of research projects from disciplines including biology, engineering, geology, hydrology, and psychology.

  7. The space station and human productivity: An agenda for research

    NASA Technical Reports Server (NTRS)

    Schoonhoven, C. B.

    1985-01-01

    Organizational problems in permanent organizations in outer space were analyzed. The environment of space provides substantial opportunities for organizational research. Questions about how to organize professional workers in a technologically complex setting with novel dangers and uncertainties present in the immediate environment are examined. It is suggested that knowledge from organization theory/behavior is an underutilized resource in the U.S. space program. A U.S. space station will be operable by the mid-1990's. Organizational issues will take on increasing importance, because a space station requires the long term organization of human and robotic work in the isolated and confined environment of outer space. When an organizational analysis of the space station is undertaken, there are research implications at multiple levels of analysis: for the individual, small group, organizational, and environmental levels of analysis. The research relevant to organization theory and behavior is reviewed.

  8. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  9. Life sciences research on the space station: An introduction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Space Station will provide an orbiting, low gravity, permanently manned facility for scientific research, starting in the 1990s. The facilities for life sciences research are being designed to allow scientific investigators to perform research in Space Medicine and Space Biology, to study the consequences of long-term exposure to space conditions, and to allow for the permanent presence of humans in space. This research, using humans, animals, and plants, will provide an understanding of the effects of the space environment on the basic processes of life. In addition, facilities are being planned for remote observations to study biologically important elements and compounds in space and on other planets (exobiology), and Earth observations to study global ecology. The life sciences community is encouraged to plan for participation in scientific research that will be made possible by the Space Station research facility.

  10. Quantitative Theoretical and Conceptual Framework Use in Agricultural Education Research

    ERIC Educational Resources Information Center

    Kitchel, Tracy; Ball, Anna L.

    2014-01-01

    The purpose of this philosophical paper was to articulate the disciplinary tenets for consideration when using theory in agricultural education quantitative research. The paper clarified terminology around the concept of theory in social sciences and introduced inaccuracies of theory use in agricultural education quantitative research. Finally,…

  11. Space Station Freedom Integrated Research and Development Growth

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.; Ahlf, P. R.; Saucillo, Rudy J.

    1990-01-01

    Space Station Freedom is designed to be an Earth-orbiting, multidiscipline research and development (R&D) facility capable of evolution to accomodate a variety of potential uses. One evolution scenario is growth to an enhanced R&D facility. In support of the Space Station Freedom Program Preliminary Design Review (PDR), the NASA Langley Research Center Space Station Office is analyzing growth requirements and evaluating configurations for this R&D utilization. This paper presents a summary of FY1989 study results including time-phased growth plans, R&D growth issues and configurations, and recommendations for the program baseline design which will facilitate evolutionary R&D growth. This study consisted of three major areas of concentration: mission requirements analysis; Space Station Freedom systems growth analysis; and growth accomodations and trades. Mission requirements analysis was performed to develop a realistic mission model of post-Phase 1 R&D missions. A systems-level analysis was performed to project incremental growth requirements of Space Station Freedom needed to support these R&D missions. Identification of growth requirements and specific growth elements led to the need for special accomodations analyses and trades. These studies included identification of hooks and scars on the baseline design, determination of an optimal module growth pattern, analysis of the dual keel length, and determination of an optimal locaton for the customer servicing facility. Results of this study show that Space Station Freedom must be capable of evolving to a dual keel, eight pressurized module configuration (two growth habs and two growth labs); providing 275 kW power (for experimenters and station housekeeping); accomodating a crew of 24; and supporting other growth structures and special facilities to meet projected R&D mission requirements.

  12. Overview of Mosquito Research Programs at the United States Department of Agriculture - Agricultural Research Service, Center for Medical, Agricultural & Veterinary Entomology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Center for Medical, Agricultural, and Veterinary Entomology (CMAVE), a U.S. Department of AgricultureAgricultural Research Service laboratory, was established in World War II to produce products to protect military personnel against insect vector of disease. Currently the mission of CMAVE is ...

  13. A North Adriatic centenarian: The marine research station at Rovinj

    NASA Astrophysics Data System (ADS)

    Zavodnik, D.

    1995-03-01

    The institute in Rovinj was founded in 1891 as the field station of the Berlin Aquarium. It soon gained in scientific importance. From 1911, it was governed by various scientific bodies, such as the ‘Kaiser-Wilhelm-Gesellschaft zur Förderung der Wissenschaften’, the ‘Reale Comitato Talassografico Italiano’, and the ‘Jugoslavenska Akademija znanosti i umjetnosti’. At present, it is a department of the ‘Ruđer Bo\\vsković’ Institute, called the ‘Center for Marine Research Rovinj’. In the past hundred years, the Rovinj station experienced several ascents and declines in its development: both in the First and Second World Wars the station's scientific equipment, research vessels, library and reference collections were dispersed, and from 1945 1948 the station was closed. But in “happier” periods, rich support by the state and international bodies favoured the increase in research facilities and promoted interest among visiting scientists. The station has always been involved in studies of the Adriatic Sea, especially in its northern part. It contributed much to general knowledge of oceanography, of the physics and chemistry of the sea, but its paramount contribution is to various disciplines of marine biological sciences. Applied research, however, was most oriented to fisheries biology, especially shellfish culture, to resource studies, and, recently, to toxicology, bacteriology, eutrophication and pollution monitoring. The international approach in science and applied research was always favoured. At present, the Center is well equipped for complex coastal and offshore field- and laboratory research, and maintains facilities for graduate and postgraduate teaching. Scientific dissemination is also promoted by the public aquarium and professional meetings.

  14. Use of international space station for fundamental physics research

    NASA Technical Reports Server (NTRS)

    Israelsson, U.; Lee, M. C.

    2002-01-01

    NASA's research plans aboard the International Space Station (ISS) are discussed. Experiments in low temperature physics and atomic physics are planned to commence in late 2005. Experiments in gravitational physics are planned to begin in 2007. A low temperature microgravity physics facility is under development for the low temperature and gravitation experiments.

  15. Research priorities for entering the 21st century. Pacific Northwest Research Station

    SciTech Connect

    1997-01-01

    Forest Service Research and the PNW Research Station developed linked strategic plans early in 1990s that provided broad research program direction in this changing social environment. There is now a national effort within Forest Service Research to anchor this broad direction to specific themes for the next several years, based on the emergence of such issues as ecological sustain-ability and joint resource use, integration, and broadscale and multiscale dimensions. The Pacific Northwest Research Station refers to these themes as intermediate-term priorities. This paper provides a foundation for defining PNW Research Station priorities in the intermediate term (3 to 5 years) and defines 11 intermediate-term priorities.

  16. Space Station accommodation engineering for Life Sciences Research Facilities

    NASA Technical Reports Server (NTRS)

    Hilchey, J.; Gustan, E.; Rudiger, C. E.

    1984-01-01

    Exploratory studies conducted by NASA Marshall Space Flight Center and several contractors in connection with defining the design requirements, parameters, and tradeoffs of the Life Sciences Research Facilities for nonhuman test subjects aboard the Space Station are reviewed. The major system discriminators which determine the size of the accommodation system are identified, along with a number of mission options. Moreover, characteristics of several vivarium concepts are summarized, focusing on the cost, size, variable-g capability, and the number of specimens accommodated. Finally, the objectives of the phase B studies of the Space Station Laboratory, which are planned for FY85, are described.

  17. Life sciences biomedical research planning for Space Station

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  18. A RESEARCH STUDY OF AGRICULTURAL TECHNICIANS.

    ERIC Educational Resources Information Center

    JENSEN, BRUCE F.

    QUESTIONNAIRES WERE MAILED TO 297 BUSINESS FIRMS TO DETERMINE THE CHARACTER OF THE WORK FORCE, THE TURNOVER OR OPENINGS ANNUALLY, THE JOB QUALIFICATIONS REQUIRED TO FILL THE JOBS, AND THE TRAINING PROGRAMS NEEDED TO PREPARE STUDENTS FOR THE OCCUPATIONS IN AGRICULTURAL BUSINESSES, GOVERNMENTAL AGENCIES, AND FARMS IN THE COLLEGE OF THE SEQUOIAS…

  19. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  20. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management.

    PubMed

    Smith, L A; Thomson, S J

    2003-01-01

    A research summary is presented that emphasizes ARS achievements in application technology over the past 2-3 years. Research focused on the improvement of agricultural pesticide application is important from the standpoint of crop protection as well as environmental safety. Application technology research is being actively pursued within the ARS, with a primary focus on application system development, drift management, efficacy enhancement and remote sensing. Research on application systems has included sensor-controlled hooded sprayers, new approaches to direct chemical injection, and aerial electrostatic sprayers. For aerial application, great improvements in on-board flow controllers permit accurate field application of chemicals. Aircraft parameters such as boom position and spray release height are being altered to determine their effect on drift. Other drift management research has focused on testing of low-drift nozzles, evaluation of pulsed spray technologies and evaluation of drift control adjuvants. Research on the use of air curtain sprayers in orchards, air-assist sprayers for row crops and vegetables, and air deflectors on aircraft has documented improvements in application efficacy. Research has shown that the fate of applied chemicals is influenced by soil properties, and this has implications for herbicide efficacy and dissipation in the environment. Remote sensing systems are being used to target areas in the field where pests are present so that spray can be directed to only those areas. Soil and crop conditions influence propensity for weeds and insects to proliferate in any given field area. Research has indicated distinct field patterns favorable for weed growth and insect concentration, which can provide further assistance for targeted spraying.

  1. Science and Technology Research Directions for the International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.

  2. 75 FR 12171 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ..., Education, and Economics Advisory Board Office, Room 3901, South Building, United States Department of... United States Department of Agriculture announces a meeting of the National Agricultural Research...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Notice of the National Agricultural Research,...

  3. 75 FR 61692 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... United States Department of Agriculture (USDA) announces a meeting of the National Agricultural Research..., Extension, Education, and Economics Advisory Board Office, Room 3901 South Building, United States...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Notice of the National Agricultural Research,...

  4. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - USDA BELTSVILLE AGRICULTURAL RESEARCH CENTER

    EPA Science Inventory

    A pollution prevention opportunity assessment (PPOA) was performed during the spring of 1991 which identified areas for waste reduction at the U.S. Department of Agriculture's Beltsville Agricultural Research Center (BARC), Beltsville, Maryland. he areas selected for this joint E...

  5. Benefits of Supervised Agricultural Experience Programs: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Williams, David L.; Dyer, James E.

    1997-01-01

    A review of literature from 1964 to 1993 identified the benefits of supervised agricultural experience (SAE) programs, including agriculture knowledge and positive work attitudes. Classroom, SAE, and Future Farmers of America complemented each other. The research base is state specific and fragmented and lacks cohesiveness. (SK)

  6. Identification of Emerging Science Competencies in Agriculture. Vocational Education Research.

    ERIC Educational Resources Information Center

    Louisiana State Univ., Baton Rouge. School of Vocational Education.

    A research project identified new and emerging science concepts that should be taught in high school vocational agriculture. Agricultural scientists on an advisory panel identified the emerging science concepts. The majority were in the areas of plant science and animal science. Animal science was completely reorganized with greater emphasis on…

  7. The dawn of the Southern Plains Range Research Station

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On 31 October 1913, U.S. Senator Thomas P. Gore announced that Woodward would be the site of the government experiment farm in western Oklahoma. This marked the beginning of a century of USDA agricultural research on the southern Great Plains. A 160 acre parcel of land located southwest of the cit...

  8. Wind, rain and soil erosion rates on bare and plant covered agriculture plots at the experimental station of El Teularet -Sierra de Enguera, Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Azorin-Molina, C.; Iserloh, Th.

    2012-04-01

    Soil erosion is being scientifically researched for more tan one century, but there is some knowledge lacks that should be researched. Within the factors of the soil erosion wind and rain were studied, but little is know about the impact of the combination of both. Soil erosion by wind was mainly studied on drylands and agriculture land (Sterk and Spaan, 1997; Bielders et al., 2002; Rajot et al., 2003; Zobeck et al., 2003). Soil erosion by water was studied in many ecosystems but it is especially active on agriculture land (Cerdà et al., 2009) and under Mediterranean climatic conditions (Cerdà et al., 2010). The importance of wind on soil erosion is base in the fact that rainstorms occurs with wind, adding a driving component to the falling raindrops. The influence of wind on raindrops is clear, but there is not measurements and there is no information of this influence under field conditions with natural rainfall events.This paper aims to determine the interaction between wind and rain as factors of the soil losses under Mediterranean climatic conditions and different agriculture managements and land uses. Since 2003, the El Teularet-Serra de Enguera Soil Erosion Experimental Station located in Eastern Spain is measuring the soil losses in plots under different land uses and land managements. The station is devoted to study the soil water erosion processes under rain-fed agriculture fields and the rangelands by means of simulated rainfall experiments and plots of different sizes. The soil erosion measure ments are done by means of 13 plots, each of them composed of 5 subplots of 1, 2, 4, 16 and 48 m2 under different land uses and managements. Two plots are covered by two different types of shrubs: Quercus coccifera and Ulex parviflorus, respectively. Three plots reproduce the use of herbicides, one is ploughed, and three plots follow conservation practices (oats and beans with no-tillage, with tillage, and with a vege- tation cover of weeds). Other plots are

  9. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The life sciences research facilities for the Space Station are being designed to accommodate both animal and plant specimens for long durations studies. This will enable research on how living systems adapt to microgravity, how gravity has shaped and affected life on earth, and further the understanding of basic biological phenomena. This would include multigeneration experiments on the effects of microgravity on the reproduction, development, growth, physiology, behavior, and aging of organisms. To achieve these research goals, a modular habitat system and on-board variable gravity centrifuges, capable of holding various animal, plant, cells and tissues, is proposed for the science laboratory.

  10. Lewis Research Center space station electric power system test facilities

    NASA Technical Reports Server (NTRS)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  11. Hexabromocyclododecane flame retardant in Antarctica: Research stations as sources.

    PubMed

    Chen, Da; Hale, Robert C; La Guardia, Mark J; Luellen, Drew; Kim, Stacy; Geisz, Heidi N

    2015-11-01

    Historical persistent organic pollutants (POPs) are banned from Antarctica under international treaty; but contemporary-use POPs can enter as additives within polymer and textile products. Over their useful lives these products may release additives in-situ. Indeed, we observed 226 and 109 ng/g dry weight (dw) of the total concentrations of α-, β- and γ-hexabromocyclododecane (HBCD) in indoor dust from McMurdo Station (U.S.) and Scott Station (New Zealand), respectively. Sewage sludge collected from wastewater treatment facilities at these stations exhibited ∑HBCD of 45 and 69 ng/g dw, respectively. Contaminants originally within the bases may exit to the local outdoor environment via wastewaters. Near McMurdo, maximum ∑HBCD levels in surficial marine sediments and aquatic biota (invertebrates and fish) were 2350 ng/g (total organic carbon basis) and 554 ng/g lipid weight, respectively. Levels declined with distance from McMurdo. Our results illustrate that Antarctic research stations serve as local HBCD sources to the pristine Antarctic environment.

  12. Research progress and accomplishments on International Space Station.

    PubMed

    Roe, Lesa B; Uri, John J

    2003-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks.

  13. Research progress and accomplishments on International Space Station

    NASA Technical Reports Server (NTRS)

    Roe, Lesa B.; Uri, John J.

    2003-01-01

    The first research payloads reached the International Space Station (ISS) more than two years ago, with research operating continuously since March 2001. Seven research racks are currently on-orbit, with three more arriving soon to expand science capabilities. Through the first five expeditions, 60 unique NASA-managed investigations from 11 nations have been supported, many continuing into later missions. More than 90,000 experiment hours have been completed, and more than 1,000 hours of crew time have been dedicated to research, numbers that grow daily. The multidisciplinary program includes research in life sciences, physical sciences, biotechnology, Earth sciences, technology demonstrations as well as commercial endeavors and educational activities. The Payload Operations and Integration Center monitors the onboard activities around the clock, working with numerous Principal Investigators and Payload Developers at their remote sites. Future years will see expansion of the station with research modules provided by the European Space Agency and Japan, which will be outfitted with additional research racks. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  14. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  15. Physical sciences research plans for the International Space Station.

    PubMed

    Trinh, E H

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities.

  16. Reporting and Interpreting Effect Size in Quantitative Agricultural Education Research

    ERIC Educational Resources Information Center

    Kotrlik, Joe W.; Williams, Heather A.; Jabor, M. Khata

    2011-01-01

    The Journal of Agricultural Education (JAE) requires authors to follow the guidelines stated in the Publication Manual of the American Psychological Association [APA] (2009) in preparing research manuscripts, and to utilize accepted research and statistical methods in conducting quantitative research studies. The APA recommends the reporting of…

  17. Considerations for conducting research in agricultural biotechnology.

    PubMed

    Shelton, Anthony M

    2003-06-01

    Science has shown its increased vulnerability because of two recent high-profile articles published in major journals on corn produced through biotechnology: a laboratory report suggesting profound consequences to monarch butterfly populations due to Bt corn pollen and a report suggesting transgenic introgression into Mexican maize. While both studies have been widely regarded as having flawed methodology, publishing these studies has created great consternation in the scientific community, regulatory agencies and the general public. There are roles and responsibilities of scientists, scientific journals, the public media, public agencies, and those who oppose or advocate a specific technology, and serious consequences when those roles and responsibilities go awry. Modern communication may exacerbate the flow of misinformation and easily lead to a decline in public confidence about biotechnology and science. However, common sense tells us that scientific inquiry and the publication and reporting of results should be performed with high standards of ethical behavior, regardless of one's personal perspective on agricultural biotechnology.

  18. Space Station Freedom: a unique laboratory for gravitational biology research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Cowing, K. L.

    1993-01-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.

  19. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.

    2014-01-01

    The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials

  20. Fundamental Biological Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, K. A.; Yost, Bruce; Fletcher, L.; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    The fundamental Biology Program of NASA's Life Sciences Division is chartered with enabling and sponsoring research on the International Space Station (ISS) in order to understand the effects of the space flight environment, particularly microgravity, on living systems. To accomplish this goal, NASA Ames Research Center (ARC) has been tasked with managing the development of a number of biological habitats, along with their support systems infrastructure. This integrated suite of habitats and support systems is being designed to support research requirements identified by the scientific community. As such, it will support investigations using cells and tissues, avian eggs, insects, plants, aquatic organisms and rodents. Studies following organisms through complete life cycles and over multiple generations will eventually be possible. As an adjunct to the development of these basic habitats, specific analytical and monitoring technologies are being targeted for maturation to complete the research cycle by transferring existing or emerging analytical techniques, sensors, and processes from the laboratory bench to the ISS research platform.

  1. Biotechnology: The U.S. Department of Agriculture's Biotechnology Research Efforts. Briefing Report. To the Chairman, Committee on Science and Technology, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Information pertaining to biotechnology research that was funded in whole or in part by the U.S. Department of Agriculture (USDA) is presented in this report. Findings obtained from state agricultural experimental stations and colleges of veterinary medicine are discussed in 11 appendices. These include: (1) information on USDA's biotechnology…

  2. 76 FR 62755 - National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Office of the Secretary National Agricultural Research, Extension, Education, and Economics Advisory Board Meeting Notice AGENCY: Research, Education, and Economics, United States Department of Agriculture..., and Economics Advisory Board. DATES: The National Agricultural Research, Extension, Education,...

  3. New directions at TVA with special reference to agricultural research

    SciTech Connect

    Williams, R.J.; Rylant, K.E.

    1994-03-01

    Public Support for the Tennessee Valley Authority`s (TVA) fertilizer research and development program in Muscle Shoals, Alabama, ended in fiscal year 1993. TVA`s research center at Muscle Shoals, formerly known as the National Fertilizer and Environmental Research Center, is now the TVA Environmental Research Center. Efforts at the Center have diversified to include research and support areas of Agricultural Research and Practices, Atmospheric Sciences, Biotechnology, Waste Management, and Remediation, Environmental Site Remediation, Support Services, Environmental Management, and Technology Transfer. ``We`re building on the expertise and success of our earlier research and focusing our new projects on emerging problems of the 21st century,`` TVA`s Chairman Craven Crowell said in prepared remarks to Congress on March 2, 1994. Agricultural Research in TVA has been aligned with corporate objectives to develop solutions to environmental problems of regional, national and international significance because the agency`s business incorporates a broad mix of responsibilities, including power generation, navigation, flood control, shoreline management, recreation, environmental research, and economic development. Agricultural strategies for watershed protection lie at the core of TVA`s new agricultural research agenda. The major influences for this agenda are TVA`s direct stewardship responsibilities for the 60,000 miles of streams that feed the 652-mile-long Tennessee River; the 11,000 miles of shoreline; and 470,000 acres of TVA-managed public land.

  4. International Research Results and Accomplishments From the International Space Station

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; Karabadzhak, Georgy; Sorokin, Igor V.; Cotronei, Vittorio; Sabbagh, Jean

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will

  5. Microgravity fluid physics research in the Space Station Freedom era

    NASA Technical Reports Server (NTRS)

    Carpenter, Bradley M.

    1992-01-01

    Microgravity fluid physics covers an exciting range of established and potential fields of scientific research. Areas in which the Microgravity Science and Applications Division of NASA's Office of Space Science and Applications is currently supporting research include: multiphase flow and phase change heat transfer, behavior of granular media and colloids; and interface dynamics, morphological stability, and contact line phenomena. As they contribute to our knowledge of fluid behavior, advances in these areas will enhance our understanding of materials processing on Earth and in space, and will contribute to technologies as diverse as chemical extraction, the prediction of soil behavior in earthquakes, and the production of oil reservoirs. NASA' s primary platform for research in microgravity fluid physics will soon be the Fluid Physics/Dynamics Facility on Space Station Freedom. This facility shares a rack for control and utilities with the Modular Combustion Facility, and has one rack for experiment-unique instruments. It is planned to change out the content of the experiment-unique rack at intervals on the order of one year. In order to obtain a maximum return on the operation of the facility during these intervals, the research community must carefully plan and coordinate an effort that brings the efforts of many investigators to bear on problems of particular importance. NASA is currently working with the community to identify research areas in which microgravity can make a unique and valuable contribution, and to build a balanced program of research around these areas or thrusts. Selections will soon be made from our first solicitation for research in fluid dynamics and transport phenomena. These solicitations will build the research community that will make Space Station Freedom a catalyst for scientific and technological discovery, and offer U.S. scientists in many disciplines a unique opportunity to participate in space science.

  6. Sustaining the Earth's watersheds, agricultural research data system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  7. Rhetorical Structure of Research Articles in Agricultural Science

    ERIC Educational Resources Information Center

    Shi, Huimin; Wannaruk, Anchalee

    2014-01-01

    Although the rhetorical structure of research articles (RA) has been extensively examined from individual sections to complete IMRD sections regarding different disciplines, no research has been addressed to the overall rhetorical structure of RAs as a whole entity in the field of agricultural science. In this study, we analyzed 45 agricultural…

  8. Social Science Research on Biotechnology and Agriculture: A Critique.

    ERIC Educational Resources Information Center

    Buttel, Frederick H.

    1989-01-01

    Examines trends in social science research on biotechnology and agriculture. Discusses role of private industry's biotechnology "hype" in defining social science research policy in universities. Suggests that widespread promotion of biotechnology as "revolutionary" contributed to lack of academic scrutiny. Examines social…

  9. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  10. Agricultural weed research: a critique and two proposals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two broad aims drive weed science research: improved management and improved understanding of weed biology and ecology. In recent years, agricultural weed research addressing these two aims has effectively split into separate sub-disciplines despite repeated calls for greater integration. While some...

  11. A Study of Research Utilization Processes in British Agriculture.

    ERIC Educational Resources Information Center

    Bruce, R.L.

    This study, done in England and Wales, was a first step in developing a model or set of models for describing processes by which agricultural research findings are put into practice. It was decided that the model should be based on actual instances of transmission and use of research. Models by the author and by others were used in developing…

  12. Flashline Mars Arctic Research Station (FMARS) 2009 Crew Perspectives

    NASA Technical Reports Server (NTRS)

    Ferrone, Kristine; Cusack, Stacy L.; Garvin, Christy; Kramer, Walter Vernon; Palaia, Joseph E., IV; Shiro, Brian

    2010-01-01

    A crew of six "astronauts" inhabited the Mars Society s Flashline Mars Arctic Research Station (FMARS) for the month of July 2009, conducting a simulated Mars exploration mission. In addition to the various technical achievements during the mission, the crew learned a vast amount about themselves and about human factors relevant to a future mission to Mars. Their experiences, detailed in their own words, show the passion of those with strong commitment to space exploration and detail the human experiences for space explorers including separation from loved ones, interpersonal conflict, dietary considerations, and the exhilaration of surmounting difficult challenges.

  13. Space Station Centrifuge: A Requirement for Life Science Research

    NASA Technical Reports Server (NTRS)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  14. Research station to aid multidisciplinary study of Upper Mississippi River

    NASA Astrophysics Data System (ADS)

    Nakato, Tatsuaki

    IIHR-Hydroscience and Engineering (formerly Iowa Institute of Hydraulic Research) of the University of Iowa's College of Engineering is establishing a Mississippi Riverside Environmental Research Station (MRERS) to provide opportunities for researchers and educators around the world to study river ecosystems in a multidisciplinary setting. MRERS will provide state-of-the-art facilities to study diverse facets of the upper Mississippi River to better understand river ecosystems and their response to natural events and human activities. It will also provide students at all levels with hands-on experience as well as opportunities for public education. In light of recent flooding in the region last spring, establishment of MRERS is timely MRERS will bring a truly multidisciplinary approach to understanding and planning for one of the country's most important natural resources: the mighty Mississippi.

  15. Integration of multiple research disciplines on the International Space Station

    NASA Technical Reports Server (NTRS)

    Penley, N. J.; Uri, J.; Sivils, T.; Bartoe, J. D.

    2000-01-01

    The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented. c 2000 Published by Elsevier Science Ltd. All rights reserved.

  16. The International Space Station Research Opportunities and Accomplishments

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.

    2011-01-01

    In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper

  17. Schneefernerhaus as a mountain research station for clouds and turbulence

    NASA Astrophysics Data System (ADS)

    Risius, S.; Xu, H.; Di Lorenzo, F.; Xi, H.; Siebert, H.; Shaw, R. A.; Bodenschatz, E.

    2015-08-01

    Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground-based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud-turbulence research. The wind at UFS is dominantly in the east-west direction and nearly horizontal. During the summertime (July and August) the UFS is immersed in warm clouds about 25 % of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second- and third-order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 104, with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the "Lumley triangle".

  18. Research on the International Space Station - An Overview

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  19. Facilities for Biological Research Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

    1996-01-01

    A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

  20. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  1. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  2. Accomplishments in bioastronautics research aboard International Space Station

    NASA Astrophysics Data System (ADS)

    Uri, John J.; Haven, Cynthia P.

    2005-05-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  3. Readership Study of an Agricultural Magazine.

    ERIC Educational Resources Information Center

    Holmes, Ted

    Since the fall of 1957, the Louisiana Agricultural Experiment Station has published a semi-scientific quarterly magazine, "Louisiana Agriculture," to present information on the station's research to Louisiana citizens, particularly public officials, members of the agribusiness sector, science-oriented farmers, agriculture and science…

  4. 76 FR 13124 - Notice of the National Agricultural Research, Extension, Education, and Economics Advisory Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... United States Department of Agriculture (USDA) announces a meeting of the National Agricultural Research..., United States Department of Agriculture, STOP 0321, 1400 Independence Avenue, SW., Washington, DC 20250...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Notice of the National Agricultural Research,...

  5. Results of microbial research of environment of international space station

    NASA Astrophysics Data System (ADS)

    Novikova, N.; Poddubko, S.; Deshevaya, E.; Polikarpov, N.; Rakova, N.

    Many years of exploitation of orbital space stations have moved forward ecological problems among which microbial society of the environment plays a most important role. Qualitative and quantitative characteristics of microorganisms in the environment of a space object can change considerably under the influence of conditions of space flight. In the process of exploitation of the International Space Station (ISS) microflora of air, interior surfaces and equipment is monitored on a regular basis to keep continuous assessment of sanitary and microbiological state of the environment. Up to the present time 32 species of microorganisms have been recovered in the ISS, namely 15species f bacteria and 17 species of moldy fungi. In the composition of microbial species mainly nonpathogenic species have been found. However, a number of bacteria discovered on the ISS, particularly some representatives of human microflora, are capable of causing different diseases when human immune system is compromised. Moreover, some bacteria and a considerable number of fungi are known to be potential biodestructors of construction materials, which leads to biodeterioration of construction materials and equipment. Results of our research show that the existing set of life-supporting systems can maintain microbial contamination within regulated levels. Furthermore, constant microbial monitoring of the environment is an integral part, which provides for the safety of space missions.

  6. Space Station thermal storage/refrigeration system research and development

    NASA Technical Reports Server (NTRS)

    Dean, W. G.; Karu, Z. S.

    1993-01-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  7. Space Station thermal storage/refrigeration system research and development

    NASA Astrophysics Data System (ADS)

    Dean, W. G.; Karu, Z. S.

    1993-02-01

    Space Station thermal loading conditions represent an order of magnitude increase over current and previous spacecraft such as Skylab, Apollo, Pegasus III, Lunar Rover Vehicle, and Lockheed TRIDENT missiles. Thermal storage units (TSU's) were successfully used on these as well as many applications for ground based solar energy storage applications. It is desirable to store thermal energy during peak loading conditions as an alternative to providing increased radiator surface area which adds to the weight of the system. Basically, TSU's store heat by melting a phase change material (PCM) such as a paraffin. The physical property data for the PCM's used in the design of these TSU's is well defined in the literature. Design techniques are generally well established for the TSU's. However, the Space Station provides a new challenge in the application of these data and techniques because of three factors: the large size of the TSU required, the integration of the TSU for the Space Station thermal management concept with its diverse opportunities for storage application, and the TSU's interface with a two-phase (liquid/vapor) thermal bus/central heat rejection system. The objective in the thermal storage research and development task was to design, fabricate, and test a demonstration unit. One test article was to be a passive thermal storage unit capable of storing frozen food at -20 F for a minimum of 90 days. A second unit was to be capable of storing frozen biological samples at -94 F, again for a minimum of 90 days. The articles developed were compatible with shuttle mission conditions, including safety and handling by astronauts. Further, storage rack concepts were presented so that these units can be integrated into Space Station logistics module storage racks. The extreme sensitivity of spacecraft radiator systems design-to-heat rejection temperature requirements is well known. A large radiator area penalty is incurred if low temperatures are accommodated via a

  8. Research in Agricultural Education Programs Beyond High School.

    ERIC Educational Resources Information Center

    Persons, Edgar, Ed.; Copa, George, Ed.

    Concentrating on research in agricultural programs beyond the high schools, this 1970 Central Region conference report includes material applicable to area vocational technical schools, junior and community colleges, and continuing education for beginning and adult farmers. Each of these groups developed a list of interests, needs, and problems…

  9. USU research helps agriculture enter the space age

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1987-01-01

    Research at the Utah State University College of Agriculture that is relevant to the space life sciences is reviewed. Specific programs detailed are gravitropism of dicot stems, maximization of wheat yields for use in space exploration, and plant development processes in wheat in microgravity.

  10. Undergraduate Research in Agriculture: Constructivism and the Scholarship of Discovery

    ERIC Educational Resources Information Center

    Splan, Rebecca K.; Porr, C. A. Shea; Broyles, Thomas W.

    2011-01-01

    Experiential learning is a hallmark of undergraduate education programs in the agricultural sciences, and is aligned with constructivist learning theory. This interpretivist qualitative study used historical research methodology to analyze the epistemological underpinnings of constructivism and explore the construct's relationship to undergraduate…

  11. The Global Research Alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Global Research Alliance on Agricultural Greenhouse Gases was proposed by New Zealand at the United Nations Framework Convention on Climate Change Conference of the Parties (COP) in Copenhagen in 2009 and developed in partnership with the United States. This alliance now includes 32 member count...

  12. Agricultural Research Needs and Priorities as Perceived by West Virginia Vocational Agriculture Teachers and County Extension Agents. Miscellaneous Publication 11.

    ERIC Educational Resources Information Center

    Chalamira, Lucas R.; Lawrence, Layle D.

    Data were obtained in 1982 from 196 vocational agriculture teachers and 48 county agricultural extension agents identifying specific problems in West Virginia's agriculture that were most in need of research solutions. Multiflora rose eradication, coping with high production costs and interest rates, and improving state level funding for extension…

  13. Exposure of farm workers to electromagnetic radiation from cellular network radio base stations situated on rural agricultural land.

    PubMed

    Pascuzzi, Simone; Santoro, Francesco

    2015-01-01

    The electromagnetic field (EMF) levels generated by mobile telephone radio base stations (RBS) situated on rural-agricultural lands were assessed in order to evaluate the exposure of farm workers in the surrounding area. The expected EMF at various distances from a mobile telephone RBS was calculated using an ad hoc numerical forecast model. Subsequently, the electric fields around some RBS on agricultural lands were measured, in order to obtain a good approximation of the effective conditions at the investigated sites. The viability of this study was tested according to the Italian Regulations concerning general and occupational public exposure to time-varying EMFs. The calculated E-field values were obtained with the RBS working constantly at full power, but during the in situ measurements the actual power emitted by RBS antennas was lower than the maximum level, and the E-field values actually registered were much lower than the calculated values.

  14. Mini Neutron Monitors at Concordia Research Station, Central Antarctica

    NASA Astrophysics Data System (ADS)

    Poluianov, Stepan; Usoskin, Ilya; Mishev, Alexander; Moraal, Harm; Kruger, Helena; Casasanta, Giampietro; Traversi, Rita; Udisti, Roberto

    2015-12-01

    Two mini neutron monitors are installed at Concordia research station (Dome C, Central Antarctica, 75° 06' S, 123° 23' E, 3,233 m.a.s.l.). The site has unique properties ideal for cosmic ray measurements, especially for the detection of solar energetic particles: very low cutoff rigidity < 0.01 GV, high elevation and poleward asymptotic acceptance cones pointing to geographical latitudes > 75° S. The instruments consist of a standard neutron monitor and a "bare" (lead-free) neutron monitor. The instrument operation started in mid-January 2015. The barometric correction coefficients were computed for the period from 1 February to 31 July 2015. Several interesting events, including two notable Forbush decreases on 17 March 2015 and 22 June 2015, and a solar particle event of 29 October 2015 were registered. The data sets are available at cosmicrays.oulu.fi and nmdb.eu.

  15. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: long-term precipitation database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term precipitation database has been developed by the U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Research Unit (PSWMRU) to support intensive hydrologic and water quality research within WE-38, a 7.3 km**2 experimental watershed loca...

  16. Psychosocial Research on the International Space Station: Special Privacy Considerations

    NASA Astrophysics Data System (ADS)

    Kanas, N.; Salnitskiy, V.; Ritsher, J.; Grund, E.; Weiss, D.; Gushin, V.; Kozerenko, O.

    Conducting psychosocial research with astronauts and cosmonauts requires special privacy and confidentiality precautions due to the high profile nature of the subject population and to individual crewmember perception of the risks inherent in divulging sensitive psychological information. Sampling from this small population necessitates subject protections above and beyond standard scientific human subject protocols. Many of these protections have relevance for psychosocial research on the International Space Station. In our previous study of psychosocial issues involving crewmembers on the Mir space station, special precautions were taken during each phase of the missions. These were implemented in order to gain the trust necessary to ameliorate the perceived risks of divulging potentially sensitive psychological information and to encourage candid responses. Pre-flight, a standard confidentiality agreement was provided along with a special layman's summary indicating that only group-level data would be presented, and subjects chose their own ID codes known only to themselves. In-flight, special procedures and technologies (such as encryption) were employed to protect the data during the collection. Post-flight, an analytic strategy was chosen to further mask subject identifiers, and draft manuscripts were reviewed by the astronaut office prior to publication. All of the eligible five astronauts and eight cosmonauts who flew joint US/Russian missions on the Mir were successfully recruited to participate, and their data completion rate was 76%. Descriptive analyses of the data indicated that there was sufficient variability in all of the measures to indicate that thoughtful, discriminating responses were being provided (e.g., the full range of response options was used in 63 of the 65 items of the Profile of Mood States measure, and both true and false response options were used in all 126 items of the Group Environment and the Work Environment measures). This

  17. Impact of new Food and Drug Administration regulations on college, university, and experiment station researchers.

    PubMed

    Willett, L B

    1981-09-01

    The Good Laboratory Practice regulations adopted by the Food and Drug Administration describe specific procedures to assure the integrity of the research results. Those studies conducted with the intent to provide data on the safety of drugs and chemicals will be required to comply with the published relations. The process of bringing research laboratories into compliance with the regulations may be either arduous or fairly routine depending on the organization, goals, and type of research. Typically, the Good Laboratory Practice regulations will increase sharply the cost of health safety information. Hiring more and better trained technical and professional personnel will be much of this expense. If university and experiment station researchers choose to avoid compliance with these regulations, then agricultural research science may not continue to be recognized as an authority on the safety of products used for production of human food. Irrespective of whether universities choose to conduct regulated research or delegate this role to other segments of society, academic institutions must assume the role of training those individuals needed to conduct toxicity research.

  18. Human factors in space station architecture 1: Space station program implications for human factors research

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  19. Habitability research priorities for the International Space Station and beyond.

    PubMed

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  20. Research Priorities for the International Space Station and Beyond

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Adolf, Jurine A.; Woolford, Barbara J.

    1999-01-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  1. Factors affecting the perceptions of Iranian agricultural researchers towards nanotechnology.

    PubMed

    Hosseini, Seyed Mahmood; Rezaei, Rohollah

    2011-07-01

    This descriptive survey research was undertaken to design appropriate programs for the creation of a positive perception of nanotechnology among their intended beneficiaries. In order to do that, the factors affecting positive perceptions were defined. A stratified random sample of 278 science board members was selected out of 984 researchers who were working in 22 National Agricultural Research Institutions (NARIs). Data were collected by using a mailed questionnaire. The descriptive results revealed that more than half of the respondents had "low" or "very low" familiarity with nanotechnology. Regression analysis indicated that the perceptions of Iranian NARI Science Board Members towards nanotechnology were explained by three variables: the level of their familiarity with emerging applications of nanotechnology in agriculture, the level of their familiarity with nanotechnology and their work experiences. The findings of this study can contribute to a better understanding of the present situation of the development of nanotechnology and the planning of appropriate programs for creating a positive perception of nanotechnology.

  2. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  3. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  4. X-38 research aircraft launch from Space Station - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, CA, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some problems

  5. Translational Cellular Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Love, John; Cooley, Vic

    2016-01-01

    The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a

  6. 78 FR 14071 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... United States Department of Agriculture announces the appointments made by the Secretary of Agriculture... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE..., Education, and Economics Advisory Board AGENCY: Research, Education, and Economics, USDA....

  7. The design of a permanent lunar research station

    NASA Astrophysics Data System (ADS)

    Thomas, James R.

    The advancement of the United States' efforts in space exploration and research requires the establishment of a permanent manned lunar research station. This paper explores the possible design of such a facility. The use of a thin hedratecture dome covering a lunar depression is used to shield three multipurpose buildings and one command and control facility. Provisions for STS shuttle landings and take-off is also explored. The multipurpose buildings are designed using steel framing and cladding. The entire facility, capable of housing a team of thirty, could be transported by one shuttle. The buildings would arrive ready for erection within the completed dome. Steel was selected due to the low cost, high strength to weight ratio, long term durability, ready availability, quality control, and in-place availability of preengineering and fabrication. With the successful installation of the first facility, standardization would lower the already attractive cost for future projects. Facilities of this type could be erected quickly and inexpensively anywhere on the lunar surface.

  8. Commercial Research Results from the International Space Station

    NASA Technical Reports Server (NTRS)

    Nall, Mark

    2003-01-01

    As part of NASA's mission of enabling commercial opportunities in space, the Space Product Development Office has sponsored the flight of twelve commercial payloads to the International Space Station (ISS) during calendar year 2002. These twelve follow seven commercial payloads flown to the ISS during 2001. Many of these payloads, which were among the first users of this new laboratory, built upon successful commercial investigations that previously were restricted to the limited flight duration of the Space Shuttle. While the majority of early commercial use of the ISS is in the area of biotechnology, there is a significant shift towards commercial materials research over the next two years. New commercial payloads such as Space-DRUMS and Vulcan will advance commercial materials research on the ISS. Commercial flight hardware is available to the broader NASA community in order to provide benefit to the entire NASA microgravity program, and the scientific community on a space available basis and at very low cost. The first commercial operations on the ISS provides not only a needed capability to the commercial development of space program, it will also augment the science program as well.

  9. 77 FR 7565 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ...; ] DEPARTMENT OF AGRICULTURE National Institute of Food and Agriculture Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative AGENCY: National Institute of Food and Agriculture, USDA. ACTION: Notice; correction. SUMMARY: The Department of Agriculture published a document in...

  10. 78 FR 25691 - Meeting Notice of the National Agricultural Research, Extension, Education, and Economics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... United States Department of Agriculture (USDA) announces a meeting of the National Agricultural Research..., United States Department of Agriculture, STOP 0321, 1400 Independence Avenue SW., Washington, DC 20250...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Meeting Notice of the National Agricultural...

  11. Space Station Human Factors Research Review. Volume 4: Inhouse Advanced Development and Research

    NASA Technical Reports Server (NTRS)

    Tanner, Trieve (Editor); Clearwater, Yvonne A. (Editor); Cohen, Marc M. (Editor)

    1988-01-01

    A variety of human factors studies related to space station design are presented. Subjects include proximity operations and window design, spatial perceptual issues regarding displays, image management, workload research, spatial cognition, virtual interface, fault diagnosis in orbital refueling, and error tolerance and procedure aids.

  12. New Jersey Land-Use Planning Techniques and Legislation. Agricultural Experiment Station Bulletin AE-338.

    ERIC Educational Resources Information Center

    Schneider, Lee D.

    In response to recent urban to rural migration trends and the development of rather piecemeal land use policies and practices by local, state, and Federal decision makers, the U.S. Department of Agriculture has established a regional project (NE-78) and this report reflects the first of three major project objectives (to describe and appraise…

  13. Instructional Materials Available from Agricultural Education Teaching Materials Center, College Station, Texas. Price List No. 1.

    ERIC Educational Resources Information Center

    Agricultural Education Teaching Materials Center, College Station, TX.

    Price lists and order forms are provided for courses of study, lesson plans, and laboratory exercises for vocational agriculture cooperative education and preemployment laboratory training. Courses of study and required references are listed for training employees for: (1) milk, meat, and poultry processing, (2) poultry hatcheries, (3) dairy…

  14. Career opportunities for college graduates with the Agricultural Research Service Agency of the U.S. Department of Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Agricultural Research Service is the principal scientific research agency of the U.S. Department of Agriculture. This agency employs more than 7,600 people working at various locations in the United States and U.S. territories. Careers for new scientists span a variety of disciplines such as c...

  15. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John; Aicher, Winfried

    2013-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1000 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  16. Rodent Research on the International Space Station - A Look Forward

    NASA Technical Reports Server (NTRS)

    Kapusta, A. B.; Smithwick, M.; Wigley, C. L.

    2014-01-01

    Rodent Research on the International Space Station (ISS) is one of the highest priority science activities being supported by NASA and is planned for up to two flights per year. The first Rodent Research flight, Rodent Research-1 (RR-1) validates the hardware and basic science operations (dissections and tissue preservation). Subsequent flights will add new capabilities to support rodent research on the ISS. RR-1 will validate the following capabilities: animal husbandry for up to 30 days, video downlink to support animal health checks and scientific analysis, on-orbit dissections, sample preservation in RNA. Later and formalin, sample transfer from formalin to ethanol (hindlimbs), rapid cool-down and subsequent freezing at -80 of tissues and carcasses, sample return and recovery. RR-2, scheduled for SpX-6 (Winter 20142015) will add the following capabilities: animal husbandry for up to 60 days, RFID chip reader for individual animal identification, water refill and food replenishment, anesthesia and recovery, bone densitometry, blood collection (via cardiac puncture), blood separation via centrifugation, soft tissue fixation in formalin with transfer to ethanol, and delivery of injectable drugs that require frozen storage prior to use. Additional capabilities are also planned for future flights and these include but are not limited to male mice, live animal return, and the development of experiment unique equipment to support science requirements for principal investigators that are selected for flight. In addition to the hardware capabilities to support rodent research the Crew Office has implemented a training program in generic rodent skills for all USOS crew members during their pre-assignment training rotation. This class includes training in general animal handling, euthanasia, injections, and dissections. The dissection portion of this training focuses on the dissection of the spleen, liver, kidney with adrenals, brain, eyes, and hindlimbs. By achieving and

  17. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, S. E.; Lehman, J. R.; Frazier, N. C.

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400degC. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  18. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  19. Research priorities for harnessing plant microbiomes in sustainable agriculture

    PubMed Central

    Soman, Chinmay; Wagner, Maggie R.; Friesen, Maren L.; Kremer, James; Bennett, Alison; Morsy, Mustafa; Eisen, Jonathan A.; Leach, Jan E.; Dangl, Jeffery L.

    2017-01-01

    Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes—i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance—into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host–microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply. PMID:28350798

  20. Support for international agricultural research: current status and future challenges.

    PubMed

    Zeigler, Robert S; Mohanty, Samarendu

    2010-11-30

    The success of the first Green Revolution in the form of abundant food supplies and low prices over the past two decades has diverted the world's attention from agriculture to other pressing issues. This has resulted in lower support for the agricultural research work primarily undertaken by the 15 research centers of the Consultative Group on International Agricultural Research (CGIAR). The total support in real dollars for most of the last three decades has been more or less flat although the number of centers increased from 4 to 15. However, since 2000, the funding situation has improved for the CGIAR centers, with almost all the increase coming from grants earmarked for specific research projects. Even for some centers such as the International Rice Research Institute (IRRI), the downward trend continued as late as 2006 with the budget in real dollars reaching the 1978 level of support. The recent food crisis has renewed the call for a second Green Revolution by revitalizing yield growth to feed the world in the face of growing population and a shrinking land base for agricultural use. The slowdown in yield growth because of decades of neglect in agricultural research and infrastructure development has been identified as the underlying reason for the recent food crisis. For the second Green Revolution to be successful, the CGIAR centers will have to play a complex role by expanding productivity in a sustainable manner with fewer resources. Thus, it is crucial to examine the current structure of support for the CGIAR centers and identify the challenges ahead in terms of source and end use of funds for the success of the second Green Revolution. The objective of this paper is to provide a historical perspective on the support to the CGIAR centers and to examine the current status of funding, in particular, the role of project-specific grants in rebuilding capacity of these centers. The paper will also discuss the nature of the support (unrestricted vs. project

  1. Agricultural Research Service research highlights in remote sensing for calendar year 1980

    NASA Technical Reports Server (NTRS)

    Ritchie, J. C. (Principal Investigator)

    1981-01-01

    The AR research mission in remote sensing is to develop the basic understanding of the soil plant animal atmosphere continuum in agricultural ecosystems and to determine when remotely sensed data can be used to provide information about these agricultural ecosystems. A brief statement of the significant results of each project is given. A list of 1980 publication and location contacts is also given.

  2. Materials Science Research Rack Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Frazier, Natalie C.; Johnson, Jimmie; Aicher, Winfried

    2011-01-01

    The Materials Science Research Rack (MSRR) allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly logging more than 550 hours of operating time. Materials science is an integral part of development of new materials for everyday life here on Earth. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility containing two furnace inserts in which Sample Cartridge Assemblies (SCAs), each containing one material sample, can be processed up to temperatures of 1400C. Once an SCA is installed by a Crew Member, the experiment can be run by automatic command or science conducted via telemetry commands from the ground. Initially, 12 SCAs were processed in the first furnace insert for a team of European and US investigators. The processed samples have been returned to Earth for evaluation and comparison of their properties to samples similarly processed on the ground. A preliminary examination of the samples indicates that the majority of the desired science objectives have been successfully met leading to significant improvements in the understanding of alloy solidification processes. The second furnace insert will be installed in the facility in January 2011 for processing the remaining SCA currently on orbit. Six SCAs are planned for launch summer 2011, and additional batches are

  3. Organic Research Activities of the USDA’s Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic research is a vital and ongoing part of the overall ARS research portfolio and occurs at approximately 20 % of ARS research locations across the United States. The vision for ARS organic agriculture research is to help the organic industry overcome the challenges it faces related to producti...

  4. Biological control of weeds: research by the United States Department of Agriculture-Agricultural Research Service: selected case studies.

    PubMed

    Quimby, Paul C; DeLoach, C Jack; Wineriter, Susan A; Goolsby, John A; Sobhian, Rouhollah; Boyette, C Douglas; Abbas, Hamed K

    2003-01-01

    Research by the USDA-Agricultural Research Service (ARS) on biological control of weeds has been practiced for many years because of its inherent ecological and economic advantages. Today, it is further driven by ARS adherence to Presidential Executive Order 13112 (3 February 1999) on invasive species and to USDA-ARS policy toward developing technology in support of sustainable agriculture with reduced dependence on non-renewable petrochemical resources. This paper reports examples or case studies selected to demonstrate the traditional or classical approach for biological control programs using Old World arthropods against Tamarix spp, Melaleuca quinquenervia (Cav) ST Blake and Galium spurium L/G aparine L, and the augmentative approach with a native plant pathogen against Pueraria lobata Ohwi = P montana. The examples illustrated various conflicts of interest with endangered species and ecological complexities of arthropods with associated microbes such as nematodes.

  5. Two Decades of Agricultural Literacy Research: A Synthesis of the Literature

    ERIC Educational Resources Information Center

    Kovar, Kristin A.; Ball, Anna L.

    2013-01-01

    The purpose of this investigation was to identify and synthesize research related to agricultural literacy since the publication of Understanding Agriculture--New Directions for Education (1988). The researchers sought to determine where agricultural literacy research was published, which populations were targeted, the purpose of the research, and…

  6. The Plant Research Unit: An International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.

    2003-01-01

    The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.

  7. Flashline Mars Arctic Research Station (FMARS) 2009 Expedition Crew Perspectives

    NASA Technical Reports Server (NTRS)

    Cusack, Stacy; Ferrone, Kristine; Garvin, Christy; Kramer, W. Vernon; Palaia, Joseph, IV; Shiro, Brian

    2009-01-01

    The Flashline Mars Arctic Research Station (FMARS), located on the rim of the Haughton Crater on Devon Island in the Canadian Arctic, is a simulated Mars habitat that provides operational constraints similar to those which will be faced by future human explorers on Mars. In July 2009, a six-member crew inhabited the isolated habitation module and conducted the twelfth FMARS mission. The crew members conducted frequent EVA operations wearing mock space suits to conduct field experiments under realistic Mars-like conditions. Their scientific campaign spanned a wide range of disciplines and included many firsts for Mars analog research. Among these are the first use of a Class IV medical laser during a Mars simulation, helping to relieve crew stress injuries during the mission. Also employed for the first time in a Mars simulation at FMARS, a UAV (Unmanned Aerial Vehicle) was used by the space-suited explorers, aiding them in their search for mineral resources. Sites identified by the UAV were then visited by geologists who conducted physical geologic sampling. For the first time, explorers in spacesuits deployed passive seismic equipment to monitor earthquake activity and characterize the planet's interior. They also conducted the first geophysical electromagnetic survey as analog Mars pioneers to search for water and characterize geological features under the surface. The crew collected hydrated minerals and attempted to produce drinkable water from the rocks. A variety of equipment was field tested as well, including new cameras that automatically geotag photos, data-recording GPS units, a tele-presence rover (operated from Florida), as well as MIT-developed mission planning software. As plans develop to return to the Moon and go on to Mars, analog facilities like FMARS can provide significant benefit to NASA and other organizations as they prepare for robust human space exploration. The authors will present preliminary results from these studies as well as their

  8. Growth requirements for multidiscipline research and development on the evolutionary space station

    NASA Technical Reports Server (NTRS)

    Meredith, Barry; Ahlf, Peter; Saucillo, Rudy; Eakman, David

    1988-01-01

    The NASA Space Station Freedom is being designed to facilitate on-orbit evolution and growth to accommodate changing user needs and future options for U.S. space exploration. In support of the Space Station Freedom Program Preliminary Requirements Review, The Langley Space Station Office has identified a set of resource requirements for Station growth which is deemed adequate for the various evolution options. As part of that effort, analysis was performed to scope requirements for Space Station as an expanding, multidiscipline facility for scientific research, technology development and commercial production. This report describes the assumptions, approach and results of the study.

  9. Central-station applications: System and subsystem research activities

    NASA Technical Reports Server (NTRS)

    Jones, G. J.

    1982-01-01

    The results of a number of photovoltaic central power-station studies are summarized. Analysis based upon vendor quotes and construction contractor bids indicate that $50/m2 for area related costs for flat-plate arrays is achievable. Electrical design tradeoffs for multimegawatt systems are considered. The values of photovoltaic central-station plants for various regions are determined from an energy scenario effects study.

  10. International Space Station Research: Accomplishments and Pathways for Exploration and Fundamental Research

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.

  11. Research in Agricultural Education. Proceedings of the Eastern Region Agricultural Education Research Conference (43rd, Mystic, Connecticut, May 4-6, 1989). Volume 43.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J., Comp.; Bowen, Blannie E., Comp.

    This document contains 10 papers selected for presentation at a research conference on agricultural education. The titles are as follows: "Agriculture Students and Their Problem Solving Skills" (Rollins); "Agriculture Students' Preferred Styles of Learning" (Rollins); "Identification of Curricular Strategies for Enhancing…

  12. Managing agricultural greenhouse gases: Coordinated agricultural research through GRACEnet to address our changing climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change presents numerous challenges to agriculture. Concurrent efforts to mitigate agricultural contributions to climate change while adapting to its projected consequences will be essential to ensure long-term sustainability and food security. To facilitate successful responses to ...

  13. Space station architectural elements model study. Space station human factors research review

    NASA Technical Reports Server (NTRS)

    Taylor, Thomas C.; Khan, Eyoub; Spencer, John; Rocha, Carlos; Cliffton, Ethan Wilson

    1987-01-01

    Presentation visuals and an extended abstract represent a study to explore and analyze the interaction of major utilities distribution, generic workstation, and spatial composition of the SPACEHAB space station module. Issues addressed include packing densities vs. circulation, efficiency of packing vs. standardization, flexibility vs. diversity, and composition of interior volume as space for living vs. residual negative volume. The result of the study is expected to be a series of observations and preliminary evaluation criteria which focus on the productive living environment for a module in orbit.

  14. 76 FR 78225 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...; ] DEPARTMENT OF AGRICULTURE Office of the Secretary Notice of Appointment of Members to the National... Act, 5 U.S.C. App. 2, the United States Department of Agriculture announces the appointments made by the Secretary of Agriculture to the 8 vacancies on the National Agricultural Research,...

  15. Cell science and protein crystal growth research for the International Space Station.

    PubMed

    Sigler, P B; Stein, G S; Boskey, A L; Jones, N D; Kuriyan, J; Miller, W M; Shuler, M L; Wang, B C

    2000-09-14

    The recent National Research Council report, Future Biotechnology Research on the International Space Station, evaluates NASA's plans for research in cell science and protein crystal growth to be conducted on the International Space Station. This report concludes that the NASA biotechnology programs have the potential to significantly impact relevant scientific fields and to increase understanding and insight into fundamental biological issues. In order to realize the potential impacts, NASA must focus its research programs by selecting specific questions related to gravitational forces' role in cell behavior and by using the microgravity environment as a tool to determine the structure of macromolecules with important biological implications. Given the time and volume constraints associated with space-based experiments, instrumentation to be used on the space station must be designed to maximize the productivity of researchers, and NASA's recruitment of investigators and support for space station experiments should aim to encourage and facilitate cutting-edge research.

  16. Applications of UAV imagery for agricultural and environmental research at the USDA Southeast Watershed Research Lab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ARS is the USDA's in-house scientific research agency, whose mission is to conduct research to "develop and transfer solutions to agricultural problems of high national priority..." This includes enhancing the natural resource base and the environment, a dimension of particular relevance to the ...

  17. Biobased products research at the National Center for Agricultural Utilization Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  18. Potential applications of expert systems and operations research to space station logistics functions

    NASA Technical Reports Server (NTRS)

    Lippiatt, Thomas F.; Waterman, Donald

    1985-01-01

    The applicability of operations research, artificial intelligence, and expert systems to logistics problems for the space station were assessed. Promising application areas were identified for space station logistics. A needs assessment is presented and a specific course of action in each area is suggested.

  19. Peak Performance...Reaching for Excellence in Agricultural Education Research. Proceedings of the Annual National Agricultural Education Research Meeting (22nd, Denver, Colorado, December 1, 1995). Volume XXII.

    ERIC Educational Resources Information Center

    Birkenholz, Robert J., Ed.; Schumacher, Leon G., Ed.

    The theme of this conference reflects the continuing need to conduct and report research that addresses significant problems and issues in Agricultural Education. Selected research papers are as follows: "Opportunities and Obstacles for Distance Education in Agricultural Education (AE)" (Murphy, Terry); "Faculty Needs Associated with Agricultural…

  20. Agricultural Education. Proceedings of the Central Region Annual Research Conference (44th, Chicago, Illinois, February 24-25, 1990).

    ERIC Educational Resources Information Center

    Kansas State Univ., Manhattan.

    The following papers are included: "Focusing Agricultural Education Research" (Williams); "A Time Series Analysis of Agricultural Education Student Teachers' Perceptions of Agricultural Mechanics Laboratory Management Competencies" (Schumacher, Johnson); "Determination of the Agricultural Mechanics Laboratory Management Inservice Needs of Missouri…

  1. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.

  2. Explaining Strengthening Mechanisms, Institutional Orientations and Problematic Challenges of University Agricultural Research in Iran

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulghasem; Abdollahzadeh, Gholamhossein

    2009-01-01

    According to empirical evidence and noted implications of sustainable agricultural development as a systemic and multi-actor process, integration of the research function of higher agricultural education in Iranian agricultural research systems seems to be an ongoing and considerable necessity. With the aim of identification and analysis of…

  3. Training for Innovation: Capacity-Building in Agricultural Research in Post-War Sierra Leone

    ERIC Educational Resources Information Center

    Gboku, Matthew L. S.; Bebeley, Jenneh F.

    2016-01-01

    This paper examines how the Sierra Leone Agricultural Research Institute (SLARI) used training and development to build capacity for innovation in agricultural research following the country's civil war which ended in 2002. The Institute's training for innovation addressed different agricultural product value chains (APVCs) within the framework of…

  4. Millennium III Challenges: A Major Role for Agricultural Research/Extension/Education.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This report by the National Association of State Universities and Land-Grant Colleges (NASULGC) ad hoc Committee on Federal Support for Agricultural Research, Extension and Education suggests solutions to major challenges in agricultural research. Three new realities provide a powerful rationale for major new investment in agriculture: dramatic…

  5. Certified organic farming research and demonstration project by Oklahoma State University and USDA's Agricultural Research Service at Lane, Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2003, Oklahoma State University and USDA, Agricultural Research Service, South Central Agricultural Research Laboratory received organic certification for 8 acres at the Lane Agricultural Center, Lane, OK. The certified organic land was used to develop a cooperative project with a diversity of a...

  6. Fluid Physics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Corban, Robert

    2000-01-01

    This document is a presentation in viewgraph format which reviews the laboratory facilities and their construction for the International Space Station(ISS). Graphic displays of the ISS are included, with special interest in the facilities available on the US Destiny module and other modules which will be used in the study of fluid physics on the ISS. There are also pictures and descriptions of various components of the Fluids and Combustion Facility.

  7. Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors

    NASA Astrophysics Data System (ADS)

    Ham, J. M.

    2013-12-01

    Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).

  8. Innovations in information management to enhance agriculture: A research perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information management should be the cornerstone for innovative agricultural systems; however, the challenge remains on how to utilize all of the components to enhance agriculture. The enhancement of agriculture is often considered from only a yield perspective. This is an important factor and effo...

  9. Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Vykukal, H. C. (Editor)

    1988-01-01

    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements.

  10. The undersea habitat as a space station analog: Evaluation of research and training potential

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Wilhelm, John A.

    1985-01-01

    An evaluation is given of the utility of undersea habitats for both research and training on behavioral issues relative to the space station. The feasibility of a particular habitat, La Chalupa, is discussed.

  11. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    SciTech Connect

    Gryzinski, M.A.; Maciak, M.

    2015-07-01

    planned to create fully equipped complex facility possible to perform various experiments on the intensive neutron beam. Epithermal neutron beam enables development across the full spectrum of materials research for example shielding concrete tests or electronic devices construction improvement. Due to recent reports on the construction of the accelerator for the Boron Neutron Capture Therapy (BNCT) it has the opportunity to become useful and successful method in the fight against brain and other types of cancers not treated with well known medical methods. In Europe there is no such epithermal neutron source which could be used throughout the year for training and research for scientist working on BNCT what makes the stand unique in Europe. Also our research group which specializes in mixed radiation dosimetry around nuclear and medical facilities would be able to carry out research on new detectors and methods of measurements for radiological protection and in-beam (therapeutic) dosimetry. Another group of scientists from National Centre for Nuclear Research, where MARIA research reactor is located, is involved in research of gamma detector systems. There is an idea to develop Prompt-gamma Single Photon Emission Computed Tomography (Pg- SPECT). This method could be used as imaging system for compounds emitting gamma rays after nuclear reaction with thermal neutrons e.g. for boron concentration in BNCT. Inside the room, where H2 channel is located, there is another horizontal channel - H1 which is also unused. Simultaneously with the construction of the H2 stand it will be possible to create special pneumatic horizontal mail inside the H1 channel for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. It might expand the scope of research at the planned neutron station. Secondly it is planned to equip both stands with moveable positioning system, video system and facilities to perform animal experiments (anaesthesia, vital

  12. Pennsylvania's 1982 Abstracts of Research in Agricultural Education. Teacher Education Research Series, Volume 24, Number l.

    ERIC Educational Resources Information Center

    Yoder, Edgar Paul, Comp.

    This document consists of abstracts of research and development activities of 29 studies completed in Pennsylvania during the period from January 1 to December 31, 1982. Included in the collection are abstracts of 21 masters theses and eight doctoral theses. Various topics pertaining to agricultural education are covered, including the…

  13. Applicability of NASA Polar Technologies to British Antarctic Survey Halley VI Research Station

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    From 1993 through 1997 NASA and the National Science Foundation (NSF), developed a variety of environmental infrastructure technologies for use at the Amundsen-Scott South Pole Station. The objective of this program was to reduce the cost of operating the South Pole Station, reduce the environmental impact of the Station, and to increase the quality of life for Station inhabitants. The result of this program was the development of a set of sustainability technologies designed specifically for Polar applications. In the intervening eight years many of the technologies developed through this program have been commercialized and tested in extreme environments and are now available for use throughout Antarctica and circumpolar north. The objective of this document is to provide information covering technologies that might also be applicable to the British Antarctic Survey s (BAS) proposed new Halley VI Research Station. All technologies described are commercially available.

  14. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  15. Attaining Excellence in the 80's. Research in Agricultural Education. Proceedings of the Annual National Agricultural Education Research Meeting (14th, Las Vegas, Nevada, December 4, 1987).

    ERIC Educational Resources Information Center

    Mannebach, Alfred J., Comp.

    Among the 36 research papers and critiques are "A Comparison of 1972 and 1980 Secondary Agricultural Education Students" (Navaratnam, Oliver); "A Day Late and a Dollar Short" (Moore); "Assessment of Preservice Preparation by Recent Graduates of Agricultural Education Programs" (Yahya, Burnett); "Characteristics and Activities of Vocational…

  16. Commercial combustion research aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  17. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  18. 76 FR 25298 - Solicitation of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics... to the National Agricultural Research, Extension, Education, and Economics Advisory Board. The notice... regard to race, color, religion, sex, national origin, age, mental or physical handicap, marital...

  19. 76 FR 22667 - Solicitation of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Research, Extension, Education, and Economics Advisory Board AGENCY: Research, Education, and Economics... to fill 8 vacancies on the National Agricultural Research, Extension, Education, and Economics Advisory Board. DATES: Deadline for Advisory Board member nominations is July 12, 2011. ADDRESSES:...

  20. Study of Factors Influencing Research Productivity of Agriculture Faculty Members in Iran

    ERIC Educational Resources Information Center

    Hedjazi, Yousef; Behravan, Jaleh

    2011-01-01

    The purpose of this research is to analyze the relationship between individual, institutional and demographic characteristics on one hand and the research productivity of agriculture faculty members on the other. The statistical population of the research comprises 280 academic staff in agricultural faculties all over Tehran Province. The data…

  1. New Directions for Biosciences Research in Agriculture. High-Reward Opportunities.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agriculture.

    To aid in the effort to define comprehensive long-range planning goals in bioregulation, the Agricultural Research Service (ARS) asked the Board of Agriculture of the National Research Council to undertake a study of the ARS research programs concerned with bioregulation. (For the purposes of this study bioregulation was interpreted broadly to be…

  2. 78 FR 44092 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Economics Advisory Board AGENCY: Agricultural Research Service, USDA. ACTION: Solicitation for membership..., Extension, Education, and Economics Advisory Board. The notice was published in the Federal Register on...

  3. Considerations in the design of life sciences research facilities for the Space Station

    NASA Technical Reports Server (NTRS)

    Heinrich, M.; Rudiger, C. E.

    1985-01-01

    The facilities required for life science research on a permanent Space Station are examined. Specifications important to the designing of facilities and planning of activities on the Space Shuttle are: (1) the species to be tested, (2) the number and procedure for testing, (3) the number of specimens at each sampling time, (4) the analyses required, (5) the methods of preserving samples, instruments, and supplies, and (6) the amount of crew time required. Experiments which are relevant to understanding the effects of microgravity on living systems are to be performed on the Space Station. The design and instruments of a Space Station laboratory and specimen centrifuge are described.

  4. A RESEARCH STUDY OF AGRICULTURAL TRAINING NEEDS IN VENTURA COUNTY.

    ERIC Educational Resources Information Center

    RODRIGUES, DONALD F.

    QUESTIONNAIRE RETURNS FROM 103 EMPLOYERS IN AGRICULTURE AND RELATED INDUSTRIES WERE COMBINED WITH 50 INTERVIEWS WITHIN THE SAME GROUP TO PROVIDE INFORMATION ABOUT AGRICULTURAL TRAINING NEEDS IN VENTURA COUNTY. MOST FIRMS EMPLOYED FEWER THAN 15 WORKERS ON A PERMANENT BASIS, SUPPLEMENTED BY LARGE MEMBERS OF SEASONAL WORKERS, ESPECIALLY IN THE…

  5. Integrating and Institutionalizing Lessons Learned: Reorganizing Agricultural Research and Extension

    ERIC Educational Resources Information Center

    Goletti, Francesco; Pinners, Elise; Purcell, Timothy; Smith, Dominic

    2007-01-01

    The majority of the population of Vietnam lives in rural areas and depends on agriculture for their livelihood. Consistent growth of the agriculture sector over the past two decades has contributed to a remarkable reduction in the poverty rate and the virtual elimination of hunger in the rural areas of Vietnam. In order to continue the growth…

  6. Biotechnology research in Nigeria: A socio-economic analysis of the organication of agricultural research system's response to biotechnology

    SciTech Connect

    Duru, G.C.

    1988-01-01

    Many agricultural development experts and social scientists argue that a lack of appropriate technology was a limiting factor in the efforts by developing countries to expand their agricultural productivity. Biotechnology is now advanced as a technology that could meet these needs. Agricultural and social scientists maintain that the new biotechnology, if realistically applied, could assist a developing nation such as Nigeria to solve its agricultural problems. But one concern is the private character of biotechnology which limits its transferability to the LDCs. This situation will impose unusual constraints on national agricultural development programs and increase dependence if national research capability is weak. The basic finding of this field research was that the Nigerian national agricultural research system was weak, which meant that the potentials and promises of biotechnology will elude the country's desire to improve its agriculture in the immediate future. The primary weakness rested in inadequate funding and infrastructural deficiencies.

  7. ESA hardware for plant research on the International Space Station

    NASA Astrophysics Data System (ADS)

    Brinckmann, E.

    The long awaited launch of the European Modular Cultivation System (EMCS) will provide a platform on which long-term and shorter experiments with plants will be performed on the International Space Station (ISS). EMCS is equipped with two centrifuge rotors (600 mm diameter), which can be used for in-flight 1 g controls and for studies with acceleration levels from 0.001 g to 2.0 g. Several experiments are in preparation investigating gravity relating to gene expression, gravisensing and phototropism of Arabidopsis thaliana and lentil roots. The experiment-specific hardware provides growth chambers for seedlings and whole A. thaliana plants and is connected to the EMCS Life Support System. Besides in-flight video observation, the experiments will be evaluated post-flight by means of fixed or frozen material. EMCS will have for the first time the possibility to fix samples on the rotating centrifuge, allowing a detailed analysis of the process of gravisensing. About two years after the EMCS launch, ESA's Biolab will be launched in the European "Columbus" Module. In a similar way as in EMCS, Biolab will accommodate experiments with plant seedlings and automatic fixation processes on the centrifuge. The hardware concepts for these experiments are presented in this communication.

  8. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: physiography and history

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 420 km**2 Mahantango Creek Watershed, located within the Northern Appalachian Ridges and Valleys, is a subwatershed of the Susquehanna River Basin, which flows to Chesapeake Bay. Research on agricultural management and hydrologic processes that control nutrient loss from nonpoint sources is cond...

  9. Peer Review in Agricultural Education: Interrater Reliability of Manuscript Reviews for the 2014 National Agricultural Education Research Conference

    ERIC Educational Resources Information Center

    Shoulders, Catherine W.; Johnson, Donald M.; Flowers, Jim

    2015-01-01

    This study analyzed 336 peer reviews of 112 manuscripts submitted for possible presentation at the 2014 National Agricultural Education Research Conference (NAERC). There were scoring errors on 6.8% of the reviews; the most frequent errors were failure to record a score or assigning a score above the range of points possible for one or more of the…

  10. International Space Station Research Plan, Assembly Sequence Rev., F

    DTIC Science & Technology

    2000-08-01

    understanding of the space radiation environment ü Space-based research ü Ground-based research and modeling (accelerator facilities) Aurora borealis Phantom...PCS): study of the formation and structure of colloids in space to further understanding of self-assembly mechanism of complex systems (continues...function (inflight activities, increments 3-6) ü Renal Stone: examination of in-flight susceptibility of astronauts to renal stone formation (in

  11. Exploiting operational vehicles for in-flight research - Space Shuttle and Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Holloway, Paul F.; Breckenridge, Roger A.

    1989-01-01

    Five Orbiter Experiments in which NASA's Langley Research Center has had significant involvement are described. These experiments are the Shuttle Infrared Leeside Temperature Sensing experiment, the Shuttle Upper Atmosphere Mass Spectrometer experiment, the High Resolution Accelerometer Package experiment, the Orbital Acceleration Research experiment, and the Space Station structural characterization experiment. The Shuttle Entry Air Data System is also described.

  12. HEALTH AND EXPOSURE RESEARCH FOR THE AGRICULTURAL COMMUNITY: THE AGRICULTURAL HEALTH STUDY

    EPA Science Inventory

    The Agricultural Health Study (AHS) is a collaborative effort between the National Cancer Institute, the National Institute of Environmental Health Sciences, the U.S. Environmental Protection Agency, and the National Institute for Occupational Safety and Health. The AHS is the...

  13. ADAPTING THE FFA TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    KANTER, EARL F.; BENDER, RALPH E.

    THE PURPOSE OF THIS NATIONAL STUDY WAS TO SUGGEST WAYS OF ADAPTING THE FUTURE FARMERS OF AMERICA (FFA) TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE THROUGH IDENTIFYING NEW PURPOSES OF THE FFA AND EVALUATING SELECTED OPERATIONAL GUIDELINES AND NATIONAL AND STATE FFA ACTIVITIES. MEMBERS OF THE UNITED STATES OFFICE OF EDUCATION, HEAD STATE…

  14. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this

  15. Research Priorities and Plans for the International Space Station - Results of the REMAP Task Force

    NASA Astrophysics Data System (ADS)

    Kicza, M.

    2002-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. The U.S. President's Budget language for 2003 states that "...NASA will be working with the White House Office of Science and Technology Policy (OSTP) to engage the scientific community and establish clear high-priority, affordable science objectives with near-term focus on improving scientific productivity. The results of this review will help set the science agenda for Biological and Physical Research that will in turn define how the Space Station is used." In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) is assembling an ad-hoc external advisory committee, the Biological and Physical REsearch MAximization and Prioritization (REMAP) Task Force, which will be under the auspices of the NASA Advisory Council. This paper will describe the outcome of the Task Force and how it will be used to define a roadmap for near and long term Biological and Physical Research objectives. Additionally the paper will discuss the maximization of the International Space Station utilization.

  16. Competence Challenges of Demand-Led Agricultural Research and Extension in Uganda

    ERIC Educational Resources Information Center

    Kibwika, P.; Wals, A. E. J.; Nassuna-Musoke, M. G.

    2009-01-01

    Governments and development agencies in Sub-Saharan Africa are experimenting alternative approaches within the innovation systems paradigm to enhance relevance of agricultural research and extension to the poverty eradication agenda. Uganda, for example, has recently shifted from the supply driven to demand-led agricultural research and extension.…

  17. Southern Research Conference in Agricultural Education Proceedings. (34th, Mobile, Alabama, March 23-25, 1985).

    ERIC Educational Resources Information Center

    Rawls, Willie J.; And Others

    These proceedings include presentations that reflect the conference's focus on reporting current research in agricultural education. Twenty-one papers are presented in six general sessions: "Future Research Needs for Improving Vocational Agriculture Teacher Education Programs" (David L. Williams); "Assessment of Competencies…

  18. Reaping the Return on Agricultural Research and Education in Virginia. Information Series 93-3.

    ERIC Educational Resources Information Center

    Norton, George W.; Paczkowski, Remi

    This report focuses upon the economic and other contributions that agricultural research and education have made to Virginia over the past 40 years. Agricultural research, extension, and classroom instruction contribute in the following ways to Virginia's citizens: increased supplies and reduced costs, improved competitiveness, multiplier effects…

  19. Managing Our Environment, A Report on Ways Agricultural Research Fights Pollution.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    A report on the ways agricultural research attempts to fight pollution is presented in this series of articles covering some of the major challenges facing scientists and regulatory officials working in agricultural research. Improved resource management is stressed with the use of advanced technologies as the avenue to solving environmental…

  20. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  1. [African agriculture faced with global changes: researches and innovations based on ecological sciences].

    PubMed

    Masse, Dominique; Ndour Badiane, Yacine; Hien, Edmond; Akpo, Léonard-Élie; Assigbetsé, Komi; Bilgo, Ablassé; Diédhiou, Ibrahima; Hien, Victor; Lardy, Lydie

    2013-01-01

    In the context of environmental and socio-economic changes, the agriculture of Sub-Saharan African countries will have to ensure food security of the population, while reducing its environmental footprint. The biophysical and social systems of agricultural production are complex. Innovative agricultural practices will be based on an intensification of ecological processes that determine the functioning of the soil-plant system, farmers' fields and agro-ecosystems. This ecological engineering approach is useful to take up the challenge of Sub-Saharan agricultures in the future, as shown in researches conducted by IESOL International Joint Lab "Intensification of agricultural soils in West Africa" (ISRA, UCAD, TU, OU, INERA, IRD).

  2. Annual Southern Region Research Conference in Agricultural Education. Proceedings (36th, Williamsburg, Virginia, March 22-23, 1987).

    ERIC Educational Resources Information Center

    1987

    The following papers are included in this proceedings of a conference on agricultural education: "Misuse of Statistics" (Miller); "Significance of Doctoral Research in Agricultural Education" (Moore, Bailey, Burnett); "Identification of Science-Related Competencies Taught in Vocational Agriculture Programs in…

  3. Advances in Rodent Research Missions on the International Space Station

    NASA Technical Reports Server (NTRS)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  4. Research Station "Ice Base "Cape Baranov"- overview of activities in 2013 - 2015 years

    NASA Astrophysics Data System (ADS)

    Makshtas, Alexander; Sokolov, Vladimir; Bogorodskii, Peter; Kustov, Vasily; Movchan, Vadim; Laurila, Tuomas; Asmi, Eija; Popovicheva, Olga; Eleftheriadis, Kostas

    2016-04-01

    Research Station "Ice base "Cape Baranov" of Arctic and Antarctic Research Institute (AARI) had been opened in the fall 2013 on the Bolshevik Island, Archipelago Severnaya Zemlia. Now it is going as the integrated observatory, conducting comprehensive studies in practically all areas of Earth Sciences: from free atmosphere to sea ice and sea water structure in the Shokalsky Strait, from glaciers to permafrost, from paleogeography to ornithology. Overview of activities together with some preliminary results of field works at the station performing in 2014 - 2015 years by international multidisciplinary team in frame of free atmosphere, atmospheric surface layer, greenhouse gases and aerosol studies is presented together with model estimations of active soil layer.

  5. A solar observing station for education and research in Peru

    NASA Astrophysics Data System (ADS)

    Kaname, José Iba, Ishitsuka; Ishitsuka, Mutsumi; Trigoso Avilés, Hugo; Takashi, Sakurai; Yohei, Nishino; Miyazaki, Hideaki; Shibata, Kazunari; Ueno, Satoru; Yumoto, Kiyohumi; Maeda, George

    2007-12-01

    Since 1937 Carnegie Institution of Washington made observations of active regions of the Sun with a Hale type spectro-helioscope in Huancayo observatory of the Instituto Geofísico del Perú (IGP). IGP has contributed significantly to geophysical and solar sciences in the last 69 years. Now IGP and the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA) are planning to refurbish the coelostat at the observatory with the support of National Astronomical Observatory of Japan. It is also planned to install a solar Flare Monitor Telescope (FMT) at UNICA, from Hida observatory of Kyoto University. Along with the coelostat, the FMT will be useful to improve scientific research and education.

  6. Mycelium reinforced agricultural fiber bio-composites: Summary of research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industry and the public sector have a growing interest in utilizing natural fibers, such as agricultural substrates, in the manufacture of components and products currently manufactured from fossil fuels. A patented process, developed by Ecovative Design, LLC (Ecovative), for growing fungal species ...

  7. Supervision of Supervised Agricultural Experience Programs: A Synthesis of Research.

    ERIC Educational Resources Information Center

    Dyer, James E.; Williams, David L.

    1997-01-01

    A review of literature from 1964 to 1993 found that supervised agricultural experience (SAE) teachers, students, parents, and employers value the teachers' supervisory role. Implementation practices vary widely and there are no cumulative data to guide policies and standards for SAE supervision. (SK)

  8. Emergence of the global research alliance on agricultural greenhouse gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing human population pressure on the Earth is of great concern and a key reason why agricultural and natural resource sciences must be fully engaged to develop solutions for a sustainable future. Increasing population puts pressure on the demand for food, clean water, healthy soil, and a sta...

  9. Climate-smart agriculture global research agenda: science for action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate Smart Agriculture (CSA) addresses the challenge of meeting the growing demand for food, fiber, or fuel, caused by population growth, changes in diet related to increases in per capita income, and the need for alternative energy sources, despite the changing climate and fewer opportunities fo...

  10. Production or Perish: Changing the Inequities of Agricultural Research Priorities.

    ERIC Educational Resources Information Center

    Friedland, William H.; Kappel, Tim

    Because of the decline of farm population and family farms, the increase in energy-intensivity, and concentration process in agriculture, a rising tide of criticism has focused on the land grant system and its role in encouraging scientific applications supporting these trends. A study was conducted to develop a strategy that would change…

  11. SUMMARY OF RESEARCH FINDINGS IN OFF-FARM AGRICULTURAL OCCUPATIONS.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    AS A RESULT OF TWO CONFERENCES HELD IN 1963-64, INTERVIEW-TYPE SURVEYS OF EMPLOYMENT NEEDS IN OFF-FARM AGRICULTURAL BUSINESSES WERE CONDUCTED IN 26 STATES IN 1964. THE ANALYSIS OF THE FINDINGS RESULTED IN THIS SYNTHESIS. INFORMATION IS GIVEN ON -- (1) NUMBERS OF PEOPLE EMPLOYED, (2) PRESENT NUMBER, ESTIMATED INCREASE, OCCUPATIONAL GROUP AND LEVEL…

  12. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: long-term stream discharge database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term streamflow discharge database has been developed by the U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Research Unit (PSWMRU) to support intensive hydrologic and water quality research within WE-38, a 7.3 km**2 experimental watersh...

  13. U.S. Department of Agriculture Agricultural Research Service Mahantango Creek Watershed, Pennsylvania, United States: long-term water quality database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Pasture Systems and Watershed Management Research Unit (PSWMRU) has developed a long-term water quality database to support water quality research within the 7.3 km**2 WE-38 experimental watershed in east-central Pennsyl...

  14. NASA Human Research Program (HRP). International Space Station Medical Project (ISSMP)

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2009-01-01

    This viewgraph presentation describes the various flight investigations performed on the International Space Station as part of the NASA Human Research Program (HRP). The evaluations include: 1) Stability; 2) Periodic Fitness Evaluation with Oxygen Uptake Measurement; 3) Nutrition; 4) CCISS; 5) Sleep; 6) Braslet; 7) Integrated Immune; 8) Epstein Barr; 9) Biophosphonates; 10) Integrated cardiovascular; and 11) VO2 max.

  15. Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force.

    PubMed

    Kicza, M; Erickson, K; Trinh, E

    2003-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.

  16. Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force

    NASA Technical Reports Server (NTRS)

    Kicza, M.; Erickson, K.; Trinh, E.

    2003-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  17. When counting cattle is not enough: multiple perspectives in agricultural and veterinary research.

    PubMed

    Hansen, Bjørn Gunnar; Schei, Vidar; Greve, Arent

    2011-01-01

    A traditional approach in agricultural and veterinary research is focussing on the biological perspective where large cattle-databases are used to analyse the dairy herd. This approach has yielded valuable insights. However, recent research indicates that this knowledge-base can be further increased by examining agricultural and veterinary challenges from other perspectives. In this paper we suggest three perspectives that may supplement the biological perspective in agricultural and veterinary research; the economic-, the managerial-, and the social perspective. We review recent studies applying or combining these perspectives and discuss how multiple perspectives may improve our understanding and ability to handle cattle-health challenges.

  18. CATIE: Tropical Agricultural Research and Higher Education Center. http://www.catie.ac.cr

    ERIC Educational Resources Information Center

    Applied Environmental Education and Communication, 2004

    2004-01-01

    This article features CATIE (Centro Agronomico Tropical de Investigacion y Ensenanza), a tropical agricultural research and higher education center. CATIE's mission is to be instrumental in poverty reduction and rural development in the American tropics, by promoting diversified and competitive agriculture and sustainable management of natural…

  19. Identification of Researchable Topics on International Agricultural Education. A Delphi Study.

    ERIC Educational Resources Information Center

    Miller, Larry E.; Madou-Bangurah, Kabba

    A modified Delphi technique was used to identify topics in international agricultural education considered by eight experts on agricultural education to be areas needing research. All eight (100%) of the experts completed the first-round mail questionnaire, and seven (87.5%) completed the second and third rounds. Survey category areas were as…

  20. Education and Research Related to Organic Waste Management at Agricultural Engineering Schools

    ERIC Educational Resources Information Center

    Soliva, Montserrat; Bernat, Carles; Gil, Emilio; Martinez, Xavier; Pujol, Miquel; Sabate, Josep; Valero, Jordi

    2007-01-01

    Purpose: The purpose of this paper is to describe the experience of the Agriculture Engineering School of Barcelona (ESAB), where undergraduate students were involved in field research experiments on organic waste use in agricultural systems. Design/methodology/approach: The paper outlines how the formation of professionals oriented to work for…

  1. Returns to Human and Research Capital, United States Agriculture, 1949-1964.

    ERIC Educational Resources Information Center

    Fishelson, Gideon

    This study estimated rates of return to public investments in human and research capital (formal schooling and extension and vocational agricultural education) in the United States agricultural industry. (Southern states were excluded because of demographic and educational factors that would have biased the variables.) Output per farm was defined…

  2. Complex Geodetic Research in Ukrainian Antarctic Station "Academician Vernadsky" (Years 2002 - 2005, 2013-2014)

    NASA Astrophysics Data System (ADS)

    Tretyak, Kornyliy; Hlotov, Volodymyr; Holubinka, Yuriy; Marusazh, Khrystyna

    2016-06-01

    In this paper is given an information about complex geodetic research in Ukrainian Antarctic station "Academician Vernadsky". Research were carried by Lviv polytechnic scientists, during Antarctic expeditions in years 2002 - 2005, 2013, 2014. Main objectives of the studies were: (a) study of the islands glaciers surface volumes changes in Antarctic archipelago and Antarctic Peninsula using terestrial laser scaning and digital terrestrial stereophotogrammetry survey; (b) investigation of Penola strain tectonic fault, using the results of precise GNSS observations.

  3. Preliminary Evaluation of the Korean Seismological Research Station Short-Period Array

    DTIC Science & Technology

    1975-07-29

    PREUMINARV (VAIUAVION OF THE KOREAN SEISMOlOCICAl RESEARCH STAIION SHORT PERIOO ARRAY TECHNICAL REPORT NO. S VELA NETWORK EVAIUAT10N AND AUTOMATIC... accomplished under the tech. nical direction of the Air Force Technical Applications Center under Contract No. F08606-7 5-(,-0029. FORMATION SERVICE...34 ALEX(01)-TR-75-05 PRELIMINARY EVALUATION OF THE KOREAN SEISMOLOGICAL RESEARCH STATION SHORT PERIOD ARRAY TECHNICAL REPORT NO. 5 VELA NETWORK

  4. RESEARCH CONFERENCE IN AGRICULTURAL EDUCATION (20TH, UNIVERSITY OF NEBRASKA, AUGUST 2-4, 1966).

    ERIC Educational Resources Information Center

    KAHLER, ALAN; AND OTHERS

    FIFTY-FOUR PARTICIPANTS FROM NINE STATES ATTENDED THE CONFERENCE TO DISCUSS REGIONAL RESEARCH, METHODOLOGICAL IMPROVEMENTS, AND NEW AREAS OF RESEARCH. TEXTS OF MAJOR SPEECHES GIVEN AT THE CONFERENCE ARE INCLUDED--"RESEARCH IN EDUCATION" BY W. K. BEGGS, "THE CHALLENGE TO SOCIAL SCIENCE RESEARCH IN AGRICULTURE," BY HOWARD W. OTTOSON, "RESEARCH…

  5. Recent progress in agricultural biotechnology and opportunities for contract research and development.

    PubMed

    Kolodziejczyk, P P; Fedec, P

    1999-01-01

    The global market for agriculture products and agriculture-based value-added products is undergoing change as the top players in agriculture and agricultural biotechnology face increased consolidation and ultimately form alliances in development, production and marketing. Transgenic plants for human consumption and industrial applications are entering the marketplace. Novel, genetically engineered, plant-based organisms (GMO) designed for resistance to herbicides, pesticides and environmental stress or for the production of valuable chemicals, pharmaceuticals and vaccines are available. A growing demand for bioprocessing, test production, scale-up or providing data for registration has created new opportunities for contract research and development (CR&D) firms.

  6. Operationalizing Demand-Driven Agricultural Research: Institutional Influences in a Public and Private System of Research Planning in the Netherlands

    ERIC Educational Resources Information Center

    Klerkx, Laurens; Leeuwis, Cees

    2009-01-01

    The trend towards demand-driven agricultural research has focused attention on the inclusion of farmers in research planning. Theoretically, this should enhance ownership and increase the applicability of research. However, in practice, several tensions emerge with regard to the operationalization of such "user-driven research planning…

  7. [Summary of research works on viruses in the Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University].

    PubMed

    Yamashiro, Tetsu

    2013-01-01

    Institute of Tropical Medicine, Nagasaki University (NEKKEN) and National Institute of Hygiene and Epidemiology, Vietnam (NIHE) jointly conducted a project from 2006 on Emerging and Re-emerging Infectious Diseases (ERID) granted by the Ministry of Education, Science, Culture and Technology (MEXT) of Japan. Fifteen independent researches have been carried out by 7 scientists who stationed in the Vietnam Research Station (VRS), and by approximately 60 visiting scientists. A wide variety of viruses have been studied in the research activities in the VRS, of those, topics of'' Nipah virus infection in bats in Vietnam'', ''Nam Dinh virus, a newly discovered insect nidovirus'', and'' Risk factors of dengue fever in southern Vietnam'' were summarized. It is important to develop a mechanism to facilitate young scientists to use the VRS in their research works, and then a scope to establish the VRS as a gateway to a successful career path for young scientists in the field of the infectious diseases would be realized.

  8. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  9. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  10. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  11. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., production, marketing (other than statistical and economic research but including research related to family...). (41)-(46) (47) Coordinate USDA policy and programs relating to global climate change (7 U.S.C....

  12. Policy Implications of Current Research in Agricultural Education. Central Region Research Conference in Agricultural Education. Proceedings of Annual Meeting (29th, Columbia, Missouri, July 29-31, 1975).

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia.

    Research on the following topics is presented in this publication: "Analysis of Factors Related to the Educational Plans of Iowa Vocational Agriculture Students,""Development of a Statewide System for Follow-up of Vocational Graduates that Has Implementation for Usage by Local Educational Agencies,""Factors Influencing Ninth and Tenth Grade…

  13. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    PubMed

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility.

  14. Moving GIS Research Indoors: Spatiotemporal Analysis of Agricultural Animals

    PubMed Central

    Daigle, Courtney L.; Banerjee, Debasmit; Montgomery, Robert A.; Biswas, Subir; Siegford, Janice M.

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare. PMID:25098421

  15. Moving GIS research indoors: spatiotemporal analysis of agricultural animals.

    PubMed

    Daigle, Courtney L; Banerjee, Debasmit; Montgomery, Robert A; Biswas, Subir; Siegford, Janice M

    2014-01-01

    A proof of concept applying wildlife ecology techniques to animal welfare science in intensive agricultural environments was conducted using non-cage laying hens. Studies of wildlife ecology regularly use Geographic Information Systems (GIS) to assess wild animal movement and behavior within environments with relatively unlimited space and finite resources. However, rather than depicting landscapes, a GIS could be developed in animal production environments to provide insight into animal behavior as an indicator of animal welfare. We developed a GIS-based approach for studying agricultural animal behavior in an environment with finite space and unlimited resources. Concurrent data from wireless body-worn location tracking sensor and video-recording systems, which depicted spatially-explicit behavior of hens (135 hens/room) in two identical indoor enclosures, were collected. The spatial configuration of specific hen behaviors, variation in home range patterns, and variation in home range overlap show that individual hens respond to the same environment differently. Such information could catalyze management practice adjustments (e.g., modifying feeder design and/or location). Genetically-similar hens exhibited diverse behavioral and spatial patterns via a proof of concept approach enabling detailed examinations of individual non-cage laying hen behavior and welfare.

  16. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  17. A commentary on domestic animals as dual-purpose models that benefit agricultural and biomedical research.

    PubMed

    Ireland, J J; Roberts, R M; Palmer, G H; Bauman, D E; Bazer, F W

    2008-10-01

    Research on domestic animals (cattle, swine, sheep, goats, poultry, horses, and aquatic species) at land grant institutions is integral to improving the global competitiveness of US animal agriculture and to resolving complex animal and human diseases. However, dwindling federal and state budgets, years of stagnant funding from USDA for the Competitive State Research, Education, and Extension Service National Research Initiative (CSREES-NRI) Competitive Grants Program, significant reductions in farm animal species and in numbers at land grant institutions, and declining enrollment for graduate studies in animal science are diminishing the resources necessary to conduct research on domestic species. Consequently, recruitment of scientists who use such models to conduct research relevant to animal agriculture and biomedicine at land grant institutions is in jeopardy. Concerned stakeholders have addressed this critical problem by conducting workshops, holding a series of meetings with USDA and National Institutes of Health (NIH) officials, and developing a white paper to propose solutions to obstacles impeding the use of domestic species as dual-purpose animal models for high-priority problems common to agriculture and biomedicine. In addition to shortfalls in research support and human resources, overwhelming use of mouse models in biomedicine, lack of advocacy from university administrators, long-standing cultural barriers between agriculture and human medicine, inadequate grantsmanship by animal scientists, and a scarcity of key reagents and resources are major roadblocks to progress. Solutions will require a large financial enhancement of USDA's Competitive Grants Program, educational programs geared toward explaining how research using agricultural animals benefits both animal agriculture and human health, and the development of a new mind-set in land grant institutions that fosters greater cooperation among basic and applied researchers. Recruitment of

  18. Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Applications

    NASA Technical Reports Server (NTRS)

    Narayanan, Ram; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    Tremendous advances in remote sensing technology and computing power over the last few decades are now providing scientists with the opportunity to investigate, measure, and model environmental patterns and processes with increasing confidence. Such advances are being pursued by the Nebraska Remote Sensing Facility, which consists of approximately 30 faculty members and is very competitive with other institutions in the depth of the work that is accomplished. The development of this facility targeted at applications, commercialization, and education programs in the area of precision agriculture provides a unique opportunity. This critical area is within the scope of NASA goals and objectives of NASA s Applications, Technology Transfer, Commercialization, and Education Division and the Earth Science Enterprise. This innovative integration of Aerospace (Aeronautics) Technology Enterprise applications with other NASA enterprises serves as a model of cross-enterprise transfer of science with specific commercial applications.

  19. Current United States Department of Agriculture-Agricultural Research Service research on understanding agrochemical fate and transport to prevent and mitigate adverse environmental impacts.

    PubMed

    Hapeman, Cathleen J; McConnell, Laura L; Rice, Clifford P; Sadeghi, Ali M; Schmidt, Walter F; McCarty, Gregory W; Starr, James L; Rice, Pamela J; Angier, Jonathan T; Harman-Fetcho, J A

    2003-01-01

    Environmentally and economically viable agriculture requires a variety of cultivation practices and pest management options as no one system will be appropriate for every situation. Agrochemicals are some of the many pest control tools used in an integrated approach to pest management. They are applied with the intent of maximizing efficacy while minimizing off-site movement; however, their judicious use demands a practical knowledge of their fate and effects in agricultural and natural ecosystems. Agrochemical distribution into environmental compartments is influenced by the physical and chemical properties of the agrochemical and environmental conditions, ie soil type and structure, and meteorological conditions. Agricultural Research Service (ARS) researchers working in the area of agrochemical fate have focused on accurately describing those processes that govern the transport, degradation and bioavailability of these chemicals under conditions reflecting actual agronomic practices. Results from ARS research concerning the environmental fate and effects of agrochemicals have led to the development of science-based management practices that will protect vulnerable areas of the ecosystem. The new challenge is to identify these vulnerable areas and the temporal and spatial variations prior to use of the chemical by predicting how it will behave in environmental matrices, and using that information, predict its transport and transformation within an air- or watershed. With the development of better predictive tools and GIS (Geographic Information System)-based modeling, the risks of agricultural management systems can be assessed at the watershed and basin levels, and management strategies can be identified that minimize negative environmental impacts.

  20. Characterization and evaluation of five jaboticaba accessions at the subtropical horticulture research station in Miami, Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit of five Jaboticaba (Myrciaria caulifloria) cultivars ‘MC-05-06’, ‘MC-05-14’, ‘MC-05-12’, ‘MC-06-15,’ and ‘MC-06-14’ were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clona...

  1. Data multiplex system for the dispensing station at the Tritium Research Laboratory

    SciTech Connect

    Strout, R.E.

    1980-03-01

    Throughout the Tritium Research Laboratory's dispensing station, pressure and temperature are monitored continuously. A multiplex system brings the data from the monitoring points to a central location for use in a programmable calculator. The system consists of a programmable calculator, a multiprogrammer, four address units, digital panel meters, and buffer units interfacing the meters with the rest of the components. This report describes how each component fits into the system to make it work.

  2. Accommodation requirements for microgravity science and applications research on space station

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Holland, L. R.; Wear, W. O.

    1985-01-01

    Scientific research conducted in the microgravity environment of space represents a unique opportunity to explore and exploit the benefits of materials processing in the virtual abscence of gravity induced forces. NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. A study is performed to define from the researchers' perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. The accommodation requirements focus on the microgravity science disciplines including combustion science, electronic materials, metals and alloys, fluids and transport phenomena, glasses and ceramics, and polymer science. User requirements have been identified in eleven research classes, each of which contain an envelope of functional requirements for related experiments having similar characteristics, objectives, and equipment needs. Based on these functional requirements seventeen items of experiment apparatus and twenty items of core supporting equipment have been defined which represent currently identified equipment requirements for a pressurized laboratory module at the initial operating capability of the NASA space station.

  3. Agricultural Meteorology in China.

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.

    1982-03-01

    During nearly five weeks in China (May-June 1981), the author visited scientific institutions and experiment stations engaged in agricultural meterology and climatology research and teaching. The facilities, studies, and research programs at each institution are described and the scientific work in these fields is evaluated. Agricultural meteorology and climatology are faced with some unique problems and opportunities in China and progress in these fields may be of critical importance to that nation in coming years. The author includes culinary notes and comments on protocol in China.

  4. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  5. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  6. Cardiovascular research in space - Considerations for the design of the human research facility of the United States Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Bungo, M. W.

    1986-01-01

    The design of the Space Station's Human Research Facility for the collection of information on the long-time physiological adjustments of humans to space is described. The Space Life Sciences-1 mission will carry a rack-mounted echocardiograph for cardiac imaging, a mass spectrometer for cardiac output and respiratory function assessments at rest and during exercise, and a device to stimulate the carotid sinus baroreceptors and measure the resulting changes in heart rate.

  7. Central Regional Annual Research Conference in Agricultural Education Proceedings (41st, Chicago, Illinois, February 22-23, 1987).

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Dept. of Agricultural and Extension Education.

    This proceedings contains 18 papers on agricultural research issues selected by panel review plus the keynote address, a conference summary, and the conference agenda. The following papers are included: "Research in Agricultural Education: Requisites for Further Progress" (Warmbrod--keynote address); "Marketing Agricultural Education" (Casey,…

  8. Equipment Request for the Belleville Agricultural Research and Education Center

    SciTech Connect

    Young, Bryan; Nehring, Jarrett; Graham, Susan; Klubek, Brian

    2013-01-13

    The funding provided by the DOE for this project was used exclusively to purchase research equipment involved with the field development and evaluation of crop production technologies and practices for energy crop production. The new equipment has been placed into service on the SIU farms and has significantly enhanced our research capacity and scope for agronomy and precision ag research to support novel seed traits or crop management strategies for improving the efficiency and productivity of corn and soybeans. More specifically, the precision ag capability of the equipment that was purchased has heightened interest by faculty and associated industry partners to develop collaborative projects. In addition, this equipment has provided SIU with a foundation to be more successful at securing competitive grants in energy crop production and precision ag data management. Furthermore, the enhanced capacity for agronomy research in the southern Illinois region has been realized and will benefit crop producers in this region by learning to improve their operations from our research outcomes.

  9. To Tell the Truth: The Impact of the Hatch Act on Secondary Agricultural Education.

    ERIC Educational Resources Information Center

    Moore, Gary E.

    The Hatch Act of 1887 established agricultural experiment stations to conduct agricultural research. It also called for the diffusion of agricultural information to the public. Land-grant university presidents and agricultural professors formalized the establishment of an association to improve communications and coordinate activities in regards…

  10. 75 FR 52374 - National Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... Environmental Policy Act; NASA Glenn Research Center Plum Brook Station Wind Farm Project AGENCY: National... scoping and prepare an Environmental Impact Statement (EIS) for the NASA GRC Plum Brook Station Wind Farm... scoping is for NASA to obtain public comments on construction and operation of the wind farm. The...

  11. Insights in nutrient sources and transport from high-frequency monitoring at the outlet pumping station of an agricultural lowland polder catchment

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Van der Grift, B.; Broers, H. P.; Berendrecht, W.; Oste, L.; Griffioen, J.

    2015-12-01

    In this study, we present new insights in nutrient sources and transport processes in an agricultural-dominated lowland water system based on high-frequency monitoring technology. Starting in October 2014, we have collected semi-continuous measurements of the TP and NO3 concentrations, conductivity and water temperature at a large scale pumping station at the outlet of a 576 km2 polder catchment. The semi-continuous measurements complement a water quality monitoring program at six locations within the drainage area based on conventional monthly or biweekly grab sampling. The NO3 and TP concentrations at the pumping station varied between 0.5 and 10 mgN/L and 0.1 and 0.5 mgP/L. The seasonal trends and short scale concentration dynamics clearly indicated that most of the NO3 loads at the pumping station originated from subsurface drain tubes that were active after intensive rainfall events during the winter months. A transfer function-noise model of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be predicted using rainfall data. In February however, NO3 concentrations were higher than predicted due to direct losses after the first manure application. The TP concentration almost doubled during operation of the pumping station. This highlights resuspension of particulate P from channel bed sediments induced by the higher flow velocities during pumping. Rainfall events that caused peaks in NO3 concentrations did not result in TP concentration peaks. Direct effects of run-off, with an association increase in the TP concentration and decrease of the NO3concentration, was only observed during rainfall event at the end of a freeze-thaw cycle. The high-frequency monitoring at the outlet of an agricultural-dominated lowland water system in combination with low-frequency monitoring within the area provided insight in nutrient sources and transport processes that are highly relevant for water quality

  12. Design and development of a Space Station proximity operations research and development mockup

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1986-01-01

    Proximity operations (Prox-Ops) on-orbit refers to all activities taking place within one km of the Space Station. Designing a Prox-Ops control station calls for a comprehensive systems approach which takes into account structural constraints, orbital dynamics including approach/departure flight paths, myriad human factors and other topics. This paper describes a reconfigurable full-scale mock-up of a Prox-Ops station constructed at Ames incorporating an array of windows (with dynamic star field, target vehicle(s), and head-up symbology), head-down perspective display of manned and unmanned vehicles, voice- actuated 'electronic checklist', computer-generated voice system, expert system (to help diagnose subsystem malfunctions), and other displays and controls. The facility is used for demonstrations of selected Prox-Ops approach scenarios, human factors research (work-load assessment, determining external vision envelope requirements, head-down and head-up symbology design, voice synthesis and recognition research, etc.) and development of engineering design guidelines for future module interiors.

  13. Ag Data Commons: Adding Value to Open Agricultural Research Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Public access to results of federally-funded research is a new mandate for large departments of the United States government. Public access to scholarly literature from U.S. investments is straightforward, with policies and systems like PubMed Central and PubAg (http://pubag.nal.usda.gov) already im...

  14. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to soil and water conservation, engineering operations, and methods of cultivation to provide for the... U.S.C. 5821). (32) Administer a national research program on genetic resources to provide for the collection, preservation, and dissemination of genetic material important to American food and...

  15. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to soil and water conservation, engineering operations, and methods of cultivation to provide for the... U.S.C. 5821). (32) Administer a national research program on genetic resources to provide for the collection, preservation, and dissemination of genetic material important to American food and...

  16. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to soil and water conservation, engineering operations, and methods of cultivation to provide for the... U.S.C. 5821). (32) Administer a national research program on genetic resources to provide for the collection, preservation, and dissemination of genetic material important to American food and...

  17. 7 CFR 2.65 - Administrator, Agricultural Research Service.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to soil and water conservation, engineering operations, and methods of cultivation to provide for the... U.S.C. 5821). (32) Administer a national research program on genetic resources to provide for the collection, preservation, and dissemination of genetic material important to American food and...

  18. Analysis and Interpretation of Interactions in Agricultural Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When reporting on well conducted research, a characteristic of a complete and proper manuscript is one that includes analyses and interpretations of all interactions. The purpose of this article is to provide specific guidelines on how to analyze and interpret interactions of fixed effects in resear...

  19. International Research Results and Accomplishments From the International Space Station - A New Compilation

    NASA Technical Reports Server (NTRS)

    Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; Karabadzhak, Georgy; Sorokin, Igor V.; Cotronei, Vittorio; Jean, Sabbagh

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a

  20. Central States Annual Research Conference in Agricultural Education Proceedings (42nd, Chicago, Illinois, February 21-22, 1988).

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale.

    The following papers are included in this conference report: "Generative Themes for Research in Agricultural Education," (Copa); "Factors Associated with Participation of Iowa Young Farmers in Agricultural Extension Programs" (Martin, Omer); "Personality Characteristics of Groups of Wisconsin Vocational, Technical, and…

  1. A versatile x-ray microtomography station for biomedical imaging and materials research.

    PubMed

    Lussani, Fernando Cesar; Vescovi, Rafael Ferreira da Costa; de Souza, Thaís Diniz; Leite, Carlos A P; Giles, Carlos

    2015-06-01

    An x-ray microtomography station implemented at the X-ray Applied Crystallography Laboratory of the State University of Campinas is described. The station is based on a propagation based phase contrast imaging setup with a microfocus source and digital x-ray area detectors. Due to its simplicity, this setup is ideal for fast, high resolution imaging and microtomography of small biological specimens and materials research samples. It can also be coupled to gratings to use and develop new techniques as the harmonic spatial coherent imaging, which allow scattering contrast imaging. Details of the experimental setup, equipment, and software integration are described. Test microtomography for setup commissioning and characterization is shown. We conclude that phase contrast enhanced x-ray imaging and microtomography with resolution below 5 μm voxel size are possible and data sets as wide as 2000 × 2000 × 2000 voxels are obtained with this instrumentation.

  2. A versatile x-ray microtomography station for biomedical imaging and materials research

    NASA Astrophysics Data System (ADS)

    Lussani, Fernando Cesar; Vescovi, Rafael Ferreira da Costa; Souza, Thaís Diniz de; Leite, Carlos A. P.; Giles, Carlos

    2015-06-01

    An x-ray microtomography station implemented at the X-ray Applied Crystallography Laboratory of the State University of Campinas is described. The station is based on a propagation based phase contrast imaging setup with a microfocus source and digital x-ray area detectors. Due to its simplicity, this setup is ideal for fast, high resolution imaging and microtomography of small biological specimens and materials research samples. It can also be coupled to gratings to use and develop new techniques as the harmonic spatial coherent imaging, which allow scattering contrast imaging. Details of the experimental setup, equipment, and software integration are described. Test microtomography for setup commissioning and characterization is shown. We conclude that phase contrast enhanced x-ray imaging and microtomography with resolution below 5 μm voxel size are possible and data sets as wide as 2000 × 2000 × 2000 voxels are obtained with this instrumentation.

  3. Facilities for animal research in space with special reference to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.; Kishiyama, Jenny S.; Arno, Roger D.

    1990-01-01

    The facilities being planned for animal research on Space Station Freedom are considered in the context of the development of animal habitats from early ballistic and orbital flights to long-term missions aimed at more detailed scientific studies of the effects of space conditions on the vertebrate organism. Animal habitats are becoming more elaborate, requiring systems for environmental control, waste management, physiological monitoring, as well as ancillary facilities such as a 1-G control centrifuge and a glovebox. Habitats in use or to be used in various types of manned and unmanned spacecraft, and particularly those planned for Space Station Freedom, are described. The characteristics of the habitats are compared with each other and with current standards for animal holding facilities on the ground.

  4. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; Spina, Danny C.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  5. Defining contamination control requirements for non-human research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Funk, Glenn A.

    1992-01-01

    The use of non-human biological specimens for life sciences research on Space Station Freedom has generated concerns about spacecraft internal contamination, crew safety and hardware utility. Various NASA organizations convened to discuss the concerns and determine how they should be addressed. This paper will present the issues raised at this meeting, the process by which safety concerns were identified, and the means by which contamination control requirements for all biological payloads were recommended for incorporation into Space Station Freedom safety requirements. The microbiological, toxicological and particulate contamination criteria for long-term spaceflight will be based on realistic assessment of risk and hardware will be designed to meet established contamination criteria while facilitating crew operations, thereby meeting the needs of the investigator.

  6. Mini neutron monitor measurements at the Neumayer III station and on the German research vessel Polarstern

    NASA Astrophysics Data System (ADS)

    Heber, B.; Galsdorf, D.; Herbst, K.; Gieseler, J.; Labrenz, J.; Schwerdt, C.; Walter, M.; Benadé, G.; Fuchs, R.; Krüger, H.; Moraal, H.

    2015-08-01

    Neutron monitors (NMs) are ground-based devices to measure the variation of cosmic ray intensities, and although being reliable they have two disadvantages: their size as well as their weight. As consequence, [1] suggested the development of a portable, and thus much smaller and lighter, calibration neutron monitor that can be carried to any existing station around the world [see 2; 3]. But this mini neutron monitor, moreover, can also be installed as an autonomous station at any location that provides ’’office” conditions such as a) temperatures within the range of around 0 to less than 40 degree C as well as b) internet and c) power supply. However, the best location is when the material above the NM is minimized. In 2011 a mini Neutron Monitor was installed at the Neumayer III station in Antarctica as well as the German research vessel Polarstern, providing scientific data since January 2014 and October 2012, respectively. The Polarstern, which is in the possession of the Federal Republic of Germany represented by the Ministry of Education and Research and operated by the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research and managed by the shipping company Laeisz, was specially designed for working in the polar seas and is currently one of the most sophisticated polar research vessels worldwide. It spends almost 310 days a year at sea usually being located in the waters of Antarctica between November and March while spending the northern summer months in Arctic waters. Therefore, the vessel scans the rigidity range below the atmospheric threshold and above 10 GV twice a year. In contrast to spacecraft measurements NM data are influenced by variations of the geomagnetic field as well as the atmospheric conditions. Thus, in order to interpret the data a detailed knowledge of the instrument sensitivity with geomagnetic latitude (rigidity) and atmospheric pressure is essential. In order to determine the atmospheric response data from the

  7. Integrated payload resource requirements for NASA's Gravitational Biology Research Laboratory on the International Space Station

    NASA Astrophysics Data System (ADS)

    Fletcher, Lauren E.; Sarver, George L., Dr.; Jahns, Gary, Dr.

    2000-01-01

    The primary mission of International Space Station (ISS) is to provide a shirt-sleeve working environment within an orbiting laboratory to support a wide variety of research conducted in the micro-gravity (μ-gravity) environment of space. The laboratory being developed by the Space Station Biological Research Project (SSBRP) at the Ames Research Center (ARC) will support NASA's Gravitational Biology and Ecology (GB&E) Research Program on the influence and affects of gravity on living systems. It will support research from the building blocks of biology (cells and tissues) through complete, fully grown systems (plants, rodents, aquatics and insects) and through all phases of growth as well as multiple generations. The results will provide an in-depth understanding of the role of gravity in living systems. It should provide the information necessary to support long-term manned missions for exploration of the solar system. In addition, it is expected to provide valuable insight into how Earth-bound biological systems work. .

  8. Assessment of Professional Training Programmes in International Agricultural Research Institutions: The Case of ICRAF

    ERIC Educational Resources Information Center

    Wanjiku, Julliet; Mairura, Franklin; Place, Frank

    2010-01-01

    The following survey was undertaken in 2005 to assess the effectiveness of professional training activities in international agricultural research organizations that were undertaken between 1999 and 2002 at ICRAF (International Centre for Research in Agroforestry), now World Agroforestry Centre, Nairobi. Trainees were randomly selected from…

  9. 77 FR 27013 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... ranching, food production and processing, forestry research, crop and animal science, land-grant institutions, non-land grant college or university with a historic commitment to research in the food and agricultural sciences, food retailing and marketing, rural economic development, and natural resource...

  10. Sustaining the earth's watersheds-agricultural research data system: Overview of development and challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comprehensive, long-term data for watershed systems across diverse locations are essential for interdisciplinary hydrologic and ecosystem analysis and model development, calibration and validation. The USDA and Agricultural Research Service (ARS) have supported watershed research since the 1930’s w...

  11. The Transformation of Agricultural Research in France: The Introduction of the American System

    ERIC Educational Resources Information Center

    Castonguay, Stephane

    2005-01-01

    In 1916, French entomologist Paul Marchal published a seminal report on the contemporary state of agricultural research in the United States of America. His recommendations underlined the need for a close relationship between research and education, a factor vital to national survival in the aftermath of the Great War. This essay discusses the…

  12. MULTI-DISCIPLINARY TEAMS - A NECESSITY FOR RESEARCH IN PRECISION AGRICULTURE SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture may offer great promise for the future, but extensive additional research is required if that promise is to be realized. The research will not be easy, for few, if any, individuals have sufficiently broad training in the many disciplines (e.g. economics, engineering, crop and ...

  13. Commentary on domestic animals in agricultural and biomedical research: An endangered enterprise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the long and successful history of research on agriculturally relevant domestic animals, basic and translational research using domestic species is becoming increasingly threatened due to budgetary erosion. This funding decline is well documented in a recent article by Ireland et al., publis...

  14. The Importance of the International Space Station for Life Sciences Research: Past and Future

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Evans, C. A.; Tate, Judy

    2008-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations, it hosted a few early science experiments months before the first international crew took up residence in November 2000. Since that time, science returns from the ISS have been growing at a steady pace. To date, early utilization of the U.S. Operating Segment of ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting U.S. and international partner research. This paper will summarize the life science accomplishments of early research aboard the ISS both applied human research for exploration, and research on the effects of microgravity on life. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities (both pressurized and external) will be tripled, with multiple scientific modules that support a wide variety of research racks and science and technology experiments conducted by all of the International Partners. A milestone was reached in February 2008 with the launch and commissioning of ESA s Columbus module and in March of 2008 with the first of three components of the Japanese Kibo laboratory. Although challenges lie ahead, the realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research disciplines engaged on ISS. As the ISS nears completion of assembly in 2010, we come to full international utilization of the facilities for research. Using the past as an indicator, we are now able to envision the multidisciplinary contributions to improving life on Earth that the ISS can make as a platform for life sciences research.

  15. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  16. A proposal for the integration of behavioural research into International Space Station operations

    NASA Astrophysics Data System (ADS)

    Musson, David M.

    2000-01-01

    This paper proposes specific approaches for the conduct of psychological research on the International Space Station (ISS), and in the training programs supporting ISS. Justification for such research is presented, including improved safety and efficiency, the furthering of scientific knowledge, and the establishment of firm recommendations for the selection, training and support of future long duration crews on a mission to Mars. Data collection techniques and research methodologies are reviewed, including behavioural observations, surveys and interviews, and incident reporting systems. The specific uses of these data are discussed, including training refinement, validation of crew selection criteria, and design of future missions. The essential requirement that astronauts be partners in such research is also discussed, along with an exploration of the need for absolute confidentiality of psychological data and the requirement that information collected must not be used to impair astronaut careers or flight assignments. .

  17. Preliminary Concepts for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Cobb, S.D.; Szofran, F. R.; Schaefer, D. A.

    1999-01-01

    The Materials Science Research Facility (MSRF) is designed to accommodate the current and evolving cadre of peer-reviewed materials science investigations selected to conduct research in the microgravity environment of the International Space Station (ISS). The MSRF consists of modular autonomous Materials Science Research Racks (MSRR's). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on Utilization Flight 3. Each MSRR is a stand-alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, or multi-user generic processing apparatus Each MSRR will support a wide variety of scientific investigations.

  18. United States Department of Agriculture-Agriculture Research Service research on targeted management of the Formosan subterranean termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae).

    PubMed

    Lax, Alan R; Osbrink, Weste L A

    2003-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki is currently one of the most destructive pests in the USA. It is estimated to cost consumers over US dollars 1 billion annually for preventative and remedial treatment and to repair damage caused by this insect. The mission of the Formosan Subterranean Termite Research Unit of the Agricultural Research Service is to demonstrate the most effective existing termite management technologies, integrate them into effective management systems, and provide fundamental problem-solving research for long-term, safe, effective and environmentally friendly new technologies. This article describes the epidemiology of the pest and highlights the research accomplished by the Agricultural Research Service on area-wide management of the termite and fundamental research on its biology that might provide the basis for future management technologies. Fundamental areas that are receiving attention are termite detection, termite colony development, nutrition and foraging, and the search for biological control agents. Other fertile areas include understanding termite symbionts that may provide an additional target for control. Area-wide management of the termite by using population suppression rather than protection of individual structures has been successful; however, much remains to be done to provide long-term sustainable population control. An educational component of the program has provided reliable information to homeowners and pest-control operators that should help slow the spread of this organism and allow rapid intervention in those areas which it infests.

  19. Linking international agricultural research knowledge with action for sustainable development

    PubMed Central

    Kristjanson, Patti; Reid, Robin S.; Dickson, Nancy; Clark, William C.; Romney, Dannie; Puskur, Ranjitha; MacMillan, Susan; Grace, Delia

    2009-01-01

    We applied an innovation framework to sustainable livestock development research projects in Africa and Asia. The focus of these projects ranged from pastoral systems to poverty and ecosystems services mapping to market access by the poor to fodder and natural resource management to livestock parasite drug resistance. We found that these projects closed gaps between knowledge and action by combining different kinds of knowledge, learning, and boundary spanning approaches; by providing all partners with the same opportunities; and by building the capacity of all partners to innovate and communicate. PMID:19289830

  20. Linking international agricultural research knowledge with action for sustainable development.

    PubMed

    Kristjanson, Patti; Reid, Robin S; Dickson, Nancy; Clark, William C; Romney, Dannie; Puskur, Ranjitha; Macmillan, Susan; Grace, Delia

    2009-03-31

    We applied an innovation framework to sustainable livestock development research projects in Africa and Asia. The focus of these projects ranged from pastoral systems to poverty and ecosystems services mapping to market access by the poor to fodder and natural resource management to livestock parasite drug resistance. We found that these projects closed gaps between knowledge and action by combining different kinds of knowledge, learning, and boundary spanning approaches; by providing all partners with the same opportunities; and by building the capacity of all partners to innovate and communicate.

  1. Proceedings of the Annual Central Region Research Conference in Agricultural Education (30th, Columbus, Ohio, August 3-5, 1976).

    ERIC Educational Resources Information Center

    Erpelding, Lawrence H., Comp.

    Thirteen papers constitute the major portion of the proceedings of a conference designed to review and analyze current research, to identify research priorities, and to provide a challenge for the continuing improvement of the planning, conduct, and implementation of research in agricultural education: (1) Research in Agricultural Education from a…

  2. Research on Rainfall data of Debris Flow Monitoring Station via WSN Technique and Spatial Analysis

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Lee, B.; King, C.; Chen, M.; Lien, J.; Yin, H.; Wang, H.

    2008-12-01

    Rainfall record is one of the most important Hydrological data. While analyzing the rainfall data, the integrality of the rainfall materials can't be neglected. There are correct rainfall materials that can just offer an intact hydrology analysis. In 2007, Taiwan suffered Krosa typhoon and caused debris flow disasters. This research discusses the Soil and Water Conservation Bureau's (SWCB) debris flow station's rainfall data with Central Weather Bureau's (CWB). Based on CWS's rainfall materials, remove the effect or terrain and then utilize ArcGIS9.1 of GIS software interpolation methods such as Kriging methods to estimate the debris flow station's rainfall value. In addition, we propose a wireless sensor network (WSN) based automatic weather stations (AWS), which takes advantage of the low-cost, real-time and infrastructure-free characteristics of WSN. We can therefore extend the scale of weather monitoring without increasing the number of telecommunication equipments. This WSN-based AWS is able to cover a plane and gather multiple sets of weather measurements in real-time at a better data resolution.

  3. International Agricultural Trade and Policy: Issues and Implications for U.S. Agriculture. Texas Agricultural Market Research Center Special Series Report No. SS-2-89.

    ERIC Educational Resources Information Center

    Williams, Gary W.

    Historical events have set the stage for the current U.S. agricultural export performance. Agricultural exports in the early 1990s were as large or larger relative to the size of the agricultural sector than at any time since. A dramatic decrease in net farm income was caused by the Great Depression (1929-1932). Following passage of the…

  4. Effects of agriculture upon the air quality and climate: research, policy, and regulations.

    PubMed

    Aneja, Viney P; Schlesinger, William H; Erisman, Jan Willem

    2009-06-15

    Scientific assessments of agricultural air quality, including estimates of emissions and potential sequestration of greenhouse gases, are an important emerging area of environmental science that offers significant challenges to policy and regulatory authorities. Improvements are needed in measurements, modeling, emission controls, and farm operation management. Controlling emissions of gases and particulate matter from agriculture is notoriously difficult as this sector affects the most basic need of humans, i.e., food. Current policies combine an inadequate science covering a very disparate range of activities in a complex industry with social and political overlays. Moreover, agricultural emissions derive from both area and point sources. In the United States, agricultural emissions play an important role in several atmospherically mediated processes of environmental and public health concerns. These atmospheric processes affect local and regional environmental quality, including odor, particulate matter (PM) exposure, eutrophication, acidification, exposure to toxics, climate, and pathogens. Agricultural emissions also contribute to the global problems caused by greenhouse gas emissions. Agricultural emissions are variable in space and time and in how they interact within the various processes and media affected. Most important in the U.S. are ammonia (where agriculture accounts for approximately 90% of total emissions), reduced sulfur (unquantified), PM25 (approximately 16%), PM110 (approximately 18%), methane (approximately 29%), nitrous oxide (approximately 72%), and odor and emissions of pathogens (both unquantified). Agriculture also consumes fossil fuels for fertilizer production and farm operations, thus emitting carbon dioxide (CO2), oxides of nitrogen (NO(x)), sulfur oxides (SO(x)), and particulates. Current research priorities include the quantification of point and nonpoint sources, the biosphere-atmosphere exchange of ammonia, reduced sulfur

  5. Identification of high payoff research for more efficient applicator helicopters in agriculture and forestry

    NASA Technical Reports Server (NTRS)

    Waters, K. T.

    1979-01-01

    The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.

  6. A New Direction for the NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  7. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be

  8. A New Direction for the NASA Materials Science Research using the International Space Station

    NASA Astrophysics Data System (ADS)

    Schlagheck, R.

    2002-01-01

    In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human

  9. The concept of a facility for cosmic dust research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.; Rogers, Fred

    1996-01-01

    A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.

  10. Crew station research and development facility training for the light helicopter demonstration/validation program

    NASA Technical Reports Server (NTRS)

    Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL

    1992-01-01

    The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.

  11. Office of Commercial Programs' research activities for Space Station Freedom utilization

    NASA Astrophysics Data System (ADS)

    Fountain, James A.

    One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will

  12. Space station systems analysis study. Part 3: Documentation. Volume 4: Supporting research and technology report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A brief description of recommended supporting research and technology items resulting from the space station analysis study is provided. Descriptions include the title; the status with respect to the state of the art; the justification; the technical plan including objectives and technical approach; resource requirements categorized by manpower, specialized facilities, and funding in 1977 dollars; and also the target schedule. The goal is to provide high confidence in the solutions for the various functional system development problems, and to do so within a time period compatible with the overall evolutionary space construction base schedule.

  13. Office of Commercial Programs' research activities for Space Station Freedom utilization

    NASA Technical Reports Server (NTRS)

    Fountain, James A.

    1992-01-01

    One of the objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDS's) which are located throughout the United States. The CCDS's are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware were built to date. These payloads have flown in space a total of 73 times. The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads. All of these commercial research activities and carrier capabilities are preparing the OCP to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDS's are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will

  14. Empirical Requirements Analysis for Mars Surface Operations Using the Flashline Mars Arctic Research Station

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Lee, Pascal; Sierhuis, Maarten; Norvig, Peter (Technical Monitor)

    2001-01-01

    Living and working on Mars will require model-based computer systems for maintaining and controlling complex life support, communication, transportation, and power systems. This technology must work properly on the first three-year mission, augmenting human autonomy, without adding-yet more complexity to be diagnosed and repaired. One design method is to work with scientists in analog (mars-like) setting to understand how they prefer to work, what constrains will be imposed by the Mars environment, and how to ameliorate difficulties. We describe how we are using empirical requirements analysis to prototype model-based tools at a research station in the High Canadian Arctic.

  15. The Use of Water During the Crew 144, Mars Desert Research Station, Utah Desert

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    Well. from November 29th to December 14th, 2014, the author conducted astrobiological and geological surveys, as analog astronaut member of the international Crew 144, at the site of the Mars Society's Mars Desert Research Station, located at a remote location in the Utah desert, United States. The use of water for drinking, bathing, cleaning, etc., in the crew was a major issue for consideration for a human expedition to the planet Mars in the future. The author would like to tell about the factors of the rationalized use of water.

  16. Concepts of bioisolation for life sciences research on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Funk, Glenn A.; Johnson, Catherine C.

    1991-01-01

    The risk concepts related to biological research in space are defined with attention given to the design and operation of experimental hardware for NASA's Biological Flight Research Laboratory (BFRL). The definitions are set forth to describe safety measures for the use of nonhuman specimens in microgravity environments and the direct application of the risk-control concepts. Bioisolation is the process by which biological systems can coexist productively by means of physical, chemical, or biological methods; bioisolation requirements are given for mammals, plants, and microspecimens. The BRFL provides two levels of containment based on the complete sealing of all joints and interfaces in the Modular Habitat and an airflow system designed to provide net negative pressure of at least 0.13 kPa. The requirements are designed to assure a safe working environment for conducting nonhuman life-sciences research in the Space Station Freedom.

  17. On the use of Space Station Freedom in support of the SEI - Life science research

    NASA Technical Reports Server (NTRS)

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  18. agINFRA: a research data hub for agriculture, food and the environment

    PubMed Central

    Drakos, Andreas; Protonotarios, Vassilis; Manouselis, Nikos

    2015-01-01

    The agINFRA project (www.aginfra.eu) was a European Commission funded project under the 7th Framework Programme that aimed to introduce agricultural scientific communities to the vision of open and participatory data-intensive science. agINFRA has now evolved into the European hub for data-powered research on agriculture, food and the environment, serving the research community through multiple roles. Working on enhancing the interoperability between heterogeneous data sources, the agINFRA project has left a set of grid- and cloud- based services that can be reused by future initiatives and adopted by existing ones, in order to facilitate the dissemination of agricultural research, educational and other types of data. On top of that, agINFRA provided a set of domain-specific recommendations for the publication of agri-food research outcomes. This paper discusses the concept of the agINFRA project and presents its major outcomes, as adopted by existing initiatives activated in the context of agricultural research and education. PMID:26339472

  19. Designing a Model for Integration of Information and Communication Technologies (ICTs) in the Iranian Agricultural Research System

    ERIC Educational Resources Information Center

    Sharifzadeh, Aboulqasem; Abdollahzadeh, Gholam Hossein; Sharifi, Mahnoosh

    2009-01-01

    Capacity Development is needed in the Iranian Agricultural System. Integrating Information and Communication Technologies (ICTs) in the agricultural research system is an appropriate capacity development mechanism. The appropriate application of ICTs and information such as a National Agricultural Information System requires a systemically…

  20. Space Station Engineering and Technology Development: Proceedings of the Panel on In-Space Engineering Research and Technology Development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In 1984 the ad hoc committee on Space Station Engineering and Technology Development of the Aeronautics and Space Engineering Board (ASEB) conducted a review of the National Aeronautics and Space Administration's (NASA's) space station program planning. The review addressed the initial operating configuration (IOC) of the station. The ASEB has reconstituted the ad hoc committee which then established panels to address each specific related subject. The participants of the panels come from the committee, industry, and universities. The proceedings of the Panel on In Space Engineering Research and Technology Development are presented in this report. Activities, and plans for identifying and developing R&T programs to be conducted by the space station and related in space support needs including module requirements are addressed. Consideration is given to use of the station for R&T for other government agencies, universities, and industry.

  1. Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

    NASA Technical Reports Server (NTRS)

    Dalton, Bonnie P.; Plaut, Karen; Meeker, Gabrielle B.; Sun, Sid (Technical Monitor)

    2000-01-01

    The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories. The habitats provide all basic life support capabilities including temperature control, humidity monitoring and control, waste management, food, media and water delivery as well as adjustable lighting. All habitats will have either an internal centrifuge or are fitted to the 2.5-meter diameter centrifuge allowing for variable centrifugation up to 2 g. Specimen chambers are removable so that the specimens can be handled in the life sciences glovebox. Laboratory support equipment is provided for handling the specimens. This includes a compound and dissecting microscope with advanced video imaging, mass measuring devices, refrigerated centrifuge for processing biological samples, pH meter, fixation and complete cryogenic storage capabilities. The research capabilities provided by the fundamental biology facilities will allow for flexibility and efficiency for long term research on the International Space Station.

  2. Proceedings of the Annual Southern Research Conference in Agricultural Education (30th, Lubbock, Texas, July 21-23, 1981).

    ERIC Educational Resources Information Center

    Cepica, M. J.; And Others

    These proceedings contain 20 presentations and reports made during the 30th Annual Research Conference in Agricultural Education in Lubbock, Texas. The keynote address on importance of research to agricultural education is followed by 16 research papers reporting on analysis of student teacher morale before and after student teaching;…

  3. Gaseous Non-Premixed Flame Research Planned for the International Space Station

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.; Takahashi, Fumiaki; Hickman, J. Mark; Suttles, Andrew C.

    2014-01-01

    Thus far, studies of gaseous diffusion flames on the International Space Station (ISS) have been limited to research conducted in the Microgravity Science Glovebox (MSG) in mid-2009 and early 2012. The research was performed with limited instrumentation, but novel techniques allowed for the determination of the soot temperature and volume fraction. Development is now underway for the next experiments of this type. The Advanced Combustion via Microgravity Experiments (ACME) project consists of five independent experiments that will be conducted with expanded instrumentation within the stations Combustion Integrated Rack (CIR). ACMEs goals are to improve our understanding of flame stability and extinction limits, soot control and reduction, oxygen-enriched combustion which could enable practical carbon sequestration, combustion at fuel lean conditions where both optimum performance and low emissions can be achieved, the use of electric fields for combustion control, and materials flammability. The microgravity environment provides longer residence times and larger length scales, yielding a broad range of flame conditions which are beneficial for simplified analysis, e.g., of limit behaviour where chemical kinetics are important. The detailed design of the modular ACME hardware, e.g., with exchangeable burners, is nearing completion, and it is expected that on-orbit testing will begin in 2016.

  4. Research Productivity in the "Journal of Agricultural Education" from 1996 to 2005

    ERIC Educational Resources Information Center

    Harder, Amy; Goff, Sam; Roberts, T. Grady

    2008-01-01

    The purpose of this study was to examine research productivity in the Journal of Agricultural Education from 1996 to 2005 and explain factors that contributed to that productivity. In Volumes 37 to 46, 333 articles were published. The most productive institutions were determined by frequency of the institutional affiliation of article authors. The…

  5. Compilation of Agricultural Research, Education, and Extension Questions for Discussion. 104th Congress, 1st Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Agriculture.

    This volume compiles and reprints the responses of 37 organizations to a series of questions issued by the House Committee on Agriculture in anticipation of debates concerning the Research Title of the 1995 Farm Bill due for updating and revision. The questions address some of the following topics: the role of the federal government in…

  6. 78 FR 25691 - Request for Nominations of Members for the National Agricultural Research, Extension, Education...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ..., each member has represented a specific category related to farming or ranching, food production and... university with a historic commitment to research in the food and agricultural sciences, food retailing and marketing, rural economic development, and natural resource and consumer interest groups, among many...

  7. Science and Policy Issues: A Report of Citizen Concerns and Recommendations for American Agricultural Research.

    ERIC Educational Resources Information Center

    National Agricultural Research and Extension Users Advisory Board (USDA), Washington, DC.

    Two areas which will have far reaching consequences for the future of United States agriculture are discussed: (1) biotechnology; and (2) critical economic research in world trade and commodity supply management. Topics in the first area include: controversies related to biotechnology; the relative importance of health, safety, and environmental…

  8. 77 FR 11064 - National Agricultural Research, Extension, Education, and Economics Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... Advisory Board Office, Room 3901 South Building, United States Department of Agriculture, STOP 0321, 1400.... SUMMARY: In accordance with the Federal Advisory Committee Act, 5 U.S.C. App 2, the United States... advising the Department on subjects relevant to Research, Education, and Economics. An evening...

  9. Current Erosion and Sediment Research Concerns in Agricultural Watersheds in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion research programs in the USA began in earnest following events of the 1933 Dust Bowl. During the early years from the 1930s-1960s, the focus was on determining the scale and severity of this problem by making measurements on plots, field-size areas, and small agricultural watersheds. Th...

  10. The Influence of Information Technology Access on Agricultural Research in Nigeria.

    ERIC Educational Resources Information Center

    Jimba, Samuel Wodi; Atinmo, Morayo Ibironke

    2000-01-01

    Examines the relationship between accessibility to information technology and research publications among users of agricultural libraries in Nigeria. Discusses results of a questionnaire that investigated the use of electronic information resources and considers the effects of information technology and globalization on the economies of developing…

  11. Ergonomic risks and musculoskeletal disorders in production agriculture: recommendations for effective research to practice.

    PubMed

    Kirkhorn, Steven R; Earle-Richardson, Giulia; Banks, R J

    2010-07-01

    Musculoskeletal disorders (MSDs) are increasingly recognized as a significant hazard of agricultural occupation. In agricultural jobs with significant physical labor, MSDs are typically the most frequently reported injury. Although not as lethal as tractor roll-overs, MSDs can result in disability, lost work time, and increased production costs. MSDs increase production costs as a result of worker absence, medical and insurance costs, decreased work capacity, and loss of employees to turnover and competition from other less physically demanding industries. This paper will provide an overview of what is currently known about MSDs in agriculture, including high-risk commodities, tasks and work practices, and the related regulatory factors and workers' compensation costs. As agricultural production practices evolve, the types of MSDs also change, as do ergonomic risk factors. One example is the previous higher rates of knee and hip arthritis identified in farmers in stanchion dairies evolving into upper extremity tendonitis, arthritis, and carpal tunnel syndrome now found in milking technicians in dairy milking parlors. This paper summarizes the presentation, "Musculoskeletal Disorders in Labor-Intensive Operations," at the Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, "Be Safe, Be Profitable: Protecting Workers in Agriculture," January 27-28, 2010, Dallas/Fort Worth, Texas. The primary focus of the paper is to address current research on ergonomic solutions for MSDs in agriculture. These include improved tools, carts or equipment, as well as work practices. One of the key challenges in this area pertains to measurement, due to the fact that musculoskeletal strain is a chronic condition that can come and go, with self-reported pain as its only indicator. Alternative measurement methods will be discussed. Finally, the implementation of research into practice is reviewed, with an emphasis on best

  12. Reusable Rack Interface Controller Common Software for Various Science Research Racks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Lu, George C.

    2003-01-01

    The purpose of the EXPRESS (Expedite the PRocessing of Experiments to Space Station) rack project is to provide a set of predefined interfaces for scientific payloads which allow rapid integration into a payload rack on International Space Station (ISS). VxWorks' was selected as the operating system for the rack and payload resource controller, primarily based on the proliferation of VME (Versa Module Eurocard) products. These products provide needed flexibility for future hardware upgrades to meet everchanging science research rack configuration requirements. On the International Space Station, there are multiple science research rack configurations, including: 1) Human Research Facility (HRF); 2) EXPRESS ARIS (Active Rack Isolation System); 3) WORF (Window Observational Research Facility); and 4) HHR (Habitat Holding Rack). The RIC (Rack Interface Controller) connects payloads to the ISS bus architecture for data transfer between the payload and ground control. The RIC is a general purpose embedded computer which supports multiple communication protocols, including fiber optic communication buses, Ethernet buses, EIA-422, Mil-Std-1553 buses, SMPTE (Society Motion Picture Television Engineers)-170M video, and audio interfaces to payloads and the ISS. As a cost saving and software reliability strategy, the Boeing Payload Software Organization developed reusable common software where appropriate. These reusable modules included a set of low-level driver software interfaces to 1553B. RS232, RS422, Ethernet buses, HRDL (High Rate Data Link), video switch functionality, telemetry processing, and executive software hosted on the FUC computer. These drivers formed the basis for software development of the HRF, EXPRESS, EXPRESS ARIS, WORF, and HHR RIC executable modules. The reusable RIC common software has provided extensive benefits, including: 1) Significant reduction in development flow time; 2) Minimal rework and maintenance; 3) Improved reliability; and 4) Overall

  13. Research on the International Space Station: Understanding Future Potential from Current Accomplishments

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    In November 2007, the International Space Station (ISS) will have supported seven years of continuous presence in space, with 15 Expeditions completed. These years have been characterized by the numerous technical challenges of assembly as well as operational and logistical challenges related to the availability of transportation by the Space Shuttle. During this period, an active set of early research objectives have also been accomplished alongside the assembly. This paper will review the research accomplishments on ISS to date, with the objective of drawing insights on the potential of future research following completion of ISS assembly. By the end of Expedition 15, an expected 121 U.S.-managed investigations will have been conducted on ISS, with 91 of these completed. Many of these investigations include multiple scientific objectives, with an estimated total of 334 scientists served. Through February 2007, 101 scientific publications have been identified. Another 184 investigations have been sponsored by ISS international partners, which independently track their scientists served and results publication. Through this survey of U.S. research completed on ISS, three different themes will be addressed: (1) How have constraints on transportation of mass to orbit affected the types of research successfully completed on the ISS to date? What lessons can be learned for increasing the success of ISS as a research platform during the period following the retirement of the Space Shuttle? (2) How have constraints on crew time for research during assembly and the active participation of crewmembers as scientists affected the types of research successfully completed on the ISS to date? What lessons can be learned for optimizing research return following the increase in capacity from 3 to 6 crewmembers (planned for 2009)? What lessons can be learned for optimizing research return after assembly is complete? (3) What do early research results indicate about the various

  14. NASA's plans for life sciences research facilities on a Space Station

    NASA Technical Reports Server (NTRS)

    Arno, R.; Heinrich, M.; Mascy, A.

    1984-01-01

    A Life Sciences Research Facility on a Space Station will contribute to the health and well-being of humans in space, as well as address many fundamental questions in gravitational and developmental biology. Scientific interests include bone and muscle attrition, fluid and electrolyte shifts, cardiovascular deconditioning, metabolism, neurophysiology, reproduction, behavior, drugs and immunology, radiation biology, and closed life-support system development. The life sciences module will include a laboratory and a vivarium. Trade-offs currently being evaluated include (1) the need for and size of a 1-g control centrifuge; (2) specimen quantities and species for research; (3) degree of on-board analysis versus sample return and ground analysis; (4) type and extent of equipment automation; (5) facility return versus on-orbit refurbishment; (6) facility modularity, isolation, and system independence; and (7) selection of experiments, design, autonomy, sharing, compatibility, and integration.

  15. Space research with intact organisms: The role of Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Phillips, Robert W.; Haddy, Francis J.

    1993-01-01

    The study of intact organisms has provided biologists with a good working knowledge of most of the common organisms that have evolved in the 1 g environment of Earth. Reasonably accurate predictions can be made about organismal responses to most stimuli on Earth. To extend this knowledge to life without gravity, we must have access to the space environment for prolonged periods. Space Station Freedom will provide a facility with which to begin this type of research. Spaceflight research to date has been limited to relatively short-term exposures that have been informative but incomplete. This paper provides a brief background of known changes that have occurred in intact organisms in the space environment and proposes the kinds of experiments that are needed to expand our knowledge of life on Earth and in space.

  16. The International Space Station as a Research Laboratory: A View to 2010 and Beyond

    NASA Technical Reports Server (NTRS)

    Uri, John J.; Sotomayor, Jorge L.

    2007-01-01

    Assembly of International Space Station (ISS) is expected to be complete in 2010, with operations planned to continue through at least 2016. As we move nearer to assembly complete, replanning activities by NASA and ISS International Partners have been completed and the final complement of research facilities on ISS is becoming more certain. This paper will review pans for facilities in the US On-orbit Segment of ISS, including contributions from International Partners, to provide a vision of the research capabilities that will be available starting in 2010. At present, in addition to research capabilities in the Russian segment, the United States Destiny research module houses nine research facilities or racks. These facilities include five multi-purpose EXPRESS racks, two Human Research Facility (HRF) racks, the Microgravity Science Glovebox (MSG), and the Minus Eighty-degree Laboratory Freezer for ISS (MELFI), enabling a wide range of exploration-related applied as well as basic research. In the coming years, additional racks will be launched to augment this robust capability: Combustion Integrated Rack (CIR), Fluids Integrated Rack (FIR), Window Observation Rack Facility (WORF), Microgravity Science Research Rack (MSRR), Muscle Atrophy Research Exercise System (MARES), additional EXPRESS racks and possibly a second MELFI. In addition, EXPRESS Logistics Carriers (ELC) will provide attach points for external payloads. The European Space Agency s Columbus module will contain five research racks and provide four external attach sites. The research racks are Biolab, European Physiology Module (EPM), Fluid Science Lab (FSL), European Drawer System (EDS) and European Transport Carrier (ETC). The Japanese Kibo elements will initially support three research racks, Ryutai for fluid science, Saibo for cell science, and Kobairo for materials research, as well as 10 attachment sites for external payloads. As we look ahead to assembly complete, these new facilities represent

  17. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Conducting Research on the International Space Station using the EXPRESS Rack Facilities. Sean W. Thompson and Robert E. Lake. NASA Marshall Space Flight Center, Huntsville, AL, USA. Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations

  18. Research priorities for the environment, agriculture and infectious diseases of poverty.

    PubMed

    2013-01-01

    This report reviews the connections between environmental change, modern agricultural practices and the occurrence of infectious diseases - especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies - spanning the environment, climate, agriculture, social-ecological, microbial and public-health sectors; as well as inter-disciplinary research and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. This is one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at www.who.int/tdr/capacity/global_report.

  19. In an interconnected world: joint research priorities for the environment, agriculture and infectious disease.

    PubMed

    Brijnath, Bianca; Butler, Colin D; McMichael, Anthony J

    2014-01-28

    In 2008 the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) commissioned ten think-tanks to work on disease-specific and thematic reference groups to identify top research priorities that would advance the research agenda on infectious diseases of poverty, thus contributing to improvements in human health. The first of the thematic reference group reports - on environment, agriculture and infectious diseases of poverty - was recently released. In this article we review, from an insider perspective, the strengths and weaknesses of this thematic reference group report and highlight key messages for policy-makers, funders and researchers.

  20. Applications of Combustion Research on the International Space Station to Industrial Processes on Earth

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F.

    2002-01-01

    The mission of the Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is to conduct research and educate students in scientific areas related to combustion. The center focuses on those areas where results can be applied to the development of commercial products and processes and where the research can benefit from the unique properties of space. The center is planning combustion-related research aboard the International Space Station (ISS) that will further this mission. The research will be conducted in the two ISS facilities designed for combustion experiments, Space-DRUMSTM and the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility. Space-DRUMSTM is a containerless processing facility employing dynamic acoustic positioning. Guigne International, Ltd. of St. John's, Newfoundland, a CCACS member, is developing the facility in partnership with Astrium Space- Infrastructure and Teledyne Brown Engineering. This universal processing facility can handle large samples with virtually complete vibration isolation from the space station and no contamination from the experimental processing chamber. The CCACS research to be done in Space-DRUMSTM includes combustion synthesis of glass-ceramics and porous materials, nanoparticle synthesis, catalytic combustion, fluid physics and granular materials. The launch of Space-DRUMSTM to the ISS is currently scheduled for ULF-1 in January of 2003. The CIR is being developed by NASA-Glenn Research Center, and is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. The CCACS research to be done in the CIR includes water mist fire suppression, flame synthesis of ceramic powders, nanoparticle synthesis and catalytic combustion. The CIR is currently under development, with an expected launch date in the 2005 timeframe. The applications of this combustion research in manufacturing and processing industries are far

  1. Perceived damage and areas of needed research for wildlife pests of California agriculture.

    PubMed

    Baldwin, Roger A; Salmon, Terrell P; Schmidt, Robert H; Timm, Robert M

    2014-06-01

    Many wildlife species cause extensive damage to a variety of agricultural commodities in California, with estimates of damage in the hundreds of millions annually. Given the limited availability of resources to solve all human-wildlife conflicts, we should focus management efforts on issues that provide the greatest benefit to agricultural commodities in California. This survey provides quantitative data on research needs to better guide future efforts in developing more effective, practical and appropriate methods for managing these species. We found that ground squirrels, pocket gophers, birds, wild pigs, coyotes and voles were the most common agricultural wildlife pest species in California. The damage caused by these species could be quite high, but varied by agricultural commodity. For most species, common forms of damage included loss of crop production and direct death of the plant, although livestock depredation was the greatest concern for coyotes. Control methods used most frequently and those deemed most effective varied by pest species, although greater advancements in control methods were listed as a top research priority for all species. Collectively, the use of toxicants, biocontrol and trapping were the most preferred methods for control, but this varied by species. In general, integrated pest management practices were used to control wildlife pests, with a special preference for those approaches that were efficacious and quick and inexpensive to apply. This information and survey design should be useful in establishing research and management priorities for wildlife pest species in California and other similar regions.

  2. Characteristics of Coverage By the "Bibliography of Agriculture" of the Literature Relating to Agricultural Research and Development.

    ERIC Educational Resources Information Center

    Bourne, Charles P.

    The report describes the results of a study of the extent and characteristics of coverage of the agricultural literature by the "Bibliography of Agriculture" (B of A). Statistical details regarding the language, national origin, form of publication, and subject coverage were derived from a sample of over 5000 citations from the 1967…

  3. Study for PM2.5 composition and variations at Ieodo Ocean Research Station, Korea

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Lee, M.; Shin, B.; Lee, J.; Sim, J.; Lee, G.

    2007-12-01

    PM2.5 has been collected since June 2004 at Ieodo Ocean Research Station (IORS), which is located in the middle of China and South Korea. For 3 years from June 2004 to June 2007, average mass concentrations were 20.97±16.86 μg/m3 and concentrations were the highest in spring (29.32μg/m3) and lowest in summer (17.00μg/m3). Water soluble ions were determined during December 2004 to September 2005. SO42- (32.2%) and NH4+ (14.2%) were the most abundant species. In winter, SO42- accounted for 42% of PM2.5 means, which was higher than that in spring (26%). Nitrate was thought to be lost through evaporation. The cluster analysis of backward trajectories for 5 days was performed to examine the possible aerosol sources. High mass concentrations were observed in air masses originating from China inland (26.93μg/m3). Also, the seasonal PM2.5 mass concentrations were well correlated with the frequency of western wind. Compared with PM2.5 measurements at Gosan during the ABC- EAREX2005 (March 2005), PM2.5 mass and major ionic concentrations were higher at IORS while the variation pattern was similar in two stations. These results implied that PM2.5 mass and its major ionic species at IROS were greatly influenced by outflows from China.

  4. A Solar Station for Education and Research on Solar Activity at a National University in Peru

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J. K.

    2006-11-01

    pepe@geo.igp.gob.pe Beginning in 1937, the Carnegie Institution of Washington made active regional observations with a spectro-helioscope at the Huancayo Observatory. In 1957, during the celebration of the International Geophysical Year Mutsumi Ishitsuka arrived at the Geophysical Institute of Peru and restarted solar observations from the Huancayo Observatory. Almost 69 years have passed and many contributions for the geophysical and solar sciences have been made. Now the Instituto Geofisico del Peru (IGP), in cooperation with the Faculty of Sciences of the Universidad Nacional San Luis Gonzaga de Ica (UNICA), and with the support of the National Astronomical Observatory of Japan, are planning to construct a solar station refurbishing a coelostat that worked for many years at the Huancayo Observatory. A 15 cm refractor telescope is already installed at the university, for the observation of sunspots. A solar Flare Monitor Telescope (FMT) from Hida Observatory of Kyoto University could be sent to Peru and installed at the solar station at UNICA. As the refurbished coelostat, FMT will become a good tool to improve education and research in sciences.

  5. Utö Atmospheric and Marine Research Station - a new Baltic Sea ICOS-site for sea-atmosphere research

    NASA Astrophysics Data System (ADS)

    Laakso, Lauri; Laurila, Tuomas; Mäkelä, Timo; Hatakka, Juha; Purokoski, Tero; Hietala, Riikka; Roine, Tuomo; Jämsen, Pertti; Kielosto, Sami; Asmi, Eija; Lonka, Harry; Alenius, Pekka; Drebs, Achim; Seppälä, Jukka; Ylöstalo, Pasi; Tamminen, Timo

    2015-04-01

    Atmospheric research has developed a concept of focused, multidisciplinary, automated observation platforms with continuous high time resolution observations. This approach containing state-of-the-art equipment has enabled research on physical, chemical and biological processes and seasonal variability and showed up new, previously unknown phenomena. New technical and engineering solutions allowing, such approach is also state-of-the-art in marine research through projects like US Ocean Observatories Initiative (OOI), European Multidisciplinary Seafloor Observatory (EMSO), JERICO-NEXT and Japanese DONET. At the Baltic Sea, on Island of Utö (59° 46'50N, 21° 22'23E), Finnish Meteorological Institute has observed meteorology since 1881, marine parameters since 1900 and a diversity of atmospheric chemical and physical variables since 1980. Recent years the stations has also been upgraded with aerosol observations, and together with Finnish Environment Institute, on marine observations. The current and observations under construction at Utö Atmospheric and Marine Research Station (en.ilmatieteenlaitos.fi/uto. Marine observations: surface waves, ice-cover radar, temperature and salinity and oxygen at different depths, chlorophyll, cyanobacteria, underwater flows, turbidity, pCO2 and nutrients. Atmospheric observations: T, WS, WD, visibility, cloud height, boundary layer wind profiles and turbulence, weather and underwater camera, aerosol particle size distributions, aerosol light scattering and absorption, SO2, NOx, CO, O3, CO2, CH4, sea-atmosphere CO2- and heat fluxes. In our presentation, we present for the first time some 100 years of climate relevant atmospheric and marine observations from Utö.

  6. Space Station Engineering and Technology Development. Proceedings of the Panel on Solar Thermodynamics Research and Technology Development, July 31, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Solar thermodynamics research and technology is reported. Comments on current program activity and future plans with regard to satisfying potential space station electric power generation requirements are provided. The proceedings contain a brief synopsis of the presentations to the panel, including panel comments, and a summary of the panel's observations. Selected presentation material is appended. Onboard maintainability and repair in space research and technology plan, solar thermodynamic research, program performance, onboard U.S. ground based mission control, and technology development rad maps from 10 C to the growth station are addressed.

  7. Is international agricultural research a global public good? The case of rice biofortification.

    PubMed

    Brooks, Sally

    2011-01-01

    The status of international agricultural research as a global public good (GPG) has been widely accepted since the Green Revolution of the 1960s and 1970s. While the term was not used at the time of its creation, the Consultative Group on International Agricultural Research (CGIAR) system that evolved at that time has been described as a 'prime example of the promise, performance and perils of an international approach to providing GPGs'. Contemporary literature on international agricultural research as a GPG tends to support this view and focuses on how to operationalize the concept. This paper adopts a different starting point and questions this conceptualization of the CGIAR and its outputs. It questions the appropriateness of such a 'neutral' concept to a system born of the imperatives of Cold War geopolitics, and shaped by a history of attempts to secure its relevance in a changing world. This paper draws on a multi-sited, ethnographic study of a research effort highlighted by the CGIAR as an exemplar of GPG-oriented research. Behind the ubiquitous language of GPGs, 'partnership' and 'consensus', however, new forms of exclusion and restriction are emerging within everyday practice, reproducing North-South inequalities and undermining the ability of these programmes to respond to the needs of projected beneficiaries.

  8. Academic Achievement and Personality Traits of Faculty Members of Indian Agricultural Universities: Their Effect on Teaching and Research Performance

    ERIC Educational Resources Information Center

    Ramesh, P.; Reddy, K. M.; Rao, R. V. S.; Dhandapani, A.; Siva, G. Samba; Ramakrishna, A.

    2017-01-01

    Purpose: The present study was undertaken to assess academic achievement, teaching aptitude and research attitude of Indian agricultural universities' faculty, to predict indicators for successful teachers and researchers, and thereby enhancing the quality of higher agricultural education. Methodology: Five hundred faculty members were selected to…

  9. What Makes Small-Scale Farmers Participate in Financing Agricultural Research and Extension? Analysis of Three Case Studies from Benin

    ERIC Educational Resources Information Center

    Moumouni, Ismail M.; Vodouhe, Simplice D.; Streiffeler, Friedhelm

    2009-01-01

    This paper analyses the organizational, financial and technological incentives that service organizations used to motivate farmers to finance agricultural research and extension in Benin. Understanding the foundations and implications of these motivation systems is important for improving farmer financial participation in agricultural research and…

  10. The Era of International Space Station Utilization Begins: Research Strategy, International Collaboration, and Realized Potential

    NASA Technical Reports Server (NTRS)

    Thumm, Tracy; Robinson, Julie A.; Ruttley, Tara; Johnson-Green, Perry; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Jean, Sabbagh

    2010-01-01

    With the assembly of the International Space Station (ISS) nearing completion and the support of a full-time crew of six, a new era of utilization for research is beginning. For more than 15 years, the ISS international partnership has weathered financial, technical and political challenges proving that nations can work together to complete assembly of the largest space vehicle in history. And while the ISS partners can be proud of having completed one of the most ambitious engineering projects ever conceived, the challenge of successfully using the platform remains. During the ISS assembly phase, the potential benefits of space-based research and development were demonstrated; including the advancement of scientific knowledge based on experiments conducted in space, development and testing of new technologies, and derivation of Earth applications from new understanding. The configurability and human-tended capabilities of the ISS provide a unique platform. The international utilization strategy is based on research ranging from physical sciences, biology, medicine, psychology, to Earth observation, human exploration preparation and technology demonstration. The ability to complete follow-on investigations in a period of months allows researchers to make rapid advances based on new knowledge gained from ISS activities. During the utilization phase, the ISS partners are working together to track the objectives, accomplishments, and the applications of the new knowledge gained. This presentation will summarize the consolidated international results of these tracking activities and approaches. Areas of current research on ISS with strong international cooperation will be highlighted including cardiovascular studies, cell and plant biology studies, radiation, physics of matter, and advanced alloys. Scientific knowledge and new technologies derived from research on the ISS will be realized through improving quality of life on Earth and future spaceflight endeavours

  11. Development Approach for the Accommodation of Materials Science Research for the Materials Science Research Facility on the International Space Station

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S. D.; Szofran, F. R.

    2000-01-01

    The Materials Science Research Facility (MSRF) is a modular facility comprised of autonomous Materials Science Research Racks (MSRR's) for research in the microgravity environment afforded by the International Space Station (ISS). The initial MSRF concept consists of three Materials Science Research Racks (MSRR-1, MSRR-2, and MSRR-3) which will be developed for a phased deployment beginning on the third Utilization Flight (UF-3). The facility will house materials processing apparatus and common subsystems required for operating each device. Each MSRR is a stand alone autonomous rack and will be comprised of either on-orbit replaceable Experiment Modules, Module Inserts, investigation unique apparatus, and/or multiuser generic processing apparatus. Each MSRR will support a wide range of materials science themes in the NASA research program and will use the ISS Active Rack Isolation System (ARIS). MSRF is being developed for the United States Laboratory Module and will provide the apparatus for satisfying near-term and long-range Materials Science Discipline goals and objectives.

  12. New Directions of Research in Complex Plasmas on the International Space Station

    SciTech Connect

    Thomas, H. M.; Morfill, G. E.; Ivlev, A. V.; Hagl, T.; Rothermel, H.; Khrapak, S. A.; Suetterlin, K. R.; Rubin-Zuzic, M.; Schwabe, M.; Zhdanov, S. K.; Raeth, C.; Fortov, V. E.; Molotkov, V. I.; Lipaev, A. M.; Petrov, O. F.; Tokarev, V. I.; Malenchenko, Y. I.; Turin, M. V.; Vinogradov, P. V.; Yurchikhin, F. N.

    2008-09-07

    PK-3 Plus is the second generation laboratory for investigations of complex plasmas under microgravity conditions on the International Space Station. Compared to its pre-cursor PKE-Nefedov, operational 2001-2005, it has an advanced hardware and software. Improved diagnostics and especially a much better homogeneity of the complex plasma allow more detailed investigations, helping to understand the fundamentals of complex plasmas. Typical investigations are performed to observe the structure of homogeneous and isotropic complex plasmas and instabilities occurring at high particle densities. In addition, the new setup allows the tuning of the interaction potential between the microparticles by using external ac electric fields. Thus, we are able to initiate electrorheological phenomena in complex plasma fluids in the PK-3 Plus laboratory, and observe the phase transition from a normal fluid to a string fluid state at the individual particle level for the first time. Such new possibilities open up new directions of research under microgravity conditions.

  13. A Closed Mars Analog Simulation: The Approach of Crew 5 At the Mars Desert Research Station

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Koga, Dennis (Technical Monitor)

    2002-01-01

    For twelve days in April 2002 we performed a closed simulation in the Mars Desert Research Station, isolated from other people, as on Mars, while performing systematic surface exploration and life support chores. Email provided our only means of contact; no phone or radio conversations were possible. All mission-related messages were mediated by a remote mission support team. This protocol enabled a systematic and controlled study of crew activities, scheduling, and use of space. The analysis presented here focuses on two questions: Where did the time go-why did people feel rushed and unable to complete their work? How can we measure and model productivity, to compare habitat designs, schedules, roles, and tools? Analysis suggests that a simple scheduling change-having lunch and dinner earlier, plus eliminating afternoon meetings-increased the available productive time by 41%.

  14. Conceptual design and programmatics studies of space station accommodations for Life Sciences Research Facilities (LSRF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.

  15. Evaluation of speech recognizers for use in advanced combat helicopter crew station research and development

    NASA Technical Reports Server (NTRS)

    Simpson, Carol A.

    1990-01-01

    The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.

  16. An advanced programmable/reconfigurable color graphics display system for crew station technology research

    NASA Technical Reports Server (NTRS)

    Montoya, R. J.; England, J. N.; Hatfield, J. J.; Rajala, S. A.

    1981-01-01

    The hardware configuration, software organization, and applications software for the NASA IKONAS color graphics display system are described. The systems were created at the Langley Research Center Display Device Laboratory to develop, evaluate, and demonstrate advanced generic concepts, technology, and systems integration techniques for electronic crew station systems of future civil aircraft. A minicomputer with 64K core memory acts as a host for a raster scan graphics display generator. The architectures of the hardware system and the graphics display system are provided. The applications software features a FORTRAN-based model of an aircraft, a display system, and the utility program for real-time communications. The model accepts inputs from a two-dimensional joystick and outputs a set of aircraft states. Ongoing and planned work for image segmentation/generation, specialized graphics procedures, and higher level language user interface are discussed.

  17. Technology development activities for housing research animals on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.

    1991-01-01

    The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.

  18. Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Woodling, Mark A.

    2000-01-01

    The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.

  19. The Plant Research Unit: Long-Term Plant Growth Support for Space Station

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, C. S.; Goins, G. D.; Kliss, M.; Levine, H.; Lomax, P. A.; Porter, R. L.; Wheeler, R.

    1996-01-01

    The specifications of the plant research unit (PRU) plant habitat, designed for space station operations, are presented. A prototype brassboard model of the PRU is described, and the results of the subsystems tests are outlined. The effects of the long term red light emitting diode (LED) illumination as the sole source for plant development were compared with red LEDs supplemented with blue wavelengths, and white fluorescent sources. It was found that wheat and Arabidopsis were able to complete a life cycle under red LEDs alone, but with differences in physiology and morphology. The differences noted were greatest for the Arabidopsis, where the time to flowering was increased under red illumination. The addition of 10 percent of blue light was effective in eliminating the observed differences. The results of the comparative testing of three nutrient delivery systems for the PRU are discussed.

  20. South Baltic representative coastal field surveys, including monitoring at the Coastal Research Station in Lubiatowo, Poland

    NASA Astrophysics Data System (ADS)

    Ostrowski, Rafał; Schönhofer, Jan; Szmytkiewicz, Piotr

    2016-10-01

    The paper contains a brief description of selected investigations carried out in the south Baltic coastal zone, with the particular focus on the history and recent activities conducted at the Coastal Research Station in Lubiatowo (CRS Lubiatowo), Poland. These activities comprise field investigations of nearshore hydrodynamic, lithodynamic, and morphodynamic processes. The study area is a sandy multi-bar shore with a mild slope, much exposed to the impact of waves approaching from NW-NE sector. The shore has a dissipative character which means that the wave energy is subject to gradual dissipation in the nearshore zone and only a small part of this energy is reflected by the shore. Due to the big wind fetch in N-NNE direction, the location of CRS Lubiatowo is favourable to registration of the maximum values of parameters of hydrodynamic and morphodynamic processes which occur in the Baltic during extreme storms.

  1. The Mobile Agents Integrated Field Test: Mars Desert Research Station April 2003

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Sierhuis, Maarten; Alena, Rick; Crawford, Sekou; Dowding, John; Graham, Jeff; Kaskiris, Charis; Tyree, Kim S.; vanHoof, Ron

    2003-01-01

    The Mobile Agents model-based, distributed architecture, which integrates diverse components in a system for lunar and planetary surface operations, was extensively tested in a two-week field "technology retreat" at the Mars Society s Desert Research Station (MDRS) during April 2003. More than twenty scientists and engineers from three NASA centers and two universities refined and tested the system through a series of incremental scenarios. Agent software, implemented in runtime Brahms, processed GPS, health data, and voice commands-monitoring, controlling and logging science data throughout simulated EVAs with two geologists. Predefined EVA plans, modified on the fly by voice command, enabled the Mobile Agents system to provide navigation and timing advice. Communications were maintained over five wireless nodes distributed over hills and into canyons for 5 km; data, including photographs and status was transmitted automatically to the desktop at mission control in Houston. This paper describes the system configurations, communication protocols, scenarios, and test results.

  2. An EXPRESS Rack Overview and Support for Microgravity Research on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Pelfrey, Joseph J.; Jordan, Lee P.

    2008-01-01

    The EXpedite the PRocessing of Experiments to Space Station or EXPRESS Rack System has provided accommodations and facilitated operations for microgravity-based research payloads for over 6 years on the International Space Station (ISS). The EXPRESS Rack accepts Space Shuttle middeck type lockers and International Subrack Interface Standard (ISIS) drawers, providing a modular-type interface on the ISS. The EXPRESS Rack provides 28Vdc power, Ethernet and RS-422 data interfaces, thermal conditioning, vacuum exhaust, and Nitrogen supply for payload use. The EXPRESS Rack system also includes payload checkout capability with a flight rack or flight rack emulator prior to launch, providing a high degree of confidence in successful operations once an-orbit. In addition, EXPRESS trainer racks are provided to support crew training of both rack systems and subrack operations. Standard hardware and software interfaces provided by the EXPRESS Rack simplify the integration processes for ISS payload development. The EXPRESS Rack is designed to accommodate multidiscipline research, allowing for the independent operation of each subrack payload within a single rack. On-orbit operations began for the EXPRESS Rack Project on April 24, 2001, with one rack operating continuously to support high-priority payloads. The other on-orbit EXPRESS Racks operate based on payload need and resource availability. Over 50 multi-discipline payloads have now been supported on-orbit by the EXPRESS Rack Program. Sustaining engineering, logistics, and maintenance functions are in place to maintain hardware, operations and provide software upgrades. Additional EXPRESS Racks are planned for launch prior to ISS completion in support of long-term operations and the planned transition of the U.S. Segment to a National Laboratory.

  3. United States Department of Agriculture-Agricultural Research Service stored-grain areawide integrated pest management program.

    PubMed

    Flinn, Paul W; Hagstrum, David W; Reed, Carl; Phillips, Tom W

    2003-01-01

    The USDA Agricultural Research Service (ARS) funded a demonstration project (1998-2002) for areawide IPM for stored wheat in Kansas and Oklahoma. This project was a collaboration of researchers at the ARS Grain Marketing and Production Research Center in Manhattan, Kansas, Kansas State University, and Oklahoma State University. The project utilized two elevator networks, one in each state, for a total of 28 grain elevators. These elevators stored approximately 31 million bushels of wheat, which is approximately 1.2% of the annual national production. Stored wheat was followed as it moved from farm to the country elevator and finally to the terminal elevator. During this study, thousands of grain samples were taken in concrete elevator silos. Wheat stored at elevators was frequently infested by several insect species, which sometimes reached high numbers and damaged the grain. Fumigation using aluminum phosphide pellets was the main method for managing these insect pests in elevators in the USA. Fumigation decisions tended to be based on past experience with controlling stored-grain insects, or were calendar based. Integrated pest management (IPM) requires sampling and risk benefit analysis. We found that the best sampling method for estimating insect density, without turning the grain from one bin to another, was the vacuum probe sampler. Decision support software, Stored Grain Advisor Pro (SGA Pro) was developed that interprets insect sampling data, and provides grain managers with a risk analysis report detailing which bins are at low, moderate or high risk for insect-caused economic losses. Insect density was predicted up to three months in the future based on current insect density, grain temperature and moisture. Because sampling costs money, there is a trade-off between frequency of sampling and the cost of fumigation. The insect growth model in SGA Pro reduces the need to sample as often, thereby making the program more cost-effective. SGA Pro was validated

  4. Research needs to improve agricultural productivity and food quality, with emphasis on biotechnology.

    PubMed

    Thomson, Jennifer A

    2002-11-01

    Research into agricultural productivity, especially for crops in the developing world, should include resistance to plant viruses, fungi and the parasitic weed Striga. It must also include research into the development of resistance to Bacillus thuringiensis (Bt) toxin-expressing crops. Drought- and heat-tolerant crops, and those that can combat the problems of soil deficiencies, are required, and vaccine production in plants should be a high priority. Research into food quality should include the equivalent of "golden rice" in maize, the enhancement of the production of phytosterols and improved qualities of vegetable oils.

  5. [Research progress of Terahertz wave technology in quality measurement of food and agricultural products].

    PubMed

    Yan, Zhan-Ke; Zhang, Hong-Jian; Ying, Yi-Bin

    2007-11-01

    The quality concern of food and agricultural products has become more and more significant. The related technologies for nondestructive measurement or quality control of food products have been the focus of many researches. Terahertz (THz) radiation, or THz wave, the least explored region of the spectrum, is the electromagnetic wave that lies between mid-infrared and microwave radiation, which has very important research and application values. THz spectroscopy and THz imaging technique are the two main applications of THz wave. During the past decade, THz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials. Recently, THz technology has gained a lot of attention of researchers in various fields from biological spectral analysis to bio-medical imaging due to its unique features compared with microwave and optical waves. In the present paper, the properties of THz wave and its uniqueness in sensing and imaging applications were discussed. The most recent researches on THz technology used in food quality control and agricultural products inspection were summarized. The prospect of this novel technology in agriculture and food industry was also discussed.

  6. A solar station in Ica - Mutsumi Ishitsuka: a research center to improve education at the university and schools

    NASA Astrophysics Data System (ADS)

    Terrazas-Ramos, Raúl

    2012-07-01

    The San Luis Gonzaga National University of Ica has built a solar station, in collaboration with the Geophysical Institute of Peru, the National Astronomical Observatory of Japan and the Hida Observatory. The Solar Station has the following equipment: a digital Spectrograph Solar Refractor Telescope Takahashi 15 cm aperture, 60 cm reflector telescope aperture, a magnetometer-MAGDAS/CPNM and a Burst Monitor Telescope Solar-FMT (Project CHAIN). These teams support the development of astronomical science and Ica in Peru, likewise contributing to science worldwide. The development of basic science will be guaranteed when university students, professors and researchers work together. The Solar Station will be useful for studying the different levels of university education and also for the general public. The Solar Station will be a good way to spread science in the region through public disclosure.

  7. The South Florida Avocado Breeding Program at USDA-Agricultural Research Service Subtropical Horticulture Research Station (USDA-ARS SHRS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA-ARS SHRS is part of the USDA National Germplasm Repository system and houses collections of tropical and subtropical fruit trees such as mango, lychee, and avocado. In addition to maintaining the germplasm collections, our mission is to also identify genetic diversity in the collections, to ev...

  8. Space station capability for research in rotational hypogravity. [to study human physiological responses to rotational acceleration stresses

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1973-01-01

    Certain capabilities provided in preliminary designs of orbital space stations for research in rotational hypogravity are outlined. Also indicated are alternative configurations that are being considered. Principal addresses are members of an international community of physiologists whose work in earth oriented, as well as space oriented, physiology can be supported through observation under the background environment of null gravity. Their participation in originating and devising advanced experiments and in developing requirements is expected to enhance final design of the selected space station and to make the research program more meaningful.

  9. 21st Century Research for Agricultural Education. Proceedings of the National Agricultural Education Research Conference (27th, San Diego, California, December 6, 2000).

    ERIC Educational Resources Information Center

    Miller, Greg, Ed.

    These proceedings contain 48 presentations and 15 poster abstracts. Papers include "Computer Tasks Required in Selected Undergraduate Agriculture Courses" (Johnson, Ferguson, Vokinnns, Lester); "College of Agriculture Faculty Perceptions of Electronic Technologies in Teaching" (Dooley, Murphy); "Steering Through Turbulent…

  10. Adding Value through Research in Agricultural Education. Proceedings of the Annual National Agricultural Education Research Meeting (19th, St. Louis, Missouri, December 4, 1992).

    ERIC Educational Resources Information Center

    Mundt, John P., Comp.

    Among 53 conference papers, are the following: "Perceptions of Administrators, Guidance Counselors, and Science Teachers Concerning Pilot Agriscience Courses" (Johnson, Newman); "Relationship of Supervised Agricultural Experience Program Participation and Student Achievement in Agricultural Education (AE)" (Cheek et al.);…

  11. X-38 research aircraft mounted in Shuttle docked at Space Station - computer animation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In the mid-1990's researchers at the NASA Dryden Flight Research Center, Edwards, California, and Johnson Space Center in Houston, Texas, began working actively with the sub-scale X-38 prototype crew return vehicle (CRV). This was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force X-23 (SV-5) program in the mid-1960's and the Air Force-NASA X-24A lifting-body project in the early to mid-1970's. Built by Scaled Composites, Inc., in Mojave, California, and outfitted with avionics, computer systems, and other hardware at Johnson Space Center, two X-38 aircraft were involved in flight research at Dryden beginning in July of 1997. Before that, however, Dryden conducted some 13 flights at a drop zone near California City, California. These tests were done with a 1/6-scale model of the X-38 aircraft to test the parafoil concept that would be employed on the X-38 and the actual CRV. The basic concept is that the actual CRV will use an inertial navigation system together with the Global Positioning System of satellites to guide it from the International Space Station into the Earth's atmosphere. A deorbit engine module will redirect the vehicle from orbit into the atmosphere where a series of parachutes and a parafoil will deploy in sequence to bring the vehicle to a landing, possibly in a field next to a hospital. Flight research at NASA Dryden for the X-38 began with an unpiloted captive carry flight in which the vehicle remained attached to its future launch vehicle, the Dryden B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. Although the X-38 landed safely on the lakebed at Edwards after the March 1998 drop test, there had been some

  12. Comparison of antibiotic resistance, biofilm formation and conjugative transfer of Staphylococcus and Enterococcus isolates from International Space Station and Antarctic Research Station Concordia.

    PubMed

    Schiwon, Katarzyna; Arends, Karsten; Rogowski, Katja Marie; Fürch, Svea; Prescha, Katrin; Sakinc, Türkan; Van Houdt, Rob; Werner, Guido; Grohmann, Elisabeth

    2013-04-01

    The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.

  13. NASA Glenn Research Center's Materials International Space Station Experiments (MISSE 1-7)

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce a.; Dever, Joyce A.; Jaworske, Donald A.; Miller, Sharon K.; Sechkar, Edward A.; Panko, Scott R.

    2008-01-01

    NASA Glenn Research Center (Glenn) has 39 individual materials flight experiments (>540 samples) flown as part of the Materials International Space Station Experiment (MISSE) to address long duration environmental durability of spacecraft materials in low Earth orbit (LEO). MISSE is a series of materials flight experiments consisting of trays, called Passive Experiment Carriers (PECs) that are exposed to the space environment on the exterior of the International Space Station (ISS). MISSE 1-5 have been successfully flown and retrieved and were exposed to the space environment from one to four years. MISSE 6A & 6B were deployed during the STS-123 shuttle mission in March 2008, and MISSE 7A & 7B are being prepared for launch in 2009. The Glenn MISSE experiments address atomic oxygen (AO) effects such as erosion and undercutting of polymers, AO scattering, stress effects on AO erosion, and in-situ AO fluence monitoring. Experiments also address solar radiation effects such as radiation induced polymer shrinkage, stress effects on radiation degradation of polymers, and radiation degradation of indium tin oxide (ITO) coatings and spacesuit fabrics. Additional experiments address combined AO and solar radiation effects on thermal control films, paints and cermet coatings. Experiments with Orion Crew Exploration Vehicle (CEV) seals and UltraFlex solar array materials are also being flown. Several experiments were designed to provide ground-facility to in-space calibration data thus enabling more accurate in-space performance predictions based on ground-laboratory testing. This paper provides an overview of Glenn s MISSE 1-7 flight experiments along with a summary of results from Glenn s MISSE 1 & 2 experiments.

  14. Defining the Social Context through Agricultural Research. Proceedings of the Annual National Agricultural Education Research Meeting (20th, Nashville, Tennessee, December 3, 1993).

    ERIC Educational Resources Information Center

    Scanlon, Dennis C., Ed.; Bruening, Thomas H., Ed.

    Selected papers are as follows: "Agriculture, Environmental Science and the Relationship of Agriculture to Academic Courses as Perceived by 10th Grade Students" (Newsom-Stewart; Sutphin); "Factors Related to Recruitment and Retention of Ethnic Minority Youth in the Ohio 4-H Program" (Bankston, Cano); "Hispanics in Agriculture" (Nichols, Nelson);…

  15. Research in Agricultural Education. Proceedings of the Annual Southern Agricultural Education Research Meeting (44th, Wilmington, North Carolina, March 19-20, 1995).

    ERIC Educational Resources Information Center

    Flowers, Jim, Comp.

    The proceedings includes the following: "Evaluation of the Leadership Development of Oklahoma Agricultural Leadership Program Graduates" (Lee-Cooper, Weeks); "Model for Undergraduate Academic Programs in Agricultural Communications" (Terry, Jr. et al.); "Competencies Needed for Graduates of Agricultural Communications Programs" (Terry,…

  16. 75 FR 49357 - United States Department of Agriculture Research Misconduct Regulations for Extramural Research

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... includes, but is not limited to, research in economics, education, linguistics, medicine, psychology, social sciences, statistics, and research involving human subjects or animals regardless of the...

  17. Biochem-Env: a platform of biochemistry for research in environmental and agricultural sciences.

    PubMed

    Cheviron, Nathalie; Grondin, Virginie; Mougin, Christian

    2017-04-07

    Biochemical indicators are potent tools to assess ecosystem functioning under anthropic and global pressures. Nevertheless, additional work is needed to improve the methods used for the measurement of these indicators, and for a more relevant interpretation of the obtained results. To face these challenges, the platform Biochem-Env aims at providing innovative and standardized measurement protocols, as well as database and information system favoring result interpretation and opening. Its skills and tools are also offered for expertise, consulting, training, and standardization. In addition, the platform is a service of a French Research Infrastructure for Analysis and Experimentation on Ecosystems, for research in environmental and agricultural sciences.

  18. Proposed upgrade of the Deep Space Network research and development station

    NASA Technical Reports Server (NTRS)

    Smith, Joel G.

    1987-01-01

    Continued exploration of the solar system will require continued evolution of capabilities to support deep space communication and navigation. That evolution will rely, as it has in the past, on the development, demonstration, and field testing of communication and navigation technologies. The existing Deep Space Network (DSN) research and development station, DSS 13, at the Venus site, Goldstone, California was instrumental in those prior developments. However, the present antenna is no longer able to provide the necessary support for technology. The 26 meter antenna has good performance at S-band, fair performance at X-band, but is unusable at the anticipated Ka-band. It is not suitable for conversion to beam waveguides, and is not usable as a test bed for demonstrating high efficiency because of structural pliancy. Additionally, its size and age are increasingly a liability in demonstrations. A 34 meter beam waveguide version of the existing DSN high efficiency (HEF) antennas was proposed for FY-88 Construction of Facilities budget. The antenna is to be built at the Venus site, adjacent to the old antenna, and serve as the DSN research and development antenna through the end of the century.

  19. Research Opportunities on the Low Temperature Microgravity Physics Facility (LTMPF) on the International Space Station

    NASA Technical Reports Server (NTRS)

    Liu, Feng-Chuan; Adriaans, Mary Jayne; Pensinger, John; Israelsson, Ulf

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is a state-of-the-art facility for long duration science Investigations whose objectives can only be achieved in microgravity and at low temperature. LTMPF consists of two reusable, cryogenic facilities with self-contained electronics, software and communication capabilities. The Facility will be first launched by Japanese HIIA Rocket in 2003 and retrieved by the Space Shuttle, and will have at least five months cryogen lifetime on the Japanese Experiment Module Exposed Facility (JEM EF) of the International Space Station. A number of high precision sensors of temperature, pressure and capacitance will be available, which can be further tailored to accommodate a wide variety of low temperature experiments. This paper will describe the LTMPF and its goals and design requirements. Currently there are six candidate experiments in the flight definition phase to fly on LTMPF. Future candidate experiments will be selected through the NASA Research Announcement process. Opportunities for utilization and collaboration with international partners will also be discussed. This work is being carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. The work was funded by NASA Microgravity Research Division.

  20. Development of an Ozone UV DIAL System at the High Altitude Research Station Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Bartlome, M.; Simeonov, V.; Parlange, M.; van den Bergh, H.

    2009-04-01

    An ozone UV Differential Absorption Lidar (DIAL) system is developed and added to the existing multi-wavelength Lidar operated at the High Altitude Research Station Jungfraujoch (HARSJ, 3580 m ASL, 46.55° N, 7.98° E). The system is based on a quadrupled Nd:YAG laser (Continuum Powerlite 8000) providing the laser emission of 266 nm at a repetition rate of 10 Hz. The initial radiation is focused through a high pressure Nitrogen-Raman cell responsible for the generation of the DIAL wavelengths suitable for ozone detection (284, 304 nm) by the stimulated Raman scattering technique. The 76 cm diameter Cassegrain telescope in the HARSJ's astronomical dome is used as receiver for measurements up to the tropopause. The existing multi-wavelength polychromator fixed at the telescopes rear end is equipped with the additional ozone detection channel. The performance of the system is illustrated by inter-comparison with an ECC ozone sonde launched by the Swiss Meteorological Institute at Payerne (SMI, 491 m ASL, 46.83°N, 6.96 E). The retrieved data are found to be in good agreement with the balloon sounding and cover an altitude range of 2 to 10 km above the HARSJ. Since the scientific community disagrees about the real amount of air mass exchange driven by stratosphere troposphere exchange (STE), this new instrument is capable to supply the STE research with remote sensing data from an unique location.

  1. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah

    PubMed Central

    Freebury, Colin E.; Hamilton, Paul B.; Saarela, Jeffery M.

    2016-01-01

    Abstract The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah. PMID:27350765

  2. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah.

    PubMed

    Sokoloff, Paul C; Freebury, Colin E; Hamilton, Paul B; Saarela, Jeffery M

    2016-01-01

    The Mars Desert Research Station is a Mars analog research site located in the desert outside of Hanksville, Utah, U.S.A. Here we present a preliminary checklist of the vascular plant and lichen flora for the station, based on collections made primarily during a two-week simulated Mars mission in November, 2014. Additionally, we present notes on the endolithic chlorophytes and cyanobacteria, and the identification of a fungal genus also based on these collections. Altogether, we recorded 38 vascular plant species from 14 families, 13 lichen species from seven families, six algae taxa including both chlorophytes and cyanobacteria, and one fungal genus from the station and surrounding area. We discuss this floristic diversity in the context of the ecology of the nearby San Rafael Swell and the desert areas of Wayne and Emery counties in southeastern Utah.

  3. Laboratory Instruments Available to Support Space Station Researchers at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gorti, Sridhar

    2013-01-01

    Micro-analyzer (EPMA) for very precise microanalysis are available as needed by the researcher. Space Station researchers are invited to work with MSFC in analyzing their samples using these techniques.

  4. [An overview on theoretic research of high efficient water use in agriculture].

    PubMed

    Du, Yaodong; Song, Lili; Liu, Zuoxin

    2003-05-01

    High efficient water use in agriculture includes water-saving irrigation and dryland farming, its core being to increase use efficiency and benefit of natural precipitation and irrigation. Each of measurement methods of field evapotranspiration has its advantages and disadvantages. Modified Penman and Penman-Monteith formulae were recommended to calculate the reference crop evapotranspiration by FAO one after another. Jensen and Blank models had a wide use in crop water production function. Recent achievements of appropriate soil moisture and lower limit of soil drought indices provided an important basis of soil physics for agricultural water supply of low quota. The influencing sequence of water stress on different physiological processes correlated with yield formation was in order of cell stretch > stoma movement > transpiration > photosynthesis > matter transfer. Non-severe drought could facilitate matter transfer. Field irrigation research has turn to deficit irrigation, regulated deficit irrigation and controlled alternative irrigation from traditional full irrigation. In the future, such researches as interfaces, soil water dynamics, biological water-saving and water stress would be deeply conducted in high efficient water use theory in agriculture.

  5. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    NASA Technical Reports Server (NTRS)

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  6. An Antarctic research station as a source of brominated and perfluorinated persistent organic pollutants to the local environment.

    PubMed

    Wild, Seanan; McLagan, David; Schlabach, Martin; Bossi, Rossana; Hawker, Darryl; Cropp, Roger; King, Catherine K; Stark, Jonathan S; Mondon, Julie; Nash, Susan Bengtson

    2015-01-06

    This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26-820 ng g(-1) dry weight (dw)) and PFAS levels (e.g., PFOS 3.8-2400 ng g(-1) (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71-400 ng L(-1)) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.

  7. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    NASA Technical Reports Server (NTRS)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; Vunjak-Novakovic, Gordana; Searby, Nancy D.

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  8. A career in government: my experiences working for the U.S. Department of Agriculture-Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural sector provides highly diverse career opportunities that include private companies, academic institutions, non-government organizations, and government agencies. One possible career path is with the Federal government which is one of the largest employers of scientists and engineers...

  9. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.; Jensen, Bjarne; Skov, Henrik; Birmili, Wolfram; Wiedensohler, Alfred; Kristensson, Adam; Nøjgaard, Jacob K.; Massling, Andreas

    2016-09-01

    This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS), northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF) events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3) might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10-30 nm) in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those events.

  10. The Spectrumof the Cosmic Background Radiation: Early and RecentMeasurements from the White Mountain Research Station

    SciTech Connect

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model.

  11. Procedure for Surveying a Station in the U.S. Army Research Laboratory Transonic Experimental Facility Spark Shadowgraph Range

    DTIC Science & Technology

    2014-06-01

    indoor instrumented spark range at the U.S. Army Research Laboratory Transonic Experimental Facility was designed for firing various- caliber ...Tables iv Acknowledgments v 1. Introduction 1 2. Survey Procedure 4 3. Summary 16 Appendix. Fiducial Wire Dimensions 17 Distribution List 20...List of Tables Table 1. Reference elevations for spark stations. ............................................................................5 v

  12. Morphological and physio-chemical characterization of five Canistel accessions at the subtropical horticulture research station in Miami Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit of five canistel cultivars, 'Fairchild','E11', 'Keisau', 'TREC#3' and 'TREC 3680' were evaluated and characterized at the National Germplasm Repository, Subtropical horticulture Research Station (SHRS) Miami, Florida. Thirty fruits were harvested from clonal accessions during July and August, ...

  13. Motivational Strategies and Utilisation of Internet Resources as Determinants of Research Productivity of Lecturers in Universities of Agriculture in Nigeria

    ERIC Educational Resources Information Center

    Ajegbomogun, Fredrick Olatunji; Popoola, Sunday Olarenwaju

    2013-01-01

    This study examined motivational strategies and utilisation of Internet resources as determinants of research productivity of lecturers in universities of agriculture in Nigeria. One thousand, one hundred and thirty two (1,132) copies of the questionnaire were administered on the lecturers in universities of agriculture in Nigeria. Eight hundred…

  14. Proceedings of the Annual National Agricultural Education Research Meeting (9th, St, Louis, Missouri, December 3, 1982).

    ERIC Educational Resources Information Center

    American Vocational Association, Arlington, VA. Agricultural Education Div.

    These proceedings contain the texts of 29 papers presented at the ninth Annual Agricultural Education Research Meeting. During the five sessions of the conference, various areas of agricultural education were addressed, such as inservice education, job satisfaction and morale, teacher concerns, national issues, program improvement, preservice…

  15. Introduction to the USDA-Agricultural Research Service Poisonous Plant Research Laboratory Special Rangelands Issue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Poisonous Plant Research Labortory (PPRL) in Logan, UT will sponsor an edition of the magazine Rangelands. This paper provides a brief history and overview of the PPRL, mission statement, research objectives by CRIS, and the disciplines involved in the research....

  16. FORT KEOGH LIVESTOCK & RANGE RESEARCH LABORATORY, U.S. DEPARTMENT OF AGRICULTURE-AGRICULTRAL RESEARCH SERVICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Article describes Fort Keogh Livestock and Range Research Laboratory to an audience of scientific researchers (i.e. ecologists) interested in the interactions among organisms and their environment. Article outlines the facilities, environment, history, and ongoing types of research. Emphasis is on...

  17. Overview of areawide programs and the program for suppression of codling moth in the western USA directed by the United States Department of Agriculture--Agricultural Research Service.

    PubMed

    Calkins, Carrol O; Faust, Robert J

    2003-01-01

    An areawide suppression program for codling moth (Cydia pomonella L) populations was initiated in 1995 in Washington, Oregon and California under the direction of the US Department of Agriculture, Agricultural Research Service in cooperation with Washington State University, Oregon State University and University of California, Berkeley. Mating disruption was used to reduce the pest population while reducing and eliminating the use of organophosphate insecticides. During the 5-year program, the original 1064 hectares were expanded to 8400 hectares and from 66 grower participants to more than 400 participants. The acreage under mating disruption in the three states increased from 6000 hectares in 1994 to 54000 hectares in the year 2000.

  18. Offshore wind profile measurements using a Doppler LIDAR at the Hazaki Oceanographical Research Station

    NASA Astrophysics Data System (ADS)

    Shimada, Susumu; Ohsawa, Teruo; Ohgishi, Tatsuya; Kikushima, Yoshihiro; Kogaki, Testuya; Kawaguchi, Koji; Nakamura, Satoshi

    2014-08-01

    Vertical wind speed profiles near the coast were observed using a Doppler Light Detection and Ranging (LIDAR) system at the Hazaki Oceanographical Research Station (HORS) from September 17 to 26, 2013. The accuracies of the theoretical wind profile models of the log profile model and the Monin-Obukov similarity (MOS) theory were examined by comparing them to those of the observed wind profiles. As a result, MOS, which takes into account the stability effects during wind profile calculations, successfully estimated the wind profile more accurately than the log profile model when the wind was from a sea sector (from sea to land). Conversely, both models did not estimate the profile adequately when the wind was from a land sector (from land to sea). Moreover, the wind profile for the land sector was found to include an obvious diurnal cycle, which is relevant to the stability change over land. Consequently, it is found that the atmospheric stability plays an important roll to determine the offshore wind speed profiles near the coast for not only the sea sector but also the land sector.

  19. Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Sephton, M. A.; Foing, B. H.; Ehrenfreund, P.

    2011-07-01

    Future space missions that aim to detect life should search for molecules that are vital to all living organisms. Although the Viking landers did not find any signs of organic molecules on Mars, signatures of past and/or present life may still exist in the Martian regolith. In this paper, we describe amino acid analyses performed in several Martian analogue soil samples collected close to the Mars Desert Research Station (MDRS), Utah, during the International Lunar Exploration Working Group (ILEWG) EuroGeoMars campaign in February 2009. The Utah desert around Hanksville is characterized as shale desert and is cold and arid with an average annual temperature of 12°C. It is subjected to wind erosion and was shaped by fluvial erosion. The data show large differences in the total amino acid abundances between all the collected soil samples, with values ranging from non-detectable to 100 000 parts per billion (ppb). These results are explained in the context of mineralogical differences (namely different clay content) among the soil samples. The data have implications for future life-detection missions and the target mineralogy that may host biological signatures.

  20. An astronomical site survey at the Barcroft Facility of the White Mountain Research Station

    NASA Astrophysics Data System (ADS)

    Marvil, J.; Ansmann, M.; Childers, J.; Cole, T.; Davis, G. V.; Hadjiyska, E.; Halevi, D.; Heimberg, G.; Kangas, M.; Levy, A.; Leonardi, R.; Lubin, P.; Meinhold, P.; O'Neill, H.; Parendo, S.; Quetin, E.; Stebor, N.; Villela, T.; Williams, B.; Wuensche, C. A.; Yamaguchi, K.

    2006-01-01

    We present a distillation of weather and sky condition data collected from September 2001 to November 2004 at the University of California White Mountain Research Station, Barcroft Facility. Our conclusion is that Barcroft is an excellent site for microwave observation because of a cold microwave zenith temperature, low precipitable water, and a high percentage of clear days. The solar intensity was above 80% of the theoretical maximum 66% of the time. About 71% of the daytime, the cloud cover was acceptable for observing. Median precipitable water vapor was estimated to be 1.75 mm. We measure a median opacity at 225 GHz of 0.11, which corresponds to a transmission of 89.6%. Zenith sky temperatures were determined to be 9.0 ± 0.2 K and 10.0 ± 0.6 K in Q-band (38-46 GHz) and W-band (81-98 GHz), respectively. We also demonstrate a correlation between measurements of precipitable water vapor from a weatherstation and a 225 GHz radiometer.

  1. Design studies and commissioning plans for plasma acceleration research station experimental program

    SciTech Connect

    Mete, O.; Xia, G.; Hanahoe, K.; Dover, M.; Wigram, M.; Wright, J.; Zhang, J.; Smith, J.

    2015-10-15

    Plasma acceleration research station is an electron beam driven plasma wakefield acceleration test stand proposed for CLARA facility in Daresbury Laboratory. In this paper, the interaction between the electron beam and the plasma is numerically characterised via 2D numerical studies by using VSIM code. The wakefields induced by a single bunch travelling through the plasma were found to vary from 200 MV/m to 3 GV/m for a range of bunch length, bunch radius, and plasma densities. Energy gain for the particles populating the bunch tail through the wakefields driven by the head of the bunch was demonstrated. After determining the achievable field for various beams and plasma configurations, a reference setting was determined for further studies. Considering this reference setting, the beam quality studies were performed for a two-bunch acceleration case. The maximum energy gain as well as the energy spread mitigation by benefiting from the beam loading was investigated by positioning the witness and driver bunches with respect to each other. Emittance growth mechanisms were studied considering the beam-plasma and beam-wakefield interactions. Eventually, regarding the findings, the initial commissioning plans and the aims for the later stages were summarised.

  2. Socialization into science: An ethnographic study in a field research station

    NASA Astrophysics Data System (ADS)

    Calovini, Theresa Ann

    While the place of language in building the tasks and activities of the science classroom has received attention in the education literature, how students do the work of affiliation building through language remains poorly understood. This dissertation is based on ethnographic research in an apprenticeship learning situation at a biological field research station. I carried out this research with five undergraduates apprentices. I focus on how the language used in this apprenticeship situation positioned the apprentices with science. Issues of access and diversity in science education have motivated this research but this point can be missed because the five apprentices were all fairly successful in university science. They had all secured their job for the summer as paid research assistants. Yet, even with these successful students, science had a complicated place in their lives. I draw on Gee's (1999) notion of Discourse to understand this complexity. I focus on four Discourses--- Science, Knowing about the Animals, Senior Projects and RAships, and Relationships ---which were important in the apprentices' learning about and socialization with science. I try to understand the inter-workings of these four Discourses through a detailed analysis of three conversations involving one of the participants, Michelle. Michelle's use of narrative emerged as a linguistic resource which she used to explore dilemmas she experienced in the tensions between these four Discourses. Michelle was in many ways an ideal apprentice. She did her job well and she sought and received expert advice on her Senior project. Nonetheless, Michelle faced obstacles in her pursuit of a career in science and these obstacles related to language use and her use of narrative. I show how her use of narrative either facilitated or impeded her learning, depending on the context of the interaction. My analysis of Discourse points to important issues in language use by both students and teachers, with

  3. 75 FR 68598 - Notice of Appointment of Members to the National Agricultural Research, Extension, Education, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... Agriculture and Consumer Sciences, Tennessee State University; Category P. ``American Colleges of Veterinary... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE... United States Department of Agriculture announces the appointments made by the Secretary of...

  4. Finding the team for Mars: a psychological and human factors analysis of a Mars Desert Research Station crew.

    PubMed

    Sawyer, Benjamin D; Hancock, P A; Deaton, John; Suedfeld, Peter

    2012-01-01

    A two-week mission in March and April of 2011 sent six team members to the Mars Desert Research Station (MDRS). MDRS, a research facility in the high Utah desert, provides an analogue for the harsh and unusual working conditions that will be faced by men and women who one day explore Mars. During the mission a selection of quantitative and qualitative psychological tests were administered to the international, multidisciplinary team. A selection of the results are presented along with discussion.

  5. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    NASA Astrophysics Data System (ADS)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  6. Life science research objectives and representative experiments for the space station

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  7. Impact of the agricultural research service watershed assessment studies on the conservation effects assessment project cropland national assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA initiated the Conservation Effects Assessment Project (CEAP) in 2002 to analyze societal and environmental benefits gained from the increased conservation program funding provided in the 2002 Farm Bill. The Natural Resources Conservation Service (NRCS), Agricultural Research Service (ARS), and...

  8. Agriculture, nutrition, and health in global development: typology and metrics for integrated interventions and research.

    PubMed

    Masters, William A; Webb, Patrick; Griffiths, Jeffrey K; Deckelbaum, Richard J

    2014-12-01

    Despite rhetoric arguing that enhanced agriculture leads to improved nutrition and health, there is scant empirical evidence about potential synergies across sectors or about the mix of actions that best supports all three sectors. The geographic scale and socioeconomic nature of these interventions require integration of previously separate research methods. This paper proposes a typology of interventions and a metric of integration among them to help researchers build on each other's results, facilitating integration in methods to inform the design of multisector interventions. The typology recognizes the importance of regional effect modifiers that are not themselves subject to randomized assignment, and trade-offs in how policies and programs are implemented, evaluated, and scaled. Using this typology could facilitate methodological pluralism, helping researchers in one field use knowledge generated elsewhere, each using the most appropriate method for their situation.

  9. Agricultural Research Service research highlights in remote sensing for calendar year 1981

    NASA Technical Reports Server (NTRS)

    Ritchie, J. C. (Compiler)

    1982-01-01

    Selected examples of research accomplishments related to remote sensing are compiled. A brief statement is given to highlight the significant results of each research project. A list of 1981 publication and location contacts is given also. The projects cover emission and reflectance analysis, identification of crop and soil parameters, and the utilization of remote sensing data.

  10. Review of the third edition of the Guide for the Care and Use of Agricultural Animals in Research and Teaching.

    PubMed

    Vaughn, Sherry E

    2012-05-01

    The third edition (January 2010) of the Guide for the Care and Use of Agricultural Animals in Research and Teaching (the Ag Guide) was the collaborative effort of a group of 64 authors and provides a science-based reference and performance-based guidelines for institutions that use agricultural species in research and teaching. The adoption of the Ag Guide by the AAALAC Board of Trustees as a primary standard signifies its importance in the AAALAC accreditation process.

  11. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador

    PubMed Central

    Bracco, Francesco; Cerna, Marco; Vita Finzi, Paola; Vidari, Giovanni

    2016-01-01

    This work features the results of an ethnobotanical study on the uses of medicinal plants by the inhabitants of the region near to the Kutukú Scientific Station of Universidad Politécnica Salesiana, located in the Morona-Santiago province, southeast of Ecuador. In the surroundings of the station, one ethnic group, the Shuar, has been identified. The survey hereafter reports a total of 131 plant species, with 73 different therapeutic uses. PMID:28074189

  12. Ethnobotanical Research at the Kutukú Scientific Station, Morona-Santiago, Ecuador.

    PubMed

    Ballesteros, Jose Luis; Bracco, Francesco; Cerna, Marco; Vita Finzi, Paola; Vidari, Giovanni

    2016-01-01

    This work features the results of an ethnobotanical study on the uses of medicinal plants by the inhabitants of the region near to the Kutukú Scientific Station of Universidad Politécnica Salesiana, located in the Morona-Santiago province, southeast of Ecuador. In the surroundings of the station, one ethnic group, the Shuar, has been identified. The survey hereafter reports a total of 131 plant species, with 73 different therapeutic uses.

  13. Research: Accomplishments, Opportunities, Challenges. Proceedings of the Annual National Agricultural Education Research Conference (28th, New Orleans, LA, December 12, 2001).

    ERIC Educational Resources Information Center

    Kotrlik, Joe W., Ed.; Burnett, Michael F., Ed.

    This document contains 48 papers from a conference on agricultural education research. The following papers are among those included: "Analysis of the Relationships between Computer Experiences, Self-Efficacy, and Knowledge of Undergraduate Students Entering a Land-Grant College of Agriculture" (Donald M. Johnson, Melissa L. Lester,…

  14. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  15. Biomolecular Analysis Capability for Cellular and Omics Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy

  16. Ergonomics Perspective in Agricultural Research: A User-Centred Approach Using CAD and Digital Human Modeling (DHM) Technologies

    NASA Astrophysics Data System (ADS)

    Patel, Thaneswer; Sanjog, J.; Karmakar, Sougata

    2016-09-01

    Computer-aided Design (CAD) and Digital Human Modeling (DHM) (specialized CAD software for virtual human representation) technologies endow unique opportunities to incorporate human factors pro-actively in design development. Challenges of enhancing agricultural productivity through improvement of agricultural tools/machineries and better human-machine compatibility can be ensured by adoption of these modern technologies. Objectives of present work are to provide the detailed scenario of CAD and DHM applications in agricultural sector; and finding out means for wide adoption of these technologies for design and development of cost-effective, user-friendly, efficient and safe agricultural tools/equipment and operator's workplace. Extensive literature review has been conducted for systematic segregation and representation of available information towards drawing inferences. Although applications of various CAD software have momentum in agricultural research particularly for design and manufacturing of agricultural equipment/machinery, use of DHM is still at its infancy in this sector. Current review discusses about reasons of less adoption of these technologies in agricultural sector and steps to be taken for their wide adoption. It also suggests possible future research directions to come up with better ergonomic design strategies for improvement of agricultural equipment/machines and workstations through application of CAD and DHM.

  17. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the

  18. Characteristics, Educational Preparation, and Membership in Professional Organizations of Agricultural Communicators. Summary of Research 82.

    ERIC Educational Resources Information Center

    Buck, Cheryl A.; Barrick, R. Kirby

    An exploratory study examined the characteristics and educational preparation of a random sample of 313 agricultural communicators chosen from 1,706 individuals listed as active members of one of the following agricultural communication professional organizations in 1992: American Agricultural Editors' Association, Agricultural Communicators in…

  19. 75 FR 25199 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Programs (CP) Unit; National Institute of Food and Agriculture; U.S. Department of Agriculture; STOP 2240... Programs (CP) Unit; National Institute of Food and Agriculture; U.S. Department of ] Agriculture; Room 2457... The program authorizes $700 million in grants for FY 2008-12, of which the Secretary may retain...

  20. Using Distributed Operations to Enable Science Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bathew, Ann S.; Dudley, Stephanie R. B.; Lochmaier, Geoff D.; Rodriquez, Rick C.; Simpson, Donna

    2011-01-01

    In the early days of the International Space Station (ISS) program, and as the organization structure was being internationally agreed upon and documented, one of the principal tenets of the science program was to allow customer-friendly operations. One important aspect of this was to allow payload developers and principle investigators the flexibility to operate their experiments from either their home sites or distributed telescience centers. This telescience concept was developed such that investigators had several options for ISS utilization support. They could operate from their home site, the closest telescience center, or use the payload operations facilities at the Marshall Space Flight Center in Huntsville, Alabama. The Payload Operations Integration Center (POIC) processes and structures were put into place to allow these different options to its customers, while at the same time maintain its centralized authority over NASA payload operations and integration. For a long duration space program with many scientists, researchers, and universities expected to participate, it was imperative that the program structure be in place to successfully facilitate this concept of telescience support. From a payload control center perspective, payload science operations require two major elements in order to make telescience successful within the scope of the ISS program. The first element is decentralized control which allows the remote participants the freedom and flexibility to operate their payloads within their scope of authority. The second element is a strong ground infrastructure, which includes voice communications, video, telemetry, and commanding between the POIC and the payload remote site. Both of these elements are important to telescience success, and both must be balanced by the ISS program s documented requirements for POIC to maintain its authority as an integration and control center. This paper describes both elements of distributed payload

  1. Efficacy of Indexing and Abstracting Services for the Dissemination of Agricultural Information Resources in the Institure for Agricultural Research Library, Ahmadu Bello University, Zaria

    NASA Astrophysics Data System (ADS)

    Gabriel, KASA, M.

    2012-10-01

    The efficacy of Indexing and Abstracting service for effective organization, storage and retrieval of information resources for agricultural research in Ahmadu Bello University, Zaria necessitated examining the situation in Agricultural Library, Institute for Agricultural Research, Samaru. The study examines the processes, awareness and problems militating against the effective exploitation of the indexing and abstracting services in the Agricultural library established in 1975. The study was conducted ex post facto, data collected span from 2006 ñ 2010. Total sample sizes of 752 patrons and 20,236 intellectually indexed and abstracted resources were involved in the study. Data collected were subjected to descriptive and inferential statistics. The result revealed that a total of 644 articles were indexed and abstracted, 35% of these was done in 2010. Results for awareness show 452 (60.11%) to be aware in 2008. A total 584 articles were indexed and abstracted from which 167 (28.59%) was retrieved in 2006. Patrons, 270 (35.90%) attributed the poor use of the service to assumption it is a referral unit. The hypothesis testing revealed that there is significant association between articles indexed and abstracted with information consulted by patrons (?2cal,100.31>?2tab,9.488) at 5% level of probability and df, 4. In conclusion, enormous documents on Nigerian agriculture are indexed and abstracted in the unit, implying that the service is desirous and consistent. The study recommends that the unit should explore the use of modern technology, employ a permanent subject specialist, train and retrain the unit staff as well as intensify it general orientation campaigns to focus on awareness and use of the indexing and abstracting services.

  2. Assessing health in agriculture--towards a common research framework for soils, plants, animals, humans and ecosystems.

    PubMed

    Vieweger, Anja; Döring, Thomas F

    2015-02-01

    In agriculture and food systems, health-related research includes a vast diversity of topics. Nutritional, toxicological, pharmacological, epidemiological, behavioural, sociological, economic and political methods are used to study health in the five domains of soils, plants, livestock, humans and ecosystems. An idea developed in the early founding days of organic agriculture stated that the health of all domains is one and indivisible. Here we show that recent research reveals the existence and complex nature of such health links among domains. However, studies of health aspects in agriculture are often separated by disciplinary boundaries. This restrains the understanding of health in agricultural systems. Therefore we explore the opportunities and limitations of bringing perspectives together from the different domains. We review current approaches to define and assess health in agricultural contexts, comparing the state of the art of commonly used approaches and bringing together the presently disconnected debates in soil science, plant science, veterinary science and human medicine. Based on a qualitative literature analysis, we suggest that many health criteria fall into two paradigms: (1) the Growth Paradigm, where terms are primarily oriented towards continued growth; (2) the Boundary Paradigm, where terms focus on maintaining or coming back to a status quo, recognising system boundaries. Scientific health assessments in agricultural and food systems need to be explicit in terms of their position on the continuum between Growth Paradigm and Boundary Paradigm. Finally, we identify areas and concepts for a future direction of health assessment and research in agricultural and food systems.

  3. The value and potential of animal research in enabling astronaut health - Transition from Spacelab to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garshnek, V.; Ballard, R. W.

    1993-01-01

    Maintaining astronaut health is a critical aspect of human space exploration. Three decades of space research have demonstrated that microgravity produces significant physiological changes in astronauts. For long-duration missions, the possibility exists that these changes may prevent the achievement of full health and safety and may therefore require countermeasures. Meeting this goal depends on a strong biomedical foundation. Although much research is conducted with humans, some of the most critical work involves a necessary in-depth look into complex problem areas requiring invasive procedures using animals. Much of this research cannot be performed in humans within the bounds of accepted medical practice. A large portion of knowledge and experience in flying animals and applying the data to astronaut health has been obtained through the Spacelab experience and can be applied to a space station situation (expanded to accommodate necessary standardization and flexibility). The objectives of this paper are to (a) discuss the value and potential of animal research in answering critical questions to enable astronaut health for advanced missions, (b) discuss how previous Spacelab operational experience in animal studies can be applied to facilitate transition into a space station era, and (c) review capabilities of biological facilities projected for Space Station Freedom.

  4. Comprehensive UAV agricultural remote-sensing research at Texas A M University

    NASA Astrophysics Data System (ADS)

    Thomasson, J. Alex; Shi, Yeyin; Olsenholler, Jeffrey; Valasek, John; Murray, Seth C.; Bishop, Michael P.

    2016-05-01

    Unmanned aerial vehicles (UAVs) have advantages over manned vehicles for agricultural remote sensing. Flying UAVs is less expensive, is more flexible in scheduling, enables lower altitudes, uses lower speeds, and provides better spatial resolution for imaging. The main disadvantage is that, at lower altitudes and speeds, only small areas can be imaged. However, on large farms with contiguous fields, high-quality images can be collected regularly by using UAVs with appropriate sensing technologies that enable high-quality image mosaics to be created with sufficient metadata and ground-control points. In the United States, rules governing the use of aircraft are promulgated and enforced by the Federal Aviation Administration (FAA), and rules governing UAVs are currently in flux. Operators must apply for appropriate permissions to fly UAVs. In the summer of 2015 Texas A&M University's agricultural research agency, Texas A&M AgriLife Research, embarked on a comprehensive program of remote sensing with UAVs at its 568-ha Brazos Bottom Research Farm. This farm is made up of numerous fields where various crops are grown in plots or complete fields. The crops include cotton, corn, sorghum, and wheat. After gaining FAA permission to fly at the farm, the research team used multiple fixed-wing and rotary-wing UAVs along with various sensors to collect images over all parts of the farm at least once per week. This article reports on details of flight operations and sensing and analysis protocols, and it includes some lessons learned in the process of developing a UAV remote-sensing effort of this sort.

  5. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results. Appendix D: Life sciences research facility requirements

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The purpose of this requirements document is to develop the foundation for concept development for the Life Sciences Research Facility (LSRF) on the Space Station. These requirements are developed from the perspective of a Space Station laboratory module outfitter. Science and mission requirements including those related to specimens are set forth. System requirements, including those for support, are detailed. Functional and design requirements are covered in the areas of structures, mechanisms, electrical power, thermal systems, data management system, life support, and habitability. Finally, interface requirements for the Command Module and Logistics Module are described.

  6. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach.

    PubMed Central

    McCauley, L A; Lasarev, M R; Higgins, G; Rothlein, J; Muniz, J; Ebbert, C; Phillips, J

    2001-01-01

    There are few data on pesticide exposures of migrant Latino farmworker children, and access to this vulnerable population is often difficult. In this paper we describe a community-based approach to implement culturally appropriate research methods with a migrant Latino farmworker community in Oregon. Assessments were conducted in 96 farmworker homes and 24 grower homes in two agricultural communities in Oregon. Measurements included surveys of pesticide use and work protection practices and analyses of home-dust samples for pesticide residues of major organophosphates used in area crops. Results indicate that migrant farmworker housing is diverse, and the amounts and types of pesticide residues found in homes differ. Azinphos-methyl (AZM) was the pesticide residue found most often in both farmworker and grower homes. The median level of AZM in farmworker homes was 1.45 ppm compared to 1.64 ppm in the entry area of grower homes. The median level of AZM in the play areas of grower homes was 0.71 ppm. The levels of AZM in migrant farmworker homes were most associated with the distance from fields and the number of agricultural workers in the home. Although the levels of AZM in growers and farmworker homes were comparable in certain areas, potential for disproportionate exposures occur in areas of the homes where children are most likely to play. The relationship between home resident density, levels of pesticide residues, and play behaviors of children merit further attention. PMID:11401767

  7. Fisheries research and monitoring activities of the Lake Erie Biological Station, 2013

    USGS Publications Warehouse

    Kraus, Richard T.; Rogers, Mark W.; Kocovsky, Patrick; Edwards, William; Bodamer Scarbro, Betsy L.; Keretz, Kevin R.; Berkman, Stephanie A.

    2014-01-01

    In 2013, the U.S. Geological Survey’s Lake Erie Biological Station successfully completed large vessel surveys in all three of Lake Erie’s basins. Lake Erie Biological Station’s primary vessel surveys included the Western Basin Forage Fish Assessment and East Harbor Forage Fish Assessment as well as contributing to the cooperative multi-agency Central Basin Hydroacoustics Assessment and the Eastern Basin Coldwater Community Assessment (see Forage Task Group and Coldwater Task Group reports, respectively). Further large vessel sampling included individual research data collection as well as assisting with University (e.g., University of Toledo) and agency (e.g., USFWS, USEPA) large vessel sampling needs. Our 2013 vessel operations began on April 4th and concluded on November 21 with a total of 77 large vessel sampling days (83 total days). During this time, crews of the R/V Muskie and R/V Bowfin deployed 174 trawls covering 147 km of lake-bottom, over 13 km of gillnet, collected hydroacoustic data that extended over 250 km of the central and eastern basins, and approximately 180 collective zooplankton, benthos, and water samples. 2013 was the first complete sampling year using the R/V Muskie. Technologies available on the new platform provided opportunities for LEBS to improve data sampling methods and results. An investment was made in mensuration gear for the trawls. This gear is attached to the trawl’s headrope, footrope, and wings; thus, allowing measurement of the area swept and conversion of catches to densities. Another improvement included real-time output of water parameter sonde profiles (e.g., temperature, dissolved oxygen). The ability to view profile data on a tablet allowed quick identification of thermoclines as well as the presence (or absence) of hypoxia. Minor modifications were made to survey designs relative to last year (see 2013 report), and thus, collection of long-term data from the R/V Muskie has commenced. One minor change was that

  8. Dynamics of landfast sea ice near Jangbogo Antarctic Research Station observed by SAR interferometry

    NASA Astrophysics Data System (ADS)

    Lee, H.; Han, H.

    2015-12-01

    Landfast sea ice is a type of sea ice adjacent to the coast and immobile for a certain period of time. It is important to analyze the temporal and spatial variation of landfast ice because it has significant influences on marine ecosystem and the safe operation of icebreaker vessels. However, it has been a difficult task for both remote sensing and in situ observation to discriminate landfast ice from other types of sea ice, such as pack ice, and also to understand the dynamics and internal strss-strain of fast ice. In this study, we identify landfast ice and its annual variation in Terra Nova Bay (74° 37' 4"S, 164° 13' 7"E), East Antarctica, where Jangbogo Antarctic Research Station has recently been constructed in 2014, by using Interferometric Synthetic Aperture Radar (InSAR) technology. We generated 38 interferograms having temporal baselines of 1-9 days out of 62 COSMO-SkyMed SAR images over Terra Nova Bay obtained from December 2010 to January 2012. Landfast ice began to melt in November 2011 when air temperature raised above freezing point but lasted more than two month to the end of the study period in January 2012. No meaningful relationship was found between sea ice extent and wind and current. Glacial strain (~67cm/day) is similar to tidal strain (~40 cm) so that they appear similar in one-day InSAR. As glacial stress is cumulative while tidal stress is oscillatory, InSAR images with weekly temporal baseline (7~9 days) revealed that a consistent motion of Campbell Glacier Tongue (CGT) is pushing the sea ice continuously to make interferometric fringes parallel to the glacier-sea ice contacts. Glacial interferometric fringe is parallel to the glacier-sea ice contact lines while tidal strain should be parallel to the coastlines defined by sea shore and glacier tongue. DDInSAR operation removed the consistent glacial strain leaving tidal strain alone so that the response of fast ice to tide can be used to deduce physical properties of sea ice in various

  9. Influence of Soil Characteristics and Proximity to Antarctic Research Stations on Abundance of Antibiotic Resistance Genes in Soils.

    PubMed

    Wang, Fang; Stedtfeld, Robert D; Kim, Ok-Sun; Chai, Benli; Yang, Luxi; Stedtfeld, Tiffany M; Hong, Soon Gyu; Kim, Dockyu; Lim, Hyoun Soo; Hashsham, Syed A; Tiedje, James M; Sul, Woo Jun

    2016-12-06

    Soil is an important environmental reservoir of antibiotic resistance genes (ARGs), which are increasingly recognized as environmental contaminants. Methods to assess the risks associated with the acquisition or transfer of resistance mechanisms are still underdeveloped. Quantification of background levels of antibiotic resistance genes and what alters those is a first step in understanding our environmental resistome. Toward this goal, 62 samples were collected over 3 years from soils near the 30-year old Gondwana Research Station and for 4 years before and during development of the new Jang Bogo Research Station, both at Terra Nova Bay in Antarctica. These sites reflect limited and more extensive human impact, respectively. A qPCR array with 384 primer sets targeting antibiotic resistance genes and mobile genetic elements (MGEs) was used to detect and quantify these genes. A total of 73 ARGs and MGEs encompassing eight major antibiotic resistance gene categories were detected, but most at very low levels. Antarctic soil appeared to be a common reservoir for seven ARGs since they were present in most samples (42%-88%). If the seven widespread genes were removed, there was a correlation between the relative abundance of MGEs and ARGs, more typical of contaminated sites. There was a relationship between ARG content and distance from both research stations, with a significant effect at the Jang Bogo Station especially when excluding the seven widespread genes; however, the relative abundance of ARGs did not increase over the 4 year period. Silt, clay, total organic carbon, and SiO2 were the top edaphic factors that correlated with ARG abundance. Overall, this study identifies that human activity and certain soil characteristics correlate with antibiotic resistance genes in these oligotrophic Antarctic soils and provides a baseline of ARGs and MGEs for future comparisons.

  10. SUMMARIES OF RESEARCH STUDIES IN AGRICULTURAL EDUCATION FOR THE PACIFIC REGION, 1965.

    ERIC Educational Resources Information Center

    MCCOMAS, J.D.

    TWENTY DOCTORAL DISSERTATIONS, STAFF STUDIES, AND MASTERS' THESES IN AGRICULTURAL EDUCATION ARE REPORTED IN THE FOLLOWING AREAS -- AGRICULTURAL COLLEGES, CIVIL DEFENSE, COMMUNITY COLLEGES, CURRICULUM, EDUCATIONAL TELEVISION, DROPOUTS, EXTENSION EDUCATION, EDUCATIONAL PROGRAMS IN FOREIGN COUNTRIES, JUNIOR COLLEGES, LAND LABORATORIES, OCCUPATIONAL…

  11. Translational research in agricultural biology - enhancing crop resistivity against environmental stress alongside nutritional quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural security, including producing nutritious food, is needed to make agriculture sustainable. All kinds of genetically engineered (transgenic) lines have been developed, including transgenic lines that have promise of withstanding environmental extremes (abiotic and biotic) and others that...

  12. 7 CFR 29.9202 - Approved receiving station.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER... station. Points approved by the Director at which tobacco is offered for marketing or shipment...

  13. VOCATIONAL AGRICULTURE.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Research Coordinating Unit.

    TO ASSIST THOSE WHO MAKE DECISIONS RELATING TO EDUCATIONAL PROGRAMS IN AGRICULTURE, RECENT RESEARCH IN VOCATIONAL AGRICULTURE IS SUMMARIZED. A 1963 STUDY TREATS THE RELATIONSHIP BETWEEN WORK EXPERIENCE AND STUDENT CHARACTERISTICS, PLANS, AND ASPIRATIONS. STUDIES ON POST-SECONDARY EDUCATION CONCERN GUIDELINES FOR TECHNICIAN PROGRAMS, JUSTIFICATION…

  14. Building Interdisciplinary Research and Communication Skills in the Agricultural and Climate Sciences

    NASA Astrophysics Data System (ADS)

    Johnson-Maynard, J.; Borrelli, K.; Wolf, K.; Bernacchi, L.; Eigenbrode, S.; Daley Laursen, D.

    2015-12-01

    Preparing scientists and educators to create and promote practical science-based agricultural approaches to climate change adaptation and mitigation is a main focus of the Regional Approaches to Climate Change (REACCH) project. Social, political and environmental complexities and interactions require that future scientists work across disciplines rather than having isolated knowledge of one specific subject area. Additionally, it is important for graduate students earning M.S. or Ph.D. degrees in agriculture and climate sciences to be able to communicate scientific findings effectively to non-scientific audiences. Unfortunately, university graduate curricula rarely adequately prepare students with these important skills. REACCH recognizes the need for graduate students to have thorough exposure to other disciplines and to be able to communicate information for outreach and education purposes. These priorities have been incorporated into graduate training within the REACCH project. The interdisciplinary nature of the project and its sophisticated digital infrastructure provide graduate students multiple opportunities to gain these experiences. The project includes over 30 graduate students from 20 different disciplines and research foci including agronomy, biogeochemistry, soil quality, conservation tillage, hydrology, pest and beneficial organisms, economics, modeling, remote sensing, science education and climate science. Professional develop workshops were developed and held during annual project meetings to enhance student training. The "Toolbox" survey (http://www.cals.uidaho.edu/toolbox/) was used to achieve effective interdisciplinary communication. Interdisciplinary extension and education projects were required to allow students to gain experience with collaboration and working with stakeholder groups. Results of student surveys and rubrics developed to gauge success in interdisciplinary research and communication may provide a helpful starting point for

  15. Glocalized New Age Spirituality: A Mental Map of the New Central Bus Station in Tel Aviv, Deciphered through Its Visual Codes and Based on Ethno-Visual Research

    ERIC Educational Resources Information Center

    Ben-Peshat, Malka; Sitton, Shoshana

    2011-01-01

    We present here the findings of an ethno-visual research study involving the creation of a mental map of images, artifacts and practices in Tel Aviv's New Central Bus Station. This huge and complex building, part bus station, part shopping mall, has become a stage for multicultural encounters and interactions among diverse communities of users.…

  16. Linkage of Higher Education with Agricultural Research, Extension and Development in Ethiopia

    ERIC Educational Resources Information Center

    Belay, Kassa

    2008-01-01

    High-level agricultural manpower training in Ethiopian institutions of higher education (AIHE)specializing in agriculture and related fields was studied. The study reveals that high-level agricultural manpower training began in the early 1950s and that, at present, the country has seven institutions of higher learning, which train students in…

  17. Understanding Abiotic Triggers For Cyanobacteria Blooms in Lakes Using a Long Term In-situ Monitoring Research Station

    NASA Astrophysics Data System (ADS)

    Wilkinson, Anne; Hondzo, Miki; Salomon, Christine; Missaghi, Shahram; Guala, Michele

    2016-11-01

    Harmful Algal Blooms (HAB) are ubiquitous ecological and public health hazards. HAB are made up of potentially toxic freshwater cyanobacteria. The occurrences of toxic HAB are unpredictable and highly spatially/temporary variable in freshwater ecosystems. To study the abiotic triggers for toxic HAB, a research station has been deployed in a eutrophic lake from June-October 2016. This station provides hourly water quality profiles and meteorological (every 5 minutes) monitoring with real time access. Water quality monitoring is performed by an autonomously traversed sonde that provides chemical, physical and biological measurements; including phycocyanin, a light-absorbing pigment distinct to cyanobacteria. The research station is a sentinel for HAB accumulation, prompting focused HAB analysis, including: phytoplankton and toxin composition/concentration, and turbulent kinetic energy dissipation rates. We will discuss how mixing conditions, temperature stratification, light intensity, surface wind magnitude and energy dissipation mediate a)HAB formation/composition b)toxicity and c)cyanobacteria stratification.The results will help illuminate abiotic processes that trigger HAB accumulation/toxicity, which can direct timely toxic HAB prediction and prevention efforts.

  18. Social Networking in an Agricultural Research Center: Using Data to Enhance Outcomes.

    PubMed

    Cramer, Mary E; Araz, Ozgur M; Wendl, Mary J

    2017-01-01

    The purpose of this article is to present a case study of one midwestern Agricultural Center (Ag Center) that used social network analysis (SNA) to (1) evaluate its collaborations with extramural stakeholders and (2) strategically plan for extending outreach for goal achievement. An evaluation team developed a data collection instrument based on SNA principles. It was administered to the Ag Center's intramural stakeholders (N = 9), who were asked to identify the key extramural stakeholders with whom they had collaborated within the previous 12 months. Additional questions about each extramural stakeholder helped to categorize them according to SNA network measures for degree of centrality, betweenness centrality, and closeness centrality. Findings showed the Ag Center had N = 305 extramural stakeholders. Most of these were other researchers and did not represent the diverse group of stakeholders that the Ag Center had targeted for engagement. Only a few of the intramural stakeholders had national or international connections. Findings were used to improve and diversify connections in order to leverage the Ag Center's expertise and ability to translate research into new best practices and policies. The SNA case study has implications for other evaluators and project directors looking for methodologies that can monitor networks in large science consortia and help leaders plan for translating research into practice and policies by networking with those who can influence such change.

  19. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  20. Materials Science Research Hardware for Application on the International Space Station: an Overview of Typical Hardware Requirements and Features

    NASA Technical Reports Server (NTRS)

    Schaefer, D. A.; Cobb, S.; Fiske, M. R.; Srinivas, R.

    2000-01-01

    NASA's Marshall Space Flight Center (MSFC) is the lead center for Materials Science Microgravity Research. The Materials Science Research Facility (MSRF) is a key development effort underway at MSFC. The MSRF will be the primary facility for microgravity materials science research on board the International Space Station (ISS) and will implement the NASA Materials Science Microgravity Research Program. It will operate in the U.S. Laboratory Module and support U. S. Microgravity Materials Science Investigations. This facility is being designed to maintain the momentum of the U.S. role in microgravity materials science and support NASA's Human Exploration and Development of Space (HEDS) Enterprise goals and objectives for Materials Science. The MSRF as currently envisioned will consist of three Materials Science Research Racks (MSRR), which will be deployed to the International Space Station (ISS) in phases, Each rack is being designed to accommodate various Experiment Modules, which comprise processing facilities for peer selected Materials Science experiments. Phased deployment will enable early opportunities for the U.S. and International Partners, and support the timely incorporation of technology updates to the Experiment Modules and sensor devices.

  1. Food and agricultural research in changing times: Highlights of a national round table. Held in Washington, DC on June 16, 1995. Special report

    SciTech Connect

    Ridgway, R.L.; Reeder, R.

    1995-11-01

    A National Round Table on Food and Agricultural Research in Changing Times was held to (1) present an overview of Federal research programs, (2) review information gained from four regional focus groups conducted to obtain grassroots inputs into Federal agricultural research and extension programs, (3) integrate regional inputs with those from national organizations representing diverse constituents, and (4) enhance communication and collaboration among constituents of the U.S. Department of Agriculture (USDA), other Federal research agencies, Congress, and the Administration.

  2. Research in Agricultural Education: A Foundation for Excellence. Proceedings of the National Agricultural Education Research Meeting (15th, St. Louis, Missouri, December 2, 1988).

    ERIC Educational Resources Information Center

    American Vocational Association, Alexandria, VA. Agricultural Education Div.

    This document contains 36 papers, most with critiques. Selected titles include "Qualitative Evaluation of the Strengths and Weaknesses of Pennsylvania's 4-H Program" (Etling); "Cognition Level of Instruction and Student Performance among Selected Ohio Production Agriculture Programs" (Cano, Newcomb); "Critical Thinking…

  3. 7 CFR 29.42 - Receiving station.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Receiving station. 29.42 Section 29.42 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS...

  4. Collaborative evaluation and market research converge: an innovative model agricultural development program evaluation in Southern Sudan.

    PubMed

    O'Sullivan, John M; O'Sullivan, Rita

    2012-11-01

    In June and July 2006 a team of outside experts arrived in Yei, Southern Sudan through an AID project to provide support to a local agricultural development project. The team brought evaluation, agricultural marketing and financial management expertise to the in-country partners looking at steps to rebuild the economy of the war ravaged region. A partnership of local officials, agricultural development staff, and students worked with the outside team to craft a survey of agricultural traders working between northern Uganda and Southern Sudan the steps approach of a collaborative model. The goal was to create a market directory of use to producers, government officials and others interested in stimulating agricultural trade. The directory of agricultural producers and distributors served as an agricultural development and promotion tool as did the collaborative process itself.

  5. International Space Station Bus Regulation With NASA Glenn Research Center Flywheel Energy Storage System Development Unit

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E.; Kenny, Barbara H.; Dever, Timothy P.; Santiago, Walter; Jansen, Ralph H.

    2001-01-01

    An experimental flywheel energy storage system is described. This system is being used to develop a flywheel based replacement for the batteries on the International Space Station (ISS). Motor control algorithms which allow the flywheel to interface with a simplified model of the ISS power bus, and function similarly to the existing ISS battery system, are described. Results of controller experimental verification on a 300 W-hr flywheel are presented.

  6. A scientific role for Space Station Freedom: Research at the cellular level

    NASA Technical Reports Server (NTRS)

    Johnson, Terry C.; Brady, John N.

    1993-01-01

    The scientific importance of Space Station Freedom is discussed in light of the valuable information that can be gained in cellular and developmental biology with regard to the microgravity environment on the cellular cytoskeleton, cellular responses to extracellular signal molecules, morphology, events associated with cell division, and cellular physiology. Examples of studies in basic cell biology, as well as their potential importance to concerns for future enabling strategies, are presented.

  7. Research on evacuation in the subway station in China based on the Combined Social Force Model

    NASA Astrophysics Data System (ADS)

    Wan, Jiahui; Sui, Jie; Yu, Hua

    2014-01-01

    With the increasing number of subway stations, more and more attention has been paid to their emergency evacuation, as it plays an important part in urban emergency management. The present paper puts forward a method of crowd evacuation simulation for bioterrorism in subway station environment using the basic theory of the Social Force Model combined with the Gaussian Puff Model. A Combined Social Force Model is developed which is suitable for a real situation where there is a sudden toxic gas event. The model can also be used to demonstrate some individual behaviors in evacuation, such as competitive, grouping and herding. At last a series of experiments are conducted and the results are as follows. (1) When there is a toxic gas terroristic attack in subway stations, the influence on passengers varies according to the position that the gas source lies in and the numbers of gas sources. (2) More casualties will occur if managers do not detect the toxic gas danger and inform passengers about it. (3) The larger the wind speed is, the smaller the number of injured passengers will be. With the experiments, the number of people affected and other parameters like gas concentration can be estimated, which could support rapid and efficient emergency decisions.

  8. Report of the Committee on the Space Station of the National Research Council

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Space Station Program will be the most ambitious space project the nation has ever undertaken; will require tens of billions of dollars; and will entwine for many years the space program with those of international partners. It must have enduring stable support across administrations, and the support must be generous. The current Space Shuttle is barely adequate for the limited purpose of deploying the Space Station, and it is inadequate to meet broader national needs in space. The Committee recommends in the strongest terms that the Shuttle be upgraded with new improved solid rocket motors, that it be supplemented with expendable launch vehicles, and that a heavy lift launch vehicle be developed for use in the latter half of the 1990s. The Committee strongly recommends that NASA prepare a new Space Station Program cost estimate in conjunction with the Program Requirements Review scheduled for early next year by NASA. The exercise should address the full range of uncertainties in the current Program, some of which are discussed in the report.

  9. Use of remote sensing in agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Powell, N. L.

    1975-01-01

    The remote sensing studies of (a) cultivated peanut areas in Southeastern Virginia; (b) studies at the Virginia Truck and Ornamentals Research Station near Painter, Virginia, the Eastern Virginia Research Station near Warsaw, Virginia, the Tidewater Research and Continuing Education Center near Suffolk, Virginia, and the Southern Piedmont Research and Continuing Education Center Blackstone, Virginia; and (c) land use classification studies at Virginia Beach, Virginia are presented. The practical feasibility of using false color infrared imagery to detect and determine the areal extent of peanut disease infestation of Cylindrocladium black rot and Sclerotinia blight is demonstrated. These diseases pose a severe hazard to this major agricultural food commodity. The value of remote sensing technology in terrain analyses and land use classification of diverse land areas is also investigated. Continued refinement of spectral signatures of major agronomic crops and documentation of pertinent environmental variables have provided a data base for the generation of an agricultural-environmental prediction model.

  10. Evaluating Lignite-Derived Products (LDPs) for Agriculture - Does Research Inform Practice?

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Rose, Michael; Little, Karen; Jackson, Roy; Cavagnaro, Timothy

    2014-05-01

    . However, these growth benefits subsequently diminished over time. Insignificant growth benefits were observed for lucerne. The analysis of the literature and our own work indicates that it is difficult to account for all the possible variables where research is used to inform land management practices. Assisting farmers to conduct localised research in cooperative ventures is likely to bring about the best outcomes where site-specific research directly informs land management practices. 1. Michael T. Rose, Antonio F. Patti, Karen R. Little, Alicia L. Brown, W. Roy Jackson, Timothy R. Cavagnaro, A Meta-Analysis and Review of Plant-Growth Response to Humic Substances: Practical Implications for Agriculture, Advances in Agronomy, 2013, 124, 37-89

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel

  12. Long-Term Farm Policy to Succeed the Agriculture and Food Act of 1981 (Research, Extension, and Teaching). Part 5. Hearings before the Subcommittee on Departmental Operations, Research, and Foreign Agriculture of the Committee on Agriculture, House of Representatives, Ninety-Eighth Congress, Second Session (June 6, 7, 12, and 13, 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Agriculture.

    This congressional hearing is the fifth of five volumes examining various aspects of agricultural research, extension, and teaching as a prelude to determining what changes are to be made in Title XIV of the farm bill. Focuses are the U.S. Department of Agriculture (USDA) biotechnology program plans and regulatory concerns and the public benefits…

  13. NCERA-101 Station Report from Kennedy Space Center, FL, USA

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Wheeler, Raymond M.

    2014-01-01

    This is our annual report to the North Central Extension Research Activity, which is affiliated with the USDA and Land Grant University Agricultural Experiment Stations. I have been a member of this committee for 25 years. The presentation will be given by Dr. Gioia Massa, Kennedy Space Center

  14. PROCEEDINGS OF ANNUAL SOUTHERN REGIONAL RESEARCH CONFERENCE, AGRICULTURAL EDUCATION, "TOOLING UP FOR RESEARCH," (13TH, TEXAS TECHNOLOGICAL COLLEGE, JULY 29-31, 1964).

    ERIC Educational Resources Information Center

    LEACH, T.L.; WEBB, EARL

    THE PURPOSES OF THE CONFERENCE WERE TO CONSIDER PROBLEMS IN IMPLEMENTING AGRICULTURAL EDUCATION RESEARCH AND TO STUDY RECENT RESEARCH FINDINGS. TEACHER EDUCATORS, SUPERVISORS, COLLEGE PROFESSORS, CHAIRMEN, DIRECTORS AND DEANS, REPRESENTATIVES FROM INDUSTRY AND GOVERNMENT, TEACHERS, AND A SCHOOL ADMINISTRATOR WERE AMONG THE 42 PARTICIPANTS.…

  15. Assessment of proposed agricultural outleasing - Naval Air Station, Lemoore, California, on the endangered San Joaquin kit fox, Vulpes macrotis mutica, and blunt-nosed leopard lizard, Crotaphytus (=Gambelia) silus

    SciTech Connect

    O'Farrell, T.P.; Sauls, M.L.

    1982-11-01

    The United States Navy proposes to outlease lands adjacent to the runways of Naval Air Station, Lemoore, California, for agricultural purposes. These lands are currently undeveloped annual grasslands that have been modified by past land management practices. The proposed site is thought to provide habitat for the endangered San Joaquin kit fox. It has also been speculated that another endangered species, the blunt-nosed leopard lizard, may occur on the station. The objectives of this study were to determine whether kit fox and leopard lizards occurred on NAS, Lemoore, and to assess the possible impacts of the agricultural outlease program on these species and their essential habitats. Between 24 to 28 May 1982, ground transects studies, a helicopter overflight, night spotlight surveys, and live-trapping for kit fox were conducted on approximately 2700 acres to determine presence of the species. No evidence of either kit fox or blunt-nosed leopard lizards was found. It is unlikely that the Navy's proposed outlease program will negatively affect either species or jeopardize their continued existence.

  16. The Ecological Areawide Management (TEAM) of leafy spurge program of the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Anderson, Gerald L; Prosser, Chad W; Wendel, Lloyd E; Delfosse, Ernest S; Faust, Robert M

    2003-01-01

    The Ecological Areawide Management (TEAM) of Leafy Spurge program was developed to focus research and control efforts on a single weed, leafy spurge, and demonstrate the effectiveness of a coordinated, biologically based, integrated pest management program (IPM). This was accomplished through partnerships and teamwork that clearly demonstrated the advantages of the biologically based IPM approach. However, the success of regional weed control programs horizontally across several states and provinces also requires a vertical integration of several sectors of society. Awareness and education are the essential elements of vertical integration. Therefore, a substantial effort was made to produce a wide variety of information products specifically designed to educate different segments of society. During its tenure, land managers and agency decision makers have seen the potential of using the TEAM approach to accelerate the regional control of leafy spurge. The example set by the TEAM organization and participants is viewed as a model for future weed-control efforts.

  17. Anthropogenic transformation of soils in the northern Ergeni Upland (studies at the first experimental plot of the Arshan'-Zelmen Research Station)

    NASA Astrophysics Data System (ADS)

    Novikova, A. F.; Konyushkova, M. V.

    2013-03-01

    The results of soil studies performed in 2005-2009 at the first experimental plot of the Arshan'-Zelmen Research Station of the Institute of Forest Science of the Russian Academy of Sciences are discussed. The post-reclamation state (about 55 years after reclamation) of the soils under forest shelterbelts and adjacent croplands in the rainfed agriculture was studied. The long-term efficiency of forest reclamation and crop-growing technologies developed in the 1950s by the Dokuchaev Soil Science Institute and the Institute of Forest to reclaim strongly saline solonetzic soils was proved. In 55 years, strongly saline sodic solonetzes with sulfate-chloride and chloride-sulfate composition of salts were replaced by agrogenic soils with new properties. Under forest shelterbelts, where deep (40-60 cm) plowing was performed, the soils were transformed into slightly saline solonetzic agrozems with slight soda salinization in the upper meter and with dealkalized plowed and turbated horizons (0-20(40) cm). Under the adjacent cropland subjected to the influence of the shelterbelts on the soil water regime, strongly saline solonetzes were transformed into solonchakous agrosolonetzes with slight soda salinization in the upper 50 cm. In the plow layer, the content of exchangeable sodium decreased to 4-12% of the sum of exchangeable cations. An increased alkalinity and the presence of soda were found in the middle-profile horizons of the anthropogenically transformed soils.

  18. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  19. Water-Resources Data and Hydrogeologic Setting at the Raleigh Hydrogeologic Research Station, Wake County, North Carolina, 2005-2007

    USGS Publications Warehouse

    McSwain, Kristen Bukowski; Bolich, Richard E.; Chapman, Melinda J.; Huffman, Brad A.

    2009-01-01

    Water-resources data were collected to describe the hydrologic conditions at the Raleigh hydrogeologic research station, located in the Piedmont Physiographic Province of North Carolina. Data collected by the U.S. Geological Survey and the North Carolina Department of Environment and Natural Resources, Division of Water Quality, from May 2005 through September 2007 are presented in this report. Three well clusters and four piezometers were installed at the Raleigh hydrogeologic research station along an assumed flow path from recharge to discharge areas. Each well cluster includes four wells to monitor the regolith, transition zone, and shallow and deep bedrock. Borehole, surface, and waterborne geophysics were conducted to examine the lithology and physical properties of the bedrock and to determine the aerial extent of near vertical diabase dikes. Slug tests were conducted in the wells at each cluster to determine the hydraulic conductivity of the formation tapped by each well. Periodic water-level altitudes were measured in all wells and in four piezometers. Continuous hourly water levels were measured in wells for variable periods of time during the study, and a surface-water gage collected 15-minute stage data from April to June 2006. In October 2005 and April 2006, water-quality samples were collected from a tributary and in all wells at the Raleigh hydrogeologic research station. Continuous water-quality data were collected hourly in three wells from December 2005 through January 2007 and every 15 minutes in the tributary from May to June 2006. In August 2006, streambed temperatures and drive-point ground-water samples were collected across lines of section spanning the Neuse River.

  20. Public Progress, Data Management and the Land Grant Mission: A Survey of Agriculture Researchers' Practices and Attitudes at Two Land-Grant Institutions

    ERIC Educational Resources Information Center

    Fernandez, Peter; Eaker, Christopher; Swauger, Shea; Davis, Miriam L. E. Steiner

    2016-01-01

    This article reports results from a survey about data management practices and attitudes sent to agriculture researchers and extension personnel at the University of Tennessee Institute of Agriculture (UTIA) and the College of Agricultural Sciences and Warner College of Natural Resources at Colorado State University. Results confirm agriculture…

  1. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-02-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  2. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

    2007-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  3. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  4. Safety research of insulating materials of cable for nuclear power generating station

    NASA Technical Reports Server (NTRS)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  5. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  6. Peaceful atoms in agriculture and food: how the politics of the Cold War shaped agricultural research using isotopes and radiation in post war divided Germany.

    PubMed

    Zachmann, Karin

    2015-01-01

    During the Cold War, the super powers advanced nuclear literacy and access to nuclear resources and technology to a first-class power factor. Both national governments and international organizations developed nuclear programs in a variety of areas and promoted the development of nuclear applications in new environments. Research into the use of isotopes and radiation in agriculture, food production, and storage gained major importance as governments tried to promote the possibility of a peaceful use of atomic energy. This study is situated in divided Germany as the intersection of the competing socio-political systems and focuses on the period of the late 1940s and 1950s. It is argued that political interests and international power relations decisively shaped the development of "nuclear agriculture". The aim is to explore whether and how politicians in both parts of the divided country fostered the new field and exerted authority over the scientists. Finally, it examines the ways in which researchers adapted to the altered political conditions and expectations within the two political structures, by now fundamentally different.

  7. The Mothball, Sustainment, and Proposed Reactivation of the Hypersonic Tunnel Facility (HTF) at NASA Glenn Research Center Plum Brook Station

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.

    2010-01-01

    The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart

  8. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2004-03-01

    A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors

  9. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  10. Ploidy level and genomic composition of the USDA-ARS Tropical Agriculture Research Station Musa sp. Germplasm Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant germplasm collections serve as repositories for important genes. However, insufficient and inaccurate characterization of the genetic diversity in a collection slows and can prevent full utilization of these collections to maximum potential. Bananas and plantains (Musa sp., Colla) are some o...

  11. Characterization of the Musa spp. Taxonomic Reference Collection at the USDA-ARS, Tropical Agriculture Research Station.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant characterization descriptors enable an easy and quick way to discriminate between phenotypes. However, the best descriptors for taxonomy and germplasm rationalization purposes should be highly heritable (i.e., express equally in all environments) and easy to score to avoid bias due to differen...

  12. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being

  13. Environmental effects of agricultural conservation: A framework for research in two watersheds in Oklahoma's Upper Washita River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture in the Upper Washita River Basin represents mixed crop-livestock systems of the Southern Plains. Research was established in two sub-watersheds, the Little Washita River Experimental Watershed and the Fort Cobb Reservoir Experimental Watershed, to quantify interactive effects of variable...

  14. PROCEEDINGS OF REGIONAL RESEARCH CONFERENCE IN AGRICULTURAL EDUCATION (NEW BRUNSWICK, NEW JERSEY, NOVEMBER 9-11, 1966).

    ERIC Educational Resources Information Center

    Rutgers, The State Univ., New Brunswick, NJ. Dept. of Vocational-Technical Education.

    SEVENTY-EIGHT EDUCATORS FROM 13 NORTHEASTERN STATES AND WASHINGTON, D.C. PARTICIPATED IN THE 3-DAY CONFERENCE FOCUSED ON TOPICS OF INTEREST TO BOTH STATE SUPERVISORS AND TEACHER EDUCATORS. MAJOR SPEECHES WERE (1) "A REVIEW OF RESEARCH IN AGRICULTURAL EDUCATION IN THE NORTH ATLANTIC REGION" BY G.M. LOVE, (2) "REVIEW AND SYNTHESIS OF…

  15. Public-Private Policy Change and Its Influence on the Linkage of Agricultural Research, Extension and Farmers in Iran

    ERIC Educational Resources Information Center

    Karamidehkordi, Esmail

    2013-01-01

    Purpose: This article aims to show the linkage of Iranian agricultural research centres with extension and farmers, using three case studies in 1999, 2005 and 2010. Design/methodology/approach: The data were collected through document analyses, structured and semi-structured interviews and observations. Findings: The 1999 and 2005 cases were…

  16. Annual Southern Region Research Conference in Agricultural Education Proceedings (35th, North Little Rock, Arkansas, March 22-24, 1986).

    ERIC Educational Resources Information Center

    Rolloff, John A., Comp.

    These proceedings contain a summary of each of the 15 papers presented and the discussants' reactions. The keynote address and reflections on the outcome of the conference are also included. The keynote address is "Priorities for Continuing Progress in Research in Agricultural Education" (J. Robert Warmbrod). Presentations include…

  17. Summaries of Research and Development Activities in Agricultural Education, 1981-1982, in the United States of America.

    ERIC Educational Resources Information Center

    Kotrlik, Joe W., Comp.

    This compilation, the seventh in an annual series, includes abstracts of 155 studies in agricultural education completed during the period July 1, 1981, to June 30, 1982. Twenty-five of the completed studies represent staff research, 84 represent master's studies or theses, and 46 are doctoral dissertations. Also included is a listing of the 175…

  18. Collaborative Evaluation and Market Research Converge: An Innovative Model Agricultural Development Program Evaluation in Southern Sudan

    ERIC Educational Resources Information Center

    O'Sullivan, John M.; O'Sullivan, Rita

    2012-01-01

    In June and July 2006 a team of outside experts arrived in Yei, Southern Sudan through an AID project to provide support to a local agricultural development project. The team brought evaluation, agricultural marketing and financial management expertise to the in-country partners looking at steps to rebuild the economy of the war ravaged region. A…

  19. Use of Agricultural Subject Matter by Secondary Students in Swaziland. Summary of Research SR 69.

    ERIC Educational Resources Information Center

    Simelane, M. Jethro; Miller, Larry E.

    A descriptive-correlational study was conducted to determine the extent to which students used the subject matter content taught in the "O" Level School Agriculture Program in Swaziland. The target population was 493 graduating "O" Level agriculture students in Swaziland. Data were collected in a school visit and through a…

  20. USDA-ARS Highlights and emerging research on agricultural water use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture production accounts for 16% of the $9 trillion gross domestic product, 8% of exports and 17% of employment. Although less than 2% of Americans work on farms, 100% of citizens are users of farm products. Since WWII, the growth of agricultural inputs has remained flat, while productivity h...

  1. ABSTRACTS OF RESEARCH STUDIES IN AGRICULTURAL EDUCATION COMPLETED IN 1965-66 IN THE PACIFIC REGION.

    ERIC Educational Resources Information Center

    LOREEN, C.O.

    THIRTY STAFF STUDIES AND MASTERS' THESES IN AGRICULTURAL EDUCATION ARE REPORTED IN THE FOLLOWING AREAS -- AGRICULTURAL MACHINERY, CURRICULUM, EDUCATIONAL NEEDS, FARM LABORERS, GRADUATE FOLLOWUP, INTERNATIONAL EDUCATION, OCCUPATIONAL ASPIRATIONS, PROGRAM EVALUATION, AND STUDENT ACTIVITIES. THE PURPOSE, METHOD, AND FINDINGS OF EACH STUDY ARE…

  2. Linking agriculture and health in low- and middle-income countries: an interdisciplinary research agenda.

    PubMed

    Dangour, Alan D; Green, Rosemary; Häsler, Barbara; Rushton, Jonathan; Shankar, Bhavani; Waage, Jeff

    2012-05-01

    Recent global fluctuations in food prices and continuing environmental degradation highlight the future challenge of feeding a growing world population. However, current dialogues rarely address the relationship between agricultural changes and health. This relationship is traditionally associated with the role of food in nutrition and with food safety, and while these are key interactions, we show in this paper that the relationship is far more complex and interesting. Besides the direct effects of agriculture on population nutrition, agriculture also influences health through its impact on household incomes, economies and the environment. These effects are felt particularly in low- and middle-income countries, where dramatic changes are affecting the agriculture-health relationship, in particular the growth of nutrition-related chronic disease and the associated double burden of under- and over-nutrition. Greater understanding of the negative effects of agriculture on health is also needed. While lengthening food value chains make the chain of influence between agricultural policy, food consumption, nutrition and health more complex, there remain opportunities to improve health by changing agricultural systems. The first challenge in doing this, we suggest, is to improve our capacity to measure the impact of agricultural interventions on health outcomes, and vice versa.

  3. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many

  4. New Challenges in Agricultural Advisory Services from a Research Perspective: A Literature Review, Synthesis and Research Agenda

    ERIC Educational Resources Information Center

    Faure, Guy; Desjeux, Yann; Gasselin, Pierre

    2012-01-01

    Purpose: Agricultural advisory services are perceived by many actors involved in rural development as a key driver behind innovation processes in agriculture. However, changes in national and global contexts cause dramatic changes in the orientation of advisory services, their organisation and their methods of intervention. This article aims to…

  5. Research Fresh from Florida. Proceedings of the National Agricultural Education Research Conference (26th, Orlando, Florida, December 11, 1999).

    ERIC Educational Resources Information Center

    American Association for Agricultural Education.

    The following are among the 47 papers included: "Academic Performance and Retention of College of Agriculture Students" (Garton, Dyer, King); "Perceptions of Recent Graduates and Employers about Undergraduate Programs in the College of Agriculture and Natural Resources at Michigan State University" (Heyboer, Suvedi);…

  6. Long-Term Network Experiments and Interdisciplinary Campaigns Conducted by the USDA-Agricultural Research Service

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.

    2014-12-01

    The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.

  7. CFD research on runaway transient of pumped storage power station caused by pumping power failure

    NASA Astrophysics Data System (ADS)

    Zhang, L. G.; Zhou, D. Q.

    2013-12-01

    To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.

  8. Higher and colder: The success and failure of boundaries in high altitude and Antarctic research stations

    PubMed Central

    Heggie, Vanessa

    2016-01-01

    This article offers a series of case studies of field stations and field laboratories based at high altitudes in the Alps, Himalayas and Antarctica, which have been used by Western scientists (largely physiologists and physicists) from circa 1820 to present. It rejects the common frame for work on such spaces that polarizes a set of generalizations about practices undertaken in ‘the field’ versus ‘the laboratory’. Field sites are revealed as places that can be used to highlight common and crucial features of modern experimental science that are exposed by, but not uniquely the properties of, fieldwork. This includes heterogeneity of population and practice, diverse afterlives, the manner in which spaces of science construct individual and group expertise, and the extensive support and funding structures needed for modern scientific work. PMID:28025914

  9. DC-DC power converter research for Orbiter/Station power exchange

    NASA Technical Reports Server (NTRS)

    Ehsani, M.

    1993-01-01

    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.

  10. Higher and colder: The success and failure of boundaries in high altitude and Antarctic research stations.

    PubMed

    Heggie, Vanessa

    2016-12-01

    This article offers a series of case studies of field stations and field laboratories based at high altitudes in the Alps, Himalayas and Antarctica, which have been used by Western scientists (largely physiologists and physicists) from circa 1820 to present. It rejects the common frame for work on such spaces that polarizes a set of generalizations about practices undertaken in 'the field' versus 'the laboratory'. Field sites are revealed as places that can be used to highlight common and crucial features of modern experimental science that are exposed by, but not uniquely the properties of, fieldwork. This includes heterogeneity of population and practice, diverse afterlives, the manner in which spaces of science construct individual and group expertise, and the extensive support and funding structures needed for modern scientific work.

  11. [Experimental research of oil vapor pollution control for gas station with membrane separation technology].

    PubMed

    Zhu, Ling; Chen, Jia-Qing; Zhang, Bao-Sheng; Wang, Jian-Hong

    2011-12-01

    Two kinds of membranes modules, vapor retained glassy membrane based on PEEK hollow fiber membrane modules and vapor permeated rubbery membrane system based on GMT plate-and-frame membrane modules, were used to control the oil vapor pollution during the course of receiving and transferring gasoline in oil station. The efficiencies of the membrane module and the membrane system of them were evaluated and compared respectively in the facilities which were developed by ourselves. It was found that both the two kinds of membranes modules had high efficiency for the separation of VOCs-air mixed gases, and the outlet vapor after treatment all can meet the national standard. When the vapor-enriched gas was returned to the oil tank to simulate the continuously cycle test, the concentration of VOCs in the outlet was also below 25 g x m(-3).

  12. Acoustic emissions verification testing of International Space Station experiment racks at the NASA Glenn Research Center Acoustical Testing Laboratory

    NASA Astrophysics Data System (ADS)

    Akers, James C.; Passe, Paul J.; Cooper, Beth A.

    2005-09-01

    The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.

  13. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2013-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling (500 W) for two locations, one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  14. Conducting Research on the International Space Station using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2016-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  15. Managing agricultural emissions to the atmosphere: state of the science, fate and mitigation, and identifying research gaps.

    PubMed

    Yates, S R; McConnell, L L; Hapeman, C J; Papiernik, S K; Gao, S; Trabue, S L

    2011-01-01

    The impact of agriculture on regional air quality creates significant challenges to sustainability of food supplies and to the quality of national resources. Agricultural emissions to the atmosphere can lead to many nuisances, such as smog, haze, or offensive odors. They can also create more serious effects on human or environmental health, such as those posed by pesticides and other toxic industrial pollutants. It is recognized that deterioration of the atmosphere is undesirable, but the short- and long-term impacts of specific agricultural activities on air quality are not well known or understood. These concerns led to the organization of the 2009 American Chemical Society Symposium titled . An outcome of this symposium is this special collection of 14 research papers focusing on various issues associated with production agriculture and its effect on air quality. Topics included emissions from animal feeding operations, odors, volatile organic compounds, pesticides, mitigation, modeling, and risk assessment. These papers provide new research insights, identify gaps in current knowledge, and recommend important future research directions. As the scientific community gains a better understanding of the relationships between anthropogenic activities and their effects on environmental systems, technological advances should enable a reduction in adverse consequences on the environment.

  16. Forest and Agricultural Sector Optimization Model (FASOM): Model structure and policy applications. Forest Service research paper

    SciTech Connect

    Adams, D.M.; Alig, R.J.; Callaway, J.M.; McCarl, B.A.; Winnett, S.M.

    1996-09-01

    The Forest and Agricultural Sector Opimization Model (FASOM) is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States. The FASOM model initially was developed to evaluate welfare and market impacts of alternative policies for sequestering carbon in trees but also has been applied to a wider range of forest and agricultural sector policy scenarios. The authors describe the model structure and give selected examples of policy applications. A summary of the data sources, input data file format, and the methods used to develop the input data files also are provided.

  17. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period

  18. U.S. Department of Agriculture UV-Monitoring and Research Program and Integrated Crop Modeling Activity

    NASA Astrophysics Data System (ADS)

    Gao, W.; Davis, J. M.; Liang, X.; Schmoldt, D. L.

    2008-12-01

    The US Department of Agriculture's UV Monitoring and Research Program (USDA-UVMRP) has monitored surface solar irradiance in the UV and visible regions of the spectrum for over a decade. Measurements of spectral irradiance have been made at 34 sites in the US as well as one site in New Zealand and two in Canada. These measurements are complemented by readings of the erythemally weighted irradiance and Photosynthetically Active Radiation. The purpose of the network is to supply datan used to assess the risk to agriculture of variations in incident solar radiation. A robust climatology of these data has been constructed, and it serves a multitude of requests from the agricultural, medical and industrial communities. The USDA- UVMRP at Colorado State University is also the home of the Center of Remote Sensing and Modeling for Agricultural Sustainability (CRSMAS). The purpose of CRSMAS is twofold: first, to evaluate response of plants, forests, ecosystems, and animals to UV-B and other climate stress factors; and second, to develop an Integrated Agricultural Impact Assessment System. The Integrated Agricultural Impact Assessment System couples a state-of-the-art mesoscale region Climate-Weather Research and Forecasting model (CWRF) with the most comprehensive crop growth models to study climate-crop interactions. The data from the USDA- UVMRP network is used in conjunction with data assimilated from various satellite platforms as input into the CWRF model. A overview of the UVMRP network, its instrumentation and climatological results will be presented as well as an example of the application of the Integrated Impact Assessment System to a study of the response of cotton yields to climate stresses during the 1979-2005 period.

  19. Long open-path TDL based system for monitoring background concentration for deployment at Jungfraujoch High Altitude Research Station- Switzerland

    NASA Astrophysics Data System (ADS)

    Simeonov, Valentin; van den Bergh, Hubert; Parlange, Marc

    2010-05-01

    A new, long open-path instrument for monitoring of path-averaged methane and water vapor concentrations will be presented. The instrument is built on the monostatic scheme (transceiver - distant retroreflector). A VCSEL tunable diode laser (TDL) with a central wavelength of 1654 nm is used as a light source. A specially designed, single-cell, hollow-cube retroreflector with 150 mm aperture will be installed at 1200 m from the transceiver in the final deployment at Jungfraujjoch and 100 mm retroreflectors will be used in the other applications. The receiver is built around a 20 cm Newtonian telescope. To avoid distortions in the shape of a methane line, caused by atmospheric turbulences, the line is scanned within 1 µs. Fast InGaAs photodiodes and 200 MHz are used to achieve this scanning rate. The expected concentration resolution for the above mentioned path lengths is of the order of 2 ppb. The instrument is developed at the Swiss Federal Institute of Technology - Lausanne (EPFL) Switzerland and will be used within the GAW+ CH program for long-term monitoring of background methane concentration in the Swiss Alps. After completing the initial tests at EPFL the instrument will be installed in 2012 at the High Altitude Research Station Jungfraujoch (HARSJ) located at 3580 m ASL. The HARSJ is one of the 24 global GAW stations and carries on continuous observations of a number of trace gasses, including methane. One of the goals of the project is to compare path-averaged to ongoing point measurements of methane in order to identify possible influence of the station. Future deployments of a copy of the instrument include the Colombian part of Amazonia and Siberian wetlands.

  20. 77 FR 4984 - Solicitation of Input From Stakeholders Regarding the Agriculture and Food Research Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...) Renewable energy, natural resources, and environment; (E) Agriculture systems and technology; and (F... solicitations for this program. Done at Washington, DC, this 25th day of January 2012. Chavonda...