Science.gov

Sample records for agriculture water resources

  1. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  2. Integrating EPA's agriculture and water grant programs: A comparison of 16 programs that protect the water resource from agricultural contamination

    SciTech Connect

    Not Available

    1992-10-01

    The document provides background information on EPA's Agriculture and Water Integration Project, summarizes and compares specific program elements, and outlines the Agency's plans for grant guidances and programs related to agricultural contamination of the water resource over the next few years.

  3. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  4. Water resource management for sustainable agriculture in Punjab, India.

    PubMed

    Aggarwal, Rajan; Kaushal, Mohinder; Kaur, Samanpreet; Farmaha, Bhupinder

    2009-01-01

    The state of Punjab comprising 1.5% area of the country has been contributing 40-50% rice and 60-65% wheat to the central pool since last three decades. During last 35 years The area under foodgrains has increased from 39,200 sq km ha to 63,400 sq km and the production of rice and wheat has increased from 0.18 to 0.32 kg/m2 and 0.22 to 0.43 kg/m2 respectively. This change in cropping pattern has increased irrigation water requirement tremendously and the irrigated area has increased from 71 to 95% in the state. Also the number of tube wells has increased from 0.192 to 1.165 million in the last 35 years. The excessive indiscriminate exploitation of ground water has created a declining water table situation in the state. The problem is most critical in central Punjab. The average rate of decline over the last few years has been 55 cm per year. The worst affected districts are Moga, Sangrur, Nawanshahar, Ludhiana and Jalandhar. This has resulted in extra power consumption, affects the socio-economic conditions of the small farmers, destroy the ecological balance and adversely affect the sustainable agricultural production and economy of the state. Therefore, in this paper attempt has been made to analyse the problem of declining water table, possible factors responsible for this and suggest suitable strategies for arresting declining water table for sustainable agriculture in Punjab. The strategies include shift of cropping pattern, delay in paddy transplantation, precision irrigation and rainwater harvesting for artificial groundwater recharge.

  5. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.

  6. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  7. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  8. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  9. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L.

    2007-01-01

    [1] Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ???90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (???1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs. Copyright 2007 by the American Geophysical Union.

  10. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  11. A Satellite Data-Driven, Client-Server Decision Support Application for Agricultural Water Resources Management

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.

    2016-01-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that

  12. Review: Computer-based models for managing the water-resource problems of irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2015-09-01

    Irrigation is essential for achieving food security to the burgeoning global population but unplanned and injudicious expansion of irrigated areas causes waterlogging and salinization problems. Under this backdrop, groundwater resources management is a critical issue for fulfilling the increasing water demand for agricultural, industrial, and domestic uses. Various simulation and optimization approaches were used to solve the groundwater management problems. This paper presents a review of the individual and combined applications of simulation and optimization modeling for the management of groundwater-resource problems associated with irrigated agriculture. The study revealed that the combined use of simulation-optimization modeling is very suitable for achieving an optimal solution for groundwater-resource problems, even with a large number of variables. Independent model tools were used to solve the problems of uncertainty analysis and parameter estimation in groundwater modelling studies. Artificial neural networks were used to minimize the problem of computational complexity. The incorporation of socioeconomic aspects into the groundwater management modeling would be an important development in future studies.

  13. Agriculture, Forestry, Range Resources

    NASA Technical Reports Server (NTRS)

    Crea, W. J., Jr.

    1973-01-01

    Significant results obtained from ERTS-1 observations of agriculture, forestry, and range resources are summarized. Four major parts are covered: (1) crop classification and mensuration; (2) timber and range resources survey and classification; (3) soil survey and mapping; and (4) subdiscipline areas.

  14. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Knox, Jerry W.; Ozdogan, Mutlu; Gumma, Murali Krishna; Congalton, Russell G.; Wu, Zhuoting; Milesi, Cristina; Finkral, Alex; Marshall, Mike; Mariotto, Isabella; You, Songcai; Giri, Chandra; Nagler, Pamela

    2012-01-01

    of changing dietary consumption patterns, a changing climate and the growing scarcity of water and land (Beddington, 2010). The impact from these changes wi ll affect the viability of both dryland subsistence and irrigated commodity food production (Knox, et al., 2010a). Since climate is a primary determinant of agricultural productivity, any changes will influence not only crop yields, but also the hydrologic balances, and supplies of inputs to managed farming systems as well as potentially shifting the geographic location for specific crops . Unless concerted and collective action is taken, society risks worldwide food shortages, scarcity of water resources and insufficient energy. This has the potential to unleash public unrest, cross-border conflicts and migration as people flee the worst-affected regions to seck refuge in "safe havens", a situation that Beddington described as the "perfect storm" (2010).

  15. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  16. Characterization of dissolved solids in water resources of agricultural lands near Manila, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos

  17. The impacts of climate change on water resources and agriculture in China.

    PubMed

    Piao, Shilong; Ciais, Philippe; Huang, Yao; Shen, Zehao; Peng, Shushi; Li, Junsheng; Zhou, Liping; Liu, Hongyan; Ma, Yuecun; Ding, Yihui; Friedlingstein, Pierre; Liu, Chunzhen; Tan, Kun; Yu, Yongqiang; Zhang, Tianyi; Fang, Jingyun

    2010-09-02

    China is the world's most populous country and a major emitter of greenhouse gases. Consequently, much research has focused on China's influence on climate change but somewhat less has been written about the impact of climate change on China. China experienced explosive economic growth in recent decades, but with only 7% of the world's arable land available to feed 22% of the world's population, China's economy may be vulnerable to climate change itself. We find, however, that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China's water resources and agriculture and therefore China's ability to feed its people. To reach a more definitive conclusion, future work must improve regional climate simulations-especially of precipitation-and develop a better understanding of the managed and unmanaged responses of crops to changes in climate, diseases, pests and atmospheric constituents.

  18. Agriculture, forestry, range resources

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1974-01-01

    The necessary elements to perform global inventories of agriculture, forestry, and range resources are being brought together through the use of satellites, sensors, computers, mathematics, and phenomenology. Results of ERTS-1 applications in these areas, as well as soil mapping, are described.

  19. Short to sub-seasonal hydrologic forecast to manage water and agricultural resources in India

    NASA Astrophysics Data System (ADS)

    Shah, Reepal; Sahai, Atul Kumar; Mishra, Vimal

    2017-02-01

    Water resources and agriculture are often affected by the weather anomalies in India resulting in disproportionate damage. While short to sub-seasonal prediction systems and forecast products are available, a skilful hydrologic forecast of runoff and root-zone soil moisture that can provide timely information has been lacking in India. Using precipitation and air temperature forecasts from the Climate Forecast System v2 (CFSv2), the Global Ensemble Forecast System (GEFSv2) and four products from the Indian Institute of Tropical Meteorology (IITM), here we show that the IITM ensemble mean (mean of all four products from the IITM) can be used operationally to provide a hydrologic forecast in India at a 7-45-day accumulation period. The IITM ensemble mean forecast was further improved using bias correction for precipitation and air temperature. Bias corrected precipitation forecast showed an improvement of 2.1 mm (on the all-India median mean absolute error - MAE), while all-India median bias corrected temperature forecast was improved by 2.1 °C for a 45-day accumulation period. Moreover, the Variable Infiltration Capacity (VIC) model simulated forecast of runoff and soil moisture successfully captured the observed anomalies during the severe drought years. The findings reported herein have strong implications for providing timely information that can help farmers and water managers in decision making in India.

  20. Optimal management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-04-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic optimization framework for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. Different open loop and closed loop control strategies are evaluated within this stochastic optimization framework in order to generate reliable stochastic crop water production functions (SCWPF). The resulting database of SCWPF can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  1. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  2. Climate Change Impacts and Adaptation on Water Resources and Agricultural Diversity of the Upper Rio Grande Watershed

    NASA Astrophysics Data System (ADS)

    Rouhi Rad, M.; Hurd, B. H.

    2012-12-01

    Climate change can alter the balance of the water resources systems. It can both change the amount and the timing of the streamflow available in a basin and the amount of water consumed at the end point due to higher temperatures. These changes in the supply and demand sides can result in a different allocation of water and different price for water in basin scale based on economic principles. In a previous study Hurd and Coonrod (2012) modeled the impacts of climate change on the water related economic activities of the Rio Grande. In their study they assumed an aggregated benefit function for the agricultural sector. In another study on the Rio Grande Brinegar and Ward (2009) modeled the agricultural diversity of the Rio Grande within the framework of a hydro-economic model. This study builds upon and extends the previous studies by developing a model that can more carefully assess the role of adaptation in agriculture. Specially, the current study adds quadratic production functions for each crop. These production functions add a major benefit to the modeling of the hydro-economic system, namely that of adding diversity and expanded resolution to the agricultural sector. Using this production function the model includes both land and water as independent variables in the agricultural sector and, therefore this extension of the model has more flexibility to represent adaptive responses to climatic changes by including the capacity to change the crop mix and acreages as well as the water applied i.e. the capacity to deficit irrigate. The results of this study show that the agricultural sector can lose nearly a third of its water and more than 30% of its net economic benefits as a result of possible climate changes. It also shows as the climate become drier and population grows then economic forces will encourage agriculture to move towards more beneficial crops and reduce total acreage and in some cases applied water.

  3. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    ERIC Educational Resources Information Center

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  4. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  5. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources.

  6. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors

    NASA Astrophysics Data System (ADS)

    Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.

    2016-02-01

    In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.

  7. Embedding an evolving agricultural system within a water resources planning model

    NASA Astrophysics Data System (ADS)

    Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.

    2008-12-01

    The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.

  8. Protecting Our Water Resources.

    ERIC Educational Resources Information Center

    Jewett, Jon

    1996-01-01

    Describes the watershed management approach for preserving water resources. Considers pollution sources ranging from industrial discharge to agricultural leachate and runoff and evaluates its impact on the total watershed environment. (JRH)

  9. Water resources program of the U.S. Geological Survey related to agriculture in Louisiana

    USGS Publications Warehouse

    Huntzinger, T.L.

    1982-01-01

    Surveillance activities of the U.S. Geological Survey Louisiana District include long-term, hydrologic-data-collection sites that serve a current-purpose, management function and (or) that furnish a data base for interpretative studies. The proposed program for 1982 includes a network of 69 surface-water data sites (continuous gaging stations), 250 flood-data sites (crest-stage stations), 679 ground-water wells (water-level observation and water-quality monitor wells), and 138 water-quality sites. The geographic distribution of the data sites is shown in the report. Interpretive studies have objectives that are oriented toward a particular geographic area , to a particular set of hydrologic phenomena, or to obtain information for use in solving specific problems. Current studies of interest to agriculture include the following: (1) Flood hydraulics and hydrology, (2) Low-flow or base-flow of streams in Louisiana, (3) Hydrologic studies in southwestern Louisiana, (4) Hydrologic impacts of surface mining in northern Louisiana, (5) Sparta aquifer study, and (6) Limnology of freshwater lakes. A network of partial record sites is also maintained to monitor specific flows. Peak stages (crest stage) are only recorded at sites where flood information is of interest. At other sites, only the low-flow or base-flow recession is obtained for use in determining relations between ground water and surface water, to assess water supply, and for effluent studies. (USGS)

  10. Improving soil moisture simulation to support Agricultural Water Resource Management using Satellite-based water cycle observations

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2016-04-01

    Efficient and sustainable irrigation systems require optimization of operational parameters such as irrigation amount which are dependent on the soil hydraulic parameters that affect the model's accuracy in simulating soil water content. However, it is a scientific challenge to provide reliable estimates of soil hydraulic parameters and irrigation estimates, given the absence of continuously operating soil moisture and rain gauge network. For agricultural water resource management, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally (Wang and Qu 2009). In the current study, flood irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches below a threshold of 25%, 50% and 75% with respect to the maximum available water capacity (difference between field capacity and wilting point) and applied until the top layer is saturated. An additional important criterion needed to activate the irrigation scheme is to ensure that it is irrigation season by assuming that the greenness vegetation fraction (GVF) of the pixel exceed 0.40 of the climatological annual range of GVF (Ozdogan et al. 2010). The main hypothesis used in this study is that near-surface remote sensing soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately inverted, it would provide field capacity and wilting point soil moisture, which may be representative of that basin. Thus, genetic algorithm inverse method is employed to derive the effective parameters and derive the soil moisture deficit for the root zone by coupling of AMSR-E soil moisture with the physically based hydrological model. Model performance is evaluated using MODIS

  11. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  12. Modules in Agricultural Education for Agricultural Resources.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the 31 curriculum modules in this packet for agricultural resources instruction contains a brief description of the module content, a list of the major division or units, the overall objective, objectives by units, content outline and suggested teaching methods, student application activities, and evaluation procedures. A list of resource…

  13. Water resources

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.

    1973-01-01

    The application of ERTS-1 imagery to the conservation and control of water resources is discussed. The effects of exisiting geology and land use in the water shed area on the hydrologic cycle and the general characteristics of runoff are described. The effects of floods, snowcover, and glaciers are analyzed. The use of ERTS-1 imagery to map surface water and wetland areas to provide rapid inventorying over large regions of water bodies is reported.

  14. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.

  15. Evaluating the impacts of agricultural land management practices on water resources: A probabilistic hydrologic modeling approach.

    PubMed

    Prada, A F; Chu, M L; Guzman, J A; Moriasi, D N

    2017-02-24

    Evaluating the effectiveness of agricultural land management practices in minimizing environmental impacts using models is challenged by the presence of inherent uncertainties during the model development stage. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the applicability and robustness of the model to properly represent future or alternative scenarios. The objective of this study was to develop a framework that facilitates model parameter selection while evaluating uncertainty to assess the impacts of land management practices at the watershed scale. The model framework was applied to the Lake Creek watershed located in southwestern Oklahoma, USA. A two-step probabilistic approach was implemented to parameterize the Agricultural Policy/Environmental eXtender (APEX) model using global uncertainty and sensitivity analysis to estimate the full spectrum of total monthly water yield (WYLD) and total monthly Nitrogen loads (N) in the watershed under different land management practices. Twenty-seven models were found to represent the baseline scenario in which uncertainty of up to 29% and 400% in WYLD and N, respectively, is plausible. Changing the land cover to pasture manifested the highest decrease in N to up to 30% for a full pasture coverage while changing to full winter wheat cover can increase the N up to 11%. The methodology developed in this study was able to quantify the full spectrum of system responses, the uncertainty associated with them, and the most important parameters that drive their variability. Results from this study can be used to develop strategic decisions on the risks and tradeoffs associated with different management alternatives that aim to increase productivity while also minimizing their environmental impacts.

  16. Enhancing Drought Early Warning System for Sustainable Water Resources and Agricultural Management through Apllication of Space Science - Nigeria in Perspective

    NASA Astrophysics Data System (ADS)

    Okpara, J. N.; Akeh, L. E.; Anuforom, A. C.; Aribo, P. B.; Olayanju, S. O.

    Enhancing Drought Early Warning System for Sustainable Water Resources and Agriculture Management through Application of Space Science - Nigeria in Perspective BY J N Okpara L E Akeh Anuforom P B Aribo and S O Olayanju Directorate of Applied Meteorological Services Nigerian Meteorological Agency NIMET P M B 615 Garki Abuja Nigeria e-mail underline Juddy Okpara yahoo co uk and underline tonycanuforom yahoo com underline Abstract This paper attempts to highlight the importance of drought early warning system in water resources and agricultural management in Nigeria Various studies have shown that the negative impacts of droughts and other forms of extreme weather phenomena can be substantially reduced by providing early warning on any impending weather extremes X-rayed in this study are the various techniques presently used by the Nigerian Meteorological Agency NIMET in generating information for meteorological Early Warning System EWS which are based on models that make use of ground-based raingauge data and sea surface temperatures SST Komuscu standardized precipitation index SPI inclusive These methods are often limited by such factors as network density of stations limited communication infrastructure human inefficiency etc NIMET is therefore embarking on the development of a new Satellite Agrometeorological Information System SAMIS-Nigeria for famine and drought early warning The system combines satellite data with raingauge data to give a range of

  17. Climate change, agriculture and water resources in the Southwestern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In February 2014 the USDA established regional climate hubs across the United States to assist farmers, ranchers and foresters in adapting to the effects of climate change. The Southwest (SW) region encompasses six states which provide highly diverse agricultural crops including cotton, stone fruit ...

  18. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

    NASA Astrophysics Data System (ADS)

    Lathuillière, Michael J.; Coe, Michael T.; Johnson, Mark S.

    2016-06-01

    The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green-blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

  19. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  20. 75 FR 77821 - Agricultural Water Enhancement Program and Cooperative Conservation Partnership Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...; ] DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program and Cooperative... agreements with the Natural Resources Conservation Service (NRCS) through either the Agricultural Water... Agricultural Water Enhancement Program Legislative Authority The Agricultural Water Enhancement Program...

  1. Sensor-based soil water monitoring to more effectively manage agricultural water resources in coastal plain soils

    NASA Astrophysics Data System (ADS)

    Bellamy, Christopher A.

    Cotton (Gossypium hirsutum L.) is widely grown in the United States with 5.7 million ha grown nationally and 1.2 million ha grown in the humid southeastern states in 2005. From 1969 to 2003, agricultural irrigated farmland acreage and total water applied increased by over 40% and 11% respectively to include a total of 55.3 million acres in 2002. Combined with recent and more frequent drought periods and legal water conflicts between states, there has been an increased interest in more effective southeastern water management, thus making the need to develop improved irrigation scheduling methods and enhanced water use efficiency of cotton cultivars. Several irrigation scheduling methods (soil moisture monitoring, pan evaporation, and climate based) tested at Clemson and elsewhere have shown that sensor-based irrigation significantly increased cotton yields and provided a monetary savings compared to other methods. There is however limited information on capacitance based soil moisture analysis techniques in the southeastern coastal plain soils and also limited locally developed crop coefficients used in scheduling the ET based treatments. The first objective of this study was to determine and improve the feasibility of utilizing sensor-based soil water monitoring techniques in Southeastern Coastal Plain soils to more effectively manage irrigation and increase water use efficiency of several cotton cultivars. The second objective was to develop two weighing lysimeters equipped with wireless data acquisition system to determine a crop coefficient for cotton under southeastern humid conditions. Two multi-sensor capacitance probes, AquaSpy(TM) and Sentek EnviroSCAN RTM, were calibrated in this study. It was found that positive linear calibrations can be used to describe the relationship between the soil volumetric moisture content (VMC) and sensor readings found for both probes and that multi-sensor capacitance probes can be used to accurately measure volumetric soil

  2. A coupled hydrologic and process-based crop dynamics model for studying climate change impacts on water resources and agricultural production

    NASA Astrophysics Data System (ADS)

    Chinnayakanahalli, K.; Adam, J. C.; Stöckle, C. O.; Nelson, R. L.; Barber, M. E.

    2010-12-01

    The hydrology of the Pacific Northwest (PNW), a prominent agricultural region in the U.S., is expected to be affected by climate change. Previous climate change studies in the PNW region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. The climate change-induced stress on the availability of water resources during the growing season may constrain irrigation and agricultural practices which will in turn affect crop production. In order to assess the climate change impacts on PNW agriculture, it is essential that we understand the relationships between crop dynamics and the hydrological cycle. The Variable Infiltration Capacity (VIC) hydrologic model, which solves the coupled water and energy balances of the hydrological cycle at the macro scale, has been previously used and calibrated for the PNW region. In order to improve the VIC model’s simulation of agricultural water dynamics, a crop growth sub-model based on the CropSyst cropping system model was developed and integrated into VIC. The U. S. Department of Agriculture (USDA) cropland data layer was used to identify agricultural land use patterns. For land uses identified as agricultural regions, the VIC model applies the crop sub-model to simulate biomass growth, crop yield, transpiration, and irrigation water demand. This coupled model presents opportunities for studying the impacts of climate change on irrigation water demand and agricultural production of the region. The historical period 1970 - 2000 was simulated to establish a baseline for surface water availability, irrigation demand, and biomass production in the Columbia River basin. The model will then be applied under a future (2030s) climate change scenario derived from statistically-downscaled Global Circulation Models output, in order to assess these climate change impacts. The results from this modeling approach are expected to help stakeholders

  3. Downscaled climate change impacts on agricultural water resources in Puerto Rico

    SciTech Connect

    Harmsen, E.W.; Miller, N.L.; Schlegel, N.J.; Gonzalez, J.E.

    2009-04-01

    The purpose of this study is to estimate reference evapotranspiration (ET{sub o}), rainfall deficit (rainfall - ET{sub o}) and relative crop yield reduction for a generic crop under climate change conditions for three locations in Puerto Rico: Adjuntas, Mayaguez, and Lajas. Reference evapotranspiration is estimated by the Penman-Monteith method. Rainfall and temperature data were statistically downscaled and evaluated using the DOE/NCAR PCM global circulation model projections for the B1 (low), A2 (mid-high) and A1fi (high) emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios. Relative crop yield reductions were estimated from a function dependent water stress factor, which is a function of soil moisture content. Average soil moisture content for the three locations was determined by means of a simple water balance approach. Results from the analysis indicate that the rainy season will become wetter and the dry season will become drier. The 20-year mean 1990-2010 September rainfall excess (i.e., rainfall - ET{sub o} > 0) increased for all scenarios and locations from 149.8 to 356.4 mm for 2080-2100. Similarly, the 20-year average February rainfall deficit (i.e., rainfall - ET{sub o} < 0) decreased from a -26.1 mm for 1990-2010 to -72.1 mm for the year 2080-2100. The results suggest that additional water could be saved during the wet months to offset increased irrigation requirements during the dry months. Relative crop yield reduction did not change significantly under the B1 projected emissions scenario, but increased by approximately 20% during the summer months under the A1fi emissions scenario. Components of the annual water balance for the three climate change scenarios are rainfall, evapotranspiration (adjusted for soil moisture), surface runoff, aquifer recharge and change in soil moisture storage. Under the A1fi scenario, for all locations, annual evapotranspiration decreased owing to lower soil moisture

  4. Smart ultrasonic flowmeter used for the operation support of water resource management in the agricultural areas

    NASA Astrophysics Data System (ADS)

    Elmostafa, Ziani; Mustapha, Bennouna; Boissier, Raymond

    2008-10-01

    networks. This new generation of devices is used in agricultural field (irrigation monitoring), based on transit-time principle with single-path or multi-path scheme. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  5. The Sophia-Antipolis Conference: General presentation and basic documents. [remote sensing for agriculture, forestry, water resources, and environment management in France

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.

  6. Water resources

    NASA Technical Reports Server (NTRS)

    Simons, D. B.

    1975-01-01

    Applications of remote sensing technology to analysis of watersheds, snow cover, snowmelt, water runoff, soil moisture, land use, playa lakes, flooding, and water quality are summarized. Recommendations are given for further utilization of this technology.

  7. Managing our water resources

    SciTech Connect

    Not Available

    1982-05-01

    Water is a plentiful, renewable resource if it is properly managed. The US allocates 82% of its water to agriculture, 10% to industries and utilities. American farmers are beginning to adopt water-conserving techniques long used in the world's arid regions because past profligate use and recent droughts lowered both water tables and farm productivity. Runoff and pollution are responsible for much of the waste of usable water. Because of local water shortages, there is interest in drip irrigation, setting aside more land for reservoirs, and other conservation techniques to ensure adequate supplies for industrial development and economic growth. American faith in technology has led to schemes for desalination, cloud seeding, iceberg towing, and aquifer recharging, as well as the existing system of dams. Proper management of river basins is an important step in the process. 1 figure. (DCK)

  8. Agriculture and water pollution

    NASA Astrophysics Data System (ADS)

    Page, G. William

    The attempt by certain jurisdictions to preserve a rural lifestyle by means of farmland preservation may produce some unwanted side effects, such as polluted water supplies. While there are many excellent and important reasons to preserve high-quality agricultural land for food production, efforts to retain or encourage agricultural activities in areas experiencing rapid population growth may produce some serious environmental problems.For the entire post-WW II period the United States has experienced almost continuous suburban sprawl. Many incorporated areas, experiencing rapid development, have attempted to preserve open-space and less-developed land uses by actively attempting to preserve agricultural activities. Often the most recent migrants to a growing municipality exemplify the ‘last in’ syndrome by being among the most vociferous in attempting to halt further development.

  9. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  10. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  11. Expert systems in agriculture and resource management

    SciTech Connect

    Plant, R.E.

    1993-05-01

    This paper gives a description of some representative examples of expert systems applied to problems in agriculture and biological resource management. The discussion of agricultural expert systems focuses on several decision support systems for crop management, describing the systems themselves and the implementation efforts surrounding them. The examples of the application of expert systems to biological resource management focus on the integration of expert systems with geographic information systems. A description of some of the more recent developments in agricultural expert systems, still in the prototype stage, is then given, followed by a summary discussion of possible environmental implications of the use of expert systems in agriculture and resource management. 63 refs.

  12. The Network Of Shelterbelts As An Agroforestry System Controlling The Water Resources And Biodiversity In The Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Kędziora, Andrzej

    2015-01-01

    Long-term human activity has led to many unfavourable changes in landscape structure. The main negative effect has been a simplification of landscape structure reflecting the removal of stable ecosystems, such as forests, shelterbelts, strips of meadows and so on, which were converted into unstable ecosystems, mainly farmlands. Thanks to these changes, serious threats have been posed to the sustainable development of rural areas. The most hazardous of these involve a deteriorating of water balance, increased surface and ground water pollution, and impoverishment of biodiversity. An agroforestry system can serve as a toolkit which allows counteracting such negative changes in the landscape. This paper presents the main findings emerge from long-term investigations on the above issues carried out by the Institute for the Agricultural and Forest Environment of the Polish Academy of Sciences.

  13. Global Water Resource Issues

    NASA Astrophysics Data System (ADS)

    Young, Gordon J.; Dooge, James C. I.; Rodda, John C.

    1994-07-01

    The world's water resources are coming under increasing stress, a stress that will become critical globally sometime during the next century. This is due to the rapidly rising population demanding more and more water and an increasing level of affluence. The book discusses the background to this issue and the measures to be taken over the next 20-30 years to overcome some of the difficulties that can be foreseen, and the means of avoiding others, such as the hazard of floods. It looks at the water resource and its assessment and management in an integrated fashion. It deals with the requirements of agriculture and of rural and urban societies and to a lesser extent with those of industry and power, against the background of the needs of the natural environment. It presents a number of ways and means of improving the management of national and international affairs involving fresh water. It highlights the importance of fresh water as a major issue for the environment and for development.

  14. Global Water Resource Issues

    NASA Astrophysics Data System (ADS)

    Young, Gordon J.; Dooge, James C. I.; Rodda, John C.

    2004-01-01

    The world's water resources are coming under increasing stress, a stress that will become critical globally sometime during the next century. This is due to the rapidly rising population demanding more and more water and an increasing level of affluence. The book discusses the background to this issue and the measures to be taken over the next 20-30 years to overcome some of the difficulties that can be foreseen, and the means of avoiding others, such as the hazard of floods. It looks at the water resource and its assessment and management in an integrated fashion. It deals with the requirements of agriculture and of rural and urban societies and to a lesser extent with those of industry and power, against the background of the needs of the natural environment. It presents a number of ways and means of improving the management of national and international affairs involving fresh water. It highlights the importance of fresh water as a major issue for the environment and for development.

  15. Predicting the Impacts of Climate Change on Agricultural Yields and Water Resources in the Maumee River Watershed

    NASA Astrophysics Data System (ADS)

    Nagelkirk, R. L.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2012-12-01

    Climate change will likely have considerable effects on agriculture in the Midwestern United States. Under current climate projections, end-of-century temperatures rise by approximately 4 C, while precipitation stays relatively unchanged despite a potential increase in heavy rainfall events. These trends have already been observed over the last century: rising temperatures have extended the growing season two days per decade and heavy rainfall events have become twice as common. In an effort to understand the likely effects of climate change on agriculture, maize and soybean yields in the Maumee River Watershed were simulated using the Systems Approach to Land Use Sustainability (SALUS) crop model. SALUS calculates daily crop growth in response to changing climate, soil, and management conditions. We test the hypotheses that 1) despite any positive effects of CO2 fertilization and allowing for higher yielding varieties, longer and warmer growing seasons will lead to excessive water- and heat-stress, lowering yields under current management practices, and 2) that double-cropping maize and soybeans successively in the same season to offset these losses may become feasible if sufficient late-season soil moisture is made available. Outputs of daily Leaf Area Index (LAI) and root mass from a range of SALUS models are then distributed spatially to drive regional hydrologic simulations using the Integrated Landscape Hydrology Model (ILHM). These coupled simulations demonstrate the response of streamflow and groundwater levels to different management strategies.

  16. Effects of agricultural irrigation on water resources in the St. Joseph River basin, Indiana, and implications for aquifer yield

    USGS Publications Warehouse

    Peters, J.G.; Renn, D.E.

    1988-01-01

    During the past decade, the acreage of irrigated agricultural land in Indiana has tripled, causing public concern about competition for water and resulting in several State laws for regulating water withdrawals. The St. Joseph River basin represents less than one-tenth of the area of the State, but it contains one-third of the State 's irrigated land. Irrigated land in the basin is composed of permeable soils that are underlain by productive glacial aquifers. A computer model was used to analyze the effects of maximum irrigation withdrawals on aquifer drawdown and streamflow in a 16.5 sq mi area of intensive irrigation. Simulation of maximum pumping resulted in predicted aquifer drawdowns of one-fourth of the total available drawdown. Flow in a nearby stream was decreased by 40%. Areas of most intensive irrigation in the basin also are areas that have productive aquifers and well-sustained streamflows. Aquifer yield is based on the concept of capture - the volume of increased recharge to the aquifer or decreased discharge from the aquifer that results from pumping. The high rates of capture for aquifers in the basin supply ample water for present (1982) irrigation and for substantial future development. (USGS)

  17. Save Our Water Resources.

    ERIC Educational Resources Information Center

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  18. Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).

    PubMed

    Kaur, Ravinder; Minhas, P S; Jain, P C; Singh, P; Dubey, D S

    2009-07-01

    The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with water depth) or at risk of being waterlogged (17.1% area with 2-3 m ground water depth). Local resource inventory showed prevalence of several illegal private channels in Mewat district. These private channels divert degraded canal waters into the nearby intersecting drains and thereby increase extent of surface irrigated agricultural lands in the Mewat district. Geo-spatial analysis showed that due to seepage of these degraded waters from unlined drains and canals, ground waters of about 39.6% of Mewat district were salt affected (EC(m)ean = 7.05 dS/m and SAR(m)ean = 7.71). Besides, sub-surface drinking waters of almost the entire Mewat district were contaminated with undesirable concentrations of chromium (Cr 2.0-3.23 ppm

  19. Hydrologic modeling in semi-arid agricultural region: An integrated approach to study water resources in southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, Sagarika

    Drought is one of the most severe natural hazards in the world. This research aims at assessing the limited water resources for better crop-water irrigation and conservation of a drought affected agricultural area in California. Evapotranspiration (ET) is one of the most important parameters to study crop water use for irrigation scheduling and water management. The remote sensing based ET estimation using Surface Energy Balance Algorithm for Land (SEBAL) is the efficient way to understand crop water use. Crop Water Stress Index (CWSI) quantifies plant stress under different field conditions. The remote sensing approach allows efficient irrigation by applying water when symptoms of water stress appear. To avoid water stress and poor productivity, agriculture relies heavily on surface-water diversions and groundwater extraction. The flow of percolated irrigated water and identification of potential recharge area in the field can minimize the water stress. A thorough understanding of the ET processes and reliable estimates of ET as well as precipitation are required to obtain reliable estimates for water balance. Results show that the average actual evapotranspiration (ETa) estimated from SEBAL, and Penman-Monteith (PM) was 0.67 mm/h and 0.75 mm/h respectively, with a mean percent difference of 0.109%. The analysis shows that the CWSI when greater than 0.5 resulted in maximum stress whereas the well-irrigated almond crops have CWSI less than 0.24. The flow of groundwater can indirectly influence the status of water stress and ET. It was observed that the groundwater is flowing towards the east of the study area. Excess irrigated water contributes to groundwater recharge. The average Water Surface Elevation (WSE) in 1955 for the growing season (May to July) is 161.04 m. This value is low when compared to those of 2009, 2010, and 2011, which are 237.14 m, 236.28 m, and 235.74 m respectively. The result shows that the average WSE in the wells increased. The total annual

  20. Water Resource Adaptation Program

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...

  1. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  2. Career Preparation in Agricultural Resources: A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    Householder, Larry

    This curriculum guide in agricultural resources is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes eight occupational subgroups: fish, forestry, mining area restoration, outdoor recreation, soil, range, water, and wildlife. It is…

  3. Agricultural hydrology and water quality II: Introduction to the featured collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  4. Developing Our Water Resources

    ERIC Educational Resources Information Center

    Volker, Adriaan

    1977-01-01

    Only very recently developed as a refined scientific discipline, hydrology has to cope with a complexity of problems concerning the present and future management of a vital natural resource, water. This article examines available water supplies and the problems and prospects of water resource development. (Author/MA)

  5. Irrigation Water Supply and Management in the Central High Plains: Can Agriculture Compete for a Limited Resource?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The era of expanding irrigated agriculture in the central high plains has come to an end, and we are likely entering a period of contraction. Contraction has begun in Colorado where the state estimates that current consumptive use exceeds sustainable supplies by about 10%. Groundwater pumping has ...

  6. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  7. Splash! Water Resource Education.

    ERIC Educational Resources Information Center

    Southwest Florida Water Management District, Brooksville.

    This set of activities is designed to bring water resource education into the middle school classroom using an interdisciplinary approach. The packet contains timely, localized information about the water resources of west central Florida. Each activity is aligned to middle-school Sunshine State Standards. These hands-on, minds-on activities can…

  8. Agriculture and Natural Resources Postsecondary Programs.

    ERIC Educational Resources Information Center

    Sherman, G. Allen; Pratt, Arden L.

    The science of agriculture and natural resources has undergone changes in recent years and now offers new job opportunities, using the term agribusiness to denote this expanded concept. In view of these changes, school administrators need to be aware of the educational opportunities in this area of work. This publication is intended to aid the…

  9. NASA Earth Resources Survey Symposium. Volume 1-A: Agriculture, environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers dealing with the practical application of imagery obtained from remote sensors on LANDSAT satellites, the Skylab Earth resources experiment package, and aircraft to problems in agriculture and the environment were presented. Some of the more important topics that were covered included: range management and resources, environmental monitoring and management, crop growth and inventory, land management, multispectral band scanners, forest management, mapping, marshlands, strip mining, water quality and pollution, ecology.

  10. Remote sensing applications in agriculture and forestry. Applications of aerial photography and ERTS data to agricultural, forest and water resources management

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.

  11. Managing for Phosphorus and Other Resources in Globalized Agriculture

    NASA Astrophysics Data System (ADS)

    MacDonald, G. K.; Mueller, N. D.; Bennett, E.; Brauman, K. A.; Gerber, J. S.; Metson, G. S.; West, P. C.

    2014-12-01

    Agricultural trade has an important effect on the distribution of resource use among regions. Trade is particularly important for understanding human impacts on the phosphorus (P) cycle, as mineral P reserves are geopolitically concentrated. Yet, P use is only one component of the broader agro-environmental dimensions of globalized agriculture. Understanding complex interactions among multiple components of land use and resource management in trade networks is needed. We fuse comprehensive global agricultural datasets illustrating key facets of land use and management with bilateral trade statistics to explore phosphorus-use efficiency in relation to other agro-environmental indicators. Our findings illustrate tradeoffs among phosphorus-use efficiency, nitrogen-use efficiency, crop-water productivity, and overall crop yields embodied within trade networks. Disparities in the land-use intensity of different exporting countries reflect the types of commodities produced, the degree of export-orientation, and the biophysical context of production. Phosphorus inefficiencies could compound other problems, such as water scarcity, but our findings also reveal places with relatively high efficiency across multiple indicators—offering insight on how overall resource management can be balanced for export production. Using the prevailing agricultural systems of key exporting regions as a backdrop, we highlight opportunities to leverage agricultural efficiencies embodied in global trade networks to conserve multiple resources.

  12. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite & surface observations to support improvements in agricultural water resource management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California and other regions vulnerable to water shortages, satellite-derived estimates of key hydrologic parameters can support agricultural producers and water managers in maximizing the benefits of available water supplies. The Satellite Irrigation Management Support (SIMS) project combines N...

  13. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Is an Indian agricultural resource management plan... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land...

  14. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2010-04-01 2010-04-01 false Is an Indian agricultural resource management...

  15. Virtual water trade and world water resources.

    PubMed

    Oki, T; Kanae, S

    2004-01-01

    Global virtual water trade was quantitatively estimated and evaluated. The basic idea of how to estimate unit requirement of water resources to produce each commodity is introduced and values for major agricultural and stock products are presented. The concept of virtual water and the quantitative estimates can help in assessing a more realistic water scarcity index in each country, projecting future water demand for food supply, increasing public awareness on water, and identifying the processes wasting water in the production. Really required water in exporting countries is generally smaller than virtually required water in importing countries, reflecting the comparative advantage of water use efficiency, and it is estimated to be 680 km3/y for 2000. On the contrary the virtually required water for the same year is estimated to be 1,130 km3/y, and the difference of 450 km3/y is virtually saved by global trade. However, solely virtual water should not be used for any decision making since the idea of virtual water implies only the usage and influence of water and no concerns on social, cultural, and environmental implications. Virtual water trade also does not consider other limiting factors than water.

  16. A credibility-based chance-constrained optimization model for integrated agricultural and water resources management: A case study in South Central China

    NASA Astrophysics Data System (ADS)

    Lu, Hongwei; Du, Peng; Chen, Yizhong; He, Li

    2016-06-01

    This study presents a credibility-based chance-constrained optimization model for integrated agricultural irrigation and water resources management. The model not only deals with parameter uncertainty represented as fuzzy sets, but also provides a credibility level which indicates the confidence level of the generated optimal management strategies. The model is used on a real-world case study in South Central China. Results from the case study reveal that: (1) a reduction in credibility level would result in an increasing planting area of watermelon, but impaired the planting acreage of high-quality rice and silk; (2) groundwater allocation would be prioritized for reducing surface water utilization cost; (3) the actual phosphorus and nitrogen emissions reached their limit values in most of the zones over the planning horizon (i.e., phosphorus and nitrogen emissions reaching 969 tonnes and 3814 tonnes under λ = 1.00, respectively; phosphorus and nitrogen emissions reaching 972 tonnes and 3891 tonnes under λ = 0.70, respectively). When the credibility level reduces from 1.00 to 0.70, system benefit would rise by 32.60% and groundwater consumption would be reduced by 79.51%. However, the pollutant discharge would not increase as expected, which would be reduced by 40.14% on the contrary. If system benefit is not of major concern, an aggressive strategy is suggested by selecting a rather low credibility level (say, 0.70). This strategy is suggested for guaranteeing protection of local groundwater resources and mitigation of local environmental deterioration by sacrificing part of system benefit.

  17. Water - an inexhaustible resource?

    NASA Astrophysics Data System (ADS)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  18. Education Highlights: Non-Traditional Water Resources

    ScienceCinema

    Maldonado, Nicole; MacDonell, Margaret

    2016-07-12

    Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses.

  19. Education Highlights: Non-Traditional Water Resources

    SciTech Connect

    Maldonado, Nicole; MacDonell, Margaret

    2016-01-27

    Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses.

  20. Water resources, summary

    NASA Technical Reports Server (NTRS)

    Simons, D. B.

    1975-01-01

    The application of remote sensing products to the development and understanding of water resources problems is considered. Geology and hydrogeology, analysis of watersheds, snow and ice, prediction of runoff from snowmelt, hydrologic land use classifications, soil moisture, evapotranspiration, flood hazards, and water quality surveys are among the topics discussed. Suggestions for further use of remotely sensed data are given along with increased user requirements.

  1. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  2. Preserving the Finger Lakes for the Future: A Prototype Decision Support System for Water Resource Management, Open Space, and Agricultural Protection

    NASA Technical Reports Server (NTRS)

    Brower, Robert

    2004-01-01

    This report summarizes the activity conducted under NASA Grant NAG13-02059 entitled "Preserving the Finger Lakes for the Future" A Prototype Decision Support System for Water Resources Management, Open Space and Agricultural Protection, for the period of September 26, 2003 to September 25, 2004. The RACNE continues to utilize the services of its affiliate, the Institute for the Application of Geospatial Technology at Cayuga Community College, Inc. (IAGT), for the purposes of this project under its permanent operating agreement with IAGT. IAGT is a 501(c)(3) not-for-profit Corporation created by the RACNE for the purpose of carrying out its programmatic and administrative mission. The "Preserving the Finger Lakes for the Future" project has progressed and evolved as planned, with the continuation or initiation of a number of program facets at programmatic, technical, and inter-agency levels. The project has grown, starting with the well received core concept of the Virtual Management Operations Center (VMOC), to the functional Watershed Virtual Management Operations Center (W-VMOC) prototype, to the more advanced Finger Lakes Decision Support System (FLDSS) prototype, deployed for evaluation and assessment to a wide variety of agencies and organizations in the Finger Lakes region and beyond. This suite of tools offers the advanced, compelling functionality of interactive 3D visualization interfaced with 2D mapping, all accessed via Internet or virtually any kind of distributed computer network.

  3. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Commodity Credit Corporation Agricultural Water Enhancement Program AGENCY: Commodity Credit Corporation and... Agricultural Water Enhancement Program (AWEP) by amending section 1240I of the Food ] Security Act of 1985. The... technical assistance to agricultural producers to implement agricultural water enhancement activities...

  4. Kansas environmental and resource study: A Great Plains model. [land use, image enhancement, winter wheat, agriculture, water resources, and pattern recognition

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T.; Davis, J. C. (Principal Investigator); Bosley, R. J.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1973-01-01

    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes.

  5. Climate policy implications for agricultural water demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  6. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2006-06-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28 per cent of the international virtual water flows related to the trade of agricultural products and 6 per cent of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  7. Water saving through international trade of agricultural products

    NASA Astrophysics Data System (ADS)

    Chapagain, A. K.; Hoekstra, A. Y.; Savenije, H. H. G.

    2005-11-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The paper analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been required in the importing countries if all imported agricultural products would have been produced domestically is 1605 Gm3/yr. These products are however being produced with only 1253 Gm3/yr in the exporting countries, saving global water resources by 352 Gm3/yr. This saving is 28% of the international virtual water flows related to the trade of agricultural products and 6% of the global water use in agriculture. National policy makers are however not interested in global water savings but in the status of national water resources. Egypt imports wheat and in doing so saves 3.6 Gm3/yr of its national water resources. Water use for producing export commodities can be beneficial, as for instance in Cote d'Ivoire, Ghana and Brazil, where the use of green water resources (mainly through rain-fed agriculture) for the production of stimulant crops for export has a positive economic impact on the national economy. However, export of 28 Gm3/yr of national water from Thailand related to rice export is at the cost of additional pressure on its blue water resources. Importing a product which has a relatively high ratio of green to blue virtual water content saves global blue water resources that generally have a higher opportunity cost than green water.

  8. California Water Resources Development.

    DTIC Science & Technology

    1977-01-01

    some place in California on the average of about 4 redwoods 4 water resources development by tw corps of engineers In callfornia once a year . Although...A -Al3b 691 CALIFORYNIA WATER RESOURCES DEVELOPMENTIU) ARMY ENGINEER 13 DIS TRICT LOS ANGELES CA 1977 ULASSIEIED F/G 13/2 NL r I NI 1.2 21 . 4 ...by than any other part of the United States except Alaska. glaciers many thousands of years ago . In the northern Elevations range from 282 feet below

  9. Farmland shift due to climate warming and impacts on temporal-spatial distributions of water resources in a middle-high latitude agricultural watershed

    NASA Astrophysics Data System (ADS)

    Ouyang, Wei; Gao, Xiang; Hao, Zengchao; Liu, Hongbin; Shi, Yandan; Hao, Fanghua

    2017-04-01

    Climate warming increases the active accumulated temperature (AAT) of crops and may change crop structures and patterns. Climate warming along with farmland responses has combined consequences for watershed hydrological indicators, which would be expected to exhibit different temporal-spatial patterns. In our study we investigate the combined impacts of increased temperature and shifted farmland on the hydrological features in middle-high latitude agricultural watersheds. The AAT responses in latitudinal and altitudinal directions were revealed by using an agro-climate model under different warming scenarios (△T = 0.1 °C is applied to the interval from 0.7 °C to 1.5 °C). Then, the spatial distributions of dryland shifting to paddy land were determined considering △AAT. For every 1 °C increase in average annual temperature, the boundary for planting paddy fields will shift northward by approximately 160 km and upward in the altitudinal direction by 180 m. Increasing temperature values and the new crop distributions were imported into the SWAT model, which quantified the temporal (monthly and yearly) and spatial changes of runoff and actual evapotranspiration (ET). Annual runoff decreased at a rate of 9.5 mm/°C, and annual ET increased at a rate of 7 mm/°C under climate warming combined with shifted farmlands. Combined impacts increased runoff in February, March and September, and decreased runoff from April to July. ET increased from March to July and decreased in August and September. The comparison of spatial water resource responses indicated that lower altitude and lower latitude areas experienced larger changes in runoff and ET than was the case for higher altitude and higher latitude areas.

  10. Inland water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The work is reported of the panel concerning the application of space technology to the improved management of the nation's inland resources. The progress since the 1967-68 study is briefly reviewed. The data needed for the management of inlet water ways, and the potential benefits of better management are discussed along with 16 proposed demonstration projects.

  11. Managing water resources for crop production

    PubMed Central

    Wallace, J. S.; Batchelor, C. H.

    1997-01-01

    Increasing crop production to meet the food requirements of the world's growing population will put great pressure on global water resources. Given that the vast freshwater resources that are available in the world are far from fully exploited, globally there should be sufficient water for future agricultural requirements. However, there are large areas where low water supply and high human demand may lead to regional shortages of water for future food production. In these arid and semi-arid areas, where water is a major constraint on production, improving water resource management is crucial if Malthusian disasters are to be avoided. There is considerable scope for improvement, since in both dryland and irrigated agriculture only about one-third of the available water (as rainfall, surface, or groundwater) is used to grow useful plants. This paper illustrates a range of techniques that could lead to increased crop production by improving agricultural water use efficiency. This may be achieved by increasing the total amount of water available to plants or by increasing the efficiency with which that water is used to produce biomass. Although the crash from the Malthusian precipice may ultimately be inevitable if population growth is not addressed, the time taken to reach the edge of the precipice could be lengthened by more efficient use of existing water resources.

  12. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  13. Reclaimed water as a main resource to enhance the adaptive capacity to climate change in semi-arid Mediterranean agricultural areas using Earth Observation products

    NASA Astrophysics Data System (ADS)

    Pavia Rico, Ana; Lopez-Baeza, Ernesto; Matieu, Pierre-Philippe; Hernandez Sancho, Francesc; Loarte, Edwin

    Lack of water is being a big problem in semi-arid areas to make agricultural profits. Most of Mediterranean countries like Spain, Italy, Greece or Cyprus and other countries like Morocco, the Arab United Emirates, South-American countries or China are starting to reuse wastewater as adaptation to climate change water scarcity. Drought areas are nowadays increasing, thus making fertile areas unproductive. For this reason, the European trend is to work on reusing wastewater as a solution to water scarcity in agriculture. Moreover, since population is growing fast, wastewater production is increasing as well as drinkable water demand, thus making reclaimed water as the water guarantee for irrigation and better agricultural management. This work represents a preliminary initiative to check, analyse and monitor the land by using remote sensing techniques to identify and determine the potential lands that used to be productive in the past, are now abandoned, and we want to recuperate to obtain socio-economic benefits. On top of this, this initiative will clearly enhance the adaption capacity of rural/agricultural lands to climate change. Alternatively to reclaimed water, greenhouses, desalination plants or transboarding water do not really eliminate the problem but only offer a temporary solution, make spending plenty of money and always provoking irreversible damages to the environment. The pilot area to first develop this research is the Valencia and Murcia Autonomous Communities located in the Spanish Mediterranean Coastline. An added value of this work will be to develop a methodology transferable to other potential countries with similar climatic characteristics and difficulties for irrigation, by using remote sensing methods and techniques. The remote sensing products obtained provide full information about the current state of the potential lands to grow crops. Potential areas are then being selected to carry out a socio-economic analysis leading to: (i

  14. Evaluation of Resources of Agricultural Lands Using Fuzzy Indicators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  15. Agricultural and water-quality conflicts. Economic dimensions of the problem. Agriculture information bulletin

    SciTech Connect

    Crutchfield, S.; Hansen, L.; Ribaudo, M.

    1993-07-01

    Modern farm production practices, which use agricultural chemicals, benefit consumers through lower prices and increased output. Consequences of agricultural production, however, such as soil erosion, chemical runoff and leaching, and wetlands conversion, may impair surface and ground water quality. These off-farm water-quality effects impose costs on society, including damage to fish and wildlife resources, costs of avoiding potential health hazards and preserving natural environments, and lost recreational opportunities. The report summarizes conflicts between agricultural production and water quality and discusses policies that stress the use of economic and technical assistance incentives to encourage adoption of pollution-reducing farming practices.

  16. Water resource management: an Indian perspective.

    PubMed

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  17. Estimating relative climatic change impact on groundwater of agricultural demand and recharge component in a multi-resources hydrological supply system: The case of the Fortore water supply system (South Italy)

    NASA Astrophysics Data System (ADS)

    Guyennon, Nicolas; Romano, Emanuele; Mariani, Davide; Bruna Petrangeli, Anna; Portoghese, Ivan

    2015-04-01

    The occurrence of shortage events on a water supply system can be investigated through models that simulate hydrological processes by describing the atmosphere/surface water/soil/groundwater interfaces, water demand variability and management options for different uses. However, when the supply system is fed by several water resources and dynamics changes of demand, it is necessary to develop models able to simulate the cause-effect mechanisms that involve not only the water budget physical processes, but also the choices of the users in terms of distribution of the demand among each resource and the actions implemented by the managers. The proposed overall model merges: (i) a 1 km2 discrete monthly soil water mass balance model (G-MAT) to estimate recharge to the aquifer, soil water content and surface runoff; (ii) a stochastic model based on a multi linear regression of standard precipitation index (SPI-Q) to reproduce inflow to surface water storage; (iii) a simple monthly reservoir water balance model considering inflow, demands and storage volumes; (iiii) a simple groundwater lumped budget model that considers soil recharge and well extraction following the management rules of the water supply system and the available surface water storage. While we consider the only seasonal variability for domestically and industrial water demand, the agricultural demand is estimated on the base of the monthly soil water content. The developed overall model has been implemented for the case study of the Fortore water supply system (Apulia region, South Italy), managed by the Consorzio di Bonifica della Capitanata. It allows to simulate the conjunctive use of the water from the Occhito artificial reservoir (160 Mm3) and from groundwater. We successfully reproduce the Occhito dam level variability (both seasonal and inter-annual) as well as the observed groundwater depletion until the early 2000 and the following recover. The resulting model is able to monitor relative

  18. Climate Action Benefits: Water Resources

    EPA Pesticide Factsheets

    This page provides background on the relationship between water resources and climate change and describes what the CIRA Water Resources analyses cover. It provides links to the subsectors Inland Flooding, Drought, and Supply and Demand.

  19. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  20. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  1. Water allocation for agriculture complex terrain under changing climate

    NASA Astrophysics Data System (ADS)

    Putu Santikayasa, I.; Perdinan; Basit, Rizki Abdul

    2017-01-01

    The current water resources management in Indonesia requires the government to pay more attention on sustainable water management. Agriculture as the highest water demand in the country need better water management as the impact of future changing climate. Furthermore, the water managers as well as policy makers may require integrating the climate change assessment into water resources allocation policy and management. Agropolitan in Malang district, East java – Indonesia is an agriculture which is characterized by complex agricultural system and was assigned as a case study. The supply-demand water allocation approach was applied on allocating water to different water users under current and future climatic condition. Both climate and the changing nature of water demand have affected the development and evolution of water allocation. The result shows that the water supply is expected to decrease under future climate comparing with the current condition. Furthermore, it is required to incorporate the future climate information on design the future water policy and management to reduce the adverse impact of changing climate. This study also suggested policy actions as recommendation to better manage current climate variability as well as future uncertainty from climate change impacts on water allocation and resources management.

  2. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  3. Advances in water resources technology

    NASA Astrophysics Data System (ADS)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  4. Water reclamation and intersectoral water transfer between agriculture and cities--a FAO economic wastewater study.

    PubMed

    Heinz, Ingo; Salgot, Miquel; Koo-Oshima, Sasha

    2011-01-01

    Cost-benefit studies on replacing conventional agricultural water resources with reclaimed water in favour of cities are still rare. Some results of a study under auspices of the Food and Agriculture Organisation (FAO) are presented. By means of an illustrative example at Lobregat River basin in Spain, it could be proved that reclaimed water reuse and intersectoral water transfer can result in economic and environmental benefits at the watershed level. The agricultural community faces cost savings in water pumping and fertilising, increases in yields and incomes; the municipality benefits from additional water resources released by farmers. Farmers should be encouraged to participate by implementing adequate economic incentives. Charging farmers with the full cost of water reclamation may discourage farmers from joining water exchange projects. Particularly in regions with water scarcity, investments in reclaimed water reuse and water exchange arrangements usually pay back and are profitable in the long term.

  5. Overview of advances in water management in agricultural production:Sensor based irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  6. Scientific Allocation of Water Resources.

    ERIC Educational Resources Information Center

    Buras, Nathan

    Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…

  7. Interdisciplinary Methods in Water Resources

    ERIC Educational Resources Information Center

    Cosens, Barbara; Fiedler, Fritz; Boll, Jan; Higgins, Lorie; Johnson, Gary; Kennedy, Brian; Strand, Eva; Wilson, Patrick; Laflin, Maureen

    2011-01-01

    In the face of a myriad of complex water resource issues, traditional disciplinary separation is ineffective in developing approaches to promote a sustainable water future. As part of a new graduate program in water resources, faculty at the University of Idaho have developed a course on interdisciplinary methods designed to prepare students for…

  8. Water Resources Availability in Kabul, Afghanistan

    NASA Astrophysics Data System (ADS)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  9. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  10. Linking water resources to food security through virtual water

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  11. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS... Must agricultural land be managed in accordance with a tribe's agricultural resource management plan... and objectives in any agricultural resource management plan developed by the tribe, or by us in...

  12. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  13. Water, Society and the future of water resources research (Invited)

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  14. Integrated management of water resources

    NASA Astrophysics Data System (ADS)

    Mainerici, A. M.

    2009-04-01

    Water resources occupy an important place among other natural resources, water being the most widely large resource in the world. In different quantities, it can be found everywhere and play an important role in human life and environmental balance. Importance have a great freshwater resources, because all human activities and life itself are dependent on water, it not be substituted by other resources. Water resources of Romania are made up of surface waters - rivers, lakes, the Danube - and groundwater. The main water resource of Romania is an inside rivers. A basic feature of this type of resource is a very large variability in space: - mountain area, which makes half of the total elapsed; - variability specific environmental flow (1 l/s*km2 - in low areas up to 40 l/s*km2 - in high areas). Another feature is a very pronounced variability in time, so spring is important flood production, followed by prolonged drought. The river Danube, the second largest river in Europe, with a length of 2,850 km, of which 1,075 km within the territory of our country, with an average stock entering the country of 174 mild m3/year could be the most abundant source water. The international or impose certain limitations in the use of its waters and therefore the resource is considered only half the average volume multi elapsed on the Danube. Underground water resources consist of existing water storage in aquifer layers and layers of groundwater deep sea, assessing them difficult. Potential natural water resources in Romania is 137.8 bn m3/year of the Danube 87.8 billion m3/ year , inside rivers 40 billion m3/year and groundwater 10 billion m3/year Divided by the current population of the country, give a specific resource, in natural, cca.1840 m3/citizen.year, taking into consideration only the river intake inside situated our country, from this point of view, in the category of the country with reduced resources water as the average Europe 4700 which is m3/citizen.year

  15. Water Conservation Resource List.

    ERIC Educational Resources Information Center

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  16. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  17. Agriculture and Community Development Interface. Joint Meeting of the Southern Region State Leaders for Agriculture and Natural Resources and Community Resource Development Proceedings (October 8-11, 1989, Williamsburg, Virginia).

    ERIC Educational Resources Information Center

    Warner, Paul D., Ed.; Campbell, Raymond, Ed.

    This document is a summary of remarks presented at a joint meeting of Agriculture and Natural Resources and Community Resource Development state leaders in 1989. The focus of the meeting was economic viability, rural extension and education, water quality, waste management, biotechnology, low-input sustainable agriculture (LISA), and rural…

  18. Critical Thinking for Natural Resource, Agricultural, and Environmental Ethics Education

    ERIC Educational Resources Information Center

    Quinn, Courtney; Burbach, Mark E.; Matkin, Gina S.; Flores, Kevin

    2009-01-01

    Future decision makers in natural resource fields will be required to make judgments on issues that lack clear solutions and with information complicated by ethical challenges. Therefore, natural resource, environmental, and agricultural professionals must possess the ability to think critically about the consequences of policy, economic systems,…

  19. Cooperative water resource technology transfer program

    SciTech Connect

    D'itri, F.M.

    1982-06-01

    This cooperative water resource technology transfer program sought to develop/present educational programs (conferences/seminars/workshops) and technology transfer brochures to enhance public awareness/appreciation of state water quality problems and to stress economic tradeoffs needed to resolve given problems. Accomplishments of this program for the different conferences held 1979-1981 are described (inland lake eutrophication: causes, effects, and remedies; contamination of groundwater supplies by toxic chemicals: causes, effects, and prevention; supplemental irrigation; stormwater management; cooperative research needs for renovation and reuse of municipal water in agriculture; selection and management of vegetation for slow rate and overland flow land application systems to treat municipal wastewater; effects of acid precipitation on ecological systems: Great Lakes region; water competition in Michigan; Michigan natural resources outlook.

  20. Water Resources Data, Louisiana, Water Year 2002

    USGS Publications Warehouse

    Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Labbe, Charles K.; Walters, David J.

    2003-01-01

    Water resources data for the 2002 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 85 gaging stations; stage only for 79 gaging stations and 7 lakes; water quality for 52 surface-water stations (including 40 gaging stations) and 104 wells; and water levels for 300 observation wells. Also included are data for 143 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Louisiana.

  1. Water resources data, Louisiana, water year 2003

    USGS Publications Warehouse

    Baumann, Todd; Goree, B.B.; Lovelace, W.M.; Montgomery, P.A.; Resweber, J.C.; Ross, Garron B.; Sasser, D.C.; Walters, D.J.

    2004-01-01

    Water resources data for the 2003 water year for Louisiana consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 76 gaging stations; stage only for 86 gaging stations and 7 lakes; water quality for 56 surface-water stations (including 44 gaging stations) and 142 wells; and water levels for 313 observation wells. Also included are data for 158 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not included in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal and State agencies in Louisiana.

  2. Water resources data, Colorado, water year 2004

    USGS Publications Warehouse

    Crowfoot, R.M.; Payne, W.F.; O'Neill, G. B.; Boulger, R.W.

    2005-01-01

    Water-resources data for Colorado for the 2004 water year (WY) in this report consist of records of stage and discharge of streams; and stage and contents of one reservoir. This report contains discharge records for 312 gaging stations, stage and contents of 1 lake and reservoir, discharge measurements for 1 partial-record low-flow station and 1 miscellaneous site, and peak-flow information for 22 crest-stage partial-record stations. Three pertinent stations operated by bordering states, and 34 stations operated by the Colorado Division of Water Resources are included in this report. All records (except as just noted) were collected and computed by the Water Resources Discipline of the U.S. Geological Survey under the direction of J.E. Kircher, Director, USGS Colorado Water Science Center. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating State and Federal agencies.

  3. Ground water: the hidden resource

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    Ground water is water underground in saturated zones beneath the land surface. Contrary to popular belief, ground water does not form underground "rivers." It fills the pores and fractures in underground materials such as sand, gravel, and other rock. If ground water flows from rock materials or can be removed by pumping from the saturated rock materials In useful amounts, the rock materials are called aquifers. Ground water moves slowly, typically at rates of 7 to 60 centimeters per day in an aquifer. As a result, water could remain in an aquifer for hundreds or thousands of years. Ground water is the source of about 40 percent of water used for public supplies and about 38 percent of water used for agriculture in the United States.

  4. Water resources data, Tennessee, water year 2004

    USGS Publications Warehouse

    Flohr, D.F.; Garrett, J.W.; Hamilton, J.T.; Phillips, T.D.

    2005-01-01

    Water resources data for the 2004 water year for Tennessee consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 107 gaging stations; stage only for 1 gaging station, elevation and contents for 32 lakes reservoirs; water quality at 18 gaging stations and 17 wells; and water levels for 8 observation wells; and 1 precipitation station. Also included are data for 84 crest stage partial-record stations. Additional water data were collected at various stream sites not involved in the systematic data-collection program, and are published as miscellaneous measurements and analyses. These data represent the part of the National Water Data System operated by the US Geological Survey and cooperating State and Federal agencies in Tennessee.

  5. Water Resources Data, Alaska, Water Year 2000

    USGS Publications Warehouse

    Meyer, D.F.; Hess, D.L.; Schellekens, M.F.; Smith, C.W.; Snyder, E.F.; Solin, G.L.

    2001-01-01

    Water-resources data for the 2000 water year for Alaska consists of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 106 gaging stations; stage or contents only at 4 gaging stations; water quality at 31 gaging stations; and water levels for 30 observation wells and 1 water-quality well. Also included are data for 47 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

  6. Water resources data, Indiana, water year 1991

    USGS Publications Warehouse

    Stewart, James A.; Deiwert, Clyde E.

    1992-01-01

    Water resources data for the 1991 water year for Indiana consist of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 183 stream-gaging stations, stage for 7 stream stations, stage and contents for 1 reservoir, water quality for 3 streams, and water levels for 80 lakes and 95 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal Agencies.

  7. Water resources data, Indiana, water year 1993

    USGS Publications Warehouse

    Stewart, James A.; Keeton, Charles R.; Benedict, Brian L.; Hammil, Lowell E.

    1994-01-01

    Water resources data for the 1993 water year for Indiana consist of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 175 stream-gaging station, stage for 5 stream station, 1 sediment station, stage and contents for 1 reservoir, water quality for 3 streams, and water levels for 80 lakes and 94 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  8. Water resources data, Indiana, water year 1992

    USGS Publications Warehouse

    Stewart, James A.; Keeton, Charles R.; Benedict, Brian L.; Hammil, Lowell E.

    1993-01-01

    Water resources data for the 1992 water year for Indiana consist of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 175 stream-gaging stations, stage for 7 stream stations, 1 sediment station, stage and contents for 1 reservoir, water quality for 3 streams, and water levels for 80 lakes and 94 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  9. Using Perceived Differences in Views of Agricultural Water Use to Inform Practice

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Taylor, Melissa R.; Lamm, Kevan W.

    2016-01-01

    Water use has become increasingly contentious as the population grows and water resources become scarcer. Recent media coverage of agricultural water use has brought negative attention potentially influencing public and decision makers' attitudes towards agriculture. Negative perceptions could result in uninformed decisions being made that impact…

  10. Water for the Nation: An overview of the USGS Water Resources Division

    USGS Publications Warehouse

    ,

    1998-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey (USGS) provides reliable, impartial, timely information needed to understand the Nation's water resources. WRD actively promotes the use of this information by decisionmakers to: * Minimize the loss of life and property as a result of water-related hazards such as floods, droughts, and land movement. * Effectively manage ground-water and surface-water resources for domestic, agricultural, commercial, industrial, recreational, and ecological uses. * Protect and enhance water resources for human health, aquatic health, and environmental quality. * Contribute to wise physical and economic development of the Nation's resources for the benefit of present and future generations.

  11. Water resources data, Nebraska, water year 2004

    USGS Publications Warehouse

    Hitch, D. E.; Soensken, P.J.; Sebree, S.K.; Wilson, K.E.; Walczyk, V.C.; Drudik, R.A.; Miller, J.D.; Hull, S.H.

    2005-01-01

    The Nebraska water resources data report for water year 2004 includes records of stage, discharge, and water quality of streams; water elevation and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 101 continuous and 5 crest-stage gaging stations, and 6 miscellaneous sites; stream water quality for 7 gaging stations and 40 miscellaneous sites; water elevation and/or contents for 2 lakes and 1 reservoir; ground-water levels for 74 observation wells; and ground-water quality for 200 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating Federal, State, and local agencies.

  12. Current perspectives in contaminant hydrology and water resources sustainability

    USGS Publications Warehouse

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  13. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  14. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  15. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  16. Water Resources of Rapides Parish

    USGS Publications Warehouse

    Griffith, J.M.

    2009-01-01

    Rapides Parish, located in central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 443 million gallons per day (Mgal/d) were withdrawn from water sources in Rapides Parish. About 92 percent (409 Mgal/d) was withdrawn from surface water, and 8 percent (34 Mgal/d) was withdrawn from groundwater. Withdrawals for power generation accounted for 91 percent (403 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public supply (27 Mgal/d), irrigation (9 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Rapides Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  17. Game Theory in water resources management

    NASA Astrophysics Data System (ADS)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  18. Water resources data, Utah, water year 2005

    USGS Publications Warehouse

    Wilberg, D.E.; Tibbetts, J.R.; Enright, Michael; Burden, C.B.; Smith, Cynthia; Angeroth, C.E.

    2006-01-01

    Water-resources data for the 2005 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report contains discharge records for 165 gaging stations; stage and contents for 8 lakes and reservoirs; water quality for 22 hydrologic stations, and 57 wells; water levels for 65 observation wells; and precipitation for 3 stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  19. GLOBAL CHANGE AND WATER RESOURCES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of global change on future water resources is difficult to predict because various components are likely to be affected in opposing ways. Global warming would tend to increase evapotranspiration (ET) rates and irrigation water requirements, while increasing precipitation would both dec...

  20. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  1. Water Resources of Ouachita Parish

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.; Griffith, Jason M.

    2009-01-01

    Ouachita Parish, located in north-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 152 million gallons per day (Mgal/d) were withdrawn from water sources in Ouachita Parish. About 84 percent (128 Mgal/d) was withdrawn from surface water, and 16 percent (24 Mgal/d) was withdrawn from groundwater. Power generation (87 Mgal/d) accounted for 58 percent of the total water withdrawn. Withdrawals for other uses included public supply (22 Mgal/d), industrial (24 Mgal/d), and irrigation (18 Mgal/d). This fact sheet summarizes basic information on the water resources of Ouachita Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports.

  2. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  3. World Water Resources Assessment for 2050

    NASA Astrophysics Data System (ADS)

    Oki, T.; Agata, Y.; Kanae, S.; Musiake, K.; Saruhashi, T.

    2003-04-01

    nticipated water scarcity in the first half of this century is one of the most concerned international issues to be assessed adequately. However, even though the issue has an international impact and world wide monitoring is critical, there are limited number of global estimates at present. In this study, annual water availability was derived from annual runoff estimated by land surface models using Total Runoff Integrating Pathways (TRIP) with 0.5 degree by 0.5 degree longitude/latitude resolution globally. Global distribution of water withdrawal for each sector in the same horizontal spatial resolution was estimated based on country-base statistics of municipal water use, industrial water use, and agricultural intake, using global geographical information system with global distributions of population and irrigated crop land area. The total population under water stress estimated for 1995 corresponded very well with former estimates, however, the number is highly depend on how to assume the ratio how much water from upstream of the region can be considered as ``available'' water resources within the region. It suggests the importance of regional studies evaluating the the water quality deterioration in the upper stream, the real consumption of water resources in the upper stream, and the accessibility to water. The last factor should be closely related to how many large scale water withdrawal schemes are implemented in the region. Further studies by an integrated approach to improve the accuracy of future projections on both the natural and social sides of the water resources should be promoted. About the future projection of the global water resources assessment, population growth, climatic change, and the increase of water consumption per capita are considered. Population growth scenario follows the UN projection in each country. Change in annual runoff was estimated based on the climatic simulation by a general circulation model by the Center of Climate System

  4. Water resources data, Indiana, water year 2001

    USGS Publications Warehouse

    Stewart, James A.; Keeton, Charles R.; Hammil, Lowell E.; Nguyen, Hieu T.; Majors, Deborah K.

    2002-01-01

    Water resources data for the 2001 water year for Indiana consists of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 163 stream-gaging stations, stage for 8 stream stations, stage and contents for 1 reservoir, water quality for 1 stream, water temperature at 11 sites, sediment analysis for 1 stream, water levels for 78 lakes and 88 observation wells. Also included are records of miscellaneous discharge measurements, miscellaneous levels and miscellaneous water-quality, not part of the systematic data-collection program. Data contained in this report represent that part of the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  5. Policy Sciences in Water Resources Research

    NASA Astrophysics Data System (ADS)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  6. Agricultural Adaptation and Water Management in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Stone, E.; Hornberger, G. M.

    2014-12-01

    Efficient management of freshwater resources is critical as concerns with water security increase due to changes in climate, population, and land use. Effective water management in agricultural systems is especially important for irrigation and water quality. This research explores the implications of tradeoffs between maximization of crop yield and minimization of nitrogen loss to the environment, primarily to surface water and groundwater, in rice production in Sri Lanka. We run the DeNitrification-DeComposition (DNDC) model under Sri Lankan climate and soil conditions. The model serves as a tool to simulate crop management scenarios with different irrigation and fertilizer practices in two climate regions of the country. Our investigation uses DNDC to compare rice yields, greenhouse gas (GHG) emissions, and nitrogen leaching under different cultivation scenarios. The results will inform best practices for farmers and decision makers in Sri Lanka on the management of water resources and crops.

  7. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    NASA Astrophysics Data System (ADS)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  8. Research on evaluating water resource resilience based on projection pursuit classification model

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  9. Water resources data, Indiana, water year 2000

    USGS Publications Warehouse

    Stewart, James A.; Keeton, Charles R.; Hammil, Lowell E.; Nguyen, Hieu T.; Majors, Deborah K.

    2001-01-01

    Water resource data for the 2000 water year for Indiana consists of records of discharge, stage, and water quality of streams and wells; reservoir stage and contents; and water levels in lakes and wells. This report contains records of discharge for 166 stream-gaging stations, stage for 7 stream stations, stage and contents for 1 reservoir, water quality for 2 streams, sediment analysis for 1 stream, water levels for 79 lakes and 89 observation wells. Also included are records of miscellaneous discharge measurements, miscellaneous levels and miscellaneous water-quality, not part of the systematic data-collection program. Data contained in this report represent that part of the the National Water Data System operated by the U.S. Geological Survey in Indiana in cooperation with State and Federal agencies.

  10. Water resources of Catahoula Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Catahoula Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, 30.01 million gallons per day (Mgal/d) of water were withdrawn in Catahoula Parish, Louisiana, including about 22.63 Mgal/d from groundwater sources and 7.38 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of aquaculture, general irrigation, livestock, and rice irrigation, accounted for about 93 percent (28.05 Mgal/d) of the total water withdrawn. Other categories of use included public supply and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2000 at 30.99 Mgal/d.

  11. Water resources of Concordia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Concordia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, over 50 million gallons per day (Mgal/d) of water were withdrawn in Concordia Parish, including about 28.7 Mgal/d from groundwater sources and 22.3 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of livestock, rice irrigation, general irrigation, and aquaculture accounted for about 77 percent (39.2 Mgal/d) of the total water withdrawn. Other categories of use included public supply, power generation, and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2010.

  12. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  13. Agriculture/Natural Resources Environmental Technician Task List. Occupational Analysis.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.

    This publication contains a worker task list and supplementary information for occupations in the agriculture and natural resources cluster of occupations. The task list were generated through the DACUM (Developing a Curriculum) process and/or by analysis by a panel of experts. Tasks are listed in 10 categories: (1) performing investigative…

  14. Agriculture

    EPA Pesticide Factsheets

    The EPA Agriculture Resource Directory offers comprehensive, easy-to-understand information about environmental stewardship on farms and ranches; commonsense, flexible approaches that are both environmentally protective and agriculturally sound.

  15. Agricultural Resources Materials for Agricultural Education Programs. Core Agricultural Education Curriculum, Central Cluster.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Office of Agricultural Communications and Education.

    This curriculum guide contains four units with relevant problem areas and is intended as a source unit for agricultural education. These problem areas have been selected as suggested areas of study to be included in a core curriculum for secondary students enrolled in an agricultural education program. Each problem area includes some or all of the…

  16. Water resources of Vernon Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, about 6.67 million gallons per day (Mgal/d) of water were withdrawn in Vernon Parish, Louisiana, including about 6.46 Mgal/d from groundwater sources and 0.21 Mgal/d from surface-water sources. Public-supply use accounted for about 76 percent (5.06 Mgal/d) of the total water withdrawn. Other categories of use included rural domestic, livestock, general irrigation, and aquaculture. Based on water-use data collected at 5-year intervals from 1960 to 2005, water withdrawals in the parish peaked in 1990 at about 10.4 Mgal/d. This fact sheet summarizes basic information on the water resources of Vernon Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  17. Water resources of Bossier Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.

    2011-01-01

    In 2005, about 15.8 million gallons per day (Mgal/d) of water were withdrawn in Bossier Parish, Louisiana, including 4.12 Mgal/d from groundwater sources and about 11.7 Mgal/d from surface-water sources. Public-supply use accounted for about 78 percent (12.4 Mgal/d) of the total water withdrawn. Other categories of use included industry, rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Based on water-use data collected at 5-year intervals from 1960 to 2005, water withdrawals in the parish increased from 4.96 to 15.8 Mgal/d. This fact sheet summarizes basic information on the water resources of Bossier Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  18. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  19. Higher Resolution for Water Resources Studies

    NASA Astrophysics Data System (ADS)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  20. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  1. Water Resources of Ascension Parish

    USGS Publications Warehouse

    Griffith, J.M.; Fendick, R.B.

    2009-01-01

    Ascension Parish, located along the banks of the Mississippi River in south-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 202 million gallons per day (Mgal/d) were withdrawn from water sources in Ascension Parish. About 94 percent (190 Mgal/d) was withdrawn from surface water, and 6 percent (12 Mgal/d) was withdrawn from groundwater. Additional water is supplied to Ascension Parish for public-supply use from East Baton Rouge Parish. Withdrawals for industrial use accounted for 95 percent (192 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public-supply (4 Mgal/d), rural-domestic (3 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Ascension Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  2. Water Resource Uses and Recreational Activities in Rural Nigeria.

    ERIC Educational Resources Information Center

    Adekoya, Adebola

    1991-01-01

    This study surveys rural Nigerian residents concerning local water resource uses and tourists' recreational activities with respect to scales of awareness, understanding, and incentive. Results indicate a public willingness to encourage and finance the rural development of water bodies for agricultural purposes exclusive of investment for tourism…

  3. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  4. Water Resources Research supports water economics submissions

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  5. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  6. Sustainability assessment of regional water resources under the DPSIR framework

    NASA Astrophysics Data System (ADS)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as "Jevons paradox" At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  7. Water Resources of Lafayette Parish

    USGS Publications Warehouse

    Fendick, Robert B.; Griffith, Jason M.; Prakken, Lawrence B.

    2011-01-01

    Fresh groundwater and surface water resources are available in Lafayette Parish, which is located in south-central Louisiana. In 2005, more than 47 million gallons per day (Mgal/d) were withdrawn from water sources in Lafayette Parish. About 92 percent (43.7 Mgal/d) of withdrawals was groundwater, and 8 percent (3.6 Mgal/d) was surface water. Public-supply withdrawals accounted for nearly 49 percent (23 Mgal/d) of the total groundwater use, with the cities of Lafayette and Carencro using about 21 Mgal/d. Withdrawals for other uses included about 10.4 Mgal/d for rice irrigation and about 8.4 Mgal/d for aquaculture. Water withdrawals in Lafayette Parish increased from 33 Mgal/d in 1995 to about 47 Mgal/d in 2005. This fact sheet summarizes information on the water resources of Lafayette Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  8. Water resources of Webster Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.

    2011-01-01

    In 2005, about 9.52 million gallons per day (Mgal/d) of water were withdrawn in Webster Parish, Louisiana (fig. 1), including about 9.33 Mgal/d from groundwater sources and 0.19 Mgal/d from surface-water sources1 (table 1). Publicsupply use accounted for about 70 percent of the total water withdrawn. Other categories of use included industrial, rural domestic, livestock, general irrigation, and aquaculture (table 2). Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in Webster Parish decreased substantially from 1970 to 1980; surface-water withdrawals for industrial use decreased from about 37 to 0 Mgal/d because of a paper mill closure in 1979. From 1980 to 2000, total water withdrawals in the parish ranged from 7 to 8 Mgal/d (fig. 2). This fact sheet summarizes basic information on the water resources of Webster Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  9. Water Resources of Caddo Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.

    2011-01-01

    In 2005, about 72.9 million gallons per day (Mgal/d) of water were withdrawn in Caddo Parish, Louisiana, including about 7.70 Mgal/d from groundwater sources and 65.2 Mgal/d from surface-water sources. Public-supply use accounted for about 71 percent, and power generation accounted for about 19 percent of the total water withdrawn. Other categories of use included general irrigation, rural domestic, aquaculture, livestock, and industrial. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish peaked in 1965 and generally decreased afterwards, primarily because of reduced surface-water withdrawals for power generation. From 1965 to 2005, surface-water withdrawals for power generation declined from 419 to 14.2 Mgal/d. This fact sheet summarizes basic information on the water resources of Caddo Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  10. Water Resources Division training catalog

    USGS Publications Warehouse

    Hotchkiss, W.R.; Foxhoven, L.A.

    1984-01-01

    The National Training Center provides technical and management sessions nesessary for the conductance of the U.S. Geological Survey 's training programs. This catalog describes the facilities and staff at the Lakewood Training Center and describes Water Resources Division training courses available through the center. In addition, the catalog describes the procedures for gaining admission, formulas for calculating fees, and discussion of course evaluations. (USGS)

  11. Water resources of Allen Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, approximately 29.2 million gallons per day (Mgal/d) of water were withdrawn in Allen Parish, Louisiana, including about 26.8 Mgal/d from groundwater sources and 2.45 Mgal/d from surface-water sources. Rice irrigation accounted for 74 percent (21.7 Mgal/d) of the total water withdrawn. Other categories of use included public supply, industrial, rural domestic, livestock, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish were greatest in 1960 (119 Mgal/d) and 1980 (98.7 Mgal/d). The substantial decrease in surface-water use between 1960 and 1965 is primarily attributable to rice-irrigation withdrawals declining from 61.2 to 6.74 Mgal/d. This fact sheet summarizes information on the water resources of Allen Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  12. Water resources data, Kentucky. Water year 1991

    SciTech Connect

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  13. Water and energy conservation modeling in Pacific Northwest irrigated agriculture

    SciTech Connect

    Houston, J.E. Jr.

    1984-01-01

    Irrigated agriculture and electrical energy supply in the Pacific Northwest are intricately bound by mutual dependence on Columbia River Basin water. Diversion and instream demands on the water have intensified through recent development in the region. Water conservation opportunities exist in present irrigation that could supplement regional firm hydroelectricity. A two-level mathematical programming model is developed to evaluate irrigator production and regional price responses to water and electricity conservation policies. Stage one emphasizes decision criteria at producer level - irrigable land, water, electricity and labor demand, and water response yields on major crops. Irrigators choose cropping and irrigation mixes and rates at expected commodity prices under resource constraints consistent with regional policy. Stage two employs production and resource use solutions from stage one in a regional allocation and price equilibrium-seeking program. Alfalfa, apple, and potato prices are determined endogenously, and a decomposition-type linkage reiterates production area response to regional equilibrium prices. Baseline irrigated acreage, water electricity, production, and crop prices are estimated for 1982. Water pricing policies reflecting the opportunity value of Columbia River water for hydrogeneration indicate increasing net social benefits, net farm returns, and hydropower potential accruing from conservation in irrigation.

  14. Water Resources Research Catalog, Volume 4.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. Science Information Exchange.

    Described are 4501 projects in progress during 1968 under the general headings: Nature of Water; Water Cycle; Water Supply Augmentation and Conservation; Water Quality Management and Control; Water Quality Management and Protection; Water Resources Planning; Resource Data; Engineering Works; and Manpower, Grants and Facilities. Each description…

  15. Problem area 1 effective water management in agriculture-Product area accomplishments-FY 11 - FY14

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Agricultural Research Service National Program 211 is composed of four components or problem areas. Problem Area 1, Effective Water Management in Agriculture, focuses on six areas of research that are crucial to safe and effective use of all water resources for agricultural production: 1) I...

  16. Water Resources of Beauregard Parish

    USGS Publications Warehouse

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, about 30.6 million gallons per day (Mgal/d) of water was withdrawn in Beauregard Parish, Louisiana, including about 30.4 Mgal/d from groundwater sources and 0.1 Mgal/d from surface water sources. Industrial use, primarily for wood products, accounted for about 72 percent (22.0 Mgal/d) of the total water withdrawn. Other categories of use included public supply, rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish peaked at about 43.5 Mgal/d in 1985. The large increase in groundwater usage from 1970 to 1975 was primarily due to industrial withdrawals, which increased from 3.64 Mgl/d in 1970 to 29.0 Mgal/d in 1975. This fact sheet summarizes information on the water resources of Beauregard Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  17. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  18. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  19. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  20. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  1. Agricultural Virtual Water Flows in the USA

    NASA Astrophysics Data System (ADS)

    Konar, M.; Dang, Q.; Lin, X.

    2014-12-01

    Global virtual water trade is an important research topic that has yielded several interesting insights. In this paper, we present a comprehensive assessment of virtual water flows within the USA, a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intra-national food flow data and it provides insight into how the properties of virtual water flows vary across scales. We find that both the value and volume of food flows within the USA are roughly equivalent to half that of international flows. However, USA food flows are more water intensive than international food trade, due to the higher fraction of water-intensive meat trade within the USA. The USA virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  2. Water resources. [mapping and management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    Substantial progress has been made in applying ERTS-1 data to water resources problems, nevertheless, more time and effort still appear necessary for further quantification of results, including the specification of thematic measurement accuracies. More modeling can be done very profitably. In particular, more strategy models describing the processes wherein ERTS-1 data would be acquired, analyzed, processed, and utilized in operational situations could be profitably accomplished. It is generally observed that the ERTS-1 data applicability is evident in several areas and that the next most general and substantive steps in the implementation of the data in operational situations would be greatly encouraged by the establishment of an operational earth resources satellite organization and capability. Further encouragement of this operational capability would be facilitated by all investigators striving to document their procedures as fully as possible and by providing time and cost comparisons between ERTS-1 and conventional acquisition approaches.

  3. Water resources transfers through Chinese interprovincial and foreign food trade

    PubMed Central

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2014-01-01

    China’s water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability—with abundant agricultural land and little water resources in the north—increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities’ virtual water content to build China’s domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China’s domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China’s soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km3/y irrigation water savings, 41 km3/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements. PMID:24958864

  4. Water resources transfers through Chinese interprovincial and foreign food trade.

    PubMed

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  5. Water resources assessment and prediction in China

    NASA Astrophysics Data System (ADS)

    Wang, Guangsheng; Dai, Ning; Yang, Jianqing; Wang, Jinxing

    2016-10-01

    Water resources assessment in China, can be classified into three groups: (i) comprehensive water resources assessment, (ii) annual water resources assessment, and (iii) industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP) has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  6. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  7. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    ERIC Educational Resources Information Center

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  8. NASA Earth Resources Survey Symposium. Volume 1-D: Water resources

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Conference papers on water resources and management are summarized. Summaries cover land use, flood control and prediction, watersheds and the effects of snow melt, soil moisture content, and the usefulness of satellite remote sensors in detecting ground and surface water.

  9. Agricultural virtual water flows within the United States

    NASA Astrophysics Data System (ADS)

    Dang, Qian; Lin, Xiaowen; Konar, Megan

    2015-02-01

    Trade plays an increasingly important role in the global food system, which is projected to be strained by population growth, economic development, and climate change. For this reason, there has been a surge of interest in the water resources embodied in international trade, referred to as "global virtual water trade." In this paper, we present a comprehensive assessment of virtual water flows within the United States (U.S.), a country with global importance as a major agricultural producer and trade power. This is the first study of domestic virtual water flows based upon intranational food transfer empirical data and it provides insight into how the properties of virtual water transfers vary across scales. We find that the volume of virtual water flows within the U.S. is equivalent to 51% of international flows, which is slightly higher than the U.S. food value and mass shares, due to the fact that water-intensive meat commodities comprise a much larger fraction of food transfers within the U.S.. The U.S. virtual water flow network is more social, homogeneous, and equitable than the global virtual water trade network, although it is still not perfectly equitable. Importantly, a core group of U.S. States is central to the network structure, indicating that both domestic and international trade may be vulnerable to disruptive climate or economic shocks in these U.S. States.

  10. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by... resources; (2) Identify specific tribal agricultural resource goals and objectives; (3) Establish management... resource management objectives; and (5) Identify actions to be taken to reach established objectives....

  11. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  12. Water resources transfers through southern African food trade: water efficiency and climate signals

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Conway, D.

    2015-12-01

    Temporal and spatial variability of precipitation in Southern Africa is particularly high. The associated drought and flood risks, combined with a largely rainfed agriculture, pose a challenge for water and food security in this region. It is thus important to understand both how climate variability affects agricultural productivity and how intra- and extra-regional trade can contribute to the region's capacity to deal with climate-related shocks. We combine international food trade data and a global hydrological model to quantify the water resources embedded in international food trade in southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic, political and climatic changes on agricultural trade and embedded water resources during that period. We find that regional food trade is efficient in terms of water resources but may be unsustainable because water-productive exporters, like South Africa, rely on increasingly scarce water resources. The role of imports from the rest of the world in the region's food supply is important, in particular during severe droughts. This reflects how trade can efficiently redistribute water resources across continents in response to a sudden gap in food production and water productivity. As regional collaboration strengthens through the Southern Africa Development Community (SADC) and trade with other regions increases, our results point out opportunities for improved water-efficiency and sustainability of the region's food production via trade.

  13. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  14. Water withdrawal and use in Maryland, 1988-89. Water resources investigation

    SciTech Connect

    Wheeler, J.C.

    1993-01-01

    The report summarizes the results of a study by the U.S. Geological Survey, in cooperation with the Maryland Geological Survey, to estimate amounts of fresh and saline water withdrawn and used in Maryland during 1988-89. Ten water-use categories represent the major demands on the surface-water and ground-water resources of the State during 1988-89: Public supply, domestic, commercial, industrial, mining, thermoelectric power generation, hydroelectric power generation, agriculture (nonirrigation), irrigation, and aquaculture.

  15. Development and application of fuzzy indicator for assessment of agricultural land resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With ever increasing demands on agriculture, it is essential that we be able to adequately evaluate agriculture land resources. Recently, efforts have been undertaken to develop methods and tools for the purpose of evaluating agricultural land resources. However, to be successful, assessments need...

  16. Agriculture in the Mississippi River Basin; effects on water quality, aquatic biota, and watershed conservation.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture has been identified as a potential leading source of nutrients (nitrogen and phosphorus) and sediment enrichment of water bodies within the Mississippi River basin (MRB) and contributes to impaired water quality and biological resources in the MRB and the northern Gulf of Mexico (GOM). T...

  17. Citizens' preferences for the conservation of agricultural genetic resources.

    PubMed

    Pouta, Eija; Tienhaara, Annika; Ahtiainen, Heini

    2014-01-01

    Evaluation of conservation policies for agricultural genetic resources (AgGR) requires information on the use and non-use values of plant varieties and animal breeds, as well as on the preferences for in situ and ex situ conservation. We conducted a choice experiment to estimate citizens' willingness to pay (WTP) for AgGR conservation programmes in Finland, and used a latent class model to identify heterogeneity in preferences among respondent groups. The findings indicate that citizens have a high interest in the conservation of native breeds and varieties, but also reveal the presence of preference heterogeneity. Five respondent groups could be identified based on latent class modeling: one implying lexicographic preferences, two with reasoned choices, one indicating uncertain support and one with a preference for the current status of conservation. The results emphasize the importance of in situ conservation of native cattle breeds and plant varieties in developing conservation policies.

  18. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  19. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Is an Indian agricultural resource management plan... resource management plan required? (a) Yes, Navajo Partitioned Lands must be managed in accordance with the goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or...

  20. International cooperation in water resources

    USGS Publications Warehouse

    Jones, J.R.; Beall, R.M.; Giusti, E.V.

    1979-01-01

    bewildering variety of organizations, there certainly exists, for any nation, group, or individual, a demonstrated mechanism for almost any conceivable form of international cooperation in hydrology and water resources. ?? 1979 Akademische Verlagsgesellschaft.

  1. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  2. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer.

    PubMed

    Smidt, Samuel J; Haacker, Erin M K; Kendall, Anthony D; Deines, Jillian M; Pei, Lisi; Cotterman, Kayla A; Li, Haoyang; Liu, Xiao; Basso, Bruno; Hyndman, David W

    2016-10-01

    In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic water use drivers must be fully understood to successfully manage water supplies on extended timescales. This is particularly evident across large portions of the High Plains Aquifer where groundwater levels have declined at unsustainable rates despite improvements in both the efficiency of water use and water productivity in agricultural practices. Improved technology and land use practices have not mitigated groundwater level declines, thus water management strategies must adapt accordingly or risk further resource loss. In this study, we analyze the water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major drivers that have shaped the history, and will direct the future, of water use in modern agriculture. Based on this analysis, we conclude that future water management strategies can benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with strategic objectives, (2) management of water as both an input into the water-energy-food nexus and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives within long-term goals, (4) innovative strategies that fit within restrictive political frameworks, (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire to conserve valuable water resources. This research sets the foundation to address water management as a function of complex decision-making trends linked to the water-energy-food nexus. Water management strategy recommendations are made based on the objective of balancing farmer profit and conserving water resources to ensure future agricultural production.

  3. Water resources transfers through southern African food trade: water efficiency and climate signals

    NASA Astrophysics Data System (ADS)

    Dalin, Carole; Conway, Declan

    2016-01-01

    Temporal and spatial variability of precipitation in southern Africa is particularly high. The associated drought and flood risks, combined with a largely rain-fed agriculture, pose a challenge for water and food security in the region. As regional collaboration strengthens through the Southern Africa Development Community and trade with other regions increases, it is thus important to understand both how climate variability affects agricultural productivity and how food trade (regional and extra-regional) can contribute to the region's capacity to deal with climate-related shocks. We combine global hydrological model simulations with international food trade data to quantify the water resources embedded in international food trade in southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic changes and climatic variability on agricultural trade and embedded water resources during this period. We find that regional food trade is efficient in terms of water use but may be unsustainable because water-productive exporters, like South Africa, rely on increasingly stressed water resources. The role of imports from the rest of the world in the region's food supply is important, in particular during severe droughts. This reflects how trade can efficiently redistribute water resources across continents in response to a sudden gap in food production. In a context of regional and global integration, our results highlight opportunities for improved water-efficiency and sustainability of the region's food supply via trade.

  4. Water resources of the Southeast Lowlands, Missouri

    USGS Publications Warehouse

    Luckey, R.R.; Fuller, D.L.

    1985-01-01

    The Southeast Lowlands of Missouri occupies 4,000 square miles of prime agricultural land of the Coastal Plain in the extreme southeastern corner of Missouri. Even though this area receives about 4 feet of rainfall per year, there is a rapidly increasing demand for water for irrigation. The purpose of this study was to evaluate the water resources of this area with particular emphasis on the extent of irrigation and the potential of the groundwater system to support further irrigation development. The area is underlain by consolidated aquifers of Paleozoic age and unconsolidated aquifers of Mesozoic and Cenozoic age. The consolidated aquifers, although possessing the potential to yield large quantities of water, generally are not used throughout much of the area because they lie at considerable death and alternate supplies are readily available. The McNairy aquifer, which underlies about three-fourths of the area, ranges from 0 to 600 feet in thickness with the top lying from 0 to more than 2,200 feet below land surface. This system is attractive as a municipal water supply because of its large artesian head and the small iron and hardness concentrations of the water. Although this system is now used exclusively for municipal water supplies, the McNairy may become more important in the future as a heat source. The Wilcox Group (undivided), which underlies more than one-half of the area and almost always lies less than 300 feet below land surface, is as much as 1,400 feet thick. However, usually only the basal 250 to 500 feet of this group is used as an aquifer. This system, which in some areas is capable of yielding as much as 1,500 gallons per minute to properly constructed wells, is now primarily used for municipal supplies. The alluvial aquifer underlies most of the area and is locally capable of yielding more than 3,000 gallons per minute. This aquifer generally is 100 to 200 feet thick, but in several places more than 250 feet of alluvium has been reported

  5. Water resources of St. Tammany Parish, Louisiana

    USGS Publications Warehouse

    Griffith, Jason M.

    2009-01-01

    This fact sheet summarizes basic information on the water resources of St. Tammany Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  6. Global Hydrological Cycles and World Water Resources

    NASA Astrophysics Data System (ADS)

    Oki, Taikan; Kanae, Shinjiro

    2006-08-01

    Water is a naturally circulating resource that is constantly recharged. Therefore, even though the stocks of water in natural and artificial reservoirs are helpful to increase the available water resources for human society, the flow of water should be the main focus in water resources assessments. The climate system puts an upper limit on the circulation rate of available renewable freshwater resources (RFWR). Although current global withdrawals are well below the upper limit, more than two billion people live in highly water-stressed areas because of the uneven distribution of RFWR in time and space. Climate change is expected to accelerate water cycles and thereby increase the available RFWR. This would slow down the increase of people living under water stress; however, changes in seasonal patterns and increasing probability of extreme events may offset this effect. Reducing current vulnerability will be the first step to prepare for such anticipated changes.

  7. Responding to National Water Resources Challenges

    DTIC Science & Technology

    2010-08-01

    develop communication materials that highlight good case examples of IWRM, and strategically communicate about them to diverse audiences. HOLISTIC...swimmable, and drinkable water resources. The Safe Drinking Water Act seeks reliable, safe drinking water across the Nation. In stating his intent...transported and protected by safe and ade- quate water resources infrastructure must be available to all persons and all other existing life forms in

  8. Integrated water resources management: Concepts and issues

    NASA Astrophysics Data System (ADS)

    Savenije, H. H. G.; Van der Zaag, P.

    After the describing the historical developments that led the development of Integrated Water Resources Management (IWRM), the paper defines this important concept. It subsequently deals with the thorny issue of water security as well as water conflict, after which the major issues over which thus far no consensus has been achieved are briefly reviewed. The paper concludes with an analysis of the role of the IAHS International Commission on Water Resources Systems (ICWRS) in promoting IWRM.

  9. Virtual water flows related to land use in an intensive agriculture in the Fergana Valley, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Klipstein, A.; Schneider, K.; Breuer, L.; Frede, H. G.

    2009-04-01

    Due to low annual precipitation, agricultural production in Uzbekistan is depending on irrigation from the Syrdarya and Amudarya rivers to a great deal. One of the most important cash crops of the country is cotton. Current irrigation management leads to elevated groundwater levels, salinization of soils and to a degradation of soil and water resources. Through export of cotton and other crops, the problems related to water consumption and water management are transported beyond the producing country. The amount of water transported through production and export is referred to as virtual water. To distinguish between productive and unproductive partitioning of water flows, the terms green and blue water have been introduced. Information on virtual water flows due to crop production usually only exist on country level. To reduce uncertainties related to generalization, the effect of land management and environmental factors on the partitioning of water flows needs to be studied on smaller scales. The presented study analyzes water fluxes in an intensively used agricultural area in the Fergana Valley, Uzbekistan. The study aims to a) quantify crop specific water consumption in agricultural production under current management and b) analyze water use efficiency as subject to land use and irrigation management. Based on crop production, irrigation management and environmental conditions in the study area, virtual water flows will be calculated on the level of agricultural collectives (Water Users Associations). In a further step, the partitioning of green and blue water fluxes will be quantified. Alternative scenarios for improved water management will be analyzed in a model study.

  10. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  11. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  12. Managing Water Resource Challenges in the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  13. Color photographs for water resources studies

    USGS Publications Warehouse

    Schneider, William J.

    1968-01-01

    Air-photo interpretation is very well suited to water resources studies where limited observations of hydrologic data must be extended to regional characteristics for large areas. It is also useful in monitoring the hydrologic regimen of an area to detect possible changes. Color aerial photography is generally superior to black-and-white photography for these water resources investigations. Depth penetration through water, and excellent discrimination of water indicators, such as vegetation, are its -main assets. Meaningful interpretation of the photography depends on adequate ground control data. Experiences of the Water Resources Division, U. S. Geological Survey, indicate that the best interpretation is done by professional personnel-engineers, geologists, and water chemists intimately associated with a particular water resources project for which the photography has been obtained.

  14. Research on Texas Water and Recreation Resources.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Texas Agricultural Experiment Station.

    The need for research pertaining to the best use of water and recreation resources in Texas is emphasized in these four papers presented at the 1968 Experiment Station Conference, College Station, Texas. "Parameters of Water Resources in Texas" identifies and elaborates upon the important elements presently constituting the water…

  15. Water resources data, Arizona, water year 2002

    USGS Publications Warehouse

    McCormack, H.F.; Fisk, G.G.; Duet, N.R.; Evans, D.W.; Roberts, W.P.; Castillo, N.K.

    2003-01-01

    The Arizona District water data report includes records on both surface water and ground water in the State for water year 2002. Specifically, it contains: (1) discharge records for 201 streamflow-gaging stations, for 29 crest-stage, partial-record streamflow stations, and 48 miscellaneous sites; (2) stage and (or) content only records for 10 lakes and reservoirs; (3) water-quality records for 21 streamflow-gaging stations and 65 wells; and (4) water levels for 18 wells.

  16. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  17. Water resources data, Arizona, water year 2004

    USGS Publications Warehouse

    Fisk, G.G.; Duet, N.R.; McGuire, E.H.; Angeroth, C.E.; Castillo, N.K.; Smith, C.F.

    2005-01-01

    The USGS Arizona Water Science Center water data report includes records on both surface water and ground water in the State for water year 2004. Specifically, it contains: (1) Discharge records for 206 streamflow-gaging stations and 21 crest-stage, partial-record streamflow stations; (2) stage and (or) content records for 8 lakes and reservoirs; (3) water-quality records for 20 streamflow-gaging stations; (4) ground-water levels and compaction values for 14 stations; and (5) water levels for 18 wells.

  18. Knowledge Assessment on Sustainable Water Resources Management for Irrigation - KASWARMI

    NASA Astrophysics Data System (ADS)

    Bardowicks, K.; Billib, M.; Holzapfel, E.; Lorite, I.; Farkas, I.; Fernández Cirelli, A.; Del Callejo, I.; Paz, V.; Montaña, E.; Gheyi, H.

    2009-04-01

    The EU funded KASWARMI project was performed from March 2007 until August 2008 by focusing on society key issues to contribute to a better use and management of the water resources in arid and semi-arid ecosystems. In that way, the project has aimed to deliver fundamentals for future research activities to improve the sustainability of irrigated agriculture in Latin America. The world's food production depends on the availability of water, a precious but limited resource. Irrigated agriculture is responsible for approximately 70 percent of all the freshwater withdrawn in the world and more water will be used for irrigation in the future, as world food production continuously increases in order to meet rising demand. The challenge for irrigated agriculture today is to contribute to the world's food production and improvement of food security through a more efficient, cleaner and integrated use of water (FAO). The main objective of KASWARMI was to build up a comprehensive knowledge base, including the evaluation of current state of the art, assembling international experience in an interdisciplinary scientific network on sustainable water resources management for irrigation. In six selected irrigated areas in Latin America a basic analysis of the major socio-economical, environmental, institutional and agrotechnical aspects was carried out. The approach of KASWARMI was to learn from the past and ongoing research activities to identify gaps and the scope for the collaboration of potential stakeholders (farmers, researchers, other water users, policy makers). The direct communication between the researchers and the stakeholders in the field study areas was used to identify their main needs, finding strategies for future activities to solve open questions of sustainable water resources management for irrigation in Latin America. More information is available at site www.kaswarmi.eu.

  19. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  20. Factors affecting leaching in agricultural areas and an assessment of agricultural chemicals in the ground water of Kansas

    USGS Publications Warehouse

    Perry, C.A.; Robbins, F.V.; Barnes, P.L.

    1988-01-01

    As assessment of hydrologic factors and agricultural practices that may affect the leaching of agricultural chemicals to groundwater was conducted to evaluate the extent and severity of chemical contamination of groundwater resources in Kansas. The climate of a particular area determines the length of the growing season and the availability of water, at the surface and in the ground, for the growth of plants. Climate, together with surficial geology, soil, and principal aquifers, determines the types of crops to be planted,types of tillage, conservation and irrigation practices, and affects the quantity and method of application of agricultural chemicals. Examination of groundwater nitrate-nitrogen data collected from 766 wells throughout Kansas during 1976-81 indicated that 13 of 14 geohydrologic regions had wells producing samples that exceeded the 10-mg/L drinking water standard determined by the U.S. Environmental Protection Agency. One or more herbicides were detected in water samples from 11 of 56 wells during 1985-86 located in areas susceptible to agricultural leaching. Atrazine was the most common herbicide that was detected; it was detected in water at 9 of 11 wells. Cyanazine was detected in water at three wells; metolachlor at two wells; and metribuzin, alachlor, simazine, and propazine were detected at one well each. (USGS)

  1. Water resources of Spink County, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.; Howells, L.W.

    1996-01-01

    Spink County, an agricultural area of about 1,505 square miles, is in the flat to gently rolling James River lowland of east-central South Dakota. The water resources are characterized by the highly variable flows of the James River and its tributaries and by aquifers both in glacial deposits of sand and gravel, and in sandstone in the bedrock. Glacial aquifers underlie about half of the county, and bedrock aquifers underlie most of the county. The James River is an intermittent prairie stream that drains nearly 8,900 square miles north of Spink County and has an average annual discharge of about 124 cubic feet per second where it enters the county. The discharge is augmented by the flow of Snake and Turtle Creeks, each of which has an average annual flow of about 25 to 30 cubic feet per second. Streamflow is unreliable as a water supply because precipitation, which averages 18.5 inches annually, is erratic both in volume and in distribution, and because the average annual potential evapotranspiration rate is 43 inches. The flow of tributaries generally ceases by summer, and zero flows are common in the James River in fall and winter. Aquifers in glacial drift deposits store nearly 3.3 million acre-feet of fresh to slightly saline water at depths of from near land surface to more than 500 feet below land surface beneath an area of about 760 square miles. Yields of properly developed wells in the more productive aquifers exceed 1,000 gallons per minute in some areas. Withdrawals from the aquifers, mostly for irrigation, totaled about 15,000 acre-feet of water in 1990. Water levels in observation wells generally have declined less than 15 feet over several decades of increasing pumpage for irrigation, but locally have declined nearly 30 feet. Water levels generally rose during the wet period of 1983-86. In Spink County, bedrock aquifers store more than 40 million acre-feet of slightly to moderately saline water at depths of from 80 to about 1,300 feet below land

  2. Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project

    SciTech Connect

    Gerald Sehlke

    2005-03-01

    Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

  3. Water Resources Data, Arizona, Water Year 2003

    USGS Publications Warehouse

    Fisk, G.G.; Duet, N.R.; Evans, D.W.; Angeroth, C.E.; Castillo, N.K.; Longsworth, S.A.

    2004-01-01

    The Arizona District water data report includes records on both surface water and ground water in the State for water year 2003. Specifically, it contains: (1) discharge records for 203 streamflow-gaging stations, for 29 crest-stage, partial-record streamflow stations, and 50 miscellaneous sites; (2) stage and (or) content only records for 9 lakes and reservoirs; (3) water-quality records for 29 streamflow-gaging stations; (4) ground-water levels and compaction values for 14 stations; and (5) water levels for 19 wells.

  4. [Change characteristics of agricultural climate resources in recent 50 years in Shandong Province, China].

    PubMed

    Dong, Xu-guang; Li, Sheng-li; Shi, Zhen-bin; Qiu, Can

    2015-01-01

    Based on the 1961-2010 ground surface data from 90 meteorological stations, this paper analyzed the spatiotemporal change characteristics of agricultural climate resources (e.g. sunshine hours, thermal resources and water) for the growth season of winter wheat and summer maize in Shandong Province. Results indicated that temperature indicators showed a significant rising tendency especially in the winter wheat growth season. Both evapotranspiration and sunshine hours declined obviously, especially for the evapotranspiration in the summer maize growth season, while there was no clear change evidence in rainfall and aridity. Regarding the spatial distribution characteristics, agro-climatic resources presented meridional or zonal increment or decrement in the winter wheat and summer maize growth seasons. In different areas, variation features of agro-climatic resources appeared with distinct differences. In the western Shandong area, temperature indicators showed a slight rising tendency while evapotranspiration and aridity declined significantly. Sunshine hours decreased most significantly in the middle and west southern areas. Precipitation increment was relatively obvious in the winter wheat growth season in the middle and east southern areas and in the summer maize growth season in the middle and southern areas. Thermal resource increases benefited the growth of winter wheat in every phase during the growth period. However, it brought high risks of plant diseases and hot disaster as well. The decrease of sunshine hours was adverse to crop photosynthesis in the growth period while evapotranspiration decrement profited the water retention of soil.

  5. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and objectives in any agricultural resource management plan developed by the tribe, or by us in close... management objectives for the resources; (4) Define critical values of the Indian tribe and its members and identify holistic management objectives; and (5) Identify actions to be taken to reach...

  6. Water resources of East Feliciana Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in East Feliciana Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information is presented on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of Livingston Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Water resources of St. Helena Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in St. Helena Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  9. Water resources of Tangipahoa Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. Participatory geographic information systems for agricultural water management scenario development: A Tanzanian case study

    NASA Astrophysics Data System (ADS)

    Cinderby, Steve; Bruin, Annemarieke de; Mbilinyi, Boniface; Kongo, Victor; Barron, Jennie

    One of the keys to environmental management is to understand the impact and interaction of people with natural resources as a means to improve human welfare and the consequent environmental sustainability for future generations. In terms of water management one of the on-going challenges is to assess what impact interventions in agriculture, and in particularly different irrigation strategies, will have on livelihoods and water resources in the landscape. Whilst global and national policy provide the overall vision of desired outcomes for environmental management, agricultural development and water use strategies they are often presented with local challenges to embed these policies in the reality on the ground, with different stakeholder groups. The concept that government agencies, advocacy organizations, and private citizens should work together to identify mutually acceptable solutions to environmental and water resource issues is increasing in prominence. Participatory spatial engagement techniques linked to geographic information systems (commonly termed participatory GIS (PGIS)) offers one solution to facilitate such stakeholder dialogues in an efficient and consultative manner. In the context of agricultural water management multi-scale PGIS techniques have recently been piloted as part of the ‘Agricultural Water Management Solutions’ project to investigate the current use and dependencies of water by small-holder farmers a watershed in Tanzania. The piloted approach then developed PGIS scenarios describing the effects on livelihoods and water resources in the watershed when introducing different management technologies. These relatively rapid PGIS multi-scale methods show promise for assessing current and possible future agriculture water management technologies in terms of their bio-physical and socio-economic impacts at the watershed scale. The paper discusses the development of the methodology in the context of improved water management decision

  11. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    PubMed

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation.

  12. Agricultural water requirements for commercial production of cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  13. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  14. Water resources rata - Washington water year 2002

    USGS Publications Warehouse

    Kimbrough, R.A.; Wiggins, W.D.; Smith, R.R.; Ruppert, G.P.; Knowles, S.M.; Renslow, V.F.

    2002-01-01

    The Washington Water-Data Report includes records for both surface and ground water in the State. The report contains discharge records for 244 stream-gaging stations, stage only records for 9 gaging stations, discharge measurements for 211 miscellaneous streamflow stations, and annual maximum discharge for 3 crest-stage partial-record streamflow stations; stage and(or) content records for 36 lakes and reservoirs; water-quality records for 40 surface-water sites; water-level records for 25 observation wells; and water quality records for 11 observation wells.

  15. Domestic livestock resources of Turkey: water buffalo.

    PubMed

    Yilmaz, Orhan; Ertugrul, Mehmet; Wilson, Richard Trevor

    2012-04-01

    Water buffalo are an ancient component of Turkey's domestic livestock resources. Commonly referred to as the Anatolian buffalo the animal is part of the Mediterranean group which includes Syrian, Egyptian and Southeast European animals. Once quite numerous, there have been drastic reductions in their numbers since the 1970s due to intensification of dairy activities, agricultural mechanization and changing consumer preferences. The main areas of distribution are in northwest Turkey in the Marmara and Black Sea Regions. Buffalo are kept in small herds by livestock and mixed crop-livestock farmers. Milk is the main product, meat is largely a by-product of the dairy function and provision of the once-important draught power is now a minor output. Buffalo milk is used to prepare a variety of speciality products but output of both milk and meat is very low in comparison to cattle. Conditions of welfare and health status are not optimal. Internal parasites are a constraint on productivity. Some buffalo are being used for conservation grazing in the Black Sea area to maintain optimal conditions for bird life in a nature reserve. Long neglected by government there are recent activities to establish conservation herds, set up in vitro banks and undertake molecular characterization. More effort is needed by government to promote buffalo production and to engage the general public in conservation of their national heritage.

  16. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  17. AGRICULTURAL DRAINAGE WELLS: IMPACT ON GROUND WATER

    EPA Science Inventory

    This document discusses agricultural drainage well practices, potential contamination problems that may occur, and possible management practices or regulatory solutions that could be used to alleviate those problems. The document has been written for use by state and Agency deci...

  18. Renewable Natural Resources/Agriculture Curriculum. Secondary and Postsecondary Articulated Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum is designed to be a handbook for courses in renewable natural resources/agriculture in Alaska. It details the competencies, developed through a survey of renewable natural resources/agriculture employers in Alaska, that such occupations require. The handbook is organized in six sections. Section I introduces the…

  19. Water footprint as a tool for integrated water resources management

    NASA Astrophysics Data System (ADS)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  20. Water resource impacts of alternative strategies

    SciTech Connect

    1995-10-01

    This portion of the Energy Vision 2020 draft report summarizes the differences among TVA`s final strategies with respect to potential impacts on water resources. Three water-quality impacts were considered: (1) human health impacts by ingestion, (2) impacts on water supply and waste assimilation, and (3) impacts on fish, aquatic life, and aquatic biodiversity.

  1. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    EPA Science Inventory

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  2. Protecting ground water: pesticides and agricultural practices. Technical report (Final)

    SciTech Connect

    Not Available

    1988-02-01

    The booklet presents the results of a project conducted by EPA's Office of Ground-Water Protection to evaluate the potential impacts of various agronomic, irrigation, and pesticide application practices on ground water. The report provides State and local water quality and agricultural officials with technical information to help in the development of programs to protect ground water from pesticide contamination. The report explains the principles involved in reducing the risk of pesticide contamination and describes what is known about the impact of various agricultural practices on pesticide leaching. It is hoped that the information will be helpful to water-quality officials in developing and implementing ground-water protection programs.

  3. Technologies for water resources management: an integrated approach to manage global and regional water resources

    SciTech Connect

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  4. Research of water resources allocation of South-to-North Water Diversion East Route Project in Jiangsu Province ,Eastern China

    NASA Astrophysics Data System (ADS)

    Zeng, C.

    2015-12-01

    Optimized allocation of water resources is the important means of solving regional water shortage and can improve the utilization of water resources. Water resources allocation in the large-scale water diversion project area is the current research focus. This research takes the east route of the South-to-North Water Transfer Project in Jiangsu province as the research area, based on the hydrological model, agricultural irrigation quota model, and water project scheduling model, a water resources allocation model was constructed. The research carried on generalized regional water supply network, simulated the water supply, water demand and water deficit in agriculture, industry, life, ecology and lock under the status quo and planning engineering conditions. According to the results, the east route of the South-to-North Water Transfer Project is helpful to improve regional water shortage situation. The results showed that pump output increase by 2.8 billion cubic meters of water. On the conditions of P = 95%, 75% and 50%, compared with the benchmark year, water demand increases slightly due to the need of social and economic development in planning years, and water supply increased significantly because of new diversion ability. Water deficit are greatly reduced by 74.9% especially in the commonly drought condition because of the new project operation and optimized allocation of water resources.

  5. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  6. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs §...

  7. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system.

  8. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  9. Water Resources Division in the 1980's

    USGS Publications Warehouse

    Chase, Edith B.; Moore, John E.; Rickert, David A.

    1983-01-01

    The Water Resources Division of the U.S. Geological Survey has the principal responsibility within the Federal government for providing hydrologic information and appraising the Nation's water resounds. The Geological Survey is unique among government organizations because it has neither regulatory nor developmental authority--its sole product is information that is made available equally to all interested parties. This report describes the Water Resources Division's mission, organization, source of funds, and major programs. Three types of programs are described: long-term programs, which include the Federal-State cooperative program, coordination of Federal water-data acquisition, assistance to other Federal agencies, the national research program, the national water-data exchange, the water resources scientific information center, the national water-use information program, hydrologic-data collection, and international hydrology activities; topical programs, which include hazardous waste hydrology, coal and oil-shale hydrology, regional aquifer system analyses, acid rain, volcano hazards, and national water-resources conditions; and technical-assistance programs. Emphasis is on programs that will contribute to identifying, mitigating, or solving nationwide water-resources problems in the 1980's. A discussion of how the data and information axe disseminated and a selected list of references complete the report.

  10. Science for Stewardship of California's Water Resources

    USGS Publications Warehouse

    ,

    2009-01-01

    The U.S. Geological Survey (USGS) is the primary Federal agency responsible for scientific evaluation of the natural resources of the United States, including its water. To meet the demands of a growing California, the U.S. Geological Survey's California Water Science Center provides essential science to help Federal, State, and local water agencies evaluate and manage California's critical water resources; adapt to a changing climate; assess, predict, and mitigate natural hazards, such as mudslides and debris flows; and protect the health of rivers, forests, wetlands, and other habitats. The following are some of the ways the USGS is working with other agencies to protect California's water resources and assure that Californians have safe and reliable water supplies for now and in the future.

  11. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  12. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  13. Modelling Approach to Assess Future Agricultural Water Demand

    NASA Astrophysics Data System (ADS)

    Spano, D.; Mancosu, N.; Orang, M.; Sarreshteh, S.; Snyder, R. L.

    2013-12-01

    The combination of long-term climate changes (e.g., warmer average temperatures) and extremes events (e.g., droughts) can have decisive impacts on water demand, with further implications on the ecosystems. In countries already affected by water scarcity, water management problems are becoming increasingly serious. The sustainable management of available water resources at the global, regional, and site-specific level is necessary. In agriculture, the first step is to compute how much water is needed by crops in regards to climate conditions. Modelling approach can be a way to compute crop water requirement (CWR). In this study, the improved version of the SIMETAW model was used. The model is a user friendly soil water balance model, developed by the University of California, Davis, the California Department of Water Resource, and the University of Sassari. The SIMETAW# model assesses CWR and generates hypothetical irrigation scheduling for a wide range of irrigated crops experiencing full, deficit, or no irrigation. The model computes the evapotranspiration of the applied water (ETaw), which is the sum of the net amount of irrigation water needed to match losses due to the crop evapotranspiration (ETc). ETaw is determined by first computing reference evapotranspiration (ETo) using the daily standardized Reference Evapotranspiration equation. ETaw is computed as ETaw = CETc - CEr, where CETc and CE are the cumulative total crop ET and effective rainfall values, respectively. Crop evapotranspiration is estimated as ETc = ETo x Kc, where Kc is the corrected midseason tabular crop coefficient, adjusted for climate conditions. The net irrigation amounts are determined from a daily soil water balance, using an integrated approach that considers soil and crop management information, and the daily ETc estimates. Using input information on irrigation system distribution uniformity and runoff, when appropriate, the model estimates the applied water to the low quarter of the

  14. Spirit Lake Water Resource Management NPDES Permit

    EPA Pesticide Factsheets

    Under NPDES permit ND-0031101, Spirit Lake Water Resource Management is authorized to discharge to an unnamed intermittent tributary to Devils Lake which is tributary to Sheyenne River in North Dakota.

  15. Understanding Climate Change Impacts on Water Resources

    EPA Pesticide Factsheets

    This training module will increase your understanding of the causes of climate change, its potential impacts on water resources, and the challenges it brings. You also will learn about how managers are working to make the United States more resilient..

  16. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  17. Regional Water-Resources Studies in Nevada

    USGS Publications Warehouse

    Bauer, Eva M.; Watermolen, Shannon C.

    2007-01-01

    Introduction: Water-resources information for the State of Nevada should be readily accessible to community planners and the general public in a user-friendly web environment and should be actively managed and maintained with accurate historic and current hydrologic data. The USGS, in cooperation with State of Nevada and local government agencies, has established a data framework that provides critical hydrologic information to meet the challenges of water resources planning for Nevada.

  18. Criticality of Water: Aligning Water and Mineral Resources Assessment.

    PubMed

    Sonderegger, Thomas; Pfister, Stephan; Hellweg, Stefanie

    2015-10-20

    The concept of criticality has been used to assess whether a resource may become a limiting factor to economic activities. It has been primarily applied to nonrenewable resources, in particular to metals. However, renewable resources such as water may also be overused and become a limiting factor. In this paper, we therefore developed a water criticality method that allows for a new, user-oriented assessment of water availability and accessibility. Comparability of criticality across resources is desirable, which is why the presented adaptation of the criticality approach to water is based on a metal criticality method, whose basic structure is maintained. With respect to the necessary adaptations to the water context, a transparent water criticality framework is proposed that may pave the way for future integrated criticality assessment of metals, water, and other resources. Water criticality scores were calculated for 159 countries subdivided into 512 geographic units for the year 2000. Results allow for a detailed analysis of criticality profiles, revealing locally specific characteristics of water criticality. This is useful for the screening of sites and their related water criticality, for indication of water related problems and possible mitigation options and water policies, and for future water scenario analysis.

  19. Water resources of Lafourche Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.

    2013-01-01

    This fact sheet presents a brief overview of groundwater and surface-water resources in Lafourche Parish, Louisiana. Information on the availability, past and current use trends, and water quality from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  20. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    NASA Astrophysics Data System (ADS)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  1. Glossary of Water Resource Terms.

    ERIC Educational Resources Information Center

    Titelbaum, Olga Adler

    Twelve reference sources were used in the compilation of this glossary of water pollution control terminology. Definitions for 364 words, acronyms, and phrases are included with cross references. (KP)

  2. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  3. Water resources activities of the USGS, 1992

    USGS Publications Warehouse

    Smith, E. T.

    1993-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey has the principal responsibility within the Federal Government for providing hydrologic information and appraising the Nation's water resources. The USGS is unique among government organizations because it has neither regulatory nor developmental authority. Information that is made available equally to all interested parties is the sole product of the WRD. The mission, organization, source of funds, and major programs of the WRD are discussed in this report. Three types of programs are described: long-term programs, topical programs, and support programs. Emphasis is on programs that will contribute to identifying, mitigating, or solving nationwide water-resources problems in the remaining years of the 20th century. Completing the report are discussions of how the hydrologic data and information are disseminated and an index. The report describes the water-resources mission of the WRD and discusses the organization and principal sources of funds that support the activities conducted to meet this mission. Descriptions are given of the most significant water-resources activities, how the hydrologic data and information are disseminated is discussed. Each description of a significant water-resources activity has the following parts: 'Introduction', 'Activities', 'Recent Accomplishments' and 'Funding'. (USGS)

  4. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  5. A Screening-Level Hydroeconomic Model of South Florida Water Resources System

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Watkins, D. W., Jr.; Flaxman, M.; Wiesmann, D.

    2014-12-01

    South Florida's water resources management is characterized by system-wide tradeoffs associated with maintaining the ecological integrity of natural environments such as the Everglades while meeting the water demands of the agricultural sector and growing urban areas. As these tradeoffs become more pronounced due to pressures from climate change, sea level rise, and population growth, it will be increasingly challenging for policy makers and stakeholders to reach consensus on water resources management objectives and planning horizons. A hydroeconomic optimization model of south Florida's water resources system is developed to incorporate the value of water for preserving ecosystem services alongside water supplies to the Everglades Agricultural Area and urban areas. Results of this screening-level network flow model facilitate quantitative analysis and provide insights for long-term adaptive management strategies for the region's water resources.

  6. Transforming river basins: Post-livelihood transition agricultural landscapes and implications for natural resource governance.

    PubMed

    Sreeja, K G; Madhusoodhanan, C G; Eldho, T I

    2015-08-15

    The agricultural and livelihood transitions post globalization are redefining resource relations and redrawing landscapes in the Global South and have major implications for nascent natural resource governance regimes such as Integrated River Basin Management (IRBM). A mosaic of divergent reciprocations in resource relations were noticed due to livelihood transitions in the rural areas where previous resource uses and relations had been primarily within agriculture. The reconstitution of rural spaces and the attendant changes in the resource equations are observed to be creating new sites of conformity, contestation and conflicts that often move beyond local spaces. This paper critically reviews studies across the Global South to explore the nature and extent of changes in resource relations and agricultural landscapes post livelihood diversification and the implication and challenges of these changes for natural resource governance. Though there is drastic reduction in agricultural livelihoods throughout the Global South, changes in agricultural area are found to be inconsistent and heterogeneous in the region. Agriculture continues in the countrysides but in widely differentiated capacities and redefined value systems. The transformed agrarian spaces are characterized by a mosaic of scenarios from persistence and sustainable subsistence to differentiation and exploitative commercial practices to abandonment and speculation. The reconfigured resource relations, emergent multiple and multi-scalar interest groups, institutional and policy changes and altered power differentials in these diversified landscapes are yet to be incorporated into natural resource governance frameworks such as IRBM.

  7. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  8. Roadmap for sustainable water resources in southwestern North America

    PubMed Central

    Gleick, Peter H.

    2010-01-01

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  9. North Africa develops scarce water resources

    SciTech Connect

    Not Available

    1980-03-10

    In the 1980s, Tunisia, Algeria, and Morocco are planning to spend millions of dollars in an effort to improve and develop their water resources. In each of these three countries water resource development has been identified as crucial to future growth. Traditional trade histories could be altered as water projects provide business opportunities to foreign companies. Descriptions of major and typical water projects in each country are provided to aid American companies identify programs which might interest them. Most importantly, though, is the discussion of various national attitudes, traditions, and laws that would be invaluable to a firm interested in export contracts in the individual countries. Addresses for government agencies acting as primary points of contact for American companies interested in pursuing water resource related projects in Algeria, Morocco, and Tunisia are included. (SAC)

  10. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    NASA Astrophysics Data System (ADS)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of

  11. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  12. Water resources activities, Georgia District, 1986

    USGS Publications Warehouse

    Casteel, Carolyn A.; Ballew, Mary D.

    1987-01-01

    The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)

  13. Avoiding conflicts over Africa's water resources.

    PubMed

    Ashton, Peter J

    2002-05-01

    Some 85% of Africa's water resources are comprised of large river basins that are shared between several countries. High rates of population growth accompanied by continued increases in the demand for water have resulted in several countries passing the point where the scarcity of water supplies effectively limits further development. Present population trends and patterns of water use suggest that more African countries will exceed the limits of their economically usable, land-based water resources before 2025. Normally, water allocation and distribution priorities within a country are aligned with national development objectives. While this may achieve national "water security" objectives, greater emphasis needs to be placed on regional efforts to ensure that the available water resources are used to derive sustainable long-term benefits for the peoples of Africa as a whole. Ideally, each country's water-resource management strategy needs to be aligned with that of its neighbors if peace and prosperity are to be maintained and conflict is to be avoided in the region.

  14. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture.

    PubMed

    Raman, Rajamani; Krishnamoorthy, Renga

    2014-01-01

    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process.

  15. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  16. Strategy of Water Resources Planning Under Risk

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Ye, M.

    2007-12-01

    In water resources systems analysis, risk, caused by uncertainty, is an important issue to consider, whereas definition of risk and its measure is controversial (many definitions are available in different research fields). The problem of computing the degree of risk in water resources planning is very difficult, and has received more and more attentions from more hydrologists. This study discussed the necessity of risk analysis on decision-making associated with problems of managing regional water quantity. A new concept of risk function for regional water resource planning was introduced, and a theory of risk analysis of water resource systems was developed and implemented numerically. The developed methodology is general and can be used to tackle many kinds of decision-making problems. When loss (or benefit) volumes of an action set and probabilities of nature state of decision environments are given, non-inferior planning strategy or strategies can be derived by ordering the size of risk degrees calculated by the proposed risk function. This method was illustrated in a case study at the Huanghuaihai basin, China, one of the major food-producing areas in north China. In the last several decades, problems of water shortage and pollution are severe, and extreme weather conditions frequently occur. How to reasonably allocate the limited fresh water in the future under uncertainty is an urgent task. In this research, alternative strategies of water resource planning were investigated and risk of the strategies was assessed to facilitate the decision-making of Chinese government. The developed methodology selected the optimum choice of water resources planning strategies to avoid the risk of water shortage. This research has practicably provided support of decision-making of the Chinese central and local governments and organizations in their regional and national planning.

  17. Water resources of La Salle Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in La Salle Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  18. Water resources of West Feliciana Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; Tomaszewski, Dan J.; Griffith, Jason M.

    2014-01-01

    Information concerning the availability, use, and quality of water in West Feliciana Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is discussed. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  19. Water resources of Sabine Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Sabine Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s (USGS) National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  20. Water resources of St. James Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. James Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  1. Water resources of Vermilion Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Vermilion Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  2. Water resources of Terrebonne Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Terrebonne Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends,and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System http://waterdata.usgs.gov/nwis are the primary sources of the information presented here.

  3. Water resources of St. Mary Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in St. Mary Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for management of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  4. Water resources of Acadia Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Acadia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  5. Water resources of St. Charles Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2015-01-01

    Information concerning the availability, use, and quality of water in St. Charles Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  6. Water resources of De Soto Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in De Soto Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata. usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.

    2014-01-01

    Information concerning the availability, use, and quality of water in Caldwell Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Water resources of Orleans Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; White, Vincent E.; Lovelace, John K.

    2014-01-01

    Information concerning the availability, use, and quality of water in Orleans Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  9. Water resources of Jefferson Davis Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2014-01-01

    Information concerning the availability, use, and quality of water in Jefferson Davis Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. [Book review] Politics and water resources

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1964-01-01

    Arizona is a state in which development has proceeded sufficiently rapidly relative to the available water supply that its water problems are as acute as those of nearly any other state in the Union. Owing to the fact that, in the past, the principal use of water was for irrigation, and that the areas where the water has been utilized were geographically separated from the mountain zones where the water originated, surface water resources were developed fairly early in the state’s history.

  11. Using NASA Products of the Water Cycle for Improved Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  12. Water Availability and Management of Water Resources

    EPA Science Inventory

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  13. A water resource assessment of the playa lakes of the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Texas Water Development Board (TWDB) staff are studying the water-resource potential of playa lakes in the Texas High Plains in partnership with the U. S. Department of Agriculture— Agricultural Research Service and Texas Tech University. Phase 1 of the research seeks to measure the volume of water ...

  14. Army industrial, landscaping, and agricultural water use

    SciTech Connect

    Stoughton, Kate McMordie; Loper, Susan A.; Boyd, Brian K.

    2014-09-18

    The Pacific Northwest National Laboratory conducted a task for the Deputy Assistant Secretary of the Army to quantify the Army’s ILA water use and to help improve the data quality and installation water reporting in the Army Energy and Water Reporting System.

  15. Managing Water Resources for Drought: Insights from California

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, Josue; Lund, Jay

    2016-04-01

    Droughts bring great opportunities to better understand and improve water systems. California's economic powerhouse relies on highly engineered water systems to fulfill large and growing urban and agricultural water demands. Current and past droughts show these systems are highly robust and resilient to droughts, as they recover promptly. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper provides an overview of the economic and ecosystem impacts of the recent multi-year drought in California in the context of a global economy. We explore the potential of water markets, groundwater management and use of remote sensing technology to improve understanding of adaptation to drought. Insights for future management of water resources and scientific work are discussed.

  16. Satellite Mapping of Agricultural Water Requirements in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Guzman, A.; Hiatt, S.; Post, K.; Adhikari, D.; Rosevelt, C.; Keefauver, S.; Miller, G.; Michaelis, A.; Votava, P.; Temesgen, B.; Frame, K.; Nemani, R. R.

    2013-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The Satellite Irrigation Management Support (SIMS) framework utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations from the California Irrigation Management Information System to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We also summarize results from ongoing studies to quantify the benefits of using satellite data to enhance ET-based irrigation management in terms of total applied water, crop yield, and nitrate leaching.

  17. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    NASA Astrophysics Data System (ADS)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  18. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  19. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    DTIC Science & Technology

    2016-02-09

    Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy...of Engineers: Water Resource Authorizations, Appropriations, and Activities Congressional Research Service Summary The U.S. Army Corps of...typically called the Water Resources Development Act (WRDA) or more recently the Water Resources Reform and Development Act of 2014 (WRRDA 2014

  20. Water resources, chapter 2, part B

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications and projected applications of active microwave instruments for studying water resources. Most applications involve use of an imaging system operating primarily at wavelengths of less than 30 cm (i.e., K-, X-, and L-bands). Discussion is also included concerning longer wavelength nonimaging systems for use in sounding polar glaciers and icecaps (e.g., Greenland and the Antarctic). The section is divided into six topics: (1) stream runoff, drainage basin analysis, and floods, (2) lake detection and fluctuating levels, (3) coastal processes and wetlands, (4) seasonally and permanently frozen (permafrost) ground, (5) solid water resources (snow, ice, and glaciers), and (6) water pollution.

  1. Water resources in the next millennium

    NASA Astrophysics Data System (ADS)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  2. Water resources management. World Bank policy paper

    SciTech Connect

    Easter, K.W.; Feder, G.; Le Moigne, G.; Duda, A.M.; Forsyth, E.

    1993-01-01

    Water resources have been one of the most important areas of World Bank lending during the past three decades. Through its support for sector work and investments in irrigation, water supply, sanitation, flood control, and hydropower, the Bank has contributed to the development of many countries and helped provide essential services to many communities. Moreover, the Bank and governments have not taken sufficient account of environmental concerns in the management of water resources. (Copyright (c) 1993 International Bank for Reconstruction and Development/The World Bank.)

  3. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China.

    PubMed

    Ma, Xiaolei; Ma, Yanji

    2017-05-15

    With the rapid development of economic, water crisis is becoming more and more serious and would be an important obstacle to the sustainable development of society. Virtual water theory and its applications in agriculture can provide important strategies for realizing the reasonable utilization and sustainable development of water resources. Using the Penman-Monteith model and Theil index combining the CROPWAT software, this work takes Jilin Province as study area quantifying the virtual water content of agriculture and livestock husbandry and giving a comprehensive evaluation of their spatiotemporal structure evolution. This study aims to help make clear the water consumption of agriculture and livestock husbandry, and offer advice on rational water utilization and agricultural structure adjustment. The results show that the total virtual water (TVW) proportion of agriculture presents a gradual growth trend while that of livestock husbandry reduces during the study period. In space, central Jilin shows the highest virtual water content of agriculture as well as livestock husbandry, the TVW in central Jilin is about 35.8billionm(3). The TVW of maize is highest among six studied crops, and the cattle shows the highest TVW in the four kinds of animals. The distribution of TVW calculated by us and the distribution of actual water resources have remarkable difference, which leads to the increase of water consumption and cost of agricultural production. Finally, we discuss the driving force of the spatiotemporal variation of the TVW for agriculture and livestock husbandry, and also give some advises for the planting structural adjustment. This work is helpful for the sustainable development of agricultural and livestock husbandry and realizing efficient utilization of water resources.

  4. Water resources of Calcasieu Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in Calcasieu Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://dx.doi.org/10.5066/F7P55KJN) are the primary sources of the information presented here.

  5. Redressing China's strategy of water resource exploitation.

    PubMed

    Ran, Lishan; Lu, Xi Xi

    2013-03-01

    China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed.

  6. Report of the Public's Comments on the RCA Draft Documents, January-March 1980. [Soil and Water Resources Conservation Act].

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    The Soil and Water Resources Conservation Act of 1977 (RCA) directed the United States Department of Agriculture (USDA) to assess the country's nonfederal soil and water resources and to develop a program to conserve these and related natural resources. During this process, the USDA prepared and circulated for public comment a draft appraisal,…

  7. Interactions of Woody Biofuel Feedstock Production Systems with Water Resources: Considerations for Sustainability

    SciTech Connect

    Trettin, Carl C.; Amatya, Devendra; Coleman, Mark

    2008-04-15

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Finally, given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive.

  8. Water Matters: Water Resources Teacher's Guide, Vol. 2.

    ERIC Educational Resources Information Center

    Crowder, Jane Nelson; Cain, Joe

    This guide is one of three teacher's guides developed for the U.S. Geological Survey's Water Resources Education Initiative. Each guide supplements a set in the accompanying poster series which forms the core of this project. This guide covers navigating the water highways, groundwater, and water quality and helps teachers use the included Water…

  9. Sustainability of ground-water resources

    USGS Publications Warehouse

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  10. Conservation potential of agricultural water conservation subsidies

    NASA Astrophysics Data System (ADS)

    Huffaker, Ray

    2008-07-01

    A current policy subsidizes farmers to invest in improved on-farm irrigation efficiency, expecting water to be conserved off farm. Contrary to expectation, water has been increasingly depleted in some regions after such improvements. This paper investigates the policy's failure to conserve water consistently by (1) formulating an economic model of irrigated crop production to determine a profit-maximizing irrigator's range of responses to a subsidy and (2) embedding these responses into hypothetical streamflow diagrams to ascertain their potential to conserve water under various hydrologic regimes. Testable hypotheses are developed to predict the conservation potential of a subsidy in real-world application.

  11. Water resources of Iberia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Iberia Parish, Louisiana, is critical for proper water-resource management. This fact sheet summarizes the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish for water managers, parish residents, and others to assist in stewardship of this vital resource. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, about 31.24 million gallons per day (Mgal/d) of water were withdrawn in Iberia Parish, Louisiana, including about 23.13 Mgal/d from groundwater sources and 8.11 Mgal/d from surface-water sources. Withdrawals for public supply and industrial use each accounted for about 32 percent of the total water withdrawn. Other water-use categories included rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Iberia Parish peaked at about 58.57 Mgal/d in 1975.

  12. Ground-water resources of Kansas

    USGS Publications Warehouse

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Importance of ground-water resources.—The importance of Kansas' ground-water resources may be emphasized from various viewpoints and in different ways. More than three-fourths of the public water supplies of Kansas are obtained from wells. In 1939, only 60 out of 375 municipal water supplies in Kansas, which is 16 percent, utilized surface waters. If the water wells of the cities and those located on all privately owned land in the state were suddenly destroyed, making it necessary to go to streams, springs, lakes (which are almost all artificial), and ponds for water supply domestic, stock, and industrial use, there would be almost incalculable difficulty and expense. If one could not go to springs, or dig new wells, or use any surface water derived from underground flow, much of Kansas would become uninhabitable.  These suggested conditions seem absurd, but they emphasize our dependence on ground-water resources. Fromm a quantitative standpoint, ground-water supplies existent in Kansas far outweigh surface waters that are present in the state at any one time. No exact figures for such comparison can be given, but, taking 384 square miles as the total surface water area of the state and estimating an average water depth of five feet, the computed volume of surface waters is found to be 1/100th of that of the conservatively estimated ground-water storage in Kansas. The latter takes account only of potable fresh water and is based on an assumed mean thickness of ten feet of reservoir having an effective porosity of twenty percent. It is to be remembered, however, that most of the surface water is run-off, which soon leaves the state, stream valleys being replenished from rainfall and flow from ground-water reservoirs. Most of the ground-water supplies, on the other hand, have existed for many years with almost no appreciable movement--in fact, it is reasonably certain that some well water drawn from beneath the surface of Kansas in 1940 represents rainfall in

  13. Effect on water resources from upstream water diversion in the Ganges basin.

    PubMed

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  14. Global water resources modeling with an integrated model of the social-economic-environmental system

    NASA Astrophysics Data System (ADS)

    Davies, Evan G. R.; Simonovic, Slobodan P.

    2011-06-01

    Awareness of increasing water scarcity has driven efforts to model global water resources for improved insight into water resources infrastructure and management strategies. Most water resources models focus explicitly on water systems and represent socio-economic and environmental change as external drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI, incorporates dynamic representations of these systems, so that their broader changes affect and are affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global climate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the hydrological cycle, global water use and water quality. Since the model focus is on their interconnections through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and structure of connections between water resources and socio-economic and environmental change. Of particular interest to water resources researchers and modelers will be the simulated effects of a new water stress definition that incorporates both water quality and water quantity effects into the measurement of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse programs and the feedback-effects of irrigated agriculture and greater consumption of animal products.

  15. Population and water resources: a delicate balance.

    PubMed

    Falkenmark, M; Widstrand, C

    1992-11-01

    Various avenues exist to minimize the effects of the current water crisis in some regions of the world and the more widespread problems that will threaten the world in the future. Active management of existing water resources and a reduction in population growth in water-scarce areas are needed to minimize the effects of the water crisis. National boundaries do not effect water systems. Cooperation and commitment of local, national, and international governments, institutions, and other organizations are needed to manage water systems. Development in each country must entail conscientious and effective balancing of unavoidable manipulations of the land and the unavoidable environmental impacts of those manipulations. The conditions of environmental sustainability must include protection of land productivity, ground water potability, and biodiversity. Humans must deal with these factors either by adopting methods to protect natural systems or by correcting existing damage and reducing future problems. They need to understand the demographic forces in each country so they can balance society's rising needs for clean water with the finite amount of water available. Factors affecting future needs at all levels include rapid rural-urban migration, high fertility, and changing patterns of international population movement. Given an increased awareness of global water systems, demographic trends, and active management of resources, the fragile balance between population and water can be maintained.

  16. Water Intensity of Electricity from Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  17. Conceptual Model of Water Resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, L. Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  18. NASA's Applied Sciences for Water Resources

    NASA Technical Reports Server (NTRS)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  19. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  20. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  1. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  2. Agricultural Machinery 01.0301 for Agribusiness, Natural Resources and Environmental Occupations.

    ERIC Educational Resources Information Center

    Wright, John; And Others

    The document presents unit plans which offer lists of experiences and competencies to be learned in the area of agricultural machinery for agribusiness, natural resources, and environmental occupations. The units include: (1) safety; (2) agricultural service center; (3) component parts--bearings, gears, pulleys, clutches, and others; (4) metal…

  3. Agricultural Safety and Health: A Resource Guide. Rural Information Center Publication Series, No. 40. Revised Edition.

    ERIC Educational Resources Information Center

    Zimmerman, Joy, Comp.

    This guide lists resource materials that address agricultural occupational injuries and diseases and their prevention. Many of the entries were derived from the AGRICOLA database produced by the National Agricultural Library and include journal articles, books, government reports, training materials, and audiovisual materials. The first section…

  4. Agricultural Land in an Urban Society. Resource Publications in Geography.

    ERIC Educational Resources Information Center

    Furuseth, Owen J.; Pierce, John T.

    Intended for geography professors, researchers, and undergraduate students, this publication focuses on the important issues surrounding the urbanization of agricultural land, the assessment of the relative effectiveness of policy responses, and an assessment of opportunities for change in approaches toward farmland preservation. Emphasis is on…

  5. Agriculture: Land and Life. Junior High School Teacher Resource Manual.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    This curriculum guide outlines a 3-year sequence of complementary courses designed to provide students (especially in Alberta, Canada) with a broad awareness of the economic, social, and scientific realities of the agricultural enterprise. Information is presented in context, through hands-on activity, through experimentation, and through…

  6. Volumetric Pricing of Agricultural Water Supplies: A Case Study

    NASA Astrophysics Data System (ADS)

    Griffin, Ronald C.; Perry, Gregory M.

    1985-07-01

    Models of water consumption by rice producers are conceptualized and then estimated using cross-sectional time series data obtained from 16 Texas canal operators for the years 1977-1982. Two alternative econometric models demonstrate that both volumetric and flat rate water charges are strongly and inversely related to agricultural water consumption. Nonprice conservation incentives accompanying flat rates are hypothesized to explain the negative correlation of flat rate charges and water consumption. Application of these results suggests that water supply organizations in the sample population converting to volumetric pricing will generally reduce water consumption.

  7. Water resources of Claiborne Parish, Louisiana

    USGS Publications Warehouse

    Fendick, Robert B.; Prakken, Lawrence B.; Griffith, Jason M.

    2013-01-01

    This fact sheet summarizes basic information on the water resources of Claiborne Parish. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Cited References section. In 2010, about 2.60 million gallons per day (Mgal/d) of water were withdrawn in Claiborne Parish, Louisiana, including about 2.42 Mgal/d from groundwater sources and 0.18 Mgal/d from surface-water sources. Public-supply use accounted for about 84 percent of the total water withdrawn. Other categories of use included industrial, rural domestic, livestock, and general irrigation. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that total water withdrawals in the parish have ranged from about 2.6 to 3.9 Mgal/d.

  8. Integrated water resource management under water supply and irrigation development uncertainty

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, E.; Elshorbagy, A. A.; Nazemi, A.; Wheater, H. S.; Gober, P.

    2014-12-01

    The Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada, supports various water demands including municipal, industrial, irrigated agriculture, hydropower and environmental sectors. Proposals for future development include significantly increased irrigation. However, proposing an appropriate level of irrigation development requires incorporation of water supply uncertainties in the water resources management analysis, including effects of climate variability and change. To evaluate potential climate change effects, a feasible range of shifts in annual volume and peak timing of headwater flows are considered to stochastically generate flows at the Alberta/Saskatchewan border. This envelope of flows, 30,800 realizations, is further combined with various irrigation expansion areas to form various future scenarios. Using an integrated water resources model developed for Saskatchewan, the impact of irrigation development on the system is assessed under the changing water supply conditions. The results of this study show that level of irrigation development as well as variation in volume and peak timing of flows can all contribute to change the water availability, vulnerability and economic productivity of the water resources system in Saskatchewan. In particular, the combined effect of large irrigation expansion, reduction in the volume of flows and earlier timing of the annual peak can exacerbate water resources system vulnerability, produce unstable net revenues, and decrease flood frequency in the Saskatchewan River Delta.

  9. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  10. Scientific basis of water-resource management

    SciTech Connect

    Not Available

    1982-01-01

    This volume contains 11 reports regarding water-resource management. Topics include: long-term and large-scale problems of water management, such as groundwater contamination due to toxic and nuclear-waste disposal; nonpoint sources of pollution on our stream systems; impacts of changes in both flow and water quality on the aquatic ecosystem; the frequency, duration, and impacts of droughts including long-term trends toward desertification; long-term hydrologic budgets for assessing the adequacy of regional or national water resources; global geochemical cycles such as the fate of nitrogen and sulfur; and protection of engineered systems against hydrologic extrema. These macroscale and long-term problems, involving large investments and the health and well-being of much of the world's population, demand increasingly precise and accurate predictive statements. Individual reports are indexed separately on the energy data base.

  11. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  12. Water-resources investigations in Kansas; fiscal year 1978

    USGS Publications Warehouse

    McGovern, Harold E.; Combs, L.J.

    1979-01-01

    Hydrologic investigations in Kansas during fiscal year 1978 consisted of collecting and analyzing data to assess the State 's water resources, describe the framework of hydrologic systems , and provide quantity and quality of water data for optimum development and management. Surface-water studies were made to analyze long-term records of streamflow, basin and stream-channel characteristics, relations of rainfall and runoff , frequency of low flows and floods, interrelation of ground and surface water, and the effects of stream regulation on the quantity, quality, and availability of water supplies. Geohydrologic studies were made to determine the source, availability, quantity, and quality of water in the principal aquifers; evaluate long-range effects of irrigation, industrial, and municipal withdrawals; determine the potential for storage of liquid wastes; and prepare digital models for evaluating plans of aquifer development and management. Water-quality studies were made to define the physical, chemical, and biological character of surface and ground water; the origin transport, and character of solutes and sediment in streams; the areal and temporal changes in water quality; and the suitability of water for municipal, industrial and agricultural use. (Woodard-USGS)

  13. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... regulations and other decisions of the Council, and all other laws, rules, regulations, and orders...

  14. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... regulations and other decisions of the Council, and all other laws, rules, regulations, and orders...

  15. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... regulations and other decisions of the Council, and all other laws, rules, regulations, and orders...

  16. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrologic cycle; (2) Supply and demand for water; (3) Demineralization of saline and other impaired waters... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH...

  17. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrologic cycle; (2) Supply and demand for water; (3) Demineralization of saline and other impaired waters... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH...

  18. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrologic cycle; (2) Supply and demand for water; (3) Demineralization of saline and other impaired waters... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH...

  19. Water Resources by 2100 in Mountains with Declining Glaciers

    NASA Astrophysics Data System (ADS)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  20. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  1. Water Resources Data, New Mexico, Water Year 1996

    USGS Publications Warehouse

    Ortiz, David; Lange, K.M.

    1997-01-01

    Water resources data for the 1996 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 172 gaging stations; stage and contents for 26 lakes and reservoirs; water quality for 51 gaging stations and 19 wells; and water levels at 126 observation wells. Also included are 82 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  2. Water Resources Data, New Mexico, Water Year 2000

    USGS Publications Warehouse

    Ortiz, David; Lange, Kathy; Beal, Linda

    2001-01-01

    Water-resources data for the 2000 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 185 gaging stations; stage and contents for 26 lakes and reservoirs; water quality for 34 gaging stations, 56 wells, and 41 partial-record stations and miscellaneous sites; and water levels at 136 observation wells. Also included are 79 crest-stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  3. Water Resources Data, New Mexico, Water Year 1997

    USGS Publications Warehouse

    Ortiz, David; Lange, Kathy; Beal, Linda

    1998-01-01

    Water resources data for the 1997 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 171 gaging stations; stage and contents for 27 lakes and reservoirs; water quality for 46 gaging stations and 19 wells; and water levels in 124 observation wells. Also included are 35 crest-stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  4. Water resources data for New Mexico, water year 1975

    USGS Publications Warehouse

    ,

    1976-01-01

    Water resources data for the 1975 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 201 gaging stations; stage and contents far 23 lakes and reservoirs; water quality for 62 gaging stations, 77 partial-record flow stations, 1 reservoir, 47 springs and 197 wells; and water levels for 93 observation wells. Also included are 162 crest-stage partial-record stations and 2 low-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic da,ta collection program, and are pu,blis"Q,ed as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  5. Water Resources Data, New Mexico, Water Year 1994

    USGS Publications Warehouse

    Borland, J.P.; Ong, Kim

    1995-01-01

    Water-resources data for the 1994 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 184 gaging stations; stage and contents for 26 lakes and reservoirs; water quality for 51 gaging stations and 72 wells; and water levels at 132 observation wells. Also included are 109 crest-stage partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  6. Water resources data, New Mexico, water year 1986

    USGS Publications Warehouse

    Beal, Linda V.; Gold, Robert L.

    1987-01-01

    Water resources data for the 1986 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 166 gaging stations; stage and contents for 24 lakes and reservoirs; water quality for 64 gaging stations and 168 wells; and water levels at 111 observation wells. Also included are 135 crest-stage partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. Also, one seepage investigation is published this year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  7. Water resources data, New Mexico, water year 1987

    USGS Publications Warehouse

    Beal, Linda V.; Gold, Robert L.

    1988-01-01

    Water resources data for the 198, water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 165 gaging stations; stage and contents for 25 lakes and reservoirs; water quality for 67 gaging stations and 180 wells; and water levels at 100 observation wells. Also included are 108 crest-stage partial-record stations. Additional water data were collected at various sites) not involved in the systematic data collect-ion program, and are published as miscellaneous measurements. Also, one seepage investigation is published this year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  8. Water resources data, New Mexico, water year 1988

    USGS Publications Warehouse

    Borland, John P.; Beal, Linda V.

    1989-01-01

    Water resources data for the 1988 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 165 gaging stations; stage and contents for 26 lakes and reservoirs; water quality for 64 gaging stations and 76 wells; and water levels at 105 observation wells. Also included are 108 crest-stage partial-record stations. Additional water data were collected at various sites, not involved in the systematic data collection program, and are published as miscellaneous measurements. Also, one seepage investigation is published this year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Mexico.

  9. Water resources data, New Mexico, water year 2004

    USGS Publications Warehouse

    Byrd, Dave; Allen, Harriet R.; Montano, Mary

    2005-01-01

    Water-resources data for the 2004 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 185 gaging stations; stage and contents for 22 lakes and reservoirs; water quality for 39 gaging stations, 108 wells, and 9 partial-record stations and miscellaneous sites; and water levels at 128 observation wells. Also included are 80 crest-stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. Two seepage investigations were made during the year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  10. Water Resources Data, New Mexico, Water Year 2001

    USGS Publications Warehouse

    Byrd, Dave; Lange, Kathy; Beal, Linda

    2002-01-01

    Water-resources data for the 2001 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 173 gaging stations; stage and contents for 24 lakes and reservoirs; water quality for 37 gaging stations, 43 wells, and II partial-record stations and miscellaneous sites; and water levels at 136 observation well s. Also included are 84 creststage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. One seepage investigation was made during the year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  11. Water resources data, New Mexico, water year 2003

    USGS Publications Warehouse

    Byrd, Dave; Allen, Harriet R.; Montano, Mary

    2004-01-01

    Water-resources data for the 2003 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 182 gaging stations; stage and contents for 24 lakes and reservoirs; water quality for 34 gaging stations, 83 wells, and 7 partial-record stations and miscellaneous sites; and water levels at 141 observation wells. Also included are 80 crest-stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. Two seepage investigations were made during the year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  12. Water resources data, New Mexico, water year 2002

    USGS Publications Warehouse

    Byrd, F. Dave; Lange, Kathy M.; Beal, Linda V.

    2003-01-01

    Water-resources data for the 2002 water year for New Mexico consist of records of discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This report contains discharge records for 176 gaging stations; stage and contents for 24 lakes and reservoirs; water quality for 42 gaging stations, 108 wells, and 9 partial-record stations and miscellaneous sites; and water levels at 135 observation wells. Also included are 80 crest-stage, partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. Two seepage investigations were made during the year. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Mexico.

  13. Water Resources Impacts on Tribal Irrigation Projects

    NASA Astrophysics Data System (ADS)

    Minihane, M.

    2015-12-01

    The Bureau of Indian Affairs (BIA) Branch of Irrigation and Power provides oversight and technical support to select irrigation projects and systems on tribal lands. The BIA provides operations and maintenance support for 16 irrigation systems. To make the best use of limited resources, the BIA must incorporate climate change impacts on hydrology and water management for these irrigation systems in the coming decades. The 16 irrigation projects discussed here are divided into three climatological regions: the Pacific Northwest Region, the Greater Rocky Mountain Region, and the Western, Southwest, & Navajo Region. Significant climate projections that impact irrigation systems in one or more of these regions include increased temperatures and evaporative demand, earlier snowmelt and runoff, an increase in floods, an increase in heavy precipitation events, an increase in the frequency and intensity of droughts, and declining water supplies. Some irrigation projects are particularly vulnerable to these climate impacts because they are in already water-stressed areas or areas in which water resources are over-allocated. Other irrigation projects will have to adjust their storage and water management strategies to accommodate changes in the timing of streamflow. Overall, though, the BIA will be better able to assist tribal nations by incorporating expected climate impacts into their water resources management practices.

  14. Sustainable conjunctive water management in irrigated agriculture: Model formulation and application to the Yaqui Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Schoups, Gerrit; Addams, C. Lee; Minjares, José Luis; Gorelick, Steven M.

    2006-10-01

    This paper investigates strategies to alleviate the effects of droughts on the profitability and sustainability of irrigated agriculture. These strategies include conjunctive management of surface water and groundwater resources, and engineered improvements such as lining of irrigation canals and addition of regional pumping well capacity. A spatially distributed simulation-optimization model was developed for an irrigated system consisting of multiple surface water reservoirs and an alluvial aquifer. The simulation model consists of an agronomic component and simulators describing the hydrologic system. The physical models account for storage and flow through the reservoirs, routing through the irrigation canals, and regional groundwater flow. The agronomic model describes crop productivity as a function of irrigation quantity and salinity, and determines agricultural profit. A profit maximization problem was formulated and solved using large-scale constrained gradient-based optimization. The model was applied to a real-world conjunctive surface water/groundwater management problem in the Yaqui Valley, an irrigated agricultural region in Sonora, Mexico. The model reproduces recorded reductions in agricultural production during a historical drought. These reductions were caused by a decline in surface water availability and limited installed pumping capacity. Results indicate that the impact of the historical 8-year drought could have been significantly reduced without affecting profit in wet years by better managing surface water and groundwater resources. Namely, groundwater could have been more heavily relied upon and surface water allocation capped at a sustainable level as an operating rule. Lining the irrigation canals would have resulted in water savings of 30% of historical reservoir releases during wet years, which could have been used in subsequent drier years to increase agricultural production. The benefits of a greater reliance on groundwater pumping

  15. WATER: Water Activities Teaching Environmental Responsibility: Teacher Resource, Environmental Science.

    ERIC Educational Resources Information Center

    Kramer, Ed, Ed.; And Others

    This activity book was developed as part of an effort to protect water quality of the Stillwater River, Ohio, through a Watershed Protection Project. It is designed to raise teachers' and students' awareness and trigger a sense of stewardship towards the preservation of water resources. The activities are generally appropriate for elementary age…

  16. Environmental Education Compendium for Water Resources.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Interdisciplinary by nature, environmental education is appropriate in any subject area and many educators often integrate environmental concepts into their lesson plans. This compendium of 109 collections of curriculum materials has been developed to assist educators in their selection of materials focusing on water resources. Curricula cover…

  17. Can improved agricultural water use efficiency save India’s groundwater?

    NASA Astrophysics Data System (ADS)

    Fishman, Ram; Devineni, Naresh; Raman, Swaminathan

    2015-08-01

    Irrigated agriculture is placing increasing pressure on finite freshwater resources, especially in developing countries, where water extraction is often unregulated, un-priced and even subsidized. To shift agriculture to a more sustainable use of water without harming the food security and livelihoods of hundreds of millions of smallholders, substantial improvements of water use efficiency will be required. Here, we use detailed hydroclimatic and agricultural data to estimate the potential for the widespread adoption of efficient irrigation technologies to halt the depletion of India’s groundwater resources. Even though we find substantial technical potential for reversing water table declines, we show that the impacts are highly sensitive to assumptions about farmers’ water use decisions. For example, we find that widespread adoption of proven technologies that include drip and sprinkler irrigation has the potential to reduce the amount of excessive extraction of groundwater by two thirds. However, under more realistic assumptions about farmers’ irrigation choices, half of these reductions are lost due to the expansion of irrigated area. Our results suggest that without the introduction of incentives for conservation, much of the potential impact of technology adoption on aquifers may be lost. The analysis provides quantitative input to the debate of incentive versus technology based water policies.

  18. Revising and Updating the Natural Resources and Aquaculture Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Berggren, Frederick W.

    Materials, including curriculum units, are provided for the natural resources and aquaculture components of the vocational agriculture curriculum. Aquaculture is a new component, added because of increased recognition of the opportunities offered by Connecticut's rich shoreline resources. A brochure and flyer on the aquaculture program follow a…

  19. Global Water Resources Under Future Changes: Toward an Improved Estimation

    NASA Astrophysics Data System (ADS)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From

  20. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  1. Water-resources investigations in Wisconsin, 1993

    USGS Publications Warehouse

    Maertz, D.E.

    1993-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."

  2. Water resources of Assumption Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Lawrence B.; Lovelace, John K.

    2013-01-01

    Information concerning the availability, use, and quality of water in Assumption Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for management of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here. In 2010, about 21.4 million gallons per day (Mgal/d) of water were withdrawn in Assumption Parish, including about 12.4 Mgal/d from surface-water sources and 9.03 Mgal/d from groundwater sources. Withdrawals for industrial use accounted for about 16.4 Mgal/d or 76 percent of the total water withdrawn. Other categories of use included public supply, rural domestic, livestock, general irrigation, and aquaculture.Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2000 at about 29.7 Mgal/d.

  3. Ground water and surface water; a single resource

    USGS Publications Warehouse

    Winter, Thomas C.; Harvey, Judson W.; Franke, O. Lehn; Alley, William M.

    1998-01-01

    The importance of considering ground water and surface water as a single resource has become increasingly evident. Issues related to water supply, water quality, and degradation of aquatic environments are reported on frequently. The interaction of ground water and surface water has been shown to be a significant concern in many of these issues. Contaminated aquifers that discharge to streams can result in long-term contamination of surface water; conversely, streams can be a major source of contamination to aquifers. Surface water commonly is hydraulically connected to ground water, but the interactions are difficult to observe and measure. The purpose of this report is to present our current understanding of these processes and activities as well as limitations in our knowledge and ability to characterize them.

  4. Water resources data for Indiana, water year 1985

    USGS Publications Warehouse

    Glatfelter, Dale R.; Thompson, Ronald E.; Nell, Graham E.

    1986-01-01

    Water resources data for the 1985 water year for Indiana consists of records of stage, discharge, and water quality of streams; stage and contents of 1 reservoir; and water levels in wells. This report contains discharge records for 185 gaging stations, stage and contents for 1 reservoir, water temperature for 1 gaging station, water quality for 5 gaging stations, and water levels for 84 observation wells. Also included are 25 crest-stage partial-record stations. Additional water data were collected at various sites, not part of the systematic data-collection program, and are published as miscellaneous measurements. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Indiana.

  5. Water resources activities in Kentucky, 1986

    USGS Publications Warehouse

    Faust, R. J.

    1986-01-01

    The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)

  6. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  7. Trends in American agriculture. Their implications for biological warfare against crop and animal resources.

    PubMed

    Deen, W A

    1999-01-01

    Current trends in American agriculture have changed the vulnerability to use of biological weapons against plant and animal resources. The major effect has been a requirement to look again at the model of the U.S. BW program of widespread dissemination of agent and look to attack models requiring much lower levels of resources. The U.S. biological warfare program models must take the effects of these major trends into account when considering the possible widespread dissemination of a biological agent. The models must also acknowledge the lowered levels or resources required to make such attacks given the modern trends in American agriculture.

  8. Analysis of economic impacts of climate change on agricultural water management in Europe

    NASA Astrophysics Data System (ADS)

    Garrote, Luis; Iglesias, Ana

    2016-04-01

    This contribution presents an analysis of impacts of climate change on agricultural water management in Europe. The analysis of climate change impacts on agriculture is composed of two main categories: rainfed agriculture and irrigated agriculture. Impacts on rainfed agriculture are mostly conditioned by climatic factors and were evaluated through the estimation of changes in agricultural productivity induced by climatic changes using the SARA model. At each site, process-based crop responses to climate and management are simulated by using the DSSAT crop models for cereals (wheat and rice), coarse grains (maize) and leguminous (soybeans). Changes in the rest of the crops are derived from analogies to these main crops. For each of the sites we conducted a sensitivity analysis to environmental variables (temperature, precipitation and CO2 levels) and management variables (planting date, nitrogen and irrigation applications) to obtain a database of crop responses. The resulting site output was used to define statistical models of yield response for each site which were used to obtain estimates of changes in agricultural productivity of representative production systems in European agro-climatic regions. Impacts on irrigated agriculture are mostly conditioned by water availability and were evaluated through the estimation of changes in water availability using the WAAPA model, which simulates the operation of a water resources system to maximize water availability. Basic components of WAAPA are inflows, reservoirs and demands. These components are linked to nodes of the river network. WAAPA allows the simulation of reservoir operation and the computation of supply to demands from a system of reservoirs accounting for ecological flows and evaporation losses. WAAPA model was used to estimate maximum potential water availability in the European river network applying gross volume reliability as performance criterion. Impacts on agricultural production are also dependent

  9. Fresh water production from municipal waste water with RO membrane technology and its application for agriculture and industry in arid area

    NASA Astrophysics Data System (ADS)

    Yokoyama, F.

    2015-04-01

    One of the biggest problems of the 21st century is the global water shortage. Therefore it is difficult to increase the quantity of conventional water resources such as surface water and groundwater for agriculture and industry in arid area. Technical advancement in water treatment membrane technology including RO membrane has been remarkable especially in recent years. As the pore size of RO membrane is less than one nanometer, it is possible to produce the fresh water, which satisfies the drinking water quality standards, with utilizing RO membrane. In this report a new fresh water resource from municipal waste water is studied to apply to the plant factory which is the water saving type agriculture and industry in arid area.

  10. U.S. Geological Survey water resources Internet tools

    USGS Publications Warehouse

    Shaffer, Kimberly H.

    2013-11-07

    The U.S. Geological Fact Sheet (USGS) provides a wealth of information on hydrologic data, maps, graphs, and other resources for your State.Sources of water resources information are listed below.WaterWatchWaterQualityWatchGroundwater WatchWaterNowWaterAlertUSGS Flood Inundation MapperNational Water Information System (NWIS)StreamStatsNational Water Quality Assessment (NAWOA)

  11. Water resources of Plaquemines Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.

    2013-01-01

    In 2010, about 85.1 million gallons per day (Mgal/d) of water were withdrawn in Plaquemines Parish, Louisiana. Surface-water sources accounted for almost all withdrawals; groundwater sources accounted for only 0.04 Mgal/d. Industrial use accounted for about 92 percent of the total water withdrawn. Other categories of use included public supply, rural domestic, and livestock. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals in Plaquemines Parish peaked at about 177 Mgal/d in 1975. The peak resulted primarily from an increase in industrial surface-water withdrawals from about 23.8 Mgal/d in 1970 to 171 Mgal/d in 1975. Since 1975, water withdrawals have ranged from about 157 to 85.1 Mgal/d, with industrial surface-water withdrawals accounting for most of the variation. This fact sheet summarizes basic information on the water resources of Plaquemines Parish. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  12. Water resources of St. Bernard Parish, Louisiana

    USGS Publications Warehouse

    Prakken, Larry B.

    2013-01-01

    In 2010, about 261 million gallons per day (Mgal/d) of water were withdrawn in St. Bernard Parish, Louisiana, almost entirely from surface-water sources. Industrial use accounted for about 97 percent (253 Mgal/d) of the total water withdrawn. Other categories of use included public supply, rural domestic, and livestock. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that total water withdrawals in the parish ranged from about 138 to 720 Mgal/d, with industrial use of surface water making up the bulk of water withdrawals. The large decline in surface-water withdrawals from 1980 to 1985 was largely attributable to a decrease in industrial use from 654 Mgal/d in 1980 to 127 Mgal/d in 1985. This fact sheet summarizes basic information on the water resources of St. Bernard Parish. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  13. Water resources of Lincoln County, Wyoming

    USGS Publications Warehouse

    Eddy-Miller, C. A.; Plafcan, Maria; Clark, M.L.

    1996-01-01

    Streamflow and ground-water quantity and quality data were collected and analyzed, 1993 through 1995, and historical data were compiled to summarize the water resources of Lincoln County.Deposits of Quaternary age, in the valleys of the Bear River and Salt River, had the most well development of any geologic unit in the county.The most productive alluvial aquifers were located in the Bear River Valley and Star Valley with pumping wells discharging up to 2,000 gallons perminute. The ground-water connection between the Overthrust Belt and the Green River Basin is restricted as a result of the folding and faulting that occurred during middle Mesozoic and early Cenozoic time. Total water use in Lincoln County during 1993 was estimated to be 405,000 million gallons. Surface water was the source for 98 percent of the water used in the county. Hydroelectric power generation and irrigation used the largest amounts of water. Dissolved-solids concentrations varied greatly for water samples collected from 35 geologic units inventoried. Dissolved-solids concentrations in all water samples from the LaneyMember of the Green River Formation were greater than the Secondary Maximum Contaminant Level of 500 milligrams per liter established by the U.S. Environmental Protection Agency. Statistical analysis of data collected from wells in the Star Valley monitoring study indicated there was no significant difference between data collected during different seasons, and no correlation between the nitrate concentrations and depth to ground water.

  14. EPA's Safe and Sustainable Water Resources Research ...

    EPA Pesticide Factsheets

    Increasing demands for sources of clean water—combined with changing land use practices, population growth, aging infrastructure, and climate change and variability—pose significant threats to our water resources. Failure to manage the Nation’s waters in an integrated, sustainable manner can jeopardize human and aquatic ecosystem health, which can impact our society and economy.Through innovative science and engineering, the SSWR Research Program is developing cost-effective, sustainable solutions to 21st century complex water issues and proactively developing solutions to emerging concerns. Our research is helping to ensure that clean, adequate, and equitable supplies of water are available to support human health and resilient aquatic ecosystems, now and into the future. To share information on EPA's water research program

  15. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  16. Can macrophyte harvesting from eutrophic water close the loop on nutrient loss from agricultural land?

    PubMed

    Quilliam, Richard S; van Niekerk, Melanie A; Chadwick, David R; Cross, Paul; Hanley, Nick; Jones, Davey L; Vinten, Andy J A; Willby, Nigel; Oliver, David M

    2015-04-01

    Eutrophication is a major water pollution issue and can lead to excessive growth of aquatic plant biomass (APB). However, the assimilation of nutrients into APB provides a significant target for their recovery and reuse, and harvesting problematic APB in impacted freshwater bodies offers a complementary approach to aquatic restoration, which could potentially deliver multiple wider ecosystem benefits. This critical review provides an assessment of opportunities and risks linked to nutrient recovery from agriculturally impacted water-bodies through the harvesting of APB for recycling and reuse as fertilisers and soil amendments. By evaluating the economic, social, environmental and health-related dimensions of this resource recovery from 'waste' process we propose a research agenda for closing the loop on nutrient transfer from land to water. We identify that environmental benefits are rarely, if ever, prioritised as essential criteria for the exploitation of resources from waste and yet this is key for addressing the current imbalance that sees environmental managers routinely undervaluing the wider environmental benefits that may accrue beyond resource recovery. The approach we advocate for the recycling of 'waste' APB nutrients is to couple the remediation of eutrophic waters with the sustainable production of feed and fertiliser, whilst providing multiple downstream benefits and minimising environmental trade-offs. This integrated 'ecosystem services approach' has the potential to holistically close the loop on agricultural nutrient loss, and thus sustainably recover finite resources such as phosphorus from waste.

  17. Assessment of Land and Water Resource Implications of the UK 2050 Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK Carbon Plan presents four low-carbon energy system pathways that achieves 80% GHG emission targets by 2050, stipulated in the UK Climate Change Act (2008). However, some of the energy technologies prescribed under these pathways are land and water intensive; but would the increase demand for land and water under these pathways lead to increased competition and stress on agricultural land, and water resources in the UK? To answer the above question, this study uses an integrated modelling approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for the pathways, based on scenarios of power plant location, and the energy crop yield projections. The outcome is compared with sustainable limits of resource appropriation to assess potential stresses and competition for water and land by other sectors of the economy. The results show the Carbon Plan pathways have low overall impacts on UK water resources, but agricultural land use and food production could be significantly impacted. The impact on agricultural land use is shown to be mainly driven by projections for transport decarbonisation via indigenously sourced biofuels. On the other hand, the impact on water resources is mainly associated with increased inland thermal electricity generation capacity, which would compete with other industrial and public water demands. The results highlight the need for a critical appraisal of UK's long term low-carbon energy system planning, in particular bioenergy sourcing strategy, and the siting of thermal power generation in order to avert potential resource stress and competition.

  18. Remotely Sensed Estimates of Evapotranspiration in Agricultural Areas of Northwestern Nevada: Drought, Reliance, and Water Transfers

    NASA Astrophysics Data System (ADS)

    Bromley, Matthew

    The arid landscape of northwestern Nevada is punctuated by agricultural communities that rely on water primarily supplied by the diversion of surface waters and secondarily by groundwater resources. Annual precipitation in the form of winter snowfall largely determines the amount of surface water that is available for irrigation for the following agricultural growing season. During years of insufficient surface water supplies, particular basins can use groundwater in order to meet irrigation needs. The amount of water used to irrigate agricultural land is influenced by land use changes, such as fallowing, and water right transfers from irrigation to municipal use. To evaluate agricultural water consumption with respect to variations in weather, water supply, and land use changes, monthly estimates of evapotranspiration (ET) were derived from Landsat multispectral optical and thermal imagery over a eleven-year period (2001 to 2011) and compared to variations in weather, water supply, and land use across four hydrographic areas in northwestern Nevada. Monthly ET was estimated using a land surface energy balance model, Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC), using Landsat 5 and Landsat 7 imagery combined with local atmospheric water demand estimates. Estimates of net ET were created by subtracting monthly precipitation from METRIC-derived ET, and seasonal estimates were generated by combining monthly ET for April-October (the regional agricultural growing season). Results highlight that a range of geographic, climatic, hydrographic, and anthropogenic factors influence ET. Hydrographic areas such as Mason Valley have the ability to mitigate deficiencies in surface water supplies by pumping supplemental groundwater, thereby resulting in low annual variability in ET. Conversely, the community of Lovelock has access to limited upstream surface water storage and is restricted by groundwater that is saline and unsuitable for

  19. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  20. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  1. Water resources and rural growth: a policy analysis of water resource management in the Sierra Nevada foothills

    SciTech Connect

    Birch, D.N.

    1986-01-01

    Reverse migration has caused a phenomenal increase in population growth in the Sierra-Nevada region of California. The highest rate of growth is occurring in the unincorporated areas of rural counties where local government is least capable of providing public services. County government is the primary water-management entity in these areas, with land-use planning and the implementation of federal water-quality mandates the principal means of preventing water-resource exploitation and degradation from unrestricted growth and development. El Dorado, Placer, Sierra and Nevada counties constitute the study area of the report. The counties of Placer and Sierra were more successful in the resolution of water-management problems than either Nevada or El Dorado. In providing an analysis of water management policy in each of the four counties, the variables pertaining to success or failure in water management are identified and discussed. The research constituted a case study of decision making with respect to water availability, usage, and quality control. The principal competition for the limited water supply is between agriculture and residential land development - the latter the most prevalent form of land use activity in the study area. This competition has resulted in the overdrafting of ground water, threatening contamination.

  2. Water Budgets: Foundations for Effective Water-Resources and Environmental Management

    USGS Publications Warehouse

    Healy, Richard W.; Winter, Thomas C.; LaBaugh, James W.; Franke, O. Lehn

    2007-01-01

    INTRODUCTION Water budgets provide a means for evaluating availability and sustainability of a water supply. A water budget simply states that the rate of change in water stored in an area, such as a watershed, is balanced by the rate at which water flows into and out of the area. An understanding of water budgets and underlying hydrologic processes provides a foundation for effective water-resource and environmental planning and management. Observed changes in water budgets of an area over time can be used to assess the effects of climate variability and human activities on water resources. Comparison of water budgets from different areas allows the effects of factors such as geology, soils, vegetation, and land use on the hydrologic cycle to be quantified. Human activities affect the natural hydrologic cycle in many ways. Modifications of the land to accommodate agriculture, such as installation of drainage and irrigation systems, alter infiltration, runoff, evaporation, and plant transpiration rates. Buildings, roads, and parking lots in urban areas tend to increase runoff and decrease infiltration. Dams reduce flooding in many areas. Water budgets provide a basis for assessing how a natural or human-induced change in one part of the hydrologic cycle may affect other aspects of the cycle. This report provides an overview and qualitative description of water budgets as foundations for effective water-resources and environmental management of freshwater hydrologic systems. Perhaps of most interest to the hydrologic community, the concepts presented are also relevant to the fields of agriculture, atmospheric studies, meteorology, climatology, ecology, limnology, mining, water supply, flood control, reservoir management, wetland studies, pollution control, and other areas of science, society, and industry. The first part of the report describes water storage and movement in the atmosphere, on land surface, and in the subsurface, as well as water exchange among these

  3. Appropriateness of Recommended Agricultural Water-Management Technologies as Perceived by the Personnel of Research and Extension System: A Study in the Eastern Region of India

    ERIC Educational Resources Information Center

    Ghosh, Souvik; Verma, H. N.; Chandra, Dinesh; Nanda, P.

    2005-01-01

    The key to agricultural development in the eastern region of India, where problems of excess water and water scarcity coexist, is the scientific management of water resources with the adoption of recommended water-management technologies. A vast networking of infrastructure for the development and dissemination of water-management technologies…

  4. Modeling global distribution of agricultural insecticides in surface waters.

    PubMed

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts.

  5. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  6. ``Virtual water'': An unfolding concept in integrated water resources management

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Zehnder, Alexander

    2007-12-01

    In its broadest sense, virtual water refers to the water required for the production of food commodities. Issues relating to virtual water have drawn much attention in scientific communities and the political sphere since the mid 1990s. This paper provides a critical review of major research issues and results in the virtual water literature and pinpoints the remaining questions and the direction of research in future virtual water studies. We conclude that virtual water studies have helped to raise the awareness of water scarcity and its impact on food security and to improve the understanding of the role of food trade in compensating for water deficit. However, the studies so far have been overwhelmingly concerned with the international food trade, and many solely quantified virtual water flows associated with food trade. There is a general lack of direct policy relevance to the solutions to water scarcity and food insecurity, which are often local, regional, and river basin issues. The obscurity in the conceptual basis of virtual water also entails some confusion. The methodologies and databases of the studies are often crude, affecting the robustness and reliability of the results. Looking ahead, future virtual water studies need to enhance the policy relevance by strengthening their linkages with national and regional water resources management. Meanwhile, integrated approaches taking into consideration the spatial and temporal variations of blue and green water resources availability and the complexity of natural, socioeconomic, and political conditions are necessary in assessing the trade-offs of the virtual water strategy in dealing with water scarcity. To this end, interdisciplinary efforts and quantitative methods supported by improved data availability are greatly important.

  7. Modeling the current and future capacity of water resources to meet water demands in the Ebro basin

    NASA Astrophysics Data System (ADS)

    Milano, Marianne; Ruelland, Denis; Dezetter, Alain; Fabre, Julie; Ardoin-Bardin, Sandra; Servat, Eric

    2013-09-01

    Worldwide studies have shown that the Mediterranean region is one of the most vulnerable areas to water crisis. The region is characterized by limited and unequally distributed water resources and increasing water demands. The Ebro catchment (85,000 km2, Spain) is representative of this context. Since the late 1970s, a negative trend in river discharge has been observed, attributed to a decrease in mean precipitation, and a rise in mean temperature and in water consumption. Finally, over 230 storage dams regulate river discharge. In this context, an integrated water resources modeling framework was developed to evaluate the current and future capacity of water resources to meet domestic and agricultural water demands as well as environmental flow requirements. The approach was driven by a conceptual rainfall-runoff model generating water supplies and by a demand driven storage dam model. The approach defines current pressures on water resources and evaluates future changes in water allocation in the medium term under climatic and water use scenarios, considering changes in population and in irrigated areas. Currently, water demands in the Ebro catchment are satisfied. In 2050, water resources are projected to decrease by 15-35% during spring and summer, leading to growing competition among users and severe water shortages for irrigated agriculture. This study provides an original approach to identify the most vulnerable regions to water use conflicts. It also highlights the interest of integrated modeling for complete analysis of the ability of water resources to meet water demands in complex change scenarios as a support for decision making.

  8. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    SciTech Connect

    Hanlon, Edward; Capece, John

    2009-11-20

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agricultural land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.

  9. Water resources of Natchitoches Parish, Louisiana

    USGS Publications Warehouse

    Fendick, Robert B.; Prakken, Larry B.; Griffith, Jason M.

    2013-01-01

    In 2005, about 33.8 million gallons per day (Mgal/d) was withdrawn from water sources in Natchitoches Parish, Louisiana. Surface water sources accounted for about 86 percent (29.2 Mgal/d) of all withdrawals whereas groundwater sources accounted for about 14 percent (4.62 Mgal/d). Withdrawals for industrial use accounted for about 42 percent (14.1 Mgal/d) of the total water withdrawn (table 2). Other categories of use included public supply, rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. The city of Natchitoches used almost 5.6 Mgal/d (about 5.2 Mgal/d of surface water and 0.4 Mgal/d of ground water) for public supply. Water-use data collected at 5-year intervals from 1960 to 2005 indicated that total water withdrawals increased from about 3.5 Mgal/d in 1960 to a peak of almost 35 Mgal/d in 2000. This fact sheet summarizes basic information on the water resources of Natchitoches Parish. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  10. Lunar Water Resource Demonstration (LWRD) Test Results

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Captain, Janine E.; Quinn, Jacqueline W.; Gibson, Tracy L.; Perusich, Stephen A.; Weis, Kyle H.

    2009-01-01

    NASA has undertaken the In-Situ Resource Utilization (lSRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The RESOLVE chemical processing system was mounted within the CMU rover "Scarab" and successfully demonstrated on Hawaii's Mauna Kea volcano in November 2008. This technology could be used on Mars as well. As described at the 2008 Mars Society Convention, the Lunar Water Resource Demonstration (LWRD) supports the objectives of the RESOLVE project by capturing and quantifying water and hydrogen released by regolith upon heating. Field test results for the quantification of water using LWRD showed that the volcanic ash (tephra) samples contained 0.15-0.41% water, in agreement with GC water measurements. Reduction of the RH in the surge tank to near zero during recirculation show that the water is captured by the water beds as desired. The water can be recovered by heating the Water Beds to 230 C or higher. Test results for the capture and quantification of pure hydrogen have shown that over 90% of the hydrogen can be captured and 98% of the absorbed hydrogen can be recovered upon heating the hydride to 400 C and desorbing the hydrogen several times into the evacuated surge tank. Thus, the essential requirement of capturing hydrogen and recovering it has been demonstrated. ,

  11. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  12. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  13. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  14. Climate Change, Feedback-Modelling, and Water Resources

    NASA Astrophysics Data System (ADS)

    Davies, E. G.; Simonovic, S. P.

    2008-05-01

    Global change research has generally followed a driving scenario-complex model approach, in which a set of projections provide input data that force the behaviour of an associated complex model. This approach neglects the role of interconnections -- or feedbacks -- between subsystems in determining the evolution of the system as a whole. However, another approach, called integrated assessment modelling (IAM), is available. In IAM, socio- economic adaptation and mitigation efforts become part of the actual physical process of climate change: changes in one sector lead to changes in another through causal, feedback relationships. The physical basis of connections between climate change and the hydrological cycle is already well-understood. Our research, using an eight-sector model of the global society-biosphere-climate system, demonstrates that hydrological and other elements of the socio-economic system are likewise tightly connected, and that their relationship has important implications for both water resources and for the rest of the system. The three water sectors in the model simulate water withdrawals and consumption at a global level in terms of domestic, industrial, and agricultural use, and incorporate wastewater production, treatment, and reuse. Other model sectors include the global climate, carbon cycle, economic, population, and land-use systems. Experimental results indicate that surface water availability and water quality play critical roles in long-term socio- economic wellbeing. For the presentation, we will demonstrate, in general terms, the effects of climate change and other socio-economic changes on water resources and the feedback effects of water-related changes on the larger model. In particular, we will focus on changing water use over time, and on the influence of wastewater treatment and reuse policies on water scarcity levels.

  15. Water resources data-Maine, water year 2003

    USGS Publications Warehouse

    Stewart, G.J.; Caldwell, J.M.; Cloutier, A.R.

    2004-01-01

    This volume of the annual hydrologic data report of Maine is one of a series of annual reports that document data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  16. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  17. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  18. Editorial changes - Advances in Water Resources

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; D'Odorico, P.; Rinaldo, A.

    2015-10-01

    Prof. Miller's longevity of service as Editor is remarkable - he started this role in August 1997. During his nearly 18 years as Editor, he provided unstinting energy, attention to detail, and commitment to the water resources community. A hallmark of his stewardship of the journal is that he "led from the front". He undertook not only to sustain a suitable venue for high quality research, but also to foster special issues, especially in emerging research topics. Prof. Miller ensured that at all times the journal's core focus of fundamental water resources science was not diluted. Indeed, a major legacy of Prof. Miller's vision is that the journal is a destination of choice for such contributions.

  19. STATE WATER RESOURCES RESEARCH INSTITUTE PROGRAM: GROUND WATER RESEARCH.

    USGS Publications Warehouse

    Burton, James S.; ,

    1985-01-01

    This paper updates a review of the accomplishments of the State Water Resources Research Program in ground water contamination research. The aim is to assess the progress made towards understanding the mechanisms of ground water contamination and based on this understanding, to suggest procedures for the prevention and control of ground water contamination. The following research areas are covered: (1) mechanisms of organic contaminant transport in the subsurface environment; (2) bacterial and viral contamination of ground water from landfills and septic tank systems; (3) fate and persistence of pesticides in the subsurface; (4) leachability and transport of ground water pollutants from coal production and utilization; and (5) pollution of ground water from mineral mining activities.

  20. Water Resources Data for Oregon, Water Year 2003

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2004-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in Oregon and contains discharge records for 199 stream-gaging stations, 25 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records collected at 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  1. Water Resources Data for Oregon, Water Year 2002

    USGS Publications Warehouse

    Herrett, T.A.; Hess, G.W.; House, J.G.; Ruppert, G.P.; Courts, M.L.

    2003-01-01

    The annual Oregon hydrologic data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report includes records on both surface and ground water in the State and contains discharge records for 181 stream-gaging stations, 47 partial-record or miscellaneous streamflow stations, and 8 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 26 lakes and reservoirs; and water-quality records for 127 streamflow-gaging stations, 2 atmospheric deposition stations, and 11 ground-water sites.

  2. Water resources of Branch County, Michigan

    USGS Publications Warehouse

    Giroux, P.R.; Stoimenoff, L.E.; Nowlin, J.O.; Skinner, E.L.

    1966-01-01

    Branch County has abundant water resources throughout most of its area. Almost all the water used is supplied by wells that obtain water from glacial drift deposits and locally from fractures and sandy beds in the Coldwater Shale. Glacial drift in buried bedrock valleys may yield large quantities of water to wells. Well yields are generally adequate for domestic and farm supplies. Properly developed large-diameter wells tapping thick beds of sand and gravel of the glacial drift can yield up to several thousands of gallons per minute locally. The hundreds of lakes and the many perennial streams have great recreational value. They are also a large potential source of water for some supplies. For example, it is estimated that 88 billion gallons of water runs off in streams of the county in an average year, and the lakes o the county hold about 42billion gallons of water in storage.Problems of water supply to wells exist locally in some moraine and till areas of where the glacial drift is thin and the underlying bedrock yields only small quantities of water or none at all.Ground water is generally hard to very hard and often contains excessive iron. Salty water is mainly a problem in areas where bedrock is the chief source.Floods are not a serious problem largely because of the storage capacity of the lakes and the permeable materials in some stream basins. Based on measurements at eight stream sites the estimated amount of flow for 90 percent of the time ranges from 80,000 to 150,000 gallons per day per square mile of drainage area.A special study of low levels in land-locked Gilead Lake indicated that this lake is semiperched and mostly dependent upon the water table for tits levels.

  3. Climate change, water resources and child health.

    PubMed

    Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G

    2010-07-01

    Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.

  4. Water-resources investigations in Wisconsin

    USGS Publications Warehouse

    Maertz, D.E.

    1996-01-01

    OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also LOCATION: Statewide PROJECT CHIEF: Barry K. Holmstrom PERIOD OF PROJECT: July 1913-Continuing designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for waterquality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in the report "Water Resources Data-Wisconsin."

  5. Integrated Water Resources Management: A Global Review

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  6. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  7. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    SciTech Connect

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  8. Review of surrogate modeling in water resources

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Tolson, Bryan A.; Burn, Donald H.

    2012-07-01

    Surrogate modeling, also called metamodeling, has evolved and been extensively used over the past decades. A wide variety of methods and tools have been introduced for surrogate modeling aiming to develop and utilize computationally more efficient surrogates of high-fidelity models mostly in optimization frameworks. This paper reviews, analyzes, and categorizes research efforts on surrogate modeling and applications with an emphasis on the research accomplished in the water resources field. The review analyzes 48 references on surrogate modeling arising from water resources and also screens out more than 100 references from the broader research community. Two broad families of surrogates namely response surface surrogates, which are statistical or empirical data-driven models emulating the high-fidelity model responses, and lower-fidelity physically based surrogates, which are simplified models of the original system, are detailed in this paper. Taxonomies on surrogate modeling frameworks, practical details, advances, challenges, and limitations are outlined. Important observations and some guidance for surrogate modeling decisions are provided along with a list of important future research directions that would benefit the common sampling and search (optimization) analyses found in water resources.

  9. Preliminary report on the stable isotope imaging and characterization of surface and ground water resources in the southern Sacramento Valley

    SciTech Connect

    Davisson, M.L.; Criss, R.E.; Campbell, K.R.

    1993-11-01

    This document contains information about the water resources in Sacramento. The project considers isotopic characterization of groundwater and the environmental effects of the misuse of water resources. In particular, the study looks at the effects extensive agriculture and the overdrafting of groundwater.

  10. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 5: Inland water resources

    NASA Technical Reports Server (NTRS)

    Wetzler, E.; Peterson, W.; Putnam, M.

    1974-01-01

    The economic value of an ERTS system in the area of inland water resources management is investigated. Benefits are attributed to new capabilities for managing inland water resources in the field of power generation, agriculture, and urban water supply. These benefits are obtained in the area of equal capability (cost savings) and increased capability (equal budget), and are estimated by applying conservative assumptions to Federal budgeting information, Congressional appropriation hearings, and ERTS technical capabilities.

  11. To The Biorefinery: Delivered Forestland and Agricultural Resources

    SciTech Connect

    2016-06-01

    It can be challenging and costly to transport biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and lowbulk density of cellulosic feedstocks, cost effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board’s Feedstock Logistics Interagency Working Group identified four primary barriers related to biorefinery commercialization: • Capacity and efficiency of harvest and collection equipment • High-moisture content leading to degradation of biomass • Variable biomass quality upon arrival at the biorefinery • Costly transportation options.1 Further, feedstock supply systems do not currently mitigate risks such as low crop yield, fire, or competition for resource use. Delivery and preprocessing improvements will allow for the development of a commercial-scale bioenergy industry that achieves national production and cost targets.

  12. NASA Data for Water Resources Applications

    NASA Technical Reports Server (NTRS)

    Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared

    2004-01-01

    Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1

  13. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  14. Water Matters. Water Resources Teacher's Guide, Vol. 1.

    ERIC Educational Resources Information Center

    Kauffman, Sue Cox

    This teachers guide is designed to accompany a series of posters developed through the U.S. Geological Survey's Water Resources Education Initiative, a cooperative effort between public and private education interests. It provides teacher guidance, background information, suggestions for a variety of classroom activities, and supplemental resource…

  15. Water resources of Carbon County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Mason, Jon P.; Norris, Jodi R.; Miller, Kirk A.

    2006-01-01

    Carbon County is located in the south-central part of Wyoming and is the third largest county in the State. A study to describe the physical and chemical characteristics of surface-water and ground-water resources in Carbon County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Surface-water data were not collected as part of the study. Forty-five ground-water-quality samples were collected as part of the study and the results from an additional 618 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers in hydrogeologic units throughout the county also are described. Flow characteristics of streams in Carbon County vary substantially depending on regional and local basin char-acteristics and anthropogenic factors. Precipitation in the county is variable with high mountainous areas receiving several times the annual precipitation of basin lowland areas. For this reason, streams with headwaters in mountainous areas generally are perennial, whereas most streams in the county with headwaters in basin lowland areas are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Carbon County during water years 1966 through 1986 varied. Concentrations of dissolved constituents and suspended sediment were smallest at sites on streams with headwaters in mountainous areas because of resistant geologic units, large diluting streamflows, and increased vegetative cover compared to sites on streams with headwaters in basin lowlands. Both water-table and artesian conditions occur in aquifers within the county. Shallow ground water is

  16. Water as an urban resource and nuisance

    USGS Publications Warehouse

    Thomas, H.E.; Schneider, William Joseph

    1970-01-01

    The water resource, which is widely and irregularly distributed on earth, is available to man for such enjoyment and development and use as he sees fit, some use being essential to his existence. Natural variations in the quantity and quality of water are inevitable and, if they cause annoyance or injury to someone, are accepted as one of the hardships that this planet imposes upon its inhabitants; such variations are recognized as "acts of God." However, if any man or society is partly responsible for these variations, which may cause such annoyance or injury, and may become a nuisance (an invasion or disturbance of the rights of others) such a man or society may perhaps be subject to injunctions and damage suits. Legal disputes over water as a nuisance are generally deeply involved with problems of the respective rights of plaintiff and defendant. These respective rights vary among the States.

  17. Remote Sensing and GIS for Water Resource Decision Making

    NASA Astrophysics Data System (ADS)

    Stough, T. M.; Scantlin, P.; Granger, S. L.; Geller, G.; Molotch, N. P.; Hyon, J.

    2009-12-01

    Climatological controls on snow distribution and associated cycling of water and energy dictates water availability for sustaining ecosystems and for meeting the demands of the Western US. Over the past 50 years, climate change and associated increases in air temperature have accelerated snowmelt rates throughout the region. Projecting these trends into the coming century, climate and economic models predict decreases in water availability and an associated devaluation of California's agricultural lands by ~15% - an economic loss amounting to billions of dollars annually. Improving knowledge of physical processes related to snow distribution is critical for reducing uncertainty in these predictions and in turn enabling mitigation of impacts through informed environmental policy and efficient resource management. We are collaborating with the Los Angeles Department of Water and Power (LADWP) to incorporate a GIS-based information product that integrates snowpack observations from ground, airborne, and remotely sensed data into their water forecasting process. The central data product is a snow water equivalence (SWE) reconstruction that computes the SWE for the snow maximum for each season of interest (Molotch, 2009). The SWE product is then analyzed in ArcGIS using watersheds (computed using NHD+ hyrography data) that feed stream gauges monitored by LADWP. In this way, we integrate snowpack from multiple sources to develop a GIS-based process for comparing LADWP runoff measurements with estimates from space-based observations. We will present the results of our case study of five watersheds in the Owens Valley for the 2001 through 2007 snow seasons.

  18. Future Visions of the Brahmaputra - Establishing Hydrologic Baseline and Water Resources Context

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Yang, Y. E.; Wi, S.; Brown, C. M.

    2013-12-01

    The Brahmaputra River Basin (China-India-Bhutan-Bangladesh) is on the verge of a transition from a largely free flowing and highly variable river to a basin of rapid investment and infrastructure development. This work demonstrates a knowledge platform for the basin that compiles available data, and develops hydrologic and water resources system models of the basin. A Variable Infiltration Capacity (VIC) model of the Brahmaputra basin supplies hydrologic information of major tributaries to a water resources system model, which routes runoff generated via the VIC model through water infrastructure, and accounts for water withdrawals for agriculture, hydropower generation, municipal demand, return flows and others human activities. The system model also simulates agricultural production and the economic value of water in its various uses, including municipal, agricultural, and hydropower. Furthermore, the modeling framework incorporates plausible climate change scenarios based on the latest projections of changes to contributing glaciers (upstream), as well as changes to monsoon behavior (downstream). Water resources projects proposed in the Brahmaputra basin are evaluated based on their distribution of benefits and costs in the absence of well-defined water entitlements, and relative to a complex regional water-energy-food nexus. Results of this project will provide a basis for water sharing negotiation among the four countries and inform trans-national water-energy policy making.

  19. Conservation of Water and Related Land Resources

    NASA Astrophysics Data System (ADS)

    Caldwell, Lynton K.

    1984-04-01

    The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.

  20. The Sparta Aquifer: A Sustainable Water Resource?

    USGS Publications Warehouse

    McKee, Paul W.; Hays, Phillip D.

    2002-01-01

    Introduction The Sparta aquifer is an aquifer of regional importance within the Mississippi embayment aquifer system. It consists of varying amounts of unconsolidated sand, inter-stratified with silt and clay lenses within the Sparta Sand of the Claiborne Group. It extends from south Texas, north into Louisiana, Arkansas, and Tennessee, and eastward into Mississippi and Alabama (fig. 1). On both the west and east sides of the Mississippi embayment, the Sparta aquifer is exposed at the surface (outcrops) and is locally unconfined; it becomes confined as it dips toward the axis of the embayment, (generally corresponding with the Mississippi River) and southward toward the Gulf of Mexico where it is deeply buried in the subsurface (Hosman, 1968). Generalized ground-water flow in the Sparta aquifer is from the outcrop areas to the axis (center) of the embayment (fig. 2). In Arkansas, the Sparta aquifer outcrops parallel to the Fall Line at the western extreme of the Mississippi embayment (the Fall Line is a line dividing the mountainous highlands of Arkansas from the lowland area); and the formation dips from its outcrop area to the southeast. The Sparta aquifer supplies water for municipalities, industries such as paper production, and to a lesser degree, irrigation of agricultural crops (fig. 3). This report highlights hydrologic conditions of the aquifer in Arkansas County as an example of how water use is affecting water levels.

  1. Water resources of Sweetwater County, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Miller, Kirk A.

    2004-01-01

    Sweetwater County is located in the southwestern part of Wyoming and is the largest county in the State. A study to quantify the availability and describe the chemical quality of surface-water and ground-water resources in Sweetwater County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineers Office. Most of the county has an arid climate. For this reason a large amount of the flow in perennial streams within the county is derived from outside the county. Likewise, much of the ground-water recharge to aquifers within the county is from flows into the county, and occurs slowly. Surface-water data were not collected as part of the study. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Forty-six new ground-water-quality samples were collected as part of the study and the results from an additional 782 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers throughout the county also are described. Flow characteristics of streams in Sweetwater County vary substantially depending on regional and local basin characteristics and anthropogenic factors. Because precipitation amounts in the county are small, most streams in the county are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flows in perennial streams in the county generally are a result of snowmelt runoff in the mountainous headwater areas to the north, west, and south of the county. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Sweetwater County during water years 1974 through 1983 were variable. Concentrations of dissolved constituents, suspended sediment, and bacteria generally were smallest at sites on the Green River because of resistant geologic units, increased

  2. Water Resources Data Massachusetts and Rhode Island Water Year 1999

    USGS Publications Warehouse

    Socolow, R.S.; Zanca, J.L.; Murino, Domenic; Ramsbey, L.R.

    2000-01-01

    INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Massachusetts and Rhode Island each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the States. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled 'Water Resources Data-Massachusetts and Rhode Island.' Hydrologic data are also available through the Massachusetts-Rhode Island District Home Page on the world-wide web (http://ma.water.usgs.gov). Historical data and real-time data (for sites equipped with satellite gage-height telemeter) are also available. The home page also contains a link to the U.S. Geological Survey National Home Page where streamflow data from locations throughout the United States can be retrieved. This report series includes records of stage, discharge, and water quality of streams; contents of lakes and reservoirs; water levels of ground-water wells; and water quality of ground-water wells. This volume contains discharge records at 90 gaging stations; stage records at 2 gaging stations; monthend contents of 4 lakes and reservoirs; water quality at 31 gaging stations; water quality at 27 observation wells; and water levels for 139 observation wells. Locations of these sites are shown in figures 1 and 2. Short-term water-quality data were collected at 21 gaging stations and 27 observation wells and are shown in figure 3. Miscellaneous hydrologic data were collected at various sites that were not involved in the systematic data-collection program and are published as miscellaneous discharge measurements. The data in this report represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies

  3. Water resources inventory of northwest Florida

    USGS Publications Warehouse

    Dysart, J.E.; Pascale, C.A.; Trapp, Henry

    1977-01-01

    Water resources of the 16 counties of the northwest Florida appear adequate unitl at least 2020. In the 4 westernmost counties, the sand-and-gravel aquifer and streams combined could provide 2,200 to 3,600 million gallons per day of water. Streams outside these counties could provide 5,600 million gallons per day. The Floridan aquifer could provide 220 million gallons per day. Generally, water of quality suitable for most purposes is available throughout the area, although water in smaller streams and in the sand-and-gravel aquifer is acidic and locally contains excessive iron. Water in the upper part of the Floridan aquifer is generally fresh, but saline at depth and in some coastal areas. The quantity of water available in the study area is about 8,020 to 9,420 million gallons per day and projected needs for the year 2020 range from 2,520 to 4,130 million gallons per day. ' Approximate method ' flood-prone area maps cover most of the area. (Woodard-USGS)

  4. Water resources of the Truk Islands

    USGS Publications Warehouse

    Van der Brug, Otto

    1983-01-01

    The Truk Islands, part of the Caroline Islands in the western Pacific, consist of 19 volcanic islands and about 65 coral islets. The volcanic islands and some of the coral islets are scattered in an 820-square-mile lagoon enclosed by a 125-mile long barrier reef. Moen, although not the largest, is by far the most developed island and is the adminstrative, commercial, educational, and transporation center of the islands. Monthly rainfall records for most years are available since 1903. Rainfall-runoff comparisons show that about half the annual rainfall runs off as surface water into Truk Lagoon. Flow characteristics of the major streams, based on more than 11 years of record, are provided and the application of data for possible use in the design of reservoirs and rain catchments is included. Historical and present development of all water sources is given. The chemical analyses of surface and ground water on Moen, with the exception of water from well 9, show the good quality of the water sources. This report summarizes all hydrologic data collected and provides interpretations that can be used for development and management of the water resources. (USGS)

  5. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  6. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.

    PubMed

    Sweeney, Michael W; Kabouris, John C

    2016-10-01

    A review of the literature published in 2015 on topics relating to water resource recovery facilities (WRRF) in the areas of modeling, automation, measurement and sensors and optimization of wastewater treatment (or water resource reclamation) is presented.

  7. Water resources of Indiana County, Pennsylvania

    USGS Publications Warehouse

    Williams, D.R.; McElroy, T.A.

    1997-01-01

    Indiana County, west-central Pennsylvania, is a major producer of coal and natural gas. Water managers and residents are concerned about the effects of mining and natural gas exploration on the surface- and ground-water resources of the county. This study assesses the quality and quantity of water in Indiana County. Ground- and surface-water sources are used for public supplies that serve 61 percent of the total population of the county. The remaining 39 percent of the population live in rural areas and rely on cisterns and wells and springs that tap shallow aquifers. Most of the county is underlain by rocks of Middle to Upper Pennsylvanian age. From oldest to youngest, they are the Allegheny Group, the Glenshaw Formation, the Casselman Formation, and the Monongahela Group. Almost all the coals mined are in the Allegheny Group and the Monongahela Group. Ground water in Indiana County flows through fractures in the rock. The size and extent of the fractures, which are controlled by lithology, topography, and structure, determine the sustained yield of wells. Topography has a significant control over the yields of wells sited in the Allegheny Group. Properly sited wells in the Glenshaw Formation may have yields adequate for municipal, commercial, or industrial uses. The Casselman Formation yields adequate amounts of water for domestic use. Yield of the Monongahela Group is small, and the water may not be of suitable quality for most uses. Yields of hilltop wells may be marginal, but valley wells may yield sufficient amounts for large-volume users. Data on the other rock units are sparse to nonexistent. Few wells in the county yield more than 40 gallons per minute. Most of the wells that do are in valleys where alluvial deposits are extensive enough to be mapable. Short-term water-level fluctuations are variable from well to well. Seasonal water-level fluctuations are controlled by time of year and amount of precipitation. The quality of water from the Casselman

  8. The impact of climate change on the water resource

    NASA Astrophysics Data System (ADS)

    Perac, Marija Å.; Grgurevac, Anamarija

    2010-05-01

    The EU has defined dangerous climate change as an increase in 2 degrees Celsius of average global temperatures. Rising global temperatures will lead to an intensification of hydrological cycle, resulting in dryer dry season, and subsequently heightened risk of more extreme and frequent floods and drought. Climate change is caused by greenhouse gasses ( GHGs), which enhance the " greenhouse " properties of the earth's atmosphere. These gasses allow solar radiation from the sun to travel through the atmosphere but prevent the reflected heat from escaping back into space. This causes the earth's temperature to rise. Changing climate will also have significant impacts on the availability of water as well as the quality of water that is available and accessible. Possibly, climate change magnificent impact at water cycles in Croatia. It means more droughts, it will have impact in agriculture and natural systems, specially swamp areas. Also, it will be come to reduction river flows, and maybe lower underground water level which used for water supply. Climate change can be impact on intensity of floods and quality/quantity of water.Successes of climate change in Croatia are: decrease volume of precipitation at whole state area; long drought years directly water quantity for irrigation; decreasing drinking water. Ponder able for next 40 years mean temperature will be increase for 2,5 C. It assumes that sea level will be increase at 65 - 100 cm. It will be endanger cities and settlements besides coast ( cities: Split, Zadar; west coast of Istra; delta of Neretva; islands: Krk, Cres, Lošinj…). Suggestions for next activities: monitoring and notation hydro meteorological information's; account impact of climate change on the: evaporation, drain, water balance, water management activity, make a region impact study of a possibly account on the water resources. Maintaining and development of water resources and agrotehnical systems and application water management strategy

  9. Water resources transfers through southern African food trade: resource efficiency and climate adaptation

    NASA Astrophysics Data System (ADS)

    Dalin, Carole; Conway, Declan

    2015-04-01

    The connections between climate and the water-food nexus are strong and economically significant in southern Africa, yet the role of observed climate variability as a driver of production fluctuations is poorly understood. In addition, as regional collaboration strengthens through the SADC (Southern Africa Development Community) and trade with other regions increases, it is important to understand both how climate variability affects productivity and how intra- and extra-regional trade can contribute to the region's capacity to deal with climate-related productivity shocks. We use international food trade data (FAOSTAT) and a global hydrological model (H08) to quantify the water resources embedded in international food trade across southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic, political and climatic changes on agricultural trade and embedded water resources during that period. In particular, the effects of climate variability on trade flows and crop yields are estimated, to provide insights on the potential of trade as a collaborative adaptation mechanism.

  10. Water Resources Management for Shale Energy Development

    NASA Astrophysics Data System (ADS)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  11. Optimality versus stability in water resource allocation.

    PubMed

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an

  12. Increasing life expectancy of water resources literature

    NASA Astrophysics Data System (ADS)

    Heistermann, M.; Francke, T.; Georgi, C.; Bronstert, A.

    2014-06-01

    In a study from 2008, Larivière and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Larivière and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.

  13. Accelerated Capacity Development in Water Resources Education: the experiences of the Ethiopian Institute of Water Resources

    NASA Astrophysics Data System (ADS)

    Alamirew, T.; Mekonnen, G.; Viglione, A.

    2012-04-01

    Ethiopia recently recognises that the water resources development is the major entry point in poverty alleviation and sustainable development. Water in Ethiopia plays a key role in the Water-Energy-Food-nexus. Over 98% of the electricity in the country is generated using hydropower and yet about 2000 MW has been developed. Out of the 3.5 Mha potentially irrigable land, only 0.25 Mha has been developed to date. Access to drinking water supply coverage is among the lowest in the world. One of the limiting factors in harnessing the resource base is the absence of water professionals to face the fast growing demand in education, research, development in the water sector. Recognising this, in collaboration with University of Connecticut of the United States, Addis Ababa University launched the Ethiopian Institute of Water Resources (EIWR) by enrolling 18 PhD and 24 MSc students. The program is unique in that much of the course instructors are coming from US and European Universities, but deliver courses together with Ethiopian collaborators. This is supposed to facilitate knowledge and experience transfer from the US/EU scientist to Ethiopian counterparts. The theses/dissertations are designed to focus on Ethiopia's immediate hydrological problems on selected basins, and will be coordinated by three advisors for each PhD - one from US/EU, one from Ethiopian Universities, and one water professional from the sector. We report here the lessons learned in setting up the EIWR institute and the education program.

  14. Performance assessment of Saskatchewan's water resource system under uncertain inter-provincial water supply

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard

    2014-05-01

    The trans-boundary Saskatchewan River Basin supports livelihoods and the economy of the province of Saskatchewan, Canada. Water users include irrigated agriculture, hydropower, potash mining, urban centers, and ecosystem services. Water availability in Saskatchewan is highly dependent on the flows from the upstream province of Alberta. These flows mostly originate from the Rocky Mountains headwaters and are highly regulated, due to intensive water use and redistribution before they get to the Alberta/Saskatchewan border. Warming climate and increasing water demands in Alberta have changed the incoming flow characteristics from Alberta to Saskatchewan. It is critical to assess the performance and the viability of Saskatchewan's water resources system under uncertain future inter-provincial inflows. For this purpose, a possible range of future changes in the inflows from Alberta to Saskatchewan is considered in this study. The considered changes include various combinations of shifts in the timing of the annual peak and volumetric change in the annual flow volumes. These shifts are implemented using a copula-based stochastic simulation method to generate multiple realizations of weekly flow series at two key locations of inflow to Saskatchewan's water resources system, in a way that the spatial dependencies between weekly inflows are maintained. Each flow series is of 31-years length and constitutes a possible long term water availability scenario. The stochastically generated flows are introduced as an alternative to the historical inflows for water resources planning and management purposes in Saskatchewan. Both historical and reconstructed inflows are fed into a Sustainability-oriented Water Allocation, Management, and Planning (SWAMP) model to analyze the effects of inflow changes on Saskatchewan's water resources system. The SWAMP model was developed using the System Dynamics approach and entails irrigation/soil moisture, non-irrigation uses and economic

  15. AOIPS water resources data management system

    NASA Technical Reports Server (NTRS)

    Merritt, E. S.; Shotwell, R. L.; Place, M. C.; Belknap, N. J.

    1976-01-01

    A geocoded data management system applicable for hydrological applications was designed to demonstrate the utility of the Atmospheric and Oceanographic Information Processing System (AOIPS) for hydrological applications. Within that context, the geocoded hydrology data management system was designed to take advantage of the interactive capability of the AOIPS hardware. Portions of the Water Resource Data Management System which best demonstrate the interactive nature of the hydrology data management system were implemented on the AOIPS. A hydrological case study was prepared using all data supplied for the Bear River watershed located in northwest Utah, southeast Idaho, and western Wyoming.

  16. AOIPS water resources data management system

    NASA Technical Reports Server (NTRS)

    Vanwie, P.

    1977-01-01

    The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

  17. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  18. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability.

  19. Water resources data for Oregon, water year 2004

    USGS Publications Warehouse

    Herrett, Thomas A.; Hess, Glenn W.; House, Jon G.; Ruppert, Gregory P.; Courts, Mary-Lorraine

    2005-01-01

    The annual Oregon water data report is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, Tribal, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report contains water year 2004 data for both surface and ground water, including discharge records for 209 streamflow-gaging stations, 42 partial-record or miscellaneous streamflow stations, and 9 crest-stage partial-record streamflow stations; stage-only records for 6 gaging stations; stage and content records for 15 lakes and reservoirs; water-level records from 12 long-term observation wells; and water-quality records collected at 133 streamflow-gaging stations and 1 atmospheric deposition station.

  20. Environmental and Natural Resources Occupations in Agricultural Education. A Teacher's Guide. Preliminary Draft.

    ERIC Educational Resources Information Center

    Mercer, R. J., Ed.

    The guide was developed for teachers of a one-year high school course in environmental and natural resources occupations and was part of larger project to revise the total agricultural education curriculum in South Carolina. A curriculum paradigm is presented with units and subunits diagramed and time periods suggested for each. Basic supportive…

  1. Science Education in Two-Year Colleges: Agriculture and Natural Resources.

    ERIC Educational Resources Information Center

    Beckwith, Miriam M.

    Agricultural and natural resources education in two-year colleges is examined as revealed by a study of science education that involved: (1) a review of the literature, (2) an examination of 175 college catalogs and class schedules from colleges nationwide, and (3) a survey of 1,275 science teachers. Part I of the study report discusses…

  2. The Common Market Concept: Using Community Based Resources in New Ways to Deliver Innovative Agriculture Programs.

    ERIC Educational Resources Information Center

    Upchurch, Jim; Fischer, Larry

    The cooperative agricultural programs described in this report were undertaken by John Wood Community College (JWCC) as part of a "common market" instructional delivery system, which utilizes existing community resources through contractual agreements with area schools, businesses, and government agencies. The report first provides a rationale for…

  3. A Study to Determine Competencies Needed in Selected Job Titles in Agricultural Resources Occupations.

    ERIC Educational Resources Information Center

    Bishop, Douglas D.; And Others

    The report is a composite, compilation, and analysis of data collected from selected job titles (soil conservation technician, civil engineering technician, dairy herd improvement supervisor, and lay food inspector) in agricultural resources occupations. The study was conducted to obtain a comprehensive analysis of the occupations and the…

  4. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania.

    PubMed

    Krause, Ariane; Rotter, Vera Susanne

    2017-07-15

    In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited.

  5. Theme--Achieving 2020. Goal 3: All Students Are Conversationally Literate in Agriculture, Food, Fiber, and Natural Resource Systems.

    ERIC Educational Resources Information Center

    Trexler, Cary, Ed.

    2000-01-01

    Nine theme articles focus on the need for students to be conversationally literate about agriculture, food, fiber, and natural resources systems. Discusses the definition of conversational literacy, the human and institutional resources needed, and exemplary models for promoting literacy. (JOW)

  6. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  7. Soil water and carbon management for agricultural resilience in a key node in the global virtual water trade network: Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Speratti, A. B.; Lathuilliere, M. J.; Dalmagro, H. J.; Couto, E. G.

    2015-12-01

    The Amazon region is globally connected through agricultural exports, with the Brazilian state of Mato Grosso in particular emerging as a key node in the global virtual water trade network in recent years, based largely on rainfed agriculture. The anticipated growth in the world's population suggests that virtual water trade will only become more important to global food security. In this presentation we will evaluate strategies for improving the resilience of rainfed agriculture in the region, particularly for the nearly 12 million hectares of sandy soil with low water holding capacity within Mato Grosso that has largely been converted to agricultural use. We will review land use change trajectories and present results from soil water balance modeling and carbon fluxes for a range of future scenarios, including continued agricultural extensification, potential strategies for agricultural intensification, and novel water and carbon management strategies including biochar use in sandy soils to improve soil water holding capacities and soil carbon sequestration. We will also consider the role that irrigation might play in the future in the Amazon for improving agricultural resilience to climate change and feedbacks between irrigation and land use change pressures, noting that groundwater resources in the region are presently among the least exploited on the planet.

  8. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  9. Water resources of the Flint area, Michigan

    USGS Publications Warehouse

    Wiitala, Sulo Werner; Vanlier, K.E.; Krieger, Robert A.

    1964-01-01

    This report describes the water resources of Genesee County, Mich., whose principal city is Flint. The sources of water available to the county are the Flint and Shiawassee Rivers and their tributaries, inland lakes, ground water, and Lake Huron. The withdrawal use of water in the county in 1958 amounted to about 45 mgd. Of this amount, 36 mgd was withdrawn from the Flint River by the Flint public water-supply system. The rest was supplied by wells. At present (1959) the Shiawassee River and its tributaries and the inland lakes are not used for water supply. Flint River water is used for domestic, industrial, and waste-dilution requirements in Flint. About 60 percent of the water supplied by the Flint public water system is used by Flint industry. At least 30 mgd of river water is needed for waste dilution in the Flint River during warm weather.Water from Holloway Reservoir, which has a storage capacity of 5,760 million gallons, is used to supplement low flows in the Flint River to meet water-supply and waste-dilution requirements. About 650 million gallons in Kearsley Reservoir, on a Flint River tributary, is held in reserve for emergency use. Based on records for the lowest flows during the period 1930-52, the Flint River system, with the two reservoirs in operation, is capable of supplying about 60 mgd at Flint, less evaporation and seepage losses. The 1958 water demands exceeded this amount. Development of additional storage in the Flint River basin is unlikely because of lack of suitable storage sites. Plans are underway to supply Flint and most of Genesee County with water from Lake Huron.The principal tributaries of the Flint River in and near Flint could furnish small supplies of water. Butternut Creek, with the largest flow of those studied, has an estimated firm yield of 0.054 mgd per sq mi for 95 percent of the time. The Shiawassee River at Byron is capable of supplying at least 29 mgd for 95 percent of the time.Floods are a serious problem in Flint

  10. Water Resources: Security Impacts in the Jordan River Basin

    DTIC Science & Technology

    1997-03-01

    approximately 150 MCM/yr withdrawn through the East Ghor Canal. Jordan is using 110 percent of its available renewable resources by overexploiting its... resource . Israel, the Occupied Territories, and Jordan fully use or exceed their renewable annual water supplies. The water problem will grow even more...recognize the strategic importance of water as a limited resource . Water demand in Israel, the Occupied Territories, and Jordan exceeds renewable annual water

  11. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  12. Assessment and management of water resources in Egypt to face drought and water scarcity

    NASA Astrophysics Data System (ADS)

    Wolters, Wouter; El Guindy, Samia; Salah El Deen, Magdy; Roest, Koen; Smit, Robert; Froebrich, Jochen

    2013-04-01

    , innovations on resource efficiency enabling use of rest and by-products of one agricultural activity as an input for another one will be profitable for the food producers and will also be better for the environment. The creative design process to reach the required technological and policy innovations contributes to the developed adaptation strategy to face drought and water scarcity. Results will incorporate some previously un-thought of options. The issues of water scarcity and drought have consequences and implications that can no longer be adequately addressed by any one of the Ministries alone. Many other government departments and agencies must be involved and decisions will have to be made at the highest political level. All policies in Egypt must be conscious of the limitations in water availability, and water policies need to address technological developments as well as the full range of other issues, including: macro-economic factors, economic issues that influence farm-level decisions, development of human capital, governance, and financial risk management.

  13. Resources for National Water Savings for Outdoor Water Use

    SciTech Connect

    Melody, Moya; Stratton, Hannah; Williams, Alison; Dunham, Camilla

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  14. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    NASA Astrophysics Data System (ADS)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  15. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  16. Assessment tools for dryland water resources

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike; Gallart, Francesc; Irvine, Brian; Fleskens, Luuk; Froebrich, Jochen

    2013-04-01

    Since water resources are scarce across dryland areas, including Mediterranean Europe and much of Africa, the sparseness of meteo and hydrometric networks require the application of indirect methods to make best use of existing resources, and to plan for future needs in a world of changing climates. Although remote sensing methods may be among the most effective for present conditions, they have limited forecasting potential. Here we apply coarse scale modelling approaches, based on partitioning precipitation between evapotranspiration, runoff and recharge , and making use of CRU interpolated gridded climate data for the present and recent past, with offsets for future conditions based on GCM scenarios. These methods can be applied at a range of scales: first to provide broad regionalisation patterns for hydrological response and second to provide default background data that can be supplemented by local data to provide site-specific advice to land managers. These methods have been applied in the EU MIRAGE project to regionalise the frequency of the dry phase in temporary streams during the Mediterranean summer, to help define reference ecological conditions across the humid to arid spectrum. They are also being applied in the EU WAHARA project to support the sharing of appropriate good practice for water harvesting in semi-arid Africa, in partnership with researchers in Ethiopia, Tunisia, Zambia and Burkina-Faso. Initial results show where it appropriate to consider transferring techniques between climatically comparable areas.

  17. Influence of teleconnection on water quality in agricultural river catchments

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  18. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilizing the renewable resources of agriculture residues.

    PubMed

    Al-Abdallah, Wahib; Dahman, Yaser

    2013-11-01

    The present study demonstrates the ability to produce green biocellulose nanofibers using the renewable resources of agriculture residues. Locally grown wheat straws (WS) were hydrolyzed under different conditions. Their hydrolysates were utilized to produce the nanofibers in separate hydrolysis fermentation process by Gluconacetobacter xylinus strain bacterium. Highest biocellulose production of ~10.6 g/L was achieved with samples that were enzymatically hydrolyzed. Moreover, acidic hydrolyzed WS produced up to 9.7 g/L, with total sugar concentrations in culture media of 43 g/L. Generally, enzymatic hydrolysis of WS resulted in more total sugar concentration than the acidic hydrolysis (i.e., 52.12 g/L), while water hydrolysis produced the least. This can be related to utilizing Xylanase in addition to Cellulase and Beta-glucosidase that helps to hydrolyse WS dry basis of cellulose and hemicelluloses. Sugar mixtures produced under all hydrolysis conditions were mainly composed of glucose and xylose with average percentages of 56 and 28 %, respectively. Acidic hydrolysis at higher acid concentration, as well as soaking WS in the acidic solution for longer time, improved the total sugar concentration in the culture media by 18 %. Conducting thermal treatment at more intense conditions of higher temperature or heating time improved the total sugar produced with acidic hydrolysis. These conditions, however, resulted in further production of furfural, which considerably affected bacterial cells proliferation. This resulted in lowest sugar consumption in the range of 62-64 % that affected final BC production.

  19. Land Cover Monitoring for Water Resources Management in Angola

    NASA Astrophysics Data System (ADS)

    Miguel, Irina; Navarro, Ana; Rolim, Joao; Catalao, Joao; Silva, Joel; Painho, Marco; Vekerdy, Zoltan

    2016-08-01

    The aim of this paper is to assess the impact of improved temporal resolution and multi-source satellite data (SAR and optical) on land cover mapping and monitoring for efficient water resources management. For that purpose, we developed an integrated approach based on image classification and on NDVI and SAR backscattering (VV and VH) time series for land cover mapping and crop's irrigation requirements computation. We analysed 28 SPOT-5 Take-5 images with high temporal revisiting time (5 days), 9 Sentinel-1 dual polarization GRD images and in-situ data acquired during the crop growing season. Results show that the combination of images from different sources provides the best information to map agricultural areas. The increase of the images temporal resolution allows the improvement of the estimation of the crop parameters, and then, to calculate of the crop's irrigation requirements. However, this aspect was not fully exploited due to the lack of EO data for the complete growing season.

  20. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  1. Water resources of King County, Washington

    USGS Publications Warehouse

    Richardson, Donald; Bingham, J.W.; Madison, R.J.; Williams, R.

    1968-01-01

    Although the total supply of water in King County is large, water problems are inevitable because of the large and rapidly expanding population. The county contains a third of the 3 million people in Washington, most of the population being concentrated in the Seattle metropolitan area. King County includes parts of two major physiographic features: the western area is part of the Puget Sound Lowland, and the eastern area is part of the Cascade Range. In these two areas, the terrain, weather, and natural resources (including water) contrast markedly. Average annual precipitation in the county is about 80 inches, ranging from about 30 inches near Puget Sound to more than 150 inches in parts of the Cascades. Annual evapotranspiration is estimated to range from 15 to 24 inches. Average annual runoff ranges from about 15 inches in the lowlands to more than 100 inches in the mountains. Most of the streamflow is in the major basins of the county--the Green-Duwamish, Lake Washington, and Snoqualmie basins. The largest of these is the Snoqualmie River basin (693 square miles), where average annual runoff during the period 1931-60 was about 79 inches. During the same period, annual runoff in the Lake Washington basin ( 607 square miles) averaged about 32 inches, and in the Green-Duwamish River basin (483 square miles), about 46 inches. Seasonal runoff is generally characterized by several high-flow periods in the winter, medium flows in the spring, and sustained low flows in the summer and fall. When floods occur in the county they come almost exclusively between October and March. The threat of flood damage is greatest on the flood plaits of the larger rivers, but in the Green-Duwamish Valley the threat was greatly reduced with the completion of Howard A. Hanson Dam in 1962. In the Snoqualmie River basin, where no such dam exists, the potential damage from a major flood increases each year as additional land is developed in the Snoqualmie Valley. 0nly moderate amounts of

  2. Aspects of municipal wastewater reclamation and reuse for future water resource shortages in Taiwan.

    PubMed

    Chiou, R J; Chang, T C; Ouyang, C F

    2007-01-01

    The Water Resources Agency (WRA), Ministry of Economic Affairs (MOEA) has predicted that the annual water demand in Taiwan will reach approximately 20 billion m3 by 2021. However, the present water supply is only 18 billion m3 per year. This means that an additional 2 billion m3 have to be developed in the next 17 years. The reuse of treated wastewater effluent from municipal wastewater treatment plants could be one target for the development of new water resources. The responsible government departments already have plans to construct public sewerage systems in order to improve the quality of life of the populace and protect the environment. The treated wastewater effluent from such municipal wastewater treatment plants could be a very stable and readily available secondary type of water resource, different from the traditional types of water resources. The major areas where reclaimed municipal wastewater can be used to replace traditional fresh water resources include agricultural and landscape irrigation, street cleaning, toilet flushing, secondary industrial reuse and environmental uses. However, necessary wastewater reclamation and reuse systems have not yet been established. The requirements for their establishment include water reuse guidelines and criteria, the elimination of health risks ensuring safe use, the determination of the wastewater treatment level appropriate for the reuse category, as well as the development and application of management systems reuse. An integrated system for water reuse would be of great benefit to us all by providing more efficient ways to utilise the water resources.

  3. Evaluation for Water Conservation in Agriculture: Using a Multi-Method Econometric Approach

    NASA Astrophysics Data System (ADS)

    Ramirez, A.; Eaton, D. J.

    2012-12-01

    Since the 1960's, farmers have implemented new irrigation technology to increase crop production and planting acreage. At that time, technology responded to the increasing demand for food due to world population growth. Currently, the problem of decreased water supply threatens to limit agricultural production. Uncertain precipitation patterns, from prolonged droughts to irregular rains, will continue to hamper planting operations, and farmers are further limited by an increased competition for water from rapidly growing urban areas. Irrigation technology promises to reduce water usage while maintaining or increasing farm yields. The challenge for water managers and policy makers is to quantify and redistribute these efficiency gains as a source of 'new water.' Using conservation in farming as a source of 'new water' requires accurately quantifying the efficiency gains of irrigation technology under farmers' actual operations and practices. From a water resource management and policy perspective, the efficiency gains from conservation in farming can be redistributed to municipal, industrial and recreational uses. This paper presents a methodology that water resource managers can use to statistically verify the water savings attributable to conservation technology. The specific conservation technology examined in this study is precision leveling, and the study includes a mixed-methods approach using four different econometric models: Ordinary Least Squares, Fixed Effects, Propensity Score Matching, and Hierarchical Linear Models. These methods are used for ex-post program evaluation where random assignment is not possible, and they could be employed to evaluate agricultural conservation programs, where participation is often self-selected. The principal method taken in this approach is Hierarchical Linear Models (HLM), a useful model for agriculture because it incorporates the hierarchical nature of the data (fields, tenants, and landowners) as well as crop rotation

  4. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  5. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  6. Ground Water Education in America's Schools: A Catalog of Resource Materials for Elementary and Secondary Education Professionals.

    ERIC Educational Resources Information Center

    American Ground Water Trust, Dublin, OH.

    More than 13 million privately-owned wells and over 100,000 public water supply sources pump ground water to approximately 123 million Americans daily for personal, commercial, industrial, and agricultural uses. Yet, even as the nation's need for water grows, the prevailing lack of public knowledge and understanding about this resource leads to…

  7. Methodology of risk assessment of loss of water resources due to climate changes

    NASA Astrophysics Data System (ADS)

    Israfilov, Yusif; Israfilov, Rauf; Guliyev, Hatam; Afandiyev, Galib

    2016-04-01

    For sustainable development and management of rational use of water resources of Azerbaijan Republic it is actual to forecast their changes taking into account different scenarios of climate changes and assessment of possible risks of loss of sections of water resources. The major part of the Azerbaijani territory is located in the arid climate and the vast majority of water is used in the national economic production. An optimal use of conditional groundwater and surface water is of great strategic importance for economy of the country in terms of lack of common water resources. Low annual rate of sediments, high evaporation and complex natural and hydrogeological conditions prevent sustainable formation of conditioned resources of ground and surface water. In addition, reserves of fresh water resources are not equally distributed throughout the Azerbaijani territory. The lack of the common water balance creates tension in the rational use of fresh water resources in various sectors of the national economy, especially in agriculture, and as a result, in food security of the republic. However, the fresh water resources of the republic have direct proportional dependence on climatic factors. 75-85% of the resources of ground stratum-pore water of piedmont plains and fracture-vein water of mountain regions are formed by the infiltration of rainfall and condensate water. Changes of climate parameters involve changes in the hydrological cycle of the hydrosphere and as a rule, are reflected on their resources. Forecasting changes of water resources of the hydrosphere with different scenarios of climate change in regional mathematical models allowed estimating the extent of their relationship and improving the quality of decisions. At the same time, it is extremely necessary to obtain additional data for risk assessment and management to reduce water resources for a detailed analysis, forecasting the quantitative and qualitative parameters of resources, and also for

  8. Water Exploration: An Online High School Water Resource Education Program

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; McCall, L. R.; Amos, S.; McGowan, R. F.; Mote, A.; Negrito, K.; Paloski, B.; Ryan, C.; Cameron, B.

    2010-12-01

    The Institute for Geophysics at The University of Texas at Austin and 4empowerment.com, a Texas-based for-profit educational enterprise, teamed up with the Texas Water Development Board to develop and implement a Web-based water resources education program for Texas high school students. The program, Water Exploration uses a project-based learning approach called the Legacy Cycle model to permit students to conduct research and build an understanding about water science and critical water-related issues, using the Internet and computer technology. The three Legacy Cycle modules in the Water Exploration curriculum are: Water Basics, Water-Earth Dynamics and People Need Water. Within each Legacy Cycle there are three different challenges, or instructional modules, laid out as projects with clearly stated goals for students to carry out. Each challenge address themes that map to the water-related “Big Ideas” and supporting concepts found in the new Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science. As students work through a challenge they follow a series of steps, each of which is associated (i.e., linked online) with a manageable number of corresponding, high quality, research-based learning activities and Internet resources, including scholarly articles, cyber tools, and visualizations intended to enhance understanding of the concepts presented. The culmination of each challenge is a set of “Go Public” products that are the students’ answers to the challenge and which serve as the final assessment for the challenge. The “Go Public” products are posted to a collaborative workspace on the Internet as the “legacy” of the students’ work, thereby allowing subsequent groups of students who take the challenge to add new products. Twenty-two science educators have been trained on the implementation of the Water Exploration curriculum. A graduate student pursuing a master’s degree in science education through The

  9. A framework for unravelling the complexities of unsustainable water resource use

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  10. Water resources data, New Jersey, water year 2005.Volume 2 - ground-water data

    USGS Publications Warehouse

    Jones, Walter D.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2005 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 214 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  11. Water resources data, New Jersey, water year 2004--volume 2. ground-water data

    USGS Publications Warehouse

    Jones, Walter D.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2004 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 196 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, Sate, and local agencies in New Jersey.

  12. Water Resources Data, New Jersey, Water Year 2003 - Volume 2. Ground-Water Data

    USGS Publications Warehouse

    Jones, Walter D.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams: stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. Volume 2 contains a summary of the hydrologic conditions for 2003 water year; a listing of current water resource projects in New Jersey; a bibliography of water-related reports, articles, and fact sheets completed by the Geological Survey in recent years; records of ground-water levels from 185 wells; and a table of discontinued observation wells for which ground-water-level data are available. The locations of the ground-water level sites are shown on figure 4. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, Sate, and local agencies in New Jersey.

  13. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  14. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  15. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  16. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.

    2016-08-01

    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.

  17. Climate change, agroclimatic resources and agroclimatic zoning of agriculture in Bulgaria

    NASA Astrophysics Data System (ADS)

    Kazandjiev, V.; Moteva, M.; Georgieva, V.

    2009-09-01

    The important factors for the agrarian output in Bulgaria are only thermal and water probability. From the two factors the component related to soil moisture is more limited. As well water and temperatures probabilities in the agrarian output are estimated trough sums of temperatures and rainfalls or by derivatives indicators (most frequently named as coefficients or indices). The heat conditions and the heat resources are specified by the continuousness of the vegetative period. Duration of vegetative season is limited for each type of plant, between the spring and autumn steady pass of air temperature across the biological minimum. For the agricultural crops in Bulgaria the three biological minimums: in 5°C are taken for wheat and barley, oat, pea, lentil and sunflower; 10°C for corn, haricot, and soybean and in 15°C for the cotton, vegetables and other spring cultures). The cold and warm period duration are mutually related characteristics. The first period define number of days with the snow fall and days with the snow cover, that are in the basis in the formation of soil moisture reserves after the spring snow melt. Definition of the regions with temperature stress conditions during vegetative season is one of the most important parameters of agroclimatic conditions. The values indicating for the limitations are one or more periods from at least 10 consecutive days with maximal air temperature over 35 °С. More from the agricultures, character for the moderate continental climatic zone are developed normally under temperatures 25-28°С. Temperatures over 28°C are ballast slowing the growth and destroying plants due to the heat tension. The component, limiting in greatest degree growth, development and formation of yields from the agricultural crops are the conditions of moisturizing, present trough atmospheric and soil moisture. The most apparent indicator is the year sum of the rains or their sum by the periods with the average daily temperatures of

  18. The value of agricultural wetlands as invertebrate resources for wintering shorebirds

    USGS Publications Warehouse

    Taft, Oriane W.; Haig, Susan M.

    2005-01-01

    Agricultural landscapes have received little recognition for the food resources they provide to wintering waterbirds. In the Willamette Valley of Oregon, modest yet significant populations of wintering shorebirds (Charadriiformes) regularly use hundreds of dispersed wetlands on agricultural lands. Benthic invertebrates are a critical resource for the survival of overwintering shorebirds, yet the abundance of invertebrate resources in agricultural wetlands such as these has not been quantified. To evaluate the importance of agricultural wetlands to a population of wintering shorebirds, the density, biomass, and general community composition of invertebrates available to birds were quantified at a sample of Willamette Valley sites during a wet (1999–2000) and a dry winter (2000–2001). Invertebrate densities ranged among wetlands from 173 to 1925 (mean ± S.E.: 936 ± 106) individuals/m2 in the wet winter, and from 214 to 3484 (1028 ± 155) individuals/m2 in the dry winter. Total invertebrate estimated biomass among wetlands ranged from 35 to 652 (mean ± S.E.: 364 ± 35) mg/m2 in the wet winter, and from 85 to 1405 (437 ± 62) mg/m2 in the dry winter. These estimates for food abundance were comparable to that observed in some other important freshwater wintering regions in North America.

  19. UNDERGRADUATE EDUCATION IN THE BIOLOGICAL SCIENCES FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES, PROCEEDINGS OF A CONFERENCE.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    REPORTED ARE THE PROCEEDINGS OF A 1966 CONFERENCE WHICH DEALT WITH UNDERGRADUATE EDUCATIONAL NEEDS FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES. THE 167 EDUCATORS (MOSTLY DEANS AND DIRECTORS OF RESIDENT INSTRUCTION) WHO PARTICIPATED IN THE CONFERENCE REPRESENTED AGRICULTURE, RENEWABLE NATURAL RESOURCES, THE BIOLOGICAL SCIENCES, AND…

  20. Undergraduate Education in the Sciences for Students in Agriculture and Natural Resources. Summary of Proceedings of Regional Conferences.

    ERIC Educational Resources Information Center

    Commission on Education in Agriculture and Natural Resources, Washington, DC.

    Following a national conference entitled, "Undergraduate Education in the Biological Sciences for Students in Agriculture and Natural Resources," four regional conferences ensued, bringing together teaching faculty members from agriculture, forestry, other natural resource areas, and biology. The papers presented at these regional meetings are…

  1. Water resource management planning guide for Savannah River Plant

    SciTech Connect

    Hubbard, J.E.; Stephenson, D.E.; Steele, J.L. and Co., Aiken, SC . Savannah River Lab.); Gordon, D.E. and Co., Aiken, SC . Savannah River Plant)

    1988-10-01

    The Water Resource Management Planning Guide provides an outline for the development of a Savannah River Plant Water Resource Management Plan (WRMP) to protect, manage, and monitor the site's water resources. The management plan is based on three principle elements: (1) protection of the water quality, (2) management of the water quantity, and (3) monitoring of the water quality and quantity. The plan will assure that changes in water quality and quantity are identified and that corrective action is implemented as needed. In addition, water management activities within and between Savannah River Plant (SRP) organizations and departments will be coordinated to ensure the proper management of water resources. This document is intended as a guide to suggest goals and objectives that will provide a basis for the development of a water resource plan for SRP. Planning should be flexible rather than rigid, and the plan outlines in this document was prepared to be modified or updated as conditions necessitate. 16 refs., 12 figs.

  2. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  3. Water Resources Data North Dakota Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Harkness, R.E.; Wald, J.D.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 2 contains water-level records for 117 ground-water wells and water-quality records for 65 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  4. Water resources of the Yap Islands

    USGS Publications Warehouse

    Van der Brug, Otto

    1984-01-01

    The Yap Islands consist of four major islands, Yap, Gagil-Tamil, Maap, and Rumung. Of these, Yap Island has more than half the total land area, most of the population, and almost all of the economic development. The islands of Maap and Rumung together compose only 15 percent of the land area and population. Average annual rainfall over the Yap Islands amounts to 122 inches. Rainfall-runoff comparisons indicate that about half of the annual rainfall runs off to the ocean on Yap Island and Gagil-Tamil. Streams on Gagil-Tamil are perennial but streams on Yap Island are dry an average of 3 months per year due to geologic differences. Analyses of water samples from 23 sources show the good quality and the chemical similarity of surface and ground water. This report summarizes the hydrologic data collected and provides interpretations that can be used by the planning and public works officials of Yap to make decisions concerning development and management of their water resources.

  5. Water resources data, New Mexico, water year 1989

    USGS Publications Warehouse

    ,

    1990-01-01

    Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by Federal, State, and local agencies and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New Mexico are contained in this volume. This report is the culmination of a concerted effort by dedicated personnel of the u.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report: Linda V. Beal Harriet R. Allen K.M. Lange, M.F. Ortiz, and L.A. Watson processed the text of the report, and H.M. Grossman drafted the illustrations.

  6. Water resources data, New Mexico, water year 1990

    USGS Publications Warehouse

    ,

    1991-01-01

    Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by Federal, State, and local. agencies and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New Mexico are contained in this volume. This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed; verified, and organiZed the data, and who typed, edited, and assembled the report. The authors had primary responsibility for aSSUring that the information contained herein is accurate, complete, and adheres to Geological Survey pol