Science.gov

Sample records for agrobacterium tumefaciens-mediated transformation

  1. Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea.

    PubMed

    Chen, Liang; Wang, Qun; Chen, Hua; Sun, Gengwu; Liu, Huixiang; Wang, Hongkai

    2016-07-01

    Botryosphaeria dothidea is a severe causal agent of die-back and cankers of many woody plants and causes great losses in many regions. The pathogenic mechanism of this pathogen has not been well explored due to lack of mutants and genetic information. In this study, we developed an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for B. dothidea protoplasts using vector pBHt2 containing the hph gene as a selection marker under the control of trp C promoter. Using this protocol we successfully generated the B. dothidea transformants with efficiency about 23 transformants per 10(5) protoplasts. This is the first report of genetic transformation of B. dothidea via ATMT and this protocol provides an effective tool for B. dothidea genome manipulation, gene identification and functional analysis. PMID:27263001

  2. Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper.

    PubMed

    Karthikeyan, A S; Sarma, K S; Veluthambi, K

    1996-01-01

    Transformed Vigna mungo (blackgram) calli were obtained by cocultivating segments of primary leaves with Agrobacterium tumefaciens vir helper strains harbouring the binary vector pGA472 having kanamycin resistance gene as plant transformation marker. Transformed calli were selected on Murashige and Skoog medium supplemented with 50 mg/l kanamycin and 500 mg/l carbenicillin. Transformed calli were found to be resistant to kanamycin up to 900 mg/l concentration. Expression of kanamycin resistance gene in transformed calli was demonstrated by neomycin phosphotransferase assay. Stable integration of transferred DNA into V. mungo genome was confirmed by Southern blot analysis.

  3. Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species).

    PubMed

    Prasad, Binod; Vadakedath, Nithya; Jeong, Hyun-Jeong; General, Thiyam; Cho, Man-Gi; Lein, Wolfgang

    2014-10-01

    Isochrysis galbana and Isochrysis sp. are economically important microalgae from the division of haptophytes. Here, we report Agrobacterium-mediated stable DNA transfer into their nuclear genomes. Initial studies were performed to standardize co-cultivation media and determine the sensitivity of the microalgae to selective agents. Up to 1 mg/ml of the antibiotic hygromycin did not inhibit growth, whereas both the haptophytes bleached in artificial seawater (ASW) medium containing micromolar concentrations of the herbicide norflurazon. Co-cultivation of Isochrysis sp. and I. galbana with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pCAMBIA 1380-pds-L504R yielded norflurazon-resistant (NR) colonies visible on selective plates after 20-30 days. pCAMBIA 1380-pds-L540R was constructed by cloning a mutated genomic phytoene desaturase (pds) gene from Haematococcus pluvialis as a selectable marker gene into the binary vector system pCAMBIA 1380. Co-cultivation of Isochrysis sp. with A. tumefaciens in ASW medium containing 200 μM of acetosyringone for 72 h produced the highest number of NR cells. For I. galbana, 100 μM of acetosyringone, ASW medium, and 48 h co-cultivation period appeared to be optimum co-cultivation parameters. The NR colonies kept their resistance phenotype for at least 24 months, even in the absence of selective pressure. The transfer of the pds gene in NR cells was shown by PCR amplification of the T-DNA sequences from the genomic DNA of NR cells and Southern blot analysis using T-DNA sequences as probes. The genetic manipulation described here will allow metabolic engineering and a better understanding of several biochemical pathways in the future.

  4. Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots

    PubMed Central

    Cao, Shi-liang; Masilamany, Pathmalojiny; Li, Wen-bin; Pauls, K. Peter

    2014-01-01

    An Agrobacterium tumefaciens-mediated corn transformation method based on multiple shoot tissue cultures was developed, which is effective with a variety of corn inbred lines and standard binary vectors. Six factors that affected the success of corn transformation were tested, including A. tumefaciens strain, corn genotype, tissue culture growth stage, medium composition, co-culture temperature and surfactant treatment. Agropine-type bacteria (EHA 101 and AGL 1) were eightfold more effective than octopine-type strain for corn multi-shoot tissues transformation. The average frequency of Glucuronidase (GUS)-positive explants obtained from 14 corn genotypes ranged from 36% to 76%. L-proline (0.7 g L−1) in the co-culture medium apparently improved the frequency of transformation. The newly initiated multi-shoot tissues were most responsive to Agrobacterium infection. A positive correlation was found between multi-shoot tissue susceptibility to Agrobacterium and the proportion of cells in G1 phase. Transformants were identified by reverse transcription Polymerase Chain Reaction (PCR) and by southern blot hybridization assays. The frequency of transformants was approximately 2% based on the number of multi-shoot explants co-cultivated with Agrobacterium. PMID:26019506

  5. Agrobacterium tumefaciens-mediated transformation of the lichen fungus, Umbilicaria muehlenbergii.

    PubMed

    Park, Sook-Young; Jeong, Min-Hye; Wang, Hai-Ying; Kim, Jung A; Yu, Nan-Hee; Kim, Sungbeom; Cheong, Yong Hwa; Kang, Seogchan; Lee, Yong-Hwan; Hur, Jae-Seoun

    2013-01-01

    Transformation-mediated mutagenesis in both targeted and random manners has been widely applied to decipher gene function in diverse fungi. However, a transformation system has not yet been established for lichen fungi, severely limiting our ability to study their biology and mechanism underpinning symbiosis via gene manipulation. Here, we report the first successful transformation of the lichen fungus, Umbilicaria muehlenbergii, via the use of Agrobacterium tumefaciens. We generated a total of 918 transformants employing a binary vector that carries the hygromycin B phosphotransferase gene as a selection marker and the enhanced green fluorescent protein gene for labeling transformants. Randomly selected transformants appeared mitotically stable, based on their maintenance of hygromycin B resistance after five generations of growth without selection. Genomic Southern blot showed that 88% of 784 transformants contained a single T-DNA insert in their genome. A number of putative mutants affected in colony color, size, and/or morphology were found among these transformants, supporting the utility of Agrobacterium tumefaciens-mediated transformation (ATMT) for random insertional mutagenesis of U. muehlenbergii. This ATMT approach potentially offers a systematic gene functional study with genome sequences of U. muehlenbergii that is currently underway. PMID:24386304

  6. Agrobacterium tumefaciens-Mediated Transformation of the Lichen Fungus, Umbilicaria muehlenbergii

    PubMed Central

    Wang, Hai-Ying; Kim, Jung A.; Yu, Nan-Hee; Kim, Sungbeom; Cheong, Yong Hwa; Kang, Seogchan; Lee, Yong-Hwan; Hur, Jae-Seoun

    2013-01-01

    Transformation-mediated mutagenesis in both targeted and random manners has been widely applied to decipher gene function in diverse fungi. However, a transformation system has not yet been established for lichen fungi, severely limiting our ability to study their biology and mechanism underpinning symbiosis via gene manipulation. Here, we report the first successful transformation of the lichen fungus, Umbilicaria muehlenbergii, via the use of Agrobacterium tumefaciens. We generated a total of 918 transformants employing a binary vector that carries the hygromycin B phosphotransferase gene as a selection marker and the enhanced green fluorescent protein gene for labeling transformants. Randomly selected transformants appeared mitotically stable, based on their maintenance of hygromycin B resistance after five generations of growth without selection. Genomic Southern blot showed that 88% of 784 transformants contained a single T-DNA insert in their genome. A number of putative mutants affected in colony color, size, and/or morphology were found among these transformants, supporting the utility of Agrobacterium tumefaciens-mediated transformation (ATMT) for random insertional mutagenesis of U. muehlenbergii. This ATMT approach potentially offers a systematic gene functional study with genome sequences of U. muehlenbergii that is currently underway. PMID:24386304

  7. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris.

    PubMed

    Zheng, Zhuangli; Huang, Chuanhua; Cao, Li; Xie, Cuihong; Han, Richou

    2011-03-01

    Cordyceps militaris is an insect-born fungus with various biological and pharmacological activities. The mutant library of C. militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation (ATMT), for the ultimate identification of genes involved in isolate degeneration during fruiting body production. Successful transformation of C. militaris JM4 by A. tumefaciens AGL-1 carrying vector pATMT1 was performed, with efficiency in the range of 30-600 transformants per 1×10(5) conidia. Acetosyringone (AS) supplement in C. militaris ATMT was not necessary during either precultivation or cocultivation. The transformation procedure was optimised based on the ratios between donor A. tumefaciens and recipient conidia, and pH value of cocultivation media. The integration of the hyg gene into C. militaris genome was determined by PCR and Southern blot analysis, suggesting that 67-88% resulting transformants in cultivation conditions with or without AS were inserted by T-DNA and 55-80% were single-copy. Special mutants with altered phenotypes and growth potentials were characterised. The efficient TAIL-PCR approach was established for identifying T-DNA flanking sequences from C. militaris mutants. The successful construction of the mutant library indicated the usefulness of this approach for functional genetic analysis in this important fungus. PMID:21354533

  8. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation

    PubMed Central

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi (“truffles”) with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  9. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites.

  10. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds.

    PubMed

    Yang, Jingli; Yi, Jaeseon; Yang, Chuanping; Li, Chenghao

    2013-06-01

    An Agrobacterium tumefaciens-mediated transformation method was developed for Salix matsudana Koidz. using mature seeds as starting material. Multiple shoots were induced directly from embryonic shoot apices of germinating seeds. Although thidiazuron, 6-benzylaminopurine and zeatin induced multiple shoot induction with high frequency, zeatin (4.5 μM) was more effective for elongation of shoots and roots. The binary vector pCAMBIA1303, which contained neomycin phosphotransferase as a selectable marker gene and β-glucuronidase as a reporter gene, was used for transformation. Factors affecting transformation efficiency were examined for optimization of the procedure. Up to 35 of 180 seeds regenerated kanamycin-resistant shoots under optimal transformation conditions as follows: seeds were precultured for 4 days, apices of embryonic shoots were removed and infected with A. tumefaciens strain LBA4404 grown to a cell density equivalent (OD600) of 0.6, and then the infected explants were cultivated at 21 °C for 4 days. Storage of seeds at -20 °C for as long as 3 years had no significant effect on the induction of kanamycin-resistant shoots. Using this method, transgenic plants were obtained within ∼5 months with a transformation frequency of 7.2%. Analysis by polymerase chain reaction (PCR) showed that 36.4-93.8% of plants from all 13 tested kanamycin-resistant lines were PCR positive. Several 'escapes' were eliminated by a second round of selection. PCR, Southern blot and reverse transcriptase-PCR analyses of selected transgenic individuals 2 years after cutting propagation confirmed the successful generation of stable transformants. Our method, which minimizes the duration of axenic culture, may provide an alternative procedure for transformation of other recalcitrant Salix species.

  11. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.

    PubMed

    Hu, Yang; Dai, Qingqing; Liu, Yangyang; Yang, Zhe; Song, Na; Gao, Xiaoning; Voegele, Ralf Thomas; Kang, Zhensheng; Huang, Lili

    2014-06-01

    Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/10(6) conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa. PMID:24554343

  12. Improved dominant selection markers and co-culturing conditions for efficient Agrobacterium tumefaciens-mediated transformation of Ustilago scitaminea.

    PubMed

    Sun, Longhua; Yan, Meixin; Ding, Zhaojian; Liu, Yanbin; Du, Minge; Xi, Pinggen; Liao, Jinling; Ji, Lianghui; Jiang, Zide

    2014-06-01

    Ustilago scitaminea is the causal agent of sugar-cane smut disease. There is, however, no genetic transformation method for it. Here we report the development of an efficient mutagenesis method based on Agrobacterium tumefaciens-mediated transformation. To improve transformation efficiency, a range of conditions, including the codon-usage preference of the selection marker gene, promoters and the culture conditions for transformation were optimized. A strong promoter to drive marker gene expression, optimized codon usage of selection marker gene, controlled water content and pH of co-culture medium were critical factors affecting transformation efficiency. Our findings provide a useful tool for genetic analysis of this important plant pathogen. PMID:24563317

  13. Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants.

    PubMed

    Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F

    2014-02-21

    Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation.

  14. Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants.

    PubMed

    Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F

    2014-01-01

    Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation. PMID:24634294

  15. Agrobacterium tumefaciens-Mediated Transformation of Valsa mali: An Efficient Tool for Random Insertion Mutagenesis

    PubMed Central

    Wang, Caixia; Guan, Xiangnan; Wang, Hanyan; Li, Guifang; Dong, Xiangli; Wang, Guoping

    2013-01-01

    Valsa mali is a causal agent of apple and pear trees canker disease, which is a destructive disease that causes serious economic losses in eastern Asia, especially in China. The lack of an efficient transformation system for Valsa mali retards its investigation, which poses difficulties to control the disease. In this research, a transformation system for this pathogen was established for the first time using A. tumefaciens-mediated transformation (ATMT), with the optimal transformation conditions as follows: 106/mL conidia suspension, cocultivation temperature 22°C, cocultivation time 72 hours, and 200 μM acetosyringone (AS) in the inductive medium. The average transformation efficiency was 1015.00 ± 37.35 transformants per 106 recipient conidia. Thirty transformants were randomly selected for further confirmation and the results showed the presence of T-DNA in all hygromycin B resistant transformants and also revealed random and single gene integration with genetic stability. Compared with wild-type strain, those transformants exhibited various differences in morphology, conidia production, and conidia germination ability. In addition, pathogenicity assays revealed that 14 transformants had mitigated pathogenicity, while one had enhanced infection ability. The results suggest that ATMT of V. mali is a useful tool to gain novel insight into this economically important pathogen at molecular levels. PMID:24381526

  16. Agrobacterium tumefaciens-mediated transformation of a taxol-producing endophytic fungus, Cladosporium cladosporioides MD2.

    PubMed

    Zhang, Peng; Liu, Ting-Ting; Zhou, Peng-Peng; Li, Shu-Tao; Yu, Long-Jiang

    2011-04-01

    In this study, an Agrobacteriurn tumefaciens-mediated transformation (ATMT) protocol was successfully developed for the genetic transformation of a taxol-producing fungus, Cladosporium cladosporioides MD2, and the co-cultivation conditions affecting the transformation efficiency were optimized. The optimal transformation conditions were that 1 ml of C. cladosporioides MD2 spore suspension (10(8) spores/ml) was mixed with an equal volume of A. tumefaciens cultures, which contained 400 μl of A. tumefaciens LBA4404 (OD(660) ≈ 0.6) and 600 μl LB medium that were used to make up difference in volume, and the mix cultures were supplemented with 300 μM acetosyringone (AS) and co-cultivated at 26°C and 50 rpm for 48 h. Stable transformants were obtained through analysis of the mitotic stability of inserted T-DNA and the presence of hygromycin resistance gene (hpt II). This study laid a fine groundwork for development of transgenic C. cladosporioides MD2 strains.

  17. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    PubMed

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement. PMID:26660352

  18. Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae.

    PubMed

    Liu, Ning; Chen, Guo-Qing; Ning, Guo-Ao; Shi, Huan-Bin; Zhang, Chu-Long; Lu, Jian-Ping; Mao, Li-Juan; Feng, Xiao-Xiao; Liu, Xiao-Hong; Su, Zhen-Zhu; Lin, Fu-Cheng

    2016-01-01

    The endophytic filamentous fungus Harpophora oryzae is a beneficial endosymbiont isolated from the wild rice. H. oryzae could not only effectively improve growth rate and biomass yield of rice crops, but also induce systemic resistance against the rice blast fungus, Magnaporthe oryzae. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was employed and optimized to modify the H. oryzae genes by either random DNA fragment integration or targeted gene replacement. Our results showed that co-cultivation of H. oryzae conidia with A. tumefaciens in the presence of acetosyringone for 48 h at 22 °C could lead to a relatively highest frequency of transformation, and 200 μM acetosyringone (AS) pre-cultivation of A. tumefaciens is also suggested. ATMT-mediated knockout mutagenesis was accomplished with the gene-deletion cassettes using a yeast homologous recombination method with a yeast-Escherichia-Agrobacterium shuttle vector pKOHo. Using the ATMT-mediated knockout mutagenesis, we successfully deleted three genes of H. oryzae (HoATG5, HoATG7, and HoATG8), and then got the null mutants ΔHoatg5, ΔHoatg7, and ΔHoatg8. These results suggest that ATMT is an efficient tool for gene modification including randomly insertional mutagenesis and gene deletion mutagenesis in H. oryzae. PMID:26686612

  19. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains.

    PubMed

    Zhang, Yan-Jun; Zhao, Jin-Jin; Xie, Ming; Peng, De-Liang

    2014-10-01

    Lecanicillium lecanii has been used in the biological control of several insects in agricultural practice. Since the gene manipulation tools for this entomopathogenic fungus have not been sufficiently developed, Agrobacterium tumefaciens-mediated transformation (ATMT) in L. lecanii was investigated in this study, using the wild-type isolate FZ9906 as a progenitor strain and the hygromycin B resistance (hph) gene as a selection marker. Furthermore, a field carbendazim-resistant (mrt) gene from Botrytis cinerea was expressed in L. lecanii FZ9906 via the ATMT system. The results revealed that the frequency of transformation surpassed 25transformants/10(6) conidia, most of the putative transformants contained a single copy of T-DNA, and the T-DNA inserts were stably inherited after five generations. All putative transformants had indistinguishable biological characteristics relative to the wild-type strain, excepting two transformants with altered growth habits or virulence. Moreover, the resistance of the putative transformants to carbendazim (MBC) was improved, and the highest one was 380-fold higher than the wild-type strain. In conclusion, ATMT is an effective and suitable system for L. lecanii transformation, and will be a useful tool for the basic and application research of gene functions and gene modifications of this strain. PMID:25107375

  20. Efficient gene knockout in the maize pathogen Setosphaeria turcica using Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Xue, Chunsheng; Wu, Dongliang; Condon, Bradford J; Bi, Qing; Wang, Weiwei; Turgeon, B Gillian

    2013-06-01

    Setosphaeria turcica, a hemibiotrophic pathogenic dothideomycete, is the causal agent of Northern Leaf Blight of maize, which periodically causes significant yield losses worldwide. To explore molecular mechanisms of fungal pathogenicity and virulence to the host, an efficient targeted gene knockout transformation system using Agrobacterium tumefaciens was established with field collected strains. The starting materials, incubation time, induction medium type, Agrobacterium cell density, and method of co-incubation were optimized for deletion of 1,3,8-trihydroxynaphthalene reductase, a gene in the melanin biosynthesis pathway, as a test case. Four additional genes were deleted in two different S. turcica field isolates to confirm robustness of the method. One of these mutant strains was reduced in virulence compared with the wild-type strain when inoculated on susceptible maize. Transformation efficiency was ≈20 ± 3 transformants per 1× 10(6) germlings and homologous recombination efficiency was 33.3 to 100%. PMID:23384859

  1. Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue.

    PubMed

    Kenel, Fernand; Eady, Colin; Brinch, Sheree

    2010-03-01

    Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop. PMID:20099065

  2. Agrobacterium tumefaciens-Mediated Transformation for Investigation of Somatic Recombination in the Fungal Pathogen Armillaria mellea▿

    PubMed Central

    Baumgartner, Kendra; Fujiyoshi, Phillip; Foster, Gary D.; Bailey, Andy M.

    2010-01-01

    Armillaria root disease is one of the most damaging timber and fruit tree diseases in the world. Despite its economic importance, many basic questions about the biology of the causal fungi, Armillaria spp., are unanswered. For example, Armillaria undergoes matings between diploid and haploid mycelia, which can result in a recombinant diploid without meiosis. Evidence of such somatic recombination in natural populations suggests that this reproductive mode may affect the pathogen's ecology. Investigations of the mechanisms and adaptive consequences of somatic recombination are, however, hampered by the lack of a method to reliably synthesize somatic recombinants. Here we report the first genetic transformation system for the genus Armillaria. We transformed A. mellea with selective markers for use in diploid-haploid matings to reliably synthesize somatic recombinants. This was accomplished with Agrobacterium tumefaciens carrying pBGgHg, which carries the hygromycin phosphotransferase gene (hph). hph was integrated into transformants, as evidenced by serial transfer to selective media, PCR, reverse transcription-PCR (RT-PCR), and Southern hybridization. Nuclear and mitochondrial markers were developed to genotype synthesized mycelia. In matings between a wild-type diploid and hygromycin-resistant haploids (transgenic), we identified recombinant, hygromycin-resistant diploids and, additionally, hygromycin-resistant triploids, all with the mitochondrial haplotype of the haploid partner. Our approach created no mycelium in which the haploid nucleus was replaced by the diploid nucleus, the typical outcome of diploid-haploid matings in Armillaria. This genetic transformation system, in combination with new markers to track chromosomal and cytoplasmic inheritance in A. mellea, will advance research aimed at characterizing the significance of somatic recombination in the ecology of this important fungus. PMID:20952653

  3. An Improved Binary Vector and Escherichia coli Strain for Agrobacterium tumefaciens-Mediated Plant Transformation.

    PubMed

    Watson, Michael R; Lin, Yu-Fei; Hollwey, Elizabeth; Dodds, Rachel E; Meyer, Peter; McDowall, Kenneth J

    2016-01-01

    The plasmid vector pGreenII is widely used to produce plant transformants via a process that involves propagation in Escherichia coli However, we show here that pGreenII-based constructs can be unstable in E. coli as a consequence of them hampering cell division and promoting cell death. In addition, we describe a new version of pGreenII that does not cause these effects, thereby removing the selective pressure for mutation, and a new strain of E. coli that better tolerates existing pGreenII-based constructs without reducing plasmid yield. The adoption of the new derivative of pGreenII and the E. coli strain, which we have named pViridis and MW906, respectively, should help to ensure the integrity of genes destined for study in plants while they are propagated and manipulated in E. coli The mechanism by which pGreenII perturbs E. coli growth appears to be dysregulation within the ColE1 origin of replication. PMID:27194805

  4. An Improved Binary Vector and Escherichia coli Strain for Agrobacterium tumefaciens-Mediated Plant Transformation

    PubMed Central

    Watson, Michael R.; Lin, Yu-fei; Hollwey, Elizabeth; Dodds, Rachel E.; Meyer, Peter; McDowall, Kenneth J.

    2016-01-01

    The plasmid vector pGreenII is widely used to produce plant transformants via a process that involves propagation in Escherichia coli. However, we show here that pGreenII-based constructs can be unstable in E. coli as a consequence of them hampering cell division and promoting cell death. In addition, we describe a new version of pGreenII that does not cause these effects, thereby removing the selective pressure for mutation, and a new strain of E. coli that better tolerates existing pGreenII-based constructs without reducing plasmid yield. The adoption of the new derivative of pGreenII and the E. coli strain, which we have named pViridis and MW906, respectively, should help to ensure the integrity of genes destined for study in plants while they are propagated and manipulated in E. coli. The mechanism by which pGreenII perturbs E. coli growth appears to be dysregulation within the ColE1 origin of replication. PMID:27194805

  5. An Improved Binary Vector and Escherichia coli Strain for Agrobacterium tumefaciens-Mediated Plant Transformation.

    PubMed

    Watson, Michael R; Lin, Yu-Fei; Hollwey, Elizabeth; Dodds, Rachel E; Meyer, Peter; McDowall, Kenneth J

    2016-01-01

    The plasmid vector pGreenII is widely used to produce plant transformants via a process that involves propagation in Escherichia coli However, we show here that pGreenII-based constructs can be unstable in E. coli as a consequence of them hampering cell division and promoting cell death. In addition, we describe a new version of pGreenII that does not cause these effects, thereby removing the selective pressure for mutation, and a new strain of E. coli that better tolerates existing pGreenII-based constructs without reducing plasmid yield. The adoption of the new derivative of pGreenII and the E. coli strain, which we have named pViridis and MW906, respectively, should help to ensure the integrity of genes destined for study in plants while they are propagated and manipulated in E. coli The mechanism by which pGreenII perturbs E. coli growth appears to be dysregulation within the ColE1 origin of replication.

  6. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii.

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Moore, Paul H; Zhu, Yun J

    2008-05-01

    Taro (Colocasia esculenta) is one of the most important crops in the Pacific Islands, however, taro yields have been declining in Hawaii over the past 30 years partly due to diseases caused by oomycete and fungal pathogens. In this study, an efficient Agrobacterium tumefaciens-mediated transformation method for taro is first reported. In total, approximately 200 pieces (8 g) of embryogenic calluses were infected with the super-virulent A. tumefaciens strain EHA105 harboring the plant transformation plasmid pBI121/ricchi11 that contains the rice chitinase gene ricchi11. The presence and expression of the transgene ricchi11 in six independent transgenic lines was confirmed using polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR). Southern blot analysis of the six independent lines indicated that three out of six (50%) had integrated a single copy of the transgene, and the other three lines had two or three copies of the transgene. Compared to the particle bombardment transformation of taro method, which was used in the previous studies, the Agrobacterium-mediated transformation method obtained 43-fold higher transformation efficiency. In addition, these six transgenic lines via Agrobacterium may be more effective for transgene expression as a result of single-copy or low-copy insertion of the transgene than the single line with multiple copies of the transgene via particle bombardment. In a laboratory bioassay, all six transgenic lines exhibited increased tolerance to the fungal pathogen Sclerotium rolfsii, ranging from 42 to 63% reduction in lesion expansion.

  7. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system

    PubMed Central

    2014-01-01

    Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome

  8. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii.

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Moore, Paul H; Zhu, Yun J

    2008-05-01

    Taro (Colocasia esculenta) is one of the most important crops in the Pacific Islands, however, taro yields have been declining in Hawaii over the past 30 years partly due to diseases caused by oomycete and fungal pathogens. In this study, an efficient Agrobacterium tumefaciens-mediated transformation method for taro is first reported. In total, approximately 200 pieces (8 g) of embryogenic calluses were infected with the super-virulent A. tumefaciens strain EHA105 harboring the plant transformation plasmid pBI121/ricchi11 that contains the rice chitinase gene ricchi11. The presence and expression of the transgene ricchi11 in six independent transgenic lines was confirmed using polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR). Southern blot analysis of the six independent lines indicated that three out of six (50%) had integrated a single copy of the transgene, and the other three lines had two or three copies of the transgene. Compared to the particle bombardment transformation of taro method, which was used in the previous studies, the Agrobacterium-mediated transformation method obtained 43-fold higher transformation efficiency. In addition, these six transgenic lines via Agrobacterium may be more effective for transgene expression as a result of single-copy or low-copy insertion of the transgene than the single line with multiple copies of the transgene via particle bombardment. In a laboratory bioassay, all six transgenic lines exhibited increased tolerance to the fungal pathogen Sclerotium rolfsii, ranging from 42 to 63% reduction in lesion expansion. PMID:18301900

  9. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    PubMed

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  10. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    PubMed

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae. PMID:26780432

  11. An Improved Single-Step Cloning Strategy Simplifies the Agrobacterium tumefaciens-Mediated Transformation (ATMT)-Based Gene-Disruption Method for Verticillium dahliae.

    PubMed

    Wang, Sheng; Xing, Haiying; Hua, Chenlei; Guo, Hui-Shan; Zhang, Jie

    2016-06-01

    The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.

  12. Consistent and stable expression of the nptII, uidA and bar genes in transgenic Pinus radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures.

    PubMed

    Charity, J A; Holland, L; Grace, L J; Walter, C

    2005-02-01

    An Agrobacterium tumefaciens-mediated transformation protocol has been developed for embryogenic cell cultures of Pinus radiata. Transgenic lines were only produced when embryogenic tissue was placed on nurse tissue during the Agrobacterium co-cultivation and recovery stages of the procedure. Plantlets were regenerated via somatic embryogenesis from ten of the 11 transgenic lines tested and at least 20 of each line were planted in a GMO glasshouse. Expression of the nptII, uidA and bar genes in up to ten plants of each individual transgenic line was evaluated by molecular, biochemical and functional analysis. As expected, expression of the nptII gene varied among the ten lines, while within ten replicates of the same line, nptII expression appeared to be consistent, with the exception of one line, K3. Likewise, the level of GUS activity varied among transgenic lines, but was relatively consistent in plants derived from the same tissue, except for two lines, G4 and G5. Moreover, similar absolute values and pattern of gene expression of uidA was observed in the transgenic plants, for two consecutive years. Plantlets from eight lines survived a spray treatment with the equivalent of 2 kg/ha and 4 kg/ha of the commercial formulation Buster, whereas non-transformed controls died. Southern hybridisation analysis of embryogenic tissue and green needle tissue from putative transgenic lines demonstrated a relatively low number of gene insertions (from one to nine) of both the bar and nptII genes in the nine transgenic lines tested.

  13. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones

    PubMed Central

    De Block, Marc

    1990-01-01

    Tissue culture conditions and transformation have been established for both aspen and poplar. The use of previously described culture conditions resulted in shoot tip necrosis in the shoot cultures and necrosis of stem and leaf explants. Shoot tip necrosis could be overcome by buffering the medium with 2-(N-morpholino)ethanesulfonic acid and Ca-gluconate and by growing the shoots below 25°C. Necrosis of the explants was probably due to an accumulation of ammonium in the explants and could be overcome by adapting the NO3−/NH4+ ratio of the media. Stem explants of established shoot cultures of the aspen hybrid Populus alba × P. tremula and of the poplar hybrid Populus trichocarpa × P. deltoides were cocultivated with Agrobacterium strains having chimeric bar and neo genes on their disarmed tDNAs. Transformed aspen shoots were obtained from 30 to 40% of the explants, while transformed poplar shoots were obtained from 10% of the explants. Extracts from the transformed trees contained high phosphinotricin acetyltransferase and neomycin phosphotransferase activities, and the trees contained one to three copies of the chimeric genes. The transformed trees were completely resistant to the commercial preparations of the herbicide phosphinotricin (glufosinate), while control trees were not. Images Figure 1 Figure 2 Figure 4 PMID:16667565

  14. In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation in asakura-sanshoo (Zanthoxylum piperitum (L.) DC. F. inerme Makino) an important medicinal plant

    PubMed Central

    Zeng, Xiaofang; Zhao, Degang

    2015-01-01

    Context: Asakura-sanshoo (Zanthoxylum piperitum [L.] DC. f. inerme Makino) is an important medicinal plant in East Asia. Transgenic technique could be applied to improve plant traits and analyze gene function. However, there is no report on regeneration and genetic transformation in Asakura-sanshoo. Aims: To establish a regeneration and Agrobacterium tumefaciens-mediated genetic transformation system in Asakura-sanshoo, which could be used for cultivar improvement and gene function analysis. Settings and Design: The various combinations of indole-3-butyric acid (IBA), 6-benzylaminopurine (BA) and naphthalene acetic acid (NAA) were explored for the optimal plant regeneration from petiole and stem of Asakura-sanshoo. The half-strength woody plant medium (WPM) with different concentrations of NAA and IBA was used to induce root. For genetic transformation, A. tumefaciens strain EHA-105 harboring the plasmid pBin-Ex-H-ipt which carries the isopentenyl transferase (ipt) gene, β-glucuronidase (GUS) gene and kanamycin resistance gene neomycin phosphotransferase II (NPTII) were used. The transformation efficiency was detected by the kanamycin resistant frequency. Materials and Methods: Petioles and stems were obtained from the in vitro cultured Asakura-sanshoo. The petiole and stem segments were precultured for 3 days, and then inflected using the bacterium at the concentration of OD600 0.5–0.8 for 10 min, followed by 3 days co-cultivation. Selection of the transgenic plants was carried out after 7 days the regeneration using gradient kanamycin at 30 mg/L and 50 mg/L, respectively. Successful transformed plants were confirmed by GUS histochemical assays, polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR), and Southern blotting analysis. Results: The highest shoots regeneration was obtained on WPM supplement with 0.5 mg/L BA and 0.2 mg/L NAA. The optimal rooting medium was half strength macro-element WPM. The kanamycin resistant frequency of petiole and

  15. Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper, using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures.

    PubMed

    Saini, Raman; Jaiwal, Pawan K

    2005-06-01

    The efficiency of Vigna mungo L. Hepper transformation was significantly increased from an average of 1% to 6.5% by using shoot apices excised from embryonic axes precultured on 10 microM benzyl-6-aminopurine (BAP) for 3 days and wounded prior to inoculation in Agrobacterium tumefaciens strain EHA105 carrying the binary vector pCAMBIA2301, which contains a neomycin phosphotransferase gene (nptII) and a beta-glucuronidase (GUS) gene (gusA) interrupted by an intron. The transformed green shoots that were selected and rooted on medium containing kanamycin, and which tested positive for nptII gene by polymerase chain reaction, were established in soil to collect seeds. GUS activity was detected in whole T(0) shoots and T(1) seedlings. All T(0) plants were morphologically normal, fertile and the majority of them transmitted transgenes in a 3:1 ratio to their progenies. Southern analysis of T(1) plants showed integration of nptII into the plant genome.

  16. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation.

    PubMed

    Boyko, Alex; Matsuoka, Aki; Kovalchuk, Igor

    2011-04-01

    Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations.

  17. Effect of leaf incubation temperature profiles on Agrobacterium tumefaciens-mediated transient expression.

    PubMed

    Jung, Sang-Kyu; McDonald, Karen A; Dandekar, Abhaya M

    2015-01-01

    Agrobacterium tumefaciens-mediated transient expression is known to be highly dependent on incubation temperature. Compared with early studies that were conducted at constant temperature, we examined the effect of variable leaf incubation temperature on transient expression. As a model system, synthetic endoglucanase (E1) and endoxylanase (Xyn10A) genes were transiently expressed in detached whole sunflower leaves via vacuum infiltration for biofuel applications. We found that the kinetics of transient expression strongly depended on timing of the temperature change as well as leaf incubation temperature. Surprisingly, we found that high incubation temperature (27-30 °C) which is suboptimal for T-DNA transfer, significantly enhanced transient expression if the high temperature was applied during the late phase (Day 3-6) of leaf incubation whereas incubation temperature in a range of 20-25 °C for an early phase (Day 0-2) resulted in higher production. On the basis of these results, we propose that transient expression is governed by both T-DNA transfer and protein synthesis in plant cells that have different temperature dependent kinetics. Because the phases were separated in time and had different optimal temperatures, we were then able to develop a novel two phase optimization strategy for leaf incubation temperature. Applying the time-varying temperature profile, we were able to increase the protein accumulation by fivefold compared with the control at a constant temperature of 20 °C. From our knowledge, this is the first report illustrating the effect of variable temperature profiling for improved transient expression.

  18. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  19. Agrobacterium-mediated transformation: rice transformation.

    PubMed

    Slamet-Loedin, Inez H; Chadha-Mohanty, Prabhjit; Torrizo, Lina

    2014-01-01

    Agrobacterium is a common soil bacterium with natural capacity for trans-kingdom transfer of genetic information by transferring its T-DNA into the eukaryotic genome. In agricultural plant biotechnology, combination of non-phytopathogenic strain of Agrobacterium tumefaciens with modified T-DNA and vir-genes in a binary vector system is the most widely utilized system for genetic improvement in diverse plant species and for gene function validation. Here we have described a highly efficient A. tumefaciens-mediated transformation system for indica and japonica rice cultivars based on an immature embryo system.

  20. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis.

    PubMed

    Maruthachalam, K; Klosterman, S J; Kang, S; Hayes, R J; Subbarao, K V

    2011-11-01

    Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that control pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was applied for insertional mutagenesis of V. dahliae conidia. Southern blot analysis indicated that T-DNAs were inserted randomly into the V. dahliae genome and that 69% of the transformants were the result of single copy T-DNA insertion. DNA sequences flanking T-DNA insertion were isolated through inverse PCR (iPCR), and these sequences were aligned to the genome sequence to identify the genomic position of insertion. V. dahliae mutants of particular interest selected based on culture phenotypes included those that had lost the ability to form microsclerotia and subsequently used for virulence assay. Based on the virulence assay of 181 transformants, we identified several mutant strains of V. dahliae that did not cause symptoms on lettuce plants. Among these mutants, T-DNA was inserted in genes encoding an endoglucanase 1 (VdEg-1), a hydroxyl-methyl glutaryl-CoA synthase (VdHMGS), a major facilitator superfamily 1 (VdMFS1), and a glycosylphosphatidylinositol (GPI) mannosyltransferase 3 (VdGPIM3). These results suggest that ATMT can effectively be used to identify genes associated with pathogenicity and other functions in V. dahliae.

  1. Agrobacterium-mediated genetic transformation of Prunus salicina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report Agrobacterium tumefaciens-mediated transformation from hypocotyls slices of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supp...

  2. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells

    PubMed Central

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-01-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants. PMID:24000136

  3. Transformation of oil palm using Agrobacterium tumefaciens.

    PubMed

    Izawati, Abang Masli Dayang; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul

    2012-01-01

    Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants. PMID:22351008

  4. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-01-01

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process. PMID:27323127

  5. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-06-03

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process.

  6. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos.

    PubMed

    Lee, Hyeyoung; Zhang, Zhanyuan J

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is one of the most efficient and simple gene delivery systems for genetic improvement and biology studies in maize. This system has become more widely used by both public and private laboratories. However, transformation efficiencies vary greatly from laboratory to laboratory for the same genotype. Here, we illustrate our advanced Agrobacterium-mediated transformation method in Hi-II maize using simple binary vectors. The protocol utilizes immature embryos as starting explants and the bar gene as a selectable marker coupled with bialaphos as a selective agent. The protocol offers efficient transformation results with high reproducibility, provided that some experimental conditions are well controlled. This transformation method, with minor modifications, can be also employed to transform certain maize inbreds.

  7. Agrobacterium-mediated genetic transformation of Prunus salicina.

    PubMed

    Urtubia, Carolina; Devia, Jessica; Castro, Alvaro; Zamora, Pablo; Aguirre, Carlos; Tapia, Eduardo; Barba, Paola; Dell Orto, Paola; Moynihan, Michael R; Petri, César; Scorza, Ralph; Prieto, Humberto

    2008-08-01

    We report Agrobacterium tumefaciens-mediated transformation of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the hypocotyl slice technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supplemented Murashige and Skoog (MS) media reached 11% for 'Angeleno' and 19% for 'Larry Anne' hypocotyl slices. Transformation using Agrobacterium tumefaciens GV3101 harboring a plasmid with the neomycin phosphotransferase II (nptII) and the green fluorescent protein (gfp) genes produced ten independent lines, six from 'Angeleno' and four from 'Larry Anne', representing transformation efficiencies of 0.8 and 0.3%, respectively, relative to the initial number of hypocotyl slices. Plants of six lines were found to produce the transgene encoded mRNAs. DNA blotting demonstrated the presence of transgene sequences in trees from five lines after 18 months of growth in the greenhouse.

  8. Agrobacterium tumefaciens-mediated transformation of the soybean pathogen Phomopsis longicolla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen Phomopsis longicolla. PSD impairs seed germination, reduces seedling vigor, and can substantially reduce stand establishment. In hot and humid conditions, PSD can cause significant yield losses. Few studies have explore...

  9. Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile.

    PubMed

    Khan, Shamshad Ahmad; Ur Rahman, Laiq; Shanker, Karuna; Singh, Manju

    2014-05-01

    Agrobacterium tumefaciens (EHA-105 harboring pCAMBIA 1304)-mediated transgenic plant production via direct regeneration from leaf and elite somaclones generation through indirect regeneration in Stevia rebaudiana is reported. Optimum direct regeneration frequency along with highest transformation frequency was found on MS + 1 mg/l BAP + 1 mg/l NAA, while indirect regeneration from callus was obtained on MS + 1 mg/l BAP + 2 mg/l NAA. Successful transfer of GUS-positive (GUS assay and PCR-based confirmation) transgenic as well as four somaclones up to glasshouse acclimatization has been achieved. Inter-simple sequence repeat (ISSR) profiling of transgenic and somaclonal plants showed a total of 113 bands, out of which 49 were monomorphic (43.36 %) and 64 were polymorphic (56.64 %). Transgenic plant was found to be closer to mother plant, while on the basis of steviol, stevioside, and rebaudioside A profile, somaclone S2 was found to be the best and showed maximum variability in ISSR profiling.

  10. Agrobacterium-Mediated Transformation of Subterranean Clover (Trifolium subterraneum L.).

    PubMed Central

    Khan, MRI.; Tabe, L. M.; Heath, L. C.; Spencer, D.; Higgins, TJV.

    1994-01-01

    We have developed a rapid and reproducible transformation system for subterranean clover (Trifolium subterraneum L.) using Agrobacterium tumefaciens-mediated gene delivery. Hypocotyl segments from seeds that had been allowed to imbibe were used as explants, and regeneration was achieved via organogenesis. Glucose and acetosyringone were required in the co-cultivation medium for efficient gene transfer. DNA constructs containing four genes encoding the enzymes phosphinothricin acetyl transferase, [beta]-glucuronidase (GUS), neomycin phosphotransferase, and an [alpha]-amylase inhibitor were used to transform subterranean clover. Transgenic shoots were selected on a medium containing 50 mg/L of phosphinothricin. Four commercial cultivars of subterranean clover (representing all three subspecies) have been successfully transformed. Southern analysis revealed the integration of T-DNA into the subterranean clover genome. The expression of the introduced genes has been confirmed by enzyme assays and northern blot analyses. Transformed plants grown in the glasshouse showed resistance to the herbicide Basta at applications equal to or higher than rates recommended for killing subterranean clover in field conditions. In plants grown from the selfed seeds of the primary transformants, the newly acquired gene encoding GUS segregated as a dominant Mendelian trait. PMID:12232188

  11. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera.

    PubMed

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  12. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  13. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera.

    PubMed

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development.

  14. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars.

    PubMed

    Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2013-04-01

    Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.

  15. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.

    PubMed

    Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong

    2014-01-01

    Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species.

  16. Overexpression of several Arabidopsis histone genes increases agrobacterium-mediated transformation and transgene expression in plants.

    PubMed

    Tenea, Gabriela N; Spantzel, Joerg; Lee, Lan-Ying; Zhu, Yanmin; Lin, Kui; Johnson, Susan J; Gelvin, Stanton B

    2009-10-01

    The Arabidopsis thaliana histone H2A-1 is important for Agrobacterium tumefaciens-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, results in decreased T-DNA integration into the genome of Arabidopsis roots, whereas overexpression of HTA1 increases transformation frequency. To understand the mechanism by which HTA1 enhances transformation, we investigated the effects of overexpression of numerous Arabidopsis histones on transformation and transgene expression. Transgenic Arabidopsis containing cDNAs encoding histone H2A (HTA), histone H4 (HFO), and histone H3-11 (HTR11) displayed increased transformation susceptibility, whereas histone H2B (HTB) and most histone H3 (HTR) cDNAs did not increase transformation. A parallel increase in transient gene expression was observed when histone HTA, HFO, or HTR11 overexpression constructs were cotransfected with double- or single-stranded forms of a gusA gene into tobacco (Nicotiana tabacum) protoplasts. However, these cDNAs did not increase expression of a previously integrated transgene. We identified the N-terminal 39 amino acids of H2A-1 as sufficient to increase transient transgene expression in plants. After transfection, transgene DNA accumulates more rapidly in the presence of HTA1 than with a control construction. Our results suggest that certain histones enhance transgene expression, protect incoming transgene DNA during the initial stages of transformation, and subsequently increase the efficiency of Agrobacterium-mediated transformation.

  17. Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda.

    PubMed

    Stevens, Micah E; Pijut, Paula M

    2014-06-01

    This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L(-1) adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L(-1) AS, 10 % CW, 400 mg L(-1) timentin, and 20 mg L(-1) kanamycin. Timentin at 400 and 20 mg L(-1) kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB. PMID:24493252

  18. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  19. Agrobacterium-mediated transformation of cotton.

    PubMed

    Zhang, Baohong

    2013-01-01

    There are many methods and techniques that can be used to transfer foreign genes into cells. In plant biotechnology, Agrobacterium-mediated transformation is a widely used traditional method for inserting foreign genes into plant genome and obtaining transgenic plants, particularly for dicot plant species. Agrobacterium-mediated transformation of cotton involves several important and also critical steps, which includes coculture of cotton explants with Agrobacterium, induction and selection of stable transgenic cell lines, recovery of plants from transgenic cells majorly through somatic embryogenesis, and detection and expression analysis of transgenic plants. In this chapter, we describe a detailed step-by-step protocol for obtaining transgenic cotton plants via Agrobacterium-mediated transformation.

  20. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative n...

  1. Transformation of rice mediated by Agrobacterium tumefaciens.

    PubMed

    Hiei, Y; Komari, T; Kubo, T

    1997-09-01

    Agrobacterium tumefaciens has been routinely utilized in gene transfer to dicotyledonous plants, but monocotyledonous plants including important cereals were thought to be recalcitrant to this technology as they were outside the host range of crown gall. Various challenges to infect monocotyledons including rice with Agrobacterium had been made in many laboratories, but the results were not conclusive until recently. Efficient transformation protocols mediated by Agrobacterium were reported for rice in 1994 and 1996. A key point in the protocols was the fact that tissues consisting of actively dividing, embryonic cells, such as immature embryos and calli induced from scutella, were co-cultivated with Agrobacterium in the presence of acetosyringonc, which is a potent inducer of the virulence genes. It is now clear that Agrobacterium is capable of transferring DNA to monocotyledons if tissues containing 'competent' cells are infected. The studies of transformation of rice suggested that numerous factors including genotype of plants, types and ages of tissues inoculated, kind of vectors, strains of Agrobacterium, selection marker genes and selective agents, and various conditions of tissue culture, are of critical importance. Advantages of the Agrobacterium-mediated transformation in rice, like on dicotyledons, include the transfer of pieces of DNA with defined ends with minimal rearrangements, the transfer of relatively large segments of DNA, the integration of small numbers of copies of genes into plant chromosomes, and high quality and fertility of transgenic plants. Delivery of foreign DNA to rice plants via A. tumefaciens is a routine technique in a growing number of laboratories. This technique will allow the genetic improvement of diverse varieties of rice, as well as studies of many aspects of the molecular biology of rice. PMID:9291974

  2. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  3. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  4. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  5. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    NASA Technical Reports Server (NTRS)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  6. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures

    PubMed Central

    2011-01-01

    Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium

  7. Agrobacterium-mediated transformation of Brachypodium distachyon.

    PubMed

    Thole, Vera; Vain, Philippe

    2012-01-01

    Brachypodium distachyon is an attractive genomics and biological model system for grass research. Recently, the complete annotated genome sequence of the diploid line Bd21 has been released. Genetic transformation technologies are critical for the discovery and validation of gene function in Brachypodium. Here, we describe an efficient procedure enabling the Agrobacterium-mediated transformation of a range of diploid and polyploid genotypes of Brachypodium. The procedure relies on the transformation of compact embryogenic calli derived from immature embryos using either chemical selection alone or a combination of chemical and visual screening of transformed tissues and plants. Transformation efficiencies of around 20% can routinely be achieved using this protocol. In the context of the BrachyTAG programme (BrachyTAG.org), this procedure made possible the mass production of Bd21T-DNA mutant plant lines.

  8. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation.

    PubMed

    Chattopadhyay, Tirthartha; Roy, Sheuli; Mitra, Adinpunya; Maiti, Mrinal K

    2011-04-01

    Transgenic hairy root system is important in several recalcitrant plants, where Agrobacterium tumefaciens-mediated plant transformation and generation of transgenic plants are problematic. Jute (Corchorus spp.), the major fibre crop in Indian subcontinent, is one of those recalcitrant plants where in vitro tissue culture has provided a little success, and hence, Agrobacterium-mediated genetic transformation remains to be a challenging proposition in this crop. In the present work, a system of transgenic hairy roots in Corchorus capsularis L. has been developed through genetic transformation by Agrobacterium rhizogenes harbouring two plasmids, i.e. the natural Ri plasmid and a recombinant binary vector derived from the disarmed Ti plasmid of A. tumefaciens. Our findings indicate that the system is relatively easy to establish and reproducible. Molecular analysis of the independent lines of transgenic hairy roots revealed the transfer of relevant transgenes from both the T-DNA parts into the plant genome, indicating the co-transformation nature of the event. High level expression and activity of the gusA reporter gene advocate that the transgenic hairy root system, thus developed, could be applicable as gene expression system in general and for root functional genomics in particular. Furthermore, these transgenic hairy roots can be used in future as explants for plantlet regeneration to obtain stable transgenic jute plants.

  9. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.

    PubMed

    Zhang, Tianzhen; Wu, Shen-Jie

    2012-01-01

    Agrobacterium tumefaciens-mediated transformation of cotton embryogenic calli (EC) was enhanced by choosing appropriate EC and improving efficiency of coculture, selection cultivation, and plant regeneration. The binary vector pBI121 (containing a neomycin phosphotransferase II gene npt-II as a selection marker and a uidA gene as a reporter gene) was used to research transformation efficiency. After 48 h cocultivation, the number of β-glucuronidase (GUS)-positive calli characterized by yellow, loose, and fine-grained EC was twofold greater than that of gray, brown, and coarse granule EC. It indicated that the efficiency of transient transformation was affected by EC morphology. Transient transformation efficiency also was improved by cocultivation on the medium by adding 50 mg/L acetosyringone at 19°C for 48 h. Subculturing EC on the selection medium with low cell density increased the production of kanamycin-resistant (Km-R) calli lines. From an original 0.3 g EC, an average of 20 Km-R calli lines were obtained from a selection dish, and the GUS-positive rate of Km-R clones was 81.97%. A large number of normal plants were rapidly regenerated on the differentiation medium with dehydration treatments, and the GUS-positive rate of regeneration plants was about 72.6%. Polymerase chain reaction analysis of GUS-positive plantlets revealed a 100% positive detection rate for neomycin phosphotransferase II gene and gus gene. Southern blot of transgenic plants regenerated from different Km-R calli lines demonstrated that the target gene, mostly with the low copy number, was integrated into the cotton genome. PMID:22351014

  10. VIP1: linking Agrobacterium-mediated transformation to plant immunity?

    PubMed

    Liu, Yukun; Kong, Xiangpei; Pan, Jiaowen; Li, Dequan

    2010-08-01

    Agrobacterium tumefaciens is the most efficient vehicle used today for the production of transgenic plants and plays an essential role in basic scientific research and in agricultural biotechnology. Previously, plant VirE2-interacting protein 1 (VIP1) was shown to play a role in Agrobacterium-mediated transformation. Recent reports demonstrate that VIP1, as one of the bZIP transcription factors, is also involved in plant immunity responses. Agrobacterium is able to activate and abuse VIP1 for transformation. These findings highlight Agrobacterium-host interaction and unveil how Agrobacterium hijacks host cellular mechanism for its own benefit. This review focuses on the roles played by VIP1 in Agrobacterium-mediated transformation and plant immunity. PMID:20473505

  11. VIP1: linking Agrobacterium-mediated transformation to plant immunity?

    PubMed

    Liu, Yukun; Kong, Xiangpei; Pan, Jiaowen; Li, Dequan

    2010-08-01

    Agrobacterium tumefaciens is the most efficient vehicle used today for the production of transgenic plants and plays an essential role in basic scientific research and in agricultural biotechnology. Previously, plant VirE2-interacting protein 1 (VIP1) was shown to play a role in Agrobacterium-mediated transformation. Recent reports demonstrate that VIP1, as one of the bZIP transcription factors, is also involved in plant immunity responses. Agrobacterium is able to activate and abuse VIP1 for transformation. These findings highlight Agrobacterium-host interaction and unveil how Agrobacterium hijacks host cellular mechanism for its own benefit. This review focuses on the roles played by VIP1 in Agrobacterium-mediated transformation and plant immunity.

  12. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation.

    PubMed

    Paz, Margie M; Martinez, Juan Carlos; Kalvig, Andrea B; Fonger, Tina M; Wang, Kan

    2006-03-01

    The utility of transformation for soybean improvement requires an efficient system for production of stable transgenic lines. We describe here an improved cotyledonary node method using an alternative explant for Agrobacterium tumefaciens-mediated soybean transformation. We use the term "half-seed" to refer to this alternative cotyledonary explant that is derived from mature seed of soybean following an overnight imbibition and to distinguish it from cotyledonary node derived from 5-7-day-old seedlings. Transformation efficiencies using half-seed explants ranged between 1.4 and 8.7% with an overall efficiency of 3.8% based on the number of transformed events that have been confirmed in the T1 generation by phenotypic assay using the herbicide Liberty (active ingredient glufosinate) and by Southern analysis. This efficiency is 1.5-fold higher than the cotyledonary node method used in our laboratory. Significantly, the half-seed system is simple and does not require deliberate wounding of explants, which is a critical and technically demanding step in the cotyledonary node method. PMID:16249869

  13. [Agrobacterium-mediated transformation of Cymbidium sinensis].

    PubMed

    Xie, Li; Wang, Fen; Zeng, Ruizhen; Guo, Herong; Zhou, Yuliang; Zhang, Zhisheng

    2015-04-01

    Genetic transformation is an effective method to improve breeding objective traits of orchids. However, there is little information about genetic transformation of Cymbidium sinensis. Rhizomes from shoot-tip culture of C. sinensis cv. 'Qijianbaimo' were used to establish a practical transformation protocol of C. sinensis. Pre-culture time, concentration and treating methods of acetosyringone, concentration of infection bacteria fluid (OD600), infection time, and co-culture time had significant effects on β-glucuronidase (GUS) transient expression rate of C. sinensis cv. 'Qijianbaimo' rhizome. The GUS transient expression rate of rhizome was the highest (11.67%) when rhizomes pre-cultured for 39 d were soaked in bacterium suspension (OD600 = 0.9) supplemented with 200 μmol/L acetosyringone for 35 min, followed by culturing on co-culture medium supplemented with 200 μmol/L acetosyringone for 7 d. Under this transformation conditions, 3 transgenic plantlets, confirmed by GUS histochemical assay and PCR, were obtained from 400 regenerated plantlets, and the genetic transformation rate was 0.75%. This proved that it was feasible to create new cultivars by the use of Agrobacterium-mediated genetic transformation in C. sinense.

  14. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae.

    PubMed

    Zhou, Lei; Zhao, Jun; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-20

    Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agrobacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant transformants per 1 × 10(6) conidia. V. dahliae mutants lacking either VdATG8 or VdATG12 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild-type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in V. dahliae.

  15. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

    PubMed

    Zhang, Tao; Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-08-01

    The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi. PMID:26051491

  16. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

    PubMed

    Zhang, Tao; Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-08-01

    The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi.

  17. Agrobacterium-mediated transformation of the β-subunit gene in 7S globulin protein in soybean using RNAi technology.

    PubMed

    Qu, J; Liu, S Y; Wang, P W; Guan, S Y; Fan, Y G; Yao, D; Zhang, L; Dai, J L

    2016-01-01

    The objective of this study was to use RNA interference (RNAi) to improve protein quality and decrease anti-nutritional effects in soybean. Agrobacterium tumefaciens-mediated transformation was conducted using RNAi and an expression vector containing the 7S globulin β-subunit gene. The BAR gene was used as the selective marker and cotyledonary nodes of soybean genotype Jinong 27 were chosen as explant material. Regenerated plants were detected by molecular biology techniques. Transformation of the β-subunit gene in the 7S protein was detected by PCR, Southern blot, and q-PCR. Positive plants (10 T0, and 6 T1, and 13 T2) were tested by PCR. Hybridization bands were detected by Southern blot analysis in two of the T1 transgenic plants. RNAi expression vectors containing the soybean 7S protein β-subunit gene were successfully integrated into the genome of transgenic plants. qRT-PCR analysis in soybean seeds showed a clear decrease in expression of the soybean β-subunit gene. The level of 7S protein β-subunit expression in transgenic plants decreased by 77.5% as compared to that of the wild-type plants. This study has established a basis for the application of RNAi to improve the anti-nutritional effects of soybean. PMID:27173254

  18. Agrobacterium-mediated transformation of the β-subunit gene in 7S globulin protein in soybean using RNAi technology.

    PubMed

    Qu, J; Liu, S Y; Wang, P W; Guan, S Y; Fan, Y G; Yao, D; Zhang, L; Dai, J L

    2016-04-26

    The objective of this study was to use RNA interference (RNAi) to improve protein quality and decrease anti-nutritional effects in soybean. Agrobacterium tumefaciens-mediated transformation was conducted using RNAi and an expression vector containing the 7S globulin β-subunit gene. The BAR gene was used as the selective marker and cotyledonary nodes of soybean genotype Jinong 27 were chosen as explant material. Regenerated plants were detected by molecular biology techniques. Transformation of the β-subunit gene in the 7S protein was detected by PCR, Southern blot, and q-PCR. Positive plants (10 T0, and 6 T1, and 13 T2) were tested by PCR. Hybridization bands were detected by Southern blot analysis in two of the T1 transgenic plants. RNAi expression vectors containing the soybean 7S protein β-subunit gene were successfully integrated into the genome of transgenic plants. qRT-PCR analysis in soybean seeds showed a clear decrease in expression of the soybean β-subunit gene. The level of 7S protein β-subunit expression in transgenic plants decreased by 77.5% as compared to that of the wild-type plants. This study has established a basis for the application of RNAi to improve the anti-nutritional effects of soybean.

  19. Genetic Transformation of Switchgrass

    NASA Astrophysics Data System (ADS)

    Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu

    Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.

  20. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    PubMed

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. PMID:25676198

  1. An efficient Agrobacterium-mediated transformation system for poplar.

    PubMed

    Movahedi, Ali; Zhang, Jiaxin; Amirian, Rasoul; Zhuge, Qiang

    2014-06-13

    Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone "Nanlin895" (Populus deltoides×P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.

  2. In planta Agrobacterium-mediated transformation by vacuum infiltration.

    PubMed

    Tague, Brian W; Mantis, Joanna

    2006-01-01

    In planta Agrobacterium-mediated transformation using vacuum infiltration results in transgenic Arabidopsis thaliana without the use of sterile conditions or plant regeneration. Plants are grown in pots, in standard potting mix. Agrobacterium tumefaciens, carrying an appropriate plant transformation vector, is suspended in an infiltration medium that contains, at a minimum, sucrose and the surfactant Silwet L-77. Flower buds are immersed in the suspension of A. tumefaciens. The application of a vacuum drives the bacteria into the intercellular air spaces. A portion of the Agrobacterium Ti plasmid known as the T-DNA region, which has been engineered to carry a selectable marker, becomes integrated into the plant genomic DNA. Plants are allowed to set seed. Seeds are germinated in selective conditions to recover transformants. PMID:16739579

  3. Is VIP1 important for Agrobacterium-mediated transformation?

    PubMed

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization.

  4. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection.

    PubMed

    Pantazis, Christopher J; Fisk, Sarah; Mills, Kerri; Flinn, Barry S; Shulaev, Vladimir; Veilleux, Richard E; Dan, Yinghui

    2013-03-01

    KEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12-16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1-2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.

  5. Agrobacterium-mediated transformation of three freshwater microalgal strains.

    PubMed

    Sanitha, Mary; Radha, Sudhakar; Fatima, Anwar Aliya; Devi, Selvaraju Gayathri; Ramya, Mohandass

    2014-01-01

    Microalgal transformation has gained interest in recent years. Agrobacterium-mediated transformation remains as the most efficient method for the development of transgenic plants and microalgae due to its wide host range, inexpensive procedure and transfer of large segments of DNA. In the present study, three different microalgal species were isolated from freshwater environment and identified based on the morphological characteristics and ITS-2 region amplification. Agrobacterium-mediated transformation was successful for the isolates Chlorella sp., Ankistrodesmus sp and Scenedesmus bajacalifornicus. Gene integration and expression was confirmed by PCR amplification of hptII and GUS histochemical assay. A. tumifaciens contamination was checked by amplification of npt II gene (kanamycin resistant) which lies outside the T-border. Based on GUS assay, transformation efficiencies were found to be 12.25% for Chlorella sp. 2.96% for Scenedesmus bajacalifornicus and 3.5% for Ankistrodesmus sp.

  6. Agrobacterium-mediated transformation of barley (Hordeum vulgare L.).

    PubMed

    Ismagul, Ainur; Mazonka, Iryna; Callegari, Corinne; Eliby, Serik

    2014-01-01

    Barley biotechnology requires efficient genetic engineering tools for producing transgenic plants necessary for conducting reverse genetics analyses in breeding and functional genomics research. Agrobacterium-mediated genetic transformation is an important technique for producing barley transgenics with simple low-copy number transgenes. This chapter reports a refined protocol for the systematic high-throughput transformation of the advanced Australian spring barley breeding line WI4330.

  7. Genetic transformation of wheat via Agrobacterium-mediated DNA delivery.

    PubMed

    Sparks, Caroline A; Doherty, Angela; Jones, Huw D

    2014-01-01

    The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.). PMID:24243208

  8. Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation.

    PubMed

    Hwang, Hau-Hsuan; Wang, Ming-Hsuan; Lee, Ying-Ling; Tsai, Yun-Long; Li, Yi-Ho; Yang, Fong-Jhih; Liao, Yu-Chen; Lin, Shao-Kai; Lai, Erh-Min

    2010-09-01

    Agrobacterium tumefaciens is a plant pathogenic bacterium that causes neoplastic growths, called 'crown gall', via the transfer and integration of transferred DNA (T-DNA) from the bacterium into the plant genome. We characterized an acetosyringone (AS)-induced tumour-inducing (Ti) plasmid gene, tzs (trans-zeatin synthesizing), that is responsible for the synthesis of the plant hormone cytokinin in nopaline-type A. tumefaciens strains. The loss of Tzs protein expression and trans-zeatin secretions by the tzs frameshift (tzs-fs) mutant is associated with reduced tumorigenesis efficiency on white radish stems and reduced transformation efficiencies on Arabidopsis roots. Complementation of the tzs-fs mutant with a wild-type tzs gene restored wild-type levels of trans-zeatin secretions and transformation efficiencies. Exogenous application of cytokinin during infection increased the transient transformation efficiency of Arabidopsis roots infected by strains lacking Tzs, which suggests that the lower transformation efficiency resulted from the lack of Agrobacterium-produced cytokinin. Interestingly, although the tzs-fs mutant displayed reduced tumorigenesis efficiency on several tested plants, the loss of Tzs enhanced tumorigenesis efficiencies on green pepper and cowpea. These data strongly suggest that Tzs, by synthesizing trans-zeatin at early stage(s) of the infection process, modulates plant transformation efficiency by A. tumefaciens. PMID:20696005

  9. Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling.

    PubMed

    Djamei, Armin; Pitzschke, Andrea; Nakagami, Hirofumi; Rajh, Iva; Hirt, Heribert

    2007-10-19

    Nuclear import of transfer DNA (T-DNA) is a central event in Agrobacterium transformation of plant cells and is thought to occur by the hijacking of certain host cell proteins. The T-DNA-associated virulence protein VirE2 mediates this process by binding to the nuclear import machinery via the host cell factor VIP1, whose role in plants has been so far unknown. Here we show that VIP1 is a transcription factor that is a direct target of the Agrobacterium-induced mitogen-activated protein kinase (MAPK) MPK3. Upon phosphorylation by MPK3, VIP1 relocalizes from the cytoplasm to the nucleus and regulates the expression of the PR1 pathogenesis-related gene. MAPK-dependent phosphorylation of VIP1 is necessary for VIP1-mediated Agrobacterium T-DNA transfer, indicating that Agrobacterium abuses the MAPK-targeted VIP1 defense signaling pathway for nuclear delivery of the T-DNA complex as a Trojan horse. PMID:17947581

  10. Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea.

    PubMed

    Bhalla, Prem L; Singh, Mohan B

    2008-01-01

    Agrobacterium-mediated transformation is widely used for gene delivery in plants. However, commercial cultivars of crop plants are often recalcitrant to transformation because the protocols established for model varieties are not directly applicable to them. The genus Brassica includes the oil seed crop, canola (B. napus), and vegetable crop varieties of Brassica oleracea, including cauliflower, broccoli and cabbage. Here, we describe an efficient protocol for Agrobacterium-mediated transformation using seedling explants that is applicable to various Brassica varieties; this protocol has been used to genetically engineer commercial cultivars of canola and cauliflower in our laboratory. Young seedling explants are inoculated with Agrobacterium on the day of explant preparation. Explants are grown for 1 week in the absence of a selective agent before being transferred to a selective medium to recover transgenic shoots. Transgenic shoots are subjected to an additional round of selection on medium containing higher levels of the selective agent and a low-carbohydrate source; this helps to eliminate false-positive plants. Use of seedling explants offers flexible experiment planning and a convenient explant source. Using this protocol, transgenic plants can be obtained in 2.5 to 3.5 months.

  11. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens.

    PubMed

    Radke, S E; Turner, J C; Facciotti, D

    1992-09-01

    Transformation and regeneration procedures for obtaining transgenic Brassica rapa ssp. oleifera plants are described. Regeneration frequencies were increasedby using silver nitrate and by adjusting the duration of exposure to 2,4-D. For transformation, Agrobacterium tumefaciens strain EHA101 containing a binary plasmid with the neomycin phosphotransferase gene (NPT II) and the b-glucuronidase gene (GUS) was cocultivated with hypocotyl explants from the oilseed B. rapa cvs. Tobin and Emma. Transformed plants were obtained within three months of cocultivation. Transformation frequencies for the cultivars Tobin and Emma were 1-9%. Evidence for transformation was shown by NPT II dot blot assay, the GUS fluorometric assay, Southern analysis, and segregation of the kanamycin-resistance trait in the progeny. The transformation and regeneration procedure described here has been used routinely to transform two cultivars of B. rapa and 18 cultivars of B. napus.

  12. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens.

    PubMed

    Radke, S E; Turner, J C; Facciotti, D

    1992-09-01

    Transformation and regeneration procedures for obtaining transgenic Brassica rapa ssp. oleifera plants are described. Regeneration frequencies were increasedby using silver nitrate and by adjusting the duration of exposure to 2,4-D. For transformation, Agrobacterium tumefaciens strain EHA101 containing a binary plasmid with the neomycin phosphotransferase gene (NPT II) and the b-glucuronidase gene (GUS) was cocultivated with hypocotyl explants from the oilseed B. rapa cvs. Tobin and Emma. Transformed plants were obtained within three months of cocultivation. Transformation frequencies for the cultivars Tobin and Emma were 1-9%. Evidence for transformation was shown by NPT II dot blot assay, the GUS fluorometric assay, Southern analysis, and segregation of the kanamycin-resistance trait in the progeny. The transformation and regeneration procedure described here has been used routinely to transform two cultivars of B. rapa and 18 cultivars of B. napus. PMID:24213157

  13. Efficient production of transgenic melon via Agrobacterium-mediated transformation.

    PubMed

    Bezirganoglu, I; Hwang, S Y; Shaw, J F; Fang, T J

    2014-04-25

    Oriental melon (Cucumis melo L. var. makuwa) is an important fruit for human consumption. However, this plant species is one of the most recalcitrant to genetic transformation. The lack of an efficient in vitro system limits the development of a reproducible genetic transformation protocol for Oriental melon. In this study, an efficient transgenic production method for Agrobacterium-mediated transformation using cotyledon explants of Oriental melon was developed. Cotyledon explants were pre-cultivated for two days in the dark, and the optimal conditions for transformation of melon were determined to be a bacteria concentration of OD600 0.6, inoculation for 30 min, and two days of co-cultivation. Transgenic melon plants were produced from kanamycin-resistant shoots. A total of 11 independent transgenic plants were regenerated with a transformation efficiency of 0.8% of the inoculated explants. The transgenic plants were phenotypically normal and fully fertile, which might be a consequence of the co-cultivation time.

  14. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    PubMed

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  15. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants.

    PubMed

    Anand, Ajith; Krichevsky, Alexander; Schornack, Sebastian; Lahaye, Thomas; Tzfira, Tzvi; Tang, Yuhong; Citovsky, Vitaly; Mysore, Kirankumar S

    2007-05-01

    Agrobacterium tumefaciens-mediated genetic transformation is an efficient tool for genetic engineering of plants. VirE2 is a single-stranded DNA binding Agrobacterium protein that is transported into the plant cell and presumably protects the T-DNA from degradation. Using a yeast two-hybrid system, we identified Arabidopsis thaliana VIRE2-INTERACTING PROTEIN2 (VIP2) with a NOT domain that is conserved in both plants and animals. Furthermore, we provide evidence supporting VIP2 interaction with VIP1, a basic domain/leucine zipper motif-containing protein required for nuclear import and integration of T-DNA. Virus-induced gene silencing of VIP2 in Nicotiana benthamiana and characterization of the Arabidopsis vip2 mutant (At vip2) demonstrate that VIP2 is required for Agrobacterium-mediated stable transformation but not for transient transformation. Assays based upon a promoter-trap vector and quantification of T-DNA integration further confirmed VIP2 involvement in T-DNA integration. Interestingly, VIP2 transcripts were induced to a greater extent over prolonged periods after infection with a T-DNA transfer-competent Agrobacterium strain compared with the transfer-deficient Agrobacterium strain. Transcriptome analyses of At vip2 suggest that VIP2 is likely a transcriptional regulator, and the recalcitrancy to transformation in At vip2 is probably due to the combination of muted gene expression response upon Agrobacterium infection and repression of histone genes resulting in decreased T-DNA integration events. PMID:17496122

  16. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens.

    PubMed

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2014-01-01

    Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens. PMID:25426132

  17. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens

    PubMed Central

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2014-01-01

    Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens. PMID:25426132

  18. Efficient method for Agrobacterium mediated transformation of Artemisia annua L.

    PubMed

    Alam, Pravej; Mohammad, Anis; Ahmad, M M; Khan, Mather Ali; Nadeem, Mohd; Khan, Riyazuddeen; Akmal, Mohd; Ahlawat, Seema; Abdin, M Z

    2014-01-01

    Artemisinin, a potent antimalarial natural products isolated from aerial parts of Artemisia annua L. Many patents have been reported that the demand for artemisinin is exponentially increasing year after year due to increased incidences of drug resistant malaria throughout the world. Leaf explants were used frequently as target tissue to generate transgenic of Artemisia. annua L. However, obtaining a large number of transgenic lines through out the year is a laborious and delicate process. To circumvent this, we have developed a highly efficient leaf explant based Agrobacterium mediated transformation of A. annua L. plant. The gus gene was used as screenable marker to assess and optimize the performance of T-DNA delivery. The age of explant, kind of bacterial inoculation, suspension duration, infection times and co-culture conditions were optimized. The co-culture was carried out with Agrobacterium tumefaciens strain EHA105 under desiccation condition in the dark at 25-28 0C for 2-4 days. Complete analysis of transgene insertion demonstrated that the optimized method of transformation from leaf explants of A. annua L. was efficient and highly reproducible.

  19. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    PubMed

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.

  20. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    PubMed Central

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-01-01

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively. PMID:26262617

  1. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.

    PubMed

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-08-07

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  2. Agrobacterium-mediated transformation of Ruta graveolens L.

    PubMed

    Lièvre, Karine; Tran, Thi Lê Minh; Doerper, Sébastien; Hehn, Alain; Lacoste, Paul; Thomasset, Brigitte; Bourgaud, Frédéric; Gontier, Eric

    2009-01-01

    Agrobacterium tumefaciens is used to develop a genetic transformation method for a medicinal plant Ruta graveolens. The direct plant regeneration strategy is preferred to callus line establishment. In vitro seedlings, 2- -to 3-wk-old, are used to excise hypocotyls and co-cultivated for 3 d with A. tumefaciens strain C58C1Rif containing plasmid pTDE4 harbouring neomycin phosphotransferase (npt II, kanamycin resistance) and beta-glucuronidase encoding genes. The Southern blot analysis has shown that 78% kanamycin resistant plants contain gene encoding beta-glucuronidase. The GUS histochemical assay shows that 67% transgenic plants exhibit the corresponding enzymatic activity. Routine transformation efficiency of R. graveolens L. is 11% and could reach up to 22%. Transgenic plants are grown in the greenhouse within 4 months after the initial seedlings.

  3. A Fruiting Body Tissue Method for Efficient Agrobacterium-Mediated Transformation of Agaricus bisporus

    PubMed Central

    Chen, Xi; Stone, Michelle; Schlagnhaufer, Carl; Romaine, C. Peter

    2000-01-01

    We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species. PMID:11010906

  4. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells.

    PubMed

    Pelczar, Pawel; Kalck, Véronique; Gomez, Divina; Hohn, Barbara

    2004-06-01

    Agrobacterium tumefaciens-mediated plant transformation, a unique example of interkingdom gene transfer, has been widely adopted for the generation of transgenic plants. In vitro synthesized transferred DNA (T-DNA) complexes comprising single-stranded DNA and Agrobacterium virulence proteins VirD2 and VirE2, essential for plant transformation, were used to stably transfect HeLa cells. Both proteins positively influenced efficiency and precision of transgene integration by increasing overall transformation rates and by promoting full-length single-copy integration events. These findings demonstrate that the virulence proteins are sufficient for the integration of a T-DNA into a eukaryotic genome in the absence of other bacterial or plant factors. Synthetic T-DNA complexes are therefore unique protein:DNA delivery vectors with potential applications in the field of mammalian transgenesis. PMID:15153934

  5. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    PubMed

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.

  6. Enhanced podophyllotoxin production from Agrobacterium rhizogenes transformed cultures of Podophyllum hexandrum.

    PubMed

    Giri, A; Giri, C C; Dhingra, V; Narasu, M L

    2001-01-01

    Podophyllotoxin, a potent chemotherapeutic agent is obtained from Podophyllum hexandrum Royle. Embryos of P. hexandrum were transformed using different strains of Agrobacterium rhizogenes viz. A4, 15834, K599. Transformed nature of the calli was ascertained and the cultures were further maintained as individual clones. HPLG analysis of transformed cultures depicted a three-fold increase in podophyllotoxin content in comparison to controls.

  7. Maize (Zea mays L.) transformation by Agrobacterium tumefaciens infection of pollinated ovules.

    PubMed

    Chen, Liang; Cong, Yuanyuan; He, Hongxia; Yu, Ying

    2014-02-10

    A novel transformation system was established for maize using Agrobacterium infection of in vitro cultured ovules. The maize ovules were isolated 24h after pollination and infected with Agrobacterium. The embryos were isolated from the pollinated ovules 2-3 weeks after Agrobacterium infection, regenerated to plantlets and investigated for transgene expression and inheritance. Experimental evaluations were focused on the four main aspects. Firstly, through the introduction of gus gene for monitoring transformation and development of embryo, it was confirmed that transgenic plants can be generated from in vitro cultured maize ovules infected with Agrobacterium. Secondly, in order to standardize the transformation protocol, several important factors that affected transformation efficiency were optimized. They included Agrobacterium delivery approach, surfactant, AS concentration, and cocultivation duration. Thirdly, stable expression and Mendelian inheritance of the introduced genes were analyzed in independent lines over two generations. Fourthly, the pollinated ovule culture-regeneration potential and transformation efficiency of five maize inbred lines were investigated to confirm the genotype independence of this transformation system. We conclude that the transformation system established in this study can be used to generate high-quality transgenic maize plants rapidly and directly.

  8. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  9. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori.

    PubMed

    Michielse, C B; Ram, A F J; Hooykaas, P J J; Hondel, C A M J J van den

    2004-05-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins in T-DNA transfer. This study revealed that inactivation of either of the regulatory proteins (VirA, VirG), any of the transport pore proteins (VirB), proteins involved in generation of the T-strand (VirD, VirC) or T-strand protection and targeting (VirE2) abolishes or severely reduces the formation of transformants. The results indicate that the Agrobacterium-mediated transformation of A. awamori requires an intact T-DNA machinery for efficient transformation; however, the plant host range factors, like VirE3, VirH, and VirF, are not important. PMID:15050546

  10. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2012-01-01

    Agrobacterium-mediated transformation of rice has been routinely performed according to the protocol reported by Hiei et al. (Plant J. 6:271-282, 1994). However, several elite japonica and many indica varieties cannot be efficiently transformed by Agrobacterium system. Also a large number of transformants are required to generate T-DNA insertion and FOX libraries as well as gene-targeting studies. To overcome these challenges, we established a high-efficiency transformation system in rice by cocultivating rice calli with Agrobacterium on filter papers moistened with enriched liquid media instead of using solid media (Ozawa, Plant Sci. 176:522-527, 2009; Ozawa and Takaiwa, Plant Sci. 179:333-337, 2010). In this system, the transformation efficiency of the calli is almost 100% in many varieties.

  11. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation.

    PubMed

    Srinivasan, Ramachandran; Gothandam, Kodiveri Muthukalianan

    2016-01-01

    An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer. PMID:27351975

  12. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation.

    PubMed

    Srinivasan, Ramachandran; Gothandam, Kodiveri Muthukalianan

    2016-01-01

    An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer.

  13. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation

    PubMed Central

    Srinivasan, Ramachandran

    2016-01-01

    An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer. PMID:27351975

  14. The role of RAR1 in Agrobacterium-mediated plant transformation

    PubMed Central

    Anand, Ajith; Mysore, Kirankumar S

    2013-01-01

    RAR1 is identified as a critical protein involved in plant innate immunity. We investigated the role of RAR1 in Agrobacterium-mediated plant transformation based on the previous findings that accessory proteins associated with the E3 ligase complex such as SGT1, which tightly interacts with RAR1, play a role in the transformation process. RAR1 gene silencing in Nicotiana benthamiana and Arabidopsis rar1 mutant analysis suggested that RAR1 is required for early stages of Agrobacterium-mediated plant transformation. This finding further illustrates that RAR1, along with SGT1, that serve as a HSP90 co-chaperone is important for Agrobacterium-mediated plant transformation.

  15. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    PubMed

    Michielse, C B; Arentshorst, M; Ram, A F J; van den Hondel, C A M J J

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.

  16. Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination.

    PubMed

    Mishiba, Kei-ichiro; Chin, Dong Poh; Mii, Masahiro

    2005-07-01

    A transformation procedure for phalaenopsis orchid established by using immature protocorms for Agrobacterium infection was aimed at the introduction of target genes into individuals with divergent genetic backgrounds. Protocorms obtained after 21 days of culture on liquid New Dogashima medium were inoculated with Agrobacterium strain EHA101(pIG121Hm) harboring both beta-glucuronidase (GUS) and hygromycin resistance genes. Subculture of the protocorms on acetosyringone-containing medium 2 days before Agrobacterium inoculation gave the highest transformation efficiencies (1.3-1.9%) based on the frequency of hygromycin-resistant plants produced. Surviving protocorms obtained 2 months after Agrobacterium infection on selection medium containing 20 mg l(-1) hygromycin were cut transversely into two pieces before transferring to recovery medium without hygromycin. Protocorm-like bodies (PLBs) proliferated from pieces of protocorms during a 1-month culture on recovery medium followed by transfer to selection medium. Hygromycin-resistant phalaenopsis plants that regenerated after the re-selection culture of PLBs showed histochemical blue staining due to GUS. Transgene integration of the hygromycin-resistant plants was confirmed by Southern blot analysis. A total of 88 transgenic plants, each derived from an independent protocorm, was obtained from ca. 12,500 mature seeds 6 months after infection with Agrobacterium. Due to the convenient protocol for Agrobacterium infection and rapid production of transgenic plants, the present procedure could be utilized to assess expression of transgenes under different genetic backgrounds, and for the molecular breeding of phalaenopsis.

  17. A technique to study Meloidogyne arenaria resistance in Agrobacterium rhizogenes-transformed peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reliable peanut root transformation system would be useful to study the functions of genes involved in root biology and disease resistance. The objective of this study was to establish an effective protocol to produce composite plants mediated by Agrobacterium rhizogenes transformation. More tha...

  18. Plant defense pathways subverted by Agrobacterium for genetic transformation

    PubMed Central

    Krichevsky, Alexander; Kozlovsky, Stanislav V; Yasmin, Farzana; Citovsky, Vitaly

    2010-01-01

    The soil phytopathogen Agrobacterium has the unique ability to introduce single-stranded transferred DNA (T-DNA) from its tumor-inducing (Ti) plasmid into the host cell in a process known as horizontal gene transfer. Following its entry into the host cell cytoplasm, the T-DNA associates with the bacterial virulence (Vir) E2 protein, also exported from Agrobacterium, creating the T-DNA nucleoprotein complex (T-complex), which is then translocated into the nucleus where the DNA is integrated into the host chromatin. VirE2 protects the T-DNA from the host DNase activities, packages it into a helical filament and interacts with the host proteins, one of which, VIP1, facilitates nuclear import of the T-complex and its subsequent targeting to the host chromatin. Although the VirE2 and VIP1 protein components of the T-complex are vital for its intracellular transport, they must be removed to expose the T-DNA for integration. Our recent work demonstrated that this task is aided by an host defense-related F-box protein VBF that is induced by Agrobacterium infection and that recognizes and binds VIP1. VBF destabilizes VirE2 and VIP1 in yeast and plant cells, presumably via SCF-mediated proteasomal degradation. VBF expression in and export from the Agrobacterium cell lead to increased tumorigenesis. Here, we discuss these findings in the context of the “arms race” between Agrobacterium infectivity and plant defense. PMID:20890133

  19. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli.

    PubMed

    Kubota, Akane; Ishizaki, Kimitsune; Hosaka, Masashi; Kohchi, Takayuki

    2013-01-01

    The thallus, the gametophyte body of the liverwort Marchantia polymorpha, develops clonal progenies called gemmae that are useful in the isolation and propagation of isogenic plants. Developmental timing is critical to Agrobacterium-mediated transformation, and high transformation efficiency has been achieved only with sporelings. Here we report an Agrobacterium-mediated transformation system for M. polymorpha using regenerating thalli. Thallus regeneration was induced by cutting the mature thallus across the apical-basal axis and incubating the basal portion of the thallus for 3 d. Regenerating thalli were infected with Agrobacterium carrying binary vector that contained a selection marker, the hygromycin phosphotransferase gene, and hygromycin-resistant transformants were obtained with an efficiency of over 60%. Southern blot analysis verified random integration of 1 to 4 copies of the T-DNA into the M. polymorpha genome. This Agrobacterium-mediated transformation system for M. polymorpha should provide opportunities to perform genetic transformation without preparing spores and to generate a sufficient number of transformants with isogenic background. PMID:23291762

  20. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli.

    PubMed

    Kubota, Akane; Ishizaki, Kimitsune; Hosaka, Masashi; Kohchi, Takayuki

    2013-01-01

    The thallus, the gametophyte body of the liverwort Marchantia polymorpha, develops clonal progenies called gemmae that are useful in the isolation and propagation of isogenic plants. Developmental timing is critical to Agrobacterium-mediated transformation, and high transformation efficiency has been achieved only with sporelings. Here we report an Agrobacterium-mediated transformation system for M. polymorpha using regenerating thalli. Thallus regeneration was induced by cutting the mature thallus across the apical-basal axis and incubating the basal portion of the thallus for 3 d. Regenerating thalli were infected with Agrobacterium carrying binary vector that contained a selection marker, the hygromycin phosphotransferase gene, and hygromycin-resistant transformants were obtained with an efficiency of over 60%. Southern blot analysis verified random integration of 1 to 4 copies of the T-DNA into the M. polymorpha genome. This Agrobacterium-mediated transformation system for M. polymorpha should provide opportunities to perform genetic transformation without preparing spores and to generate a sufficient number of transformants with isogenic background.

  1. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2009-04-01

    Technologies for transformation of rice have been developed to meet the requirements of functional genomics in order to enable the production of transgenic rice plants with useful agricultural characters. However, many rice varieties are not efficiently transformed by Agrobacterium. We have succeeded in establishing a highly efficient transformation system in rice by co-cultivating rice calli with Agrobacterium on three filter papers moistened with enriched N6 or DKN media instead of using solid media. Rice calli immersed in Agrobacterium suspension (EHA101, Agrobacterium concentration of OD600=0.04) were co-cultured on three pieces of filter paper (9cm in diameter) moistened with 5.5mL of N6 or DKN liquid co-cultivation medium supplemented with 2,4-d (2mg/L), proline (10mM), casein hydrolysate (300mg/L), sucrose (30g/L), glucose (5g/L), l-cysteine (100mg/L) and acetosyringone (15mg/L) at 25°C for 3 days in the dark. Compared with the transformation efficiency of calli co-cultivated on solid media, transformation efficiency was increased by about fivefold by using the filter paper method for many varieties of rice, including those that previously yielded much poor transformation rates.

  2. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.

    PubMed

    Ceasar, S Antony; Ignacimuthu, S

    2011-09-01

    A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

  3. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    PubMed

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation.

  4. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration.

    PubMed

    Bakshi, Souvika; Sadhukhan, Ayan; Mishra, Sagarika; Sahoo, Lingaraj

    2011-12-01

    An improved method of Agrobacterium-mediated transformation of cowpea was developed employing both sonication and vacuum infiltration treatments. 4 day-old cotyledonary nodes were used as explants for co-cultivation with Agrobacterium tumefaciens strain EHA105 harbouring the binary vector pSouv-cry1Ac. Among the different injury treatments, vacuum infiltration and their combination treatments tested, sonication for 20 s followed by vacuum infiltration for 5 min with A. tumefaciens resulted in highest transient GUS expression efficiency (93% explants expressing GUS at regenerating sites). After 3 days of co-cultivation, the explants were cultured in 150 mg/l kanamycin-containing selection medium and putative transformed plants were recovered. The presence, integration and expression of nptII and cry1Ac genes in T0 transgenic plants were confirmed by polymerase chain reaction (PCR), genomic Southern and qualitative reverse transcription (RT)-PCR analysis. Western blot hybridization and enzyme-linked immunosorbent assay (ELISA) detected and demonstrated the accumulation of Cry1Ac protein in transgenic plants. The cry1Ac gene transmitted in a Mendelian fashion. The stable transformation efficiency increased by 88.4% using both sonication-assisted Agrobacterium-mediated transformation (SAAT) and vacuum infiltration than simple Agrobacterium-mediated transformation in cowpea.

  5. Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.).

    PubMed

    Mhatre, Minal

    2013-01-01

    Pineapple (Ananas comosus L., Merr.) is a commercially important crop, grown in the tropical and subtropical regions. However, the crop is faced with postharvest damage and poor varietal and nutritional improvement. Being a vegetatively propagated crop, conventional breeding programs take longer time for genetic improvement, which may not necessarily successfully develop an improved cultivar. Hence, the genetic modification of pineapple is an alternative handy approach to improve pineapple. We have established an Agrobacterium-mediated transformation system using leaf bases from in vitro-grown pineapple plants. Being a monocot, acetosyringone is added to the culture medium for overnight growth of Agrobacterium and transformation to transfer a gene of interest MSI99 soybean ferritin. Leaf bases isolated from in vitro shoot cultures are treated with Agrobacterium suspension at two dilutions, 10× and 20×, for 30 min. Explants are subsequently blot dried and cultured on gelrite solidified hormone-free Pin1 medium for 2 days (cocultivation). Periodic transfer is first done to the regeneration medium (Pin1) containing cefotaxime for the suppression of Agrobacterium growth. The transformants are selected by culturing on Pin1 medium containing cefotaxime and kanamycin. Multiple shoots, regenerated in leaf bases, are further multiplied and individually rooted in the liquid RM medium amended with antibiotics to recover plants. Putative transformants are analyzed for transgene integration and expression using standard molecular biological methods of PCR, RT-PCR, and genomic Southern.

  6. Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.).

    PubMed

    Mhatre, Minal

    2013-01-01

    Pineapple (Ananas comosus L., Merr.) is a commercially important crop, grown in the tropical and subtropical regions. However, the crop is faced with postharvest damage and poor varietal and nutritional improvement. Being a vegetatively propagated crop, conventional breeding programs take longer time for genetic improvement, which may not necessarily successfully develop an improved cultivar. Hence, the genetic modification of pineapple is an alternative handy approach to improve pineapple. We have established an Agrobacterium-mediated transformation system using leaf bases from in vitro-grown pineapple plants. Being a monocot, acetosyringone is added to the culture medium for overnight growth of Agrobacterium and transformation to transfer a gene of interest MSI99 soybean ferritin. Leaf bases isolated from in vitro shoot cultures are treated with Agrobacterium suspension at two dilutions, 10× and 20×, for 30 min. Explants are subsequently blot dried and cultured on gelrite solidified hormone-free Pin1 medium for 2 days (cocultivation). Periodic transfer is first done to the regeneration medium (Pin1) containing cefotaxime for the suppression of Agrobacterium growth. The transformants are selected by culturing on Pin1 medium containing cefotaxime and kanamycin. Multiple shoots, regenerated in leaf bases, are further multiplied and individually rooted in the liquid RM medium amended with antibiotics to recover plants. Putative transformants are analyzed for transgene integration and expression using standard molecular biological methods of PCR, RT-PCR, and genomic Southern. PMID:23179718

  7. Agrobacterium-mediated transformation of the white-rot fungus Physisporinus vitreus.

    PubMed

    Schubert, M; Stührk, C; Fuhr, M J; Schwarze, F W M R

    2013-11-01

    The biotechnologically important white-rot fungus Physisporinus vitreus was co-cultivated with Agrobacterium tumefaciens AGL-1 carrying plasmids with nourseothricin resistance as the selectable marker gene and red fluorescence protein as a visual marker. Mitotically stable transformed isolates were obtained showing red fluorescence protein activity.

  8. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    NASA Astrophysics Data System (ADS)

    Huixia, Wu; Angela, Doherty; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  9. Genetic transformation of Brassica nigra by agrobacterium based vector and direct plasmid uptake.

    PubMed

    Gupta, V; Lakshmi Sita, G; Shaila, M S; Jagannathan, V

    1993-05-01

    Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes. PMID:24197344

  10. Agrobacterium-mediated transformation in Alpinia galanga (Linn.) Willd. for enhanced acetoxychavicol acetate production.

    PubMed

    Rao, Kiranmayee; Chodisetti, Bhuvaneswari; Mangamoori, Lakshmi Narasu; Giri, Archana

    2012-09-01

    Agrobacterium-mediated transformations ensure elevated amounts of secondary metabolite accumulation with genetic and biosynthetic stability. In the present study, Alpinia galanga rich in bioactive compounds was genetically transformed using different strains of Agrobacterium rhizogenes viz. LBA 9402, A(4), 532, 2364 and PRTGus. Even though a higher growth rate was obtained with the LBA 9402 strain, maximum acetoxychavicol acetate accumulation (ACA) was seen in the PRTGus transformant. PRTGus root line has shown 10.1 fold higher ACA content in comparison to the control roots. The lowest ACA production was shown by the A(4) transformant (4.9 fold). The quantification of ACA in the transformed roots was carried out by using HPLC, which was found to be in the order of PRTGus > LBA 9402 > 2364 > 532 > A(4). The fast growth rate of hairy roots, genetic stability and their ability to synthesize more than one metabolite offer a promising system for the production of valuable secondary metabolites.

  11. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment.

    PubMed

    Gao, Caixia; Long, Danfeng; Lenk, Ingo; Nielsen, Klaus Kristian

    2008-10-01

    Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.

  12. Transformation of Vicia narbonensis via Agrobacterium-mediated gene transfer.

    PubMed

    Pickardt, T; Meixner, M; Schade, V; Schieder, O

    1991-02-01

    Shoot tips and epicotyl-segments of Vicia narbonensis were co-cultivated with Agrobacterium tumefaciens strain C58C1 pGV 3850 HPT, carrying a plasmid coding for hygromycin-phosphotransferase. On callus-induction medium containing 60 mg/l hygromycin for selection, approximately 18% of the explants produced hygromycin-resistant callus. After transfer to regeneration-medium these calluses produced hygromycin-resistant and nopaline-positive somatic embryos which could be regenerated to plantlets. The integration of the T-DNA into the plant genome was confirmed by Southern analysis.

  13. Effect of Agrobacterium culture and inoculation density on transformation efficiency of a citrange (Citrus reticulata x Poncirus trifoliata).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of Agrobacterium growth phase and density on transformation of citrus rootstock US-812 (Citrus reticulata x Poncirus trifoliata) epicotyl explants was determined. In the first experiment, Agrobacterium EHA105 containing pBINGUSint was grown in YEP medium to an OD600 of 1 and glycerol sto...

  14. Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem's Delight orchid with higher efficiency.

    PubMed

    Gnasekaran, Pavallekoodi; Antony, Jessica Jeyanthi James; Uddain, Jasim; Subramaniam, Sreeramanan

    2014-01-01

    The presented study established Agrobacterium-mediated genetic transformation using protocorm-like bodies (PLBs) for the production of transgenic Vanda Kasem's Delight Tom Boykin (VKD) orchid. Several parameters such as PLB size, immersion period, level of wounding, Agrobacterium density, cocultivation period, and concentration of acetosyringone were tested and quantified using gusA gene expression to optimize the efficiency of Agrobacterium-mediated genetic transformation of VKD's PLBs. Based on the results, 3-4 mm PLBs wounded by scalpel and immersed for 30 minutes in Agrobacterium suspension of 0.8 unit at A 600 nm produced the highest GUS expression. Furthermore, cocultivating infected PLBs for 4 days in the dark on Vacin and Went cocultivation medium containing 200 μM acetosyringone enhanced the GUS expression. PCR analysis of the putative transformants selected in the presence of 250 mg/L cefotaxime and 30 mg/L geneticin proved the presence of wheatwin1, wheatwin2, and nptII genes.

  15. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava.

    PubMed

    Bull, S E; Owiti, J A; Niklaus, M; Beeching, J R; Gruissem, W; Vanderschuren, H

    2009-01-01

    Agrobacterium-mediated transformation of friable embryogenic calli (FEC) is the most widely used method to generate transgenic cassava plants. However, this approach has proven to be time-consuming and can lead to changes in the morphology and quality of FEC, influencing regeneration capacity and plant health. Here we present a comprehensive, reliable and improved protocol, taking approximately 6 months, that optimizes Agrobacterium-mediated transformation of FEC from cassava model cultivar TMS60444. We cocultivate the FEC with Agrobacterium directly on the propagation medium and adopt the extensive use of plastic mesh for easy and frequent transfer of material to new media. This minimizes stress to the FEC cultures and permits a finely balanced control of nutrients, hormones and antibiotics. A stepwise increase in antibiotic concentration for selection is also used after cocultivation with Agrobacterium to mature the transformed FEC before regeneration. The detailed information given here for each step should enable successful implementation of this technology in other laboratories, including those being established in developing countries where cassava is a staple crop.

  16. Regeneration and Agrobacterium-mediated transformation of hop (Humulus lupulus L.).

    PubMed

    Horlemann, C; Schwekendiek, A; Höhnle, M; Weber, G

    2003-10-01

    An efficient procedure for direct organogenesis and regeneration of hop (Humulus lupulus L.) was established. For the first time Agrobacterium-mediated genetic transformation of hop (cv. "Tettnanger") was achieved. Shoot internodes from in vitro cultures were identified as the most suitable type of explant for regeneration. Using this type of explant, a shoot-inducing medium was developed that supported direct organogenesis of approximately 50% of the explants. Plantlets were successfully rooted and transferred to the greenhouse. Overall, in less than 6 months hop cultures propagated in vitro were regenerated to plants in the greenhouse. Agrobacterium-mediated genetic transformation was performed with the reporter gene GUS (beta-glucuronidase). The presence and function of transgenes in plants growing in the greenhouse was verified by PCR (polymerase chain reaction) and enzyme assay for GUS activity, respectively. We have obtained 21 transgenic plants from 1,440 explants initially transformed, yielding an overall transformation efficiency of 1.5%. PMID:12898178

  17. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration.

    PubMed

    Subramanyam, Kondeti; Subramanyam, Koona; Sailaja, K V; Srinivasulu, M; Lakshmidevi, K

    2011-03-01

    A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana.

  18. An efficient regeneration protocol for Agrobacterium-mediated transformation of melon (Cucumis melo L.).

    PubMed

    Zhang, H J; Gao, P; Wang, X Z; Luan, F S

    2014-01-08

    An efficient selection and plant regeneration protocol for Agrobacterium-mediated transformation, using cotyledon node zone-stem connection region of melon, has been developed. The new Agrobacterium-mediated transformation methodology, independent of organ culture, used the entire germinated seed as explants. The transformation system was maximized to maintain the integrity of melon itself, thus avoiding the limitations of traditional tissue culture methods. The transformation was carried out under a non-sterile environment. The incorporation of a selectable marker (neomycin phosphotransferase II) into the genome of transgenic plants was confirmed by PCR and Southern blot analyses. The transformation frequency based on the PCR was 13%. Transgenic melon plants were usually detected by PCR in less than 1 month after Agrobacterium inoculation, and seeds could be harvested in 3 months. The growth characteristics and morphology of the transgenic plants were identical to the untransformed wild-type plants. This method would be beneficial for facilitating the characteristics of gene functions and for boosting the manipulation of melon transformation for commercial purposes.

  19. Efficient transformation of potato (Solanum tuberosum L.) using a binary vector in Agrobacterium rhizogenes.

    PubMed

    Visser, R G; Jacobsen, E; Witholt, B; Feenstra, W J

    1989-10-01

    We transformed three potato (Solanum tuberosum L.) genotypes by using A. rhizogenes or a mixture of A. rhizogenes and A. tumefaciens. Inoculations of potato stem segments were performed with Agrobacterium rhizogenes AM8703 containing two independent plasmids: the wild-type Ri-plasmid, pRI1855, and the binary vector plasmid, pBI121. In mixed inoculation experiments, Agrobacterium rhizogenes LBA1334 (pRI1855) and Agrobacterium tumefaciens AM8706 containing the disarmed Ti-plasmid (pAL4404) and the binary vector plasmid (pBI121) were mixed in a 1∶1 ratio. The T-DNA of the binary vector plasmid pBI121 contained two marker genes encoding neomycin phosphotransferase, which confers resistance to kanamycin, and β-glucuronidase. Both transformation procedures gave rise to hairy roots on potato stem segments within 2 weeks. With both procedures it was possible to obtain transformed hairy roots, able to grow on kanamycin and possessing β-glucuronidase activity, without selection pressure. The efficiency of the A. rhizogenes AM8703 transformation, however, was much higher than that of the "mixed" transformation. Up to 60% of the hairy roots resulting from the former transformation method were kanamycin resistant and possessed β-glucuronidase activity. There was no correlation between the height of the kanamycin resistance and that of the β-glucuronidase activity in a root clone. Hairy roots obtained from a diploid potato genotype turned out to be diploid in 80% of the cases. Transformed potato plants were recovered from Agrobacterium rhizogenes AM8703-induced hairy roots.

  20. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine.

    PubMed

    Tang, Wei; Lin, Jinxing; Newton, Ronald J

    2007-05-01

    Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (beta-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45-50 s, or treated with 1.5-2.0 microM okadaic acid or treated with 100-200 microM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2-3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 microM okadaic acid or 150 microM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

  1. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    PubMed Central

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  2. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    NASA Astrophysics Data System (ADS)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  3. Enhanced production of single copy backbone-free transgenic plants in multiple crop species using binary vectors with a pRi replication origin in Agrobacterium tumefaciens.

    PubMed

    Ye, Xudong; Williams, Edward J; Shen, Junjiang; Johnson, Susan; Lowe, Brenda; Radke, Sharon; Strickland, Steve; Esser, James A; Petersen, Michael W; Gilbertson, Larry A

    2011-08-01

    Single transgene copy, vector backbone-free transgenic crop plants are highly desired for functional genomics and many biotechnological applications. We demonstrate that binary vectors that use a replication origin derived from the Ri plasmid of Agrobacterium rhizogenes (oriRi) increase the frequency of single copy, backbone-free transgenic plants in Agrobacterium tumefaciens mediated transformation of soybean, canola, and corn, compared to RK2-derived binary vectors (RK2 oriV). In large scale soybean transformation experiments, the frequency of single copy, backbone-free transgenic plants was nearly doubled in two versions of the oriRi vectors compared to the RK2 oriV control vector. In canola transformation experiments, the oriRi vector produced more single copy, backbone-free transgenic plants than did the RK2 oriV vector. In corn transformation experiments, the frequency of single copy backbone-free transgenic plants was also significantly increased when using the oriRi vector, although the transformation frequency dropped. These results, derived from transformation experiments using three crops, indicate the advantage of oriRi vectors over RK2 oriV binary vectors for the production of single copy, backbone-free transgenic plants using Agrobacterium-mediated transformation.

  4. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants. PMID:23821951

  5. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  6. Agrobacterium-mediated genetic transformation using cotyledons in Japanese pear (Pyrus pyrifolia)

    PubMed Central

    Nakajima, Ikuko; Sato, Yoshihiko; Saito, Toshihiro; Moriguchi, Takaya; Yamamoto, Toshiya

    2013-01-01

    Genetic transformation was successfully established producing both transformed adventitious shoots and calli in Japanese pear (Pyrus pyrifolia Nakai) by using cotyledons as explants. Cotyledons of five cultivars were co-cultivated with Agrobacterium tumefaciens strain LBA4404 carrying the pBIN19-sgfp, which contained a green fluorescent protein gene and the neomycin phosphotransferase gene. In order to increase transformation efficiency, sonication and ethylenedioxybis (ethylamine)-N,N,N′,N′-tetraacetic acid (EGTA) treatments were applied, which could produce physical wounds across the tissue and prevent plant defense reaction, respectively. Green fluorescent protein (GFP) fluorescence was evaluated two weeks and five months after Agrobacterium inoculation as measures of transient and stable transformations, respectively. As a result, sonication significantly increased both transient and stable expression of GFP fluorescence, whereas EGTA treatment did not show a positive effect on either. Out of 18 regenerated plantlets obtained, one plant regenerated from ‘Agenosho Shinanashi’ showed stable GFP fluorescence. This plant was confirmed as a transformant by PCR and genomic Southern blotting. Three other transformed regenerated shoots by myb gene showed red color, which were derived from ‘Imamuraaki’ by the same transformation method. Transformation system in this study was shown to be reproducible since plural transformants were obtained. PMID:24273422

  7. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    PubMed

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  8. Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation.

    PubMed

    Kishchenko, E M; Komarnitskii, I K; Kuchuk, N V

    2011-01-01

    Sugar beet is highly sensitive to imidazolinone herbicides thus rotational restrictions exist. In order to develop imidazolinone tolerant sugar beets als gene from Arabidopsis thaliana encoding acetolactate synthase with S653N mutation was used for genetic transformation. Transgenic sugar beet plants were obtained by Agrobacterium-mediated transformation of aseptic seedlings using vacuum-infiltration. The efficiency of genetic transformation was 5.8%. RT-PCR analysis of obtained plants revealed accumulation of specific als transcript. The resistance to imidazolinone was proved for developed transgenic sugar beet plants in vitro and in greenhouse conditions after spraying with imazethapyr (Pursuit, BASF).

  9. A rapid and stable Agrobacterium-mediated transformation method of a medicinal plant Chelone glabra L.

    PubMed

    Gao, Zhenrui; Li, Ying; Chen, Jinhua; Chen, Zhixing; Cui, Min-Long

    2015-03-01

    Transformation approach is a useful tool for the study of gene function, the mechanism of molecular regulation, and increase usefulness of components by reverse genetic approach in plants. In this study, we developed a stable and rapid method for Agrobacterium-mediated transformation of a medicinal plant Chelone glabra L. using leaf explants. Stable transformants were obtained using Agrobacterium tumefaciens strains GV2260 and GV3101 that harbored the binary vector pBI121 and contained the neomycin phosphotransferase gene (NPT II) as a selectable marker and a reporter gene β-glucuronidase (GUS). Putative transformants were identified by kanamycin selection and a histochemical assay. PCR and Southern blot analysis confirmed the integration of the GUS gene into transformed genomes as well as detected stable expression of the β-glucuronidase gene (GUS) by RT-PCR. Resulting transformed plants had morphologically normal phenotypes. This method requires two changes of medium and few leaf explants as well as the transformation efficiency of 2-8 % after 2-3 months of inoculation. This method can provide a quick and economical transformation method for reverse genetic approach to change the secondary metabolic pathway to increase useful components in C. glabra.

  10. Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat.

    PubMed

    Ding, Liping; Li, Shengchun; Gao, Jianming; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan

    2009-01-01

    Immature embryos have been used frequently as target tissues in the genetical transformation of wheat. However, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process, because of the need to cultivate the plants under controlled conditions. To circumvent this, we have employed mature embryos rather than immature ones as starter explants for Agrobacterium-mediated transformation of an elite wheat (Triticum aestivum L.) cultivar EM12. The neomycin phosphotransferase II, (npt II) and beta-glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimize the performance of T-DNA delivery. With the aid of an orthogonal design, the effect of four factors in combination on transfer DNA (T-DNA) delivery was studied. These factors were preculture duration, different kinds of inoculation, length of inoculation and co-culture condition. Optimal conditions for T-DNA delivery were obtained for mature embryos precultured for 14 days, followed by immersing in inoculation suspension with full strength Murashige and Skoog (MS) salts in darkness at 23-25 degrees C for 3 h, and then co-culturing with Agrobacterium under desiccating condition in the dark at 23-24 degrees C for 2-3 days. Complete analysis of transgene insertion demonstrated that the optimized method for Agrobacterium-mediated transformation of mature embryos of wheat was efficient and practicable.

  11. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.

  12. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    PubMed

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection. PMID:27643450

  13. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

    PubMed Central

    Kwon, Tackmin

    2016-01-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection. PMID:27643450

  14. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches.

    PubMed

    de Boer, Paulo; Bronkhof, Jurian; Dukiќ, Karolina; Kerkman, Richard; Touw, Hesselien; van den Berg, Marco; Offringa, Remko

    2013-12-01

    The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.

  15. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  16. Stable Agrobacterium-Mediated Transformation of Maritime Pine Based on Kanamycin Selection

    PubMed Central

    Alvarez, José M.; Ordás, Ricardo J.

    2013-01-01

    An efficient transformation protocol based on kanamycin selection was developed for Agrobacterium-mediated transformation of maritime pine embryonal masses. The binary vector pBINUbiGUSint, which contained neomycin phosphotransferase II (nptII) as a selectable marker gene and β-glucuronidase (uidA) as a reporter gene, was used for transformation studies. Different factors, such as embryogenic line, bacterial strain, bacterial concentration, and coculture duration, were examined and optimized. For selection of transformants, 15 mgL−1 kanamycin was used. The highest transformation efficiency (11.4 events per gram of fresh mass) was achieved when a vigorously growing embryonal mass (embryogenic line L01) was cocultivated with Agrobacterium strain AGL1 at the optical density (OD600 nm) of 0.3 for 72 h. Evidence of the stable transgene integration was obtained by polymerase chain reaction for the nptII and uidA genes and expression of the uidA gene. Maturation capacity of the transgenic lines was negatively affected by the transformation process. Induction of axillary shoots by preculturing the embryos with benzyladenine allowed overcoming the low maturation rates of some transformed lines. The transgenic embryos were germinated and the axillar shoots were rooted. Transgenic plants were transferred to potting substrate showing normal growth. PMID:24376383

  17. Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection.

    PubMed

    Alvarez, José M; Ordás, Ricardo J

    2013-01-01

    An efficient transformation protocol based on kanamycin selection was developed for Agrobacterium-mediated transformation of maritime pine embryonal masses. The binary vector pBINUbiGUSint, which contained neomycin phosphotransferase II (nptII) as a selectable marker gene and β -glucuronidase (uidA) as a reporter gene, was used for transformation studies. Different factors, such as embryogenic line, bacterial strain, bacterial concentration, and coculture duration, were examined and optimized. For selection of transformants, 15 mgL(-1) kanamycin was used. The highest transformation efficiency (11.4 events per gram of fresh mass) was achieved when a vigorously growing embryonal mass (embryogenic line L01) was cocultivated with Agrobacterium strain AGL1 at the optical density (OD(600 nm)) of 0.3 for 72 h. Evidence of the stable transgene integration was obtained by polymerase chain reaction for the nptII and uidA genes and expression of the uidA gene. Maturation capacity of the transgenic lines was negatively affected by the transformation process. Induction of axillary shoots by preculturing the embryos with benzyladenine allowed overcoming the low maturation rates of some transformed lines. The transgenic embryos were germinated and the axillar shoots were rooted. Transgenic plants were transferred to potting substrate showing normal growth.

  18. Agrobacterium-mediated transformation of Vitis Cv. Monastrell suspension-cultured cells: Determination of critical parameters.

    PubMed

    Chu, Mingyu; Quiñonero, Carmen; Akdemir, Hülya; Alburquerque, Nuria; Pedreño, María Ángeles; Burgos, Lorenzo

    2016-05-01

    Although some works have explored the transformation of differentiated, embryogenic suspension-cultured cells (SCC) to produce transgenic grapevine plants, to our knowledge this is one of the first reports on the efficient transformation of dedifferentiated Vitis vinifera cv Monastrell SCC. This protocol has been developed using the sonication-assisted Agrobacterium-mediated transformation (SAAT) method. A construct harboring the selectable nptII and the eyfp/IV2 marker genes was used in the study and transformation efficiencies reached over 50 independent transformed SCC per gram of infected cells. Best results were obtained when cells were infected at the exponential phase. A high density plating (500 mg/dish) gave significantly better results. As selective agent, kanamycin was inefficient for the selection of Monastrell transformed SCC since wild type cells were almost insensitive to this antibiotic whereas application of paromomycin resulted in very effective selection. Selected eyfp-expressing microcalli were grown until enough tissue was available to scale up a new transgenic SCC. These transgenic SCC lines were evaluated molecularly and phenotypically demonstrating the presence and integration of both transgenes, the absence of Agrobacterium contamination and the ability of the transformed SCC to grow in highly selective liquid medium. The methodology described here opens the possibility of improving the production of valuable metabolites. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:725-734, 2016.

  19. Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method1

    PubMed Central

    Desfeux, Christine; Clough, Steven J.; Bent, Andrew F.

    2000-01-01

    The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding β-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved. PMID:10889238

  20. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex interplay between Agrobacterium and its host plant, Agrobacterium has evolved to take advantage of these plant defense pathways for its own purpose of advancement of the infection process. For example, Agrobacterium utilizes the host stress response transcriptional regulator VIP1 to facilitate nuclear import and proteasomal uncoating of its T-DNA during genetic transformation of the host cell. In Arabidopsis, the VIP1 gene expression is repressed by WRKY17, a negative regulator of basal resistance to Pseudomonas. Thus, we examined whether WRKY17 is also involved in plant susceptibility to genetic transformation by Agrobacterium. Using reverse genetics, we showed that a wrky17 mutant displays higher expression of the VIP1 gene in roots, but not in shoots. In a root infection assay, the wrky17 mutant plants were hyper-susceptible to Agrobacterium compared to wild type plants. WRKY17, therefore, may act as a positive regulator of Arabidopsis resistance to Agrobacterium. This notion is important for understanding the complex regulation of Agrobacterium-mediated genetic transformation; thus, although this paper reports a relatively small set of data that we do not plan to pursue further in our lab, we believe it might be useful for the broad community of plant pathologists and plant biotechnologists. PMID:24358874

  1. A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation

    PubMed Central

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    Agrobacterium is a phytopathogenic bacterium that induces crown gall disease in many plant species by transferring and integrating a segment of its own DNA (T-DNA) into its host genome. Whereas Agrobacterium usually does not trigger an extensive defense response in its host plants, it induces the expression of several defense-related genes and activates plant stress reactions. In the complex interplay between Agrobacterium and its host plant, Agrobacterium has evolved to take advantage of these plant defense pathways for its own purpose of advancement of the infection process. For example, Agrobacterium utilizes the host stress response transcriptional regulator VIP1 to facilitate nuclear import and proteasomal uncoating of its T-DNA during genetic transformation of the host cell. In Arabidopsis, the VIP1 gene expression is repressed by WRKY17, a negative regulator of basal resistance to Pseudomonas. Thus, we examined whether WRKY17 is also involved in plant susceptibility to genetic transformation by Agrobacterium. Using reverse genetics, we showed that a wrky17 mutant displays higher expression of the VIP1 gene in roots, but not in shoots. In a root infection assay, the wrky17 mutant plants were hyper-susceptible to Agrobacterium compared to wild type plants. WRKY17, therefore, may act as a positive regulator of Arabidopsis resistance to Agrobacterium. This notion is important for understanding the complex regulation of Agrobacterium-mediated genetic transformation; thus, although this paper reports a relatively small set of data that we do not plan to pursue further in our lab, we believe it might be useful for the broad community of plant pathologists and plant biotechnologists. PMID:24358874

  2. Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants.

    PubMed

    Petri, César; Wang, Hong; Alburquerque, Nuria; Faize, Mohamed; Burgos, Lorenzo

    2008-08-01

    A protocol for Agrobacterium-mediated stable transformation for scored, whole leaf explants of the apricot (Prunus armeniaca) cultivar Helena was developed. Regenerated shoots were selected using a two-step increased concentrations of paromomycin sulphate. Different factors affecting survival of transformed buds, including possible toxicity of green fluorescent protein (GFP) and time of exposure to high cytokine concentration in the regeneration medium, were examined. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines was 5.6%, when optimal conditions for bud survival were provided. Southern blot analysis on four randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene. This is the first time that stable transformation of an apricot cultivar is reported and constitutes also one of the few reports on the transformation of Prunus cultivars.

  3. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes.

    PubMed

    Guo, M; Zhang, Y L; Meng, Z J; Jiang, J

    2012-03-16

    Micro-Tom is the smallest known variety of tomatoes. An orthogonal experimental design L(16) (4(5)) was used to optimize Agrobacterium-mediated transformation of cotyledon explants of Lycopersicon esculentum cv. Micro-Tom. Four parameters were investigated to determine their effect on transformation frequency: the concentration of bacterial suspension, time of dip in bacterial suspension, co-cultivation time, and concentration of carbenicillin. We also examined the effect of these parameters on contamination rate, necrosis rate, mortality, cut-surface browning rate, and undamaged explant rate. Both the bacterial and carbenicillin concentrations had a significant influence on the rate of infected explants. The time of co-cultivation also had a significant influence on the transformation parameters. The optimal transformation protocol consisted of an Agrobacterium suspension of 0.5 × 10(8) cells/mL (OD(600) = 0.5) and an infection time of 5 min, one day of co-cultivation and 500 mg/L carbenicillin. Under these conditions, the transformation efficiency of the shoots reached 5.1%; the mean transformation frequency was 3.9% (N = 838).

  4. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brac...

  5. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.

    PubMed

    Dutt, M; Grosser, J W

    2010-11-01

    A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars.

  6. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability*

    PubMed Central

    Song, Zhang-yue; Tian, Jing-luan; Fu, Wei-zhe; Li, Lin; Lu, Ling-hong; Zhou, Lian; Shan, Zhi-hui; Tang, Gui-xiang; Shou, Hui-xia

    2013-01-01

    The Agrobacterium-mediated transformation system is the most commonly used method in soybean transformation. Screening of soybean genotypes favorable for Agrobacterium-infection and tissue regeneration is the most important step to establish an efficient genetic transformation system. In this study, twenty soybean genotypes that originated from different soybean production regions in China were screened for transient infection, regeneration capacity, and stable transgenic efficiency. Three genotypes, Yuechun 04-5, Yuechun 03-3, and Tianlong 1, showed comparable stable transgenic efficiencies with that of the previously reported American genotypes Williams 82 and Jack in our experimental system. For the Tianlong 1, the average stable transformation efficiency is 4.59%, higher than that of control genotypes (Jack and Williams 82), which is enough for further genomic research and genetic engineering. While polymerase chain reaction (PCR), LibertyLink strips, and β-glucuronidase (GUS) staining assays were used to detect the insertion and expression of the transgene, leaves painted with 135 mg/L Basta could efficiently identify the transformants. PMID:23549846

  7. An efficient Agrobacterium-mediated transformation of strawberry cv. Camarosa by a dual plasmid system.

    PubMed

    Haddadi, Fatemeh; Aziz, Maheran Abd; Abdullah, Siti Nor Akmar; Tan, Soon Guan; Kamaladini, Hossein

    2015-02-23

    An Agrobacterium-mediated transformation method was applied to introduce the luciferase reporter gene under the control of the CaMV35S promoter in the pGreen0049 binary vector into strawberry cv. Camarosa. The in vitro regeneration system of strawberry leaves to be used in the transformation was optimized using different TDZ concentrations in MS medium. TDZ at 16 µM showed the highest percentage (100%) of shoot formation and the highest mean number of shoots (24) produced per explant. Studies on the effects of different antibiotics, namely timentin, cefotaxime, carbenicillin and ampicillin, on shoot regeneration of strawberry leaf explants showed the best shoot regeneration in the presence of 300 mg/L timentin and 150 mg/L cefotaxime. Assessment of the different factors affecting Agrobacterium mediated-transformation of strawberry with the luciferase gene showed the highest efficiency of putative transformant production (86%) in the treatment with no preculture, bacterial OD600 of 0.6 and the addition of 150 mg/L cefotaxime in the pre-selection and selection media. The presence of the luciferase gene in the plant genome was verified by the luciferase reporter gene assay, nested PCR amplification and dot blot of genomic DNA isolated from the young leaves of each putatively transformed plantlet.

  8. IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in agrobacterium-mediated plant transformation.

    PubMed

    Bhattacharjee, Saikat; Lee, Lan-Ying; Oltmanns, Heiko; Cao, Hongbin; Veena; Cuperus, Joshua; Gelvin, Stanton B

    2008-10-01

    Successful transformation of plants by Agrobacterium tumefaciens requires that the bacterial T-complex actively escorts T-DNA into the host's nucleus. VirD2 and VirE2 are virulence proteins on the T-complex that have plant-functional nuclear localization signal sequences that may recruit importin alpha proteins of the plant for nuclear import. In this study, we evaluated the involvement of seven of the nine members of the Arabidopsis thaliana importin alpha family in Agrobacterium transformation. Yeast two-hybrid, plant bimolecular fluorescence complementation, and in vitro protein-protein interaction assays demonstrated that all tested Arabidopsis importin alpha members can interact with VirD2 and VirE2. However, only disruption of the importin IMPa-4 inhibited transformation and produced the rat (resistant to Agrobacterium transformation) phenotype. Overexpression of six importin alpha members, including IMPa-4, rescued the rat phenotype in the impa-4 mutant background. Roots of wild-type and impa-4 Arabidopsis plants expressing yellow fluorescent protein-VirD2 displayed nuclear localization of the fusion protein, indicating that nuclear import of VirD2 is not affected in the impa-4 mutant. Somewhat surprisingly, VirE2-yellow fluorescent protein mainly localized to the cytoplasm of both wild-type and impa-4 Arabidopsis cells and to the cytoplasm of wild-type tobacco (Nicotiana tabacum) cells. However, bimolecular fluorescence complementation assays indicated that VirE2 could localize to the nucleus when IMPa-4, but not when IMPa-1, was overexpressed. PMID:18836040

  9. DNA METHYLATION ANALYSIS DURING THE OPTIMIZATION OF Agrobacterium-MEDIATED TRANSFORMATION OF SOYBEAN.

    PubMed

    Jiang, J; Wing, V; Xiet, T; Shi, X; Wang, Y P; Sokolov, V

    2016-01-01

    Soybean is recognized as one of the plants which are very difficult to be transformed. Considering the low transformation efficiency of soybean, we aimed to determine the effect of 6-benzylaminopurine (6-BA), shoot induction time, and infection time of Agrobacterium on the clonal propagation of Glycine max. Results showed that 1.6 mg/L 6-BA could be optimal to promote the induction of adventitious shoots. An induction time of 15 d was considered optimal for the actual experiment involving soybean shoot induction. Agrobacterium was cultured until an OD600 = 0.8 was reached for an infection time of 30 min; this infection time may be optimal to promote soybean transformation. Whole genome DNA methylation was analyzed by high-performance liquid chromatography (HPLC)-assisted quantification, and DNA methylation result is consistent with the phenotypic data of shoot development. In addition, two methylation-related genes (Decrease in DNA methylation 1 and DNA methyltransferases chromomethylase 2) were analyzed to determine expression differences by qRT-PCR in the shoots that were developed under different experimental conditions. In general, the expression values of these genes were normally downregulated under the recommended experimental conditions of soybean regeneration. This study showed the overall methylation changes in the in vitro culture of soybean, as affected by several variable parameters, which is useful to promote the transformation efficiency of soybean. PMID:27183794

  10. DNA METHYLATION ANALYSIS DURING THE OPTIMIZATION OF Agrobacterium-MEDIATED TRANSFORMATION OF SOYBEAN.

    PubMed

    Jiang, J; Wing, V; Xiet, T; Shi, X; Wang, Y P; Sokolov, V

    2016-01-01

    Soybean is recognized as one of the plants which are very difficult to be transformed. Considering the low transformation efficiency of soybean, we aimed to determine the effect of 6-benzylaminopurine (6-BA), shoot induction time, and infection time of Agrobacterium on the clonal propagation of Glycine max. Results showed that 1.6 mg/L 6-BA could be optimal to promote the induction of adventitious shoots. An induction time of 15 d was considered optimal for the actual experiment involving soybean shoot induction. Agrobacterium was cultured until an OD600 = 0.8 was reached for an infection time of 30 min; this infection time may be optimal to promote soybean transformation. Whole genome DNA methylation was analyzed by high-performance liquid chromatography (HPLC)-assisted quantification, and DNA methylation result is consistent with the phenotypic data of shoot development. In addition, two methylation-related genes (Decrease in DNA methylation 1 and DNA methyltransferases chromomethylase 2) were analyzed to determine expression differences by qRT-PCR in the shoots that were developed under different experimental conditions. In general, the expression values of these genes were normally downregulated under the recommended experimental conditions of soybean regeneration. This study showed the overall methylation changes in the in vitro culture of soybean, as affected by several variable parameters, which is useful to promote the transformation efficiency of soybean.

  11. Regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata.

    PubMed

    Ma, Kai; Hu, Chun Gen; Xu, Bing; Yao, Jia Ling

    2013-09-01

    Protocols for regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata were developed. Initially, seeds of four genotypes of E. binata were incubated on a callus induction Murashige and Skoog (MS) basal medium supplemented with three concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). It was found that 36.2 % of explants developed highly friable callus on medium containing 3.0 mg l(-1) 2,4-D. Based on frequency of callus induction, the genotype Neixiang was selected for regeneration and transformation. Callus incubated on MS basal medium supplemented with 0.2 mg l(-1) α-naphthalene acetic acid and 6.0 mg l(-1) 6-furfuryl-aminopurine developed shoots. Subsequently, Agrobacterium tumefaciens strain EHA105-harboring a plasmid pCAMBIA1381 carrying a hygromycin phosphotransferase (hpt) resistance gene and a synthetic green fluorescent protein (GFP) gene, both driven by the cauliflower mosaic virus 35S promoter-was used for transformation system. Putative transgenic callus was obtained following two cycles of hygromycin selection. Expression of the transgene(s) in putative transgenic callus was analyzed using the GFP detection. Molecular identification of putative transformed shoots was performed by polymerase chain reaction and Southern blot analysis to confirm presence and integration of the hpt gene.

  12. Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae.

    PubMed

    Soltani, Jalal; van Heusden, Gerard Paul H; Hooykaas, Paul J J

    2009-09-01

    Agrobacterium tumefaciens is a plant pathogen that genetically transforms plant cells by transferring a part of its Ti-plasmid, the T-strand, to the host cell. Under laboratory conditions, it can also transform cells from many different nonplant organisms, including the yeast Saccharomyces cerevisiae. Collections of S. cerevisiae strains have been developed with systematic deletion of all coding sequences. Here, we used these collections to identify genes involved in the Agrobacterium-mediated transformation (AMT) of S. cerevisiae. We found that deletion of genes (GCN5, NGG1, YAF9 and EAF7) encoding subunits of the SAGA, SLIK, ADA and NuA4 histone acetyltransferase complexes highly increased the efficiency of AMT, while deletion of genes (HDA2, HDA3 and HST4) encoding subunits of histone deacetylase complexes decreased AMT. These effects are specific for AMT as the efficiency of chemical (lithium acetate) transformation was not or only slightly affected by these deletions. Our data are consistent with a positive role of host histone deacetylation in AMT.

  13. Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens.

    PubMed

    Saini, R; Sonia; Jaiwal, P K; Jaiwal, S

    2003-06-01

    Vigna mungo is one of the large-seeded grain legumes that has not yet been transformed. We report here for the first time the production of morphologically normal and fertile transgenic plants from cotyledonary-node explants inoculated with Agrobacterium tumefaciens carrying binary vector pCAMBIA2301, the latter of which contains a neomycin phosphotransferase ( nptII) gene and a beta-glucuronidase (GUS) gene ( uidA) interrupted with an intron. The transformed green shoots, selected and rooted on medium containing kanamycin, tested positive for nptII and uidA genes by polymerase chain reaction (PCR) analysis. These shoots were established in soil and grown to maturity to collect the seeds. Mechanical wounding of the explants prior to inoculation with Agrobacterium, time lag in regeneration due to removal of the cotyledons from explants and a second round of selection at the rooting stage were found to be critical for transformation. Analysis of T(0) plants showed the expression and integration of uidA into the plant genome. GUS activity in leaves, roots, flowers, anthers and pollen grains was detected by histochemical assay. PCR analysis of T(1) progeny revealed a Mendelian transgene inheritance pattern. The transformation frequency was 1%, and 6-8 weeks were required for the generation of transgenics.

  14. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  15. Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase.

    PubMed

    Aswath, Chenna Reddy; Mo, Sung Youn; Kim, Doo Hwan; Park, S Won

    2006-03-01

    A new selection system for onion transformation that does not require the use of antibiotics or herbicides was developed. The selection system used the Escherichia coli gene that encodes phosphomannose isomerase (pmi). Transgenic plants carrying the manA gene that codes for pmi can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the pmi activity. Six-week-old embryogenic callus initiated from seedling radicle was used for transformation. Transgenic plants were produced efficiently with transformation rates of 27 and 23% using Agrobacterium and biolistic system, respectively. Untransformed shoots were eliminated by a stepwise increase from 10 g l(-1) sucrose with 10 g l(-1) mannose in the first selection to only 10 g l(-1) mannose in the second selection. Integrative transformation was confirmed by PCR, RT-PCR and Southern hybridization. PMID:16211408

  16. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    PubMed

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  17. Agrobacterium-mediated transformation of two Serbian potato cultivars (Solanum tuberosum L. cv. Dragacevka and cv. Jelica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient protocol for Agrobacterium-mediated transformation of Serbian potato cultivars Dragacevka and Jelica, enabling the introduction of oryzacystatin genes OCI and OCII, was established. Starting with leaf explants a two-stage transformation protocol combining procedures of Webb and Wenzler...

  18. An improved plant regeneration and Agrobacterium - mediated transformation of red pepper (Capsicum annuum L.).

    PubMed

    Kumar, R Vinoth; Sharma, V K; Chattopadhyay, B; Chakraborty, S

    2012-10-01

    Capsicum annuum (red pepper) is an important spice cum vegetable crop in tropical and subtropical countries. Here, we report an effective and reproducible auxin free regeneration method for six different red pepper cultivars (ACA-10, Kashi Anmol, LCA-235, PBC-535, Pusa Jwala and Supper) using hypocotyl explants and an efficient Agrobacterium-mediated transformation protocol. The explants (hypocotyls, cotyledonary leaves and leaf discs) collected from axenic seedlings of six red pepper cultivars were cultured on either hormone free MS medium or MS medium supplemented with BAP alone or in combination with IAA. Inclusion of IAA in the regeneration medium resulted in callus formation at the cut ends of explants, formation of rosette leaves and ill defined shoot buds. Regeneration of shoot buds could be achieved from hypocotyls grown in MS medium supplemented with different concentrations of BAP unlike other explants which failed to respond. Incorporation of GA3 in shoot elongation medium at 0.5 mg/l concentration enhanced the elongation in two cultivars, LCA-235 and Supper, while other cultivars showed no significant response. Chilli cultivar, Pusa Jwala was transformed with βC1 ORF of satellite DNA β molecule associated with Chilli leaf curl Joydebpur virus through Agrobacterium tumefaciens. Transgene integration in putative transformants was confirmed by PCR and Southern hybridization analysis.

  19. Agrobacterium infection and plant defense—transformation success hangs by a thread

    PubMed Central

    Pitzschke, Andrea

    2013-01-01

    The value of Agrobacterium tumefaciens for plant molecular biologists cannot be appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA (T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and it is the orchestration of these factors that determines the success of transformation. Some plant species readily accept integration of foreign DNA, while others are recalcitrant. The timing and intensity of the microbially activated host defense repertoire sets the switch to “yes” or “no.” This repertoire is comprised of the specific induction of mitogen-activated protein kinases (MAPKs), defense gene expression, production of reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens abuses components of the host immunity system it mimics plant protein functions and manipulates hormone levels to bypass or override plant defenses. A better understanding of the ongoing molecular battle between agrobacteria and attacked hosts paves the way toward developing transformation protocols for recalcitrant plant species. This review highlights recent findings in agrobacterial transformation research conducted in diverse plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized and discussed in a thought-provoking manner. PMID:24391655

  20. HIGH FREQUENCY GENETIC TRANSFORMATION OF CICHORIUM INTYBUS L. USING nptII GENE AS A SELECTIVE MARKER.

    PubMed

    Matvieieva, N; Shakhovsky, A; Kvasko, O; Kuchuk, N

    2015-01-01

    Cichorium intybus L. is an important vegetable crop used as salad (leaf form) and for the production of coffee substitutes (root form). At the same time these plants can also be used in biotechnologies for synthesis of pharmaceutical proteins. Here we report the possibility of high frequency Agrobacterium rhizogenes- or A. tumefaciens-mediated transformation of C. intybus L. for construction of transgenic "hairy" roots and plants. The used plasmids contained target human interferonifn-α2b gene, Mycobacterium tuberculosis ESAT6:Ag85B antigene esxA::fbpB(ΔTMD) fused gene and human telomerase reverse transcriptase h Tert gene. Using of nptII gene as a selective one was preferable to the bar gene for chicory. In this case the frequency of transgenic plants or "hairy" roots formation was significantly higher. Cultivation of explants on the medium with Basta in concentration 1-2 mg/l have led to plants death or to significant reduction of number of shoots formed. Frequency of "hairy" roots formation varied from 5.9 to 42.3% after A. rhizogenes-mediated transformation. Frequency of regeneration of transgenic plants varied from 10 to 86% after A. tumefaciens-mediated transformation. Both A. rhizogenes- and A. tumefaciens-mediated transformation frequency depended on the type of explants, roots or cotyledons, and vector used. Usage of A. tumefaciens carrying pCB064 plasmid (target esxA:fbpB(ΔTMD) fused gene and nptII selective gene) resulted in the most effective regeneration of transgenic plants with regeneration frequency up to 86%. In the case of chicory A. rhizogenes-mediated transformation the highest regeneration frequency up to 42.3% was demonstrated using p CB161 vector with ifn-α2b target gene and nptII selective gene. PMID:26419064

  1. Cinnamic acid, coumarin and vanillin: Alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp.

    PubMed

    Cha, Thye-San; Chen, Chin-Fong; Yee, Willy; Aziz, Ahmad; Loh, Saw-Hong

    2011-03-01

    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.

  2. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation.

    PubMed

    Joubert, Philippe; Beaupère, Daniel; Wadouachi, Anne; Chateau, Sophie; Sangwan, Rajbir S; Sangwan-Norreel, Brigitte S

    2004-03-01

    O-Aryl-d-glucoside (4-7) and d-xyloside (8-10) derivatives were synthesized and tested on Agrobacterium virH gene induction and plant transformation. alpha- or beta-Glycosides enhanced vir activity at concentrations above 250 micromicro. The highest vir activity was observed with beta-glucoside derivative 4 at 10 mM. A marked difference between phenol glucoside derivative 4 and the corresponding free phenol on the growth of transformants was observed. The regenerated transgenic tissues, after transformation on medium containing acetosyringyl beta-glucoside 4, grew at twice the rate of those on medium containing only free acetosyringone (AS). Compound 4 was less toxic for tobacco explants compared to the corresponding free phenol. However, the xyloside derivatives tested (8-10) were less effective for gene induction compared with corresponding free phenols. PMID:15043408

  3. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    PubMed

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species.

  4. High efficiency transformation ofBrassica napus usingAgrobacterium vectors.

    PubMed

    Moloney, M M; Walker, J M; Sharma, K K

    1989-04-01

    An efficient procedure for obtaining transgenicBrassica napus plants usingAgrobacterium binary vectors is described. The target tissue for the transformation is the cut end of cotyledonary petioles. These tissues, when cultured with their lamina intact, show a regeneration frequency of more than 80%. The cells of this cut surface, which undergo organogenesis, are very susceptible to topical infection byAgrobacterium. The cocultivation method used does not require feeder layers or use of exogenously applied promoters of virulence. After 72h of infection withAgrobacterium the explants were transferred to selective regeneration medium. Using kanamycin (15μg cm(-3)) for selection, transgenic plantlets emerged within 3 weeks. These plantlets which appeared on over half the explants were excised and rooted for a further 7-10 days. When the plants were large enough, leaves were taken for assay of NPT II activity using dot blots. Most of the plants surviving the selection showed substantial NPT II activity. The frequency of transformation and yield of transgenic plants was higher than in previously reported methods with this species. Southern blotting revealed that integration of the T-DNA frequently occurred in multiple copies and at multiple loci in the genome. The transgenicB. napus plants all grew normally and developed fertile flowers. The transgenic plants were self-pollinated and their progeny studied by two methods. The first was a single-embryo NPT II assay performed on developing seeds of these selfed-plants. The second was a leaf bleaching assay performed by selection of germinating seedlings of the selfed progeny. Both assays yielded segregation ratios consistent with the number of integration events indicated by Southern blots. The method should have broad application in studies of gene expression in theBrassicaceae and will be a cost-effective alternative to those seeking to improveBrassica crops by introduction of foreign genes.

  5. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation.

    PubMed

    Saika, Hiroaki; Toki, Seiichi

    2010-12-01

    We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning--a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath--a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting.

  6. Agrobacterium-mediated transformation of peanut (Arachis hypogaea L.) embryo axes and the development of transgenic plants.

    PubMed

    McKently, A H; Moore, G A; Doostdar, H; Niedz, R P

    1995-08-01

    Transgenic peanut (Arachis hypogaea L.) plants have been produced using an Agrobacterium-mediated transformation system. Zygotic embryo axes from mature seed were cocultured with Agrobacterium tumefaciens strain EHA101 harboring a binary vector that contained the genes for the scorable marker B-glucuronidase (GUS) and the selectable marker neomycin phosphotransferase II. Nine percent of the germinated seedlings were GUS+. Polymerase chain reaction analysis confirmed that GUS+ shoots and T1 progeny contained T-DNA. Molecular characterization of one primary transformant and its T1 and T2 progeny plants established that T-DNA was integrated into the host genome. PMID:24186625

  7. Crown gall transformation of tobacco callus cells by cocultivation with Agrobacterium tumefaciens

    SciTech Connect

    Muller, A.; Manzara, T.; Lurquin, P.F.

    1984-09-17

    Incubation of cells from squashed tobacco callus tissue with virulent Agrobacterium tumefaciens leads to the production of cells displaying a crown gall phenotype. In vitro crown gall transformation of dicotyledonous plant cells has been demonstrated after cocultivation of cell-wall regenerating mesophyll protoplasts with Agrobacterium tumefaciens cells. In addition, it has been shown that protoplasts freshly isolated from suspension cultures, when treated with A. tumefaciens spheroplasts and a fusogen, also generated cells displaying a typical crown gall phenotype, i.e., phytohormone-independent growth and opine synthesis. Subsequently, both techniques were used to transfer and express foreign genes in plant cells via A. tumefaciens T-DNA integration. For practical purposes, it would be advantageous to be able to perform crown gall transformation of plant cells in tissue culture. The authors report here for the first time the production of Nicotiana tabacum crown gall cells after cocultivation of callus tissue with A. tumefaciens A136 cells. 11 references, 1 figure, 1 table.

  8. Agrobacterium rhizogenes: Transformed root cultures for the study of polyacetylene metabolism and biosynthesis

    SciTech Connect

    Marchant, Y.Y.

    1988-02-01

    Biologically active polyacetylenes are produced at low levels by the roots of members of the Coreopsidinae subtribe in the Asteraceae. Ten taxa of Coreopsis and Bidens were tranformed with Agrobacterium rhizogenes Strain A/sub 4/ and hairy root cultures established. These cultures grew rapidly and produced the same arrays of polyacetylenes as intact roots. The use of transformed roots for the study of polyacetylene biosynthesis is described in this paper. The engineering of plants with resistance to herbicides is now a practical reality because there are economic, intellectual and environmental incentives for using recombinant DNA technology in crop improvement programs, and because the biochemical and genetic basis for herbicide resistance is a simple trait conferred by a single gene. The transformation of plants with genes conferring resistance to insects or disease is more daunting, however, as biologically active secondary metabolites such as some alkaloids are typically products of multienzyme reactions. Photoactive polyacetylenes are probably plant defense chemicals and they are derived by a sequence of desaturation steps from oleic acid, which occurs ubiquitously in higher plants. Although the acetylene pathway may encompass as many genetic messages as those for morphine biosynthesis, it is likley that the genes controlling the biosynthesis of polyacetylenes may be isolated, identified in the near future and transferred via Agrobacterium to economically important plants susceptible to pathogen attack. 58 refs., 4 figs., 3 tabs.

  9. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement.

    PubMed

    Nyaboga, Evans; Tripathi, Jaindra N; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3-4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important

  10. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement

    PubMed Central

    Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important

  11. Sequential monitoring of transgene expression following Agrobacterium-mediated transformation of rice.

    PubMed

    Saika, Hiroaki; Nonaka, Satoko; Osakabe, Keishi; Toki, Seiichi

    2012-11-01

    Although Agrobacterium-mediated transformation technology is now used widely in rice, many varieties of indica-type rice are still recalcitrant to Agrobacterium-mediated transformation. It was reported recently that T-DNA integration into the rice genome could be the limiting step in this method. Here, we attempted to establish an efficient sequential monitoring system for stable transformation events by visualizing stable transgene expression using a non-destructive and highly sensitive visible marker. Our results demonstrate that click beetle luciferase (ELuc) is an excellent marker allowing the observation of transformed cells in rice callus, exhibiting a sensitivity >30-fold higher than that of firefly luciferase. Since we have previously shown that green fluorescent protein (GFP) is a useful visual marker with which to follow transient and/or stable expression of transgenes in rice, we constructed an enhancer trap vector using both the gfbsd2 (GFP fused to the N-terminus of blasticidin S deaminase) and eluc genes. In this vector, the eluc gene is under the control of the Cauliflower mosaic virus 35S minimal promoter, while the gfbsd2 gene is under the control of the full-length rice elongation factor gene promoter. Observation of transformed callus under a dissecting microscope demonstrated that the level of ELuc luminescence reflected exclusively stable transgene expression, and that both transient and stable expression could be monitored by the level of GFP fluorescence. Moreover, we show that our system enables sequential quantification of transgene expression via differential measurement of ELuc luminescence and GFP fluorescence.

  12. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Vanittanakom, Nongnuch

    2010-12-01

    We have developed an improved Agrobacterium-mediated transformation (AMT) system for the functional genetic analysis of Penicillium marneffei, a thermally dimorphic, human pathogenic fungus. Our AMT protocol included the use of conidia or pre-germinated conidia of P. marneffei as the host recipient for T-DNA from Agrobacterium tumefaciens and co-cultivation at 28°C for 36 hours. Bleomycin-resistant transformants were selected as yeast-like colonies following incubation at 37°C. The efficiency of transformation was approximately 123 ± 3.27 and 239 ± 13.12 transformants per plate when using 5 × 10(4) conidia and pre-germinated conidia as starting materials, respectively. Southern blot analysis demonstrated that 95% of transformants contained single copies of T-DNA. Inverse PCR was employed for identifying flanking sequences at the T-DNA insertion sites. Analysis of these sequences indicated that integration occurred as random recombination events. Among the mutants isolated were previously described stuA and gasC defective strains. These AMT-derived mutants possessed single T-DNA integrations within their particular coding sequences. In addition, other morphological and pigmentation mutants possessing a variety of gene-specific defects were isolated, including two mutants having T-DNA integrations within putative promoter regions. One of the latter integration events was accompanied by the deletion of the entire corresponding gene. Collectively, these results indicated that AMT could be used for large-scale, functional genetic analyses in P. marneffei. Such analyses can potentially facilitate the identification of those genetic elements related to morphogenesis, as well as pathogenesis in this medically important fungus.

  13. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco.

    PubMed

    Pathi, Krishna Mohan; Tula, Suresh; Tuteja, Narendra

    2013-06-01

    A direct somatic embryogenesis protocol was developed for four cultivars of Nicotiana species, by using leaf disc as an explant. Direct somatic embryogenesis of Nicotiana by using BAP and IAA has not been investigated so far. This method does not require formation of callus tissues which leads to somaclonal variations. The frequency of somatic embryogenesis was strongly influenced by the plant growth hormones. The somatic embryos developing directly from explant tissue were noticed after 6 d of culture. Somatic embryogenesis of a high frequency (87-96%) was observed in cultures of the all four genotypes (Nicotiana tabacum, N. benthamiyana, N. xanthi, N. t cv petihavana). The results showed that the best medium for direct somatic embryogenesis was MS supplemented with 2.5 mg/l, 0.2 mg/l IAA and 2% sucrose. Subculture of somatic embryos onto hormone free MS medium resulted in their conversion into plants for all genotypes. About 95% of the regenerated somatic embryos germinated into complete plantlets. The plants showed morphological and growth characteristics similar to those of seed-derived plants. Explants were transformed using Agrobacterium tumifacious LBA4404 plasmid pCAMBIA1301 harboring the GUS gene. The regenerated transgenic plants were confirmed by PCR analysis and histochemical GUS assay. The transformation efficiency obtained by using the Agrobacterium- mediated transformation was more than 95%. This method takes 6 wk to accomplish complete transgenic plants through direct somatic embryogenesis. The transgenic plantlets were acclimatized successfully with 98% survival in greenhouse and they showed normal morphological characteristics and were fertile. The regeneration and transformation method described herein is very simple, highly efficient and fast for the introduction of any foreign gene directly in tobacco through direct somatic embryogenesis. PMID:23518589

  14. Optimization of genetic transformation of Artemisia annua L. Using Agrobacterium for Artemisinin production

    PubMed Central

    Elfahmi; Suhandono, Sony; Chahyadi, Agus

    2014-01-01

    Background: Artemisinin, a sesquiterpene lactone endoperoxide isolated from the medicinal plant Artemisia annua L., is a choice and effective drug for malaria treatment. Due to the low yield of artemisinin in plants, there is a need to enhance the production of artemisinin from A. annua and biotechnological technique may be one of the methods that can be used for the purpose. Aim: To study the transformation efficiency of Agrobacterium tumefaciens in A. annua that could be applied to enhance the production of artemisinin by means of transgenic plants. Setting and Designs: The factors influencing Agrobacterium-mediated transformation of A. annua were explored to optimize the transformation system, which included A. tumefaciens strain and effect of organosilicone surfactants. Three strains of A. tumefaciens, that is, LBA4404, GV1301, and AGL1 harboring the binary vector pCAMBIA 1303 have been used for transformation. The evaluation was based on transient β-glucuronidase (GUS). Materials and Methods: Plant cell cultures were inniatiated from the seeds of A. annua using the germination Murashige and Skoog medium. A. tumefaciens harboring pCAMBIA were tranformed into the leaves of A.annua cultures from 2-week-old-seedling and 2-month-old-seedling for 15 min by vacuum infiltration. Transformation efficiency was determinated by measuring of blue area (GUS expression) on the whole leaves explant using ImageJ 1.43 software. Two organosilicon surfactants, that is, Silwet L-77 and Silwet S-408 were used to improve the transformation efficiency. Results: The transformation frequency with AGL1 strain was higher than GV3101 and LBA4404 which were 70.91, 49.25, and 45.45%, respectively. Effect of organosilicone surfactants, that is, Silwet L-77 and Silwet S-408 were tested on A. tumefaciens AGL1 and GV3101 for their level of transient expression, and on A. rhizogenes R1000 for its hairy root induction frequency. For AGL1, Silwet S-408 produced higher level of expression than

  15. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology.

    PubMed

    Ishizaki, Kimitsune; Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki

    2008-07-01

    Agrobacterium-mediated transformation has not been practical in pteridophytes, bryophytes and algae to date, although it is commonly used in model plants including Arabidopsis and rice. Here we present a rapid Agrobacterium-mediated transformation system for the haploid liverwort Marchantia polymorpha L. using immature thalli developed from spores. Hundreds of hygromycin-resistant plants per sporangium were obtained by co-cultivation of immature thalli with Agrobacterium carrying the binary vector that contains a reporter, the beta-glucuronidase (GUS) gene with an intron, and a selection marker, the hygromycin phosphotransferase (hpt) gene. In this system, individual gemmae, which arise asexually from single initial cells, were analyzed as isogenic transformants. GUS activity staining showed that all hygromycin-resistant plants examined expressed the GUS transgene in planta. DNA analyses verified random integration of 1-5 copies of the intact T-DNA between the right and the left borders into the M. polymorpha genome. The efficient and rapid Agrobacterium-mediated transformation of M. polymorpha should provide molecular techniques to facilitate comparative genomics, taking advantage of this unique model plant that retains many features of the common ancestor of land plants.

  16. AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L.

    PubMed

    Tsuboyama, Shoko; Kodama, Yutaka

    2014-01-01

    The liverwort Marchantia polymorpha L. is being developed as an emerging model plant, and several transformation techniques were recently reported. Examples are biolistic- and Agrobacterium-mediated transformation methods. Here, we report a simplified method for Agrobacterium-mediated transformation of sporelings, and it is termed Agar-utilized Transformation with Pouring Solutions (AgarTrap). The procedure of the AgarTrap was carried out by simply exchanging appropriate solutions in a Petri dish, and completed within a week, successfully yielding sufficient numbers of independent transformants for molecular analysis (e.g. characterization of gene/protein function) in a single experiment. The AgarTrap method will promote future molecular biological study in M. polymorpha.

  17. STARTS--a stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley.

    PubMed

    Imani, Jafargholi; Li, Liang; Schäfer, Patrick; Kogel, Karl-Heinz

    2011-08-01

    Large data sets are generated from plants by the various 'omics platforms. Currently, a limiting step in data analysis is the assessment of protein function and its translation into a biological context. The lack of robust high-throughput transformation systems for monocotyledonous plants, to which the vast majority of crop plants belong, is a major restriction and impedes exploitation of novel traits in agriculture. Here we present a stable root transformation system for barley, termed STARTS, that allows assessment of gene function in root tissues within 6 weeks. The system is based on the finding that a callus, produced on root induction medium from the scutellum of the immature embryo, is able to regenerate roots from single transformed cells by concomitant suppression of shoot development. Using Agrobacterium tumefaciens-mediated transfer of genes involved in root development and pathogenesis, we show that those calli regenerate large amounts of uniformly transformed roots for in situ functional analysis of newly expressed proteins.

  18. Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants.

    PubMed

    Gasparis, Sebastian; Bregier, Cezary; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2008-11-01

    This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T(0) plants and 27.5% of the T(1) showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T(0) plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T(0) and T(1) showed simple integration pattern with the low copy number of the introduced transgenes.

  19. Transformation of Soybean (Glycine max) by Infecting Germinating Seeds with Agrobacterium tumefaciens

    PubMed Central

    Chee, Paula P.; Fober, Krystal A.; Slightom, Jerry L.

    1989-01-01

    The transfer of genetic material into soybean tissue was accomplished by using an avirulent strain of Agrobacterium tumefaciens which contained the binary vector pGA482. The method used for transformation requires no tissue culture steps as it involves the inoculation of the plumule, cotyledonary node, and adjacent cotyledon tissues of germinating seeds. The identification of neomycin phosphotransferase (NPT) II enzyme activity in the tissues of 16 (R0) soybean plants indicated that the plant expressible Nos-NPT II gene, contained within the T-DNA region from pGA482, had been transferred at least into somatic tissues. Putative transformed R0 soybean plants were advanced to produce R1 plants which were also assayed for the presence of the transferred Nos-NPT II gene. The combined results of these assays indicated that about 0.7% of the surviving inoculated seeds yielded transformed tissues in the R0 plant, and that about 1/10 of these plants yielded transformed R1 plants. The presence of the Nos-NPT II gene in DNAs isolated from both R0 and R1 plant was demonstrated by using genomic blot hybridization and polymerase chain reaction methods. Integration of this gene into the soybean genome was demonstrated for three R1 soybean plants. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:16667134

  20. Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum

    PubMed Central

    Ishida, Juliane K.; Yoshida, Satoko; Ito, Masaki; Namba, Shigetou; Shirasu, Ken

    2011-01-01

    Background Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. Methodology/Principal Findings We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6-dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation. Conclusions We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocols described here will allow functional analysis of genes involved in plant parasitism. PMID:21991355

  1. Efficient soybean regeneration and Agrobacterium-mediated transformation using a whole cotyledonary node as an explant.

    PubMed

    Zhang, Fuli; Chen, Can; Ge, Honglian; Liu, Jinmei; Luo, Yunling; Liu, Kun; Chen, Long; Xu, Kedong; Zhang, Yi; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    An optimized regeneration and Agrobacterium-mediated transformation protocol based on whole cotyledonary node explants was developed in soybean (Glycine max) cultivar Zhong Huang 13. Adding 6-benzylaminopurine (BAP) in a germinating medium could significantly increase regeneration efficiency; the optimal BAP concentration for shoot formation was 0.5 mg/L. The concentrations of plant growth regulators in a shoot induction medium were optimized by the orthogonal test [L9 (3(3))]. The best combination for shoot regeneration was a medium of Murashige & Skoog salts with B5 vitamins (MSB) supplemented with 3.5 mg/L BAP, 0.2 mg/L indole-3-butyric acid (IBA), and 0.2 mg/L kinetin (KT). Under this favorable condition, one node could regenerate 28-30 shoots. Soybean whole cotyledonary nodes were transformed by inoculation with A. tumefaciens strain EHA105 harboring a vector pBI121 containing a β-glucuronidase gene (gus). GUS assay, polymerase chain reaction, and Southern blot analysis indicated that the gus gene was transformed into soybean plants with 23.1% transformation efficiency. Transgenic plants could be obtained within 5-6 weeks, which was about 4 weeks less than that of a traditional single cotyledonary node method.

  2. [Agrobacterium-mediated transformation of LJAMP2 gene into 'Red Sun' kiwifruit and its molecular identification].

    PubMed

    Zhou, Yue; Zhao, Xupeng; Wu, Xiuhua; Zhang, Yanling; Zhang, Lin; Luo, Keming; Tang, Shaohu

    2014-06-01

    Bacterial canker caused by Pseudomonas syringae pv. Actinidiae is one of the most important diseases of kiwifruit (Actinidia chinensis) and leads to considerable yield losses. In order to obtain transgenic plants with resistance for 'Red Sun' kiwifruit to canker disease, a non-specific lipid transfer protein-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) was introduced into 'Red Sun' kiwifruit through Agrobacterium-mediated transformation. After two days of co-cultivation with A. tumefaciens strain LBA4404 harboring 35S:LJAMP2, the transformed explants were transferred to the selection medium containing 25 mg/L kanamycin+3.0 mg/L BA+1.0 mg/L NAA. The regeneration efficiency of kanamycin-resistant shoots reached to 85%. All (100%) of kanamycin-resistant shoots rooted on half-strength MS medium supplemented with 0.8 mg/L IBA and a total of 40 regenerated plantlets were obtained. PCR and histochemical GUS activity analysis show that 23 of 40 lines (57.50%) were positive, suggesting that the LJAMP2 gene was integrated into the genome of 'Red Sun' kiwifruit. Taken together, we established an efficient genetic transformation method for 'Red Sun' kiwifruit using A. tumefaciens and the transformation frequency reached 5.11%. This protocol will be useful for the genetic breeding of 'Red Sun' kiwifruit for improvement of disease resistance.

  3. Shoot regeneration of mesophyll protoplasts transformed by Agrobacterium tumefaciens, not achievable with untransformed protoplasts.

    PubMed

    Steffen, A; Eriksson, T; Schieder, O

    1986-04-01

    Alternative methods for shoot regeneration in protoplast derived cultures were developed in Nicotiana paniculata and Physalis minima. In both species protoplast derived callus is not regeneratable to shoots by conventional methods, e.g. hormone treatment. Leaf discs and stem segments of N. paniculata and P. minima were incubated with Agrobacterium tumefaciens "shooter" strains harbouring pGV 2215 or pGV 2298 or wildtype strain B6S3. After 36 h of co-incubation protoplasts were prepared. (Leaf disc and stem segment cloning). Co-cultivation experiments were also undertaken with protoplasts of both species. Transformed clones, characterized by their hormone independent growth and octopine production, could be isolated after about two months. Transformation frequencies of "leaf disc and stem segment cloning" and co-cultivation experiments varied from 5×10(-3) to 5×10(-5). After about one year of cultivation on hormone-free culture medium, shoots could be recovered from colonies of N. paniculata, transformed by the strain harbouring pGV 2298. In protoplast derived colonies of P. minima, shoot induction was obtained only after transformation by bacteria carrying pGV 2215. This demonstrates the importance of the particular "shooter" mutant, as well as the response of the host plant. Transformed shoots of P. minima produced octopine, whereas octopine production in transformed shoots and callus of N. paniculata was undetectable after one year of cultivation, though T-DNA was still present in the plant genome. Transformed shoots of N. paniculata and P. minima do not produce any roots. Shoots of N. paniculata have an especially tumerous phenotype. Shoots of both species were successfully grafted to normal donor plants of N. tabacum.

  4. Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.).

    PubMed

    Subramanyam, Kondeti; Rajesh, Manoharan; Jaganath, Balusamy; Vasuki, Amirthalingam; Theboral, Jeevaraj; Elayaraja, Dhandapani; Karthik, Sivabalan; Manickavasagam, Markandan; Ganapathi, Andy

    2013-09-01

    An efficient and reproducible in planta transformation method was developed for brinjal using seed as an explant. The brinjal seeds were infected with Agrobacterium tumefaciens EHA 105 harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta seed transformation such as pre-culture duration, acetosyringone concentration, surfactants, duration of sonication, vacuum pressure and vacuum duration have been evaluated. The putatively transformed (T 0) brinjal plants were screened by GUS histochemical analysis. Among the different combinations and concentrations tested, when the 18-h pre-cultured brinjal seeds were sonicated for 20 min and vacuum infiltered for 3 min at 500 mm of Hg in Agrobacterium suspension containing 100 μM acetosyringone, 0.2 % Silwett L-77 favoured the Agrobacterium infection and showed maximum transformation efficiency. Among the five brinjal varieties evaluated, Arka Samhitha showed maximum transformation efficiency at 45.66 %. The transgene was successfully transmitted to progeny plants (T 1) which was evidenced by GUS histochemical analysis, polymerase chain reaction and Southern hybridisation. The in planta protocol developed in the present study would be beneficial to transfer the economically and nutritionally important genes into different varieties of brinjal, and the transgenic brinjal plants can be produced in less time (approximately 27 days).

  5. In vitro regeneration and Agrobacterium mediated genetic transformation of Artemisia aucheri Boiss.

    PubMed

    Sharafi, Ali; Sohi, Haleh Hashemi; Mirzaee, Hooman; Azadi, Pejman

    2014-10-01

    In the present study, we developed an efficient protocol for in vitro plant regeneration and genetically transformed root induction in medicinal plant Artemisia aucheri Boiss. Leaf explants were cultivated in MS medium supplemented by combination of plant growth regulators including α-naphthalene-acetic acid, 6-benzyl-aminopurine, indole-3-acetic acid and 2, 4-dichlorophenoxyaceticacid. The highest frequency of shoot organogenesis occurred on MS medium supplemented with 0.05 mg/l NAA plus 2 mg/l BA (96.3 %) and MS medium supplemented with 0.5 mg/l IAA plus 2 mg/l BA (88.3 %). Root induction was obtained on MS medium supplemented with 0.5 mg/l IBA. This is a simple, reliable, rapid and high efficient regeneration system for A. aucheri Boiss in short period via adventitious shoot induction approach. Also, an efficient genetically transformed root induction for A. aucheri was developed through Agrobacterium rhizogenes-mediated transformation by four bacterial strains, A4, ATCC15834, MSU440, and A13 (MAFF-02-10266). The maximum frequency of hairy root induction was obtained using MSU440 (93 %) and ATCC15834 (89 %) bacterial strains. Hairy root lines were confirmed by PCR using the rolB gene specific primers and Southern blot analysis.

  6. High reliability transformation of the wheat pathogen Bipolaris sorokiniana using Agrobacterium tumefaciens.

    PubMed

    Nizam, Shadab; Verma, Sandhya; Singh, Kunal; Aggarwal, Rashmi; Srivastava, Krishna Dutt; Verma, Praveen K

    2012-03-01

    Bipolaris sorokiniana, the causal agent of spot blotch of wheat, significantly reduces grain yield worldwide. In order to study pathogenic mechanisms of the fungus, conditions for efficient transformation using Agrobacterium-mediated transformation were investigated. To study different stages of hyphal fusion and pathogenic mechanisms of the fungus, two fluorescence markers viz. the red fluorescent protein (DsRed-Express) and the green fluorescent protein (EGFP1) were constitutively expressed. Southern hybridizations confirmed the presence of T-DNA in all hygromycin B or geneticin resistant transformants, and also showed random and single copy integration. Fluorescence microscopy suggested the high level expression of both DsRed and EGFP fluorescent proteins in spores and mycelia. The results signify that DsRed and EGFP can be used as efficient reporter gene for monitoring B. sorokiniana hyphal fusion as well as colonization in the host tissues. This work will be useful to develop methodologies for understanding the mechanisms of Bipolaris-wheat interaction and functional genomics of B. sorokiniana for various applications including insertional mutagenesis, targeted disruption of specific genes, ectopic complementation of loss-of-function strains and over-expression.

  7. A Perspective on Hypericum perforatum Genetic Transformation

    PubMed Central

    Hou, Weina; Shakya, Preeti; Franklin, Gregory

    2016-01-01

    Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering. PMID:27446112

  8. A Perspective on Hypericum perforatum Genetic Transformation.

    PubMed

    Hou, Weina; Shakya, Preeti; Franklin, Gregory

    2016-01-01

    Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering. PMID:27446112

  9. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum

    DOE PAGES

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-05-24

    In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less

  10. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum

    PubMed Central

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation. PMID:27252729

  11. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum.

    PubMed

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T; Vogel, John P; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation. PMID:27252729

  12. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-01-01

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features. PMID:26681030

  13. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum.

    PubMed

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T; Vogel, John P; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.

  14. Agrobacterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimisation of different factors.

    PubMed

    Indurker, Shivani; Misra, Hari S; Eapen, Susan

    2010-07-01

    Agrobacterium-mediated transformation in chickpea was developed using strain LBA4404 carrying nptII, uidA and cryIAc genes and transformants selected on Murashige and Skoog's basal medium supplemented with benzyladenine, kinetin and kanamycin. Integration of transgenes was demonstrated using polymerase chain reaction and Southern blot hybridization of T0 plants. The expression of CryIAc delta endotoxin and GUS enzyme was shown by enzyme linked immunosorbent assay and histochemical assay respectively. The transgenic plants (T0) showed more tolerance to infection by Helicoverpa armigera compared to control plants. Various factors such as explant source, cultivar type, different preculture treatment period of explants, co-cultivation period, acetosyringone supplementation, Agrobacterium harboring different plasmids, vacuum infiltration and sonication treatment were tested to study the influence on transformation frequency. The results indicated that use of epicotyl as explant, cultivar ICCC37, Agrobacterium harboring plasmid pHS102 as vector, preculture of explant for 48 h, co-cultivation period of 2 days at 25°C and vacuum infiltration for 15 min produced the best transformation results. Sonication treatment of explants with Agrobacteria for 80 s was found to increase the frequency of transformation.

  15. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-12-14

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.

  16. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.

  17. A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation.

    PubMed

    Cardoza, Rosa Elena; Vizcaino, Juan Antonio; Hermosa, Maria Rosa; Monte, Enrique; Gutiérrez, Santiago

    2006-08-01

    Four different Trichoderma strains, T. harzianum CECT 2413, T. asperellum T53, T. atroviride T11 and T. longibrachiatum T52, which represent three of the four sections contained in this genus, were transformed by two different techniques: a protocol based on the isolation of protoplasts and a protocol based on Agrobacterium-mediated transformation. Both methods were set up using hygromycin B or phleomycin resistance as the selection markers. Using these techniques, we obtained phenotypically stable transformants of these four different strains. The highest transformation efficiencies were obtained with the T. longibrachiatum T52 strain: 65-70 transformants/microg DNA when transformed with the plasmid pAN7-1 (hygromycin B resistance) and 280 transformants/107 spores when the Agrobacterium-mediated transformation was performed with the plasmid pUR5750 (hygromycin B resistance). Overall, the genetic analysis of the transformants showed that some of the strains integrated and maintained the transforming DNA in their genome throughout the entire transformation and selection process. In other cases, the integrated DNA was lost.

  18. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  19. Agrobacterium-mediated transformation of Guignardia citricarpa: an efficient tool to gene transfer and random mutagenesis.

    PubMed

    Rodrigues, Maria Beatriz Calderan; Fávaro, Léia Cecília de Lima; Pallu, Ana Paula de Souza; Ferreira, Anderson; Sebastianes, Fernanda de Souza; Rodrigues, Maria Juliana Calderan; Spósito, Marcel Bellato; de Araújo, Welington Luiz; Pizzirani-Kleiner, Aline Aparecida

    2013-01-01

    Guignardia citricarpa is the causal agent of Citrus Black Spot (CBS), an important disease in Citriculture. Due to the expressive value of this activity worldwide, especially in Brazil, understanding more about the functioning of this fungus is of utmost relevance, making possible the elucidation of its infection mechanisms, and providing tools to control CBS. This work describes for the first time an efficient and successful methodology for genetic transformation of G. citricarpa mycelia, which generated transformants expressing the gene encoding for the gfp (green fluorescent protein) and also their interaction with citrus plant. Mycelia of G. citricarpa were transformed via Agrobacterium tumefaciens, which carried the plasmid pFAT-gfp, contains the genes for hygromycin resistance (hph) as well as gfp. The optimization of the agrotransformation protocol was performed testing different conditions (type of membrane; inductor agent concentration [acetosyringone - AS] and cocultivation time). Results demonstrated that the best condition occurred with the utilization of cellulose's ester membrane; 200 μM of AS and 96 h as cocultivation time. High mitotic stability (82 %) was displayed by transformants using Polymerase Chain Reaction (PCR) technique to confirm the hph gene insertion. In addition, the presence of gfp was observed inside mycelia by epifluorescence optical microscopy. This technique easy visualization of the behaviour of the pathogen interacting with the plant for the first time, allowing future studies on the pathogenesis of this fungus. The establishment of a transformation method for G. citricarpa opens a range of possibilities and facilitates the study of insertional mutagenesis and genetic knockouts, in order to identify the most important genes involved in the pathogenesis mechanisms and plant-pathogen interaction.

  20. Agravitropic behaviour of roots of rapeseed (Brassica napus L.) transformed by Agrobacterium rhizogenes.

    PubMed

    Odegaard, E; Nielsen, K M; Beisvag, T; Evjen, K; Johnsson, A; Rasmussen, O; Iversen, T H

    1997-10-01

    Transgenic hairy roots of Brassica napus (cv. Omega) have been developed, using Agrobacterium rhizogenes strain AR 25, for use as a model system in the investigation of physiological and morphological differences between transgenic and normal roots. The basic parameters of growth and normal or altered gravitropical behaviour of hairy roots are for the first time presented in this paper together with an ultrastructural and morphological analysis of the root statocytes. The results obtained also represented the basis for the TRANSF0RM-experiment on the IML-2 mission performed onboard the Space Shuttle Columbia. Typical hairy root traits such as hormone-autonomous growth high growth rate, lateral branching, and changed/absence of gravitropism were detected. The transformed nature of the roots was confirmed by Southern blot analyses. The gravitropical behaviour of apices from hairy root cultures of this clone has been compared with root tips from normal seedlings. While the wild type roots curved progressively with increasing stimulation angles, the transformed roots showed no curvature when stimulated at 45 degrees, 90 degrees or 135 degrees on the ground. The morphology and ultrastructure of the root tip regions were examined by light microscopy and transmission electron microscopy. At the ultrastructural level no major differences could be detected between the roots studied. There was, however, a slight reduction in the starch content of most of the amyloplasts of the transgenic root tips, and the root cap was more V-shaped in the transgenic roots than in the wild type. Preliminary results from the Shuttle experiment TRANSFORM show a random distribution of amyloplasts in the root cells of both transformed and wild type root caps after 14 h on a 1xg centrifuge followed by 37 h in microgravity.

  1. Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos.

    PubMed

    Uçarlı, C; Tufan, F; Gürel, F

    2015-01-01

    Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study. PMID:25730049

  2. Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos.

    PubMed

    Uçarlı, C; Tufan, F; Gürel, F

    2015-02-06

    Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study.

  3. An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes.

    PubMed

    Park, Nam Il; Kim, Jae Kwang; Park, Woo Tae; Cho, Jin Woong; Lim, Yong Pyo; Park, Sang Un

    2011-11-01

    Watercress (Nasturtium officinale) is a member of the Brassicaceae family and a rich source of glucosinolate, which has been shown to possess anticancer properties. To extract these compounds from N. officinale for study, a method was developed in which Agrobacterium rhizogenes was used to transfer DNA segments into plant genomes in order to produce hairy root cultures, which are a reliable source of plant compounds. The A. rhizogenes strain R1000 had the highest infection frequency and induces the most hairy roots per explant. Polymerase chain reaction and cytohistochemical staining methods were used to validate transgenic hairy roots from N. officinale. Glucosinolate from watercress hairy roots was separated and analyzed using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. Indolic glucosinolates, including glucobrassicin (0.01-0.02 μmol/g of DW) and 4-methoxyglucobrassicin (0.06-0.18 μmol/g of DW), as well as aromatic glucosinolate (gluconasturtiin) (0.06-0.21 μmol/g of DW), were identified virtually identical or more in transformed than wild type roots of N. officinale. Hairy root culture of watercress is a valuable approach for future efforts in the metabolic engineering of glucosinolate biofortification in plants, particularly, because indolic glucosinolates are the precursors of a potent cancer chemopreventive agent (indole-3-carbinol).

  4. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation

    PubMed Central

    Lacroix, Benoît; Vaidya, Manjusha; Tzfira, Tzvi; Citovsky, Vitaly

    2005-01-01

    To genetically transform plants, Agrobacterium exports its transferred DNA (T-DNA) and several virulence (Vir) proteins into the host cell. Among these proteins, VirE3 is the only one whose biological function is completely unknown. Here, we demonstrate that VirE3 is transferred from Agrobacterium to the plant cell and then imported into its nucleus via the karyopherin α-dependent pathway. In addition to binding plant karyopherin α, VirE3 interacts with VirE2, a major bacterial protein that directly associates with the T-DNA and facilitates its nuclear import. The VirE2 nuclear import in turn is mediated by a plant protein, VIP1. Our data indicate that VirE3 can mimic this VIP1 function, acting as an ‘adapter' molecule between VirE2 and karyopherin α and ‘piggy-backing' VirE2 into the host cell nucleus. As VIP1 is not an abundant protein, representing one of the limiting factors for transformation, Agrobacterium may have evolved to produce and export to the host cells its own virulence protein that at least partially complements the cellular VIP1 function necessary for the T-DNA nuclear import and subsequent expression within the infected cell. PMID:15616576

  5. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14

    PubMed Central

    Nyaboga, Evans N.; Njiru, Joshua M.; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1–2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70–80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  6. An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.).

    PubMed

    Pandey, Sonika; Mishra, Avinash; Patel, Manish Kumar; Jha, Bhavanath

    2013-09-01

    Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg's B5 medium supplemented with 0.5-μM 6-benzyladenine and 2.0-μM α-naphthalene acetic acid. About 1,020 embryos (a mean of 255 embryos per batch) were used for the optimisation of transformation conditions. These conditions were an Agrobacterium cell suspension of 0.6 OD600, a co-cultivation time of 72 h, 300-μM acetosyringone and wounding of explants using a razor blade. Pre-cultured elongated embryos were treated using optimised conditions. About 720 embryos (a mean of 180 embryos per batch) were used for transformation and 95 % embryos showed transient β-glucuronidase expression after co-cultivation. Putative transformed embryos were cultured on B5 medium for shoot proliferation and 21 regenerated plants were obtained after selection and allowed to root. T0 plantlets showed β-glucuronidase expression and gene integration was confirmed via PCR amplification of 0.96 and 1.28 kb fragments of the hygromycin-phosphotransferase II and β-glucuronidase genes, respectively. In this study, a transformation efficiency of 1.5 % was demonstrated and a total of 11 transgenic plants were obtained at the hardening stage, however, only four plants acclimatised during hardening. Gene copy number was analysed by Southern blot analysis of hardened plants and single-copy gene integration was observed. This is the first successful attempt of Agrobacterium-mediated genetic transformation of cumin.

  7. An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.).

    PubMed

    Pandey, Sonika; Mishra, Avinash; Patel, Manish Kumar; Jha, Bhavanath

    2013-09-01

    Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg's B5 medium supplemented with 0.5-μM 6-benzyladenine and 2.0-μM α-naphthalene acetic acid. About 1,020 embryos (a mean of 255 embryos per batch) were used for the optimisation of transformation conditions. These conditions were an Agrobacterium cell suspension of 0.6 OD600, a co-cultivation time of 72 h, 300-μM acetosyringone and wounding of explants using a razor blade. Pre-cultured elongated embryos were treated using optimised conditions. About 720 embryos (a mean of 180 embryos per batch) were used for transformation and 95 % embryos showed transient β-glucuronidase expression after co-cultivation. Putative transformed embryos were cultured on B5 medium for shoot proliferation and 21 regenerated plants were obtained after selection and allowed to root. T0 plantlets showed β-glucuronidase expression and gene integration was confirmed via PCR amplification of 0.96 and 1.28 kb fragments of the hygromycin-phosphotransferase II and β-glucuronidase genes, respectively. In this study, a transformation efficiency of 1.5 % was demonstrated and a total of 11 transgenic plants were obtained at the hardening stage, however, only four plants acclimatised during hardening. Gene copy number was analysed by Southern blot analysis of hardened plants and single-copy gene integration was observed. This is the first successful attempt of Agrobacterium-mediated genetic transformation of cumin. PMID:23813408

  8. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14.

    PubMed

    Nyaboga, Evans N; Njiru, Joshua M; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1-2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70-80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava.

  9. Agrobacterium-mediated transformation of kabocha squash (Cucurbita moschata Duch) induced by wounding with aluminum borate whiskers.

    PubMed

    Nanasato, Yoshihiko; Konagaya, Ken-ichi; Okuzaki, Ayako; Tsuda, Mai; Tabei, Yutaka

    2011-08-01

    An efficient genetic transformation method for kabocha squash (Cucurbita moschata Duch cv. Heiankogiku) was established by wounding cotyledonary node explants with aluminum borate whiskers prior to inoculation with Agrobacterium. Adventitious shoots were induced from only the proximal regions of the cotyledonary nodes and were most efficiently induced on Murashige-Skoog agar medium with 1 mg/L benzyladenine. Vortexing with 1% (w/v) aluminum borate whiskers significantly increased Agrobacterium infection efficiency in the proximal region of the explants. Transgenic plants were screened at the T(0) generation by sGFP fluorescence, genomic PCR, and Southern blot analyses. These transgenic plants grew normally and T(1) seeds were obtained. We confirmed stable integration of the transgene and its inheritance in T(1) generation plants by sGFP fluorescence and genomic PCR analyses. The average transgenic efficiency for producing kabocha squashes with our method was about 2.7%, a value sufficient for practical use.

  10. Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium

    PubMed Central

    Li, Jianxiong; Krichevsky, Alexander; Vaidya, Manjusha; Tzfira, Tzvi; Citovsky, Vitaly

    2005-01-01

    Agrobacterium-mediated genetic transformation of plants, a unique example of transkingdom DNA transfer, requires the presence of several proteins encoded by the host cell. One such cellular factor is VIP1, an Arabidopsis protein proposed to interact with and facilitate import of the bacterial DNA–protein transport (T) complexes into the plant cell nucleus. Thus, VIP1 is required for transient expression of the bacterial DNA, an early step in the transformation process. However, the role of VIP1 in subsequent transformation events leading to the stable expression of bacterial DNA was unexplored. Here, we used reverse genetics to dissect VIP1 functionally and demonstrate its involvement in the stable genetic transformation of Arabidopsis plants by Agrobacterium. Our data indicate that the ability of VIP1 to interact with the VirE2 protein component of the T-complex and localize to the cell nucleus is sufficient for transient genetic transformation, whereas its ability to form homomultimers and interact with the host cell H2A histone in planta is required for tumorigenesis and, by implication, stable genetic transformation. PMID:15824315

  11. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.

    PubMed

    Bilichak, Andriy; Yao, Youli; Kovalchuk, Igor

    2014-06-01

    Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue.

  12. Hairy root cultures of butterfly pea (Clitoria ternatea L.): Agrobacterium × plant factors influencing transformation.

    PubMed

    Swain, S S; Sahu, L; Pal, A; Barik, D P; Pradhan, C; Chand, P K

    2012-02-01

    Transformed rhizoclones were developed from Agrobacterium-treated explants of the medicinally important twinning legume Clitoria ternatea L. Several key factors influencing transformation events were optimized. A4T was the most infectious among the strains employed. Internode segments were more responsive than leaves, outdoor-grown explants preferred to those from in vitro cultures. High frequency transformation, resulting in up to 85.8% rhizogenesis, was attained using pre-pricked internodal explants for immersion (10 min) in Agrobacterium rhizogenes suspension grown overnight with acetosyringone (100 μM) to an OD(660) ≅ 0.6, diluted to a density of 10(9) cells ml(-1), followed by 5-day co-cultivation. Roots were individually cultured in MS0 supplemented with the bacteriostatic antibiotic cefotaxime (500 μg ml(-1)). Rhizoclones were renewed through successive subcultures in MS0 under diffused illumination. The T ( L )-DNA rolB and rolC ORF were detected in rhizoclones through PCR amplification. The T ( R )-DNA gene encoding mannopine synthase (man2) was revealed by positive amplification and opine gene expression substantiated by agropine and mannopine biosynthesis in all selected transformed rhizoclones. The implication of such findings is discussed on the context of utilization of such genetically transformed root cultures towards sustainable production of medicinally useful phytocompounds, besides providing a means for plant conservation. PMID:22806869

  13. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA. PMID:27664732

  14. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.

  15. IMPa-4, an Arabidopsis Importin α Isoform, Is Preferentially Involved in Agrobacterium-Mediated Plant Transformation[W

    PubMed Central

    Bhattacharjee, Saikat; Lee, Lan-Ying; Oltmanns, Heiko; Cao, Hongbin; Veena; Cuperus, Joshua; Gelvin, Stanton B.

    2008-01-01

    Successful transformation of plants by Agrobacterium tumefaciens requires that the bacterial T-complex actively escorts T-DNA into the host's nucleus. VirD2 and VirE2 are virulence proteins on the T-complex that have plant-functional nuclear localization signal sequences that may recruit importin α proteins of the plant for nuclear import. In this study, we evaluated the involvement of seven of the nine members of the Arabidopsis thaliana importin α family in Agrobacterium transformation. Yeast two-hybrid, plant bimolecular fluorescence complementation, and in vitro protein–protein interaction assays demonstrated that all tested Arabidopsis importin α members can interact with VirD2 and VirE2. However, only disruption of the importin IMPa-4 inhibited transformation and produced the rat (resistant to Agrobacterium transformation) phenotype. Overexpression of six importin α members, including IMPa-4, rescued the rat phenotype in the impa-4 mutant background. Roots of wild-type and impa-4 Arabidopsis plants expressing yellow fluorescent protein–VirD2 displayed nuclear localization of the fusion protein, indicating that nuclear import of VirD2 is not affected in the impa-4 mutant. Somewhat surprisingly, VirE2–yellow fluorescent protein mainly localized to the cytoplasm of both wild-type and impa-4 Arabidopsis cells and to the cytoplasm of wild-type tobacco (Nicotiana tabacum) cells. However, bimolecular fluorescence complementation assays indicated that VirE2 could localize to the nucleus when IMPa-4, but not when IMPa-1, was overexpressed. PMID:18836040

  16. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast.

    PubMed

    Rolloos, Martijn; Hooykaas, Paul J J; van der Zaal, Bert J

    2015-02-09

    Agrobacterium mediated transformation (AMT) has been embraced by biotechnologists as the technology of choice to introduce or alter genetic traits of plants. However, in plants it is virtually impossible to predetermine the integration site of the transferred T-strand unless one is able to generate a double stranded break (DSB) in the DNA at the site of interest. In this study, we used the model organism Saccharomyces cerevisiae to investigate whether the Agrobacterium mediated translocation of site-specific endonucleases via the type IV secretion system (T4SS), concomitantly with T-DNA transfer is possible and whether this can improve the gene targeting efficiency. In addition to that, the effect of different chromatin states on targeted integration, was investigated. It was found that Agrobacterium mediated translocation of the homing endonuclease I-SceI has a positive effect on the integration of T-DNA via the homologous repair (HR) pathway. Furthermore, we obtained evidence that nucleosome removal has a positive effect on I-SceI facilitated T-DNA integration by HR. Reversely; inducing nucleosome formation at the site of integration removes the positive effect of translocated I-SceI on T-DNA integration.

  17. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal

    PubMed Central

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703

  18. Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.).

    PubMed

    Patil, Gunvant; Deokar, Amit; Jain, P K; Thengane, R J; Srinivasan, R

    2009-11-01

    To develop an alternative genetic transformation system that is not dependent on an antibiotic selection strategy, the phosphomannose isomerase gene (pmi) system was evaluated for producing transgenic plants of chickpea (Cicer arietinum L.). A shoot morphogenesis protocol based on the thidiazuron (TDZ)-induced shoot morphogenesis system was combined with Agrobacterium-mediated transformation of the pmi gene and selection of transgenic plants on mannose. Embryo axis explants of chickpea cv. C-235 were grown on a TDZ-supplemented medium for shoot proliferation. Embryo axis explants from which the first and second flush of shoots were removed were transformed using Agrobacterium carrying the pmi gene, and emerging shoots were allowed to regenerate on a zeatin-supplemented medium with an initial selection pressure of 20 g l(-1) mannose. Rooting was induced in the selected shoots on an indole-3-butyric acid (IBA)-supplemented medium with a selection pressure of 15 g l(-1) mannose. PCR with marker gene-specific primers and chlorophenol red (CPR) assay of the shoots indicated that shoots had been transformed. RT-PCR and Southern analysis of selected regenerated plants further confirmed integration of the transgene into the chickpea genome. These positive results suggest that the pmi/mannose selection system can be used to produce transgenic plants of chickpea that are free from antibiotic resistance marker genes.

  19. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal.

    PubMed

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants.

  20. Histological and ultrastructural observation reveals significant cellular differences between Agrobacterium transformed embryogenic and non-embryogenic calli of cotton.

    PubMed

    Shang, Hai-Hong; Liu, Chuan-Liang; Zhang, Chao-Jun; Li, Feng-Lian; Hong, Wei-Dong; Li, Fu-Guang

    2009-05-01

    Over the past few decades genetic engineering has been applied to improve cotton breeding. Agrobacterium medicated transformation is nowadays widely used as an efficient approach to introduce exogenous genes into cotton for genetically modified organisms. However, it still needs to be improved for better transformation efficiency and higher embryogenic callus induction ratios. To research further the difference of mechanisms for morphogenesis between embryogenic callus and non-embryogenic callus, we carried out a systematical study on the histological and cellular ultrastructure of Agrobacterium transformed calli. Results showed that the embryogenic callus developed nodule-like structures, which were formed by small, tightly packed, hemispherical cells. The surface of some embryogenic callus was covered with a fibrilar-like structure named extracellular matrix. The cells of embryogenic calli had similar morphological characteristics. Organelles of embryogenic callus cells were located near the nucleus, and chloroplasts degraded to proplastid-like structures with some starch grains. In contrast, the non-embryogenic calli were covered by oval or sphere cells or small clusters of cells. It was observed that cells had vacuolation of cytoplasm and plastids with a well organized endomembrane system. This study aims to understand the mechanisms of embryogenic callus morphogenesis and to improve the efficiency of cotton transformation in future.

  1. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus.

    PubMed

    Park, Byong-Jin; Liu, Zaochang; Kanno, Akira; Kameya, Toshiaki

    2005-10-01

    A protocol for producing transgenic radish (Raphanus sativus) was obtained by using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation. The Agrobacterium strain LBA4404 contained the binary vector pBI121-LEA (late embyogenesis abundant), which carried a Group 3 LEA gene, from Brassica napus. Among six combinations, Agrobacterium-mediated transformation assisted by a combination of 5-min sonication with 5-min vacuum infiltration resulted in the highest transformation frequency. The existence, integration and expression of transferred LEA gene in transgenic T(1) plants were confirmed by PCR, genomic Southern and Western blot analysis. Transgenic radish demonstrated better growth performance than non-transformed control plants under osmotic and salt stress conditions. Accumulation of Group 3 LEA protein in the vegetative tissue of transgenic radish conferred increased tolerance to water deficit and salt stress.

  2. Variation in hormone autonomy and regenerative potential of cells transformed by strain A66 of Agrobacterium tumefaciens

    SciTech Connect

    Binns, A.N.; Sciaky, D.; Wood, H.N.

    1982-12-01

    Mutant Agrobacterium tumefaciens strain A66 is shown to differ from its wild-type progenitor (strain A6) by a spontaneous 2.7 kb DNA insert into the T-DNA region of its Ti plasmid. Tobacco stems transformed by A66 exhibit an attenuated response characterized by slow growth and shoot proliferation. Clonal analysis demonstrates that this response is due to an alteration in the growth and regenerative potential of transformed cells, rather than to variation in the frequency of fully autonomous cells within the primary tumor. Cloned A66 transformed tobacco cells exhibit an auxin requirement for growth that can be overcome by shoot proliferation. Other host species, however, may complement the A66 mutation yielding fully auxin-independent tumors when transformed by this bacterium.

  3. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.

    PubMed

    Yevtushenko, Dmytro P; Misra, Santosh

    2010-03-01

    Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.

  4. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors.

    PubMed

    Vega, Juan M; Yu, Weichang; Han, Fangpu; Kato, Akio; Peters, Eric M; Zhang, Zhanyuan J; Birchler, James A

    2008-04-01

    The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.

  5. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    PubMed

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  6. 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) gene transformation.

    PubMed

    Kaikavoosi, Kayghobad; Kad, Trupti D; Zanan, Rahul L; Nadaf, Altafhusain B

    2015-12-01

    2-Acetyl-1-pyrroline (2AP) has been identified as a principal aroma compound in scented rice varieties. Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS) gene is reported to regulate the proline synthesis in plants and acts as the precursor of 2AP. Two scented indica rice varieties, namely Ambemohar 157 and Indrayani, were subjected to Agrobacterium tumefaciens-mediated genetic transformation containing P5CS gene. Overexpression of P5CS led to a significant increase in proline, P5CS enzyme activity and 2AP levels in transgenic calli, vegetative plant parts, and seeds over control in both the varieties. 2AP level increased more than twofold in transgenic seeds in both varieties. This is the first report of enhancement in 2AP content through overexpression of using P5CS gene, indicating the role of proline as a precursor amino acid in the biosynthesis of 2AP in scented rice.

  7. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation

    PubMed Central

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D.; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of “clean” GM wheat containing only the foreign genes of agronomic importance. PMID:27708648

  8. Agrobacterium-mediated transformation of Mexican lime (Citrus aurantifolia Swingle) using optimized systems for epicotyls and cotelydons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epicotyl and internodal stem segments provide the predominantly used explants for regeneration of transgenic citrus plants following co-cultivation with Agrobacterium. Previous reports using epicotyls segments from Mexican lime have shown low affinity for Agrobacterium tumefaciens infection which re...

  9. Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L.) using the expansin 10 (CsEXP10) gene.

    PubMed

    Sun, Y D; Luo, W R; Sun, S Y; Ni, L

    2015-12-08

    The cucumber expansin 10 (CsEXP10) gene was previously cloned from young cucumber fruits but its role has not been defined. To determine the role of this gene in plant growth and development, a CsEXP10 gene transformation system was established. The open reading frame of the gene was inserted behind the CaMV35S promoter of vector pCAMBIA1301, and the construct was introduced into tomato plants by Agrobacterium-mediated transformation. In total, 19 kanamycin-positive lines were produced and nine independent transgenic lines were identified by β-glucuronidase and polymerase chain reaction (PCR) analysis. Quantitative real-time PCR analysis showed that levels of the CsEXP10 transcript were higher in transgenic lines than in a non-transgenic line.

  10. Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants.

    PubMed

    Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita

    2011-05-01

    We have developed an efficient transformation system for Bacopa monnieri, an important Indian medicinal plant, using Agrobacterium rhizogenes strains LBA 9402 and A4. Transformed roots induced by strain LBA 9402 spontaneously dedifferentiated to callus while excised roots induced by strain A4 spontaneously showed induction of shoot buds within 10 days. PCR and RT-PCR analysis revealed the presence and expression of the rolAB and rolC genes at the transcription level in pRi A4 transformed cultures indicating that the TL-DNA was integrated retained and expressed in the A4-Ri transformed shoots. Transformed calli showed the presence of rolAB or rol A, TR and ags genes. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes. Growth and biomass accumulation was significantly higher in the transformed shoots (twofold) and roots (fourfold) than in the non-transformed (WT) plants. In pRi A4-transformed plants, the content of bacopasaponin D, bacopasaponin F, bacopaside II and bacopaside V was enhanced significantly as compared to WT plants of similar age while bacoside A3 and bacopasaponin C content was comparable with that of WT plants. Significant increase in content of five bacopa saponins could be detected in pRi 9402-transformed callus cultures. There is an overall stimulatory effect on accumulation of bacopa saponins in transformed plants and cells of B. monnieri establishing the role of endogenous elicitation by Ri T-DNA of A. rhizogenes.

  11. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).

    PubMed

    Swain, Swasti S; Rout, Kedar K; Chand, Pradeep K

    2012-10-01

    Independent transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) were established using explant co-cultivation with Agrobacterium rhizogenes. Rhizoclones capable of sustained growth were maintained under low illumination in auxin-free agar-solidified MS medium through subcultures at periodic intervals. Integration of T(L)-DNA rolB gene in the transformed rhizoclone genome was verified by Southern blot hybridization, and the transcript expression of T(R)-DNA ags and man2 genes was ascertained by reverse transcription polymerase chain reaction analysis. The major compound isolated and purified from the transformed root extracts was identified as the pentacyclic triterpenoid compound taraxerol using IR, (1)H-NMR, and (13)C-NMR spectroscopy. The taraxerol yield in cultured hairy roots, as quantified by HPTLC analysis, was up to 4-fold on dry weight basis compared to that in natural roots. Scanning of bands from cultured transformed roots and natural roots gave super-imposable spectra with standard taraxerol, suggesting a remarkable homology in composition. To date, this is the first report claiming production of the cancer therapeutic phytochemical taraxerol in genetically transformed root cultures as a viable alternative to in vivo roots of naturally occurring plant species. PMID:22843061

  12. In vitro regeneration and optimization of factors affecting Agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant.

    PubMed

    Alok, Anshu; Shukla, Vishnu; Pala, Zarna; Kumar, Jitesh; Kudale, Subhash; Desai, Neetin

    2016-04-01

    Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog's medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog's medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying β-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering. PMID:27436917

  13. In vitro regeneration and optimization of factors affecting Agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant.

    PubMed

    Alok, Anshu; Shukla, Vishnu; Pala, Zarna; Kumar, Jitesh; Kudale, Subhash; Desai, Neetin

    2016-04-01

    Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog's medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog's medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying β-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering.

  14. Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance.

    PubMed

    Burns, C; Leach, K M; Elliott, T J; Challen, M P; Foster, G D; Bailey, A

    2006-02-01

    There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems.

  15. Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants.

    PubMed

    Chhabra, Gulshan; Chaudhary, Darshna; Sainger, Manish; Jaiwal, Pawan K

    2011-04-01

    Transgenic plants of an Indian isolate of Lemna minor have been developed for the first time using Agrobacterium tumefaciens and hard nodular cell masses 'nodular calli' developed on the BAP - pretreated daughter frond explants in B5 medium containing sucrose (1.0 %) with 2,4-D (5.0 μM) and 2-iP (50.0 μM) or 2,4-D (50.0 μM) and TDZ (5.0 μM) under light conditions. These calli were co-cultured with A. tumefaciens strain EHA105 harboring a binary vector that contained genes for β-glucuronidase with intron and neomycin phosphortransferase. Transformed cells selected on kanamycin selection medium were regenerated into fronds whose transgenic nature was confirmed by histochemical assay for GUS activity, PCR analysis and Southern hybridization. The frequency of transformation obtained was 3.8 % and a period of 11-13 weeks was required from initiation of cultures from explants to fully grown transgenic fronds. The pretreatment of daughter fronds with BAP, use of non-ionic surfactant, presence of acetosyringone in co-cultivation medium, co-culture duration of 3 d and 16 h photoperiod during culture were found crucial for callus induction, frond regeneration and transformation of L. minor. This transformation system can be used for the production of pharmaceutically important protein and in bioremediation.

  16. Evaluation of agrobacterium-mediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance.

    PubMed

    Burns, C; Leach, K M; Elliott, T J; Challen, M P; Foster, G D; Bailey, A

    2006-02-01

    There is interest in establishing genetic modification technologies for the cultivated mushroom Agaricus bisporus, both for improved crop characteristics and for molecular pharming. For these methods to be successful, it is necessary to establish a set of transformation systems that include robust and reliable vectors for gene manipulation. In this article, we report the evaluation of a series of promoters for driving expression of the Escherichia coli hph gene encoding hygromycin phosphotransferase. This was achieved using the Aspergillus nidulans gpdA and the A. bisporus gpdII and trp2 promoters. The Coprinus cinereus beta-tubulin promoter gave contrasting results depending on the size of promoter used, with a 393-bp region being effective, whereas the longer 453-bp fragment failed to yield any hygromycin-resistant transformants. The C. cinereus trp1 and the A. bisporus lcc1 promoters both failed to yield transformants. We also show that transformation efficiency may be improved by careful selection of both appropriate Agrobacterium strains, with AGL-1 yielding more than LBA1126 and by the choice of the binary vectors used to mobilize the DNA, with pCAMBIA vectors appearing to be more efficient than either pBIN19- or pGREEN-based systems. PMID:16444014

  17. Genetic transformation of major cereal crops.

    PubMed

    Ji, Qing; Xu, Xing; Wang, Kan

    2013-01-01

    Of the more than 50,000 edible plant species in the world, at least 10,000 species are cereal grains. Three major cereal crops, rice (Oryza sativa), maize (Zea mays), and wheat (Triticum sp.), provide two-thirds of the world's food energy intake. Although crop yields have improved tremendously thanks to technological advances in the past 50 years, population increases and climate changes continue to threaten the sustainability of current crop productions. Whereas conventional and marker-assisted breeding programs continue to play a major role in crop improvement, genetic engineering has drawn an intense worldwide interest from the scientific community. In the past decade, genetic transformation technologies have revolutionized agricultural practices and millions of hectares of biotech crops have been cultured. Because of its unique ability to insert well-characterized gene sequences into the plant genome, genetic engineering can also provide effective tools to address fundamental biological questions. This technology is expected to continue to be an indispensable approach for both basic and applied research. Here, we overview briefly the development of the genetic transformation in the top seven cereals, namely maize, rice, wheat, barley (Hordeum vulgare), sorghum (Sorghum sp.), oat (Avena sativa), and millets. The advantages and disadvantages of the two major transformation methods, Agrobacterium tumefaciens-mediated and biolistic methods, are also discussed.

  18. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants.

    PubMed

    Hodges, Larry D; Lee, Lan-Ying; McNett, Henry; Gelvin, Stanton B; Ream, Walt

    2009-01-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes are related pathogens that cause crown gall and hairy root diseases, which result from integration and expression of bacterial genes in the plant genome. Single-stranded DNA (T strands) and virulence proteins are translocated into plant cells by a type IV secretion system. VirD2 nicks a specific DNA sequence, attaches to the 5' end, and pilots the DNA into plant cells. A. tumefaciens translocates single-stranded DNA-binding protein VirE2 into plant cells where it likely binds T strands and may aid in targeting them into the nucleus. Although some A. rhizogenes strains lack VirE2, they transfer T strands efficiently due to the GALLS gene, which complements an A. tumefaciens virE2 mutant for tumor formation. Unlike VirE2, full-length GALLS (GALLS-FL) contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. GALLS-FL and VirE2 contain nuclear localization signals (NLS) and secretion signals. Mutations in any of these domains abolish the ability of the GALLS gene to substitute for virE2. Here, we show that the GALLS gene encodes two proteins from one open reading frame: GALLS-FL and a protein comprised of the C-terminal domain, which initiates at an internal in-frame start codon. On some hosts, both GALLS proteins were required to substitute for VirE2. GALLS-FL tagged with yellow fluorescent protein localized to the nucleus of tobacco cells in an NLS-dependent manner. In plant cells, the GALLS proteins interacted with themselves, VirD2, and each other. VirD2 interacted with GALLS-FL and localized inside the nucleus, where its predicted helicase activity may pull T strands into the nucleus. PMID:18952790

  19. Agrobacterium virulence gene induction.

    PubMed

    Gelvin, Stanton B

    2006-01-01

    The ability of Agrobacterium to transform plants and other organisms is under highly regulated genetic control. Two Virulence (Vir) proteins, VirA and VirG, function as a two-component regulatory system to sense particular phenolic compounds synthesized by wounded plant tissues. Induction by these phenolic compounds, in the presence of certain neutral or acid sugars, results in activation of other vir genes, leading to the processing of T-DNA from the Ti-plasmid and transfer of T-DNA to recipient host cells. Many plant, and most nonplant, species do not provide sufficient quantities of the correct phenolic compounds to permit efficient Agrobacterium-mediated genetic transformation to occur. In order to transform these species, phenolic inducing compounds must be added to agrobacteria before and/or during cocultivation of recipient cells with the bacteria. This chapter discusses conditions for efficient induction of Agrobacterium virulence genes by phenolic compounds. PMID:16988335

  20. Plant transformation by coinoculation with a disarmed Agrobacterium tumefaciens strain and an Escherichia coli strain carrying mobilizable transgenes.

    PubMed

    Pappas, Katherine M; Winans, Stephen C

    2003-11-01

    Transformation of Nicotiana tabacum leaf explants was attempted with Escherichia coli as a DNA donor either alone or in combination with Agrobacterium tumefaciens. We constructed E. coli donor strains harboring either the promiscuous IncP-type or IncN-type conjugal transfer system and second plasmids containing the respective origins of transfer and plant-selectable markers. Neither of these conjugation systems was able to stably transform plant cells at detectable levels, even when VirE2 was expressed in the donor cells. However, when an E. coli strain expressing the IncN-type conjugation system was coinoculated with a disarmed A. tumefaciens strain, plant tumors arose at high frequencies. This was caused by a two-step process in which the IncN transfer system mobilized the entire shuttle plasmid from E. coli to the disarmed A. tumefaciens strain, which in turn processed the T-DNA and transferred it to recipient plant cells. The mobilizable plasmid does not require a broad-host-range replication origin for this process to occur, thus reducing its size and genetic complexity. Tumorigenesis efficiency was further enhanced by incubation of the bacterial strains on medium optimized for bacterial conjugation prior to inoculation of leaf explants. These techniques circumvent the need to construct A. tumefaciens strains containing binary vectors and could simplify the creation of transgenic plants. PMID:14602634

  1. Evidence for stable transformation of wheat by floraldip in Agrobacterium tumefaciens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexaploid wheat is one of the world’s most important staple crops but genetic transformation is still challenging. We have developed a floral transformation protocol that does not utilize tissue culture. Three T-DNA wheat transformants have been produced in the germplasm line, Crocus, using this p...

  2. Efficient shoots regeneration and genetic transformation of Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Gupta, Neha; Ruby; Shirgurkar, M V; Khan, Bashir M

    2015-04-01

    Bacopa monniera is an important source of metabolites with pharmaceutical value. It has been regarded as a valuable medicinal plant and its entire commercial requirement is met from wild natural population. Recently, metabolic engineering has emerged as an important solution for sustained supply of assured and quality raw material for the production of active principles. Present report describes efficient in vitro multiplication and transformation method for genetic manipulation of this species. MS medium supplemented with 2 mgl(-1) BA and 0.2 mgl(-1) IAA was found optimum for maximum shoot regeneration (98.33 %) from in vitro leaves with 2-3 longitudinal cuts. Agrobacterium tumefaciens-mediated transformation method was used for generating transgenic B. monniera plants. Putative transformants were confirmed by GUS assay and PCR based confirmation of hptII gene. DNA blot analysis showed single copy insertion of transgene cassette. An average of 87.5 % of the regenerated shoots were found PCR positive for hptII gene and GUS activity was detected in leaves of transgenic shoots at a frequency of 82.5 % The efficient multiple shoots regeneration system described herein may help in mass production of B. monniera plant. Also, the high frequency transformation protocol described here can be used for genetic engineering of B. monniera for enhancement of its pharmaceutically important metabolites.

  3. A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant.

    PubMed

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-09-01

    In spite of the economic importance of sesame (Sesamum indicum L.) and the recent availability of its genome sequence, a high-frequency transformation protocol is still not available. The only two existing Agrobacterium-mediated transformation protocols that are available have poor transformation efficiencies of less than 2%. In the present study, we report a high-frequency, simple, and reproducible transformation protocol for sesame. Transformation was done using de-embryonated cotyledons via somatic embryogenic stages. All the critical parameters of transformation, like incubation period of explants in pre-regeneration medium prior to infection by Agrobacterium tumefaciens, cocultivation period, concentrations of acetosyringone in cocultivation medium, kanamycin concentration, and concentration of plant hormones, including 6-benzylaminopurine, have been optimized. This protocol is superior to the two existing protocols in its high regeneration and transformation efficiencies. The transformed sesame lines have been tested by PCR, RT-PCR for neomycin phosphotransferase II gene expression, and β-glucuronidase (GUS) assay. The regeneration frequency and transformation efficiency are 57.33 and 42.66%, respectively. T0 and T1 generation transgenic plants were analyzed, and several T1 plants homozygous for the transgenes were obtained.

  4. Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics.

    PubMed

    Ogawa, Yoichi; Dansako, Tomoko; Yano, Kentaro; Sakurai, Nozomu; Suzuki, Hideyuki; Aoki, Koh; Noji, Masaaki; Saito, Kazuki; Shibata, Daisuke

    2008-02-01

    We established a large-scale, high-throughput protocol to construct Arabidopsis thaliana suspension-cultured cell lines, each of which carries a single transgene, using Agrobacterium-mediated transformation. We took advantage of RIKEN Arabidopsis full-length (RAFL) cDNA clones and the Gateway cloning system for high-throughput preparation of binary vectors carrying individual full-length cDNA sequences. Throughout all cloning steps, multiple-well plates were used to treat 96 samples simultaneously in a high-throughput manner. The optimal conditions for Agrobacterium-mediated transformation of 96 independent binary vector constructs were established to obtain transgenic cell lines efficiently. We evaluated the protocol by generating transgenic Arabidopsis T87 cell lines carrying individual 96 metabolism-related RAFL cDNA fragments, and showed that the protocol was useful for high-throughput and large-scale production of gain-of-function lines for functional genomics.

  5. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation.

    PubMed

    Ye, Xudong; Chen, Yurong; Wan, Yuechun; Hong, Yun-Jeong; Ruebelt, Martin C; Gilbertson, Larry A

    2016-03-01

    KEY MESSAGE : virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement. Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells. PMID:26650837

  6. Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum l., and California poppy, Eschscholzia californica cham., root cultures.

    PubMed

    Park, S U; Facchini, P J

    2000-06-01

    An efficient protocol for the establishment of transgenic opium poppy (Papaver somniferum L.) and California poppy (Eschscholzia californica Cham.) root cultures using A. grobacterium rhizogenes is reported. Five strains of A. rhizogenes were tested for their ability to produce hairy roots on wounded opium poppy seedlings and California poppy embryogenic calli. Three of the strains induced hairy root formation on both species, whereas two others either caused the growth of tumorigenic calli or produced no response. To characterize the putative transgenic roots further, explant tissues were co-cultivated with the most effective A: rhizogenes strain (R1000) carrying the pBI121 binary vector. Except for the co-cultivation medium, all formulations included 50 mg l(-1) paromomycin to select for transformants and 200 mg l(-1) timentin to eliminate the Agrobacterium. Four weeks after infection, paromomycin-resistant roots appeared on 92-98% of explants maintained on hormone-free medium. Isolated hairy roots were propagated in liquid medium containing 1.0 mg l(-1) indole-3-acetic acid to promote rapid growth. Detection of the neomycin phosphotransferase gene, high levels of beta-glucuronidase (GUS) transcripts and enzyme activity, and GUS histochemical localization confirmed the integrative transformation of root cultures. Transgenic roots grew faster than wild-type roots, and California poppy roots grew more rapidly than those of opium poppy. With the exception of a less compact arrangement of epidermal cells and more root hairs, transformed roots of both species displayed anatomical features and benzylisoquinoline alkaloid profiles that were virtually identical to those of wild-type roots. Transgenic root cultures of opium poppy and California poppy are a simple, reliable and well-defined model system to investigate the molecular and metabolic regulation of benzylisoquinoline alkaloid biosynthesis, and to evaluate the genetic engineering potential of these important

  7. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    PubMed

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species. PMID:25423905

  8. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    PubMed

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. PMID:26044711

  9. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA

    PubMed Central

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-01-01

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein–protein interactions. In order to isolate the protein–DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1–VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1–VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. PMID:26044711

  10. Agrobacterium-mediated transformation of Australian rice varieties and promoter analysis of major pollen allergen gene, Ory s 1.

    PubMed

    Azria, Diah; Bhalla, Prem L

    2011-09-01

    A simple protocol for Agrobacterium-mediated transformation of Australian rice using mature embryos is described. Transgenic plants of two commercial genotypes of Australian rice, Amaroo and Millin, were produced. Transgenic plants were obtained by applying selection pressure to callus and to the regenerated shoots. Exclusion of the selective agent (hygromycin) during plant regeneration was found to be critical for recovery of transgenic plants from these commercial varieties. Transgenic plants were produced after 3 months. The developed system was also used to study spatial and temporal expression of a rice pollen-specific gene, Ory s 1. Expression of pOry s 1::uidA in transgenic rice demonstrated GUS expression in mature pollen, hence indicating potential use of this promoter to direct pollen-specific gene expression. Further Ory s 1 5' deletion study indicated that the pollen-specificity element may reside within -405 bp to the start of the transcription, while the region upstream of -405 contained a cis-acting regulatory element(s) responsible for quantitative expression of this gene.

  11. Agrobacterium-mediated transformation of leaf base derived callus tissues of popular indica rice (Oryza sativa L. sub sp. indica cv. ADT 43).

    PubMed

    Karthikeyan, Alagarsamy; Pandian, Shunmugiah Karutha; Ramesh, Manikandan

    2011-09-01

    A simple and efficient protocol for the Agrobacterium-mediated transformation of an agronomically useful abiotic sensitive popular indica rice cv. ADT 43 has been developed. Initiation of calli were best achieved from the leaf bases of 4 days old rice seedlings on LS medium supplemented with 2.5mg/L 2,4-D and 1.0mg/L thiamine-HCl. Rice calli immersed in Agrobacterium suspension (strain EHA 105, OD(600)=0.8) were co-cultured on LS30-AsPC medium for 2 days at 25±2°C in the dark. Based on GUS expression analysis, 10min co-cultivation time with 100μM acetosyringone was found optimum for the delivery of gus gene. Calli were proved to be very sensitive to Agrobacterium infection and we found that the level of necrotic response can be minimized after co-cultivation with 30% LS, 10g/L PVP, 10% coconut water and 250mg/L timentin which improved the final transformation efficiency to 9.33%. Molecular and genetic analysis of transgenic plants reveals the integration, expression and inheritance of transgene in the progeny (T(1)) of these plants. The copy number of transgenes has been found to vary from 1 to 2 in transgenic plants (T(0) and T(1)).

  12. Identifying a Carotenoid Cleavage Dioxygenase 4a Gene and Its Efficient Agrobacterium-Mediated Genetic Transformation in Bixa orellana L.

    PubMed

    Sankari, Mohan; Hemachandran, Hridya; Anantharaman, Amirtha; Babu, Subramanian; Madrid, Renata Rivera; C, George Priya Doss; Fulzele, Devanand P; Siva, Ramamoorthy

    2016-07-01

    Carotenoids are metabolized to apocarotenoids through the pathway catalysed by carotenoid cleavage oxygenases (CCOs). The apocarotenoids are economically important as it is known to have therapeutic as well as industrial applications. For instance, bixin from Bixa orellana and crocin from Crocus sativus are commercially used as a food colourant and cosmetics since prehistoric time. In our present study, CCD4a gene has been identified and isolated from leaves of B. orellana for the first time and named as BoCCD4a; phylogenetic analysis was carried out using CLUSTAL W. From sequence analysis, BoCCD4a contains two exons and one intron, which was compared with the selected AtCCD4, RdCCD4, GmCCD4 and CmCCD4a gene. Further, the BoCCD4a gene was cloned into pCAMBIA 1301, transformed into Agrobacterium tumefaciens EHA105 strain and subsequently transferred into hypocotyledons and callus of B. orellana by agro-infection. Selection of stable transformation was screened on the basis of PCR detection by using GUS and hptII specific primer, which was followed by histochemical characterization. The percent transient GUS expression in hypocotyledons and callus was 84.4 and 80 %, respectively. The expression of BoCCD4a gene in B. orellana was confirmed through RT-PCR analysis. From our results, the sequence analysis of BoCCD4a gene of B. orellana was closely related to the CsCCD4 gene of C. sativus, which suggests this gene may have a role in various processes such as fragrance, insect attractant and pollination. PMID:26922728

  13. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease.

    PubMed

    Elayabalan, Sivalingam; Kalaiponmani, Kalaimughilan; Subramaniam, Sreeramanan; Selvarajan, Ramasamy; Panchanathan, Radha; Muthuvelayoutham, Ramlatha; Kumar, Krish K; Balasubramanian, Ponnuswami

    2013-04-01

    One of the most severe viral diseases of hill banana is caused by banana bunchy top virus (BBTV), a nanovirus transmitted by the aphid Pentalonia nigronervosa. In this study, we reported the Agrobacterium-mediated transformation on a highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. The target of the RNA interference (RNAi) is the rep gene, encoded by the BBTV-DNA1. In order to develop RNAi construct targeting the BBTV rep gene, the full-length rep gene of 870 bp was polymerase chain reaction amplified from BBTV infected hill banana sample DNA, cloned and confirmed by DNA sequencing. The partial rep gene fragment was cloned in sense and anti sense orientation in the RNAi intermediate vector, pSTARLING-A. After cloning in pSTARLING-A, the cloned RNAi gene cassette was released by NotI enzyme digestion and cloned into the NotI site of binary vector, pART27. Two different explants, embryogenic cells and embryogenic cell suspension derived microcalli were used for co-cultivation. Selection was done in presence of 100 mg/L kanamycin. In total, 143 putative transgenic hill banana lines were generated and established in green house condition. The presence of the transgenes was confirmed in the selected putative transgenic hill banana lines by PCR and reverse transcription PCR analyses. Transgenic hill banana plants expressing RNAi-BBTV rep were obtained and shown to resist infection by BBTV. The transformed plants are symptomless, and the replication of challenge BBTV almost completely suppressed. Hence, the RNAi mediating resistances were shown to be effective management of BBTV in hill banana.

  14. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker.

    PubMed

    Chakraborty, M; Sairam Reddy, P; Laxmi Narasu, M; Krishna, Gaurav; Rana, Debashis

    2016-01-01

    Transformation of commercially important indica cultivars remains challenging for the scientific community even though Agrobacterium-mediated transformation protocols for a few indica rice lines have been well established. We report successful transformation of a commercially important restorer line JK1044R of indica rice hybrid JKRH 401. While following existing protocol, we optimized several parameters for callusing, regeneration and genetic transformation of JK1044R. Calli generated from the rice scutellum tissue were used for transformation by Agrobacterium harboring pCAMBIA2201. A novel two tire selection scheme comprising of Geneticin (G418) and Paramomycin were deployed for selection of transgenic calli as well as regenerated plantlets that expressed neomycin phosphotransferase-II gene encoded by the vector. One specific combination of G418 (30 mg l(-1)) and Paramomycin (70 mg l(-1)) was very effective for calli selection. Transformed and selected calli were detected by monitoring the expression of the reporter gene uidA (GUS). Regenerated plantlets were confirmed through PCR analysis of nptII and gus genes specific primers as well as dot blot using gus gene specific as probe. PMID:27186018

  15. Agrobacterium-mediated transformation of tomatillo (Physalis ixocarpa) and tissue specific and developmental expression of the CaMV 35S promoter in transgenic tomatillo plants.

    PubMed

    Assad-García, N; Ochoa-Alejo, N; García-Hernández, E; Herrera-Estrella, L; Simpson, J

    1992-10-01

    A protocol for the Agrobacterium-mediated transformation of tomatillo was developed. Up to 40 transgenic plants could be obtained in experiments using 60 cotyledon expiants. The transformed nature of the regenerated plants was confirmed by NPT II and Southern blot hybridization analysis. Using the b-glucuronidase system the tissue specific and developmental patterns of expression of the Cauliflower Mosaic Virus 35S promoter were determined in transgenic tomatillo plants. It was found that this promoter is developmentally regulated during fruit and seed formation. PMID:24213286

  16. Setaria viridis floral-dip: A simple and rapid Agrobacterium-medicated transformation method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Setaria viridis was recently described as a new monocotyledonous model species for C4 photosynthesis research and genetic transformation. It has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements) that make it suitable for use as a model plan...

  17. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    PubMed

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process. PMID:26461850

  18. A protocol for sonication-assisted Agrobacterium rhizogenes-mediated transformation of haploid and diploid sugar beet (Beta vulgaris L.) explants.

    PubMed

    Klimek-Chodacka, Magdalena; Baranski, Rafal

    2014-01-01

    Hairy root cultures obtained after Agrobacterium rhizogenes-mediated genetic transformation can serve as a model system for studying plant metabolism and physiology, or can be utilized for the production of secondary metabolites. So far no efficient protocol of hairy root development in sugar beet has been publically released. In this work, two A. rhizogenes strains (A4T and LBA1334) carrying a binary vector pBIN-m-gfp5-ER or pCAMBIA1301 possessing gfp and uidA reporter genes were used to transform petiole explants of haploid and diploid sugar beet genotypes. Five treatment combinations of sonicated-assisted Agrobacterium-mediated transformation were compared. Hairy roots appeared on 0% to 54% of explants depending on the treatment combination used. The highest frequency was achieved when explants of a diploid genotype were sonicated for 15 s in the inoculum containing A. rhizogenes of OD600=0.5 and then co-cultured for three days. Using the same treatment combinations the explants of haploid genotypes developed hairy roots with the frequency ranging from 10% to 36%. Transformation efficiency was independent on the bacterial strain used. The results indicate that haploid sugar beet explants are amenable to transformation using A. rhizogenes, and that the efficiency of that process can be increased by applying short ultrasound treatment.

  19. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

  20. A genetic screen for bioluminescence genes in the fungus Armillaria mellea, through the use of Agrobacterium tumefaciens-mediated random insertional mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioluminescence is reported from 71 saprobic species of fungi from four, distant lineages in the order Agaricales. Analyses of the fungal luminescent chemistry shows that all four lineages share a functionally conserved substrate and luciferase, indicating that the bioluminescent pathway is likely c...

  1. Several components of SKP1/Cullin/F-box E3 ubiquitin ligase complex and associated factors play a role in Agrobacterium-mediated plant transformation.

    PubMed

    Anand, Ajith; Rojas, Clemencia M; Tang, Yuhong; Mysore, Kirankumar S

    2012-07-01

    • Successful genetic transformation of plants by Agrobacterium tumefaciens requires the import of bacterial T-DNA and virulence proteins into the plant cell that eventually form a complex (T-complex). The essential components of the T-complex include the single stranded T-DNA, bacterial virulence proteins (VirD2, VirE2, VirE3 and VirF) and associated host proteins that facilitate the transfer and integration of T-DNA. The removal of the proteins from the T-complex is likely achieved by targeted proteolysis mediated by VirF and the plant ubiquitin proteasome complex. • We evaluated the involvement of the host SKP1/culin/F-box (SCF)-E3 ligase complex and its role in plant transformation. Gene silencing, mutant screening and gene expression studies suggested that the Arabidopsis homologs of yeast SKP1 (suppressor of kinetochore protein 1) protein, ASK1 and ASK2, are required for Agrobacterium-mediated plant transformation. • We identified the role for SGT1b (suppressor of the G2 allele of SKP1), an accessory protein that associates with SCF-complex, in plant transformation. We also report the differential expression of many genes that encode F-box motif containing SKP1-interacting proteins (SKIP) upon Agrobacterium infection. • We speculate that these SKIP genes could encode the plant specific F-box proteins that target the T-complex associated proteins for polyubiquitination and subsequent degradation by the 26S proteasome. PMID:22486382

  2. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium.

    PubMed

    Escudero, Jesús; Den Dulk-Ras, Amke; Regensburg-Tuïnk, Tonny J G; Hooykaas, Paul J J

    2003-02-01

    Agrobacterium uses a mechanism similar to conjugation for trans-kingdom transfer of its oncogenic T-DNA. A defined VirB/VirD4 Type IV secretion system is responsible for such a genetic transfer. In addition, certain virulence proteins as VirE2 can be mobilized into host cells by the same apparatus. VirE2 is essential to achieve plant but not yeast transformation. We found that the limited host range plasmid CloDF13 can be recruited by the virulence apparatus of Agrobacterium for transfer to eukaryotic hosts. As expected the VirB transport complex was required for such trans-kingdom DNA transfer. However, unexpectedly, the coupling factor VirD4 turned out to be necessary for transfer to plants but not for transport into yeast. The CloDF13 encoded coupling factor (Mob) was essential for transfer to both plants and yeast though. This is interpreted by the different specificities of Mob and VirD4. Hence, Mob being required for the transport of the CloDF13 transferred DNA (to both plants and yeast) and VirD4 being required for transport of virulence proteins such as VirE2. Nevertheless, the presence of the VirE2 protein in the host plant was not sufficient to restore the deficiency for VirD4 in the transforming bacteria. We propose that Mob functions encoded by the plasmid CloDF13 are sufficient for DNA mobilization to eukaryotic cells but that the VirD4-mediated pathway is essential to achieve DNA nuclear establishment specifically in plants. This suggests that other Agrobacterium virulence proteins besides VirE2 are translocated and essential for plant transformation. PMID:12581347

  3. A highly efficient in vitro plant regeneration system and Agrobacterium-mediated transformation in Plumbago zeylanica.

    PubMed

    Wei, Xiaoping; Gou, Xiaoping; Yuan, Tong; Russell, Scott D

    2006-06-01

    Plumbago zeylanica is a unique model for studying flowering plant gametogenesis, heterospermy, and preferential fertilization, yet understanding the control of related molecular mechanisms is impossible without efficient and reproducible regeneration and stable genetic transformation. We found three key factors for enhancing successful regeneration: (1) tissue source of explants, (2) combination and concentration of growth regulators, and (3) culture conditions. The highest frequency of shoot regeneration was achieved using hypocotyl segments cultured on MS basal medium supplemented with BA 2.0 mg/l, NAA 0.75 mg/l, adenine 50 mg/l and 10% (v/v) coconut milk under subdued light at 25+/-2 degrees C; under these conditions, each hypocotyl segment produced over 30 shoots, arising primarily through direct organogenesis after 3 weeks of culture. Regenerated shoots rooted easily on half-strength basal MS medium and were successfully established in the greenhouse. Using this tissue culture protocol, reporter gene GUS under the constitutive CaMV 35S promoter was introduced into P. zeylanica cells of petiole, cotyledon and hypocotyl with A. tumefaciens strains AGL1 and LBA4404. Transient expression was observed in all recipient tissues. Stable transgenic calli originating from petiole were obtained. PMID:16470412

  4. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development.

    PubMed

    Steinwand, Michael A; Young, Hugh A; Bragg, Jennifer N; Tobias, Christian M; Vogel, John P

    2013-01-01

    Perennial species offer significant advantages as crops including reduced soil erosion, lower energy inputs after the first year, deeper root systems that access more soil moisture, and decreased fertilizer inputs due to the remobilization of nutrients at the end of the growing season. These advantages are particularly relevant for emerging biomass crops and it is projected that perennial grasses will be among the most important dedicated biomass crops. The advantages offered by perennial crops could also prove favorable for incorporation into annual grain crops like wheat, rice, sorghum and barley, especially under the dryer and more variable climate conditions projected for many grain-producing regions. Thus, it would be useful to have a perennial model system to test biotechnological approaches to crop improvement and for fundamental research. The perennial grass Brachypodiumsylvaticum is a candidate for such a model because it is diploid, has a small genome, is self-fertile, has a modest stature, and short generation time. Its close relationship to the annual model Brachypodiumdistachyon will facilitate comparative studies and allow researchers to leverage the resources developed for B. distachyon. Here we report on the development of two keystone resources that are essential for a model plant: high-efficiency transformation and inbred lines. Using Agrobacterium tumefaciens-mediated transformation we achieved an average transformation efficiency of 67%. We also surveyed the genetic diversity of 19 accessions from the National Plant Germplasm System using SSR markers and created 15 inbred lines. PMID:24073248

  5. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.

    PubMed

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens. PMID:24817272

  6. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.

    PubMed

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B; Bailey-Serres, Julia; Brady, Siobhan M

    2014-10-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.

  7. Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model1[W][OPEN

    PubMed Central

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.

    2014-01-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032

  8. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.

    PubMed

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens.

  9. Agrobacterium: nature's genetic engineer.

    PubMed

    Nester, Eugene W

    2014-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun's old observations and also explain why Agrobacterium is nature's genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  10. Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation.

    PubMed

    Andrade, Gisele M; Nairn, Campbell J; Le, Huong T; Merkle, Scott A

    2009-09-01

    The availability of a system for direct transfer of anti-fungal candidate genes into American chestnut (Castanea dentata), devastated by a fungal blight in the last century, would offer an alternative or supplemental approach to conventional breeding for production of chestnut trees resistant to the blight fungus and other pathogens. By taking advantage of the strong ability of embryogenic American chestnut cultures to proliferate in suspension, a high-throughput Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into the tree was established. Proembryogenic masses (PEMs) were co-cultivated with A. tumefaciens strain AGL1 harboring the plasmid pCAMBIA 2301, followed by stringent selection with 50 or 100 mg/l Geneticin. A protocol employing size-fractionation to enrich for small PEMs to use as target material and selection in suspension culture was applied to rapidly produce transgenic events with an average efficiency of four independent transformation events per 50 mg of target tissue and minimal escapes. Mature somatic embryos, representing 18 transgenic events and derived from multiple American chestnut target genotypes, were germinated and over 100 transgenic somatic seedlings were produced and acclimatized to greenhouse conditions. Multiple vigorous transgenic somatic seedlings produced functional staminate flowers within 3 years following regeneration.

  11. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.).

    PubMed

    Yang, Jun; Bi, Hui-Ping; Fan, Wei-Juan; Zhang, Min; Wang, Hong-Xia; Zhang, Peng

    2011-12-01

    Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l(-1) 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l(-1) hygromycin and 200 mg l(-1) cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato. PMID:21958713

  12. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants

    PubMed Central

    De Block, Marc; De Brouwer, Dirk; Tenning, Paul

    1989-01-01

    An efficient and largely genotype-independent transformation method for Brassica napus and Brassica oleracea was established based on neo or bar as selectable marker genes. Hypocotyl explants of Brassica napus and Brassica oleracea cultivars were infected with Agrobacterium strains containing chimeric neo and bar genes. The use of AgNO3 was a prerequisite for efficient shoot regeneration under selective conditions. Vitrification was avoided by decreasing the water potential of the medium, by decreasing the relative humidity in the tissue culture vessel, and by lowering the cytokinin concentration. In this way, rooted transformed shoots were obtained with a 30% efficiency in 9 to 12 weeks. Southern blottings and genetic analysis of S1-progeny showed that the transformants contained on average between one and three copies of the chimeric genes. A wide range of expression levels of the chimeric genes was observed among independent transformants. Up to 25% of the transformants showed no detectable phosphinotricin acetyltransferase or neomycin phosphotransferase II enzyme activities although Southern blottings demonstrated that these plants were indeed transformed. Images Figure 1 Figure 2 PMID:16667089

  13. Expression and functional characterization of the Agrobacterium VirB2 amino acid substitution variants in T-pilus biogenesis, virulence, and transient transformation efficiency.

    PubMed

    Wu, Hung-Yi; Chen, Chao-Ying; Lai, Erh-Min

    2014-01-01

    Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease by transferring transferred DNA (T-DNA) into the plant genome. The translocation process is mediated by the type IV secretion system (T4SS) consisting of the VirD4 coupling protein and 11 VirB proteins (VirB1 to VirB11). All VirB proteins are required for the production of T-pilus, which consists of processed VirB2 (T-pilin) and VirB5 as major and minor subunits, respectively. VirB2 is an essential component of T4SS, but the roles of VirB2 and the assembled T-pilus in Agrobacterium virulence and the T-DNA transfer process remain unknown. Here, we generated 34 VirB2 amino acid substitution variants to study the functions of VirB2 involved in VirB2 stability, extracellular VirB2/T-pilus production and virulence of A. tumefaciens. From the capacity for extracellular VirB2 production (ExB2+ or ExB2-) and tumorigenesis on tomato stems (Vir+ or Vir-), the mutants could be classified into three groups: ExB2-/Vir-, ExB2-/Vir+, and ExB2+/Vir+. We also confirmed by electron microscopy that five ExB2-/Vir+ mutants exhibited a wild-type level of virulence with their deficiency in T-pilus formation. Interestingly, although the five T-pilus-/Vir+ uncoupling mutants retained a wild-type level of tumorigenesis efficiency on tomato stems and/or potato tuber discs, their transient transformation efficiency in Arabidopsis seedlings was highly attenuated. In conclusion, we have provided evidence for a role of T-pilus in Agrobacterium transformation process and have identified the domains and amino acid residues critical for VirB2 stability, T-pilus biogenesis, tumorigenesis, and transient transformation efficiency. PMID:24971727

  14. Development of a transformation system for Hirsutella spp. and visualization of the mode of nematode infection by GFP-labeled H. minnesotensis

    PubMed Central

    Sun, Jingzu; Park, Sook-Young; Kang, Seogchan; Liu, Xingzhong; Qiu, Junzhi; Xiang, Meichun

    2015-01-01

    Hirsutella rhossiliensis and H. minnesotensis are endoparasitic fungi of the second-stage juvenile (J2) of the soybean cyst nematode (Heterodera glycines) in nature. They also parasitize both H. glycines J2 and Caenorhabditis elegans on agar plates. Agrobacterium tumefaciens-mediated transformation conditions were established for these Hirsutella spp. The resulting transformants were similar to the corresponding wild-type strains. The infection processes of H. glycines J2 and C. elegans second larval stage (L2) by H. minnesotensis expressing ZsGreen were microscopically analyzed. Conidia of H. minnesotensis adhered to passing nematodes within 8 h post-inoculation (hpi), formed an infection peg between 8 and 12 hpi, and penetrated the nematode cuticle between 12 and 24 hpi for C. elegans L2 and between 12 and 32 hpi for H. glycines J2. Hyphal proliferation inside of the nematode coelom was observed at approximately 32 hpi for C. elegans L2 and at approximately 40 hpi for H. glycines J2. The fungus consumed the whole body and grew out to produce conidia at approximately 156 and 204 hpi for C. elegans L2 and H. glycines J2, respectively. The efficient transformation protocol and a better understanding of infection process provide a solid foundation for studying the molecular and cellular mechanisms underlying fungal parasitism of nematodes. PMID:26190283

  15. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper).

    PubMed

    Sainger, Manish; Chaudhary, Darshna; Dahiya, Savita; Jaiwal, Ranjana; Jaiwal, Pawan K

    2015-10-01

    An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2-3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their

  16. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper).

    PubMed

    Sainger, Manish; Chaudhary, Darshna; Dahiya, Savita; Jaiwal, Ranjana; Jaiwal, Pawan K

    2015-10-01

    An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2-3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their

  17. Functional validation of Capsicum frutescens aminotransferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures.

    PubMed

    Gururaj, Harishchandra B; Padma, Mallaya N; Giridhar, Parvatam; Ravishankar, Gokare A

    2012-10-01

    Capsaicinoid biosynthesis involves the participation of two substrates viz. vanillylamine and C(9)-C(11) fatty acid moieties. Vanillylamine which is a derivative of vanillin is synthesized through a transaminase reaction in the phenylpropanoid pathway of capsaicinoid synthesis. Here we report the functional validation of earlier reported putative aminotransferase gene for vanillylamine biosynthesis in heterologous system using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Molecular analysis tools comprising PCR and Southern blot analysis have shown the integration of the foreign gene in N. tabacum and C. frutescens calli cultures. The study shows the production of vanillylamine in transformed N. tabacum callus cultures and also the reduction of vanillylamine production when whole gene based antisense binary vector construct was used in transformation of C. frutescens callus cultures. Vanillylamine production, aminotransferase assay with Western blot analysis for crude proteins of transformants established the production of putative aminotransferase (pAMT) protein in alternate plant. The result is a clear evidence of involvement of the reported putative aminotransferase responsible for vanillylamine biosynthesis in capsaicinoid biosynthesis pathway, confirming the gene function through functional validation.

  18. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binary vector system and selection cassettes.

    PubMed

    Bińka, Agnieszka; Orczyk, Wacław; Nadolska-Orczyk, Anna

    2012-02-01

    The influence of two binary vector systems, pGreen and pCAMBIA, on the Agrobacterium-mediated transformation ability of wheat and triticale was studied. Both vectors carried selection cassettes with bar or nptII driven by different promoters. Two cultivars of wheat, Kontesa and Torka, and one cultivar of triticale, Wanad, were tested. The transformation rates for the wheat cultivars ranged from 0.00 to 3.58% and from 0.00 to 6.79% for triticale. The best values for wheat were 3.58% for Kontesa and 3.14% for Torka, and these were obtained after transformation with the pGreen vector carrying the nptII selection gene under the control of 35S promoter. In the case of the bar selection system, the best transformation rates were, respectively, 1.46 and 1.79%. Such rates were obtained when the 35S::bar cassette was carried by the pCAMBIA vector; they were significantly lower with the pGreen vector. The triticale cultivar Wanad had its highest transformation rate after transformation with nptII driven by 35S in pCAMBIA. The bar selection system for the same triticale cultivar was better when the gene was driven by nos and the selection cassette was carried by pGreen. The integration of the transgenes was confirmed with at least three pairs of specific starters amplifying the fragments of nptII, bar, or gus. The expression of selection genes, measured by reverse transcriptase polymerase chain reaction (RT-PCR) in relation to the actin gene, was low, ranging from 0.00 to 0.63 for nptII and from 0.00 to 0.33 for bar. The highest relative transcript accumulation was observed for nptII driven by 35S and expressed in Kontesa that had been transformed with pGreen.

  19. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene.

    PubMed

    Ramana Rao, Mangu Venkata; Parameswari, Chidambaram; Sripriya, Rajasekaran; Veluthambi, Karuppannan

    2011-07-01

    Rice chitinase (chi11) and tobacco osmotin (ap24) genes, which cause disruption of fungal cell wall and cell membrane, respectively, were stacked in transgenic rice to develop resistance against the sheath blight disease. The homozygous marker-free transgenic rice line CoT23 which harboured the rice chi11 transgene was sequentially re-transformed with a second transgene ap24 by co-transformation using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector pGV2260::pSSJ1 and a multi-copy binary vector pBin19∆nptII-ap24 in the same cell. pGV2260::pSSJ1 T-DNA carried the hygromycin phosphotransferase (hph) and β-glucuronidase (gus) genes. pBin19∆nptII-ap24 T-DNA harboured the tobacco osmotin (ap24) gene. Co-transformation of the gene of interest (ap24) with the selectable marker gene (SMG, hph) occurred in 12 out of 18 T(0) plants (67%). Segregation of hph from ap24 was accomplished in the T(1) generation in one (line 11) of the four analysed co-transformed plants. The presence of ap24 and chi11 transgenes and the absence of the hph gene in the SMG-eliminated T(1) plants of the line 11 were confirmed by DNA blot analyses. The SMG-free transgenic plants of the line 11 harboured a single copy of the ap24 gene. Homozygous, SMG-free T(2) plants of the transgenic line 11 harboured stacked transgenes, chi11 and ap24. Northern blot analysis of the SMG-free plants revealed constitutive expression of chi11 and ap24. The transgenic plants with stacked transgenes displayed high levels of resistance against Rhizoctonia solani. Thus, we demonstrate the development of transgene-stacked and marker-free transgenic rice by sequential Agrobacterium-mediated co-transformation with the same SMG.

  20. Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens

    PubMed Central

    Manfroi, Ernandes; Yamazaki-Lau, Elene; Grando, Magali F.; Roesler, Eduardo A.

    2015-01-01

    Abstract Low transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037). Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciens overgrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future. PMID:26537604

  1. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes.

    PubMed

    Aarrouf, J; Castro-Quezada, P; Mallard, S; Caromel, B; Lizzi, Y; Lefebvre, V

    2012-02-01

    Pepper is known to be a recalcitrant species to genetic transformation via Agrobacterium tumefaciens. A. rhizogenes-mediated transformation offers an alternative and rapid possibility to study gene functions in roots. In our study, we developed a new and efficient system for A. rhizogenes transformation of the cultivated species Capsicum annuum. Hypocotyls and foliar organs (true leaves and cotyledons) of Yolo Wonder (YW) and Criollo de Morelos 334 (CM334) pepper cultivars were inoculated with the two constructs pBIN-gus and pHKN29-gfp of A. rhizogenes strain A4RS. Foliar explants of both pepper genotypes infected by A4RS-pBIN-gus or A4RS-pHKN29-gfp produced transformed roots. Optimal results were obtained using the combination of the foliar explants with A4RS-pHKN29-gfp. 20.5% of YW foliar explants and 14.6% of CM334 foliar explants inoculated with A4RS-pHKN29-gfp produced at least one root expressing uniform green fluorescent protein. We confirmed by polymerase chain reaction the presence of the rolB and gfp genes in the co-transformed roots ensuring that they integrated both the T-DNA from the Ri plasmid and the reporter gene. We also demonstrated that co-transformed roots of YW and CM334 displayed the same resistance response to Phytophthora capsici than the corresponding untransformed roots. Our novel procedure to produce C. annuum hairy roots will thus support the functional analysis of potential resistance genes involved in pepper P. capsici interaction. PMID:22016085

  2. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants.

    PubMed

    Sørensen, Iben; Fei, Zhangjun; Andreas, Amanda; Willats, William G T; Domozych, David S; Rose, Jocelyn K C

    2014-02-01

    The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats. PMID:24308430

  3. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants.

    PubMed

    Sørensen, Iben; Fei, Zhangjun; Andreas, Amanda; Willats, William G T; Domozych, David S; Rose, Jocelyn K C

    2014-02-01

    The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats.

  4. Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance.

    PubMed

    Matsunaga, Etsuko; Nanto, Kazuya; Oishi, Masatoshi; Ebinuma, Hiroyasu; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Shibata, Daisuke; Shimada, Teruhisa

    2012-01-01

    Eucalyptus globulus is one of the most economically important plantation hardwoods for paper making. However, its low transformation frequency has prevented genetic engineering of this species with useful genes. We found the hypocotyl section with a shoot apex has the highest regeneration ability among another hypocotyl sections, and have developed an efficient Agrobacterium-mediated transformation method using these materials. We then introduced a salt tolerance gene, namely a bacterial choline oxidase gene (codA) with a GUS reporter gene, into E. globulus. The highest frequency of transgenic shoot regeneration from hypocotyls with shoot apex was 7.4% and the average frequency in four experiments was 4.0%, 12-fold higher than that from hypocotyls without shoot apex. Using about 10,000 explants, over 250 regenerated buds were confirmed as transformants by GUS analysis. Southern blot analysis of 100 elongated shoots confirmed successful generation of stable transformants. Accumulation of glycinebetaine was investigated in 44 selected transgenic lines, which showed 1- to 12-fold higher glycinebetaine levels than non-transgenic controls. Rooting of 16 transgenic lines was successful using a photoautotrophic method under enrichment with 1,000 ppm CO(2). The transgenic whole plantlets were transplanted into potting soil and grown normally in a growth room. They showed salt tolerance to 300 mM NaCl. The points of our system are using explants with shoot apex as materials, inhibiting the elongation of the apex on the selection medium, and regenerating transgenic buds from the side opposite to the apex. This approach may also solve transformation problems in other important plants.

  5. Identification and characterization of an anti-oxidative stress-associated mutant of Aspergillus fumigatus transformed by Agrobacterium tumefaciens

    PubMed Central

    FAN, ZHONGQI; YU, HUIMEI; GUO, QI; HE, DAN; XUE, BAIJI; XIE, XIANGLI; YOKOYAMA, KOJI; WANG, LI

    2016-01-01

    Aspergillus fumigatus is one of the most common opportunistic pathogenic fungi, surviving in various environmental conditions. Maintenance of the redox homeostasis of the fungus relies upon the well-organized regulation between reactive oxygen species generated by immune cells or its own organelles, and the activated anti-oxidative stress mechanism. To investigate such a mechanism, the present study obtained a number of randomly-inserted mutants of A. fumigatus, mediated by Agrobacterium tumefaciens. In addition, a high throughput hydrogen peroxide screening system was established to examine ~1,000 mutants. A total of 100 mutants exhibited changes in hydrogen peroxide sensitivity, among which a significant increase in sensitivity was observed in the AFM2658 mutant. Further investigations of the mutant were also performed, in which the sequence of this mutant was characterized using thermal asymmetric interlaced-polymerase chain reaction. This revealed that the insertion site was located on chromosome 2 afu1_92, and the 96 bp sequence was knocked out, which partially comprised a sequence localized between the integral membrane protein coding region and the helix-loop-helix transcription factor coding region. A decrease in the levels of anti-oxidative stress-associated mRNAs were observed, and an increase in reactive oxygen species were detected using fluorescence. The results of the present study demonstrated that this sequence may have a protective role in A. fumigatus in the presence of oxidative stress. PMID:26847000

  6. Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus x P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens.

    PubMed

    Song, Guo-Qing; Sink, K C

    2006-03-01

    Sour cherry (Prunus cerasus L.) scion cv. Montmorency and rootstock cv. Gisela 6 (P. cerasus x P. canescens) were transformed using Agrobacterium tumefaciens strain EHA105:pBISN1 carrying the neomycin phosphotransferase gene (nptII) and an intron interrupted ss-glucuronidase (GUS) reporter gene (gusA). Whole leaf explants were co-cultivated with A. tumefaciens, and selection and regeneration of transformed cells and shoots of both cultivars was carried out for 12 weeks on selection medium containing 50 mg l(-1) kanamycin (Km) and 250 mg l(-1) timentin. These media were [Quoirin and Lepoivre (Acta Hortic 78:437-442, 1977)] supplemented with 0.5 mg l(-1) benzylaminopurine (BA) + 0.05 mg l(-1) indole-3-butyric acid (IBA), and woody plant medium [Lloyd and McCown (Proc Int Plant Prop Soc 30:421-427, 1980)] containing 2.0 mg l(-1) BA + 1.0 mg l(-1) IBA for cv. Montmorency and cv. Gisela 6, respectively. Seven out of 226 (3.1%) explants of cv. Montmorency and five out of 152 (3.9%) explants of cv. Gisela 6 produced 30/39 GUS- and PCR-positive shoots from the cut midribs via an intermediate callus. Southern analysis of the GUS- and PCR-positive transformants confirmed stable integration of the transgenes with 1-3 copy numbers in the genomes of seven lines of cv. Montmorency and five of cv. Gisela 6. The selected transformants have a normal phenotype in vitro. PMID:16369768

  7. An efficient method of agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting.

    PubMed

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    Groundnut (Arachis hypogaea L.) is an industrial crop used as a source of edible oil and nutrients. In this study, an efficient method of regeneration and Agrobacterium-mediated genetic transformation is reported for a local cultivar GG-20 using de-embryonated cotyledon explant. A high regeneration 52.69 ± 2.32 % was achieved by this method with 66.6 μM 6-benzylaminopurine (BAP), while the highest number of shoot buds per explant, 17.67 ± 3.51, was found with 20 μM BAP and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial culture OD, acetosyringone and L-cysteine concentration were optimized as 1.8, 200 μM and 50 mg L(-1), respectively, in co-cultivation media. It was observed that the addition of 2,4-D in co-cultivation media induced accumulation of endogenous indole-3-acetic acid (IAA). The optimized protocol exhibited 85 % transformation efficiency followed by 14.65 ± 1.06 % regeneration, of which 3.82 ± 0.6 % explants were survived on hygromycin after selection. Finally, 14.58 ± 2.95 % shoots (regenerated on survived explants) were rooted on rooting media (RM3). In grafting method, regenerated shoots (after hygromycin selection) were grafted on the non-transformed stocks with 100 % survival and new leaves emerged in 3 weeks. The putative transgenic plants were then confirmed by PCR, Southern hybridization, reverse transcriptase PCR (RT-PCR) and β-glucuronidase (GUS) histochemical assay. The reported method is efficient and rapid and can also be applied to other crops which are recalcitrant and difficult in rooting.

  8. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    PubMed

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene. PMID:19308313

  9. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    PubMed

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.

  10. Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. x Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation.

    PubMed

    Kayim, M; Ceccardi, T L; Berretta, M J G; Barthe, G A; Derrick, K S

    2004-11-01

    The protein p12 accumulates in leaves of trees with citrus blight (CB), a serious decline of unknown cause. The function of p12 is not known, but sequence analysis indicates it may be related to expansins. In studies to determine the function of p12, sense and antisense constructs were used to make transgenic Carrizo citrange using an Agrobacterium-mediated transformation system. Homogeneous beta-glucuronidase+ (GUS+) sense and antisense transgenic shoots were regenerated using kanamycin as a selective agent. Twenty-five sense and 45 antisense transgenic shoots were in vivo grafted onto Carrizo citrange for further analyses. In addition, 20 sense and 18 antisense shoots were rooted. The homogeneous GUS+ plants contained either the p12 sense or antisense gene (without the intron associated with the gene in untransformed citrus) as shown by PCR and Southern blotting. Northern blots showed the expected RNA in the sense and antisense plants. A protein of identical size and immunoreactivity was observed in seven of nine sense plants but not in nine antisense or non-transgenic plants. At the current stage of growth, there are no visual phenotypic differences between the transgenic and non-transgenic plants. Selected plants will be budded with sweet orange for field evaluation for resistance or susceptibility to CB and general rootstock performance.

  11. Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumour free.

    PubMed

    Brencic, Anja; Angert, Esther R; Winans, Stephen C

    2005-09-01

    Agrobacterium tumefaciens is well known to cause crown gall tumours at plant wound sites and to benefit from this plant association by obtaining nutrients called opines that are produced by these tumours. Tumourigenesis requires expression of the vir regulon in response to chemical signals that are thought to be released from wound sites. Here, we examine chemical interactions between A. tumefaciens and unwounded plants. To determine whether unwounded plants can release significant amounts of vir gene inducers, we constructed an A. tumefaciens strain carrying a PvirB-gfp fusion. This fusion was strongly induced by co-culture with tobacco seedlings that have been germinated without any intentional wounding. The release of phenolic vir gene inducers was confirmed by GC/MS analysis. We also constructed a strain containing the gfp reporter located on an artificial T-DNA and expressed from a plant promoter. A. tumefaciens efficiently transferred this T-DNA into cells of unwounded plants in the absence of exogenous vir gene inducers. Many cells of seedlings colonized by the bacteria also produced octopine, which was detected using a Pocc-gfp reporter strain. This indicates transfer of the native T-DNA. However, these transformed plant cells did not form tumours. These results suggest that successful colonization of plants by A. tumefaciens, including T-DNA transfer and opine production, does not require wounding and does not necessarily cause cell proliferation. Transformation of plant cells without inciting tumours may represent a colonization strategy for this pathogen that has largely been overlooked. PMID:16135221

  12. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    PubMed Central

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium. PMID:25520733

  13. Transient Expression of Viral Proteins in Plants Using Agrobacterium tumefaciens.

    PubMed

    Hitzeroth, Inga I; van Zyl, Albertha R

    2016-01-01

    Transient expression of viral proteins in plants is a novel alternative to other expression platforms. The viral proteins can be used as potential vaccines or in diagnostics. Nicotiana benthamiana leaves or whole plants are infiltrated with recombinant Agrobacterium that harbor the gene of interest. Protein expression in the plants is rapid and results are obtained within 2-7 days. Here we describe how to make electrocompetent Agrobacterium, how to transform Agrobacterium, how to infiltrate leaves or plants with the recombinant Agrobacterium, and lastly how to extract the protein for analysis by gel electrophoresis. PMID:27076324

  14. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid.

    PubMed

    Bohne, J; Yim, A; Binns, A N

    1998-06-01

    The T-DNA transfer apparatus of Agrobacterium tumefaciens mediates the delivery of the T-DNA into plant cells, the transfer of the IncQ plasmid RSF1010 into plant cells, and the conjugal transfer of RSF1010 between Agrobacteria. We show in this report that the Agrobacterium-to-Agrobacterium conjugal transfer efficiencies of RSF1010 increase dramatically if the recipient strain, as well as the donor strain, carries a wild-type Ti plasmid and is capable of vir gene expression. Investigation of possible mechanisms that could account for this increased efficiency revealed that the VirB proteins encoded by the Ti plasmid were required. Although, with the exception of VirB1, all of the proteins that form the putative T-DNA transfer apparatus (VirB1-11, VirD4) are required for an Agrobacterium strain to serve as an RSF1010 donor, expression of only a subset of these proteins is required for the increase in conjugal transfer mediated by the recipient. Specifically, VirB5, 6, 11, and VirD4 are essential donor components but are dispensable for the increased recipient capacity. Defined point mutations in virB9 affected donor and recipient capacities to the same relative extent, suggesting that similar functions of VirB9 are important in both of these contexts. PMID:9618538

  15. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOGR1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens

    PubMed Central

    Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad

    2015-01-01

    DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041

  16. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes.

    PubMed

    Sawada, H; Ieki, H; Oyaizu, H; Matsumoto, S

    1993-10-01

    The 16S rRNA sequences of seven representative Agrobacterium strains, eight representative Rhizobium strains, and the type strains of Azorhizobium caulinodans and Bradyrhizobium japonicum were determined. These strains included the type strains of Agrobacterium tumefaciens, Agrobacterium rhizogenes, Agrobacterium radiobacter, Agrobacterium vitis, Agrobacterium rubi, Rhizobium fredii, Rhizobium galegae, Rhizobium huakuii, Rhizobium leguminosarum, Rhizobium loti, Rhizobium meliloti, and Rhizobium tropici. A phylogenetic analysis showed that the 15 strains of Agrobacterium and Rhizobium species formed a compact phylogenetic cluster clearly separated from the other members of the alpha subclass of the Proteobacteria. However, Agrobacterium species and Rhizobium species are phylogenetically entwined with one another, and the two genera cannot be separated. In the Agrobacterium species, the strains of biovar 1, biovar 2, Agrobacterium rubi, and Agrobacterium vitis were clearly separated. The two biovars exhibited homogeneity in their phenotypic, chemotaxonomic, and phylogenetic characteristics, and two species should be established for the two biovars. We considered the nomenclature of the two biovars, and revised descriptions of Agrobacterium radiobacter (for the biovar 1 strains) and Agrobacterium rhizogenes (for the biovar 2 strains) are proposed. The name Agrobacterium tumefaciens is rejected because the type strain of this species was assigned to Agrobacterium radiobacter, and consequently the description of the genus Agrobacterium is revised.

  17. Evidence for Agrobacterium-induced apoptosis in maize cells.

    PubMed

    Hansen, G

    2000-06-01

    Agrobacterium spp. can genetically transform most dicotyledonous plant cells whereas many monocot species are recalcitrant to Agrobacterium-mediated transformation. One major obstacle is that co-cultivation of Agrobacterium spp. with plant tissues often results in cell death. Report here is that, in maize tissues, this process resembles apoptosis, with characteristic DNA cleavage into oligonucleosomal fragments and morphological changes. Two anti-apoptotic genes from baculovirus, p35 and iap, had the ability to prevent the onset of apoptosis triggered by Agrobacterium spp. in maize tissues. p35 is reported to act as a direct inhibitor of a certain class of proteases (caspase) whereas i.a.p. may act upstream to prevent their activation. This evidence raises the possibility that caspase-like proteases may also be involved in the apoptotic pathway in plant cells.

  18. Profound Impact of Hfq on Nutrient Acquisition, Metabolism and Motility in the Plant Pathogen Agrobacterium tumefaciens

    PubMed Central

    Möller, Philip; Overlöper, Aaron; Förstner, Konrad U.; Wen, Tuan-Nan; Sharma, Cynthia M.; Lai, Erh-Min; Narberhaus, Franz

    2014-01-01

    As matchmaker between mRNA and sRNA interactions, the RNA chaperone Hfq plays a key role in riboregulation of many bacteria. Often, the global influence of Hfq on the transcriptome is reflected by substantially altered proteomes and pleiotropic phenotypes in hfq mutants. Using quantitative proteomics and co-immunoprecipitation combined with RNA-sequencing (RIP-seq) of Hfq-bound RNAs, we demonstrate the pervasive role of Hfq in nutrient acquisition, metabolism and motility of the plant pathogen Agrobacterium tumefaciens. 136 of 2544 proteins identified by iTRAQ (isobaric tags for relative and absolute quantitation) were affected in the absence of Hfq. Most of them were associated with ABC transporters, general metabolism and motility. RIP-seq of chromosomally encoded Hfq3xFlag revealed 1697 mRNAs and 209 non-coding RNAs (ncRNAs) associated with Hfq. 56 ncRNAs were previously undescribed. Interestingly, 55% of the Hfq-bound ncRNAs were encoded antisense (as) to a protein-coding sequence suggesting that A. tumefaciens Hfq plays an important role in asRNA-target interactions. The exclusive enrichment of 296 mRNAs and 31 ncRNAs under virulence conditions further indicates a role for post-transcriptional regulation in A. tumefaciens-mediated plant infection. On the basis of the iTRAQ and RIP-seq data, we assembled a comprehensive model of the Hfq core regulon in A. tumefaciens. PMID:25330313

  19. Maize (Zea mays L.).

    PubMed

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  20. Agrobacterium: nature’s genetic engineer

    PubMed Central

    Nester, Eugene W.

    2015-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun’s old observations and also explain why Agrobacterium is nature’s genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  1. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    PubMed

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  2. Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1.

    PubMed

    Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Albeck, Shira; Unger, Tamar; Peleg, Yoav; Jacobovitch, Jossef; Michael, Yigal; Daube, Shirley; Sharon, Michal; Robinson, Carol V; Svergun, Dmitri I; Fass, Deborah; Tzfira, Tzvi; Elbaum, Michael

    2007-02-01

    Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss) DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand. PMID:17060320

  3. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit.

  4. Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N.

    PubMed

    Drake, Pascal M W; de Moraes Madeira, Luisa; Szeto, Tim H; Ma, Julian K-C

    2013-12-01

    The marshmallow plant (Althaea officinalis L.) has been used for centuries in medicine and other applications. Valuable secondary metabolites have previously been identified in Agrobacterium rhizogenes-generated transgenic 'hairy' roots in this species. In the present study, transgenic roots were produced in A. officinalis using A. rhizogenes. In addition to wild-type lines, roots expressing the anti-human immunodeficiency virus microbicide candidate, cyanovirin-N (CV-N), were generated. Wild-type and CV-N root lines were transferred to liquid culture and increased in mass by 49 and 19 % respectively over a 7 day culture period. In the latter, the concentration of CV-N present in the root tissue was 2.4 μg/g fresh weight, with an average secretion rate into the growth medium of 0.02 μg/ml/24 h. A. officinalis transgenic roots may therefore in the future be used not only as a source of therapeutic secondary metabolites, but also as an expression system for the production of recombinant pharmaceuticals.

  5. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation.

    PubMed

    Sun, He; Lang, Zhihong; Zhu, Li; Huang, Dafang

    2012-10-01

    The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.

  6. The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes.

    PubMed

    Shkryl, Y N; Veremeichik, G N; Bulgakov, V P; Avramenko, T V; Günter, E A; Ovodov, Y S; Muzarok, T I; Zhuravlev, Y N

    2013-10-10

    The production of plant peroxidases by plant cell cultures is of great interest because of the potential for industrial applications. We used plant cell cultures overexpressing the rolB gene to produce increased amounts of plant class III peroxidases. The rolB gene ensured the stable and permanent activation of peroxidase activity in the transformed callus cultures of different plants. In particular, the total peroxidase activity in transformed Rubia cordifolia cells was increased 23-86-fold, and the abundance of the major peroxidase gene transcripts was increased 17-125-fold (depending on the level of rolB expression) compared with non-transformed control calli. The peroxidase-activating effect of rolB was greater than that of other peroxidase inducers, such as external stresses and methyl jasmonate.

  7. Double-stranded RNA-mediated interference of dumpy genes in Bursaphelenchus xylophilus by feeding on filamentous fungal transformants.

    PubMed

    Wang, Meng; Wang, Diandong; Zhang, Xi; Wang, Xu; Liu, Wencui; Hou, Xiaomeng; Huang, Xiaoyin; Xie, Bingyan; Cheng, Xinyue

    2016-05-01

    RNA interference (RNAi) is a valuable tool for studying gene function in vivo and provides a functional genomics platform in a wide variety of organisms. The pinewood nematode, Bursaphelenchus xylophilus, is a prominent invasive plant-parasitic nematode and has become a serious worldwide threat to forest ecosystems. Presently, the complete genome sequence of B. xylophilus has been published, and research involving genome-wide functional analyses is likely to increase. In this study, we describe the construction of an effective silencing vector, pDH-RH, which contains a transcriptional unit for a hairpin loop structure. Utilising this vector, double-stranded (ds)RNAs with sequences homologous to the target genes can be expressed in a transformed filamentous fungus via Agrobacterium tumefaciens-mediated transformation technology, and can subsequently induce the knockdown of target gene mRNA expression in B. xylophilus by allowing the nematode to feed on the fungal transformants. Four dumpy genes (Bx-dpy-2, 4, 10 and 11) were used as targets to detect RNAi efficiency. By allowing the nematode to feed on target gene-transformed Fusarium oxysporum strains, target transcripts were knocked down 34-87% compared with those feeding on the wild-type strain as determined by real-time quantitative PCR (RT-qPCR). Morphological RNAi phenotypes were observed, displaying obviously reduced body length; weak dumpy or small (short and thin) body size; or general abnormalities. Moreover, compensatory regulation and non-specific silencing of dpy genes were found in B. xylophilus. Our results indicate that RNAi delivery by feeding in B. xylophilus is a successful technique. This platform may provide a new opportunity for undertaking RNAi-based, genome-wide gene functional studies in vitro in B. xylophilus. Moreover, as B. xylophilus feeds on endophytic fungi when a host has died, RNAi feeding technology will offer the prospect for developing a novel control strategy for the nematode

  8. Complete Genome Sequence of Agrobacterium tumefaciens Ach5.

    PubMed

    Huang, Ya-Yi; Cho, Shu-Ting; Lo, Wen-Sui; Wang, Yi-Chieh; Lai, Erh-Min; Kuo, Chih-Horng

    2015-01-01

    Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium. PMID:26044425

  9. A Dark Incubation Period Is Important for Agrobacterium-Mediated Transformation of Mature Internode Explants of Sweet Orange, Grapefruit, Citron, and a Citrange Rootstock

    PubMed Central

    Marutani-Hert, Mizuri; Bowman, Kim D.; McCollum, Greg T.; Mirkov, T. Erik; Evens, Terence J.; Niedz, Randall P.

    2012-01-01

    Background Citrus has an extended juvenile phase and trees can take 2–20 years to transition to the adult reproductive phase and produce fruit. For citrus variety development this substantially prolongs the time before adult traits, such as fruit yield and quality, can be evaluated. Methods to transform tissue from mature citrus trees would shorten the evaluation period via the direct production of adult phase transgenic citrus trees. Methodology/Principal Findings Factors important for promoting shoot regeneration from internode explants from adult phase citrus trees were identified and included a dark incubation period and the use of the cytokinin zeatin riboside. Transgenic trees were produced from four citrus types including sweet orange, citron, grapefruit, and a trifoliate hybrid using the identified factors and factor settings. Significance The critical importance of a dark incubation period for shoot regeneration was established. These results confirm previous reports on the feasibility of transforming mature tissue from sweet orange and are the first to document the transformation of mature tissue from grapefruit, citron, and a trifoliate hybrid. PMID:23082165

  10. Endophthalmitis caused by Agrobacterium radiobacter.

    PubMed

    Pierre-Filho, Paulo de Tarso P; Ribeiro, Ana Paula Y; Passos, Elane D; Torigoe, Marcelo; de Vasconcellos, José Paulo C

    2003-01-01

    Infections due to Agrobacterium radiobacter are rare. This study reports 2 cases of A. radiobacter endophthalmitis. To the authors' knowledge, these are only the second and third reported cases of endophthalmitis caused by this Gram-negative rod.

  11. Phenotypic analyses of Agrobacterium.

    PubMed

    Morton, Elise R; Fuqua, Clay

    2012-05-01

    Agrobacterium species are plant-associated relatives of the rhizobia. Several species cause plant diseases such as crown gall and hairy root, although there are also avirulent species. A. tumefaciens is the most intensively studied species and causes crown gall, a neoplastic disease that occurs on a variety of plants. Virulence is specified by large plasmids, and in the case of A. tumefaciens this is called the Ti (tumor-inducing) plasmid. During pathogenesis virulent agrobacteria copy a segment of the Ti plasmid and transfer it to the plant, where it subsequently integrates into the plant genome, and expresses genes that result in the disease symptoms. A. tumefaciens has been used extensively as a plant genetic engineering tool and is also a model microorganism that has been well studied for host-microbe associations, horizontal gene transfer, cell-cell communication, and biofilm formation. This unit describes standard protocols for simple phenotypic characterizations of A. tumefaciens. PMID:22549164

  12. Laboratory maintenance of Agrobacterium.

    PubMed

    Morton, Elise R; Fuqua, Clay

    2012-02-01

    Agrobacterium species are plant-associated relatives of the rhizobia. Several species cause plant diseases such as crown gall and hairy root, although there are also avirulent species. A. tumefaciens is the most intensively studied species and causes crown gall, a neoplastic disease that occurs on a variety of plants. Virulence is specified by large plasmids, and in the case of A. tumefaciens this is called the Ti (tumor-inducing) plasmid. During pathogenesis, virulent agrobacteria copy a segment of the Ti plasmid and transfer it to the plant, where it subsequently integrates into the plant genome and expresses genes that result in the disease symptoms. A. tumefaciens has been used extensively as a plant genetic engineering tool, and is also a model microorganism that has been well studied for host-microbe associations, horizontal gene transfer, cell-cell communication, and biofilm formation. This unit describes standard protocols for laboratory cultivation of A. tumefaciens. PMID:22307549

  13. Genetic manipulation of Agrobacterium.

    PubMed

    Morton, Elise R; Fuqua, Clay

    2012-05-01

    Agrobacterium species are plant-associated relatives of the rhizobia. Several species cause plant diseases such as crown gall and hairy root, although there are also avirulent species. A. tumefaciens is the most intensively studied species and causes crown gall, a neoplastic disease that occurs on a variety of plants. Virulence is specified by large plasmids, and in the case of A. tumefaciens, this is called the Ti (tumor-inducing) plasmid. During pathogenesis virulent agrobacteria copy a segment of the Ti plasmid and transfer it to the plant, where it subsequently integrates into the plant genome, and expresses genes that result in the disease symptoms. A. tumefaciens has been used extensively as a plant genetic engineering tool and is also a model microorganism that has been well studied for host-microbe associations, horizontal gene transfer, cell-cell communication, and biofilm formation. This unit describes standard protocols for genetic manipulation of A. tumefaciens. PMID:22549163

  14. Global Analysis of Differentially Expressed Genes and Proteins in the Wheat Callus Infected by Agrobacterium tumefaciens

    PubMed Central

    Zhou, Xiaohong; Wang, Ke; Lv, Dongwen; Wu, Chengjun; Li, Jiarui; Zhao, Pei; Lin, Zhishan; Du, Lipu; Yan, Yueming; Ye, Xingguo

    2013-01-01

    Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops. PMID:24278131

  15. Micro-shock Wave Assisted Plant Transformation

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Datey, Akshay; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Genetically modified (GM) crops are developed by transforming the desired DNA to plant. There are various methods employed to achieve the required transformation in plants. Agrobacterium mediated transformation and Biolistics or particle bombardment method are the most commonly used methods.

  16. Arabidopsis VIRE2 INTERACTING PROTEIN2 Is Required for Agrobacterium T-DNA Integration in Plants[W

    PubMed Central

    Anand, Ajith; Krichevsky, Alexander; Schornack, Sebastian; Lahaye, Thomas; Tzfira, Tzvi; Tang, Yuhong; Citovsky, Vitaly; Mysore, Kirankumar S.

    2007-01-01

    Agrobacterium tumefaciens–mediated genetic transformation is an efficient tool for genetic engineering of plants. VirE2 is a single-stranded DNA binding Agrobacterium protein that is transported into the plant cell and presumably protects the T-DNA from degradation. Using a yeast two-hybrid system, we identified Arabidopsis thaliana VIRE2-INTERACTING PROTEIN2 (VIP2) with a NOT domain that is conserved in both plants and animals. Furthermore, we provide evidence supporting VIP2 interaction with VIP1, a basic domain/leucine zipper motif–containing protein required for nuclear import and integration of T-DNA. Virus-induced gene silencing of VIP2 in Nicotiana benthamiana and characterization of the Arabidopsis vip2 mutant (At vip2) demonstrate that VIP2 is required for Agrobacterium-mediated stable transformation but not for transient transformation. Assays based upon a promoter-trap vector and quantification of T-DNA integration further confirmed VIP2 involvement in T-DNA integration. Interestingly, VIP2 transcripts were induced to a greater extent over prolonged periods after infection with a T-DNA transfer-competent Agrobacterium strain compared with the transfer-deficient Agrobacterium strain. Transcriptome analyses of At vip2 suggest that VIP2 is likely a transcriptional regulator, and the recalcitrancy to transformation in At vip2 is probably due to the combination of muted gene expression response upon Agrobacterium infection and repression of histone genes resulting in decreased T-DNA integration events. PMID:17496122

  17. Generation of composite plants using Agrobacterium rhizogenes.

    PubMed

    Taylor, Christopher G; Fuchs, Beth; Collier, Ray; Lutke, W Kevin

    2006-01-01

    Limitations in transformation capability can be a significant barrier in making advances in our understanding of gene function through the use of transgenics. To this end we have developed both tissue culture and non-tissue culture-based methodologies for the production of transgenic roots on wild-type shoots (composite plants). Composite plants are generated by inoculating wild-type shoots with Agrobacterium rhizogenes, which subsequently induces the formation of transgenic roots. The composite plant system allows for "in root" testing of transgenes in the context of a complete plant and can be analyzed in a variety of gene function analyses and plant-microbe interaction studies. In this chapter we provide a tissue culture-based composite plant generation system for Arabidopsis and a non-tissue culture based-method for producing composite plants on a variety of dicotyledonous plant species. Composite plants generated using these methods can be treated like "normal plants," planted in soil and grown in greenhouses or in growth chambers. These methods have been shown to work efficiently for many different species of plants including several that are recalcitrant to transformation.

  18. Plant responses to Agrobacterium tumefaciens and crown gall development.

    PubMed

    Gohlke, Jochen; Deeken, Rosalia

    2014-01-01

    Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide ("omic") approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant. PMID:24795740

  19. [Production of transgenic sugarbeet plants (Beta vulgaris L.) using Agrobacterium rhizogenes].

    PubMed

    Kishchenko, E M; Komarnitskiĭ, I K; Kuchuk, N V

    2005-01-01

    Normal phenotype sugarbeet plants transformed with Agrobacterium rhizogenes were produced using direct regeneration from explants without hairy root phase. Kanamycin resistant plants and Ri-roots carrying the genes of neomycin phosphotransferase II and b-glucuronidase have been obtained. Integration of transgenes into sugarbeet genome was confirmed with GUS-assay and PCR using primers for the introduced genes. PMID:16018172

  20. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria. PMID:26357873

  1. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens

    PubMed Central

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria. PMID:26357873

  2. AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings

    PubMed Central

    2014-01-01

    Background Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in Arabidopsis remains challenging. Results We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred 100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts. Conclusions AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to previous

  3. Agrobacterium and Tumor Induction: A Model System.

    ERIC Educational Resources Information Center

    Lennox, John E.

    1980-01-01

    The author offers laboratory procedures for experiments using the bacterium, Agrobacterium tumefaciens, which causes crown gall disease in a large number of plants. Three different approaches to growing a culture are given. (SA)

  4. Proposal that Agrobacterium radiobacter has priority over Agrobacterium tumefaciens. Request for an opinion.

    PubMed

    Young, J M; Pennycook, S R; Watson, D R W

    2006-02-01

    It is proposed that Agrobacterium radiobacter has priority as the earlier heterotypic (subjective) synonym when it is united with Agrobacterium tumefaciens. The nomenclatural status of A. tumefaciens as a later heterotypic synonym of the united species is not lost and it remains the type species of the genus. Request for an opinion.

  5. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  6. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  7. Conjugation in Agrobacterium tumefaciens in the absence of plant tissue.

    PubMed Central

    Levin, R A; Farrand, S K; Gordon, M P; Nester, E W

    1976-01-01

    A general, reliable conjugation system for Agrobacterium tumefaciens in the absence of plant tissue is described in which A. tumefaciens can serve either as the donor or recipient of plasmid deoxyribonucleic acid with reasonable efficiency. Plasmid RP4 was transferred from Escherichia coli to A. tumefaciens and from strain of A. tumefaciens. Both RP4 and the A. tumefaciens virulence-associated plasmids were detected by alkaline sucrose gradients in A. tumefaciens strains A6 and C58 after mating with E. coli J53(RP4). The pathogenicity (tumor foramtion) of strains A6 and C58 and the sensitivity of strain C58 to bacteriocin 84 were unaffected by the acquistion of RP4 by the Agrobacterium strains. Plasmid R1drd-19 was not transferred to A. tumefaciens. Transformation experiments with plasmid deoxyribonucleic acid were unsuccessful, even though, in the case of RP4, conjugation studies showed taht the deoxyribonucleic acid was compatible with that of the recipient strains. PMID:783141

  8. Draft Genome Sequences of Agrobacterium nepotum Strain 39/7T and Agrobacterium sp. Strain KFB 330.

    PubMed

    Kuzmanović, Nemanja; Puławska, Joanna; Prokić, Anđelka; Ivanović, Milan; Zlatković, Nevena; Gašić, Katarina; Obradović, Aleksa

    2015-01-01

    Tumorigenic strains of Agrobacterium spp. are responsible for crown gall disease of numerous plant species. We present here draft genome sequences of nonpathogenic Agrobacterium nepotum strain 39/7(T) (CFBP 7436(T), LMG 26435(T)), isolated from crown gall tumor on Prunus cerasifera, and tumorigenic Agrobacterium sp. strain KFB 330 (CFBP 8308, LMG 28674), isolated from galls on raspberry. PMID:25908139

  9. Blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing

    2015-01-01

    Vaccinium consists of approximately 450 species, of which highbush blueberry (Vaccinium corymbosum) is one of the three major Vaccinium fruit crops (i.e., blueberry, cranberry, and lingonberry) domesticated in the twentieth century. In blueberry the adventitious shoot regeneration using leaf explants has been the most desirable regeneration system to date; Agrobacterium tumefaciens-mediated transformation is the major gene delivery method and effective selection has been reported using either the neomycin phosphotransferase II gene (nptII) or the bialaphos resistance (bar) gene as selectable markers. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining the optimal conditions for efficient plant regeneration, reliable gene delivery, and effective selection. The protocol has led to successful regeneration of transgenic plants from leaf explants of four commercially important highbush blueberry cultivars for multiple purposes, providing a powerful approach to supplement conventional breeding methods for blueberry by introducing genes of interest.

  10. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration.

    PubMed

    Vaghchhipawala, Zarir E; Vasudevan, Balaji; Lee, Seonghee; Morsy, Mustafa R; Mysore, Kirankumar S

    2012-10-01

    Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)-mediated double-strand DNA break (DSB) repair. Here, we report a negative role of X-ray cross complementation group4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate. PMID:23064322

  11. Genome sequence of the nicotine-degrading Agrobacterium tumefaciens S33.

    PubMed

    Yu, Wenjun; Li, Huili; Xie, Kebo; Huang, Haiyan; Xie, Huijun; Wang, Shuning

    2016-06-20

    Agrobacterium tumefaciens S33 is capable of growing with nicotine as the sole source of carbon and nitrogen, and has the potential to dispose of tobacco wastes and transform nicotine into functionalized pyridines intermediates, which are important precursors for some valuable drugs and insecticides. Here we report the complete genome sequence of strain S33 and predict the gene cluster involved in nicotine catabolism according to the annotation. PMID:27106695

  12. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens.

    PubMed Central

    Sahi, S V; Chilton, M D; Chilton, W S

    1990-01-01

    Homogenates of corn seedlings inhibit both growth of Agrobacterium tumefaciens and induction of its Ti plasmid virulence (vir) genes by acetosyringone (AS). The heat-labile inhibitor has been identified as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), present in 2-week-old seedlings (B73) at a concentration of 1.5 mM or greater. A concentration of 0.3 mM DIMBOA is sufficient to block growth of A. tumefaciens completely for 220 hr. DIMBOA at 0.1 mM concentration completely inhibited vir gene induction by 100 microM AS and reduced growth rate by 50%. Thus, DIMBOA can be expected to have a significant effect on attempts to transform corn by using A. tumefaciens as a vector. Images PMID:11607078

  13. The Arabidopsis Myb transcription factor MTF1 is a unidirectional regulator of susceptibility to Agrobacterium.

    PubMed

    Sardesai, Nagesh; Laluk, Kristin; Mengiste, Tesfaye; Gelvin, Stanton

    2014-04-30

    We recently described the Arabidopsis Myb transcription factor MTF1 that negatively regulates plant susceptibility to Agrobacterium-mediated transformation. Roots of mtf1 mutant plants show increased susceptibility to several Agrobacterium strains, and complementing the mutants with a MTF1 cDNA decreases transformation susceptibility to wild-type levels. Here, we show that overexpression of MTF1 in a wild-type Arabidopsis background does not result in altered transformation susceptibility. However, MTF1 overexpressing plants show increased root length and larger and darker leaves, indicating that MTF1 plays a role in plant growth and development. MTF1 decreases Arabidopsis root susceptibility specifically to Agrobacterium but plant responses to the pathogens Alternaria brassicicola or Pseudomonas syringae pv Tomato were not altered. However, the homozygous MTF1 mutant mtf1-4 is resistant to Botrytis cinerea strain BO5-10 and is regulated through the ethylene signaling pathway mediated by upregulation of the AP2/ERF transcription factor ORA59. PMID:24785741

  14. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein

    PubMed Central

    Lacroix, Benoît; Citovsky, Vitaly

    2015-01-01

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF. PMID:26586289

  15. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell. PMID:22028781

  16. Selection of Transformed Plants

    NASA Astrophysics Data System (ADS)

    Jones, Huw D.; Sparks, Caroline A.

    The low frequency and randomness of transgene integration into host cells, combined with the significant challenges of recovering whole plants from those rare events, makes the use of selectable marker genes routine in plant transformation experiments. For research applications that are unlikely to be grown in the field, strong herbicide- or antibiotic resistance is commonly used. Here we use genes conferring resistance to glufosinate herbicides as an example of a selectable marker in wheat transformation by either Agrobacterium or biolistics.

  17. Recent advances in plant transformation.

    PubMed

    Barampuram, Shyamkumar; Zhang, Zhanyuan J

    2011-01-01

    Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies. PMID:21181522

  18. Agrobacterium tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms.

    PubMed

    Bourras, Salim; Rouxel, Thierry; Meyer, Michel

    2015-10-01

    Agrobacterium species are soilborne gram-negative bacteria exhibiting predominantly a saprophytic lifestyle. Only a few of these species are capable of parasitic growth on plants, causing either hairy root or crown gall diseases. The core of the infection strategy of pathogenic Agrobacteria is a genetic transformation of the host cell, via stable integration into the host genome of a DNA fragment called T-DNA. This genetic transformation results in oncogenic reprogramming of the host to the benefit of the pathogen. This unique ability of interkingdom DNA transfer was largely used as a tool for genetic engineering. Thus, the artificial host range of Agrobacterium is continuously expanding and includes plant and nonplant organisms. The increasing availability of genomic tools encouraged genome-wide surveys of T-DNA tagged libraries, and the pattern of T-DNA integration in eukaryotic genomes was studied. Therefore, data have been collected in numerous laboratories to attain a better understanding of T-DNA integration mechanisms and potential biases. This review focuses on the intranuclear mechanisms necessary for proper targeting and stable expression of Agrobacterium oncogenic T-DNA in the host cell. More specifically, the role of genome features and the putative involvement of host's transcriptional machinery in relation to the T-DNA integration and effects on gene expression are discussed. Also, the mechanisms underlying T-DNA integration into specific genome compartments is reviewed, and a theoretical model for T-DNA intranuclear targeting is presented. PMID:26151736

  19. Mapping of the Interaction Between Agrobacterium tumefaciens and Vanda Kasem's Delight Orchid Protocorm-Like Bodies.

    PubMed

    Gnasekaran, Pavallekoodi; Subramaniam, Sreeramanan

    2015-09-01

    Physical contact between A. tumefaciens and the target plant cell walls is essential to transfer and integrate the transgene to introduce a novel trait. Chemotaxis response and attachment of Agrobacterium towards Vanda Kasem's Delight (VKD) protocorm-like bodies (PLBs) were studied to analyse the interaction between Agrobacterium and PLB during the transformation event. The study shows that initially A. tumefaciens reversibly attached to PLB surface via polar and lateral mode of adherence followed by the irreversible attachment which involved the production of cellulosic fibril by A. tumefaciens. Cellulosic fibril allows formation of biofilm at the tip of trichome. Contrarily, attachment mutant Escherichia coli strain DH5α was significantly deficient in the attachment process. Spectrophotometric GUS assay showed the mean value of attachment by A. tumefaciens was 8.72 % compared to the negative control E. coli strain DH5α that produced 0.16 %. A. tumefaciens swarmed with sharper and brighter edge when severe wounding was applied to the PLBs producing the highest swarming ratio of 1.46 demonstrating the positive effect of the plant exudates on bacterial movement. The study shows that VKD's PLBs are the suitable explants for Agrobacterium-mediated transformation since the bacteria expressed higher competency rate.

  20. Characterization of an Unusual New Agrobacterium tumefaciens Strain from Chrysanthemum morifolium Ram †

    PubMed Central

    Bush, Arla L.; Pueppke, Steven G.

    1991-01-01

    We characterized five isolates of Agrobacterium tumefaciens from naturally occurring galls on Chrysanthemum morifolium. The isolates are similar, possibly identical, members of a single strain of A. tumefaciens that we designate Chry5. The strain is a biotype I, as indicated by its response to both newly described and traditional biotype tests. Chry5 produces tumors on at least 10 plant species. It is unusual in its ability to form efficiently large tumors on soybean (Glycine max), a species normally refractory to transformation. Chry5 is unable to utilize octopine or mannopine as a carbon source. Although Chry5 can catabolize a single isomer each of nopaline and succinamopine, it differs from other known nopaline and succinamopine strains in its insensitivity to agrocin 84. This pattern of opine catabolism is unique among Agrobacterium strains examined to date. All five isolates of Chry5 contain at least two plasmids, one of which shares homology with pTiB6. Images PMID:16348549

  1. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.

    PubMed

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash

    2014-05-01

    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques.

  2. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.

    PubMed

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash

    2014-05-01

    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques. PMID:24330327

  3. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

    PubMed

    Hwang, Hau-Hsuan; Liu, Yin-Tzu; Huang, Si-Chi; Tung, Chin-Yi; Huang, Fan-Chen; Tsai, Yun-Long; Cheng, Tun-Fang; Lai, Erh-Min

    2015-02-01

    Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth. PMID:25163013

  4. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

    PubMed

    Hwang, Hau-Hsuan; Liu, Yin-Tzu; Huang, Si-Chi; Tung, Chin-Yi; Huang, Fan-Chen; Tsai, Yun-Long; Cheng, Tun-Fang; Lai, Erh-Min

    2015-02-01

    Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.

  5. Cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Behura, Ratikanta; Kumar, Sanjeev; Saha, Bedabrata; Panda, Manasa Kumar; Dey, Mohitosh; Sadhukhan, Ayan; Mishra, Sagarika; Alam, Shamsher; Sahoo, Debee Prasad; Sugla, Twinkle; Sahoo, Lingaraj

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an efficient method for incorporating genes and recovering stable transgenic plants in cowpea because this method offers several advantages such as the defined integration of transgenes, potentially low copy number, and preferential integration into transcriptional active regions of the chromosome. Cotyledonary node explants of cowpea present an attractive target for T-DNA delivery followed by regeneration of shoots via axillary proliferation without involvement of a de novo regeneration pathway. In this chapter, we describe a detailed protocol for Agrobacterium-mediated transformation of the cowpea variety Pusa Komal. The seedling cotyledonary node explants are used for cocultivation with an Agrobacterium strain EHA105 harboring standard binary vector, pCAMBIA2301 or pNOV2819, and putative transformed plants are selected using aminoglycoside antibiotic or mannose as sole carbon source, respectively. The entire process includes explant infection to transgenic seed generation in greenhouse.

  6. Cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Behura, Ratikanta; Kumar, Sanjeev; Saha, Bedabrata; Panda, Manasa Kumar; Dey, Mohitosh; Sadhukhan, Ayan; Mishra, Sagarika; Alam, Shamsher; Sahoo, Debee Prasad; Sugla, Twinkle; Sahoo, Lingaraj

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an efficient method for incorporating genes and recovering stable transgenic plants in cowpea because this method offers several advantages such as the defined integration of transgenes, potentially low copy number, and preferential integration into transcriptional active regions of the chromosome. Cotyledonary node explants of cowpea present an attractive target for T-DNA delivery followed by regeneration of shoots via axillary proliferation without involvement of a de novo regeneration pathway. In this chapter, we describe a detailed protocol for Agrobacterium-mediated transformation of the cowpea variety Pusa Komal. The seedling cotyledonary node explants are used for cocultivation with an Agrobacterium strain EHA105 harboring standard binary vector, pCAMBIA2301 or pNOV2819, and putative transformed plants are selected using aminoglycoside antibiotic or mannose as sole carbon source, respectively. The entire process includes explant infection to transgenic seed generation in greenhouse. PMID:25300846

  7. Cherry.

    PubMed

    Song, Guo-Qing

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation of sour chgahtvy (Prunus cerasus L.) "Montmorency" and sweet cherry rootstocks "Gisela 6" and "Gisela 7" (P. cerasus × P. canescens) is described. Briefly, leaf explants from in vitro shoots are cocultivated with A. tumefaciens either directly (for "Gisela 6" and "Gisela 7") or after pretreatment (for "Montmorency") on cocultivation medium; selection and regeneration of transformed shoots are carried out on selection medium containing 50 mg/L kanamycin (Km) and 250 mg/L timentin (or cefotaxime) for 3-5 months. In this protocol, the optimal media for shoot proliferation and shoot regeneration from leaf explants are genotype dependent. PMID:25416255

  8. Agrobacterium radiobacter bacteremia in pediatric patients: case report and review.

    PubMed

    Amaya, Rene A; Edwards, Morven S

    2003-02-01

    Agrobacterium radiobacter is an opportunistic pathogen often associated with indwelling catheters. We report five children with central venous catheter-associated A. radiobacter bacteremia and review the characteristics of pediatric Agrobacterium infections. Cure was achieved with appropriate antibiotics, often ticarcillin-clavulanate and gentamicin, and removal of the catheter.

  9. Catheter infection caused by an unusual pathogen, Agrobacterium radiobacter.

    PubMed

    Potvliege, C; Vanhuynegem, L; Hansen, W

    1989-09-01

    The genus Agrobacterium is composed of several phytopathogenic species occurring worldwide in soils. One nontumorigenic species, Agrobacterium radiobacter, has occasionally been isolated from clinical specimens, but its pathogenic role in these cases has been difficult to ascertain since agrobacteria are usually isolated in association with other bacteria. We report the case of a central venous catheter infection and present the characteristics of A. radiobacter.

  10. Isolation of Agrobacterium radiobacter from a central venous catheter.

    PubMed

    Hammerberg, O; Bialkowska-Hobrzanska, H; Gopaul, D

    1991-05-01

    A case of septicemia caused by Agrobacterium radiobacter is reported in a patient undergoing chemotherapy treatment who had recently been neutropenic. Agrobacterium radiobacter was isolated from the Hickman line blood culture. The patient responded favorably to removal of the Hickman catheter and treatment with amikacin and piperacillin. The molecular and biochemical characteristics of the isolate are presented.

  11. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    PubMed Central

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium–plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions. PMID:25071805

  12. Agrobacterium induces expression of a host F-box protein required for tumorigenicity

    PubMed Central

    Zaltsman, Adi; Krichevsky, Alexander; Loyter, Abraham; Citovsky, Vitaly

    2010-01-01

    In plant-pathogen interactions, the host defends against the invading pathogen and the pathogen aims to suppress or subvert this defense. Whereas the defense suppression strategy is relatively well understood for many pathogens, the mechanisms by which pathogens can actively utilize the defense machinery of the host remain obscure. We report that Agrobacterium, a microorganism that elicits neoplastic growths on many plant species, induces expression of a plant defense-related F-box protein, VBF, which it incorporates into its own pathway for genetic transformation. Our data suggest that VBF may function to uncoat the bacterial transferred DNA from its associated virulence VirE2 and host VIP1 proteins via the SCFVBF pathway. Suppression of VBF elevates the intracellular content of VIP1, but renders the plant largely resistant to Agrobacterium, indicating that, in the infection pathway, VBF is functionally epistatic to VIP1. When expressed in Agrobacterium and exported into the plant cell, VBF facilitates tumor formation. PMID:20227663

  13. Biolistics Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  14. Agrobacterium May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration[W

    PubMed Central

    Vaghchhipawala, Zarir E.; Vasudevan, Balaji; Lee, Seonghee; Morsy, Mustafa R.; Mysore, Kirankumar S.

    2012-01-01

    Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)–mediated double-strand DNA break (DSB) repair. Here, we report a negative role of X-RAY CROSS COMPLEMENTATION GROUP4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate. PMID:23064322

  15. Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes.

    PubMed

    Liu, W; Parrott, W A; Hildebrand, D F; Collins, G B; Williams, E G

    1990-11-01

    The objective of this research was to define an in vitro regeneration and transformation system for bell pepper (Capsicum annuum L.) using six cultivars and one Guatemalan wild accession. The wild accession exhibited the best regeneration response. Only occasional elongation of shoot buds in 'Yolo Wonder L' was achieved by culture in the dark on a medium containing 10 mg/l BA and l mg/l IAA. Transformed shoot buds and leaf-like structures were obtained, showing beta- glucuronidase activity predominantly in the vascular and perivascular tissues, with no indication of contaminating Agrobacterium in the tissues. Attempts to regenerate whole transgenic plants from transformed shoot buds were unsuccessful. PMID:24227055

  16. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    PubMed

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-07-15

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties.

  17. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis.

    PubMed

    Rana, Mohammad M; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-01-01

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L(-1) sucrose, 0.1 g·L(-1) l-glutamine and 5 g·L(-1) polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L(-1) sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960

  18. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    PubMed Central

    Rana, Mohammad M.; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-01-01

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960

  19. Sugarcane (Saccharum spp. hybrids).

    PubMed

    Wu, Hao; Altpeter, Fredy

    2015-01-01

    Genetic transformation of sugarcane has a tremendous potential to complement traditional breeding in crop improvement and will likely transform sugarcane into a bio-factory for value-added products. We describe here Agrobacterium tumefaciens-mediated transformation of sugarcane. Embryogenic callus induced from immature leaf whorls was used as target for transformation with the hypervirulent Agrobacterium strain AGL1 carrying a constitutive nptII expression cassette in vector pPZP200. Selection with 30 mg/L geneticin during the callus phase and 30 mg/L paromomycin during regeneration of shoots and roots effectively suppressed the development of non-transgenic plants. This protocol was successful with a commercially important sugarcane cultivar, CP-88-1762, at a transformation efficiency of two independent transgenic plants per g of callus.

  20. Agrobacterium tumefaciens Is a Diazotrophic Bacterium

    PubMed Central

    Kanvinde, Lalita; Sastry, G. R. K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grow on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15N supplied as 15N2. As with most other well-characterized diazotrophic bacteria, the presence of NH4+ in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship. Images PMID:16348237

  1. Transport of nonmetabolizable opines by Agrobacterium tumefaciens

    SciTech Connect

    Krishnan, M.; Burgner, J.W.; Chilton, W.S.; Gelvin, S.B. )

    1991-01-01

    We have examined the uptake of ({sup 14}C)octopine and ({sup 14}C)nopaline by Agrobacterium tumefaciens strains containing the C58 chromosomal background in medium suitable for the induction of vir genes. All strains tested could transport both of these opines, regardless of the presence or type of Ti plasmid (octopine or nopaline) present in the bacterium. The transport of these opines required active cellular metabolism. Nonradioactive octopine, nopaline, and arginine competed effectively with ({sup 14}C)octopine and ({sup 14}C)nopaline for transport into A. tumefaciens A136, suggesting that the transport of these opines occurs via an arginine transport pathway not encoded by the Ti plasmid.

  2. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  3. Attachment of Agrobacterium to plant surfaces

    PubMed Central

    Matthysse, Ann G.

    2014-01-01

    Agrobacterium tumefaciens binds to the surfaces of inanimate objects, plants, and fungi. These bacteria are excellent colonizers of root surfaces. In addition, they also bind to soil particles and to the surface of artificial or man-made substances, such as polyesters and plastics. The mechanisms of attachment to these different surfaces have not been completely elucidated. At least two types of binding have been described unipolarpolysaccharide-dependent polar attachment and unipolar polysaccharide-independent attachment (both polar and lateral). The genes encoding the enzymes for the production of the former are located on the circular chromosome, while the genes involved in the latter have not been identified. The expression of both of these types of attachment is regulated in response to environmental signals. However, the signals to which they respond differ so that the two types of attachment are not necessarily expressed coordinately. PMID:24926300

  4. Floral Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Agarwal, Sujata; Loar, Star; Steber, Camille; Zale, Janice

    A method is described for the floral transformation of wheat using a protocol similar to the floral dip of Arabidopsis. This method does not employ tissue culture of dissected embryos, but instead pre-anthesis spikes with clipped florets at the early, mid to late uninucleate microspore stage are dipped in Agrobacterium infiltration media harboring a vector carrying anthocyanin reporters and the NPTII selectable marker. T1 seeds are examined for color changes induced in the embryo by the anthocyanin reporters. Putatively transformed seeds are germinated and the seedlings are screened for the presence of the NPTII gene based on resistance to paromomycin spray and assayed with NPTII ELISAs. Genomic DNA of putative transformants is digested and analyzed on Southern blots for copy number to determine whether the T-DNA has integrated into the nucleus and to show the number of insertions. The non-optimized transformation efficiencies range from 0.3 to 0.6% (number of transformants/number of florets dipped) but the efficiencies are higher in terms of the number of transformants produced/number of seeds set ranging from 0.9 to 10%. Research is underway to maximize seed set and optimize the protocol by testing different Agrobacterium strains, visual reporters, vectors, and surfactants.

  5. Identification of Arabidopsis rat Mutants

    PubMed Central

    Zhu, Yanmin; Nam, Jaesung; Humara, Jaime M.; Mysore, Kirankumar S.; Lee, Lan-Ying; Cao, Hongbin; Valentine, Lisa; Li, Jingling; Kaiser, Anthony D.; Kopecky, Andrea L.; Hwang, Hau-Hsuan; Bhattacharjee, Saikat; Rao, Praveen K.; Tzfira, Tzvi; Rajagopal, Jyothi; Yi, HoChul; Veena; Yadav, Badam S.; Crane, Yan M.; Lin, Kui; Larcher, Yves; Gelvin, Matthew J.K.; Knue, Marnie; Ramos, Cynthia; Zhao, Xiaowen; Davis, Susan J.; Kim, Sang-Ic; Ranjith-Kumar, C.T.; Choi, Yoo-Jin; Hallan, Vipin K.; Chattopadhyay, Sudip; Sui, Xiangzhen; Ziemienowicz, Alicja; Matthysse, Ann G.; Citovsky, Vitaly; Hohn, Barbara; Gelvin, Stanton B.

    2003-01-01

    Limited knowledge currently exists regarding the roles of plant genes and proteins in the Agrobacterium tumefaciens-mediated transformation process. To understand the host contribution to transformation, we carried out root-based transformation assays to identify Arabidopsis mutants that are resistant to Agrobacterium transformation (rat mutants). To date, we have identified 126 rat mutants by screening libraries of T-DNA insertion mutants and by using various “reverse genetic” approaches. These mutants disrupt expression of genes of numerous categories, including chromatin structural and remodeling genes, and genes encoding proteins implicated in nuclear targeting, cell wall structure and metabolism, cytoskeleton structure and function, and signal transduction. Here, we present an update on the identification and characterization of these rat mutants. PMID:12805582

  6. Sunflower (Helianthus annuus L.).

    PubMed

    Lewi, Dalia M; Hopp, H Esteban; Escandón, Alejandro S

    2006-01-01

    Sunflower (Helianthus annuus L.) is considered one of the recalcitrant species in terms of transformation and regeneration. A routine transformation system of this crop requires competent cell cultures for efficient plant regeneration as well as an effective method for gene delivery. A transformation system was developed by an Agrobacterium tumefaciens-mediated method using split mature embryonic axis explants from the Ha89 genotype. Mean transformation efficiency obtained (measured as PCR+ plants/treated explants) varied from 1 to 5.2% depending on the use of the EHA105 or the C58 strain containing a plasmid with a gene of agronomic interest. The system developed has applicability to several Agrobacterium strains and plasmids with both reporter genes or genes of agronomic interest. Plants obtained with this protocol were confirmed by PCR and Southern blot. Stable inheritance of transgenes was successfully followed until generation T4 in several independent lines. PMID:16988353

  7. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells

    PubMed Central

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-01-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. PMID:24376037

  8. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.

    PubMed

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-02-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20-25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. PMID:24376037

  9. The influence of Agrobacterium rhizogenes on induction of hairy roots and ß-carboline alkaloids production in Tribulus terrestris L.

    PubMed

    Sharifi, Sara; Sattari, Taher Nejad; Zebarjadi, Alireza; Majd, Ahmad; Ghasempour, Hamidreza

    2014-01-01

    We have developed an efficient transformation system for Tribulus terrestris L., an important medicinal plant, using Agrobacterium rhizogenes strains AR15834 and GMI9534 to generate hairy roots. Hairy roots were formed directly from the cut edges of leaf explants 10-14 days after inoculation with the Agrobacterium with highest frequency transformation being 49 %, which was achieved using Agrobacterium rhizogenes AR15834 on hormone-free MS medium after 28 days inoculation. PCR analysis showed that rolB genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. Isolated transgenic hairy roots grew rapidly on MS medium supplemented with indole-3-butyric acid. They showed characteristics of transformed roots such as fast growth and high lateral branching in comparison with untransformed roots. Isolated control and transgenic hairy roots grown in liquid medium containing IBA were analyzed to detect ß-carboline alkaloids by High Performance Thin Layer Chromatograghy (HPTLC). Harmine content was estimated to be 1.7 μg g(-1) of the dried weight of transgenic hairy root cultures at the end of 50 days of culturing. The transformed roots induced by AR15834 strain, spontaneously, dedifferentiated as callus on MS medium without hormone. Optimum callus induction and shoot regeneration of transformed roots in vitro was achieved on MS medium containing 0.4 mg L(-1) naphthaleneacetic acid and 2 mg L(-1) 6-benzylaminopurine (BAP) after 50 days. The main objective of this investigation was to establish hairy roots in this plant by using A. rhizogenes to synthesize secondary products at levels comparable to the wild-type roots. PMID:24554840

  10. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells

    PubMed Central

    Li, Xiaoyang; Yang, Qinghua; Tu, Haitao; Lim, Zijie; Pan, Shen Q

    2014-01-01

    Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single-stranded DNA molecules (T–DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split-GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2-GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1–10) was expressed in recipient cells. Upon delivery of VirE2-GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2-GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium-delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf-infiltration assay; most of VirE2 moved at a speed of 1.3–3.1 μm sec−1 in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2-GFP formed filamentous structures of different lengths, even in the absence of T-DNA. As a non-natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium-delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T-DNA transformation for a non-natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non-natural host recipient. The split-GFP approach could enable the real-time visualization of VirE2 trafficking inside recipient cells. PMID:24299048

  11. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells.

    PubMed

    Li, Xiaoyang; Yang, Qinghua; Tu, Haitao; Lim, Zijie; Pan, Shen Q

    2014-02-01

    Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single-stranded DNA molecules (T-DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split-GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2-GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1-10) was expressed in recipient cells. Upon delivery of VirE2-GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2-GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium-delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf-infiltration assay; most of VirE2 moved at a speed of 1.3-3.1 μm sec⁻¹ in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2-GFP formed filamentous structures of different lengths, even in the absence of T-DNA. As a non-natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium-delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T-DNA transformation for a non-natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non-natural host recipient. The split-GFP approach could enable the real-time visualization of VirE2 trafficking inside recipient cells. PMID:24299048

  12. Genetic transformation of carnation (Dianthus caryophylus L.).

    PubMed

    Nontaswatsri, Chalermsri; Fukai, Seiichi

    2010-01-01

    This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).

  13. Ecological dynamics and complex interactions of Agrobacterium megaplasmids.

    PubMed

    Platt, Thomas G; Morton, Elise R; Barton, Ian S; Bever, James D; Fuqua, Clay

    2014-01-01

    As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it's Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together. PMID:25452760

  14. Ecological dynamics and complex interactions of Agrobacterium megaplasmids

    PubMed Central

    Platt, Thomas G.; Morton, Elise R.; Barton, Ian S.; Bever, James D.; Fuqua, Clay

    2014-01-01

    As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it’s Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together. PMID:25452760

  15. Bacteriophytochromes control conjugation in Agrobacterium fabrum.

    PubMed

    Bai, Yingnan; Rottwinkel, Gregor; Feng, Juan; Liu, Yiyao; Lamparter, Tilman

    2016-08-01

    Bacterial conjugation, the transfer of single stranded plasmid DNA from donor to recipient cell, is mediated through the type IV secretion system. We performed conjugation assays using a transmissible artificial plasmid as reporter. With this assay, conjugation in Agrobacterium fabrum was modulated by the phytochromes Agp1 and Agp2, photoreceptors that are most sensitive in the red region of visible light. In conjugation studies with wild-type donor cells carrying a pBIN-GUSINT plasmid as reporter that lacked the Ti (tumor inducing) plasmid, no conjugation was observed. When either agp1(-) or agp2(-) knockout donor strains were used, plasmid DNA was delivered to the recipient, indicating that both phytochromes suppress conjugation in the wild type donor. In the recipient strains, the loss of Agp1 or Agp2 led to diminished conjugation. When wild type cells with Ti plasmid and pBIN-GUS reporter plasmid were used as donor, a high rate of conjugation was observed. The DNA transfer was down regulated by red or far-red light by a factor of 3.5. With agp1(-) or agp2(-) knockout donor cells, conjugation in the dark was about 10 times lower than with the wild type donor, and with the double knockout donor no conjugation was observed. These results imply that the phytochrome system has evolved to inhibit conjugation in the light. The decrease of conjugation under different temperature correlated with the decrease of phytochrome autophosphorylation. PMID:27261700

  16. Complementary Methodologies To Identify Specific Agrobacterium Strains †

    PubMed Central

    Bouzar, Hacene; Moore, Larry W.

    1987-01-01

    Serological techniques and restriction enzyme cleavage patterns of total DNA were used to differentiate strains of Agrobacterium spp. Forty-five wild-type and plasmid-cured Agrobacterium strains were tested by immunodiffusion and immunofluorescence against polyclonal antisera to a crude ribosome preparation from Agrobacterium strains K84, U11, B6, A323, NT1, and C58. In immunodiffusion gels, these antisera reacted only with water-phenol extracts of the homologous strain, producing a single, strain-specific precipitin line. In contrast, when the same antisera were used in immunofluorescence staining, cross-reactions occurred with a limited number of heterologous Agrobacterium strains. However, the cross-reacting heterologous cells fluoresced generally less brightly than the homologous cells. When the EcoRI-digested DNA profiles from the same Agrobacterium strains were compared, 34 distinct cleavage patterns were observed. The DNA profiles were the same for all strains sharing a common chromosomal background and correlated with the strain-specific serological reaction. The presence or absence of plasmid DNA did not alter the strain-specific serological reaction or the DNA cleavage patterns. Both the serological reaction and the restriction enzyme digestion of total DNA were complementary to each other. These methods were used successfully to identify A. radiobacter K84 strains which were recovered 6 months after being inoculated to young trees in the field. Images PMID:16347485

  17. Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium.

    PubMed

    Aujoulat, F; Marchandin, H; Zorgniotti, I; Masnou, A; Jumas-Bilak, E

    2015-05-01

    Rhizobium pusense was recently described after isolation from the rhizosphere of chickpea. Multilocus sequence-based analysis of clinical isolates identified as Agrobacterium (Rhizobium) radiobacter demonstrated that R. pusense is the main human pathogen within Agrobacterium (Rhizobium) spp. Clinical microbiology of Agrobacterium (Rhizobium) should be considered in the light of recent taxonomic changes.

  18. 77 FR 60431 - Agrobacterium radiobacter strains K84/Kerr-84 and K1026; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... AGENCY Agrobacterium radiobacter strains K84/Kerr-84 and K1026; Notice of Availability AGENCY... final registration review decision for the pesticide Agrobacterium radiobacter strains K84/Kerr-84 and... registration review decision for Agrobacterium radiobacter strains K84/Kerr-84 and K1026, case 4101. When...

  19. The molecular structure of agrobacterium VirE2-single stranded DNA complexes involved in nuclear import.

    PubMed

    Citovsky, V; Guralnick, B; Simon, M N; Wall, J S

    1997-09-01

    Nuclear import of DNA is a central event in genetic transformation of plant cells by Agrobacterium tumefaciens. Agrobacterium elicits tumors on plant hosts by transporting a single-stranded (ss) copy of the bacterial transferred DNA (T-DNA) from its Ti (tumor-inducing) plasmid into the plant cell nucleus. Presumably, the process of T-DNA nuclear import is mediated by two agrobacterium proteins, VirD2 and VirE2, which are thought to directly associate with the transported T-DNA. Both proteins have been shown to contain functional nuclear localizations signals (NLS). Recently, VirE2 alone has been shown to actively transport ssDNA into the plant cell nucleus. To understand the process of DNA nuclear import, it is important to know the structure of the transport intermediate. To this end, complexes of VirE2 and ssDNA were analyzed by scanning transmission electron microscopy (STEM). This analysis suggests that VirE2 packages ssDNA into semi-rigid, hollow cylindrical filaments with a telephone cord-like coiled structure. The outer diameter of these complexes is too large to enter the nucleus by diffusion but is within the size exclusion limits of the active nuclear import. Detailed mass analysis of VirE2-ssDNA filaments is presented and a structural model is proposed. PMID:9299322

  20. Multilocus sequence-based analysis delineates a clonal population of Agrobacterium (Rhizobium) radiobacter (Agrobacterium tumefaciens) of human origin.

    PubMed

    Aujoulat, Fabien; Jumas-Bilak, Estelle; Masnou, Agnès; Sallé, Fanny; Faure, Denis; Segonds, Christine; Marchandin, Hélène; Teyssier, Corinne

    2011-05-01

    The genus Agrobacterium includes plant-associated bacteria and opportunistic human pathogens. Taxonomy and nomenclature within the genus remain controversial. In particular, isolates of human origin were all affiliated with the species Agrobacterium (Rhizobium) radiobacter, while phytopathogenic strains were designated under the synonym denomination Agrobacterium tumefaciens. In order to study the relative distribution of Agrobacterium strains according to their origins, we performed a multilocus sequence-based analysis (MLSA) on a large collection of 89 clinical and environmental strains from various origins. We proposed an MLSA scheme based on the partial sequence of 7 housekeeping genes (atpD, zwf, trpE, groEL, dnaK, glnA, and rpoB) present on the circular chromosome of A. tumefaciens C58. Multilocus phylogeny revealed that 88% of the clinical strains belong to genovar A7, which formed a homogeneous population with linkage disequilibrium, suggesting a low rate of recombination. Comparison of genomic fingerprints obtained by pulsed-field gel electrophoresis (PFGE) showed that the strains of genovar A7 were epidemiologically unrelated. We present genetic evidence that genovar A7 may constitute a human-associated population distinct from the environmental population. Also, phenotypic characteristics, such as culture at 42°C, agree with this statement. This human-associated population might represent a potential novel species in the genus Agrobacterium.

  1. Agrobacterium VirD2 protein interacts with plant host cyclophilins.

    PubMed

    Deng, W; Chen, L; Wood, D W; Metcalfe, T; Liang, X; Gordon, M P; Comai, L; Nester, E W

    1998-06-01

    Agrobacterium tumefaciens induces crown gall tumors on plants by transferring a nucleoprotein complex, the T-complex, from the bacterium to the plant cell. The T-complex consists of T-DNA, a single-stranded DNA segment of the tumor-inducing plasmid, VirD2, an endonuclease covalently bound to the 5' end of the T-DNA, and perhaps VirE2, a single-stranded DNA binding protein. The yeast two-hybrid system was used to screen for proteins interacting with VirD2 and VirE2 to identify components in Arabidopsis thaliana that interact with the T-complex. Three VirD2- and two VirE2-interacting proteins were identified. Here we characterize the interactions of VirD2 with two isoforms of Arabidopsis cyclophilins identified by using this analysis. The VirD2 domain interacting with the cyclophilins is distinct from the endonuclease, omega, and the nuclear localization signal domains. The VirD2-cyclophilin interaction is disrupted in vitro by cyclosporin A, which also inhibits Agrobacterium-mediated transformation of Arabidopsis and tobacco. These data strongly suggest that host cyclophilins play a role in T-DNA transfer. PMID:9618535

  2. vir-Gene-inducing activities of hydroxycinnamic acid amides in Agrobacterium tumefaciens.

    PubMed

    Berthelot, K; Buret, D; Guerin, B; Delay, D; Negrel, J; Delmotte, F M

    1998-11-20

    Expression of Agrobacterium tumefaciens virulence genes and transformation of dicots by this organism are dependent upon host plant phenolic compounds. Several alkylsyringamides have recently been shown to be powerful inducers of these vir-genes. These synthetic amides, and especially ethylsyringamide, are much stronger inducers than syringic acid. In this work, four alkylamides derived from ferulic or sinapic acids were synthesized by a dicyclohexylcarbodiimide method and tested for their potential to induce vir-gene expression on A. tumefaciens strains harbouring virB::lacZ or virE::lacZ fusion plasmids. Their effectiveness was compared to that of ethylsyringamide and tyraminylferulamide, a naturally occurring amide in plants. Whatever the amine moiety of the amide (ethylamine, propylamine, tyramine or beta-alanine ethyl ester) conjugation of the acid functional group clearly diminished the toxicity to the bacteria of the respective acid at high concentration and thereby increased the vir-inducing potential. However, none of the inducers tested exhibited higher activity than acetosyringone, the reference compound for vir-gene induction, with the exception of ethylsyringamide at concentrations above 1mM. When tested on Agrobacterium tumefaciens strain A348(pSM243cd), ethylferulamide and ethylsinapamide were more efficient than the corresponding phenolic acids but only above 100 microM. PMID:11711062

  3. Cloning and nucleotide sequence of the hemA gene of Agrobacterium radiobacter.

    PubMed

    Drolet, M; Sasarman, A

    1991-04-01

    The hemA gene of Agrobacterium radiobacter ATCC4718 was identified by hybridization with a hemA probe from Rhizobium meliloti and cloned by complementation of a hemA mutant of Escherichia coli K12. E. coli hemA transformants carrying the hemA gene of Agrobacterium showed delta-aminolevulinic acid synthetase (delta-ALAS) activity in vitro. The hemA gene was carried on a 4.4 kb EcoRI fragment which could be reduced to a 2.6 kb EcoRI-SstI fragment without affecting its complementing or delta-ALAS activity. The sequence of the hemA gene showed an open reading frame of 1215 nucleotides, which could code for a protein of 44,361 Da. This is very close to the molecular weight of the HemA protein obtained using an in vitro coupled transcription-translation system (45,000 Da). Comparison of amino acid sequences of the delta-ALAS of A. radiobacter and Bradyrhizobium japonicum showed strong homology between the two enzymes; less, but still significant, homology was observed when A. radiobacter and human delta-ALAS were compared. Primer extension experiments enabled us to identify two promoters for the hemA gene of A. radiobacter. One of these promoters shows some similarity to the first promoter of the hemA gene of R. meliloti.

  4. Vitreoscilla hemoglobin promotes Salecan production by Agrobacterium sp. ZX09*

    PubMed Central

    Chen, Yun-mei; Xu, Hai-yang; Wang, Yang; Zhang, Jian-fa; Wang, Shi-ming

    2014-01-01

    Salecan is a novel exopolysaccharide produced by the strain Agrobacterium sp. ZX09, and it is composed of only glucose monomers. The unique chemical composition and excellent physicochemical properties make Salecan a promising material for applications in coagulation, lubrication, protection against acute liver injury, and alleviating constipation. In this study, we cloned the Vitreoscilla hemoglobin gene into a broad-host-range plasmid pCM158. Without antibiotic selection, there was negligible loss of the plasmid in the host Agrobacterium sp. ZX09 after one passage of cultivation. The expression of Vitreoscilla hemoglobin was demonstrated by carbon monoxide (CO) difference spectrum. The engineered strain Agrobacterium sp. ZX09 increased Salecan yield by 30%. The other physiological changes included its elevated respiration rate and cellular invertase activity. PMID:25367790

  5. Two-way chemical signaling in Agrobacterium-plant interactions.

    PubMed Central

    Winans, S C

    1992-01-01

    The discovery in 1977 that Agrobacterium species can transfer a discrete segment of oncogenic DNA (T-DNA) to the genome of host plant cells has stimulated an intense interest in the molecular biology underlying these plant-microbe associations. This attention in turn has resulted in a series of insights about the biology of these organisms that continue to accumulate at an ever-increasing rate. This excitement was due in part to the notion that this unprecedented interkingdom DNA transfer could be exploited to create transgenic plants containing foreign genes of scientific or commercial importance. In the course of these discoveries, Agrobacterium became one of the best available models for studying the molecular interactions between bacteria and higher organisms. One extensively studied aspect of this association concerns the exchange of chemical signals between Agrobacterium spp. and host plants. Agrobacterium spp. can recognize no fewer than five classes of low-molecular-weight compounds released from plants, and other classes probably await discovery. The most widely studied of these are phenolic compounds, which stimulate the transcription of the genes needed for infection. Other compounds include specific monosaccharides and acidic environments which potentiate vir gene induction, acidic polysaccharides which induce one or more chromosomal genes, and a family of compounds called opines which are released from tumorous plant cells to the bacteria as nutrient sources. Agrobacterium spp. in return release a variety of chemical compounds to plants. The best understood is the transferred DNA itself, which contains genes that in various ways upset the balance of phytohormones, ultimately causing neoplastic cell proliferation. In addition to transferring DNA, some Agrobacterium strains directly secrete phytohormones. Finally, at least some strains release a pectinase, which degrades a component of plant cell walls. PMID:1579105

  6. Biodegradation of crystal violet by Agrobacterium radiobacter.

    PubMed

    Parshetti, G K; Parshetti, S G; Telke, A A; Kalyani, D C; Doong, R A; Govindwar, S P

    2011-01-01

    Agrobacterium radiobacter MTCC 8161 completely decolorized the Crystal Violet with 8 hr (10 mg/L) at static anoxic conditions. The decreased decolorization capability by A. radiobacter was observed, when the Crystal Violet concentration was increased from 10 to 100 mg/L. Semi-synthetic medium containing 1% yeast extract and 0.1% NH4C1 has shown 100% decolorization of Crystal Violet within 5 hr. A complete degradation of Crystal Violet by A. radiobacter was observed up to 7 cycles of repeated addition (10 mg/L). When the effect of increasing inoculum concentration on decolorization of Crystal Violet (100 mg/L) was studied, maximum decolorization was observed with 15% inoculum concentration. A significant increase in the activities of laccase (184%) and aminopyrine N-demethylase (300%) in cells obtained after decolorization indicated the involvement of these enzymes in decolorization process. The intermediates formed during the degradation of Crystal Violet were analyzed by gas chromatography and mass spectroscopy (GC/MS). It was detected the presence of N,N,N',N"-tetramethylpararosaniline, [N, N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N, N-dimethylaminobenzaldehyde, 4-methyl amino phenol and phenol. We proposed the hypothetical metabolic pathway of Crystal Violet biodegradation by A. radiobacter. Phytotoxicity and microbial toxicity study showed that Crystal Violet biodegradation metabolites were less toxic to bacteria (A. radiobacter, P. aurugenosa and A. vinelandii) contributing to soil fertility and for four kinds of plants (Sorghum bicolor Vigna radiata, Lens culinaris and Triticum aestivum) which are most sensitive, fast growing and commonly used in Indian agriculture.

  7. Stable Recombinase-Mediated Cassette Exchange in Arabidopsis Using Agrobacterium tumefaciens1

    PubMed Central

    Louwerse, Jeanine D.; van Lier, Miranda C.M.; van der Steen, Dirk M.; de Vlaam, Clementine M.T.; Hooykaas, Paul J.J.; Vergunst, Annette C.

    2007-01-01

    Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation. PMID:17921337

  8. Agrobacterium rhizogenes mediated hairy root induction in endangered Berberis aristata DC.

    PubMed

    Brijwal, Latika; Tamta, Sushma

    2015-01-01

    An efficient protocol for hairy root induction in Berberis aristata DC. was established using two different strains of Agrobacterium rhizogenes, MTCC 532 and 2364 from IMTECH (Institute of Microbial Technology), Chandigarh, India. The strain 532 was more effective than strain 2364 in hairy root induction and in vitro grown callus (61.11 ± 1.60 % transformation frequency) was found to be suitable explant in comparison to leaves (42.59 ± 0.92 % transformation frequency) and nodal segments (34.25 ± 0.92 % transformation frequency) of in vitro grown microshoots for hairy root induction. The presence of rol A and rol B genes during amplification confirmed the transgenic nature of hairy roots and transformed callus. Transformation frequency of callus was further enhanced (from 61.11 ± 1.60 % to 72.22 ± 1.60 %; when infection time was 1 h) by using acetosyringone (100 µM) during co-cultivation period (48 h) on semisolid MS (Murashige and Skoog) medium. In conclusion, this study describes the protocol for hairy root induction which could further be useful for the production of berberin and may reduce the overharvesting of this endangered species from its natural habitat.

  9. Resistance to crown gall disease in transgenic grapevine rootstocks containing truncated virE2 of Agrobacterium.

    PubMed

    Krastanova, Stoyanka V; Balaji, Vasudevan; Holden, Michele R; Sekiya, Mary; Xue, Baodi; Momol, Esengul A; Burr, Thomas J

    2010-12-01

    A truncated form of the Ti-plasmid virE2 gene from Agrobacterium tumefaciens strains C58 and A6, and A. vitis strain CG450 was transferred and expressed in somatic embryos of grapevine rootstocks 110 Richter (Vitis rupestris × V. berlandieri), 3309 Couderc (V. rupestris × V. riparia) and Teleki 5C (V. berlandieri × V. riparia) via Agrobacterium-mediated transformation to confer resistance to crown gall disease. Transformation was confirmed in 98% of the 322 lines by enzyme-linked immunosorbent assay for the neomycin phosphotransferase II protein and 97% of 295 lines by polymerase chain reaction for the truncated virE2 transgene. Southern blot analysis revealed the insertion of truncated virE2 at one to three loci in a subset of seven transgenic 110 Richter lines. In vitro resistance screening assays based on inoculations of shoot internode sections showed reduced tumorigenicity and very small galls in 23 of 154 transgenic lines. Non-transformed controls had a 100% tumorigenicity rate with very large galls. Disease resistance assay at the whole plant level in the greenhouse revealed seven transgenic lines (3 lines of 110 Richter, 2 lines of 3309 Couderc and 2 lines of Teleki 5C) were resistant to A. tumefaciens strain C58 and A. vitis strains TM4 and CG450 with a substantially reduced percentage of inoculation sites showing gall as compared to controls. No association was found between the level of resistance to crown gall disease and the source Agrobacterium strain of virE2. Taken together, our data showed that resistance to crown gall disease can be achieved by expressing a truncated form of virE2 in grapevines. PMID:20182792

  10. Impact of biological amendments on Agrobacterium tumefaciens soil survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paradox, the primary walnut rootstock used in California, is susceptible to Agrobacterium tumefaciens, which causes crown gall. While A. tumefaciens is susceptible to commonly used fumigants such as methyl bromide (MeBr) and Telone-C35 (1,3-dichloropropene and chloropicrin), these fumigants also sig...

  11. Virulence of Agrobacterium tumefaciens strain A281 on legumes

    SciTech Connect

    Hood, E.E.; Fraley, R.T.; Chilton, M.D.

    1987-03-01

    This study addresses the basis of host range on legumes of Agrobacterium tumefaciens strain A281, an L,L-succinamopine strain. The authors tested virulence of T-DNA and vir region constructs from this tumor-inducing (Ti) plasmid with complementary Ti plasmid regions from heterologous nopaline and octopine strains.

  12. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    PubMed

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation.

  13. Draft Genome Sequence of Agrobacterium rhizogenes Strain NCPPB2659

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work reports the draft genome of Agrobacterium rhizogenes strain NCPPB2659 (also known as strain K599). The assembled genome contains 5,277,347 bp, and is composed of 1 circular chromosome, the Ri virulence plasmid, and 17 scaffolds pertaining to the linear chromosome. The wild type strain cau...

  14. Temperature Effects on Agrobacterium Phytochrome Agp1

    PubMed Central

    Njimona, Ibrahim; Lamparter, Tilman

    2011-01-01

    Phytochromes are widely distributed biliprotein photoreceptors with a conserved N-terminal chromophore-binding domain. Most phytochromes bear a light-regulated C-terminal His kinase or His kinase-like region. We investigated the effects of light and temperature on the His kinase activity of the phytochrome Agp1 from Agrobacterium tumefaciens. As in earlier studies, the phosphorylation activity of the holoprotein after far-red irradiation (where the red-light absorbing Pr form dominates) was stronger than that of the holoprotein after red irradiation (where the far red-absorbing Pfr form dominates). Phosphorylation activities of the apoprotein, far red-irradiated holoprotein, and red-irradiated holoprotein decreased when the temperature increased from 25°C to 35°C; at 40°C, almost no kinase activity was detected. The activity of a holoprotein sample incubated at 40°C was nearly completely restored when the temperature returned to 25°C. UV/visible spectroscopy indicated that the protein was not denatured up to 45°C. At 50°C, however, Pfr denatured faster than the dark-adapted sample containing the Pr form of Agp1. The Pr visible spectrum was unaffected by temperatures of 20–45°C, whereas irradiated samples exhibited a clear temperature effect in the 30–40°C range in which prolonged irradiation resulted in the photoconversion of Pfr into a new spectral species termed Prx. Pfr to Prx photoconversion was dependent on the His-kinase module of Agp1; normal photoconversion occurred at 40°C in the mutant Agp1-M15, which lacks the C-terminal His-kinase module, and in a domain-swap mutant in which the His-kinase module of Agp1 is replaced by the His-kinase/response regulator module of the other A. tumefaciens phytochrome, Agp2. The temperature-dependent kinase activity and spectral properties in the physiological temperature range suggest that Agp1 serves as an integrated light and temperature sensor in A. tumefaciens. PMID:22043299

  15. Agrobacterium tumefaciens virE operon encodes a single-stranded DNA-binding protein.

    PubMed

    Das, A

    1988-05-01

    The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmid are essential for transformation of plant cells. Overproduction of a virE-encoded gene product in Escherichia coli was achieved by construction of an operon fusion with the E. coli tryptophan (trp) operon. The virE2 gene product in E. coli partitioned into the insoluble membrane fraction. The protein was solubilized by treatment with 4 M urea at 0 degree C. DNA-protein binding experiments showed that a strong single-stranded (ss) DNA-binding activity was present in protein fractions containing the virE2 gene product. The binding was highly specific with little or no binding observed with either double-stranded DNA or ssRNA. No significant binding to Ti plasmid DNA sequences was observed. Protein blotting studies indicated that the ssDNA-binding activity was associated with the 68-kDa virE2 polypeptide. PMID:2452439

  16. Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections.

    PubMed

    Dunoyer, Patrice; Himber, Christophe; Voinnet, Olivier

    2006-02-01

    Regulation of gene expression through microRNAs (miRNAs) and antiviral defense through small interfering RNAs (siRNAs) are aspects of RNA silencing, a process originally discovered as an unintended consequence of plant transformation by disarmed Agrobacterium tumefaciens strains. Although RNA silencing protects cells against foreign genetic elements, its defensive role against virulent, tumor-inducing bacteria has remained unexplored. Here, we show that siRNAs corresponding to transferred-DNA oncogenes initially accumulate in virulent A. tumefaciens-infected tissues and that RNA interference-deficient plants are hypersusceptible to the pathogen. Successful infection relies on a potent antisilencing state established in tumors whereby siRNA synthesis is specifically inhibited. This inhibition has only modest side effects on the miRNA pathway, shown here to be essential for disease development. The similarities and specificities of the A. tumefaciens RNA silencing interaction are discussed and contrasted with the situation encountered with plant viruses. PMID:16429161

  17. Plant virus DNA replication processes in Agrobacterium: insight into the origins of geminiviruses?

    PubMed Central

    Rigden, J E; Dry, I B; Krake, L R; Rezaian, M A

    1996-01-01

    Agrobacterium tumefaciens, a bacterial plant pathogen, when transformed with plasmid constructs containing greater than unit length DNA of tomato leaf curl geminivirus accumulates viral replicative form DNAs indistinguishable from those produced in infected plants. The accumulation of the viral DNA species depends on the presence of two origins of replication in the DNA constructs and is drastically reduced by introducing mutations into the viral replication-associated protein (Rep or C1) ORF, indicating that an active viral replication process is occurring in the bacterial cell. The accumulation of these viral DNA species is not affected by mutations or deletions in the other viral open reading frames. The observation that geminivirus DNA replication functions are supported by the bacterial cellular machinery provides evidence for the theory that these circular single-stranded DNA viruses have evolved from prokaryotic episomal replicons. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8816791

  18. Agrobacterium-Mediated Gene Transfer Results Mainly in Transgenic Plants Transmitting T-DNA as a Single Mendelian Factor

    PubMed Central

    Budar, F.; Thia-Toong, L.; Van Montagu, M.; Hernalsteens, J.-P.

    1986-01-01

    Forty-four independent transformed tobacco plants were obtained from a cocultivation experiment with Agrobacterium tumefaciens strains carrying modified Ti-plasmids. The transformed plants were either self-fertilized or crossed with nontransformed plants or with other transformed plants. The segregation of a phenotypic marker (kanamycin resistance) in the progenies of these plants was determined. In 40 cases out of 44, the segregation of the kanamycin resistance marker is consistent with Mendelian genetics. Among these 40 clones, 35 contain a single kanamycin resistance locus. The five others segregate two independent resistance loci. In two of the single insert clones, the segregation ratio after selfing indicates that the T-DNA insertion may have caused a recessive lethal mutation. PMID:17246346

  19. Reconciliation of Sequence Data and Updated Annotation of the Genome of Agrobacterium tumefaciens C58, and Distribution of a Linear Chromosome in the Genus Agrobacterium

    PubMed Central

    Slater, Steven; Setubal, João C.; Houmiel, Kathryn; Sun, Jian; Kaul, Rajinder; Goldman, Barry S.; Farrand, Stephen K.; Almeida, Nalvo; Burr, Thomas; Nester, Eugene; Rhoads, David M.; Kadoi, Ryosuke; Ostheimer, Trucian; Pride, Nicole; Sabo, Allison; Henry, Erin; Telepak, Erin; Cromes, Lindsey; Harkleroad, Alana; Oliphant, Louis; Pratt-Szegila, Phil; Welch, Roy; Wood, Derek

    2013-01-01

    Two groups independently sequenced the Agrobacterium tumefaciens C58 genome in 2001. We report here consolidation of these sequences, updated annotation, and additional analysis of the evolutionary history of the linear chromosome, which is apparently limited to the biovar I group of Agrobacterium. PMID:23241979

  20. Feedback regulation of an Agrobacterium catalase gene katA involved in Agrobacterium-plant interaction.

    PubMed

    Xu, X Q; Li, L P; Pan, S Q

    2001-11-01

    Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A

  1. Spike-dip transformation of Setaria viridis.

    PubMed

    Saha, Prasenjit; Blumwald, Eduardo

    2016-04-01

    Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant. PMID:26932666

  2. [Use of highly dispersed materials for culturing and isolation of granular Agrobacterium radiobacter preparations ].

    PubMed

    Kurdish, I K; Titova, L V

    2001-01-01

    The effects of synthetic and natural high-dispersion materials on the growth of Agrobacterium radiobacter were studied. Natural minerals montmorillonite and palygorskite (10 g/l nutrient medium) were more potent than high-dispersion silica and its modified forms in stimulating growth of Agrobacterium radiobacter. The interaction of Agrobacterium radiobacter with clay minerals increased the survival rate of bacteria at supraoptimal temperatures. We elaborated new granular bacterial preparation, which enhanced the productivity of cucumbers by 12-15%.

  3. Characterization of Agrobacterium tumefaciens DNA ligases C and D.

    PubMed

    Zhu, Hui; Shuman, Stewart

    2007-01-01

    Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3'-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3'-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3'-OH end. The PE domains also have a 3'-phosphatase activity on an all-DNA primer-template that yields a 3'-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ.

  4. Highly efficient transformation protocol for plum (Prunus domestica L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-throughput transformation system for plum has been developed using hypocotyl slices excised from zygotic embryos as the source of explants. The hypocotyl slices are infected in an Agrobacterium tumefaciens suspension and then co-cultivated for 3 days in shoot regeneration three-quarter MS ba...

  5. Taro (Colocasia esculenta (L.) Schott).

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Zhu, Yun J

    2015-01-01

    Genetic engineering of taro is an effective method to improve taro quality and the resistance to various diseases of taro. Agrobacterium tumefaciens-mediated transformation of taro is more efficient than the particle bombardment transformation method based on current research. The development of a regeneration system starting from taro shoot tip explants could produce dasheen mosaic virus (DsMV)-free plantlets. Highly regenerative calluses could be developed from DsMV-free, in vitro plantlets on the Murashige and Skoog (MS) medium with 2 mg/L BA and 1 mg/L NAA (M5 medium). The Agrobacterium tumefaciens-mediated transformation method is reported in this chapter. The highly regenerative calluses were selected and cocultivated with the Agrobacterium strain EHA105 harboring the binary vector PBI121 with either a rice chitinase gene chi11 or a wheat oxalate oxidase gene gf2.8. After cocultivation for 3-4 days, these calluses were transferred to selection medium (M5 medium) containing 50 mg/L Geneticin G418 and grown for 3 months in the dark. Transgenic shoot lines could be induced and selected on the MS medium containing 4 mg/L BA (M15 medium) and 50 mg/L Geneticin G418 for 3 months further in the light. Molecular analyses are used to confirm the stable transformation and expression of the disease resistance gene chi11 or gf2.8. Pathologic bioassays could be used to demonstrate whether the transgenic plants had increased disease resistance to taro pathogens Sclerotium rolfsii or Phytophthora colocasiae.

  6. Taro (Colocasia esculenta (L.) Schott).

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Zhu, Yun J

    2015-01-01

    Genetic engineering of taro is an effective method to improve taro quality and the resistance to various diseases of taro. Agrobacterium tumefaciens-mediated transformation of taro is more efficient than the particle bombardment transformation method based on current research. The development of a regeneration system starting from taro shoot tip explants could produce dasheen mosaic virus (DsMV)-free plantlets. Highly regenerative calluses could be developed from DsMV-free, in vitro plantlets on the Murashige and Skoog (MS) medium with 2 mg/L BA and 1 mg/L NAA (M5 medium). The Agrobacterium tumefaciens-mediated transformation method is reported in this chapter. The highly regenerative calluses were selected and cocultivated with the Agrobacterium strain EHA105 harboring the binary vector PBI121 with either a rice chitinase gene chi11 or a wheat oxalate oxidase gene gf2.8. After cocultivation for 3-4 days, these calluses were transferred to selection medium (M5 medium) containing 50 mg/L Geneticin G418 and grown for 3 months in the dark. Transgenic shoot lines could be induced and selected on the MS medium containing 4 mg/L BA (M15 medium) and 50 mg/L Geneticin G418 for 3 months further in the light. Molecular analyses are used to confirm the stable transformation and expression of the disease resistance gene chi11 or gf2.8. Pathologic bioassays could be used to demonstrate whether the transgenic plants had increased disease resistance to taro pathogens Sclerotium rolfsii or Phytophthora colocasiae. PMID:25416252

  7. Citrus transformation using juvenile tissue explants.

    PubMed

    Orbović, Vladimir; Grosser, Jude W

    2015-01-01

    The most frequently used method for production of citrus transgenic plants is via Agrobacterium-mediated transformation of tissues found on explants obtained from juvenile seedlings. Within the last decade and especially within the last 5-6 years, this robust method was employed to produce thousands of transgenic plants. With the newly applied screening methods that allow easier and faster detection of transgenic shoots, estimates of transformation rate for some cultivars have gone up making this approach even more attractive. Although adjustments have to be made regarding the (varietal) source of the starting material and Agrobacterium strain used in each experiment preformed, the major steps of this procedure have not changed significantly if at all. Transgenic citrus plants produced this way belong to cultivars of rootstocks, sweet oranges, grapefruits, mandarins, limes, and lemons.

  8. Effective elimination of chimeric tissue in transgenics for the stable genetic transformation of lesquerella fendleri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to improve the potential of Lesquerella fendleri as a valuable industrial oilseed crop, a stable genetic transformation system was developed. Genetic transformation was performed by inoculating leaf segments with an Agrobacterium tumefaciens strain AGL1 carrying binary vector pCAMBIA 1301.1...

  9. Barley Transformation Using Biolistic Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Smedley, Mark A.

    Microprojectile bombardment or biolistic techniques have been widely used for cereal transformation. These methods rely on the acceleration of gold particles, coated with plasmid DNA, into plant cells as a method of directly introducing the DNA. The first report of the generation of fertile, transgenic barley plants used biolistic techniques. However, more recently Agrobacterium-mediated transformation has been adopted as the method of choice for most cereals including barley. Biolistic procedures are still important for some barley transformation applications and also provide transient test systems for the rapid checking of constructs. This chapter describes methods for the transformation of barley using biolistic procedures and also highlights the use of the technology in transient assays.

  10. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes

    SciTech Connect

    Scorza, R.; Zimmerman, T.W.; Cordts, J.M.; Footen, K.J. ); Ravelonandro, M. . Station de Pathologie Vegetale)

    1994-09-01

    Wisconsin 38 tobacco (Nicotiana tabacum L.) leaf discs were transformed with the disarmed Agrobacterium tumefaciens strain EHA 101 carrying the rolC gene from A. rhizogenes and NPT II and GUS genes. Shoots that regenerated on kanamycin-containing medium were confirmed as transgenic through GUS assays, polymerase chain reaction (PCR), Southern blot analyses, and transmission of the foreign genes through the sexual cycle. Transgenic plants were as short as half the height of control plants; were earlier flowering by up to 35 days; and had smaller leaves, shorter internodes, smaller seed capsules, fewer seeds, smaller flowers, and reduced pollen viability. The number of seed capsules, leaf number, and specific root length were similar between transgenic and control plants. Transgenic clones varied in the expression of the rolC-induced growth alterations as did the first generation of seedlings from these clones. Such differences suggested the potential for selecting for different levels of expression. Transformation with the rolC gene presents a potentially useful method of genetically modifying horticultural crops, particularly for flowering date, height, and leaf and flower size. Chemical names used: neomycin phosphotransferase (NPTII), [beta]-glucuronidase (GUS).

  11. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells.

    PubMed Central

    Zupan, J R; Citovsky, V; Zambryski, P

    1996-01-01

    Agrobacterium genetically transforms plant cells by transferring a single-stranded DNA (ssDNA) copy of the transferred DNA (T-DNA) element, the T-strand, in a complex with Agrobacterium proteins VirD2, bound to the 5' end, and VirE2. VirE2 binds single-stranded nucleic acid cooperatively, fully coating the T-strand, and the protein localizes to the plant cell nucleus when transiently expressed. The coupling of ssDNA binding and nuclear localizing activities suggests that VirE2 alone could mediate nuclear localization of ssDNA. In this study, fluorescently labeled ssDNA accumulated in the plant cell nucleus specifically when microinjected as a complex with VirE2. Microinjected ssDNA alone remained cytoplasmic. Import of VirE2-ssDNA complex into the nucleus via a protein import pathway was supported by (i) the inhibition of VirE2-ssDNA complex import in the presence of wheat germ agglutinin or a nonhydrolyzable GTP analog, both known inhibitors of protein nuclear import, and (ii) the retardation of import when complexes were prepared from a VirE2 mutant impaired in ssDNA binding and nuclear import. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8637884

  12. Analysis of Hydroxycinnamic Acid Degradation in Agrobacterium fabrum Reveals a Coenzyme A-Dependent, Beta-Oxidative Deacetylation Pathway

    PubMed Central

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Lavire, Céline; Hommais, Florence

    2014-01-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl–CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl–CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)–CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials. PMID:24657856

  13. Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

    PubMed

    Bharat, Tanmay A M; Zbaida, David; Eisenstein, Miriam; Frankenstein, Ziv; Mehlman, Tevie; Weiner, Lev; Sorzano, Carlos Oscar S; Barak, Yoav; Albeck, Shira; Briggs, John A G; Wolf, Sharon G; Elbaum, Michael

    2013-07-01

    Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity. PMID:23769668

  14. Variable internal flexibility characterizes the helical capsid formed by agrobacterium VirE2 protein on single-stranded DNA.

    PubMed

    Bharat, Tanmay A M; Zbaida, David; Eisenstein, Miriam; Frankenstein, Ziv; Mehlman, Tevie; Weiner, Lev; Sorzano, Carlos Oscar S; Barak, Yoav; Albeck, Shira; Briggs, John A G; Wolf, Sharon G; Elbaum, Michael

    2013-07-01

    Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity.

  15. Characterization of Agrobacterium tumefaciens DNA ligases C and D

    PubMed Central

    Zhu, Hui; Shuman, Stewart

    2007-01-01

    Agrobacterium tumefaciens encodes a single NAD+-dependent DNA ligase and six putative ATP-dependent ligases. Two of the ligases are homologs of LigD, a bacterial enzyme that catalyzes end-healing and end-sealing steps during nonhomologous end joining (NHEJ). Agrobacterium LigD1 and AtuLigD2 are composed of a central ligase domain fused to a C-terminal polymerase-like (POL) domain and an N-terminal 3′-phosphoesterase (PE) module. Both LigD proteins seal DNA nicks, albeit inefficiently. The LigD2 POL domain adds ribonucleotides or deoxyribonucleotides to a DNA primer-template, with rNTPs being the preferred substrates. The LigD1 POL domain has no detectable polymerase activity. The PE domains catalyze metal-dependent phosphodiesterase and phosphomonoesterase reactions at a primer-template with a 3′-terminal diribonucleotide to yield a primer-template with a monoribonucleotide 3′-OH end. The PE domains also have a 3′-phosphatase activity on an all-DNA primer-template that yields a 3′-OH DNA end. Agrobacterium ligases C2 and C3 are composed of a minimal ligase core domain, analogous to Mycobacterium LigC (another NHEJ ligase), and they display feeble nick-sealing activity. Ligation at DNA double-strand breaks in vitro by LigD2, LigC2 and LigC3 is stimulated by bacterial Ku, consistent with their proposed function in NHEJ. PMID:17488851

  16. Linear Chromosome-generating System of Agrobacterium tumefaciens C58

    PubMed Central

    Huang, Wai Mun; DaGloria, Jeanne; Fox, Heather; Ruan, Qiurong; Tillou, John; Shi, Ke; Aihara, Hideki; Aron, John; Casjens, Sherwood

    2012-01-01

    Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide. PMID:22582388

  17. Peach (Prunus persica L.).

    PubMed

    Sabbadini, Silvia; Pandolfini, Tiziana; Girolomini, Luca; Molesini, Barbara; Navacchi, Oriano

    2015-01-01

    Until now, the application of genetic transformation techniques in peach has been limited by the difficulties in developing efficient regeneration and transformation protocols. Here we describe an efficient regeneration protocol for the commercial micropropagation of GF677 rootstock (Prunus persica × Prunus amygdalus). The method is based on the production, via organogenesis, of meristematic bulk tissues characterized by a high competence for shoot regeneration. This protocol has also been used to obtain GF677 plants genetically engineered with an empty hairpin cassette (hereafter indicated as hp-pBin19), through Agrobacterium tumefaciens-mediated transformation. After 7-8 months of selection on media containing kanamycin, we obtained two genetically modified GF677 lines. PCR and Southern blot analyses were performed to confirm the genetic status.

  18. Draft Genome Sequence of Agrobacterium rhizogenes Strain NCPPB2659

    PubMed Central

    Valdes Franco, Jose A.; Collier, Ray; Wang, Yi; Huo, Naxin; Gu, Yong

    2016-01-01

    This work reports the draft genome sequence of Agrobacterium rhizogenes strain NCPPB2659 (also known as strain K599). The assembled genome contains 5,277,347 bp, composed of one circular chromosome, the pRi2659 virulence plasmid, and 17 scaffolds pertaining to the linear chromosome. The wild-type strain causes hairy root disease in dicots and has been used to make transgenic hairy root cultures and composite plants (nontransgenic shoots with transgenic roots). Disarmed variants of the strain have been used to produce stable transgenic monocot and dicot plants. PMID:27469966

  19. Draft Genome Sequence of Agrobacterium rhizogenes Strain NCPPB2659.

    PubMed

    Valdes Franco, Jose A; Collier, Ray; Wang, Yi; Huo, Naxin; Gu, Yong; Thilmony, Roger; Thomson, James G

    2016-01-01

    This work reports the draft genome sequence of Agrobacterium rhizogenes strain NCPPB2659 (also known as strain K599). The assembled genome contains 5,277,347 bp, composed of one circular chromosome, the pRi2659 virulence plasmid, and 17 scaffolds pertaining to the linear chromosome. The wild-type strain causes hairy root disease in dicots and has been used to make transgenic hairy root cultures and composite plants (nontransgenic shoots with transgenic roots). Disarmed variants of the strain have been used to produce stable transgenic monocot and dicot plants. PMID:27469966

  20. Agrobacterium radiobacter and CDC group Ve-2 bacteremia.

    PubMed

    Blumberg, D A; Cherry, J D

    1989-01-01

    Agrobacterium radiobacter and CDC Group Ve-2 are rare human pathogens. The simultaneous infection with both of these bacteria in an immunocompromised host is reported. Review of the UCLA microbiology laboratory records revealed one additional case of A. radiobacter bacteremia and two additional cases of CDC Group Ve-2 bacteremia over a 3-year period. The clinical experience with these organisms is reviewed. Both organisms are opportunistic pathogens with a predilection for patients with foreign bodies in place. Although CDC Group Ve-2 bacteremia may respond to antibiotic therapy alone, the cure of A. radiobacter infections often requires foreign body removal.

  1. Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells.

    PubMed

    Smith, F D; Harpending, P R; Sanford, J C

    1992-01-01

    Five bacterial species were transformed using particle gun-technology. No pretreatment of cells was necessary. Physical conditions (helium pressure, target cell distance and gap distance) and biological conditions (cell growth phase, osmoticum concentration, and cell density) were optimized for biolistic transformation of Escherichia coli and these conditions were then used to successfully transform Agrobacterium tumefaciens, Erwinia amylovora, Erwinia stewartii and Pseudomonas syringae pv. syringae. Transformation rates for E. coli were 10(4) per plate per 0.8 micrograms DNA. Although transformation rates for the other species were low (less than 10(2) per plate per 0.8 micrograms DNA), successful transformation without optimization for each species tested suggests wide utility of biolistic transformation of prokaryotes. E. coli has proven to be a useful model system to determine the effects of relative humidity, particle size and particle coating on efficiency of biolistic transformation.

  2. How to get exogenous DNA to cross the cell membrane of plants. Comment on “Physical methods for genetic transformation in plants” by Rivera et al.

    NASA Astrophysics Data System (ADS)

    Cruz Hernández, Andrés; Campos Guillén, Juan

    2012-09-01

    Physical methods for genetic transformation in plants. The most commonly applied methods in plant transformation include Agrobacterium infection and protoplast or microprojectile bombardment. A plant transformation system is a prerequisite for the development of a plant improvement program. The global area utilized for biotech crops increases every year.

  3. Improving the french fry quality of russeted potatoes through transformation with the anti-sweetening gene (UgpA) from the Chipping cv. Snowden

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microtubers of two dual-purpose russeted potatoes were transformed with the anti-sweetening gene (UgpA) from the cv. Snowden using well know Agrobacterium tumifaciens mediated transformation system. Seventy-two and twenty-four distinct transformants of AOND95292-3Russ and ND7882b-7Russ, respectivel...

  4. Metabolic changes in Agrobacterium tumefaciens-infected Brassica rapa.

    PubMed

    Simoh, Sanimah; Quintana, Naira; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2009-07-01

    Agrobacterium has the ability to transfer its genetic material, T-DNA, into the plant genome. The unique interaction between the bacterium and its host plant has been well studied at the transcriptome, but not at the metabolic level. For a better understanding of this interaction it is necessary to investigate the metabolic changes of the host plant upon infection with Agrobacterium tumefaciens. This study investigated the metabolic response of Brassica rapa to infection with disarmed and tumor-inducing strains of A. tumefaciens using (1)H nuclear magnetic resonance spectroscopy combined with multivariate data analysis. The partial least square-discriminant analysis (PLS-DA) of two varieties of B. rapa showed that there was a clear differentiation in the metabolite profiles of B. rapa leaves infected with the disarmed strain LBA4404 and with tumor-inducing octopine and nopaline strains, particularly in the flavonoid, phenylpropanoid, sugar and free amino/organic acid contents. However, individual PLS-DA of each type of infection suggests that, in general, some flavonoids and phenylpropanoids were suppressed as a consequence of these infections. The results obtained in this study indicate that the disarmed strain LBA4404 and tumor-inducing strains have different effects on the metabolite profile of B. rapa.

  5. ACC deaminase activity in avirulent Agrobacterium tumefaciens D3.

    PubMed

    Hao, Youai; Charles, Trevor C; Glick, Bernard R

    2011-04-01

    Some plant-growth-promoting bacteria encode the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which breaks down ACC, the direct precursor of ethylene biosynthesis in all higher plants, into ammonia and α-ketobutyrate and, as a result, reduces stress ethylene levels in plants caused by a wide range of biotic and abiotic stresses. It was previously shown that ACC deaminase can inhibit crown gall development induced by Agrobacterium tumefaciens and can partially protect plants from this disease. Agrobacterium tumefaciens D3 has been previously reported to contain a putative ACC deaminase structural gene (acdS) and a regulatory gene (acdR = lrpL). In the present study, it was found that A. tumefaciens D3 is an avirulent strain. ACC deaminase activity and its regulation were also characterized. Under gnotobiotic conditions, wild-type A. tumefaciens D3 was shown to be able to promote plant root elongation, while the acdS and lrpL double mutant strain A. tumefaciens D3-1 lost that ability. When co-inoculated with the virulent strain, A. tumefaciens C58, in wounded castor bean plants, both the wild-type A. tumefaciens D3 and the mutant A. tumefaciens D3-1 were found to be able to significantly inhibit crown gall development induced by A. tumefaciens C58. PMID:21491979

  6. An Agrobacterium catalase is a virulence factor involved in tumorigenesis.

    PubMed

    Xu, X Q; Pan, S Q

    2000-01-01

    Most plant pathogenic bacteria adopt the type III secretion systems to secrete virulence factors and/or avirulence gene products, which trigger the plant hypersensitive response (HR) and the oxidative burst with hydrogen peroxide (H2O2) as the main component. However, the soil-borne plant pathogen Agrobacterium tumefaciens uses the type IV secretion pathway to deliver its oncogenic T-DNA that causes crown gall tumours on many plant species. A. tumefaciens does not elicit a typical HR on those plants. Here, we report that inactivation of one of A. tumefaciens catalases (which converts H2O2 to H2O and O2) by a transposon insertion highly attenuated the bacterial ability to cause tumours on plants and to tolerate H2O2 toxicity, but not the bacterial viability in the absence of exogenous H2O2. This provides the first genetic evidence that the Agrobacterium-plant interaction involves a plant defence response, such as H2O2 production, and that catalase is a virulence factor for a plant pathogen. PMID:10652101

  7. Fate of Agrobacterium radiobacter K84 in the environment.

    PubMed Central

    Stockwell, V O; Moore, L W; Loper, J E

    1993-01-01

    Agrobacterium radiobacter K84 is an effective, commercially applied, biological control agent for the plant disease crown gall, yet little is known about the survival and dissemination of K84. To trace K84 in the environment, spontaneous antibiotic-resistant mutants were used. Growth rates and phenotypes of streptomycin- or rifampin-resistant K84 were similar to those of the parental K84, except the rifampin-resistant mutant produced less agrocin 84 as determined by bioassay. K84 and a strain of Agrobacterium tumefaciens established populations averaging 10(5) CFU/g in the rhizosphere of cherry and persisted on roots for 2 years. K84 established rhizosphere populations between 10(4) and 10(6) CFU/g on cherry, ryegrass, and 11 other herbaceous plants. Populations of K84 declined substantially in fallow soil or water over a 16-week period. K84 was detected in the rhizosphere of ryegrass located up to 40 cm from an inoculum source, indicating lateral dissemination of K84 in soil. In gall tissue on cherry, K84 established populations of 10(5) CFU/g, about 10- to 100-fold less than that of the pathogen. These data demonstrate that K84 persists for up to 2 years in a field environment as a rhizosphere inhabitant or in association with crown gall tissue. PMID:8357247

  8. Mutants of Agrobacterium tumefaciens with elevated vir gene expression

    SciTech Connect

    Pazour, G.J.; Ta, C.N.; Das, A. )

    1991-08-15

    Expression of Agrobacterium tumefaciens virulence (vir) genes requires virA, virG, and a plant-derived inducing compound such as acetosyringone. To identify the critical functional domains of virA and virG, a mutational approach was used. Agrobacterium A136 harboring plasmid pGP159, which contains virA, virG, and a reporter virB:lacZ gene fusion, was mutagenized with UV light or nitrosoguanidine. Survivors that formed blue colonies on a plate containing 5-bromo-4-chloro-3-indolyl beta-D-galactoside were isolated and analyzed. Quantification of beta-galactosidase activity in liquid assays identified nine mutant strains. By plasmid reconstruction and other procedures, all mutations mapped to the virA locus. These mutations caused an 11- to 560-fold increase in the vegetative level of virB:lacZ reporter gene expression. DNA sequence analysis showed that the mutations are located in four regions of VirA: transmembrane domain one, the active site, a glycine-rich region with homology to ATP-binding sites, and a region at the C terminus that has homology to the N terminus of VirG.

  9. High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved Agrobacterium-mediated transformation protocol in plum (Prunus domestica L.) cv 'Bluebyrd' using hypocotyl slices as source of explants is described. The addition of 2, 4-D to the regeneration media during co-culture allowed us to increase transformation efficiency up to 10 times over p...

  10. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2.

    PubMed

    Hodges, Larry D; Cuperus, Josh; Ream, Walt

    2004-05-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2. PMID:15126468

  11. Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification-aerobic denitrification.

    PubMed

    Chen, Qian; Ni, Jinren

    2012-05-01

    Characteristics of ammonium removal by a newly isolated heterotrophic nitrification-aerobic denitrification bacterium Agrobacterium sp. LAD9 were systematically investigated. Succinate and acetate were found to be the most favorable carbon sources for LAD9. Response surface methodology (RSM) analysis demonstrated that maximum removal of ammonium occurred under the conditions with an initial pH of 8.46, C/N ratio of 8.28, temperature of 27.9°C and shaking speed of 150rpm, where temperature and shaking speed produced the largest effect. Further nitrogen balance analysis revealed that 50.1% of nitrogen was removed as gas products and 40.8% was converted to the biomass. Moreover, the occurrence of aerobic denitrification was evidenced by the utilization of nitrite and nitrate as nitrogen sources, and the successful amplifications of membrane bound nitrate reductase and cytochrome cd(1) nitrite reductase genes from strain LAD9. Thus, the nitrogen removal in strain LAD9 was speculated to comply with the mechanism of heterotrophic nitrification coupled with aerobic denitrification (NH(4)(+)-NH(2)OH-NO(2)(-)-N(2)O-N(2)), in which also accompanied with the mutual transformation of nitrite and nitrate. The findings can help in applying appropriate controls over operational parameters in systems involving the use of this kind of strain.

  12. Choline uptake in Agrobacterium tumefaciens by the high-affinity ChoXWV transporter.

    PubMed

    Aktas, Meriyem; Jost, Kathinka A; Fritz, Christiane; Narberhaus, Franz

    2011-10-01

    Agrobacterium tumefaciens is a facultative phytopathogen that causes crown gall disease. For successful plant transformation A. tumefaciens requires the membrane lipid phosphatidylcholine (PC), which is produced via the methylation and the PC synthase (Pcs) pathways. The latter route is dependent on choline. Although choline uptake has been demonstrated in A. tumefaciens, the responsible transporter(s) remained elusive. In this study, we identified the first choline transport system in A. tumefaciens. The ABC-type choline transporter is encoded by the chromosomally located choXWV operon (ChoX, binding protein; ChoW, permease; and ChoV, ATPase). The Cho system is not critical for growth and PC synthesis. However, [14C]choline uptake is severely reduced in A. tumefaciens choX mutants. Recombinant ChoX is able to bind choline with high affinity (equilibrium dissociation constant [KD] of ≈2 μM). Since other quaternary amines are bound by ChoX with much lower affinities (acetylcholine, KD of ≈80 μM; betaine, KD of ≈470 μM), the ChoXWV system functions as a high-affinity transporter with a preference for choline. Two tryptophan residues (W40 and W87) located in the predicted ligand-binding pocket are essential for choline binding. The structural model of ChoX built on Sinorhizobium meliloti ChoX resembles the typical structure of substrate binding proteins with a so-called "Venus flytrap mechanism" of substrate binding. PMID:21803998

  13. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    PubMed

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection. PMID:23593941

  14. Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens.

    PubMed

    Wilms, Ina; Möller, Philip; Stock, Anna-Maria; Gurski, Rosemarie; Lai, Erh-Min; Narberhaus, Franz

    2012-10-01

    The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.

  15. The essential virulence protein VirB8 localizes to the inner membrane of Agrobacterium tumefaciens.

    PubMed Central

    Thorstenson, Y R; Zambryski, P C

    1994-01-01

    Agrobacterium tumefaciens genetically transforms plant cells by transferring a specific DNA fragment from the bacterium through several biological membranes to the plant nucleus where the DNA is integrated. This complex DNA transport process likely involves membrane-localized proteins in both the plant and the bacterium. The 11 hydrophobic or membrane-localized proteins of the virB operon are excellent candidates to have a role in DNA export from agrobacteria. Here, we show by TnphoA mutagenesis and immunogold electron microscopy that one of the VirB proteins, VirB8, is located at the inner membrane. The observation that a virB8::TnphoA fusion restores export of alkaline phosphatase to the periplasm suggests that VirB8 spans the inner membrane. Immunogold labeling of VirB8 was detected on the inner membrane of vir-induced A. tumefaciens by transmission electron microscopy. Compared with that of the controls, VirB8 labeling was significantly greater on the inner membrane than on the other cell compartments. These results confirm the inner membrane localization of VirB8 and strengthen the hypothesis that VirB proteins help form a transfer DNA export channel or gate. Images PMID:8132466

  16. The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.

    PubMed

    Hwang, Hau-Hsuan; Yang, Fong-Jhih; Cheng, Tun-Fang; Chen, Yi-Chun; Lee, Ying-Ling; Tsai, Yun-Long; Lai, Erh-Min

    2013-09-01

    The soil phytopathogen Agrobacterium tumefaciens causes crown gall disease in a wide range of plant species. The neoplastic growth at the infection sites is caused by transferring, integrating, and expressing transfer DNA (T-DNA) from A. tumefaciens into plant cells. A trans-zeatin synthesizing (tzs) gene is located in the nopaline-type tumor-inducing plasmid and causes trans-zeatin production in A. tumefaciens. Similar to known virulence (Vir) proteins that are induced by the vir gene inducer acetosyringone (AS) at acidic pH 5.5, Tzs protein is highly induced by AS under this growth condition but also constitutively expressed and moderately upregulated by AS at neutral pH 7.0. We found that the promoter activities and protein levels of several AS-induced vir genes increased in the tzs deletion mutant, a mutant with decreased tumorigenesis and transient transformation efficiencies, in Arabidopsis roots. During AS induction and infection of Arabidopsis roots, the tzs deletion mutant conferred impaired growth, which could be rescued by genetic complementation and supplementing exogenous cytokinin. Exogenous cytokinin also repressed vir promoter activities and Vir protein accumulation in both the wild-type and tzs mutant bacteria with AS induction. Thus, the tzs gene or its product, cytokinin, may be involved in regulating AS-induced vir gene expression and, therefore, affect bacterial growth and virulence during A. tumefaciens infection.

  17. Proteomics and Genetics for Identification of a Bacterial Antimonite Oxidase in Agrobacterium tumefaciens.

    PubMed

    Li, Jingxin; Wang, Qian; Li, Mingshun; Yang, Birong; Shi, Manman; Guo, Wei; McDermott, Timothy R; Rensing, Christopher; Wang, Gejiao

    2015-05-19

    Antimony (Sb) and its compounds are listed by the United States Environmental Protection Agency (USEPA, 1979) and the European Union (CEC, 1976) as a priority pollutant. Microbial redox transformations are presumed to be an important part of antimony cycling in nature; however, regulation of these processes and the enzymology involved are unknown. In this study, comparative proteomics and reverse transcriptase-PCR analysis of Sb(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 revealed an oxidoreductase (anoA) is widely distributed in microorganisms, including at least some documented to be able to oxidize Sb(III). Deletion of the anoA gene reduced Sb(III) resistance and decreased Sb(III) oxidation by ∼27%, whereas the anoA complemented strain was similar to the wild type GW4 and a GW4 anoA overexpressing strain increased Sb(III) oxidation by ∼34%. Addition of Sb(III) up-regulated anoA expression and cloning anoA to Escherichia coli demonstrated direct transferability of this activity. A His-tag purified AnoA was found to require NADP(+) as cofactor, and exhibited a K(m) for Sb(III) of 64 ± 10 μM and a V(max) of 150 ± 7 nmol min(-1) mg(-1). This study contributes important initial steps toward a mechanistic understanding of microbe-antimony interactions and enhances our understanding of how microorganisms participate in antimony biogeochemical cycling in nature. PMID:25909855

  18. Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes1

    PubMed Central

    Lee, Hyewon; Humann, Jodi L.; Pitrak, Jennifer S.; Cuperus, Josh T.; Parks, T. Dawn; Whistler, Cheryl A.; Mok, Machteld C.; Ream, L. Walt

    2003-01-01

    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease. PMID:12972655

  19. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn).

    PubMed

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum 'Hokkai T10' cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3(,) H1, FtF3'H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat.

  20. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn)

    PubMed Central

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  1. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    PubMed

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-01-01

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  2. Improved genetic transformation of cork oak (Quercus suber L.).

    PubMed

    Alvarez-Fernández, Rubén; Ordás, Ricardo-Javier

    2012-01-01

    An Agrobacterium-mediated transformation system for selected mature Quercus suber L. trees has been established. Leaf-derived somatic embryos in an early stage of development are inoculated with an AGL1 strain harboring a kanamycin-selectable plasmid carrying the gene of interest. The transformed embryos are induced to germinate and the plantlets transferred to soil. This protocol, from adult cork oak to transformed plantlet, can be completed in about one and a half years. Transformation efficiencies (i.e., percentage of inoculated explants that yield independent transgenic embryogenic lines) vary depending on the cork oak genotype, reaching up to 43%.

  3. Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration of tobacco leaves with a suspension of Agrobacterium tumefaciens harboring a binary plant expression plasmid provides a convenient method for laboratory scale protein production. When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana), diffic...

  4. Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens.

    PubMed

    Tomlinson, Amelia D; Fuqua, Clay

    2009-12-01

    Agrobacterium tumefaciens is a plant pathogen that transfers a segment of its own DNA into host plants to cause Crown Gall disease. The infection process requires intimate contact between the infecting bacteria and the host tissue. A. tumefaciens attaches efficiently to plant tissues and to abiotic surfaces, and can establish complex biofilms at colonization sites. The dominant mode of attachment is via a single pole in contact with the surface. Several different appendages, adhesins and adhesives play roles during attachment, and foster the transition from free-swimming to sessile growth. This polar surface interaction reflects a more fundamental cellular asymmetry in A. tumefaciens that influences and is congruent with its attached lifestyle. PMID:19879182

  5. Toxicity and mutagenesis of chrysotile asbestos to Agrobacterium radiobacter.

    PubMed

    Yoshida, N; Naka, T; Sengoku, T; Ogawa, K

    2001-06-01

    The mutation of Agrobacterium radiobacter cells exposed to chrysotile asbestos was examined by the random amplified polymorphic DNA (RAPD) method. Approximately 1.4 kbp of DNA in A. radiobacter, which was not amplified strongly in the cells that were not exposed to asbestos, was amplified in the cells that were exposed to asbestos. Mutation in genomic DNA of A. radiobacter was found to be induced by asbestos. Specific DNA that was amplified by asbestos present in PCR products and that which exists latently in genomic DNA were cloned, and these sequences were then determined and compared. It was shown that one of the mutations by the asbestos in the A. radiobacter occurred only in the primer annealed region and was a point mutation or deletion.

  6. Attachment of Agrobacterium tumefaciens B6 and A. radiobacter K84 to Tomato Root Tips

    PubMed Central

    Penalver, R.; Serra, M. T.; Duran-Vila, N.; Lopez, M. M.

    1996-01-01

    Agrobacterium tumefaciens B6 and the avirulent Agrobacterium radiobacter strain K84 attached to in vitro-cultured tomato root tips, but the binding of strain B6 to root tips was greater than the binding of strain K84. Strain K84 was not able to block the attachment of A. tumefaciens B6 to in vitro-cultured tomato root tips. PMID:16535413

  7. vir genes influence conjugal transfer of the Ti plasmid of Agrobacterium tumefaciens.

    PubMed Central

    Gelvin, S B; Habeck, L L

    1990-01-01

    Mutation of the genes virA, virB, virC, and virG of the Agrobacterium tumefaciens octopine-type Ti plasmid pTiR10 was found to cause a 100- to 10,000-fold decrease in the frequency of conjugal transfer of this plasmid between Agrobacterium cells. This effect was not absolute, however, in that it occurred only during early times (18 to 24 h) of induction of the conjugal transfer apparatus by octopine. Induction of these mutant Agrobacterium strains by octopine for longer periods (48 to 72 h) resulted in a normal conjugal transfer frequency. The effect of these vir gene mutations upon conjugation could be restored by the introduction of cosmids harboring wild-type copies of the corresponding disrupted vir genes into the mutant Agrobacterium strains. In addition, transfer of the self-mobilizable plasmid pPH1JI was not impaired in any of the mutant Agrobacterium strains tested. The effect of vir gene function on the conjugal transfer of the Ti plasmid suggests that a relationship may exist between the processes that control the transfer of the T-DNA from Agrobacterium to plant cells and the conjugal transfer of the Ti plasmid between bacterial cells. PMID:2155206

  8. Transformation of somatic embryos of Prunus incisa ‘February Pink’ with a visible reporter gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Agrobacterium-mediated transformation system was developed for the ornamental cherry species Prunus incisa. This system uses both an antibiotic resistance gene (NPTII) and a visible selectable marker, the green fluorescent protein (GFP), to select plants. Cells from leaf and root explants were tr...

  9. A novel method of transgene delivery into triticale plants using the Agrobacterium transferred DNA-derived nano-complex.

    PubMed

    Ziemienowicz, Alicja; Shim, Youn-Seb; Matsuoka, Aki; Eudes, Francois; Kovalchuk, Igor

    2012-04-01

    Genetic transformation of monocotyledonous plants still presents a challenge for plant biologists and biotechnologists because monocots are difficult to transform with Agrobacterium tumefaciens, whereas other transgenesis methods, such as gold particle-mediated transformation, result in poor transgene expression because of integration of truncated DNA molecules. We developed a method of transgene delivery into monocots. This method relies on the use of an in vitro-prepared nano-complex consisting of transferred DNA, virulence protein D2, and recombination protein A delivered to triticale microspores with the help of a Tat2 cell-penetrating peptide. We showed that this approach allowed for single transgene copy integration events and prevented degradation of delivered DNA, thus leading to the integration of intact copies of the transgene into the genome of triticale plants. This resulted in transgene expression in all transgenic plants regenerated from microspores transfected with the full transferred DNA/protein complex. This approach can easily substitute the bombardment technique currently used for monocots and will be highly valuable for plant biology and biotechnology. PMID:22291201

  10. Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

    PubMed Central

    Zheng, Zhuang-li; Qiu, Xue-hong

    2015-01-01

    A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris. PMID:25892913

  11. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress

    PubMed Central

    Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis. PMID:26327625

  12. Disruption of the Subtilase Gene, albin1, in Ophiostoma piliferum

    PubMed Central

    Hoffman, Brad; Breuil, Colette

    2004-01-01

    Wood sapstaining fungi produce multiple proteases that break down wood protein. Three groups of subtilases have been identified in sapstaining fungi; however, it is not known if these groups have distinct physiological roles (B. Hoffman and C. Breuil, Curr. Genet. 41:168-175, 2002). In this work we examined the role of the subtilase Albin1 from Ophiostoma piliferum. Reamplification of cDNA ends PCR was used to obtain the albin1 gene sequence. The encoded subtilase is probably extracellular and involved in nutrient acquisition. This gene was disrupted with an Agrobacterium tumefaciens-mediated transformation system. Two of the disruptants obtained had significantly lower levels of proteolytic activity, slower growth in bovine serum albumin, and significantly reduced growth on wood. Thus, albin1 plays an important role in O. piliferum's ability to acquire nitrogen from wood proteins. PMID:15240261

  13. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani.

    PubMed

    Jha, Sanjay; Tank, Harsukh G; Prasad, Bishun Deo; Chattoo, Bharat B

    2009-02-01

    Magnaporthe oryzae and Rhizoctonia solani, are among the most important pathogens of rice, severely limiting its productivity. Dm-AMP1, an antifungal plant defensin from Dahlia merckii, was expressed in rice (Oryza sativa L. sp. indica cv. Pusa basmati 1) using Agrobacterium tumefaciens-mediated transformation. Expression levels of Dm-AMP1 ranged from 0.43% to 0.57% of total soluble protein in transgenic plants. It was observed that constitutive expression of Dm-AMP1 suppresses the growth of M. oryzae and R. solani by 84% and 72%, respectively. Transgenic expression of Dm-AMP1 was not accompanied by an induction of pathogenesis-related (PR) gene expression, indicating that the expression of DmAMP1 directly inhibits the pathogen. The results of in vitro, in planta and microscopic analyses suggest that Dm-AMP1 expression has the potential to provide broad-spectrum disease resistance in rice. PMID:18618285

  14. Plant biotechnology for food security and bioeconomy.

    PubMed

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  15. Succinic Semialdehyde Promotes Prosurvival Capability of Agrobacterium tumefaciens

    PubMed Central

    Wang, Chao; Tang, Desong; Gao, Yong-Gui

    2016-01-01

    ABSTRACT Succinic semialdehyde (SSA), an important metabolite of γ-aminobutyric acid (GABA), is a ligand of the repressor AttJ regulating the expression of the attJ-attKLM gene cluster in the plant pathogen Agrobacterium tumefaciens. While the response of A. tumefaciens to GABA and the function of attKLM have been extensively studied, genetic and physiological responses of A. tumefaciens to SSA remain unknown. In combination with microarray and genetic approaches, this study sets out to explore new roles of the SSA-AttJKLM regulatory mechanism during bacterial infection. The results showed that SSA plays a key role in regulation of several bacterial activities, including C4-dicarboxylate utilization, nitrate assimilation, and resistance to oxidative stress. Interestingly, while the SSA relies heavily on the functional AttKLM in mediating nitrate assimilation and oxidative stress resistance, the compound could regulate utilization of C4-dicarboxylates independent of AttJKLM. We further provide evidence that SSA controls C4-dicarboxylate utilization through induction of an SSA importer and that disruption of attKLM attenuates the tumorigenicity of A. tumefaciens. Taken together, these findings indicate that SSA could be a potent plant signal which, together with AttKLM, plays a vital role in promoting the bacterial prosurvival abilities during infection. IMPORTANCE Agrobacterium tumefaciens is a plant pathogen causing crown gall diseases and has been well known as a powerful tool for plant genetic engineering. During the long history of microbe-host interaction, A. tumefaciens has evolved the capabilities of recognition and response to plant-derived chemical metabolites. Succinic semialdehyde (SSA) is one such metabolite. Previous results have demonstrated that SSA functions to activate a quorum-quenching mechanism and thus to decrease the level of quorum-sensing signals, thereby avoiding the elicitation of a plant defense. Here, we studied the effect of SSA on gene

  16. Transformation of Morinda citrifolia via simple mature seed imbibition method.

    PubMed

    Lee, J J; Ahmad, S; Roslan, H A

    2013-12-15

    Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.

  17. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium

    PubMed Central

    Heindl, Jason E.; Wang, Yi; Heckel, Brynn C.; Mohari, Bitan; Feirer, Nathan; Fuqua, Clay

    2014-01-01

    For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation

  18. Heterologous DNA Uptake in Cultured Symbiodinium spp. Aided by Agrobacterium tumefaciens.

    PubMed

    Ortiz-Matamoros, Mario Fernando; Islas-Flores, Tania; Voigt, Boris; Menzel, Diedrik; Baluška, František; Villanueva, Marco A

    2015-01-01

    Plant-targeted pCB302 plasmids containing sequences encoding gfp fusions with a microtubule-binding domain; gfp with the fimbrin actin-binding domain 2; and gfp with AtRACK1C from Arabidopsis thaliana, all harbored in Agrobacterium tumefaciens, were used to assay heterologous expression on three different clades of the photosynthetic dinoflagellate, Symbiodinium. Accessibility to the resistant cell wall and through the plasma membrane of these dinoflagellates was gained after brief but vigorous shaking in the presence of glass beads and polyethylene glycol. A resistance gene to the herbicide Basta allowed appropriate selection of the cells expressing the hybrid proteins, which showed a characteristic green fluorescence, although they appeared to lose their photosynthetic pigments and did not further divide. Cell GFP expression frequency measured as green fluorescence emission yielded 839 per every 106 cells for Symbiodinium kawagutii, followed by 640 and 460 per every 106 cells for Symbiodinium microadriaticum and Symbiodinium sp. Mf11, respectively. Genomic PCR with specific primers amplified the AtRACK1C and gfp sequences after selection in all clades, thus revealing their presence in the cells. RT-PCR from RNA of S. kawagutii co-incubated with A. tumefaciens harboring each of the three vectors with their respective constructs, amplified products corresponding to the heterologous gfp sequence while no products were obtained from three distinct negative controls. The reported procedure shows that mild abrasion followed by co-incubation with A. tumefaciens harboring heterologous plasmids with CaMV35S and nos promoters can lead to expression of the encoded proteins into the Symbiodinium cells in culture. Despite the obvious drawbacks of the procedure, this is an important first step towards a stable transformation of Symbiodinium.

  19. Heterologous DNA Uptake in Cultured Symbiodinium spp. Aided by Agrobacterium tumefaciens

    PubMed Central

    Voigt, Boris; Menzel, Diedrik; Baluška, František; Villanueva, Marco A.

    2015-01-01

    Plant-targeted pCB302 plasmids containing sequences encoding gfp fusions with a microtubule-binding domain; gfp with the fimbrin actin-binding domain 2; and gfp with AtRACK1C from Arabidopsis thaliana, all harbored in Agrobacterium tumefaciens, were used to assay heterologous expression on three different clades of the photosynthetic dinoflagellate, Symbiodinium. Accessibility to the resistant cell wall and through the plasma membrane of these dinoflagellates was gained after brief but vigorous shaking in the presence of glass beads and polyethylene glycol. A resistance gene to the herbicide Basta allowed appropriate selection of the cells expressing the hybrid proteins, which showed a characteristic green fluorescence, although they appeared to lose their photosynthetic pigments and did not further divide. Cell GFP expression frequency measured as green fluorescence emission yielded 839 per every 106 cells for Symbiodinium kawagutii, followed by 640 and 460 per every 106 cells for Symbiodinium microadriaticum and Symbiodinium sp. Mf11, respectively. Genomic PCR with specific primers amplified the AtRACK1C and gfp sequences after selection in all clades, thus revealing their presence in the cells. RT-PCR from RNA of S. kawagutii co-incubated with A. tumefaciens harboring each of the three vectors with their respective constructs, amplified products corresponding to the heterologous gfp sequence while no products were obtained from three distinct negative controls. The reported procedure shows that mild abrasion followed by co-incubation with A. tumefaciens harboring heterologous plasmids with CaMV35S and nos promoters can lead to expression of the encoded proteins into the Symbiodinium cells in culture. Despite the obvious drawbacks of the procedure, this is an important first step towards a stable transformation of Symbiodinium. PMID:26167858

  20. Constitutive mutations of Agrobacterium tumefaciens transcriptional activator virG.

    PubMed Central

    Pazour, G J; Ta, C N; Das, A

    1992-01-01

    The virulence (vir) genes of Agrobacterium tumefaciens Ti plasmids are positively regulated by virG in conjunction with virA and plant-derived inducing molecules. A procedure that utilizes both genetic selection and a genetic screen was developed to isolate mutations in virG that led to elevated levels of vir gene expression in the absence of virA and plant phenolic inducers. Mutants were isolated at a frequency of 1 in 10(7) to 10(8). Substitution mutations at two positions in the virG coding region were found to result in the desired phenotype. One mutant had an asparagine-to-aspartic acid substitution at residue 54, and the other contained an isoleucine-to-leucine substitution at residue 106. In both cases, the mutant phenotype required the presence of the active-site aspartic acid residue at position 52. Further analysis showed that no other substitution at residue 54 resulted in a constitutive phenotype. In contrast, several substitutions at residue 106 led to a constitutive phenotype. The possible roles of the residues at positions 54 and 106 in VirG function are discussed. PMID:1597431

  1. Diversity among B6 strains of Agrobacterium tumefaciens.

    PubMed Central

    Hamada, S E; Farrand, S K

    1980-01-01

    A total of 20 laboratory substrains of Agrobacterium tumefaciens strain B6 were compared with respect to six characteristics, including 3-ketolactose production, lysogeny, octopine catabolism, tumorigenic host range, and plasmid content. Within this group of strains diversity was found for all characteristics except 3-ketolactose production. Six substrains were lysogenized with an omega-type phage, whereas one substrain appeared neither sensitive to nor lysogenized with this bacteriophage. All but two substrains catabolized octopine and induced tumors on carrot disks. These 18 substrains harbor deoxyribonucleic acid sequences homologous to pTiB6-806. The two substrains unable to catabolize octopine were nontumorigenic and lacked detectable Ti plasmid sequences. Of the 20 substrains, 13 also contained sequences homologous to the cryptic plasmid pAtB6-806; 2 of the 18 substrains tumorigenic on carrots failed to induce tumors on Kalanchoe leaves. Their inability to induced tumors on this host, could not be correlated with lysogeny, with the presence or absence of pAtB6-806, or with the very large cryptic plasmid recently described. The Ti plasmids from these two strains were indistinguishable from pTiB6-806 by restriction enzyme analysis and could genetically convert a cured A. tumefaciens strain to tumorigenicity on both plant species. The results with these two strains suggest that parameters of tumorigenicity, such as host range, may be controlled by the bacterial chromosome. Images PMID:7364725

  2. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens

    SciTech Connect

    Amikam, D.; Benziman, M. )

    1989-12-01

    The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of {sup 32}P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with ({sup 14}C)glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes.

  3. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens.

    PubMed

    Czolkoss, Simon; Fritz, Christiane; Hölzl, Georg; Aktas, Meriyem

    2016-01-01

    Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants. PMID:27472399

  4. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens

    PubMed Central

    Lang, Julien; Faure, Denis

    2014-01-01

    In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI synthesizes N-acyl-homoserine lactone molecules which act as diffusible QS-signals. Beyond a threshold concentration, these molecules bind and activate the LuxR-like transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last 20 years, A. tumefaciens has stood as a prominent model in the understanding of the LuxR/LuxI type of QS systems. A number of studies also unveiled features which are unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic lifestyle of the bacteria. In this review, we will present the current knowledge of QS in A. tumefaciens at both the genetic and molecular levels. We will also describe how interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what could be the advantages for the agrobacteria to use such a tightly regulated QS-system to disseminate the Ti plasmids. PMID:24550924

  5. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens

    PubMed Central

    Czolkoss, Simon; Fritz, Christiane; Hölzl, Georg; Aktas, Meriyem

    2016-01-01

    Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants. PMID:27472399

  6. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter

    PubMed Central

    White, G. F.; Snape, J. R.; Nicklin, S.

    1996-01-01

    Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen. PMID:16535244

  7. Isozyme gene expression in potato tumors incited by Agrobacterium.

    PubMed

    Oliver, J L

    1986-06-01

    Two plant tumors (crown galls and hairy roots) were experimentally provoked on potato cv. 'Désirée' by oncogenic strains of Agrobacterium tumefaciens and A. rhizogenes. A marked shift in the expression of some organ-specific genes occurred in crown galls derived from the central zone of tubers: two novel isozyme genes (Est-B and Pox-E) were expressed, two others (Est-C and Pox-F) were suppressed and the remaining ones were maintained in the original state. When the starting tissue was the stem segment, a smaller shift occurred, namely the activation of Adh-A and the suppression of Pox-F. In all cases, the isozyme profiles characterizing all crown galls, whatever their origin, were identical. Under normal aeration conditions, Adh-A was not expressed in either tumoral or non-tumoral roots. However, under the relative anaerobic conditions of in vitro cultures, a difference existed between both types of roots: Adh-A was expressed in normal but not in tumoral roots. This means that hairy roots can tolerate higher levels of anaerobiosis without giving rise to an anaerobic response. For the remaining isozymes, no alteration occurred in either organized (hairy root) or unorganized (crown gall) tumors, as compared to the corresponding non-tumoral tissues (normal root and callus, respectively). PMID:24247945

  8. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum.

    PubMed

    Kuzmanović, Nemanja; Puławska, Joanna; Prokić, Anđelka; Ivanović, Milan; Zlatković, Nevena; Jones, Jeffrey B; Obradović, Aleksa

    2015-09-01

    Two plant-tumorigenic strains KFB 330(T) and KFB 335 isolated from galls on raspberry (Rubus idaeus) in Serbia, and a non-pathogenic strain AL51.1 recovered from a cherry plum (Prunus cerasifera) tumor in Poland, were genotypically and phenotypically characterized. Phylogenetic reconstruction based on 16S rDNA placed them within the genus Agrobacterium, with A. nepotum as their closest relative. Multilocus sequence analysis (MLSA) based on the partial sequences of atpD, glnA, gyrB, recA and rpoB housekeeping genes suggested that these three strains represent a new Agrobacterium species, that clustered with type strains of A. nepotum, A. radiobacter, "A. fabrum" and A. pusense. This was further supported by average nucleotide identity values (<92%) between the whole genome sequences of strain KFB 330(T) and related Agrobacterium species. The major cellular fatty acids of the novel strains were 18:1 w7c (72.8-77.87%) and 16:0 (6.82-8.58%). Phenotypic features allowed their differentiation from closely related species. Polyphasic characterization showed that the three strains represent a novel species of the genus Agrobacterium, for which the name Agrobacterium arsenijevicii sp. nov. is proposed. The type strain of A. arsenijevicii is KFB 330(T) (= CFBP 8308(T) = LMG 28674(T)). PMID:26117193

  9. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum.

    PubMed

    Kuzmanović, Nemanja; Puławska, Joanna; Prokić, Anđelka; Ivanović, Milan; Zlatković, Nevena; Jones, Jeffrey B; Obradović, Aleksa

    2015-09-01

    Two plant-tumorigenic strains KFB 330(T) and KFB 335 isolated from galls on raspberry (Rubus idaeus) in Serbia, and a non-pathogenic strain AL51.1 recovered from a cherry plum (Prunus cerasifera) tumor in Poland, were genotypically and phenotypically characterized. Phylogenetic reconstruction based on 16S rDNA placed them within the genus Agrobacterium, with A. nepotum as their closest relative. Multilocus sequence analysis (MLSA) based on the partial sequences of atpD, glnA, gyrB, recA and rpoB housekeeping genes suggested that these three strains represent a new Agrobacterium species, that clustered with type strains of A. nepotum, A. radiobacter, "A. fabrum" and A. pusense. This was further supported by average nucleotide identity values (<92%) between the whole genome sequences of strain KFB 330(T) and related Agrobacterium species. The major cellular fatty acids of the novel strains were 18:1 w7c (72.8-77.87%) and 16:0 (6.82-8.58%). Phenotypic features allowed their differentiation from closely related species. Polyphasic characterization showed that the three strains represent a novel species of the genus Agrobacterium, for which the name Agrobacterium arsenijevicii sp. nov. is proposed. The type strain of A. arsenijevicii is KFB 330(T) (= CFBP 8308(T) = LMG 28674(T)).

  10. Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens.

    PubMed

    Wilms, Ina; Overlöper, Aaron; Nowrousian, Minou; Sharma, Cynthia M; Narberhaus, Franz

    2012-04-01

    Agrobacterium species are capable of interkingdom gene transfer between bacteria and plants. The genome of Agrobacterium tumefaciens consists of a circular and a linear chromosome, the At-plasmid and the Ti-plasmid, which harbors bacterial virulence genes required for tumor formation in plants. Little is known about promoter sequences and the small RNA (sRNA) repertoire of this and other α-proteobacteria. We used a differential RNA sequencing (dRNA-seq) approach to map transcriptional start sites of 388 annotated genes and operons. In addition, a total number of 228 sRNAs was revealed from all four Agrobacterium replicons. Twenty-two of these were confirmed by independent RNA gel blot analysis and several sRNAs were differentially expressed in response to growth media, growth phase, temperature or pH. One sRNA from the Ti-plasmid was massively induced under virulence conditions. The presence of 76 cis-antisense sRNAs, two of them on the reverse strand of virulence genes, suggests considerable antisense transcription in Agrobacterium. The information gained from this study provides a valuable reservoir for an in-depth understanding of sRNA-mediated regulation of the complex physiology and infection process of Agrobacterium.

  11. A Reliable In Vitro Fruiting System for Armillaria Mellea for Evaluation of Agrobacterium Tumefaciens Transformation Vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Armillaria mellea is a serious pathogen of horticultural and agricultural systems in Europe and North America. The lack of a reliable in vitro fruiting system has hindered research, and necessitated dependence on intermittently available wild-collected basidiospores. Here we describe a reliable, rep...

  12. AGROBACTERIUM AND PLANT TRANSFORMATION: THE BIOLOGY BEHIND THE "GENE-JOCKEYING" TOOL. (R829479C001)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Rapid deletion plasmid construction methods for protoplast and Agrobacterium based fungal transformation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Gene deletion is a critical tool for functional analysis. The targeted deletion of genes requires both a suitable method for the trans...

  14. Draft Genome Sequence of Agrobacterium sp. Strain R89-1, a Morphine Alkaloid-Biotransforming Bacterium

    PubMed Central

    Kyslíková, Eva

    2016-01-01

    Agrobacterium sp. strain R89-1 isolated from composted wastes of Papaver somniferum can effectively biotransform codeine/morphine into 14-OH-derivatives. Here, we present a 4.7-Mb assembly of the R89-1 strain genome. The draft shows that the strain R89-1 represents a distinct phylogenetic lineage within the genus Agrobacterium. PMID:27056219

  15. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein.

    PubMed

    Schrammeijer, B; Risseeuw, E; Pansegrau, W; Regensburg-Tuïnk, T J; Crosby, W L; Hooykaas, P J

    2001-02-20

    The infection of plants by Agrobacterium tumefaciens leads to the formation of crown gall tumors due to the transfer of a nucleoprotein complex into plant cells that is mediated by the virulence (vir) region-encoded transport system (reviewed in [1-5]). In addition, A. tumefaciens secretes the Vir proteins, VirE2 and VirF, directly into plant cells via the same VirB/VirD4 transport system [6], and both assist there in the transformation of normal cells into tumor cells. The function of the 22 kDa VirF protein is not clear. Deletion of the virF gene in A. tumefaciens leads to diminished virulence [7, 8] and can be complemented by the expression of the virF gene in the host plant. This finding indicates that VirF functions within the plant cell [8]. Here, we report that the VirF protein is the first prokaryotic protein with an F box by which it can interact with plant homologs of the yeast Skp1 protein. The presence of the F box turned out to be essential for the biological function of VirF. F box proteins and Skp1p are both subunits of a class of E3 ubiquitin ligases referred to as SCF complexes. Thus, VirF may be involved in the targeted proteolysis of specific host proteins in early stages of the transformation process. PMID:11250154

  16. Genetic control and regulatory mechanisms of succinoglycan and curdlan biosynthesis in genus Agrobacterium.

    PubMed

    Wu, Dan; Li, Ang; Ma, Fang; Yang, Jixian; Xie, Yutong

    2016-07-01

    Agrobacterium is a genus of gram-negative bacteria that can produce several typical exopolysaccharides with commercial uses in the food and pharmaceutical fields. In particular, succinoglycan and curdlan, due to their good quality in high yield, have been employed on an industrial scale comparatively early. Exopolysaccharide biosynthesis is a multiple-step process controlled by different functional genes, and various environmental factors cause changes in exopolysaccharide biosynthesis through regulatory mechanisms. In this mini-review, we focus on the genetic control and regulatory mechanisms of succinoglycan and curdlan produced by Agrobacterium. Some key functional genes and regulatory mechanisms for exopolysaccharide biosynthesis are described, possessing a high potent