Science.gov

Sample records for agrobacterium tumefaciens-mediated transformation

  1. Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea.

    PubMed

    Chen, Liang; Wang, Qun; Chen, Hua; Sun, Gengwu; Liu, Huixiang; Wang, Hongkai

    2016-07-01

    Botryosphaeria dothidea is a severe causal agent of die-back and cankers of many woody plants and causes great losses in many regions. The pathogenic mechanism of this pathogen has not been well explored due to lack of mutants and genetic information. In this study, we developed an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for B. dothidea protoplasts using vector pBHt2 containing the hph gene as a selection marker under the control of trp C promoter. Using this protocol we successfully generated the B. dothidea transformants with efficiency about 23 transformants per 10(5) protoplasts. This is the first report of genetic transformation of B. dothidea via ATMT and this protocol provides an effective tool for B. dothidea genome manipulation, gene identification and functional analysis.

  2. Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing; Sink, K C

    2004-12-01

    Transient expression studies using blueberry leaf explants and monitored by beta-glucuronidase (GUS) assays indicated Agrobacterium tumefaciens strain EHA105 was more effective than LBA4404 or GV3101; and the use of acetosyringone (AS) at 100 microM for inoculation and 6 days co-cultivation was optimum compared to 2, 4, 8, 10 or 12 days. Subsequently, explants of the cultivars Aurora, Bluecrop, Brigitta, and Legacy were inoculated with strain EHA105 containing the binary vector pBISN1 with the neomycin phosphotransferase gene (nptII) and an intron-interrupted GUS gene directed by the chimeric super promoter (Aocs)3AmasPmas. Co-cultivation was for 6 days on modified woody plant medium (WPM) plus 100 microM AS. Explants were then placed on modified WPM supplemented with 1.0 mg l(-1) thidiazuron, 0.5 mg l(-1) alpha-naphthaleneacetic, 10 mg l(-1) kanamycin (Km), and 250 mg l(-1) cefotaxime. Selection for Km-resistant shoots was carried out in the dark for 2 weeks followed by culture in the light at 30 microE m(-2) s(-1) at 25 degrees C. After 12 weeks, selected shoots that were both Km resistant and GUS positive were obtained from 15.3% of the inoculated leaf explants of cultivar Aurora. Sixty-eight independent clones derived from such shoots all tested positive by the polymerase chain reaction using a nptII primer. Eight of eight among these 68 clones tested positive by Southern hybridization using a gusA gene derived probe. The transformation protocol also yielded Km-resistant, GUS-positive shoots that were also PCR positive at frequencies of 5.0% for Bluecrop, 10.0% for Brigitta and 5.6% for Legacy.

  3. Agrobacterium tumefaciens-mediated genetic transformation of the entomopathogenic fungus Beauveria bassiana.

    PubMed

    dos Reis, Maria Cecília; Pelegrinelli Fungaro, Maria Helena; Delgado Duarte, Rubens Tadeu; Furlaneto, Luciana; Furlaneto, Marcia Cristina

    2004-08-01

    Agrobacterium tumefaciens-mediated transformation (agro-transformation) was successfully applied to the entomogenous fungus Beauveria bassiana. Conidia of B. bassiana were transformed to hygromycin B resistance using the hph gene of Escherichia coli as the selective trait, under the control of a heterologous fungal promoter and the Aspergillus nidulans trpC terminator. The efficiency of transformation was up to 28 and 96 transformants per 10(4) and 10(5) target conidia, respectively, using three distinct vectors. High mitotic stability of the transformants (80-100%) was demonstrated after five successive transfers on a nonselective medium. Abortive transformants were observed for all the hph(r) vectors used. Putative transformants were analysed for the presence of the hph gene by PCR and Southern analysis. The latter analysis revealed the integration of two or more copies of the hph gene in the genome. The agro-transformation method was found to be effective for the isolation of B. bassiana hygromycin resistant transformants and may represent a useful tool for insertional mutagenesis studies in this fungus.

  4. Identification of virulence genes in the corn pathogen Colletotrichum graminicola by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Münch, Steffen; Ludwig, Nancy; Floss, Daniela S; Sugui, Janyce A; Koszucka, Anna M; Voll, Lars M; Sonnewald, Uwe; Deising, Holger B

    2011-01-01

    A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.

  5. Agrobacterium tumefaciens-mediated transformation of Penicillium expansum PE-12 and its application in molecular breeding.

    PubMed

    Zhang, Tian; Qi, Zhen; Wang, Yueyue; Zhang, Fangyuan; Li, Renyong; Yu, Qingsheng; Chen, Xiangbin; Wang, Huojun; Xiong, Xin; Tang, Kexuan

    2013-03-30

    Lipase produced by Penicillium expansum is widely used in laundry detergent and leather industry; however, the absence of an efficient transformation technology sets a major obstacle for further enhancement of its lipase productivity through advanced gene engineering. In this work, Agrobacterium tumefaciens-mediated transformation (ATMT) was investigated for P. expansum PE-12 transformation, using hygromycin phosphotransferase (hph) as a selectable marker gene. As a result, we revealed that the frequency of transformation surpassed 100 transformants/10(5)condida, most of the integrated T-DNA appeared as a single copy at a random position in chromosomal DNA, and all the transformants showed mitotic stability. Facilitated by this newly established method, for the first time, P. expansum PE-12 was genetically engineered to improve the lipase yield, through a homologous expression vector carrying the endogenous lipase gene (PEL) driven by the strong constitutive promoter of the glyceraldehydes-3-phosphate dehydrogenase gene (gpdA) from Aspergillus nidulans. The highest expression level of the engineered strain reached up to 1700 U/mL, nearly 2-fold of the original industrial strain (900 U/mL). Our reproducible ATMT system has not only revealed the great potential of homologous expression-directed genetic engineering, which is more efficient and specific compared to traditional mutagenesis, but also provided new possibilities and perspectives for any other practical applications of P. expansum-related genetic engineering in the future.

  6. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites.

  7. Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant.

    PubMed

    Pandey, Vibha; Misra, Pratibha; Chaturvedi, Pankaj; Mishra, Manoj K; Trivedi, Prabodh K; Tuli, Rakesh

    2010-02-01

    This report describes Agrobacterium tumefaciens-mediated transformation of Withania somnifera--an important Indian medicinal plant. A. tumefaciens strain LBA4404, containing the binary vector pIG121Hm was used for transformation, along with the gusA reporter gene with intron under the transcriptional control of the Cauliflower Mosaic Virus (CaMV) 35S promoter. The leaf segments from two-and-a-half-month-old green house-grown seedlings were more efficient in transformation, as compared to those from the in vitro-grown shoots. Second expanded leaf from the shoot tip gave the highest transient transformation efficiency. Selection of transgenic shoots was done in the presence of 50 mg l(-1) kanamycin. Polymerase chain reaction analysis of T(0) transgenic plants showed the presence of gusA and nptII genes. The expression of these transgenes in T(1) progeny was confirmed by RT-PCR. The integration of gusA gene was confirmed by Southern blot analysis. The transformation efficiency was found to be 1.67%.

  8. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.

    PubMed

    Hu, Yang; Dai, Qingqing; Liu, Yangyang; Yang, Zhe; Song, Na; Gao, Xiaoning; Voegele, Ralf Thomas; Kang, Zhensheng; Huang, Lili

    2014-06-01

    Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/10(6) conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa.

  9. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis.

    PubMed

    Lu, Yuanyuan; Xiao, Shuqin; Wang, Fen; Sun, Jiaying; Zhao, Likun; Yan, Libin; Xue, Chunsheng

    2017-02-01

    An efficient Agrobacterium tumefaciens-mediated transformation (ATMT) approach was developed for the plant pathogenic fungus, Cercospora zeae-maydis, which is the causative agent of gray leaf spot in maize. The transformation was evaluated with five parameters to test the efficiencies of transformation. Results showed that spore germination time, co-cultivation temperature and time were the significant influencing factors in all parameters. Randomly selected transformants were confirmed and the transformants were found to be mitotically stable, with single-copy T-DNA integration in the genome. T-DNA flanking sequences were cloned by thermal asymmetric interlaced PCR. Thus, the ATMT approach is an efficient tool for insertional mutagenesis of C. zeae-maydis.

  10. Agrobacterium tumefaciens-mediated transformation of Valsa mali: an efficient tool for random insertion mutagenesis.

    PubMed

    Wang, Caixia; Guan, Xiangnan; Wang, Hanyan; Li, Guifang; Dong, Xiangli; Wang, Guoping; Li, Baohua

    2013-01-01

    Valsa mali is a causal agent of apple and pear trees canker disease, which is a destructive disease that causes serious economic losses in eastern Asia, especially in China. The lack of an efficient transformation system for Valsa mali retards its investigation, which poses difficulties to control the disease. In this research, a transformation system for this pathogen was established for the first time using A. tumefaciens-mediated transformation (ATMT), with the optimal transformation conditions as follows: 10(6)/mL conidia suspension, cocultivation temperature 22°C, cocultivation time 72 hours, and 200  μ M acetosyringone (AS) in the inductive medium. The average transformation efficiency was 1015.00 ± 37.35 transformants per 10(6) recipient conidia. Thirty transformants were randomly selected for further confirmation and the results showed the presence of T-DNA in all hygromycin B resistant transformants and also revealed random and single gene integration with genetic stability. Compared with wild-type strain, those transformants exhibited various differences in morphology, conidia production, and conidia germination ability. In addition, pathogenicity assays revealed that 14 transformants had mitigated pathogenicity, while one had enhanced infection ability. The results suggest that ATMT of V. mali is a useful tool to gain novel insight into this economically important pathogen at molecular levels.

  11. Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants.

    PubMed

    Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F

    2014-02-21

    Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation.

  12. Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Celis, A M; Vos, A M; Triana, S; Medina, C A; Escobar, N; Restrepo, S; Wösten, H A B; de Cock, H

    2017-03-01

    Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe, a highly efficient Agrobacterium-mediated genetic transformation system for Malassezia furfur and M. pachydermatis. A binary T-DNA vector with the hygromycin B phosphotransferase (hpt) selection marker and the green fluorescent protein gene (gfp) was introduced in M. furfur and M. pachydermatis by combining the transformation protocols of Agaricus bisporus and Cryptococcus neoformans. Optimal temperature and co-cultivation time for transformation were 5 and 7days at 19°C and 24°C, respectively. Transformation efficiency was 0.75-1.5% for M. furfur and 0.6-7.5% for M. pachydermatis. Integration of the hpt resistance cassette and gfp was verified using PCR and fluorescence microscopy, respectively. The T-DNA was mitotically stable in approximately 80% of the transformants after 10 times sub-culturing in the absence of hygromycin. Improving transformation protocols contribute to study the biology and pathophysiology of Malassezia.

  13. [Agrobacterium tumefaciens-mediated transformation of Aureobasidium pullulans and high-efficient screening for polymalic acid producing strain].

    PubMed

    Tu, Guangwei; Wang, Yongkang; Feng, Jun; Li, Xiaorong; Guo, Meijin; Zou, Xiang

    2015-07-01

    To develop a genetic transformation method of Aureobasidium pullulans and T-DNA insertion for high-efficient screening of polymalic acid (PMA) producing strain. Agrobacterium tumefaciens-AGL1, containing the selection genes encoding hygromycin B phosphotase or phosphinothricin acetyltranferase, was used to transform Aureobasidium pullulans CCTCC M2012223 and transformants were confirmed by colony PCR method. Transferred DNA (T-DNA) insertional mutants were cultured in microwell plate, and screened for high-titer PMA producing strain according to the pH response model. DNA walking was used to detect the insertion sites in the mutant. Results show that the selection markers could stably generated in the transformants, and 80 to 120 transformants could be found per 10(7) single cells. A high-titer PMA mutant H27 was obtained, giving a good PMA production caused by the disruption of phosphoglycerate mutase, that increased by 24.5% compared with the control. Agrobacterium tumefaciens-mediated transformation and high-efficient screening method were successfully developed, which will be helpful for genetic transformation of Aureobasidium pullulans and its functional genes discovery.

  14. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    PubMed

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.

  15. A stable and efficient Agrobacterium tumefaciens-mediated genetic transformation of the medicinal plant Digitalis purpurea L.

    PubMed

    Li, Ying; Gao, Zhenrui; Piao, Chunlan; Lu, Kaiwen; Wang, Zhiping; Cui, Min-Long

    2014-02-01

    In this study, we developed a rapid and efficient method for in vitro propagation and Agrobacterium tumefaciens-mediated transformation of Digitalis purpurea L. (syn. foxglove), an important medicinal plant. Mature leaf explants of D. purpurea were used for 100 % adventitious shoot regeneration on Murashige and Skoog (MS) medium supplemented with 1 mg L(-1) thidiazuron (TDZ) (a cytokine) and 0.1 mg L(-1) 1-naphthaleneacetic acid (NAA) (an auxin). Transformation was achieved by inoculating leaf explants with the A. tumefaciens strains GV2260/pBI121 or GV3101/pBI121. The binary vector pBI121 contained the reporter β-glucuronidase gene (GUS) and kanamycin selection marker nptII. Kanamycin-resistant shoots were regenerated directly on the selection medium 4-6 weeks after co-cultivation. Approximately, 52.2 and 60 % of kanamycin-resistant shoots transformed with Agrobacterium strains GV2260 and GV3101, respectively, showed strong GUS staining by histochemical assay. Furthermore, PCR and Southern blot analysis confirmed the presence of nptII and GUS on the chromosome of the transformed D. purpurea plants, and stable GUS expression was detected in the transformants by RT-PCR analysis. This efficient method of shoot regeneration and genetic transformation of D. purpurea will provide a powerful tool to increase and produce valuable components such as digitoxin, digoxin, and digoxigenin in D. purpurea through improved secondary metabolic pathways via a biotechnological approach.

  16. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains.

    PubMed

    Zhang, Yan-Jun; Zhao, Jin-Jin; Xie, Ming; Peng, De-Liang

    2014-10-01

    Lecanicillium lecanii has been used in the biological control of several insects in agricultural practice. Since the gene manipulation tools for this entomopathogenic fungus have not been sufficiently developed, Agrobacterium tumefaciens-mediated transformation (ATMT) in L. lecanii was investigated in this study, using the wild-type isolate FZ9906 as a progenitor strain and the hygromycin B resistance (hph) gene as a selection marker. Furthermore, a field carbendazim-resistant (mrt) gene from Botrytis cinerea was expressed in L. lecanii FZ9906 via the ATMT system. The results revealed that the frequency of transformation surpassed 25transformants/10(6) conidia, most of the putative transformants contained a single copy of T-DNA, and the T-DNA inserts were stably inherited after five generations. All putative transformants had indistinguishable biological characteristics relative to the wild-type strain, excepting two transformants with altered growth habits or virulence. Moreover, the resistance of the putative transformants to carbendazim (MBC) was improved, and the highest one was 380-fold higher than the wild-type strain. In conclusion, ATMT is an effective and suitable system for L. lecanii transformation, and will be a useful tool for the basic and application research of gene functions and gene modifications of this strain.

  17. Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue.

    PubMed

    Kenel, Fernand; Eady, Colin; Brinch, Sheree

    2010-03-01

    Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop.

  18. Agrobacterium tumefaciens-mediated transformation of the entomopathogenic fungus Nomuraea rileyi.

    PubMed

    Shao, Changwen; Yin, Youping; Qi, Zhaoran; Li, Ren; Song, Zhangyong; Li, Yan; Wang, Zhongkang

    2015-10-01

    An Agrobacterium-mediated genetic transformation system for the entomopathogenic fungus Nomuraea rileyi was established. Three binary T-DNA vectors, pPZP-Hph, pPZP-Hph-RNAi and pPZP-Hph-DsRed2, were constructed. The trpc promoter from Aspergillus nidulans was used as the cis-regulatory element to drive the expression of hygromycin phosphotransferase (hph) gene and DsRed2, which conferred the hygromycin B (Hyg B) resistance and red fluorescence visualization, respectively. The blastospores and conidia were used as the recipients. The blastospores' transformation efficiency reached ∼20-40 transformants per 10(6) blastospores, whereas the conidia were not transformed. Based on an analysis of five generations of subcultures, PCR and Southern blotting assays, the Ptrpc-hph cassette had integrated into the genomes of all transformants, which contained single copy of the hph gene and showed mitotic stability. Abundant altered morphologic phenotypes in colonies, blastospores and hyphae formations were observed in the arbitrary insertional mutants of N. rileyi, which made it possible to study the relationships between the functions and the interrupted genes over the whole genome. The transformation protocol will promote the functional characterization of genes, and the construction of genetically engineered strains of this important entomopathogenic fungus, and potentially of other similar fungal pathogens.

  19. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system.

    PubMed

    Gao, Zhensheng; Xie, Xueju; Ling, Yan; Muthukrishnan, Subbarat; Liang, George H

    2005-11-01

    A dual-marker plasmid containing the selectable marker gene, manA, and the reporter gene, sgfp, was used to transform immature sorghum embryos by employing an Agrobacterium-mediated system. Both genes were under the control of the ubi1 promoter in a binary vector pPZP201. The Escherichia coli phosphomannose isomerase (PMI) gene, pmi, was used as the selectable marker gene and mannose was used as the selective agent. The sgfp gene encoding green fluorescence protein (GFP) was the reporter gene and served as a visual screening marker. A total of 167 transgenic plants were obtained from nine different embryogenic callus lines grown on a selection medium containing 1%-2% mannose. Embryoids and shoots regenerated via embryogenesis, that showed strong GFP fluorescence, were selected from two sorghum genotypes: C401, an inbred line, and Pioneer 8505, a commercial hybrid. The GFP accumulation in transgenic plants was observed with a dissecting stereomicroscope. The integration and expression of the manA gene was confirmed by Southern blot and Western blot analyses, and the feasibility of manA selection was demonstrated by the chlorophenol red (CPR) assay. Our results indicated that transgenes segregated in the Mendelian fashion in the T1 generation. The conversion of mannose to a metabolizable fructose carbon source is beneficial to plants. In addition, except in soybean and a few legumes, no endogenous PMI activity has been detected in plant species, indicating that PMI is useful in the transformation of sorghum. In addition, PMI has no sequence homology to known allergens. Optimization of this selection system for sorghum transformation provides an efficient way to produce transgenic plants without using antibiotic or herbicidal agents as selectable markers, and our results showed that the transformation efficiency reached 2.88% for Pioneer 8505 and 3.30% for C401, both values higher than in previously published reports.

  20. Construction of an engineering strain producing high yields of α-transglucosidase via Agrobacterium tumefaciens-mediated transformation of Asperillus niger.

    PubMed

    Li, Ming; Zhou, Liying; Liu, Meng; Huang, Yunyan; Sun, Xin; Lu, Fuping

    2013-01-01

    In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was used in breeding industrial strains for the purpose of improving α-transglucosidase production. Firstly, an efficient ATMT system for Asperillus niger was established by optimization of several influencing factors, in which transformation efficiency was improved up to 14-fold compared with the initial conditions. Furthermore, binary vector pBI-Glu containing an α-transglucosidase expression cassette was constructed and transferred into Agrobacterium tumefaciens LBA4404 in order to infect A. niger. By the efficient ATMT method, the gene for α-transglucosidase, driven by strong promoter PglaA (the glucoamylase gene promoter), had a high expression level in A. niger A-8 (25.02 U/mL). The optimized ATMT system was found to be effective and suitable for A. niger, and should be a useful tool for studying the function of A. niger genes and for industrial breeding of this strain.

  1. Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii.

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Moore, Paul H; Zhu, Yun J

    2008-05-01

    Taro (Colocasia esculenta) is one of the most important crops in the Pacific Islands, however, taro yields have been declining in Hawaii over the past 30 years partly due to diseases caused by oomycete and fungal pathogens. In this study, an efficient Agrobacterium tumefaciens-mediated transformation method for taro is first reported. In total, approximately 200 pieces (8 g) of embryogenic calluses were infected with the super-virulent A. tumefaciens strain EHA105 harboring the plant transformation plasmid pBI121/ricchi11 that contains the rice chitinase gene ricchi11. The presence and expression of the transgene ricchi11 in six independent transgenic lines was confirmed using polymerase chain reaction (PCR) and reverse transcription-PCR (RT-PCR). Southern blot analysis of the six independent lines indicated that three out of six (50%) had integrated a single copy of the transgene, and the other three lines had two or three copies of the transgene. Compared to the particle bombardment transformation of taro method, which was used in the previous studies, the Agrobacterium-mediated transformation method obtained 43-fold higher transformation efficiency. In addition, these six transgenic lines via Agrobacterium may be more effective for transgene expression as a result of single-copy or low-copy insertion of the transgene than the single line with multiple copies of the transgene via particle bombardment. In a laboratory bioassay, all six transgenic lines exhibited increased tolerance to the fungal pathogen Sclerotium rolfsii, ranging from 42 to 63% reduction in lesion expansion.

  2. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae.

    PubMed

    Dobinson, Katherine F; Grant, Sandra J; Kang, Seogchan

    2004-02-01

    A gene encoding a trypsin protease was isolated from a tomato isolate of Verticillium dahliae. The gene, designated VTP1, contains two introns and is predicted to encode a protein of 256 amino acids. The gene is present in V. dahliae isolates from different host plants and in V. albo-atrum; weakly hybridizing sequences are present in V. tricorpus. VTP1 cDNA sequences were identified in a sequence tag analysis of genes expressed under growth conditions that promote microsclerotia development. Replacement of the gene, by Agrobacterium tumefaciens-mediated transformation (ATMT), with a mutant allele construct did not noticeably alter either pathogenicity or growth in culture. Searches of expressed sequence tag databases showed that, in addition to the VTP1 gene, V. dahliae contains two genes encoding subtilisin-like proteases similar to those produced by pathogenic Aspergillus spp. This is the first description of the application of ATMT to the molecular analysis of phytopathogenic Verticillium spp.

  3. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system

    PubMed Central

    2014-01-01

    Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome

  4. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    PubMed

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  5. Agrobacterium tumefaciens-mediated transformation of embryogenic tissue and transgenic plant regeneration in Chamaecyparis obtusa Sieb. et Zucc.

    PubMed

    Taniguchi, T; Kurita, M; Ohmiya, Y; Kondo, T

    2005-03-01

    A genetic transformation procedure for Chamaecyparis obtusa was developed after co-cultivation of embryogenic tissues with disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the sgfp (synthetic green fluorescent protein) visual reporter and nptII (neomycin phoshotransferase II) selectable marker genes. The highest transformation frequency was 22.5 independent transformed lines per dish (250 mg embryogenic tissue) following selection on kanamycin medium. Transgenic plantlets were regenerated through the maturation and germination of somatic embryos. The intensity of GFP fluorescence, observed under a fluorescence microscope, varied from very faint to relatively strong, depending on the transgenic line or part of the transgenic plant. The integration of the genes into the genome of regenerated plantlets was confirmed by Southern blot analysis.

  6. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium.

    PubMed

    Khanna, H K; Daggard, G E

    2003-01-01

    Immature embryo-derived calli of spring wheat (Triticum aestivum L.) cv Veery5 were transformed using Agrobacterium tumefaciens strain LBA4404 carrying either binary vector pHK22 or superbinary vector pHK21, the latter carrying an extra set of vir genes--vir B, -C and -G. In both cases, transient beta-glucuronidase ( GUS) expression ranging from 35-63% was observed 3 days after co-cultivation, but 587 calli infected with pHK22/LBA4404 failed to produce a single stably transformed plant, whereas 658 calli infected with pHK21/LBA4404 gave rise to 17 transformants carrying both the GUS and bar genes. Regeneration media supplemented with 0.1 M spermidine improved the recovery of transformants from pHK21/LBA4404-infected calli from 7% to 24.2%, resulting in an increase in the overall transformation frequency from 1.2% to 3.9%. The results suggest that two important factors that could lead to an improvement in transformation frequencies of cereals like wheat are (1) the use of superbinary vectors and (2) modification of the polyamine ratio in the regeneration medium. Stable expression and inheritance of the transgenes was confirmed by both genetic and molecular analyses. T1 progeny showed segregation of the transgenes in a typical Mendelian fashion in most of the plants. Of the transformed plants, 35% showed single-copy insertion of the transgene as shown by both Southern analysis and the segregation ratios.

  7. Development of Marker-Free Insect-Resistant Indica Rice by Agrobacterium tumefaciens-Mediated Co-transformation.

    PubMed

    Ling, Fei; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Agrobacterium-mediated co-transformation is an efficient strategy to generate marker-free transgenic plants. In this study, the vectors pMF-2A(∗) containing a synthetic cry2A(∗) gene driven by maize ubiquitin promoter and pCAMBIA1301 harboring hygromycin phosphotransferase gene (hpt) were introduced into Minghui86 (Oryza sativa L. ssp. indica), an elite indica restorer line. Two independent transformants containing both the cry2A(∗) gene and hpt gene were regenerated. Several homozygous marker-free transgenic progenies were derived from family 2AH2, and three of them were selected for further insect bioassay in the laboratory and field. Insect-resistance assays revealed that all the three transgenic lines were highly resistant to striped stem borer (Chilo suppressalis), yellow stem borer (Tryporyza incertulas) and rice leaf folder (Cnaphalocrocis medinalis). The measurement of Cry2A protein concentration showed that Cry2A protein was stably expressed in leaves and stems of homozygous transgenic lines and their hybrids. The yields of the marker-free homozygous transgenic lines and their hybrids were not significantly different from those of their corresponding controls. Furthermore, the results of flanking sequence isolation showed that the T-DNA in line 8-30 was integrated into the intergenic region of chromosome 2 (between Os02g43680 and Os02g43690). These results indicate that the marker-free transgenic rice has the potential for commercial production.

  8. Development of Marker-Free Insect-Resistant Indica Rice by Agrobacterium tumefaciens-Mediated Co-transformation

    PubMed Central

    Ling, Fei; Zhou, Fei; Chen, Hao; Lin, Yongjun

    2016-01-01

    Agrobacterium-mediated co-transformation is an efficient strategy to generate marker-free transgenic plants. In this study, the vectors pMF-2A∗ containing a synthetic cry2A∗ gene driven by maize ubiquitin promoter and pCAMBIA1301 harboring hygromycin phosphotransferase gene (hpt) were introduced into Minghui86 (Oryza sativa L. ssp. indica), an elite indica restorer line. Two independent transformants containing both the cry2A∗ gene and hpt gene were regenerated. Several homozygous marker-free transgenic progenies were derived from family 2AH2, and three of them were selected for further insect bioassay in the laboratory and field. Insect-resistance assays revealed that all the three transgenic lines were highly resistant to striped stem borer (Chilo suppressalis), yellow stem borer (Tryporyza incertulas) and rice leaf folder (Cnaphalocrocis medinalis). The measurement of Cry2A protein concentration showed that Cry2A protein was stably expressed in leaves and stems of homozygous transgenic lines and their hybrids. The yields of the marker-free homozygous transgenic lines and their hybrids were not significantly different from those of their corresponding controls. Furthermore, the results of flanking sequence isolation showed that the T-DNA in line 8-30 was integrated into the intergenic region of chromosome 2 (between Os02g43680 and Os02g43690). These results indicate that the marker-free transgenic rice has the potential for commercial production. PMID:27833629

  9. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus.

    PubMed

    Clarke, Jihong Liu; Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W; Moe, Roar; Blystad, Dag-Ragnar

    2008-06-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.

  10. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration.

    PubMed

    Luo, H; Hu, Q; Nelson, K; Longo, C; Kausch, A P; Chandlee, J M; Wipff, J K; Fricker, C R

    2004-04-01

    Genetic transformation of creeping bentgrass mediated by Agrobacterium tumefaciens has been achieved. Embryogenic callus initiated from seeds (cv. Penn-A-4) was infected with an A. tumefaciens strain (LBA4404) harboring a super-binary vector that contained an herbicide-resistant bar gene driven either by the CaMV 35S promoter or a rice ubiquitin promoter. Plants were regenerated from 219 independent transformation events. The overall stable transformation efficiency ranged from 18% to 45%. Southern blot and genetic analysis confirmed transgene integration in the creeping bentgrass genome and normal transmission and stable expression of the transgene in the T1 generation. All independent transformation events carried one to three copies of the transgene, and a majority (60-65%) contained only a single copy of the foreign gene with no apparent rearrangements. We report here the successful use of Agrobacterium for the large-scale production of transgenic creeping bentgrass plants with a high frequency of a single-copy transgene insertion that exhibit stable inheritance patterns.

  11. Identification of pathogenicity-related genes in the vascular wilt fungus verticillium dahliae by agrobacterium tumefaciens-mediated t-DNA insertional mutagenesis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that underpin pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacterium tumefaciens-mediated transform...

  12. Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds.

    PubMed

    Sujatha, M; Sailaja, M

    2005-03-01

    A protocol for the transformation of castor embryo axes using the pCAMBIA vector 1304 in disarmed Agrobacterium tumefaciens strain EHA105 is presented. Co-cultivated explants were initially subjected to expansion and proliferation on MS medium with 0.5 mg l(-1) TDZ followed by three cycles of selection on medium with 0.5 mg l(-1) BA and increasing concentrations of hygromycin (20-40-60 mg l(-1)). Selected shoot clusters were transferred to medium with 0.5 mg l(-1) BA for proliferation and 0.2 mg l(-1) BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium with 2.0 mg l(-1) NAA. The presence and stable integration of the hpt gene was confirmed through PCR, RT-PCR, PCR-Southern blot, sequence analysis, Southern blot analysis and PCR analysis of progeny. Southern blot analysis of the primary transformants showed single copy integration and progeny analysis revealed monogenic inheritance of the introduced gene. This paper reports the first successful attempt at producing transgenic castor.

  13. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    NASA Technical Reports Server (NTRS)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  14. Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis.

    PubMed

    Maruthachalam, K; Klosterman, S J; Kang, S; Hayes, R J; Subbarao, K V

    2011-11-01

    Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that control pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was applied for insertional mutagenesis of V. dahliae conidia. Southern blot analysis indicated that T-DNAs were inserted randomly into the V. dahliae genome and that 69% of the transformants were the result of single copy T-DNA insertion. DNA sequences flanking T-DNA insertion were isolated through inverse PCR (iPCR), and these sequences were aligned to the genome sequence to identify the genomic position of insertion. V. dahliae mutants of particular interest selected based on culture phenotypes included those that had lost the ability to form microsclerotia and subsequently used for virulence assay. Based on the virulence assay of 181 transformants, we identified several mutant strains of V. dahliae that did not cause symptoms on lettuce plants. Among these mutants, T-DNA was inserted in genes encoding an endoglucanase 1 (VdEg-1), a hydroxyl-methyl glutaryl-CoA synthase (VdHMGS), a major facilitator superfamily 1 (VdMFS1), and a glycosylphosphatidylinositol (GPI) mannosyltransferase 3 (VdGPIM3). These results suggest that ATMT can effectively be used to identify genes associated with pathogenicity and other functions in V. dahliae.

  15. Agrobacterium-mediated genetic transformation of Prunus salicina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report Agrobacterium tumefaciens-mediated transformation from hypocotyls slices of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supp...

  16. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells.

    PubMed

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-10-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.

  17. Transformation of oil palm using Agrobacterium tumefaciens.

    PubMed

    Izawati, Abang Masli Dayang; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul

    2012-01-01

    Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants.

  18. [Transgenic wheat (Triticum aestivum L.) with increased resistance to the storage pest obtained by Agrobacterium tumefaciens--mediated].

    PubMed

    Bi, Rui-Ming; Jia, Hai-Yan; Feng, De-Shun; Wang, Hong-Gang

    2006-05-01

    The transgenic wheat of improved resistance to the storage pest was production. We have introduced the cowpea trypsin inhibitor gene (CpTI) into cultured embryonic callus cells of immature embryos of wheat elite line by Agrobacterium-mediated method. Independent plantlets were obtained from the kanamycin-resistant calli after screening. PCR and real time PCR analysis, PCR-Southern and Southern blot hybridization indicated that there were 3 transgenic plants viz. transformed- I, II and III (T- I, T-II and T-III). The transformation frequencies were obviously affected by Agrobacterium concentration, the infection duration and transformation treatment. The segregations of CpTI in the transgenic wheat progenies were not easily to be elucidated, and some transgenic wheat lines (T- I and T-III) showed Mendelian segregations. The determinations of insect resistance to the stored grain insect of wheat viz. the grain moth (Sitotroga cerealella Olivier) indicated that the 3 transgenic wheat progeny seeds moth-resistance was improved significantly. The seed moth-eaten ratio of T- I, T-II, T-III and nontransformed control was 19.8%, 21.9%, 32.9% and 58.3% respectively. 3 transgenic wheat T1 PCR-positive plants revealed that the 3 transgenic lines had excellent agronomic traits. They supplied good germplasm resource of insect-resistance for wheat genetic improvement.

  19. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-06-03

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process.

  20. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos.

    PubMed

    Lee, Hyeyoung; Zhang, Zhanyuan J

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is one of the most efficient and simple gene delivery systems for genetic improvement and biology studies in maize. This system has become more widely used by both public and private laboratories. However, transformation efficiencies vary greatly from laboratory to laboratory for the same genotype. Here, we illustrate our advanced Agrobacterium-mediated transformation method in Hi-II maize using simple binary vectors. The protocol utilizes immature embryos as starting explants and the bar gene as a selectable marker coupled with bialaphos as a selective agent. The protocol offers efficient transformation results with high reproducibility, provided that some experimental conditions are well controlled. This transformation method, with minor modifications, can be also employed to transform certain maize inbreds.

  1. Agrobacterium tumefaciens-mediated transformation of the soybean pathogen Phomopsis longicolla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phomopsis seed decay (PSD) of soybean is caused primarily by the fungal pathogen Phomopsis longicolla. PSD impairs seed germination, reduces seedling vigor, and can substantially reduce stand establishment. In hot and humid conditions, PSD can cause significant yield losses. Few studies have explore...

  2. Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile.

    PubMed

    Khan, Shamshad Ahmad; Ur Rahman, Laiq; Shanker, Karuna; Singh, Manju

    2014-05-01

    Agrobacterium tumefaciens (EHA-105 harboring pCAMBIA 1304)-mediated transgenic plant production via direct regeneration from leaf and elite somaclones generation through indirect regeneration in Stevia rebaudiana is reported. Optimum direct regeneration frequency along with highest transformation frequency was found on MS + 1 mg/l BAP + 1 mg/l NAA, while indirect regeneration from callus was obtained on MS + 1 mg/l BAP + 2 mg/l NAA. Successful transfer of GUS-positive (GUS assay and PCR-based confirmation) transgenic as well as four somaclones up to glasshouse acclimatization has been achieved. Inter-simple sequence repeat (ISSR) profiling of transgenic and somaclonal plants showed a total of 113 bands, out of which 49 were monomorphic (43.36 %) and 64 were polymorphic (56.64 %). Transgenic plant was found to be closer to mother plant, while on the basis of steviol, stevioside, and rebaudioside A profile, somaclone S2 was found to be the best and showed maximum variability in ISSR profiling.

  3. Optimization of Agrobacterium-Mediated Transformation in Soybean

    PubMed Central

    Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan

    2017-01-01

    High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide

  4. Agrobacterium-mediated sorghum transformation.

    PubMed

    Zhao, Z Y; Cai, T; Tagliani, L; Miller, M; Wang, N; Pang, H; Rudert, M; Schroeder, S; Hondred, D; Seltzer, J; Pierce, D

    2000-12-01

    Agrobacterium tumefaciens was used to genetically transform sorghum. Immature embryos of a public (P898012) and a commercial line (PHI391) of sorghum were used as the target explants. The Agrobacterium strain used was LBA4404 carrying a 'Super-binary' vector with a bar gene as a selectable marker for herbicide resistance in the plant cells. A series of parameter tests was used to establish a baseline for conditions to be used in stable transformation experiments. A number of different transformation conditions were tested and a total of 131 stably transformed events were produced from 6175 embryos in these two sorghum lines. Statistical analysis showed that the source of the embryos had a very significant impact on transformation efficiency, with field-grown embryos producing a higher transformation frequency than greenhouse-grown embryos. Southern blot analysis of DNA from leaf tissues of T0 plants confirmed the integration of the T-DNA into the sorghum genome. Mendelian segregation in the T1 generation was confirmed by herbicide resistance screening. This is the first report of successful use of Agrobacterium for production of stably transformed sorghum plants. The Agrobacterium method we used yields a higher frequency of stable transformation that other methods reported previously.

  5. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  6. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors.

    PubMed

    Vega, Juan M; Yu, Weichang; Kennon, Angela R; Chen, Xinlu; Zhang, Zhanyuan J

    2008-02-01

    High-frequency transformation of maize (Zea mays L.) using standard binary vectors is advantageous for functional genomics and other genetic engineering studies. Recent advances in Agrobacterium tumefaciens-mediated transformation of maize have made it possible for the public to transform maize using standard binary vectors without a need of the superbinary vector. While maize Hi-II has been a preferred maize genotype to use in various maize transformation efforts, there is still potential and need in further improving its transformation frequency. Here we report the enhanced Agrobacterium-mediated transformation of immature zygotic embryos of maize Hi-II using standard binary vectors. This improved transformation process employs low-salt media in combined use with antioxidant L-cysteine alone or L-cysteine and dithiothreitol (DTT) during the Agrobacterium infection stage. Three levels of N6 medium salts, 10, 50, and 100%, were tested. Both 10 and 50% salts were found to enhance the T-DNA transfer in Hi-II. Addition of DTT to the cocultivation medium also improves the T-DNA transformation. About 12% overall and the highest average of 18% transformation frequencies were achieved from a large number of experiments using immature embryos grown in various seasons. The enhanced transformation protocol established here will be advantageous for maize genetic engineering studies including transformation-based functional genomics.

  7. Barley Transformation Using Agrobacterium-Mediated Techniques

    NASA Astrophysics Data System (ADS)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  8. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  9. Agrobacterium-mediated genetic transformation of the desiccation tolerant resurrection plant Ramonda myconi (L.) Rchb.

    PubMed

    Tóth, Sándor; Kiss, Csaba; Scott, Peter; Kovács, Gabriella; Sorvari, Seppo; Toldi, Ottó

    2006-05-01

    In this paper we describe the first procedure for Agrobacterium tumefaciens-mediated genetic transformation of the desiccation tolerant plant Ramonda myconi (L.) Rchb. Previously, we reported the establishment of a reliable and effective tissue culture system based on the integrated optimisation of antioxidant and growth regulator composition and the stabilisation of the pH of the culture media by means of a potassium phosphate buffer. This efficient plant regeneration via callus phase provided a basis for the optimisation of the genetic transformation in R. myconi. For gene delivery, both a standard (method A) and a modified protocol (method B) have been applied. Since the latter has previously resulted in successful transformation of another resurrection plant, Craterostigma plantagineum, an identical protocol was utilized in transformation of R. myconi, as this method may prove general for dicotyledonous resurrection plants. On this basis, physical and biochemical key variables in transformation were evaluated such as mechanical microwounding of plant explants and in vitro preinduction of vir genes. While the physical enhancement of bacterial penetration was proved to be essential for successful genetic transformation of R. myconi, an additional two-fold increase in the transformation frequency was obtained when the above physical and biochemical treatments were applied in combination. All R0 and R1 transgenic plants were fertile, and no morphological abnormalities were observed on the whole-plant level.

  10. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens.

    PubMed

    Martínez-Cruz, Jesús; Romero, Diego; de Vicente, Antonio; Pérez-García, Alejandro

    2017-03-01

    The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.

  11. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative n...

  12. Transformation of medicinal plants using Agrobacterium tumefaciens.

    PubMed

    Bandurska, Katarzyna; Berdowska, Agnieszka; Król, Małgorzata

    2016-12-20

    For many years attempts are made to develop efficient methods for transformation of medicinal plants via Agrobacterium tumefaciens. It is a soil bacteria which possess a natural ability to infect plants in places of injures which results in arise of cancerous growths (crown gall). This is possible thanks a transfer of fragment of Ti plasmid into plant cells and stable integration with a plant genome. Efficiency of medicinal plant transformation depends on many factors for example: Agrobacterium strain, methods and procedures of transformation as well as on plant species, type and age of the explants and regeneration conditions. The main goal of plant transformation is to increase the amount of naturally occurring bioactive compounds and the production of biopharmaceuticals. Genetic plant transformation via bacteria of the genus Agrobacterium is a complex process which requires detailed analysis of incorporated transgene expression and occurs only in the case when the plant cell acquires the ability to regenerate. In many cases, the regeneration efficiency observed in medicinal plants are inefficient after applied transformation procedures. To date there have been attempts of genetic transformation by using A. tumefaciens of medicinal plants belonging to the families: Apocynaceae, Araceae, Araliaceae, Asphodelaceae, Asteraceae, Begoniaceae, Crassulaceae, Fabaceae, Lamiaceae, Linaceae, Papaveraceae, Plantaginaceae, Scrophulariaceae and Solanaceae.

  13. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    NASA Technical Reports Server (NTRS)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  14. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures

    PubMed Central

    2011-01-01

    Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium

  15. Agrobacterium persistence in plant tissues after transformation.

    PubMed

    Cubero, Jaime; López, María M

    2005-01-01

    Agrobacterium spp. are routinely used in plant transformation to introduce genes of interest in valuable economic species. However, several agrobacteria species are also plant pathogens with ability to survive in different environments including the inner part of the plants. To avoid the release of genetic modified bacteria a successful plant transformation protocol must include the total elimination of agrobacteria by the use of antibiotics. Because sometimes these antibiotics failed in removing the bacteria entirely, confirmation of agrobacteria absence after plant transformation and regeneration is required. Different methodologies can be used for this purpose: isolation techniques followed by identification are used if detection of viable and culturable bacteria is necessary and techniques based on the polymerase chain reaction can be used to detect agrobacteria independently of their physiological state. Here we present several protocols to detect Agrobacterium in tissues of transformed plants as well as methods to identify the strains isolated. These identification methods can help to elucidate if they are the engineered bacteria used in the transformation process or just part of the natural endophytic microbiota.

  16. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation.

    PubMed

    Chattopadhyay, Tirthartha; Roy, Sheuli; Mitra, Adinpunya; Maiti, Mrinal K

    2011-04-01

    Transgenic hairy root system is important in several recalcitrant plants, where Agrobacterium tumefaciens-mediated plant transformation and generation of transgenic plants are problematic. Jute (Corchorus spp.), the major fibre crop in Indian subcontinent, is one of those recalcitrant plants where in vitro tissue culture has provided a little success, and hence, Agrobacterium-mediated genetic transformation remains to be a challenging proposition in this crop. In the present work, a system of transgenic hairy roots in Corchorus capsularis L. has been developed through genetic transformation by Agrobacterium rhizogenes harbouring two plasmids, i.e. the natural Ri plasmid and a recombinant binary vector derived from the disarmed Ti plasmid of A. tumefaciens. Our findings indicate that the system is relatively easy to establish and reproducible. Molecular analysis of the independent lines of transgenic hairy roots revealed the transfer of relevant transgenes from both the T-DNA parts into the plant genome, indicating the co-transformation nature of the event. High level expression and activity of the gusA reporter gene advocate that the transgenic hairy root system, thus developed, could be applicable as gene expression system in general and for root functional genomics in particular. Furthermore, these transgenic hairy roots can be used in future as explants for plantlet regeneration to obtain stable transgenic jute plants.

  17. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae.

    PubMed

    Zhou, Lei; Zhao, Jun; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-20

    Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agrobacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant transformants per 1 × 10(6) conidia. V. dahliae mutants lacking either VdATG8 or VdATG12 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild-type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in V. dahliae.

  18. Genetic Transformation of Switchgrass

    NASA Astrophysics Data System (ADS)

    Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu

    Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.

  19. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection.

    PubMed

    Pantazis, Christopher J; Fisk, Sarah; Mills, Kerri; Flinn, Barry S; Shulaev, Vladimir; Veilleux, Richard E; Dan, Yinghui

    2013-03-01

    KEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12-16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1-2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying.

  20. [Transformation of Didymella bryoniae mediated by Agrobacterium tumefaciens].

    PubMed

    Ren, Haiying; Fang, Li; Li, Gang; Ru, Shuijiang; Wang, Hanrong

    2010-06-01

    Gummy stem blight, a plant disease caused by Didymella bryoniae, is one of the major diseases in melon. The disease can seriously reduce melon yield and quality. However, little information is available on the genetics and functional genomics of the fungal pathogen. In this study, we developed an Agrobacterium-mediated transformation system for D. bryoniae by using a universal pathogenic isolate DB11 and the Agrobacterium tumefaciens strain C58C1 carrying plasmid pBIG2RHPH2 harboring the hygromycin B phosphotransferase gene (hph). Total 45 transformants could be obtained per 1 x 10(5) spores when 1 x 10(6) spores per milliliter of D. bryoniae spore suspension were cocultivated with Agrobacterium cells at OD600 = 0.15 for 48 h in the presence of induction medium (pH 5.2) containing acetosyringone at 200 microg/mL and selection medium contained 100 microg/mL of hygromycin B and 200 microg/mL of cefotaxime sodium, ampicillin and tetracycline, respectively. The transformants were stable when grown on PDA medium without hygromycin B for five times and were verified by PCR amplification with the hph primers and by Southern blot analysis with the hph probe. The transformation system will be useful for further studies of functional genes in D. bryoniae.

  1. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.).

    PubMed

    Han, J-S; Kim, C K; Park, S H; Hirschi, K D; Mok, I- G

    2005-03-01

    We describe a procedure for producing transgenic bottle gourd plants by inoculating cotyledon explants with Agrobacterium tumefaciens strain AGL1 that carries the binary vector pCAMBIA3301 containing a glufosinate ammonium-resistance (bar) gene and the beta-D-glucuronidase (GUS) reporter gene. The most effective bacterial infection was observed when cotyledon explants of 4-day-old seedlings were co-cultivated with Agrobacterium for 6-8 days on co-cultivation medium supplemented with 0.1-0.001 mg/l L-alpha-(2-aminoethoxyvinyl) glycine (AVG). The putatively transformed shoots directly emerged at the proximal end of cotyledon explants after 2-3 weeks of culturing on selection medium containing 2 mg/l DL-phosphinothricin. These shoots were rooted after 3 weeks of culturing on half-strength MS medium containing 0.1 mg/l indole acetic acid and 1 mg/l DL-phosphinothricin. Transgenic plants were obtained at frequencies of 1.9%. Stable integration and transmission of the transgenes in T1 generation plants were confirmed by a histochemical GUS assay, polymerase chain reaction and Southern blot analyses. Genetic segregation analysis of T1 progenies showed that transgenes were inherited in a Mendelian fashion. To our knowledge, this study is the first to show Agrobacterium-mediated transformation in bottle gourd.

  2. Development of Transgenic Papaya through Agrobacterium-Mediated Transformation

    PubMed Central

    Azad, Md. Abul Kalam; Rabbani, Md. Golam; Amin, Latifah; Sidik, Nik Marzuki

    2013-01-01

    Transgenic papaya plants were regenerated from hypocotyls and immature zygotic embryo after cocultivation with Agrobacterium tumefaciens LBA-4404 carrying a binary plasmid vector system containing neomycin phosphotransferase (nptII) gene as the selectable marker and β-glucuronidase (GUS) as the reporter gene. The explants were co-cultivated with Agrobacterium tumefaciens on regeneration medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime for one week. The cocultivated explants were transferred into the final selection medium containing 500 mg/L carbenicillin + 200 mg/L cefotaxime + 50 mg/L kanamycin for callus induction as well as plant regeneration. The callus derived from the hypocotyls of Carica papaya cv. Shahi showed the highest positive GUS activities compared to Carica papaya cv. Ranchi. The transformed callus grew vigorously and formed embryos followed by transgenic plantlets successfully. The result of this study showed that the hypocotyls of C. papaya cv. Shahi and C. papaya cv. Ranchi are better explants for genetic transformation compared to immature embryos. The transformed C. papaya cv. Shahi also showed the maximum number of plant regeneration compared to that of C. papaya cv. Ranchi. PMID:24066284

  3. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    PubMed

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.

  4. Agrobacterium-mediated transformation of Euphorbia tirucalli callus.

    PubMed

    Uchida, Hidenobu; Yamashita, Hirofumi; Anai, Toyoaki; Muranaka, Toshiya; Ohyama, Kanji

    2010-01-01

    In order to establish a basis for transformation technology in the petroleum plant Euphorbia tirucalli, the callus of the plant was infected with Agrobacterium, washed with distilled water, sterilized with distilled water containing 100 mg/l of carbenicillin, selected on solidified B5 medium containing 13 mg/l of G418 and 100 mg/l of carbenicillin, and then on solidified B5 medium containing 25 mg/l of G418 and 100 mg/l of carbenicillin for the transgenic calli, and then the callus lines were subcultured successively on solidified B5 medium containing 50 mg/l of G418. We performed PCR analysis of sterilized G418-resistant callus line DNA and concluded that the gene introduced was integrated into the callus genome.

  5. Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens.

    PubMed

    Akutsu, M; Ishizaki, T; Sato, H

    2004-03-01

    An efficient procedure is described for the transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens via callus regeneration. Calli derived from ovules were co-cultivated with A. tumefaciens strains EHA101 and LBA4404, which harbored the binary vector plasmids pIG121Hm and pTOK233, respectively. These plasmids contain the beta-glucuronidase gene ( gusA) as a reporter gene and the hygromycin phosphotransferase and neomycin phosphotransferase II ( nptII) genes as selective markers. Inoculated calli were first plated for 4 weeks on medium containing cefotaxime to eliminate bacteria, following which time transformed cells were selected on medium that contained 20 mg/l hygromycin. A histochemical assay for GUS activity revealed that hygromycin-based selection was completed after 8 weeks. The integration of the T-DNA of pIG121Hm and pTOK233 into the genome of the cells was confirmed by PCR analysis. Efficient shoot regeneration from the transformed calli was observed on half-strength MS medium supplemented with 0.5 mg/l naphthaleneacetic acid and 0.5 mg/l benzyladenine after about 5 months of culture. The presence of the gusA and nptII genes in the genomic DNA of regenerated plants was detected by means of PCR and PCR-Southern hybridization, and the expression of these transgenes was verified by reverse transcription-PCR.

  6. Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens.

    PubMed

    Hu, Zhang-Hua; Chen, Jin-Qing; Wu, Guan-Ting; Jin, Wei; Lang, Chun-Xiu; Huang, Rui-Zhi; Wang, Fu-Lin; Liu, Zhi-Hong; Chen, Xiao-Yun

    2005-04-01

    An efficient and reproducible system has been developed for the production of transgenic plants in tall fescue (Festuca arundinacea Schreb.) using A. tumefaciens-mediated transformation. Two-months-old suspension cultures served as excellent explants for transformation. The explants were inoculated with an A. tumefaciens strain EHA105 carrying a plasmid pDBA121 containing genes for hygromycin phosphotransferase (hpt) and phosphinotricin acetyltransferase (bar). The commercial herbicide Basta was used as a selective agent. Inclusion of acetosyringone (ACS) 20 mg/L in the co-culture medium led to an increase in transformation efficiency. The efficiency of transformation was highly dependent on the genotype, the explant, the culture medium and selective agent used. Tall fescue transformation efficiency is 2.85-10.9 plants per gram fresh weight (FW) of suspension cultures. This is much higher than the corresponding values reported before (2-5 plants). So far more than 300 transgenic plants have been obtained, the fertility of some transgenic plants had decreased. Stable integration and high expression of the transgenes were confirmed by PCR analysis and Southern blot hybridization or herbicide Basta spraying test.

  7. Plant cell transformation with Agrobacterium tumefaciens under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Sarnatska, Veresa; Gladun, Hanna; Padalko, Svetlana

    To investigate simulated microgravity (clinorotation) effect on plant cell transformation with Agrobacterium tumefaciens and crown gall formation, the culture of primary explants of potato and Jerusalem artichoke tubers was used. It is found that the efficiency of tumor formation and development in clinorotated explants are considerably reduced. When using the explants isolated from potato tubers clinorotated for 3, 5 and 19 days, drastic reduction of formation and development of crown gall tumors was observed. Conversely, the tumor number and their development increased when potato tubers were clinorotated for one day. As was estimated by us previously, cells of Jerusalem artichoke explants are the most sensitive to agrobacteria on 4-5 h of in vitro culturing and this time corresponds to the certain period of G1-stage of the cell cycle. We have also estimated that this period is characterized by the increase of binding of acridine orange by nuclear chromatin and increase in activity of RNA-polymerase I and II. Inoculation of explants with agrobacteria in this period was the most optimal for transformation and crown gall induction. We estimated that at four - hour clinorotation of explants the intensity of acridine orange binding to nuclei was considerably lower than on 4h in the control. At one-day clinorotation of potato tubers, a considerable increase in template accessibility of chromatin and in activity of RNA-polymerase I and II occurred. These results may serve as an evidence for the ability of plant dormant tissues to respond to microgravity. Another demonstration of dormant tissue response to changed gravity we obtained when investigating pathogenesis-related proteins (PR-proteins). PR-proteins were subjected to nondenaturing PAGE.and we have not found any effect of microgravity on PR-proteins of potato explants with normal or tumorous growth. We may suggest that such response derives from the common effects of two stress factors - wounding and changed

  8. Maize (Zea mays L.) transformation by Agrobacterium tumefaciens infection of pollinated ovules.

    PubMed

    Chen, Liang; Cong, Yuanyuan; He, Hongxia; Yu, Ying

    2014-02-10

    A novel transformation system was established for maize using Agrobacterium infection of in vitro cultured ovules. The maize ovules were isolated 24h after pollination and infected with Agrobacterium. The embryos were isolated from the pollinated ovules 2-3 weeks after Agrobacterium infection, regenerated to plantlets and investigated for transgene expression and inheritance. Experimental evaluations were focused on the four main aspects. Firstly, through the introduction of gus gene for monitoring transformation and development of embryo, it was confirmed that transgenic plants can be generated from in vitro cultured maize ovules infected with Agrobacterium. Secondly, in order to standardize the transformation protocol, several important factors that affected transformation efficiency were optimized. They included Agrobacterium delivery approach, surfactant, AS concentration, and cocultivation duration. Thirdly, stable expression and Mendelian inheritance of the introduced genes were analyzed in independent lines over two generations. Fourthly, the pollinated ovule culture-regeneration potential and transformation efficiency of five maize inbred lines were investigated to confirm the genotype independence of this transformation system. We conclude that the transformation system established in this study can be used to generate high-quality transgenic maize plants rapidly and directly.

  9. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori.

    PubMed

    Michielse, C B; Ram, A F J; Hooykaas, P J J; Hondel, C A M J J van den

    2004-05-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins in T-DNA transfer. This study revealed that inactivation of either of the regulatory proteins (VirA, VirG), any of the transport pore proteins (VirB), proteins involved in generation of the T-strand (VirD, VirC) or T-strand protection and targeting (VirE2) abolishes or severely reduces the formation of transformants. The results indicate that the Agrobacterium-mediated transformation of A. awamori requires an intact T-DNA machinery for efficient transformation; however, the plant host range factors, like VirE3, VirH, and VirF, are not important.

  10. A high-efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2012-01-01

    Agrobacterium-mediated transformation of rice has been routinely performed according to the protocol reported by Hiei et al. (Plant J. 6:271-282, 1994). However, several elite japonica and many indica varieties cannot be efficiently transformed by Agrobacterium system. Also a large number of transformants are required to generate T-DNA insertion and FOX libraries as well as gene-targeting studies. To overcome these challenges, we established a high-efficiency transformation system in rice by cocultivating rice calli with Agrobacterium on filter papers moistened with enriched liquid media instead of using solid media (Ozawa, Plant Sci. 176:522-527, 2009; Ozawa and Takaiwa, Plant Sci. 179:333-337, 2010). In this system, the transformation efficiency of the calli is almost 100% in many varieties.

  11. Synergistic Action of D-Glucose and Acetosyringone on Agrobacterium Strains for Efficient Dunaliella Transformation

    PubMed Central

    Srinivasan, Ramachandran

    2016-01-01

    An effective transformation protocol for Dunaliella, a β-carotene producer, was developed using the synergistic mechanism of D-glucose and Acetosyringone on three different Agrobacterium strains (EHA105, GV3101 and LBA4404). In the present study, we investigated the pre-induction of Agrobacterium strains harboring pMDC45 binary vector in TAP media at varying concentrations of D-glucose (5 mM, 10 mM, and 15mM) and 100 μM of Acetosyringone for co-cultivation. Induction of Agrobacterium strains with 10 mM D-glucose and 100 μM Acetosyringone showed higher rates of efficiency compared to other treatments. The presence of GFP and HPT transgenes as a measure of transformation efficiency from the transgenic lines were determined using fluorescent microscopy, PCR, and southern blot analyzes. Highest transformation rate was obtained with the Agrobacterium strain LBA4404 (181 ± 3.78 cfu per 106 cells) followed by GV3101 (128 ± 5.29 cfu per 106 cells) and EHA105 (61 ± 5.03 cfu per 106 cells). However, the Agrobacterium strain GV3101 exhibited more efficient single copy transgene (HPT) transfer into the genome of D. salina than LBA4404. Therefore, future studies dealing with genetic modifications in D. salina can utilize GV3101 as an optimal Agrobacterium strain for gene transfer. PMID:27351975

  12. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection.

    PubMed

    Hu, T; Metz, S; Chay, C; Zhou, H P; Biest, N; Chen, G; Cheng, M; Feng, X; Radionenko, M; Lu, F; Fry, J

    2003-06-01

    An Agrobacterium-mediated transformation system with glyphosate selection has been developed for the large-scale production of transgenic plants. The system uses 4-day precultured immature embryos as explants. A total of 30 vectors containing the 5-enol-pyruvylshikimate-3-phosphate synthase gene from Agrobacterium strain CP4 (aroA:CP4), which confers resistance to glyphosate, were introduced into wheat using this system. The aroA:CP4 gene served two roles in this study-selectable marker and gene of interest. More than 3,000 transgenic events were produced with an average transformation efficiency of 4.4%. The entire process from isolation of immature embryos to production of transgenic plantlets was 50-80 days. Transgenic events were evaluated over several generations based on genetic, agronomic and molecular criteria. Forty-six percent of the transgenic events fit a 3:1 segregation ratio. Molecular analysis confirmed that four of six lead transgenic events selected from Agrobacterium transformation contained a single insert and a single copy of the transgene. Stable expression of theAROA:CP4 gene was confirmed by ELISA through nine generations. A comparison of Agrobacterium-mediated transformation to a particle bombardment system demonstrated that the Agrobacterium system is reproducible, has a higher transformation efficiency with glyphosate selection and produces higher quality transgenic events in wheat. One of the lead events from this study, no. 33391, has been identified as a Roundup Ready wheat commercial candidate.

  13. SacB-SacR Gene Cassette As the Negative Selection Marker to Suppress Agrobacterium Overgrowth in Agrobacterium-Mediated Plant Transformation

    PubMed Central

    Liu, Yiming; Miao, Jiamin; Traore, Sy; Kong, Danyu; Liu, Yi; Zhang, Xunzhong; Nimchuk, Zachary L.; Liu, Zongrang; Zhao, Bingyu

    2016-01-01

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium supplemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of A. tumefaciens in the plant tissue culture process. We generated a mutant A. tumefaciens strain GV2260 (recA-SacB/R) that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R) can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R) to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcription factor. PMID:27833912

  14. SacB-SacR Gene Cassette As the Negative Selection Marker to Suppress Agrobacterium Overgrowth in Agrobacterium-Mediated Plant Transformation.

    PubMed

    Liu, Yiming; Miao, Jiamin; Traore, Sy; Kong, Danyu; Liu, Yi; Zhang, Xunzhong; Nimchuk, Zachary L; Liu, Zongrang; Zhao, Bingyu

    2016-01-01

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium supplemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of A. tumefaciens in the plant tissue culture process. We generated a mutant A. tumefaciens strain GV2260 (recA-SacB/R) that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R) can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R) to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcription factor.

  15. Construction of Agrobacterium tumefaciens-mediated tomato black ring virus infectious cDNA clones.

    PubMed

    Zarzyńska-Nowak, Aleksandra; Ferriol, Inmaculada; Falk, Bryce W; Borodynko-Filas, Natasza; Hasiów-Jaroszewska, Beata

    2017-02-15

    Tomato black ring virus (TBRV, genus Nepovirus) infects a wide range of economically important plants such as tomato, potato, tobacco and cucumber. Here, a successful construction of infectious full-length cDNA clones of the TBRV genomic RNAs (RNA1 and RNA2) is reported for the first time. The engineered constructs consisting of PCR-amplified DNAs were cloned into binary vector pJL89 immediately downstream of a double cauliflower mosaic virus (CaMV) 35S promoter, and upstream of the hepatitis delta virus (HDV) ribozyme and nopaline synthase terminator (NOS). The symptoms induced on plants agroinoculated with both constructs were indistinguishable from those caused by the wild-type virus. The infectivity of obtained clones was verified by reinoculation to Nicotiana tabacum cv. Xanthi, Chenopodium quinoa and Cucumis sativus. The presence of viral particles and RNA was confirmed by electron microscopy and reverse transcription polymerase chain reaction, respectively. Constructed full-length infectious cDNA clones will serve as an excellent tool to study virus-host-vector interactions.

  16. Overexpression of several Arabidopsis histone genes increases Agrobacterium-medicated transformation and transgene expression in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis histone H2A-1 is important for Agrobacterium-mediated plant transformation. Mutation of HTA1, the gene encoding histone H2A-1, in the rat5 mutant results in decreased T-(transferred) DNA integration into the plant genome, whereas over-expression of HTA1 increases transformation freq...

  17. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.).

    PubMed

    Ozawa, Kenjirou

    2009-04-01

    Technologies for transformation of rice have been developed to meet the requirements of functional genomics in order to enable the production of transgenic rice plants with useful agricultural characters. However, many rice varieties are not efficiently transformed by Agrobacterium. We have succeeded in establishing a highly efficient transformation system in rice by co-cultivating rice calli with Agrobacterium on three filter papers moistened with enriched N6 or DKN media instead of using solid media. Rice calli immersed in Agrobacterium suspension (EHA101, Agrobacterium concentration of OD600=0.04) were co-cultured on three pieces of filter paper (9cm in diameter) moistened with 5.5mL of N6 or DKN liquid co-cultivation medium supplemented with 2,4-d (2mg/L), proline (10mM), casein hydrolysate (300mg/L), sucrose (30g/L), glucose (5g/L), l-cysteine (100mg/L) and acetosyringone (15mg/L) at 25°C for 3 days in the dark. Compared with the transformation efficiency of calli co-cultivated on solid media, transformation efficiency was increased by about fivefold by using the filter paper method for many varieties of rice, including those that previously yielded much poor transformation rates.

  18. Agrobacterium-mediated transformation of the endophytic fungus Acremonium implicatum associated with Brachiaria grasses.

    PubMed

    Abello, Javier; Kelemu, Segenet; García, Celsa

    2008-03-01

    Acremonium implicatum is a seed-transmitted endophytic fungus that forms symbiotic associations with the economically significant tropical forage grasses, Brachiaria species. To take advantage of the endophyte's plant protective properties, we developed an efficient Agrobacterium-mediated transformation system for Acremonium implicatum, using green fluorescent protein (GFP) expression and vector pSK1019 (trpC promoter) or pCAMBIA1300 (CaMV35S promoter). We found that transformation efficiency doubled for both mycelial and conidial transformation as the co-cultivation period for Agrobacterium tumefaciens and Acremonium implicatum was increased from 48 to 72h. Significantly, optimal results were obtained for either mycelial or conidial transformation with Agrobacterium tumefaciens strain AGL-1 and vector pSK1019 under the control of the trpC promoter. However, mycelial transformation consistently generated a significantly higher number of transformants than did conidial transformation. The mitotic stability of the transferred DNA was confirmed by growing ten transformants in liquid and agar media for six generations. In all cases, resistance to the selection pressure (hygromycin B) was maintained. Fluorescence emission was retained by the transformants and also expressed in Brachiaria tissues from plants inoculated with GFP-transformed A. implicatum. This technology will help in the transfer and expression of agronomically important genes in host plants.

  19. Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley

    PubMed Central

    Hisano, Hiroshi; Sato, Kazuhiro

    2016-01-01

    Different plant cultivars of the same genus and species can exhibit vastly different genetic transformation efficiencies. However, the genetic factors underlying these differences in transformation rate remain largely unknown. In barley, ‘Golden Promise’ is one of a few cultivars reliable for Agrobacterium-mediated transformation. By contrast, cultivar ‘Haruna Nijo’ is recalcitrant to genetic transformation. We identified genomic regions of barley important for successful transformation with Agrobacterium, utilizing the ‘Haruna Nijo’ × ‘Golden Promise’ F2 generation and genotyping by 124 genome-wide SNP markers. We observed significant segregation distortions of these markers from the expected 1:2:1 ratio toward the ‘Golden Promise’-type in regions of chromosomes 2H and 3H, indicating that the alleles of ‘Golden Promise’ in these regions might contribute to transformation efficiency. The same regions, which we termed Transformation Amenability (TFA) regions, were also conserved in transgenic F2 plants generated from a ‘Morex’ × ‘Golden Promise’ cross. The genomic regions identified herein likely include necessary factors for Agrobacterium-mediated transformation in barley. The potential to introduce these loci into any haplotype of barley opens the door to increasing the efficiency of transformation for target alleles into any haplotype of barley by the TFA-based methods proposed in this report. PMID:27874056

  20. Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.).

    PubMed

    Mhatre, Minal

    2013-01-01

    Pineapple (Ananas comosus L., Merr.) is a commercially important crop, grown in the tropical and subtropical regions. However, the crop is faced with postharvest damage and poor varietal and nutritional improvement. Being a vegetatively propagated crop, conventional breeding programs take longer time for genetic improvement, which may not necessarily successfully develop an improved cultivar. Hence, the genetic modification of pineapple is an alternative handy approach to improve pineapple. We have established an Agrobacterium-mediated transformation system using leaf bases from in vitro-grown pineapple plants. Being a monocot, acetosyringone is added to the culture medium for overnight growth of Agrobacterium and transformation to transfer a gene of interest MSI99 soybean ferritin. Leaf bases isolated from in vitro shoot cultures are treated with Agrobacterium suspension at two dilutions, 10× and 20×, for 30 min. Explants are subsequently blot dried and cultured on gelrite solidified hormone-free Pin1 medium for 2 days (cocultivation). Periodic transfer is first done to the regeneration medium (Pin1) containing cefotaxime for the suppression of Agrobacterium growth. The transformants are selected by culturing on Pin1 medium containing cefotaxime and kanamycin. Multiple shoots, regenerated in leaf bases, are further multiplied and individually rooted in the liquid RM medium amended with antibiotics to recover plants. Putative transformants are analyzed for transgene integration and expression using standard molecular biological methods of PCR, RT-PCR, and genomic Southern.

  1. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  2. Agrobacterium-mediated transformation of Easter lily (Lilium longiflorum cv. Nellie White)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conditions were optimized for transient transformation of Lilium longiflorum cv. Nellie White using Agrobacterium tumefaciens. Bulb scale and basal meristem explants were inoculated with A. tumefaciens strain AGL1 containing the binary vector pCAMBIA 2301 which has the uidA gene that codes for ß-gl...

  3. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill].

    PubMed

    Zeng, P; Vadnais, D A; Zhang, Z; Polacco, J C

    2004-02-01

    Modern genetic analysis and manipulation of soybean ( Glycine max) depend heavily on an efficient and dependable transformation process, especially in public genotypes from which expressed sequence tag (EST), bacterial artificial chromosome and microarray data have been derived. Williams 82 is the subject of EST and functional genomics analyses. However, it has not previously been transformed successfully using either somatic embryogenesis-based or cotyledonary-node transformation methods, the two predominant soybean transformation systems. An advance has recently been made in using antioxidants to enhance Agrobacterium infection of soybean. Nonetheless, an undesirable effect of using these antioxidants is the compromised recovery of transgenic soybean when combined with the use of the herbicide glufosinate as a selective agent. Therefore, we optimized both Agrobacterium infection and glufosinate selection in the presence of L-cysteine for Williams 82. We have recovered transgenic lines of this genotype with an enhanced transformation efficiency using this herbicide selection system.

  4. Parameters influencing Agrobacterium-mediated transformation system in safflower genotypes AKS-207 and PKV Pink.

    PubMed

    Dhumale, Dipti Raghunath; Shingote, Prashant Raghunath; Dudhare, Mahendra Shankarrao; Jadhav, Pravin Vishwanath; Kale, Prashant Bhaskar

    2016-12-01

    Shoot regeneration in safflower (Carthamus tinctorius 'AKS 207' and 'PKV Pink') genetically transformed using Agrobacterium was used for assessing various constraints to the efficiency of transformation including infection period, virulence induction medium, co-cultivation period, bacterial titre, selection regime, and the natural phenolic compound acetosyringone. Transformation frequency was promising with 8-10-day-old cotyledonary leaf explants. Therefore, explants of that age cultured on Agrobacterium minimal medium (AB) containing 100 µM acetosyringone were infected with Agrobacterium (cell titre 0.5 OD600nm) for 15 min followed by 48 h of co-cultivation on kanamycin-enriched medium (50 mg/L). Transformation of the shoots was confirmed using β-glucuronidase (GUS) histochemical assay and polymerase chain reaction (PCR). With the transformation protocol thus optimized, the transformation frequency as determined using GUS assays was 54.0 % for AKS 207 and 47.6 % for PKV Pink. The corresponding figures using PCR were 27.0 and 33.3 %. The transformed shoots required 10-14 weeks of culture initiation but produced very few roots.

  5. An efficient regeneration protocol for Agrobacterium-mediated transformation of melon (Cucumis melo L.).

    PubMed

    Zhang, H J; Gao, P; Wang, X Z; Luan, F S

    2014-01-08

    An efficient selection and plant regeneration protocol for Agrobacterium-mediated transformation, using cotyledon node zone-stem connection region of melon, has been developed. The new Agrobacterium-mediated transformation methodology, independent of organ culture, used the entire germinated seed as explants. The transformation system was maximized to maintain the integrity of melon itself, thus avoiding the limitations of traditional tissue culture methods. The transformation was carried out under a non-sterile environment. The incorporation of a selectable marker (neomycin phosphotransferase II) into the genome of transgenic plants was confirmed by PCR and Southern blot analyses. The transformation frequency based on the PCR was 13%. Transgenic melon plants were usually detected by PCR in less than 1 month after Agrobacterium inoculation, and seeds could be harvested in 3 months. The growth characteristics and morphology of the transgenic plants were identical to the untransformed wild-type plants. This method would be beneficial for facilitating the characteristics of gene functions and for boosting the manipulation of melon transformation for commercial purposes.

  6. Agrobacterium-mediated transformation of rough lemon (Citrus jambhiri Lush) with yeast HAL2 gene

    PubMed Central

    2012-01-01

    Background Rough lemon (Citrus jambhiri Lush.) is the most commonly used Citrus rootstock in south Asia. It is extremely sensitive to salt stress that decreases the growth and yield of Citrus crops in many areas worldwide. Over expression of the yeast halotolerant gene (HAL2) results in increasing the level of salt tolerance in transgenic plants. Results Transformation of rough lemon was carried out by using Agrobacterium tumefaciens strains LBA4404 harboring plasmid pJRM17. Transgenic shoots were selected on kanamycin 100 mg L-1 along with 250 mg L-1 each of cefotaxime and vancomycin for effective inhibition of Agrobacterium growth. The Murashige and Skoog (MS) medium containing 200 μM acetoseryngone (AS) proved to be the best inoculation and co-cultivation medium for transformation. MS medium supplemented with 3 mg L-1 of 6-benzylaminopurine (BA) showed maximum regeneration efficiency of the transformed explants. The final selection of the transformed plants was made on the basis of PCR and Southern blot analysis. Conclusion Rough lemon has been successfully transformed via Agrobacterium tumefaciens with β-glucuronidase (GUS) and HAL2. Various factors affecting gene transformation and regeneration efficiency were also investigated. PMID:22691292

  7. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    NASA Astrophysics Data System (ADS)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  8. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  9. AGROBACTERIUM-MEDIATED TRANSFORMATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    PubMed

    Kathiresan, S; Chandrashekar, A; Ravishankar, G A; Sarada, R

    2009-06-01

    The first successful Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis Flot. using the binary vectors hosting the genes coding for GUS (β-glucuronidase), GFP (green fluorescent protein), and hpt (hygromycin phosphotransferase) is reported here. Colonies resistant to hygromycin at 10 mg · L(-1) expressed β-glucuronidase. The greenish yellow fluorescence of GFP was observed when the hygromycin-resistant cells were viewed with a fluorescent microscope. PCR was used to successfully amplify fragments of the hpt (407 bp) and GUS (515 bp) genes from transformed cells, while Southern blots indicated the integration of the hygromycin gene into the genome of H. pluvialis. SEM indicated that the cell wall of H. pluvialis was altered on infection with Agrobacterium. The transformation achieved here by Agrobacterium does not need treatment with acetosyringone or the wounding of cells. A robust transformation method for this alga would pave the way for manipulation of many important pathways relevant to the food, pharmaceutical, and nutraceutical industries.

  10. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules.

    PubMed

    Holme, Inger Baeksted; Brinch-Pedersen, Henrik; Lange, Mette; Holm, Preben Bach

    2006-12-01

    We report on a novel transformation procedure for barley by Agrobacterium infection of in vitro cultured ovules. Ovules of the cultivar Golden Promise were isolated a few hours after pollination and infected with the Agrobacterium tumefaciens strain AGL0 carrying the binary vector pVec8-GFP. The vector harboured a hygromycin resistance gene and the green fluorescence protein (GFP) gene. GFP-expressing embryos were isolated from the ovules, regenerated to plants and investigated by Southern blot analysis. Transformation frequencies amounted to 3.1% with hygromycin selection and 0.8% without selection. Mendelian inheritance and stable expression of the GFP gene was confirmed in 18 independent lines over two generations. We conclude that the described technique allows for the rapid and direct generation of high quality transgenic plants.

  11. Transgenic sugar beet tolerant to imidazolinone obtained by Agrobacterium-mediated transformation.

    PubMed

    Kishchenko, E M; Komarnitskii, I K; Kuchuk, N V

    2011-01-01

    Sugar beet is highly sensitive to imidazolinone herbicides thus rotational restrictions exist. In order to develop imidazolinone tolerant sugar beets als gene from Arabidopsis thaliana encoding acetolactate synthase with S653N mutation was used for genetic transformation. Transgenic sugar beet plants were obtained by Agrobacterium-mediated transformation of aseptic seedlings using vacuum-infiltration. The efficiency of genetic transformation was 5.8%. RT-PCR analysis of obtained plants revealed accumulation of specific als transcript. The resistance to imidazolinone was proved for developed transgenic sugar beet plants in vitro and in greenhouse conditions after spraying with imazethapyr (Pursuit, BASF).

  12. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    PubMed

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  13. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments.

  14. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

    PubMed Central

    Kwon, Tackmin

    2016-01-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection. PMID:27643450

  15. Efficient gene targeting in Penicillium chrysogenum using novel Agrobacterium-mediated transformation approaches.

    PubMed

    de Boer, Paulo; Bronkhof, Jurian; Dukiќ, Karolina; Kerkman, Richard; Touw, Hesselien; van den Berg, Marco; Offringa, Remko

    2013-12-01

    The industrial production of β-lactam antibiotics by Penicillium chrysogenum has increased tremendously over the last decades, however, further optimization via classical strain and process improvement has reached its limits. The availability of the genome sequence provides new opportunities for directed strain improvement, but this requires the establishment of an efficient gene targeting (GT) system. Recently, mutations affecting the non-homologous end joining (NHEJ) pathway were shown to increase GT efficiencies following PEG-mediated DNA transfer in P. chrysogenum from 1% to 50%. Apart from direct DNA transfer many fungi can efficiently be transformed using the T-DNA transfer system of the soil bacterium Agrobacterium tumefaciens, however, for P. chrysogenum no robust system for Agrobacterium-mediated transformation was available. We obtained efficient AMT of P. chrysogenum spores with the nourseothricin acetyltransferase gene as selection marker, and using this system we investigated if AMT in a NHEJ mutant background could further enhance GT efficiencies. In general, AMT resulted in higher GT efficiencies than direct DNA transfer, although the final frequencies depended on the Agrobacterium strain and plasmid backbone used. Providing overlapping and complementing fragments on two different plasmid backbones via the same Agrobacterium host was shown to be most effective. This so-called split-marker or bi-partite method resulted in highly efficient GT (>97%) almost exclusively without additional ectopic T-DNA insertions. As this method provides for an efficient GT method independent of protoplasts, it can be applied to other fungi for which no protoplasts can be generated or for which protoplast transformation leads to varying results.

  16. Transgenic grasspea (Lathyrus sativus L.): factors influencing agrobacterium-mediated transformation and regeneration.

    PubMed

    Barik, D P; Mohapatra, U; Chand, P K

    2005-11-01

    A reproducible procedure was developed for genetic transformation of grasspea using epicotyl segment co-cultivation with Agrobacterium. Two disarmed Agrobacterium tumefaciens strains, EHA 105 and LBA 4404, both carrying the binary plasmid p35SGUSINT with the neomycin phosphotransferase II (nptII) gene and the beta-glucuronidase (gus)-intron, were studied as vector systems. The latter was found to have a higher transforming ability. Several key factors modifying the transformation rate were optimized. The highest transformation rate was achieved using hand-pricked explants for infection with an Agrobacterium culture corresponding to OD(600) congruent with 0.6 and diluted to a cell density of 10(9) cells ml(-1) for 10 min, followed by co-cultivation for 4 days in a medium maintained at pH 5.6. Putative transformed explants capable of forming shoots were selected on regeneration medium containing kanamycin (100 mug ml(-1)). We achieved up to 36% transient expression based on the GUS histochemical assay. Southern hybridization of genomic DNA of the kanamycin-resistant GUS-expressive shoots to a gus-intron probe substantiated the integration of the transgene. Transformed shoots were rooted on half-strength MS containing 0.5 mg l(-1) indole-3-acetic acid, acclimated in vermi-compost and established in the experimental field. Germ-line transformation was evident through progeny analysis. Among T(1) seedlings of most transgenic plant lines, kanamycin-resistant and -sensitive plants segregated in a ratio close to 3:1.

  17. Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii.

    PubMed

    Vieira, André L G; Camilo, César M

    2011-08-01

    Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class.

  18. Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection.

    PubMed

    Alvarez, José M; Ordás, Ricardo J

    2013-01-01

    An efficient transformation protocol based on kanamycin selection was developed for Agrobacterium-mediated transformation of maritime pine embryonal masses. The binary vector pBINUbiGUSint, which contained neomycin phosphotransferase II (nptII) as a selectable marker gene and β -glucuronidase (uidA) as a reporter gene, was used for transformation studies. Different factors, such as embryogenic line, bacterial strain, bacterial concentration, and coculture duration, were examined and optimized. For selection of transformants, 15 mgL(-1) kanamycin was used. The highest transformation efficiency (11.4 events per gram of fresh mass) was achieved when a vigorously growing embryonal mass (embryogenic line L01) was cocultivated with Agrobacterium strain AGL1 at the optical density (OD(600 nm)) of 0.3 for 72 h. Evidence of the stable transgene integration was obtained by polymerase chain reaction for the nptII and uidA genes and expression of the uidA gene. Maturation capacity of the transgenic lines was negatively affected by the transformation process. Induction of axillary shoots by preculturing the embryos with benzyladenine allowed overcoming the low maturation rates of some transformed lines. The transgenic embryos were germinated and the axillar shoots were rooted. Transgenic plants were transferred to potting substrate showing normal growth.

  19. Stable Agrobacterium-Mediated Transformation of Maritime Pine Based on Kanamycin Selection

    PubMed Central

    Alvarez, José M.; Ordás, Ricardo J.

    2013-01-01

    An efficient transformation protocol based on kanamycin selection was developed for Agrobacterium-mediated transformation of maritime pine embryonal masses. The binary vector pBINUbiGUSint, which contained neomycin phosphotransferase II (nptII) as a selectable marker gene and β-glucuronidase (uidA) as a reporter gene, was used for transformation studies. Different factors, such as embryogenic line, bacterial strain, bacterial concentration, and coculture duration, were examined and optimized. For selection of transformants, 15 mgL−1 kanamycin was used. The highest transformation efficiency (11.4 events per gram of fresh mass) was achieved when a vigorously growing embryonal mass (embryogenic line L01) was cocultivated with Agrobacterium strain AGL1 at the optical density (OD600 nm) of 0.3 for 72 h. Evidence of the stable transgene integration was obtained by polymerase chain reaction for the nptII and uidA genes and expression of the uidA gene. Maturation capacity of the transgenic lines was negatively affected by the transformation process. Induction of axillary shoots by preculturing the embryos with benzyladenine allowed overcoming the low maturation rates of some transformed lines. The transgenic embryos were germinated and the axillar shoots were rooted. Transgenic plants were transferred to potting substrate showing normal growth. PMID:24376383

  20. Genetic transformation of Metroxylon sagu (Rottb.) cultures via Agrobacterium-mediated and particle bombardment.

    PubMed

    Ibrahim, Evra Raunie; Hossain, Md Anowar; Roslan, Hairul Azman

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance.

  1. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  2. ipt Gene transformation in petunia by an Agrobacterium mediated method.

    PubMed

    Bai, L J; Ye, C J; Lu, J Y; Yang, D E; Xue, H; Pan, Y; Cao, P X; Wang, B; Liu, M

    2009-01-01

    To prevent leaf senescence of petunia, the cytokinin biosynthetic gene isopentenyl transferase (ipt) was placed under the control of 35S promoter and introduced into petunia. PCR analysis showed an expected 0.5 Kb fragment of ipt gene in transgenic petunia. RT-PCR analysis indicated the expression of ipt gene in the transgenic lines. Leaves from transgenic plants remained green and healthy in normal culture condition, while the non-transformed plants turned to yellow. Transgenic plants showed a reduction in height and smaller leaf sizes. In transgenic lines, the internodes were shorter, and the roots grew slower than the non-transformed plants.

  3. Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants.

    PubMed

    Petri, César; Wang, Hong; Alburquerque, Nuria; Faize, Mohamed; Burgos, Lorenzo

    2008-08-01

    A protocol for Agrobacterium-mediated stable transformation for scored, whole leaf explants of the apricot (Prunus armeniaca) cultivar Helena was developed. Regenerated shoots were selected using a two-step increased concentrations of paromomycin sulphate. Different factors affecting survival of transformed buds, including possible toxicity of green fluorescent protein (GFP) and time of exposure to high cytokine concentration in the regeneration medium, were examined. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines was 5.6%, when optimal conditions for bud survival were provided. Southern blot analysis on four randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene. This is the first time that stable transformation of an apricot cultivar is reported and constitutes also one of the few reports on the transformation of Prunus cultivars.

  4. Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes.

    PubMed

    Guo, M; Zhang, Y L; Meng, Z J; Jiang, J

    2012-03-16

    Micro-Tom is the smallest known variety of tomatoes. An orthogonal experimental design L(16) (4(5)) was used to optimize Agrobacterium-mediated transformation of cotyledon explants of Lycopersicon esculentum cv. Micro-Tom. Four parameters were investigated to determine their effect on transformation frequency: the concentration of bacterial suspension, time of dip in bacterial suspension, co-cultivation time, and concentration of carbenicillin. We also examined the effect of these parameters on contamination rate, necrosis rate, mortality, cut-surface browning rate, and undamaged explant rate. Both the bacterial and carbenicillin concentrations had a significant influence on the rate of infected explants. The time of co-cultivation also had a significant influence on the transformation parameters. The optimal transformation protocol consisted of an Agrobacterium suspension of 0.5 × 10(8) cells/mL (OD(600) = 0.5) and an infection time of 5 min, one day of co-cultivation and 500 mg/L carbenicillin. Under these conditions, the transformation efficiency of the shoots reached 5.1%; the mean transformation frequency was 3.9% (N = 838).

  5. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.

    PubMed

    Dutt, M; Grosser, J W

    2010-11-01

    A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars.

  6. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brac...

  7. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato.

    PubMed

    Sharma, Manoj K; Solanke, Amolkumar U; Jani, Dewal; Singh, Yogendra; Sharma, Arun K

    2009-09-01

    We describe a highly efficient and reproducible Agrobacterium-mediated transformation protocol applicable to several varieties of tomato (Solanum lycopersicum, earlier known as Lycopersicum esculentum). Conditions such as co-cultivation period, bacterial concentration, concentration of benzyl amino purine (BAP), zeatin and indole acetic acid (IAA) were optimized. Co-cultivation of explants with a bacterial concentration of 108 cells/ml for three days on 2 mg/l BAP, followed by regeneration on a medium containing 1 mg/ml zeatin resulted in a transformation frequency of 41.4%. Transformation of tomato plants was confirmed by Southern blot analysis and beta-glucuronidase (GUS) assay. The protocol developed showed very high efficiency of transformation for tomato varieties Pusa Ruby, Arka Vikas and Sioux. The optimized transformation procedure is simple, efficient and does not require tobacco, Petunia, tomato suspension feeder layer or acetosyringone.

  8. Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae.

    PubMed

    Soltani, Jalal; van Heusden, Gerard Paul H; Hooykaas, Paul J J

    2009-09-01

    Agrobacterium tumefaciens is a plant pathogen that genetically transforms plant cells by transferring a part of its Ti-plasmid, the T-strand, to the host cell. Under laboratory conditions, it can also transform cells from many different nonplant organisms, including the yeast Saccharomyces cerevisiae. Collections of S. cerevisiae strains have been developed with systematic deletion of all coding sequences. Here, we used these collections to identify genes involved in the Agrobacterium-mediated transformation (AMT) of S. cerevisiae. We found that deletion of genes (GCN5, NGG1, YAF9 and EAF7) encoding subunits of the SAGA, SLIK, ADA and NuA4 histone acetyltransferase complexes highly increased the efficiency of AMT, while deletion of genes (HDA2, HDA3 and HST4) encoding subunits of histone deacetylase complexes decreased AMT. These effects are specific for AMT as the efficiency of chemical (lithium acetate) transformation was not or only slightly affected by these deletions. Our data are consistent with a positive role of host histone deacetylation in AMT.

  9. Natural genetic transformation by agrobacterium rhizogenes . Annual flowering in two biennials, belgian endive and carrot

    PubMed

    Limami; Sun; Douat; Helgeson; Tepfer

    1998-10-01

    Genetic transformation of Belgian endive (Cichorium intybus) and carrot (Daucus carota) by Agrobacterium rhizogenes resulted in a transformed phenotype, including annual flowering. Back-crossing of transformed (R1) endive plants produced a line that retained annual flowering in the absence of the other traits associated with A. rhizogenes transformation. Annualism was correlated with the segregation of a truncated transferred DNA (T-DNA) insertion. During vegetative growth, carbohydrate reserves accumulated normally in these annuals, and they were properly mobilized prior to anthesis. The effects of individual root-inducing left-hand T-DNA genes on flowering were tested in carrot, in which rolC (root locus) was the primary promoter of annualism and rolD caused extreme dwarfism. We discuss the possible adaptive significance of this attenuation of the phenotypic effects of root-inducing left-hand T-DNA.

  10. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  11. Agrobacterium infection and plant defense—transformation success hangs by a thread

    PubMed Central

    Pitzschke, Andrea

    2013-01-01

    The value of Agrobacterium tumefaciens for plant molecular biologists cannot be appreciated enough. This soil-borne pathogen has the unique capability to transfer DNA (T-DNA) into plant systems. Gene transfer involves both bacterial and host factors, and it is the orchestration of these factors that determines the success of transformation. Some plant species readily accept integration of foreign DNA, while others are recalcitrant. The timing and intensity of the microbially activated host defense repertoire sets the switch to “yes” or “no.” This repertoire is comprised of the specific induction of mitogen-activated protein kinases (MAPKs), defense gene expression, production of reactive oxygen species (ROS) and hormonal adjustments. Agrobacterium tumefaciens abuses components of the host immunity system it mimics plant protein functions and manipulates hormone levels to bypass or override plant defenses. A better understanding of the ongoing molecular battle between agrobacteria and attacked hosts paves the way toward developing transformation protocols for recalcitrant plant species. This review highlights recent findings in agrobacterial transformation research conducted in diverse plant species. Efficiency-limiting factors, both of plant and bacterial origin, are summarized and discussed in a thought-provoking manner. PMID:24391655

  12. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    PubMed

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species.

  13. Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters.

    PubMed

    Lee, M H; Yoon, E S; Jeong, J H; Choi, Y E

    2004-06-01

    Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5+/-3.5%) as compared to stem (32.7+/-4.8%) or cotyledon (16.2+/-5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5+/-9.8%) than that of non-transformed roots (31.7 +/-9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.

  14. Agrobacterium rhizogenes: Transformed root cultures for the study of polyacetylene metabolism and biosynthesis

    SciTech Connect

    Marchant, Y.Y.

    1988-02-01

    Biologically active polyacetylenes are produced at low levels by the roots of members of the Coreopsidinae subtribe in the Asteraceae. Ten taxa of Coreopsis and Bidens were tranformed with Agrobacterium rhizogenes Strain A/sub 4/ and hairy root cultures established. These cultures grew rapidly and produced the same arrays of polyacetylenes as intact roots. The use of transformed roots for the study of polyacetylene biosynthesis is described in this paper. The engineering of plants with resistance to herbicides is now a practical reality because there are economic, intellectual and environmental incentives for using recombinant DNA technology in crop improvement programs, and because the biochemical and genetic basis for herbicide resistance is a simple trait conferred by a single gene. The transformation of plants with genes conferring resistance to insects or disease is more daunting, however, as biologically active secondary metabolites such as some alkaloids are typically products of multienzyme reactions. Photoactive polyacetylenes are probably plant defense chemicals and they are derived by a sequence of desaturation steps from oleic acid, which occurs ubiquitously in higher plants. Although the acetylene pathway may encompass as many genetic messages as those for morphine biosynthesis, it is likley that the genes controlling the biosynthesis of polyacetylenes may be isolated, identified in the near future and transferred via Agrobacterium to economically important plants susceptible to pathogen attack. 58 refs., 4 figs., 3 tabs.

  15. Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724.

    PubMed

    Yoshimatsu, K; Shimomura, K

    1992-04-01

    Transformed cultures of opium poppy (Papaver somniferum L.) were established by infecting hypocotyl segments with Agrobacterium rhizogenes MAFF 03-01724. Undifferentiated calli formed on the infected site grew satisfactorily on phytohormone-free solid medium in the dark and produced opine, mikimopine, which could not be detected in a normal culture. Numerous adventitious shoots developed from transformed calli during subculture. The transformed shoots separated individually were cultured on phytohormone-free MS solid medium at 22 ° C under 14 h/day light. They displayed wider leaves and longer internodes than shoots established from seeds or non-transformed root culture. The content of morphinan alkaloids in the cultures and regenerated shoots were quantitatively analyzed by enzyme-linked immunosorbent assay and high performance liquid chromatography. HPLC analysis revealed that non-transformed shoots contained much more codeine (1310 gmg/g dry wt.) than morphine (50 μg/g dry wt.), while the transformed shoot cultures did not contain morphine, although the level of morphinan alkaloids in the transformed shoots (213 μg morphine equivalents/g fr. wt.) was comparable to that in non-transformed shoots (182 μg morphine equivalents/g fr. wt.) by ELISA.

  16. An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei.

    PubMed

    Kummasook, Aksarakorn; Cooper, Chester R; Vanittanakom, Nongnuch

    2010-12-01

    We have developed an improved Agrobacterium-mediated transformation (AMT) system for the functional genetic analysis of Penicillium marneffei, a thermally dimorphic, human pathogenic fungus. Our AMT protocol included the use of conidia or pre-germinated conidia of P. marneffei as the host recipient for T-DNA from Agrobacterium tumefaciens and co-cultivation at 28°C for 36 hours. Bleomycin-resistant transformants were selected as yeast-like colonies following incubation at 37°C. The efficiency of transformation was approximately 123 ± 3.27 and 239 ± 13.12 transformants per plate when using 5 × 10(4) conidia and pre-germinated conidia as starting materials, respectively. Southern blot analysis demonstrated that 95% of transformants contained single copies of T-DNA. Inverse PCR was employed for identifying flanking sequences at the T-DNA insertion sites. Analysis of these sequences indicated that integration occurred as random recombination events. Among the mutants isolated were previously described stuA and gasC defective strains. These AMT-derived mutants possessed single T-DNA integrations within their particular coding sequences. In addition, other morphological and pigmentation mutants possessing a variety of gene-specific defects were isolated, including two mutants having T-DNA integrations within putative promoter regions. One of the latter integration events was accompanied by the deletion of the entire corresponding gene. Collectively, these results indicated that AMT could be used for large-scale, functional genetic analyses in P. marneffei. Such analyses can potentially facilitate the identification of those genetic elements related to morphogenesis, as well as pathogenesis in this medically important fungus.

  17. Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement

    PubMed Central

    Nyaboga, Evans; Tripathi, Jaindra N.; Manoharan, Rajesh; Tripathi, Leena

    2014-01-01

    Although genetic transformation of clonally propagated crops has been widely studied as a tool for crop improvement and as a vital part of the development of functional genomics resources, there has been no report of any existing Agrobacterium-mediated transformation of yam (Dioscorea spp.) with evidence of stable integration of T-DNA. Yam is an important crop in the tropics and subtropics providing food security and income to over 300 million people. However, yam production remains constrained by increasing levels of field and storage pests and diseases. A major constraint to the development of biotechnological approaches for yam improvement has been the lack of an efficient and robust transformation and regeneration system. In this study, we developed an Agrobacterium-mediated transformation of Dioscorea rotundata using axillary buds as explants. Two cultivars of D. rotundata were transformed using Agrobacterium tumefaciens harboring the binary vectors containing selectable marker and reporter genes. After selection with appropriate concentrations of antibiotic, shoots were developed on shoot induction and elongation medium. The elongated antibiotic-resistant shoots were subsequently rooted on medium supplemented with selection agent. Successful transformation was confirmed by polymerase chain reaction, Southern blot analysis, and reporter genes assay. Expression of gusA gene in transgenic plants was also verified by reverse transcription polymerase chain reaction analysis. Transformation efficiency varied from 9.4 to 18.2% depending on the cultivars, selectable marker genes, and the Agrobacterium strain used for transformation. It took 3–4 months from Agro-infection to regeneration of complete transgenic plant. Here we report an efficient, fast and reproducible protocol for Agrobacterium-mediated transformation of D. rotundata using axillary buds as explants, which provides a useful platform for future genetic engineering studies in this economically important

  18. Delayed Leaf Senescence in Tobacco Plants Transformed with tmr, a Gene for Cytokinin Production in Agrobacterium.

    PubMed Central

    Smart, CM; Scofield, SR; Bevan, MW; Dyer, TA

    1991-01-01

    The aim of this study was to investigate whether enhanced levels of endogenous cytokinins could influence plant development, particularly leaf senescence. Tobacco plants were transformed with the Agrobacterium tumefaciens gene tmr, under the control of the soybean heat shock promoter HS6871. This gene encodes the enzyme isopentenyl transferase, which catalyzes the initial step in cytokinin biosynthesis. After heat shock, the cytokinin level increased greatly and the level of tmr mRNA, undetectable at 20[deg]C, rose and remained high for up to 8 hours. The levels of cytokinin and tmr mRNA were substantially lower by 24 hours. Transformed plants grown at 20[deg]C were shorter, had larger side shoots, and remained green for longer than untransformed plants. The differences were more pronounced after several heat shocks of whole plants or defined areas of leaves. Our results demonstrated that plant morphology and leaf senescence can be manipulated by changing the endogenous level of cytokinins. PMID:12324608

  19. Agrobacterium-mediated transformation of Malus robusta with tomato iron transporter gene.

    PubMed

    Qu, Shen-Chun; Huang, Xiao-De; Zhang, Zhen; Yao, Quan-Hong; Tao, Jian-Min; Qiao, Yu-Shan; Zhang, Jun-Yi

    2005-06-01

    The tomato iron transporter gene (LeIRT2) was introduced to Malus robusta Rehd. via Agrobacterium-mediated transformation to produce iron-deficiency tolerant apple rootstock. A total of 19 putative transformants were obtained, 11 of which were verified by PCR amplification to carry a fragment of the transgene. Among them, nine were confirmed to carry the transgene by Southern blot analysis with one to three copies of the transgene integrated into the plant genome. Two transgenic plants, one carrying one copy and the other three copies of the transgene, were hydroponically cultured to test their tolerance to iron-deficiency, which was found only in the transgenic plant with a single copy, which weighted 21%-4% greater than those of the control plants.

  20. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium- mediated genetic transformation of tobacco

    PubMed Central

    Pathi, Krishna Mohan; Tula, Suresh; Tuteja, Narendra

    2013-01-01

    A direct somatic embryogenesis protocol was developed for four cultivars of Nicotiana species, by using leaf disc as an explant. Direct somatic embryogenesis of Nicotiana by using BAP and IAA has not been investigated so far. This method does not require formation of callus tissues which leads to somaclonal variations. The frequency of somatic embryogenesis was strongly influenced by the plant growth hormones. The somatic embryos developing directly from explant tissue were noticed after 6 d of culture. Somatic embryogenesis of a high frequency (87–96%) was observed in cultures of the all four genotypes (Nicotiana tabacum, N. benthamiyana, N. xanthi, N. t cv petihavana). The results showed that the best medium for direct somatic embryogenesis was MS supplemented with 2.5 mg/l, 0.2 mg/l IAA and 2% sucrose. Subculture of somatic embryos onto hormone free MS medium resulted in their conversion into plants for all genotypes. About 95% of the regenerated somatic embryos germinated into complete plantlets. The plants showed morphological and growth characteristics similar to those of seed-derived plants. Explants were transformed using Agrobacterium tumifacious LBA4404 plasmid pCAMBIA1301 harboring the GUS gene. The regenerated transgenic plants were confirmed by PCR analysis and histochemical GUS assay. The transformation efficiency obtained by using the Agrobacterium- mediated transformation was more than 95%. This method takes 6 wk to accomplish complete transgenic plants through direct somatic embryogenesis. The transgenic plantlets were acclimatized successfully with 98% survival in greenhouse and they showed normal morphological characteristics and were fertile. The regeneration and transformation method described herein is very simple, highly efficient and fast for the introduction of any foreign gene directly in tobacco through direct somatic embryogenesis. PMID:23518589

  1. Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus.

    PubMed

    Alam, Pravej; Khan, Zainul Abdeen; Abdin, Malik Zainul; Khan, Jawaid A; Ahmad, Parvaiz; Elkholy, Shereen F; Sharaf-Eldin, Mahmoud A

    2017-05-01

    Catharanthus roseus is an important medicinal plant known for its pharmacological qualities such as antimicrobial, anticancerous, antifeedant, antisterility, antidiabetic activities. More than 130 bioactive compounds like vinblastine, vindoline and vincristine have been synthesized in this plant. Extensive studies have been carried out for optimization regeneration and transformation protocols. Most of the protocol described are laborious and time-consuming. Due to sophisticated protocol of regeneration and genetic transformation, the production of these bioactive molecules is less and not feasible to be commercialized worldwide. Here we have optimized the efficient protocol for regeneration and transformation to minimize the time scale and enhance the transformation frequency through Agrobacterium and sonication-assisted transformation (SAAT) method. In this study, hypocotyl explants responded best for maximal production of transformed shoots. The callus percentage were recorded 52% with 1.0 mg L(-1) (BAP) and 0.5 mg L(-1) (NAA) while 80% shoot percentage obtained with 4.0 mg L(-1) (BAP) and 0.05 mg L(-1) (NAA). The microscopic studies revealed that the expression of GFP was clearly localized in leaf tissue of the C. roseus after transformation of pRepGFP0029 construct. Consequently, transformation efficiency was revealed on the basis of GFP localization. The transformation efficiency of SAAT method was 6.0% comparable to 3.5% as conventional method. Further, PCR analysis confirmed the integration of the nptII gene in the transformed plantlets of C. roseus.

  2. Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants*#

    PubMed Central

    Li, Wen-xu; Wu, San-ling; Liu, Yan-hua; Jin, Gu-lei; Zhao, Hai-jun; Fan, Long-jiang; Shu, Qing-yao

    2016-01-01

    Agrobacterium-mediated transformation has been widely used in producing transgenic plants, and was recently used to generate “transgene-clean” targeted genomic modifications coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Although tremendous variation in morphological and agronomic traits, such as plant height, seed fertility, and grain size, was observed in transgenic plants, the underlying mechanisms are not yet well understood, and the types and frequency of genetic variation in transformed plants have not been fully disclosed. To reveal the genome-wide variation in transformed plants, we sequenced the genomes of five independent T0 rice plants using next-generation sequencing (NGS) techniques. Bioinformatics analyses followed by experimental validation revealed the following: (1) in addition to transfer-DNA (T-DNA) insertions, three transformed plants carried heritable plasmid backbone DNA of variable sizes (855–5216 bp) and in different configurations with the T-DNA insertions (linked or apart); (2) each transgenic plant contained an estimated 338–1774 independent genetic variations (single nucleotide variations (SNVs) or small insertion/deletions); and (3) 2–6 new Tos17 insertions were detected in each transformed plant, but no other transposable elements or bacterial genomic DNA. PMID:27921404

  3. Reproduction of Meloidogyne javanica on Plant Roots Genetically Transformed by Agrobacterium rhizogenes.

    PubMed

    Verdejo, S; Jaffee, B A; Mankau, R

    1988-10-01

    Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.

  4. Agrobacterium-mediated transformation of oat (Avena sativa L.) cultivars via immature embryo and leaf explants.

    PubMed

    Gasparis, Sebastian; Bregier, Cezary; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2008-11-01

    This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T(0) plants and 27.5% of the T(1) showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T(0) plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T(0) and T(1) showed simple integration pattern with the low copy number of the introduced transgenes.

  5. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars.

    PubMed

    Arun, Muthukrishnan; Subramanyam, Kondeti; Mariashibu, Thankaraj Salammal; Theboral, Jeevaraj; Shivanandhan, Ganeshan; Manickavasagam, Markandan; Ganapathi, Andy

    2015-02-01

    Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.

  6. Agrobacterium-mediated transformation of safflower and the efficient recovery of transgenic plants via grafting

    PubMed Central

    2011-01-01

    Background Safflower (Carthamus tinctorius L.) is a difficult crop to genetically transform being susceptible to hyperhydration and poor in vitro root formation. In addition to traditional uses safflower has recently emerged as a broadacre platform for the production of transgenic products including modified oils and pharmaceutically active proteins. Despite commercial activities based on the genetic modification of safflower, there is no method available in the public domain describing the transformation of safflower that generates transformed T1 progeny. Results An efficient and reproducible protocol has been developed with a transformation efficiency of 4.8% and 3.1% for S-317 (high oleic acid content) and WT (high linoleic acid content) genotypes respectively. An improved safflower transformation T-DNA vector was developed, including a secreted GFP to allow non-destructive assessment of transgenic shoots. Hyperhydration and necrosis of Agrobacterium-infected cotyledons was effectively controlled by using iota-carrageenan, L-cysteine and ascorbic acid. To overcome poor in vitro root formation for the first time a grafting method was developed for safflower in which ~50% of transgenic shoots develop into mature plants bearing viable transgenic T1 seed. The integration and expression of secreted GFP and hygromycin genes were confirmed by PCR, Southern and Western blot analysis. Southern blot analysis in nine independent lines indicated that 1-7 transgenes were inserted per line and T1 progeny displayed Mendelian inheritance. Conclusions This protocol demonstrates significant improvements in both the efficiency and ease of use over existing safflower transformation protocols. This is the first complete method of genetic transformation of safflower that generates stably-transformed plants and progeny, allowing this crop to benefit from modern molecular applications. PMID:21595986

  7. [Agrobacterium-mediated transformation of LJAMP2 gene into 'Red Sun' kiwifruit and its molecular identification].

    PubMed

    Zhou, Yue; Zhao, Xupeng; Wu, Xiuhua; Zhang, Yanling; Zhang, Lin; Luo, Keming; Tang, Shaohu

    2014-06-01

    Bacterial canker caused by Pseudomonas syringae pv. Actinidiae is one of the most important diseases of kiwifruit (Actinidia chinensis) and leads to considerable yield losses. In order to obtain transgenic plants with resistance for 'Red Sun' kiwifruit to canker disease, a non-specific lipid transfer protein-like antimicrobial protein gene (LJAMP2) from motherwort (Leonurus japonicus) was introduced into 'Red Sun' kiwifruit through Agrobacterium-mediated transformation. After two days of co-cultivation with A. tumefaciens strain LBA4404 harboring 35S:LJAMP2, the transformed explants were transferred to the selection medium containing 25 mg/L kanamycin+3.0 mg/L BA+1.0 mg/L NAA. The regeneration efficiency of kanamycin-resistant shoots reached to 85%. All (100%) of kanamycin-resistant shoots rooted on half-strength MS medium supplemented with 0.8 mg/L IBA and a total of 40 regenerated plantlets were obtained. PCR and histochemical GUS activity analysis show that 23 of 40 lines (57.50%) were positive, suggesting that the LJAMP2 gene was integrated into the genome of 'Red Sun' kiwifruit. Taken together, we established an efficient genetic transformation method for 'Red Sun' kiwifruit using A. tumefaciens and the transformation frequency reached 5.11%. This protocol will be useful for the genetic breeding of 'Red Sun' kiwifruit for improvement of disease resistance.

  8. Enhancers of Agrobacterium-mediated Transformation of Tibouchina semidecandra Selected on the Basis of GFP Expression.

    PubMed

    Yong, Wilson Thau Lym; Henry, Erle Stanley; Abdullah, Janna Ong

    2010-12-01

    Genetic engineering is a powerful tool for the improvement of plant traits. Despite reported successes in the plant kingdom, this technology has barely scratched the surface of the Melastomataceae family. Limited studies have led to some optimisation of parameters known to affect the transformation efficiency of these plants. The major finding of this study was to optimise the presence of selected enhancers [e.g., monosaccharides (D-glucose, D-galactose and D-fructose), tyrosine, aluminium chloride (AICI3) and ascorbic acid] to improve the transformation efficiency of Tibouchina semidecandra. Agrobacterium tumefaciens strain LBA4404 harbouring the disarmed plasmid pCAMBIA1304 was used to transform shoots and nodes of T. semidecandra. Different concentrations of the transformation enhancers were tested by using green fluorescent protein (GFP) as a reporter. The results obtained were based on the percentage of GFP expression, which was observed 14 days post-transformation. A combination of 120 μM galactose and 100 μM tyrosine supplemented with 600 μM AICI3 in the presence of 15 mg/l ascorbic acid gave the highest percentage of positive transformants for T. semidecandra shoots. Whereas 60 μM galactose and 50 μM tyrosine with 200 μM AICI3 in the presence of 15 mg/l ascorbic acid was optimum for T. semidecandra nodes. The presence of the hygromycin phosphotransferase II (hptII) transgene in the genomic DNA of putative T. semidecandra transformants was verified by PCR amplification with specific primers.

  9. Shoot regeneration of mesophyll protoplasts transformed by Agrobacterium tumefaciens, not achievable with untransformed protoplasts.

    PubMed

    Steffen, A; Eriksson, T; Schieder, O

    1986-04-01

    Alternative methods for shoot regeneration in protoplast derived cultures were developed in Nicotiana paniculata and Physalis minima. In both species protoplast derived callus is not regeneratable to shoots by conventional methods, e.g. hormone treatment. Leaf discs and stem segments of N. paniculata and P. minima were incubated with Agrobacterium tumefaciens "shooter" strains harbouring pGV 2215 or pGV 2298 or wildtype strain B6S3. After 36 h of co-incubation protoplasts were prepared. (Leaf disc and stem segment cloning). Co-cultivation experiments were also undertaken with protoplasts of both species. Transformed clones, characterized by their hormone independent growth and octopine production, could be isolated after about two months. Transformation frequencies of "leaf disc and stem segment cloning" and co-cultivation experiments varied from 5×10(-3) to 5×10(-5). After about one year of cultivation on hormone-free culture medium, shoots could be recovered from colonies of N. paniculata, transformed by the strain harbouring pGV 2298. In protoplast derived colonies of P. minima, shoot induction was obtained only after transformation by bacteria carrying pGV 2215. This demonstrates the importance of the particular "shooter" mutant, as well as the response of the host plant. Transformed shoots of P. minima produced octopine, whereas octopine production in transformed shoots and callus of N. paniculata was undetectable after one year of cultivation, though T-DNA was still present in the plant genome. Transformed shoots of N. paniculata and P. minima do not produce any roots. Shoots of N. paniculata have an especially tumerous phenotype. Shoots of both species were successfully grafted to normal donor plants of N. tabacum.

  10. Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.).

    PubMed

    Subramanyam, Kondeti; Rajesh, Manoharan; Jaganath, Balusamy; Vasuki, Amirthalingam; Theboral, Jeevaraj; Elayaraja, Dhandapani; Karthik, Sivabalan; Manickavasagam, Markandan; Ganapathi, Andy

    2013-09-01

    An efficient and reproducible in planta transformation method was developed for brinjal using seed as an explant. The brinjal seeds were infected with Agrobacterium tumefaciens EHA 105 harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta seed transformation such as pre-culture duration, acetosyringone concentration, surfactants, duration of sonication, vacuum pressure and vacuum duration have been evaluated. The putatively transformed (T 0) brinjal plants were screened by GUS histochemical analysis. Among the different combinations and concentrations tested, when the 18-h pre-cultured brinjal seeds were sonicated for 20 min and vacuum infiltered for 3 min at 500 mm of Hg in Agrobacterium suspension containing 100 μM acetosyringone, 0.2 % Silwett L-77 favoured the Agrobacterium infection and showed maximum transformation efficiency. Among the five brinjal varieties evaluated, Arka Samhitha showed maximum transformation efficiency at 45.66 %. The transgene was successfully transmitted to progeny plants (T 1) which was evidenced by GUS histochemical analysis, polymerase chain reaction and Southern hybridisation. The in planta protocol developed in the present study would be beneficial to transfer the economically and nutritionally important genes into different varieties of brinjal, and the transgenic brinjal plants can be produced in less time (approximately 27 days).

  11. STARTS--a stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley.

    PubMed

    Imani, Jafargholi; Li, Liang; Schäfer, Patrick; Kogel, Karl-Heinz

    2011-08-01

    Large data sets are generated from plants by the various 'omics platforms. Currently, a limiting step in data analysis is the assessment of protein function and its translation into a biological context. The lack of robust high-throughput transformation systems for monocotyledonous plants, to which the vast majority of crop plants belong, is a major restriction and impedes exploitation of novel traits in agriculture. Here we present a stable root transformation system for barley, termed STARTS, that allows assessment of gene function in root tissues within 6 weeks. The system is based on the finding that a callus, produced on root induction medium from the scutellum of the immature embryo, is able to regenerate roots from single transformed cells by concomitant suppression of shoot development. Using Agrobacterium tumefaciens-mediated transfer of genes involved in root development and pathogenesis, we show that those calli regenerate large amounts of uniformly transformed roots for in situ functional analysis of newly expressed proteins.

  12. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum

    PubMed Central

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation. PMID:27252729

  13. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum

    DOE PAGES

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; ...

    2016-05-24

    In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less

  14. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-12-14

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features.

  15. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale.

  16. A Rapid, Highly Efficient and Economical Method of Agrobacterium-Mediated In planta Transient Transformation in Living Onion Epidermis

    PubMed Central

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  17. A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L.

    PubMed

    Păcurar, Daniel Ioan; Thordal-Christensen, Hans; Nielsen, Klaus Kristian; Lenk, Ingo

    2008-10-01

    In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA, while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.

  18. A Perspective on Hypericum perforatum Genetic Transformation.

    PubMed

    Hou, Weina; Shakya, Preeti; Franklin, Gregory

    2016-01-01

    Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering.

  19. A Perspective on Hypericum perforatum Genetic Transformation

    PubMed Central

    Hou, Weina; Shakya, Preeti; Franklin, Gregory

    2016-01-01

    Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering. PMID:27446112

  20. Agrobacterium-mediated transformation of polyploid cereals. The efficiency of selection and transgene expression in wheat.

    PubMed

    Przetakiewicz, Anna; Karaś, Agnieszka; Orczyk, Wacław; Nadolska-Orczyk, Anna

    2004-01-01

    Three combinations of Agrobacterium tumefaciens strains and vectors were used in the transformation of selected Polish wheat cultivars. The combinations were: two hypervirulent strains, AGL1, containing the pDM805 binary plasmid, and EHA101, containing pGAH; and the common Agro strain LBA4404, harboring the super-binary pTOK233 vector. pDM805 contained bar under the control of Ubi1 promoter, pGAH had nptII under nos, and pTOK233 had hpt under 35S. Additionally, pDM805 and pTOK233 carried the gus reporter gene under the Act1 promoter or 35S promoter, respectively. The highest selection rate was 12.6% and was obtained with EHA101(pGAH) on a kanamycin-containing medium. Sixty-five of the plants grown on that medium were PCR positive. The second best combination was LBA4404(pTOK233) and kanamycin selection, which gave an average transformation rate of 2.3%. Phosphinothricin selection gave 1.0% transformation efficiency, while hygromycin, depending on the strain/vector used, gave from 0.2 to 0.4%. PCR tests in T1 revealed that 67% of the lines showed a 3:1 segregation ratio, and 11% a 15:1 ratio, while in 22%, segregation was non-Mendelian. The high number of T0 transgenic plants containing one copy of the transgene was confirmed via Southern blot analysis. Kanamycin resistance in the T1 generation was very low; in some lines, all the progeny were kanamycin sensitive. GUS expression, only tested in young T1 plants, was in agreement with Mendelian segregation in three out of the twelve tested. The factors influencing the efficiency of selection and transgene expression are discussed in this paper.

  1. An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes.

    PubMed

    Park, Nam Il; Kim, Jae Kwang; Park, Woo Tae; Cho, Jin Woong; Lim, Yong Pyo; Park, Sang Un

    2011-11-01

    Watercress (Nasturtium officinale) is a member of the Brassicaceae family and a rich source of glucosinolate, which has been shown to possess anticancer properties. To extract these compounds from N. officinale for study, a method was developed in which Agrobacterium rhizogenes was used to transfer DNA segments into plant genomes in order to produce hairy root cultures, which are a reliable source of plant compounds. The A. rhizogenes strain R1000 had the highest infection frequency and induces the most hairy roots per explant. Polymerase chain reaction and cytohistochemical staining methods were used to validate transgenic hairy roots from N. officinale. Glucosinolate from watercress hairy roots was separated and analyzed using high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. Indolic glucosinolates, including glucobrassicin (0.01-0.02 μmol/g of DW) and 4-methoxyglucobrassicin (0.06-0.18 μmol/g of DW), as well as aromatic glucosinolate (gluconasturtiin) (0.06-0.21 μmol/g of DW), were identified virtually identical or more in transformed than wild type roots of N. officinale. Hairy root culture of watercress is a valuable approach for future efforts in the metabolic engineering of glucosinolate biofortification in plants, particularly, because indolic glucosinolates are the precursors of a potent cancer chemopreventive agent (indole-3-carbinol).

  2. Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices

    PubMed Central

    Mrosk, Cornelia; Forner, Susanne; Hause, Gerd; Küster, Helge; Kopka, Joachim; Hause, Bettina

    2009-01-01

    Composite plants consisting of a wild-type shoot and a transgenic root are frequently used for functional genomics in legume research. Although transformation of roots using Agrobacterium rhizogenes leads to morphologically normal roots, the question arises as to whether such roots interact with arbuscular mycorrhizal (AM) fungi in the same way as wild-type roots. To address this question, roots transformed with a vector containing the fluorescence marker DsRed were used to analyse AM in terms of mycorrhization rate, morphology of fungal and plant subcellular structures, as well as transcript and secondary metabolite accumulations. Mycorrhization rate, appearance, and developmental stages of arbuscules were identical in both types of roots. Using Mt16kOLI1Plus microarrays, transcript profiling of mycorrhizal roots showed that 222 and 73 genes exhibited at least a 2-fold induction and less than half of the expression, respectively, most of them described as AM regulated in the same direction in wild-type roots. To verify this, typical AM marker genes were analysed by quantitative reverse transcription-PCR and revealed equal transcript accumulation in transgenic and wild-type roots. Regarding secondary metabolites, several isoflavonoids and apocarotenoids, all known to accumulate in mycorrhizal wild-type roots, have been found to be up-regulated in mycorrhizal in comparison with non-mycorrhizal transgenic roots. This set of data revealed a substantial similarity in mycorrhization of transgenic and wild-type roots of Medicago truncatula, validating the use of composite plants for studying AM-related effects. PMID:19574251

  3. [Activity of the corn Spm transposon system in transgenic plants Orychophragmus violaceus (L.) O.E. Schulz obtained by both direct transfer of DNA to protoplasts and agrobacterial transformation of root explants].

    PubMed

    Sakhno, L A; Sytnik, E S; Cherep, N N; Komarnitskiĭ, I K; Kuchuk, N V; Klimiuk, V I

    2002-01-01

    Transposon mediated insertional mutagenesis is one of the approaches for the unique gene cloning. A wild species of Cruciferae family Orychophragmus violaceus (L.) O.E. Schulz, which is of interest for practical breeding as a donor of improved plant oil, was an object of the investigation. Plasmid construction used in the experiments included selective NPT II gene, reported GUS gene serving as an excision marker, structural BAR gene located within the dSpm element and Spm transposase. The GUS gene of this plasmid had not his own promoter and became functional only after Spm-transposition. Transformed Orychophragmus violaceus (L.) O.E. Schulz. plants were obtained by direct mesophyll protoplast transformation as well as Agrobacterium tumefaciens-mediated root explant transformation. Gene transfer and the transposition event were confirmed by the GUS activity and the PCR analysis. Relative transformation efficiency using protoplasts was 5.8%.

  4. An efficient method for Agrobacterium-mediated genetic transformation and plant regeneration in cumin (Cuminum cyminum L.).

    PubMed

    Pandey, Sonika; Mishra, Avinash; Patel, Manish Kumar; Jha, Bhavanath

    2013-09-01

    Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg's B5 medium supplemented with 0.5-μM 6-benzyladenine and 2.0-μM α-naphthalene acetic acid. About 1,020 embryos (a mean of 255 embryos per batch) were used for the optimisation of transformation conditions. These conditions were an Agrobacterium cell suspension of 0.6 OD600, a co-cultivation time of 72 h, 300-μM acetosyringone and wounding of explants using a razor blade. Pre-cultured elongated embryos were treated using optimised conditions. About 720 embryos (a mean of 180 embryos per batch) were used for transformation and 95 % embryos showed transient β-glucuronidase expression after co-cultivation. Putative transformed embryos were cultured on B5 medium for shoot proliferation and 21 regenerated plants were obtained after selection and allowed to root. T0 plantlets showed β-glucuronidase expression and gene integration was confirmed via PCR amplification of 0.96 and 1.28 kb fragments of the hygromycin-phosphotransferase II and β-glucuronidase genes, respectively. In this study, a transformation efficiency of 1.5 % was demonstrated and a total of 11 transgenic plants were obtained at the hardening stage, however, only four plants acclimatised during hardening. Gene copy number was analysed by Southern blot analysis of hardened plants and single-copy gene integration was observed. This is the first successful attempt of Agrobacterium-mediated genetic transformation of cumin.

  5. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14.

    PubMed

    Nyaboga, Evans N; Njiru, Joshua M; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1-2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70-80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava.

  6. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14

    PubMed Central

    Nyaboga, Evans N.; Njiru, Joshua M.; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1–2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70–80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  7. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.

    PubMed

    Li, D D; Shi, W; Deng, X X

    2003-12-01

    Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.

  8. An efficient plant regeneration and Agrobacterium-mediated genetic transformation of Tagetes erecta.

    PubMed

    Gupta, Vijayta; Ur Rahman, Laiq

    2015-07-01

    Tagetes erecta, L. an asteraceous plant of industrial and medicinal value, contains important compounds like pyrethrins, thiophenes and lutein, possessing immense potential for insecticidal, nematicidal and nutraceutical activities. Considering the importance and demand for these natural compounds, genetic manipulation of this crop for better productivity of secondary metabolites holds great significance. A rapid and reproducible direct regeneration and genetic transformation system is the prerequisite for genetic manipulation of any crop. This paper elucidates the establishment of an efficient direct regeneration and transformation protocol of T. erecta using Agrobacterium tumefaciens. Investigation of the effects of different types of explants (Hypocotyls, cotyledonary leaves, rachis and leaf sections) and different BAP and GA3 combinations on the regeneration frequency of T. erecta suggested that the best regeneration frequency (66 %) with an average of 5.08 ± 0.09 shoot buds/explant was observed from hypocotyl explants cultured on media containing 1.5 mg/l BAP and 5 mg/l GA3. The transformation protocol was established using A. tumefaciens strain LBA4404, containing the binary vector pBI121, along with the gusA reporter gene with intron under the transcriptional control of the Cauliflower Mosaic Virus (CaMV) 35S promoter and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Various parameters like optimization of kanamycin concentration (200 mg/l) for selection, standardization of cocultivation time (45 min) and acetosyringone concentration (150 μM) for obtaining higher transformation frequency were established using hypocotyl explants. The selected putative transgenic shoots were subsequently rooted on the Murashige and Skoog medium and transferred to the green house successfully. The plants were characterised by analysing the gus expression, amplification of 600 bp npt II fragment and Southern blot

  9. The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes.

    PubMed

    Rakosy-Tican, Elena; Aurori, Cristian M; Dijkstra, Camelia; Thieme, Ramona; Aurori, Adriana; Davey, Michael R

    2007-05-01

    Potato is one of the main targets for genetic improvement by gene transfer. The aim of the present study was to establish a robust protocol for the genetic transformation of three dihaploid and four economically important cultivars of potato using Agrobacterium tumefaciens carrying the in vivo screenable reporter gene for green fluorescent protein (gfp) and the marker gene for neomycin phosphotransferase (nptII). Stem and leaf explants were used for transformation by Agrobacterium tumefaciens strain LBA4404 carrying the binary vector pHB2892. Kanamycin selection, visual screening of GFP by epifluorescent microscopy, PCR amplification of nptII and gfp genes, as well as RT-PCR and Southern blotting of gfp and Northern blotting of nptII, were used for transgenic plant selection, identification and analysis. Genetic transformation was optimized for the best performing genotypes with a mean number of shoots expressing gfp per explant of 13 and 2 (dihaploid line 178/10 and cv. 'Baltica', respectively). The nptII marker and gfp reporter genes permitted selection and excellent visual screening of transgenic tissues and plants. They also revealed the effects of antibiotic selection on organogenesis and transformation frequency, and the identification of escapes and chimeras in all potato genotypes. Silencing of the gfp transgene that may represent site-specific inactivation during cell differentiation, occurred in some transgenic shoots of tetraploid cultivars and in specific chimeric clones of the dihaploid line 178/10. The regeneration of escapes could be attributed to either the protection of non-transformed cells by neighbouring transgenic cells, or the persistence of Agrobacterium cells in plant tissues after co-cultivation.

  10. Hairy root cultures of butterfly pea (Clitoria ternatea L.): Agrobacterium × plant factors influencing transformation.

    PubMed

    Swain, S S; Sahu, L; Pal, A; Barik, D P; Pradhan, C; Chand, P K

    2012-02-01

    Transformed rhizoclones were developed from Agrobacterium-treated explants of the medicinally important twinning legume Clitoria ternatea L. Several key factors influencing transformation events were optimized. A4T was the most infectious among the strains employed. Internode segments were more responsive than leaves, outdoor-grown explants preferred to those from in vitro cultures. High frequency transformation, resulting in up to 85.8% rhizogenesis, was attained using pre-pricked internodal explants for immersion (10 min) in Agrobacterium rhizogenes suspension grown overnight with acetosyringone (100 μM) to an OD(660) ≅ 0.6, diluted to a density of 10(9) cells ml(-1), followed by 5-day co-cultivation. Roots were individually cultured in MS0 supplemented with the bacteriostatic antibiotic cefotaxime (500 μg ml(-1)). Rhizoclones were renewed through successive subcultures in MS0 under diffused illumination. The T ( L )-DNA rolB and rolC ORF were detected in rhizoclones through PCR amplification. The T ( R )-DNA gene encoding mannopine synthase (man2) was revealed by positive amplification and opine gene expression substantiated by agropine and mannopine biosynthesis in all selected transformed rhizoclones. The implication of such findings is discussed on the context of utilization of such genetically transformed root cultures towards sustainable production of medicinally useful phytocompounds, besides providing a means for plant conservation.

  11. Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos.

    PubMed

    Jube, Sandro; Borthakur, Dulal

    2009-01-01

    The tree-legume Leucaena leucocephala (leucaena) is used as a perennial fodder because of its fast-growing foliage, which is high in protein content. The use of leucaena as a fodder is however restricted due to the presence of the toxin mimosine. Improvements in the nutritional contents as well as other agronomic traits of leucaena can be accomplished through genetic transformation. The objective of this research was to develop a transformation protocol for leucaena using phosphinothricin resistance as the plant selectable marker. Explants obtained from immature zygotic embryos infected with the Agrobacterium tumefaciens strain C58C1 containing the binary plasmid pCAMBIA3201 produced four putative transformed leucaena plants. Transformation was con- firmed by PCR, RT-PCR, Southern blot, Western analyses, GUS-specific enzyme activity and herbicide leaf spraying assay. A transformation efficiency of 2% was established using this protocol.

  12. Identification of genes associated with asexual reproduction in Phyllosticta citricarpa mutants obtained through Agrobacterium tumefaciens transformation.

    PubMed

    Goulin, Eduardo Henrique; Savi, Daiani Cristina; Petters, Desirrê Alexia Lourenço; Kava, Vanessa; Galli-Terasawa, Lygia; Silva, Geraldo José; Glienke, Chirlei

    2016-11-01

    Phyllosticta citricarpa is the epidemiological agent of Citrus Black Spot (CBS) disease, which is responsible for large economic losses worldwide. CBS is characterized by the presence of spores (pycnidiospores) in dark lesions of fruit, which are also responsible for short distance dispersal of the disease. The identification of genes involved in asexual reproduction of P. citricarpa can be an alternative for directional disease control. We analyzed a library of mutants obtained through Agrobacterium tumefaciens transformation system, looking for alterations in growth and reproductive structure formation. Two mutant strains were found to have lost the ability to form pycnidia. The flanking T-DNA insertion regions were identified on P. citricarpa genome by using blast analysis and further gene prediction. The predicted genes containing the T-DNA insertions were identified as Spindle Poison Sensitivity Scp3, Ion Transport protein, and Cullin Binding proteins. The Ion Transport and Cullin Binding proteins are known to be correlated with sexual and asexual reproduction in fungi; however, the exact mechanism by which these proteins act on spore formation in P. citricarpa needs to be better characterized. The Scp3 proteins are suggested here for the first time as being associated with asexual reproduction in fungus. This protein is associated with microtubule formation, and as microtubules play an essential role as spindle machinery for chromosome segregation and cytokinesis, insertions in this gene can lead to abnormal formations, such as that observed here in P. citricarpa. We suggest these genes as new targets for fungicide development and CBS disease control, by iRNA.

  13. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal

    PubMed Central

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703

  14. Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.).

    PubMed

    Patil, Gunvant; Deokar, Amit; Jain, P K; Thengane, R J; Srinivasan, R

    2009-11-01

    To develop an alternative genetic transformation system that is not dependent on an antibiotic selection strategy, the phosphomannose isomerase gene (pmi) system was evaluated for producing transgenic plants of chickpea (Cicer arietinum L.). A shoot morphogenesis protocol based on the thidiazuron (TDZ)-induced shoot morphogenesis system was combined with Agrobacterium-mediated transformation of the pmi gene and selection of transgenic plants on mannose. Embryo axis explants of chickpea cv. C-235 were grown on a TDZ-supplemented medium for shoot proliferation. Embryo axis explants from which the first and second flush of shoots were removed were transformed using Agrobacterium carrying the pmi gene, and emerging shoots were allowed to regenerate on a zeatin-supplemented medium with an initial selection pressure of 20 g l(-1) mannose. Rooting was induced in the selected shoots on an indole-3-butyric acid (IBA)-supplemented medium with a selection pressure of 15 g l(-1) mannose. PCR with marker gene-specific primers and chlorophenol red (CPR) assay of the shoots indicated that shoots had been transformed. RT-PCR and Southern analysis of selected regenerated plants further confirmed integration of the transgene into the chickpea genome. These positive results suggest that the pmi/mannose selection system can be used to produce transgenic plants of chickpea that are free from antibiotic resistance marker genes.

  15. Variation in hormone autonomy and regenerative potential of cells transformed by strain A66 of Agrobacterium tumefaciens

    SciTech Connect

    Binns, A.N.; Sciaky, D.; Wood, H.N.

    1982-12-01

    Mutant Agrobacterium tumefaciens strain A66 is shown to differ from its wild-type progenitor (strain A6) by a spontaneous 2.7 kb DNA insert into the T-DNA region of its Ti plasmid. Tobacco stems transformed by A66 exhibit an attenuated response characterized by slow growth and shoot proliferation. Clonal analysis demonstrates that this response is due to an alteration in the growth and regenerative potential of transformed cells, rather than to variation in the frequency of fully autonomous cells within the primary tumor. Cloned A66 transformed tobacco cells exhibit an auxin requirement for growth that can be overcome by shoot proliferation. Other host species, however, may complement the A66 mutation yielding fully auxin-independent tumors when transformed by this bacterium.

  16. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus.

    PubMed

    Park, Byong-Jin; Liu, Zaochang; Kanno, Akira; Kameya, Toshiaki

    2005-10-01

    A protocol for producing transgenic radish (Raphanus sativus) was obtained by using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation. The Agrobacterium strain LBA4404 contained the binary vector pBI121-LEA (late embyogenesis abundant), which carried a Group 3 LEA gene, from Brassica napus. Among six combinations, Agrobacterium-mediated transformation assisted by a combination of 5-min sonication with 5-min vacuum infiltration resulted in the highest transformation frequency. The existence, integration and expression of transferred LEA gene in transgenic T(1) plants were confirmed by PCR, genomic Southern and Western blot analysis. Transgenic radish demonstrated better growth performance than non-transformed control plants under osmotic and salt stress conditions. Accumulation of Group 3 LEA protein in the vegetative tissue of transgenic radish conferred increased tolerance to water deficit and salt stress.

  17. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.

    PubMed

    Yevtushenko, Dmytro P; Misra, Santosh

    2010-03-01

    Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.

  18. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    PubMed

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  19. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF.

    PubMed

    Niu, Xiaolei; Zhou, Meiliang; Henkel, Christiaan V; van Heusden, G Paul H; Hooykaas, Paul J J

    2015-12-01

    During Agrobacterium tumefaciens-mediated transformation of plant cells a part of the tumour-inducing plasmid, T-DNA, is integrated into the host genome. In addition, a number of virulence proteins are translocated into the host cell. The virulence protein VirE3 binds to the Arabidopsis thaliana pBrp protein, a plant-specific general transcription factor of the TFIIB family. To study a possible role for VirE3 in transcriptional regulation, we stably expressed virE3 in A. thaliana under control of a tamoxifen-inducible promoter. By RNA sequencing we showed that upon expression of virE3 the RNA levels of 607 genes were increased more than three-fold and those of 132 genes decreased more than three-fold. One of the strongly activated genes was that encoding VBF (At1G56250), an F-box protein that may affect the levels of the VirE2 and VIP1 proteins. Using Arabidopsis cell suspension protoplasts we showed that VirE3 stimulates the VBF promoter, especially when co-expressed with pBrp. Although pBrp is localized at the external surface of plastids, co-expression of VirE3 and pBrp in Arabidopsis cell suspension protoplasts resulted in the accumulation of pBrp in the nucleus. Our results suggest that VirE3 affects the transcriptional machinery of the host cell to favour the transformation process.

  20. Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules.

    PubMed

    Holme, Inger Baeksted; Brinch-Pedersen, Henrik; Lange, Mette; Holm, Preben Bach

    2008-12-01

    Most cultivars of higher plants display poor regeneration capacity of explants due to yet unknown genotypic determined mechanisms. This implies that technologies such as transformation often are restricted to model cultivars with good tissue characteristics. In the present paper, we add further evidence to our previous hypothesis that regeneration from young barley embryos derived from in vitro-cultured ovules is genotype independent. We investigated the ovule culture ability of four cultivars Femina, Salome, Corniche and Alexis, known to have poor response in other types of tissue culture, and compared that to the data for the model cultivar, Golden Promise. Subsequently, we analyzed the transformation efficiencies of the four cultivars using the protocol for Agrobacterium infection of ovules, previously developed for Golden Promise. Agrobacterium tumefaciens strain AGL0, carrying the binary vector pVec8-GFP harboring a hygromycin resistance gene and the green fluorescence protein (GFP) gene, was used for transformation. The results strongly indicate that the tissue culture response level in ovule culture is genotype independent. However, we did observe differences between cultivars with respect to frequencies of GFP-expressing embryos and frequencies of regeneration from the GFP-expressing embryos under hygromycin selection. The final frequencies of transformed plants per ovule were lower for the four cultivars than that for Golden Promise but the differences were not statistically significant. We conclude that ovule culture transformation can be used successfully to transform cultivars other than Golden Promise. Similar to that observed for Golden Promise, the ovule culture technique allows for the rapid and direct generation of high quality transgenic plants.

  1. An Agrobacterium tumefaciens Strain with Gamma-Aminobutyric Acid Transaminase Activity Shows an Enhanced Genetic Transformation Ability in Plants

    PubMed Central

    Nonaka, Satoko; Someya, Tatsuhiko; Zhou, Sha; Takayama, Mariko; Nakamura, Kouji; Ezura, Hiroshi

    2017-01-01

    Agrobacterium tumefaciens has the unique ability to mediate inter-kingdom DNA transfer, and for this reason, it has been utilized for plant genetic engineering. To increase the transformation frequency in plant genetic engineering, we focused on gamma-aminobutyric acid (GABA), which is a negative factor in the Agrobacterium-plant interaction. Recent studies have shown contradictory results regarding the effects of GABA on vir gene expression, leading to the speculation that GABA inhibits T-DNA transfer. In this study, we examined the effect of GABA on T-DNA transfer using a tomato line with a low GABA content. Compared with the control, the T-DNA transfer frequency was increased in the low-GABA tomato line, indicating that GABA inhibits T-DNA transfer. Therefore, we bred a new A. tumefaciens strain with GABA transaminase activity and the ability to degrade GABA. The A. tumefaciens strain exhibited increased T-DNA transfer in two tomato cultivars and Erianthus arundinacues and an increased frequency of stable transformation in tomato. PMID:28220841

  2. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation

    PubMed Central

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D.; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of “clean” GM wheat containing only the foreign genes of agronomic importance. PMID:27708648

  3. Agrobacterium-mediated transformation of Mexican lime (Citrus aurantifolia Swingle) using optimized systems for epicotyls and cotelydons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epicotyl and internodal stem segments provide the predominantly used explants for regeneration of transgenic citrus plants following co-cultivation with Agrobacterium. Previous reports using epicotyls segments from Mexican lime have shown low affinity for Agrobacterium tumefaciens infection which re...

  4. Transgenic plants from shoot apical meristems of Vitis vinifera L. "Thompson Seedless" via Agrobacterium-mediated transformation.

    PubMed

    Dutt, M; Li, Z T; Dhekney, S A; Gray, D J

    2007-12-01

    Shoot apical meristem explants of Vitis vinifera "Thompson Seedless" were used for Agrobacterium-mediated genetic transformation. It was determined that the meristems had to be subjected to a dark growth phase then wounded to obtain transgenic plants. Morphological and histological studies illustrated the role of wounding to expose apical meristem cells for transformation. A bifunctional egfp/nptII fusion gene was used to select kanamycin resistant plants that expressed green fluorescent protein (GFP). Kanamycin at a concentration of 16 mg L(-1) in selection medium resulted in recovery of non-chimeric transgenic plants that uniformly expressed GFP, whereas 8 mg L(-1) kanamycin allowed non-transgenic and/or chimeric plants to develop. Polymerase chain reaction (PCR) and Southern blot analyses confirmed the presence of transgenes and their stable integration into the genome of regenerated plants. Up to 1% of shoot tips produced stable transgenic cultures within 6 weeks of treatment, resulting in a total of 18 independent lines.

  5. 2-Acetyl-1-pyrroline augmentation in scented indica rice (Oryza sativa L.) varieties through Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) gene transformation.

    PubMed

    Kaikavoosi, Kayghobad; Kad, Trupti D; Zanan, Rahul L; Nadaf, Altafhusain B

    2015-12-01

    2-Acetyl-1-pyrroline (2AP) has been identified as a principal aroma compound in scented rice varieties. Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS) gene is reported to regulate the proline synthesis in plants and acts as the precursor of 2AP. Two scented indica rice varieties, namely Ambemohar 157 and Indrayani, were subjected to Agrobacterium tumefaciens-mediated genetic transformation containing P5CS gene. Overexpression of P5CS led to a significant increase in proline, P5CS enzyme activity and 2AP levels in transgenic calli, vegetative plant parts, and seeds over control in both the varieties. 2AP level increased more than twofold in transgenic seeds in both varieties. This is the first report of enhancement in 2AP content through overexpression of using P5CS gene, indicating the role of proline as a precursor amino acid in the biosynthesis of 2AP in scented rice.

  6. Transformation of apple ( Malus domestica Borkh.) with the stilbene synthase gene from grapevine ( Vitis vinifera L.) and a PGIP gene from kiwi ( Actinidia deliciosa).

    PubMed

    Szankowski, I; Briviba, K; Fleschhut, J; Schönherr, J; Jacobsen, H-J; Kiesecker, H

    2003-09-01

    The objective of the present research was to introduce genes with antifungal potential into the commercially important apple cvs. Elstar and Holsteiner Cox in order to establish resistance against fungal diseases. The gene encoding the stilbene synthase (Vst1) from Vitis vinifera L., responsible for the synthesis of the phytoalexin resveratrol in grapevine, and the gene for a polygalacturonase-inhibiting protein (PGIP) from kiwi ( Actinidia deliciosa) were transferred into Holsteiner Cox and Elstar via Agrobacterium tumefaciens-mediated transformation. A total of nine transgenic Holsteiner Cox clones and one transgenic E clone carrying the stilbene-synthase gene as well as three transgenic Holsteiner Cox lines harbouring the polygalacturonase-inhibiting protein from Kiwi were identified via polymerase chain reaction and Southern blot analysis. High performance liquid chromatography analysis revealed the accumulation of a resveratrol-derivate, a glycoside, in transgenic Vst1 plants.

  7. Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants.

    PubMed

    Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita

    2011-05-01

    We have developed an efficient transformation system for Bacopa monnieri, an important Indian medicinal plant, using Agrobacterium rhizogenes strains LBA 9402 and A4. Transformed roots induced by strain LBA 9402 spontaneously dedifferentiated to callus while excised roots induced by strain A4 spontaneously showed induction of shoot buds within 10 days. PCR and RT-PCR analysis revealed the presence and expression of the rolAB and rolC genes at the transcription level in pRi A4 transformed cultures indicating that the TL-DNA was integrated retained and expressed in the A4-Ri transformed shoots. Transformed calli showed the presence of rolAB or rol A, TR and ags genes. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes. Growth and biomass accumulation was significantly higher in the transformed shoots (twofold) and roots (fourfold) than in the non-transformed (WT) plants. In pRi A4-transformed plants, the content of bacopasaponin D, bacopasaponin F, bacopaside II and bacopaside V was enhanced significantly as compared to WT plants of similar age while bacoside A3 and bacopasaponin C content was comparable with that of WT plants. Significant increase in content of five bacopa saponins could be detected in pRi 9402-transformed callus cultures. There is an overall stimulatory effect on accumulation of bacopa saponins in transformed plants and cells of B. monnieri establishing the role of endogenous elicitation by Ri T-DNA of A. rhizogenes.

  8. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).

    PubMed

    Swain, Swasti S; Rout, Kedar K; Chand, Pradeep K

    2012-10-01

    Independent transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) were established using explant co-cultivation with Agrobacterium rhizogenes. Rhizoclones capable of sustained growth were maintained under low illumination in auxin-free agar-solidified MS medium through subcultures at periodic intervals. Integration of T(L)-DNA rolB gene in the transformed rhizoclone genome was verified by Southern blot hybridization, and the transcript expression of T(R)-DNA ags and man2 genes was ascertained by reverse transcription polymerase chain reaction analysis. The major compound isolated and purified from the transformed root extracts was identified as the pentacyclic triterpenoid compound taraxerol using IR, (1)H-NMR, and (13)C-NMR spectroscopy. The taraxerol yield in cultured hairy roots, as quantified by HPTLC analysis, was up to 4-fold on dry weight basis compared to that in natural roots. Scanning of bands from cultured transformed roots and natural roots gave super-imposable spectra with standard taraxerol, suggesting a remarkable homology in composition. To date, this is the first report claiming production of the cancer therapeutic phytochemical taraxerol in genetically transformed root cultures as a viable alternative to in vivo roots of naturally occurring plant species.

  9. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) shoot apex with a fungal phytase gene improves phosphorus acquisition.

    PubMed

    Ma, Zhiying; Liu, Jianfeng; Wang, Xingfen

    2013-01-01

    Cotton is an important world economic crop plant. It is considered that cotton is recalcitrant to in vitro proliferation. Somatic embryogenesis and plant regeneration has been successful by using hypocotyl, whereas it is highly genotype dependent. Here, a genotype-independent cotton regeneration protocol from shoot apices is presented. Shoot apices from 3- to 5-day-old seedlings of cotton are infected with an Agrobacterium strain, EHA105, carrying the binary vector pC-KSA contained phytase gene (phyA) and the marker gene neomycin phosphotransferase (NPTII), and directly regenerated as shoots in vitro. Rooted shoots can be obtained within 6-8 weeks. Plants that survived by leaf painting kanamycin (kan) were -further analyzed by DNA and RNA blottings. The transgenic plants with increased the phosphorus (P) acquisition efficiency were obtained following the transformation method.

  10. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.).

    PubMed

    Zhang, C L; Chen, D F; McCormac, A C; Scott, N W; Elliott, M C; Slater, A

    2001-02-01

    Molecular approaches to sugar beet improvement will benefit from an efficient transformation procedure that does not rely upon exploitation of selectable marker genes such as those which confer antibiotic or herbicide resistance upon the transgenic plants. The expression of the green fluorescent protein (GFP) signal has been investigated during a program of research that was designed to address the need to increase the speed and efficiency of selection of sugar beet transformants. It was envisaged that the GFP reporter could be used initially as a supplement to current selection regimes in order to help eliminate "escapes" and perhaps eventually as a replacement marker in order to avoid the public disquiet associated with antibiotic/herbicide-resistance genes in field-released crops. The sgfp-S65T gene has been modified to have a plant-compatible codon usage, and a serine to threonine mutation at position 65 for enhanced fluorescence under blue light. This gene, under the control of the CaMV 35S promoter, was introduced into sugar beet via Agrobacterium-mediated transformation. Early gene expression in cocultivated sugar beet cultures was signified by green fluorescence several days after cocultivation. Stably transformed calli, which showed green fluorescence at a range of densities, were obtained at frequencies of 3-11% after transferring the inoculated cultures to selection media. Cocultivated shoot explants or embryogenic calli were regularly monitored under the microscope with blue light when they were transferred to media without selective agents. Green fluorescent shoots were obtained at frequencies of 2-5%. It was concluded that the sgfp-S65T gene can be used as a vital marker for noninvasive screening of cells and shoots for transformation, and that it has potential for the development of selectable marker-free transgenic sugar beet.

  11. Stable transformation of Mesembryanthemum crystallinum (L.) with Agrobacterium rhizogenes harboring the green fluorescent protein targeted to the endoplasmic reticulum.

    PubMed

    Konieczny, Robert; Obert, Bohuš; Bleho, Juraj; Novák, Ondřej; Heym, Claudia; Tuleja, Monika; Müller, Jens; Strnad, Miroslav; Menzel, Diedrik; Samaj, Jozef

    2011-05-01

    Stable transformation of Mesembryanthemum crystallinum L. (common ice plant) with a green fluorescent protein (GFP) construct targeted to the endoplasmic reticulum was obtained. Seven and fourteen days after germination seedlings were infected with Agrobacterium rhizogenes strain ARqua1 either by direct coating of the cut radicles with bacteria growing on solid medium or by immersion of the cut surface in bacterial suspension at different optical densities. Both methods of infection resulted in production of GFP-positive roots with a frequency ranging from 6 to 20% according to the age of the explants and the application procedure. The green fluorescing roots displayed the typical hairy root phenotype and were easily maintained in liquid medium without growth regulators for over 2 years. Stable expression of the transgene in the roots was confirmed by polymerase chain reaction (PCR), immunoblotting and the capacity of roots to grow and produce callus on kanamycin-enriched medium. Nineteen endogenous cytokinins were determined in transgenic and non-transformed roots. The results revealed significantly lower levels of the free bases of isopentenyladenine, dihydrozeatin, cis- and trans-zeatin, as well as a conspicuous decline in concentrations of the corresponding nucleosides and most nucleotides in transgenic roots compared to the wild type. Comparison of the cytokinin profiles in transgenic and non-transformed roots suggested that transformation by A. rhizogenes disturbed cytokinin metabolism during the early steps of biosynthesis. Calli obtained from transformed roots were GFP-positive and remained non-regenerative or displayed high rhizogenic potential depending on the auxin/cytokinin ratio in the medium. Calli and callus-derived roots showed a strong GFP signal for over 2 years.

  12. Artemisia tilesii Ledeb hairy roots establishment using Agrobacterium rhizogenes-mediated transformation.

    PubMed

    Matvieieva, N A; Shakhovsky, A M; Belokurova, V B; Drobot, K O

    2016-05-18

    An efficient and rapid protocol for the establishment of Artemisia tilesii "hairy" root culture is reported. Leaf explants of aseptically growing plants were cocultured with Agrobacterium rhizogenes A4 wild strain or A. rhizogenes carrying the plasmids with nptII and ifn-α2b genes. Root formation on the explants started in 5-6 days after their cocultivation with bacterial suspension. Prolongation of explant cultivation time on the medium without cefotaxime led to stimulation of root growth. The effects of sucrose concentration as well as of the levels of synthetic indole-3-butyric acid (IBA) and native growth regulator Emistim on the stimulation of A. tilesii "hairy" root growth were studied. Maximum stimulating effect both for the control and for transgenic roots was observed in case of root cultivation on the media supplemented with IBA-up to 7.95- and 9.1-fold biomass increase, respectively. Cultivation on the medium with 10 μl/L Emistime has also led to the control roots growth stimulation (up to 2.75-fold). Emistime at 5 μl/L concentration led to 5.46-fold mass increase in only one "hairy" root line. Higher sucrose content (40 g/L) stimulated growth of two hairy root lines but had no effect on growth of the control roots.

  13. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi.

    PubMed

    Lin, Xinping; Liu, Sasa; Bao, Ruiqi; Gao, Ning; Zhang, Sufang; Zhu, Rongqian; Zhao, Zongbao Kent

    2017-04-06

    Oleaginous yeast Lipomyces starkeyi, a promising strain of great biotechnical importance, is able to accumulate over 60% of its cell biomass as triacylglycerols (TAGs). It is promising to directly produce the derivatives of TAGs, such as long-chain fatty acid methyl esters and alkanes, in L. starkeyi. However, techniques for genetic modification of this oleaginous yeast are lacking, thus, further research is needed to develop genetic tools and functional elements. Here, we used two exogenous promoters (pGPD and pPGK) from oleaginous yeast Rhodosporidium toruloides to establish a simpler Agrobacterium-mediated transformation (AMT) method for L. starkeyi. Hygromycin-resistant transformants were obtained on antibiotic-contained plate. Mitotic stability test, genotype verification by PCR, and protein expression confirmation all demonstrated the success of this method. Furthermore, the strength of these two promoters was evaluated at the phenotypic level on a hygromycin-gradient plate and at the transcriptional level by real-time quantitative PCR. The PGK promoter strength was 2.2-fold as that of GPD promoter to initiate the expression of the hygromycin-resistance gene. This study provided an easy and efficient genetic manipulation method and elements of the oleaginous yeast L. starkeyi for constructing superior strains to produce advanced biofuels.

  14. Production of purple-colored creeping bentgrass using maize transcription factor genes Pl and Lc through Agrobacterium-mediated transformation.

    PubMed

    Han, Yun-Jeong; Kim, Yong-Min; Lee, Jee-Yeon; Kim, Soo Jung; Cho, Kyu-Chang; Chandrasekhar, Thummala; Song, Pill-Soon; Woo, Young-Min; Kim, Jeong-Il

    2009-03-01

    Purple-colored transgenic creeping bentgrass (Agrostis stolonifera L.) plants were developed for ornamental purpose by means of Agrobacterium-mediated transformation. Embryogenic creeping bentgrass calli were transformed with the pCAMBIA 3301 vector harboring maize (Zea mays) flavonoid/anthocyanin biosynthetic pathway transcription factor genes, Lc (Leaf color) and Pl (Purple leaf), individually and in combination, and three types of putative transgenic plants (Lc, Pl, and Lc + Pl) were generated. Genomic integration and expression of the transgenes were confirmed by Southern and northern blot analyses, respectively. The transgenic creeping bentgrass plants expressing both Lc and Pl genes were entirely purple, whereas those expressing Pl alone had purple stems and those expressing Lc alone lacked purple pigmentation in adult plants. The anthocyanin content was estimated in all the three types of transgenic plant and correlated well with the degree of purple coloration observed. These results suggest that both Lc and Pl genes are necessary and sufficient to confer purple coloration to creeping bentgrass.

  15. Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation.

    PubMed

    Tanaka, Hidenori; Toyama, Jun; Hashiguchi, Masatsugu; Kutsuna, Yasuyo; Tsuruta, Shin-ichi; Akashi, Ryo; Hoffmann, Franz

    2008-08-25

    Super-growing roots (superroots; SR), which have been established in the legume species Lotus corniculatus, are a fast-growing root culture that allows continuous root cloning, direct somatic embryogenesis and mass regeneration of plants under entirely growth regulator-free culture conditions. These features are unique for non-hairy root cultures, and they are now stably expressed since the culture was isolated more than 10 years ago (1997). Attempts to achieve direct and stable transformation of SR turned out to be unsuccessful. Making use of the supple regeneration plasticity of SR, we are reporting here an indirect transformation protocol. Leaf explants, derived from plants regenerated from SR, were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pBI121, which contains the neomycin phosphotransferase II (NPTII) and beta-glucuronidase (GUS) genes as selectable and visual markers, respectively. After co-cultivation, the explants were selected on solidified MS medium with 0.5 mg/L benzylamino purine (BAP), 100 mg/L kanamycin and 250 mg/L cefotaxime. Kanamycin-resistant calli were transferred to liquid rooting medium. The newly regenerated, kanamycin-resistant roots were harvested and SR cultures re-established, which exhibited all the characteristics of the original SR. Furthermore, kanamycin-resistant roots cultured onto solidified MS medium supplemented with 0.5 mg/L BAP produced plants at the same rate as control SR. Six months after gene transfer, PCR analysis and histochemical locating indicated that the NPTII gene was integrated into the genome and that the GUS gene was regularly expressed in leaves, roots and nodules, respectively. The protocol makes it now possible to produce transformed SR and nodules as well as transgenic plants from transformed SR.

  16. A new high-frequency Agrobacterium-mediated transformation technique for Sesamum indicum L. using de-embryonated cotyledon as explant.

    PubMed

    Chowdhury, Supriyo; Basu, Arpita; Kundu, Surekha

    2014-09-01

    In spite of the economic importance of sesame (Sesamum indicum L.) and the recent availability of its genome sequence, a high-frequency transformation protocol is still not available. The only two existing Agrobacterium-mediated transformation protocols that are available have poor transformation efficiencies of less than 2%. In the present study, we report a high-frequency, simple, and reproducible transformation protocol for sesame. Transformation was done using de-embryonated cotyledons via somatic embryogenic stages. All the critical parameters of transformation, like incubation period of explants in pre-regeneration medium prior to infection by Agrobacterium tumefaciens, cocultivation period, concentrations of acetosyringone in cocultivation medium, kanamycin concentration, and concentration of plant hormones, including 6-benzylaminopurine, have been optimized. This protocol is superior to the two existing protocols in its high regeneration and transformation efficiencies. The transformed sesame lines have been tested by PCR, RT-PCR for neomycin phosphotransferase II gene expression, and β-glucuronidase (GUS) assay. The regeneration frequency and transformation efficiency are 57.33 and 42.66%, respectively. T0 and T1 generation transgenic plants were analyzed, and several T1 plants homozygous for the transgenes were obtained.

  17. Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis.

    PubMed

    Auyong, Adelene Shu Mei; Ford, Rebecca; Taylor, Paul William James

    2012-08-01

    An Agrobacterium tumefaciens -mediated transformation (ATMT) system was successfully developed for Colletotrichum truncatum, the causal agent of chili anthracnose. A. tumefaciens carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (gfp) gene was used to transform the conidiospores of two C. truncatum pathotypes F8-3B and BRIP26974. Optimum transformation efficiency was obtained when equal volumes of A. tumefaciens strain AGL1 carrying either pJF1 or pPK2 binary vector was used to transform C. truncatum conidiospores at 10(6) /ml and co-cultivated at 24 °C for three days. Southern blot analysis indicated that 87.5% of the transformants contained randomly inserted, single copies of the T-DNA. Infection and colonisation of chili fruit at the mature red stage with F8-3B-GFP and BRIP26974-GFP confirmed the maintenance of virulence within these transformed pathotypes. In situ studies of infection and colonisation of the susceptible genotype fruit using fluorescent microscopy and transformed isolates of C. truncatum expressing GFP revealed that the pathogen was able to colonise healthy fruit tissue intercellularly in an endophytic manner without producing secondary biotrophic infection structures. The developed transformation system will be used to study the function of pathogenicity genes in C. truncatum using both forward and reverse genetics approaches.

  18. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation.

    PubMed

    Ye, Xudong; Chen, Yurong; Wan, Yuechun; Hong, Yun-Jeong; Ruebelt, Martin C; Gilbertson, Larry A

    2016-03-01

    KEY MESSAGE : virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement. Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells.

  19. Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of anise (Pimpinella anisum L.).

    PubMed

    Andarwulan, N; Shetty, K

    1999-04-01

    To investigate the role of differentiation of anise tissue cultures on total phenolic and anethole contents, benzylaminopurine- and thidiazuron-induced shoot cultures were generated from roots of the A-8 clonal line and its Agrobacterium rhizogenes-induced genetically transformed derivative JB-10. Embryogenic cultures were induced following 2,4-D treatment. Root cultures were multiplied on hormone-free medium. The effect of proline on differentiation and phenolic synthesis was also investigated. GC/MS studies indicate that anethole was not produced in root or other differentiated cultures. The predominant phenolic metabolite, however, was an anethole precursor, epoxypseudoisoeugenol-2-methylbutyrate (EPB). Total phenolics and EPB contents were highest in root cultures, which also correlated with higher proline content. Embryo and shoot cultures had reduced phenolic level and EPB and proline contents. Antioxidant activity in all differentiating cultures was high on day 60 compared to that on day 30, and there was no significant difference between differentiating tissues. This indicated that antioxidant protection might be linked not only to phenolics but to other nonphenolic metabolites as well.

  20. Identifying a Carotenoid Cleavage Dioxygenase 4a Gene and Its Efficient Agrobacterium-Mediated Genetic Transformation in Bixa orellana L.

    PubMed

    Sankari, Mohan; Hemachandran, Hridya; Anantharaman, Amirtha; Babu, Subramanian; Madrid, Renata Rivera; C, George Priya Doss; Fulzele, Devanand P; Siva, Ramamoorthy

    2016-07-01

    Carotenoids are metabolized to apocarotenoids through the pathway catalysed by carotenoid cleavage oxygenases (CCOs). The apocarotenoids are economically important as it is known to have therapeutic as well as industrial applications. For instance, bixin from Bixa orellana and crocin from Crocus sativus are commercially used as a food colourant and cosmetics since prehistoric time. In our present study, CCD4a gene has been identified and isolated from leaves of B. orellana for the first time and named as BoCCD4a; phylogenetic analysis was carried out using CLUSTAL W. From sequence analysis, BoCCD4a contains two exons and one intron, which was compared with the selected AtCCD4, RdCCD4, GmCCD4 and CmCCD4a gene. Further, the BoCCD4a gene was cloned into pCAMBIA 1301, transformed into Agrobacterium tumefaciens EHA105 strain and subsequently transferred into hypocotyledons and callus of B. orellana by agro-infection. Selection of stable transformation was screened on the basis of PCR detection by using GUS and hptII specific primer, which was followed by histochemical characterization. The percent transient GUS expression in hypocotyledons and callus was 84.4 and 80 %, respectively. The expression of BoCCD4a gene in B. orellana was confirmed through RT-PCR analysis. From our results, the sequence analysis of BoCCD4a gene of B. orellana was closely related to the CsCCD4 gene of C. sativus, which suggests this gene may have a role in various processes such as fragrance, insect attractant and pollination.

  1. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease.

    PubMed

    Elayabalan, Sivalingam; Kalaiponmani, Kalaimughilan; Subramaniam, Sreeramanan; Selvarajan, Ramasamy; Panchanathan, Radha; Muthuvelayoutham, Ramlatha; Kumar, Krish K; Balasubramanian, Ponnuswami

    2013-04-01

    One of the most severe viral diseases of hill banana is caused by banana bunchy top virus (BBTV), a nanovirus transmitted by the aphid Pentalonia nigronervosa. In this study, we reported the Agrobacterium-mediated transformation on a highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. The target of the RNA interference (RNAi) is the rep gene, encoded by the BBTV-DNA1. In order to develop RNAi construct targeting the BBTV rep gene, the full-length rep gene of 870 bp was polymerase chain reaction amplified from BBTV infected hill banana sample DNA, cloned and confirmed by DNA sequencing. The partial rep gene fragment was cloned in sense and anti sense orientation in the RNAi intermediate vector, pSTARLING-A. After cloning in pSTARLING-A, the cloned RNAi gene cassette was released by NotI enzyme digestion and cloned into the NotI site of binary vector, pART27. Two different explants, embryogenic cells and embryogenic cell suspension derived microcalli were used for co-cultivation. Selection was done in presence of 100 mg/L kanamycin. In total, 143 putative transgenic hill banana lines were generated and established in green house condition. The presence of the transgenes was confirmed in the selected putative transgenic hill banana lines by PCR and reverse transcription PCR analyses. Transgenic hill banana plants expressing RNAi-BBTV rep were obtained and shown to resist infection by BBTV. The transformed plants are symptomless, and the replication of challenge BBTV almost completely suppressed. Hence, the RNAi mediating resistances were shown to be effective management of BBTV in hill banana.

  2. A genetic screen for bioluminescence genes in the fungus Armillaria mellea, through the use of Agrobacterium tumefaciens-mediated random insertional mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioluminescence is reported from 71 saprobic species of fungi from four, distant lineages in the order Agaricales. Analyses of the fungal luminescent chemistry shows that all four lineages share a functionally conserved substrate and luciferase, indicating that the bioluminescent pathway is likely c...

  3. Setaria viridis floral-dip: A simple and rapid Agrobacterium-medicated transformation method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Setaria viridis was recently described as a new monocotyledonous model species for C4 photosynthesis research and genetic transformation. It has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements) that make it suitable for use as a model plan...

  4. A protocol for sonication-assisted Agrobacterium rhizogenes-mediated transformation of haploid and diploid sugar beet (Beta vulgaris L.) explants.

    PubMed

    Klimek-Chodacka, Magdalena; Baranski, Rafal

    2014-01-01

    Hairy root cultures obtained after Agrobacterium rhizogenes-mediated genetic transformation can serve as a model system for studying plant metabolism and physiology, or can be utilized for the production of secondary metabolites. So far no efficient protocol of hairy root development in sugar beet has been publically released. In this work, two A. rhizogenes strains (A4T and LBA1334) carrying a binary vector pBIN-m-gfp5-ER or pCAMBIA1301 possessing gfp and uidA reporter genes were used to transform petiole explants of haploid and diploid sugar beet genotypes. Five treatment combinations of sonicated-assisted Agrobacterium-mediated transformation were compared. Hairy roots appeared on 0% to 54% of explants depending on the treatment combination used. The highest frequency was achieved when explants of a diploid genotype were sonicated for 15 s in the inoculum containing A. rhizogenes of OD600=0.5 and then co-cultured for three days. Using the same treatment combinations the explants of haploid genotypes developed hairy roots with the frequency ranging from 10% to 36%. Transformation efficiency was independent on the bacterial strain used. The results indicate that haploid sugar beet explants are amenable to transformation using A. rhizogenes, and that the efficiency of that process can be increased by applying short ultrasound treatment.

  5. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits.

  6. Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) by the inhibition of polyphenolics released during wounding of cotyledonary node explants.

    PubMed

    Yadav, Reena; Mehrotra, Meenakshi; Singh, Aditya K; Niranjan, Abhishek; Singh, Rani; Sanyal, Indraneel; Lehri, Alok; Pande, Veena; Amla, D V

    2017-01-01

    Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) has been performed using cotyledonary node explants (CNs), which release phenolics upon excision that are detrimental to the viability of Agrobacterium tumefaciens and result in low transformation frequency. Twelve low molecular weight phenolic compounds and salicylic acid were identified in the exudates released upon excision during the preparation of cotyledonary nodes by reverse phase high-performance liquid chromatography (RP-HPLC). Zone inhibition assays performed with the explant exudates released at periodic intervals after excision showed the inhibition of A. tumefaciens. Agroinoculation of freshly excised cotyledonary nodes of chickpea showed 98-99 % inhibition of colony forming units (cfu). Osmium tetraoxide fixation of excised tissues showed enhanced accumulation of phenolics in the sub-epidermal regions causing enzymatic browning, affecting the viability and performance of A. tumefaciens for T-DNA delivery. The periodic analysis of exudates released from excised CNs showed enhanced levels of gallic acid (0.2945 ± 0.014 μg/g), chlorogenic acid (0.0978 ± 0.0046 μg/g), and quercetin (0.0971 ± 0.0046 μg/g) fresh weight, which were detrimental to A. tumefaciens. Quantitative assays and the elution profile showed the maximum leaching of phenolics, flavonoids, and salicylic acid immediately after the excision of explants and continued till 4 to 8 h post-excision. Pre-treatment of excised explants with inhibitors of polyphenol oxidase like L-cysteine, DTT, and sodium thiosulfate before co-cultivation showed the recovery of A. tumefaciens cfu, decreased the accumulation of phenolics, and improved transformation frequency. Our results show the hypersensitive response of excision stress for the expression of defense response-related genes and synthesis of metabolites in grain legume chickpea against pathogen infestation including Agrobacterium.

  7. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model.

    PubMed

    Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B; Bailey-Serres, Julia; Brady, Siobhan M

    2014-10-01

    Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.

  8. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system.

    PubMed

    Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju

    2007-10-01

    A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.

  9. Brachypodium sylvaticum, a model for perennial grasses: transformation and inbred line development.

    PubMed

    Steinwand, Michael A; Young, Hugh A; Bragg, Jennifer N; Tobias, Christian M; Vogel, John P

    2013-01-01

    Perennial species offer significant advantages as crops including reduced soil erosion, lower energy inputs after the first year, deeper root systems that access more soil moisture, and decreased fertilizer inputs due to the remobilization of nutrients at the end of the growing season. These advantages are particularly relevant for emerging biomass crops and it is projected that perennial grasses will be among the most important dedicated biomass crops. The advantages offered by perennial crops could also prove favorable for incorporation into annual grain crops like wheat, rice, sorghum and barley, especially under the dryer and more variable climate conditions projected for many grain-producing regions. Thus, it would be useful to have a perennial model system to test biotechnological approaches to crop improvement and for fundamental research. The perennial grass Brachypodiumsylvaticum is a candidate for such a model because it is diploid, has a small genome, is self-fertile, has a modest stature, and short generation time. Its close relationship to the annual model Brachypodiumdistachyon will facilitate comparative studies and allow researchers to leverage the resources developed for B. distachyon. Here we report on the development of two keystone resources that are essential for a model plant: high-efficiency transformation and inbred lines. Using Agrobacterium tumefaciens-mediated transformation we achieved an average transformation efficiency of 67%. We also surveyed the genetic diversity of 19 accessions from the National Plant Germplasm System using SSR markers and created 15 inbred lines.

  10. Brachypodium sylvaticum, a Model for Perennial Grasses: Transformation and Inbred Line Development

    PubMed Central

    Steinwand, Michael A.; Young, Hugh A.; Bragg, Jennifer N.; Tobias, Christian M.; Vogel, John P.

    2013-01-01

    Perennial species offer significant advantages as crops including reduced soil erosion, lower energy inputs after the first year, deeper root systems that access more soil moisture, and decreased fertilizer inputs due to the remobilization of nutrients at the end of the growing season. These advantages are particularly relevant for emerging biomass crops and it is projected that perennial grasses will be among the most important dedicated biomass crops. The advantages offered by perennial crops could also prove favorable for incorporation into annual grain crops like wheat, rice, sorghum and barley, especially under the dryer and more variable climate conditions projected for many grain-producing regions. Thus, it would be useful to have a perennial model system to test biotechnological approaches to crop improvement and for fundamental research. The perennial grass Brachypodiumsylvaticum is a candidate for such a model because it is diploid, has a small genome, is self-fertile, has a modest stature, and short generation time. Its close relationship to the annual model Brachypodiumdistachyon will facilitate comparative studies and allow researchers to leverage the resources developed for B. distachyon. Here we report on the development of two keystone resources that are essential for a model plant: high-efficiency transformation and inbred lines. Using Agrobacterium tumefaciens-mediated transformation we achieved an average transformation efficiency of 67%. We also surveyed the genetic diversity of 19 accessions from the National Plant Germplasm System using SSR markers and created 15 inbred lines. PMID:24073248

  11. A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil.

    PubMed

    Zambre, M; Goossens, A; Cardona, C; Van Montagu, M; Terryn, N; Angenon, G

    2005-03-01

    A reproducible Agrobacterium tumefaciens-mediated genetic transformation method that delivers fertile and morphologically normal transgenic plants was developed for cultivated tepary bean (Phaseolus acutifolius L. Gray). Factors contributing to higher transformation efficiencies include (1) a low initial concentration of bacteria coupled with a longer cocultivation period with callus, (2) an initial selection of callus on a medium containing low levels of the selectable agent, (3) omission of the selectable agent from the medium during callus differentiation to shoots and (4) the efficient conversion of transgenic shoots into fertile plants. All plants regenerated with this procedure (T0) were stably transformed, and the introduced foreign genes were inherited in a Mendelian fashion in most of the 33 independent transformants. Integration, stable transmission and high expression levels of the transgenes were observed in the T1 and/or T3 progenies of the transgenic lines. The binary transformation vectors contained the beta-glucuronidase reporter gene, the neomycin phosphotransferase II selectable marker gene and either an arcelin 1 or an arcelin 5 gene. Arcelins are seed proteins that are very abundant in some wild P. vulgaris L. genotypes showing resistance to the storage insect Zabrotes subfasciatus (Boheman) (Coleoptera, Bruchidae). Transgenic beans from two different cultivated P. acutifolius genotypes with high arcelin levels were infested with Z. subfasciatus, but they were only marginally less susceptible to infestation than the non-transgenic P. acutifolius. Hence, the arcelin genes tested here are not major determinants of resistance against Z. subfasciatus.

  12. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants

    PubMed Central

    De Block, Marc; De Brouwer, Dirk; Tenning, Paul

    1989-01-01

    An efficient and largely genotype-independent transformation method for Brassica napus and Brassica oleracea was established based on neo or bar as selectable marker genes. Hypocotyl explants of Brassica napus and Brassica oleracea cultivars were infected with Agrobacterium strains containing chimeric neo and bar genes. The use of AgNO3 was a prerequisite for efficient shoot regeneration under selective conditions. Vitrification was avoided by decreasing the water potential of the medium, by decreasing the relative humidity in the tissue culture vessel, and by lowering the cytokinin concentration. In this way, rooted transformed shoots were obtained with a 30% efficiency in 9 to 12 weeks. Southern blottings and genetic analysis of S1-progeny showed that the transformants contained on average between one and three copies of the chimeric genes. A wide range of expression levels of the chimeric genes was observed among independent transformants. Up to 25% of the transformants showed no detectable phosphinotricin acetyltransferase or neomycin phosphotransferase II enzyme activities although Southern blottings demonstrated that these plants were indeed transformed. Images Figure 1 Figure 2 PMID:16667089

  13. Histological study of organogenesis in Cucumis melo L. after genetic transformation: why is it difficult to obtain transgenic plants?

    PubMed

    Chovelon, V; Restier, V; Giovinazzo, N; Dogimont, C; Aarrouf, J

    2011-11-01

    Melon (Cucumis melo L.) is widely considered as a recalcitrant species for genetic transformation. In this study, we developed different regeneration and transformation protocols and we examined the regeneration process at different steps by histological studies. The highest regeneration rate (1.13 ± 0.02 plants per explant) was obtained using cotyledon explants of the 'Védrantais' genotype on Murashige and Skoog (MS) medium supplemented with 0.2 mg/l 6-benzylaminopurine (BAP) and 0.2 mg/l dimethylallylaminopurine (2-iP). Agrobacterium tumefaciens-mediated transformations with the uidA reporter gene were realized on cotyledon explants cultivated in these conditions: 70-90% of explants expressed a transient GUS activity during the early stages of regeneration, however, only few transgenic plants were obtained (1.8-4.5% of stable transformation with the GV2260pBI101 strain). These results revealed a low capacity of melon GUS-positive cells to regenerate transgenic plants. To evaluate the influence of the Agrobacterium infection on plant regeneration, histological analyses were conducted on explants 2, 7, 15, and 28 days after co-culture with the GV2260pBI101 strain. Genetic transformation occurred in epidermal and sub-epidermal cells and reached the meristematic structures expressing a high level of GUS activity during 14 days of culture; but after this period, most of the meristematic structures showed premature cell vacuolization and disorganization. This disruption of the GUS-positive meristematic areas could be responsible of the difficulties encountered to regenerate melon plants after genetic transformation.

  14. Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols.

    PubMed

    Ramesh, Sunita A; Kaiser, Brent N; Franks, Tricia; Collins, Graham; Sedgley, Margaret

    2006-08-01

    A protocol for Agrobacterium-mediated transformation with either kanamycin or mannose selection was developed for leaf explants of the cultivar Prunus dulcis cv. Ne Plus Ultra. Regenerating shoots were selected on medium containing 15 muM kanamycin (negative selection), while in the positive selection strategy, shoots were selected on 2.5 g/l mannose supplemented with 15 g/l sucrose. Transformation efficiencies based on PCR analysis of individual putative transformed shoots from independent lines relative to the initial numbers of leaf explants tested were 5.6% for kanamycin/nptII and 6.8% for mannose/pmi selection, respectively. Southern blot analysis on six randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene in each, and five randomly chosen lines identified to contain the pmi transgene by PCR showed positive hybridisation to a pmi DNA probe. The positive (mannose/pmi) and the negative (kanamycin) selection protocols used in this study have greatly improved transformation efficiency in almond, which were confirmed with PCR and Southern blot. This study also demonstrates that in almond the mannose/pmi selection protocol is appropriate and can result in higher transformation efficiencies over that of kanamycin/nptII selection protocols.

  15. Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation.

    PubMed

    Andrade, Gisele M; Nairn, Campbell J; Le, Huong T; Merkle, Scott A

    2009-09-01

    The availability of a system for direct transfer of anti-fungal candidate genes into American chestnut (Castanea dentata), devastated by a fungal blight in the last century, would offer an alternative or supplemental approach to conventional breeding for production of chestnut trees resistant to the blight fungus and other pathogens. By taking advantage of the strong ability of embryogenic American chestnut cultures to proliferate in suspension, a high-throughput Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into the tree was established. Proembryogenic masses (PEMs) were co-cultivated with A. tumefaciens strain AGL1 harboring the plasmid pCAMBIA 2301, followed by stringent selection with 50 or 100 mg/l Geneticin. A protocol employing size-fractionation to enrich for small PEMs to use as target material and selection in suspension culture was applied to rapidly produce transgenic events with an average efficiency of four independent transformation events per 50 mg of target tissue and minimal escapes. Mature somatic embryos, representing 18 transgenic events and derived from multiple American chestnut target genotypes, were germinated and over 100 transgenic somatic seedlings were produced and acclimatized to greenhouse conditions. Multiple vigorous transgenic somatic seedlings produced functional staminate flowers within 3 years following regeneration.

  16. Development of an efficient in vitro plant regeneration system amenable to Agrobacterium- mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper).

    PubMed

    Sainger, Manish; Chaudhary, Darshna; Dahiya, Savita; Jaiwal, Ranjana; Jaiwal, Pawan K

    2015-10-01

    An efficient, rapid and direct multiple shoot regeneration system amenable to Agrobacterium-mediated transformation from primary leaf with intact petiole of blackgram (Vigna mungo) is established for the first time. The effect of the explant type and its age, type and concentration of cytokinin and auxin either alone or in combination and genotype on multiple shoot regeneration efficiency and frequency was optimized. The primary leaf explants with petiole excised from 4-day-old seedlings directly developed multiple shoots (an average of 10 shoots/ explant) from the cut ends of the petiole in 95 % of the cultures on MSB (MS salts and B5 vitamins) medium containing 1.0 μM 6-benzylaminopurine. Elongated (2-3 cm) shoots were rooted on MSB medium with 2.5 μM indole-butyric acid and resulted plantlets were hardened and established in soil, where they resumed growth and reached maturity with normal seed set. The regenerated plants were morphologically similar to seed-raised plants and required 8 weeks time from initiation of culture to establish them in soil. The regeneration competent cells present at the cut ends of petiole are fully exposed and are, thus, easily accessible to Agrobacterium, making this plant regeneration protocol amenable for the production of transgenic plants. The protocol was further successfully used to develop fertile transgenic plants of blackgram using Agrobacterium tumefaciens strain EHA 105 carrying a binary vector pCAMBIA2301 that contains a neomycin phosphotransferase gene (nptII) and a β-glucuronidase (GUS) gene (uidA) interrupted with an intron. The presence and integration of transgenes in putative T0 plants were confirmed by polymerase chain reaction (PCR) and Southern blot hybridization, respectively. The transgenes were inherited in Mendelian fashion in T1 progeny and a transformation frequency of 1.3 % was obtained. This protocol can be effectively used for transferring new traits in blackgram and other legumes for their

  17. Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.).

    PubMed

    Yang, Jun; Bi, Hui-Ping; Fan, Wei-Juan; Zhang, Min; Wang, Hong-Xia; Zhang, Peng

    2011-12-01

    Efficient Agrobacterium tumefaciens-mediated transformation was developed using embryogenic suspension cell cultures of elite sweet potato (Ipomoea batatas [L.] Lam.) cultivars, including Ayamurasaki, Sushu2, Sushu9, Sushu11, Wanshu1, Xushu18 and Xushu22. Embryogenic suspension cultures were established in LCP medium using embryogenic calli induced from apical or axillary buds on an induction medium containing 2 mg l(-1) 2,4-D. Suspension cultures were co-cultivated with A. tumefaciens strain LBA4404 harboring the binary plasmid pCAMBIA1301 with the hpt gene as a selectable marker and an intron-interrupted uidA gene as a visible marker. Several key steps of the sweet potato transformation system have been investigated and optimized, including the appropriate antibiotics and their concentrations for suppressing Agrobacterium growth and the optimal doses of hygromycin for transformant selection. A total of 485 putative transgenic plant lines were produced from the transformed calli via somatic embryogenesis and germination to plants under 10 mg l(-1) hygromycin and 200 mg l(-1) cefotaxime. PCR, GUS and Southern blot analyses of the regenerated plants showed that 92.35% of them were transgenic. The number of T-DNA insertions varied from one to three in most transgenic plant lines. Plants showed 100% survival when 308 transgenics were transferred to soil in the greenhouse and then to the field. Most of them were morphologically normal, with the production of storage roots after 3 months of cultivation in the greenhouse or fields. The development of such a robust transformation method suitable to a range of sweet potato genotypes not only provides a routine tool for genetic improvement via transgenesis but also allows us to conduct a functional verification of endogenous genes in sweet potato.

  18. Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid.

    PubMed

    Zyprian, E; Kado, C I

    1990-08-01

    A new binary vector system for Agrobacterium-mediated plant transformation was developed. A set of four mini-T vectors comprised of T-DNA border sequences from nopaline-type Ti-plasmid pTiC58 flanking a chimaeric hygromycin-resistance gene for selection of transformants and up to eight unique restriction sites for cloning foreign DNA was constructed on a broad-host replicon containing the oriV of plasmid pSa. In two of the constructs these multiple cloning sites are flanked by a strong promoter to activate transcription of inserted DNA in planta. High-efficiency transformation was prompted by a high-copy, stable virulence helper plasmid pUCD2614, which contains a cloned virulence region of pTiC58 and tandem copies of the par locus of plasmid pTAR. Southern blot hybridization and genetic analyses of the progeny of transformed plants showed that the hygromycin resistance gene was stably inherited.

  19. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius.

    PubMed

    Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S

    2017-04-01

    In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements.

  20. Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants.

    PubMed

    Bosselut, Nathalie; Van Ghelder, Cyril; Claverie, Michel; Voisin, Roger; Onesto, Jean-Paul; Rosso, Marie-Noëlle; Esmenjaud, Daniel

    2011-07-01

    Resistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes. Our efforts have focused on the generation of transformed hairy-roots and composite plants appropriate for nematode infection assays. An efficient and reliable method using the A4R strain of Agrobacterium rhizogenes for the transformation of Prunus roots with an Egfp reporter gene is given. The rooting efficiency, depending on the genotypes, was maximal for the interspecific hybrid 253 (Myrobalan plum × almond-peach), susceptible to RKN, that was retained for subsequent studies. From the agro-inoculated cuttings, 72% produced roots, mainly at the basal section of the stem. Transformed roots were screened by microscope detection of Egfp fluorescence and molecular analyses of the integration of the transgene. The absence of residual agrobacteria in the plants was checked by the non-amplification of the chromosomal gene chvH. Egfp was expressed visually in 76% of the rooted plants. Isolated hairy roots in Petri dishes and composite plants (transformed roots and non-transformed aerial part) in soil containers were inoculated with the RKN Meloidogyne incognita. In both cases, root transformation did not affect the ability of the nematodes to develop in the root tissues. Our results showed that isolated hairy-roots can be used to validate candidate genes and the conditions in which composite plants offer a complementary system for studying the function of root genes in physiological conditions of whole plants are discussed.

  1. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (x Triticosecale Wittmack): role of the binary vector system and selection cassettes.

    PubMed

    Bińka, Agnieszka; Orczyk, Wacław; Nadolska-Orczyk, Anna

    2012-02-01

    The influence of two binary vector systems, pGreen and pCAMBIA, on the Agrobacterium-mediated transformation ability of wheat and triticale was studied. Both vectors carried selection cassettes with bar or nptII driven by different promoters. Two cultivars of wheat, Kontesa and Torka, and one cultivar of triticale, Wanad, were tested. The transformation rates for the wheat cultivars ranged from 0.00 to 3.58% and from 0.00 to 6.79% for triticale. The best values for wheat were 3.58% for Kontesa and 3.14% for Torka, and these were obtained after transformation with the pGreen vector carrying the nptII selection gene under the control of 35S promoter. In the case of the bar selection system, the best transformation rates were, respectively, 1.46 and 1.79%. Such rates were obtained when the 35S::bar cassette was carried by the pCAMBIA vector; they were significantly lower with the pGreen vector. The triticale cultivar Wanad had its highest transformation rate after transformation with nptII driven by 35S in pCAMBIA. The bar selection system for the same triticale cultivar was better when the gene was driven by nos and the selection cassette was carried by pGreen. The integration of the transgenes was confirmed with at least three pairs of specific starters amplifying the fragments of nptII, bar, or gus. The expression of selection genes, measured by reverse transcriptase polymerase chain reaction (RT-PCR) in relation to the actin gene, was low, ranging from 0.00 to 0.63 for nptII and from 0.00 to 0.33 for bar. The highest relative transcript accumulation was observed for nptII driven by 35S and expressed in Kontesa that had been transformed with pGreen.

  2. Expression of anti-tumor necrosis factor alpha (TNFα) single-chain variable fragment (scFv) in Spirodela punctata plants transformed with Agrobacterium tumefaciens.

    PubMed

    Balaji, Parthasarathy; Satheeshkumar, P K; Venkataraman, Krishnan; Vijayalakshmi, M A

    2016-05-01

    Therapeutic antibodies against tumor necrosis factor alpha (TNFα) have been considered effective for some of the autoimmune diseases such as rheumatoid arthritis, Crohn's diseases, and so on. But associated limitations of the current therapeutics in terms of cost, availability, and immunogenicity have necessitated the need for alternative candidates. Single-chain variable fragment (scFv) can negate the limitations tagged with the anti-TNFα therapeutics to a greater extent. In the present study, Spirodela punctata plants were transformed with anti-TNFα through in planta transformation using Agrobacterium tumefaciens strain, EHA105. Instead of cefotaxime, garlic extract (1 mg/mL) was used to remove the agrobacterial cells after cocultivation. To the best of our knowledge, this report shows for the first time the application of plant extracts in transgenic plant development. 95% of the plants survived screening under hygromycin. ScFv cDNA integration in the plant genomic DNA was confirmed at the molecular level by PCR. The transgenic protein expression was followed up to 10 months. Expression of scFv was confirmed by immunodot blot. Protein expression levels of up to 6.3% of total soluble protein were observed. β-Glucuronidase and green fluorescent protein expressions were also detected in the antibiotic resistant plants. The paper shows the generation of transgenic Spirodela punctuata plants through in planta transformation.

  3. Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens

    PubMed Central

    Manfroi, Ernandes; Yamazaki-Lau, Elene; Grando, Magali F.; Roesler, Eduardo A.

    2015-01-01

    Abstract Low transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037). Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciens overgrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future. PMID:26537604

  4. Identification and characterization of an anti-oxidative stress-associated mutant of Aspergillus fumigatus transformed by Agrobacterium tumefaciens

    PubMed Central

    FAN, ZHONGQI; YU, HUIMEI; GUO, QI; HE, DAN; XUE, BAIJI; XIE, XIANGLI; YOKOYAMA, KOJI; WANG, LI

    2016-01-01

    Aspergillus fumigatus is one of the most common opportunistic pathogenic fungi, surviving in various environmental conditions. Maintenance of the redox homeostasis of the fungus relies upon the well-organized regulation between reactive oxygen species generated by immune cells or its own organelles, and the activated anti-oxidative stress mechanism. To investigate such a mechanism, the present study obtained a number of randomly-inserted mutants of A. fumigatus, mediated by Agrobacterium tumefaciens. In addition, a high throughput hydrogen peroxide screening system was established to examine ~1,000 mutants. A total of 100 mutants exhibited changes in hydrogen peroxide sensitivity, among which a significant increase in sensitivity was observed in the AFM2658 mutant. Further investigations of the mutant were also performed, in which the sequence of this mutant was characterized using thermal asymmetric interlaced-polymerase chain reaction. This revealed that the insertion site was located on chromosome 2 afu1_92, and the 96 bp sequence was knocked out, which partially comprised a sequence localized between the integral membrane protein coding region and the helix-loop-helix transcription factor coding region. A decrease in the levels of anti-oxidative stress-associated mRNAs were observed, and an increase in reactive oxygen species were detected using fluorescence. The results of the present study demonstrated that this sequence may have a protective role in A. fumigatus in the presence of oxidative stress. PMID:26847000

  5. Agrobacterium-transformed rice plants expressing synthetic cryIA(b) and cryIA(c) genes are highly toxic to striped stem borer and yellow stem borer.

    PubMed

    Cheng, X; Sardana, R; Kaplan, H; Altosaar, I

    1998-03-17

    Over 2,600 transgenic rice plants in nine strains were regenerated from >500 independently selected hygromycin-resistant calli after Agrobacterium-mediated transformation. The plants were transformed with fully modified (plant codon optimized) versions of two synthetic cryIA(b) and cryIA(c) coding sequences from Bacillus thuringiensis as well as the hph and gus genes, coding for hygromycin phosphotransferase and beta-glucuronidase, respectively. These sequences were placed under control of the maize ubiquitin promoter, the CaMV35S promoter, and the Brassica Bp10 gene promoter to achieve high and tissue-specific expression of the lepidopteran-specific delta-endotoxins. The integration, expression, and inheritance of these genes were demonstrated in R0 and R1 generations by Southern, Northern, and Western analyses and by other techniques. Accumulation of high levels (up to 3% of soluble proteins) of CryIA(b) and CryIA(c) proteins was detected in R0 plants. Bioassays with R1 transgenic plants indicated that the transgenic plants were highly toxic to two major rice insect pests, striped stem borer (Chilo suppressalis) and yellow stem borer (Scirpophaga incertulas), with mortalities of 97-100% within 5 days after infestation, thus offering a potential for effective insect resistance in transgenic rice plants.

  6. Stable transformation and reverse genetic analysis of Penium margaritaceum: a platform for studies of charophyte green algae, the immediate ancestors of land plants.

    PubMed

    Sørensen, Iben; Fei, Zhangjun; Andreas, Amanda; Willats, William G T; Domozych, David S; Rose, Jocelyn K C

    2014-02-01

    The charophyte green algae (CGA, Streptophyta, Viridiplantae) occupy a key phylogenetic position as the immediate ancestors of land plants but, paradoxically, are less well-studied than the other major plant lineages. This is particularly true in the context of functional genomic studies, where the lack of an efficient protocol for their stable genetic transformation has been a major obstacle. Observations of extant CGA species suggest the existence of some of the evolutionary adaptations that had to occur for land colonization; however, to date, there has been no robust experimental platform to address this genetically. We present a protocol for high-throughput Agrobacterium tumefaciens-mediated transformation of Penium margaritaceum, a unicellular CGA species. The versatility of Penium as a model for studying various aspects of plant cell biology and development was illustrated through non-invasive visualization of protein localization and dynamics in living cells. In addition, the utility of RNA interference (RNAi) for reverse genetic studies was demonstrated by targeting genes associated with cell wall modification (pectin methylesterase) and biosynthesis (cellulose synthase). This provided evidence supporting current models of cell wall assembly and inter-polymer interactions that were based on studies of land plants, but in this case using direct observation in vivo. This new functional genomics platform has broad potential applications, including studies of plant organismal biology and the evolutionary innovations required for transition from aquatic to terrestrial habitats.

  7. An efficient method of agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting.

    PubMed

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    Groundnut (Arachis hypogaea L.) is an industrial crop used as a source of edible oil and nutrients. In this study, an efficient method of regeneration and Agrobacterium-mediated genetic transformation is reported for a local cultivar GG-20 using de-embryonated cotyledon explant. A high regeneration 52.69 ± 2.32 % was achieved by this method with 66.6 μM 6-benzylaminopurine (BAP), while the highest number of shoot buds per explant, 17.67 ± 3.51, was found with 20 μM BAP and 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial culture OD, acetosyringone and L-cysteine concentration were optimized as 1.8, 200 μM and 50 mg L(-1), respectively, in co-cultivation media. It was observed that the addition of 2,4-D in co-cultivation media induced accumulation of endogenous indole-3-acetic acid (IAA). The optimized protocol exhibited 85 % transformation efficiency followed by 14.65 ± 1.06 % regeneration, of which 3.82 ± 0.6 % explants were survived on hygromycin after selection. Finally, 14.58 ± 2.95 % shoots (regenerated on survived explants) were rooted on rooting media (RM3). In grafting method, regenerated shoots (after hygromycin selection) were grafted on the non-transformed stocks with 100 % survival and new leaves emerged in 3 weeks. The putative transgenic plants were then confirmed by PCR, Southern hybridization, reverse transcriptase PCR (RT-PCR) and β-glucuronidase (GUS) histochemical assay. The reported method is efficient and rapid and can also be applied to other crops which are recalcitrant and difficult in rooting.

  8. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    PubMed

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.

  9. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties.

    PubMed

    Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo

    2016-11-10

    Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.

  10. [Effective agrobacterium-mediated transformation of chicory (Cichorium intybus L.) using vector with gene of tuberculosis antigene ESAT6].

    PubMed

    Matveeva, N A; Vasilenko, M Iu; Shakhovskiĭ, A M; Bannikova, M A; Kvasko, O Iu; Kuchuk, N V

    2011-01-01

    The conditions of high efficient chicory transformation with Mycobacterium tuberculosis antigene ESAT6 have been determined. Transformation frequency was up to 86% when the cotyledons were cultivated within 3 days without cefotaxime and then 1 day without kanamycine. DNA PCR-analysis has shown the presence both of selective nptII and target esxA genes in all analysed plants. At the same time RT-PCR has shown the presence of nptII transcripts for eight analysed lines and esxA transcripts for only five analysed lines.

  11. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    PubMed Central

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium. PMID:25520733

  12. Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides.

    PubMed

    Liu, Yanbin; Koh, Chong Mei John; Sun, Longhua; Hlaing, Mya Myintzu; Du, Minge; Peng, Ni; Ji, Lianghui

    2013-01-01

    The oleaginous yeast Rhodosporidium toruloides, which belongs to the Pucciniomycotina subphylum in the Basidiomycota, has attracted strong interest in the biofuel community recently due to its ability to accumulate more than 60% of dry biomass as lipid under high-density fermentation. A 3,543-nucleotide (nt) DNA fragment of the glyceraldehyde-3-phosphate dehydrogenase gene (GPD1) was isolated from R. toruloides ATCC 10657 and characterized in details. The 1,038-nt mRNA derived from seven exons encodes an open reading frame (ORF) of 345 amino acids that shows high identity (80%) to the Ustilago maydis homolog. Notably, the ORF is composed of codons strongly biased towards cytosine at the Wobble position. GPD1 is transcriptionally regulated by temperature shock, osmotic stress, and carbon source. Nested deletion analysis of the GPD1 promoter by GFP reporter assay revealed that two regions, -975 to -1,270 and -1,270 to -1,429, upstream from the translational start site of GPD1 were important for responses to various stress stimuli. Interestingly, a 176-bp short fragment maintained 42.2% promoter activity of the 795-bp version in U. maydis whereas it was reduced to 17.4% in R. toruloides. The GPD1 promoter drove strong expression of a codon-optimized enhanced green fluorescent protein gene (RtGFP) and a codon-optimized hygromycin phosphotransferase gene (hpt-3), which was critical for Agrobacterium tumefaciens-mediated transformation in R. toruloides.

  13. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum

    SciTech Connect

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-05-24

    In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.

  14. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOGR1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens

    PubMed Central

    Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad

    2015-01-01

    DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041

  15. Agrobacterium tumefaciens as an agent of disease.

    PubMed

    Escobar, Matthew A; Dandekar, Abhaya M

    2003-08-01

    Twenty-six years ago it was found that the common soil bacterium Agrobacterium tumefaciens is capable of extraordinary feats of interkingdom genetic transfer. Since this discovery, A. tumefaciens has served as a model system for the study of type IV bacterial secretory systems, horizontal gene transfer and bacterial-plant signal exchange. It has also been modified for controlled genetic transformation of plants, a core technology of plant molecular biology. These areas have often overshadowed its role as a serious, widespread phytopathogen - the primary driver of the first 80 years of Agrobacterium research. Now, the diverse areas of A. tumefaciens research are again converging because new discoveries in transformation biology and the use of A. tumefaciens vectors are allowing the development of novel, effective biotechnology-based strategies for the control of crown gall disease.

  16. The application of the yeast N-acetyltransferase MPR1 gene and the proline analogue L-azetidine-2-carboxylic acid as a selectable marker system for plant transformation

    PubMed Central

    Tsai, Fei-Yi; Ulanov, Alexander; Widholm, Jack M.

    2010-01-01

    The yeast N-acetyltransferase MPR1 gene has previously been shown to confer resistance to the toxic proline analogue azetidine-2-carboxylic acid (A2C) in yeast and transgenic tobacco. Here experiments were carried out to determine if MPR1 and A2C can work as a selectable marker system for plant transformation. The MPR1 gene was inserted into a binary vector under the control of the cauliflower mosaic virus 35S promoter and nopaline synthase terminator, and transformed into tobacco via the Agrobacterium tumefaciens-mediated leaf disc method. A2C was applied in the selection medium to select for putative transformants. PCR analysis showed that 28.4% and 66.7% of the plantlets selected by 250 μM and 300 μM A2C were positive for the MPR1 gene, respectively. Southern and northern blot analysis and enzyme activity assay confirmed the stable gene incorporation, transcription, and translation of the MPR1 transgene in the transgenic plants. The transgene-carrying T1 progeny could be distinguished from the recessive progeny when grown on 400, 450, or 500 μM A2C. Examination of the metabolism of 22 transgenic plants by gas chromatography–mass spectrometry profiling did not reveal any significant changes. In conclusion, the results demonstrate that MPR1/A2C is a safe and efficient selection system that does not involve microbial antibiotic or herbicide resistance genes. Recent studies showed that MPR1 can protect yeast against oxidative stresses by decreasing the accumulation of the proline catabolite Δ1-pyrroline-5-carboxylate (P5C). However, H2O2 treatment resulted in contradictory responses among the five transgenic lines tested. Further experiments are required to assess the response of MPR1 transgenic plants under oxidative stress. PMID:20430752

  17. Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection.

    PubMed

    RamanaRao, Mangu Venkata; Veluthambi, Karuppannan

    2010-05-01

    Transient selection involving the bar gene and non-conditional negative selection against stable T-DNA integration through the use of the Mungbean yellow mosaic virus (MYMV) transcriptional activator protein gene (TrAP) were used in a novel co-transformation strategy to generate selectable marker gene (SMG)-eliminated transgenic tobacco plants in the T(0) generation itself. Two compatible binary plasmids, pCam-bar-TrAP-gus harbouring bar as an SMG and the MYMV TrAP gene as a non-conditional negative selectable marker, and pGA472 with the nptII gene as an unselected experimental gene of interest (GOI) were placed in the Agrobacterium tumefaciens strain EHA105 and used for co-transformation. Transient selection with 5 mg l(-1) phosphinothricin (PPT) for 2-4 weeks and subsequent establishment in a PPT-minus medium yielded 114 plants from 200 leaf discs. The unselected nptII gene was detected by Southern blot analysis in 13 plants, revealing a co-transformation efficiency of 11.5%. Five of these plants harboured only the nptII gene (GOI) and not the bar gene (SMG). Thus, SMG elimination was achieved in the T(0) generation itself in 4.4% (5/114) of plants, which were transiently selected for 2-4 weeks on PPT. MYMV TrAP, a non-conditional negative selectable marker, effectively reduced the recovery of plants with stable integration of the SMG (bar).

  18. Agrobacterium: nature’s genetic engineer

    PubMed Central

    Nester, Eugene W.

    2015-01-01

    Agrobacterium was identified as the agent causing the plant tumor, crown gall over 100 years ago. Since then, studies have resulted in many surprising observations. Armin Braun demonstrated that Agrobacterium infected cells had unusual nutritional properties, and that the bacterium was necessary to start the infection but not for continued tumor development. He developed the concept of a tumor inducing principle (TIP), the factor that actually caused the disease. Thirty years later the TIP was shown to be a piece of a tumor inducing (Ti) plasmid excised by an endonuclease. In the next 20 years, most of the key features of the disease were described. The single-strand DNA (T-DNA) with the endonuclease attached is transferred through a type IV secretion system into the host cell where it is likely coated and protected from nucleases by a bacterial secreted protein to form the T-complex. A nuclear localization signal in the endonuclease guides the transferred strand (T-strand), into the nucleus where it is integrated randomly into the host chromosome. Other secreted proteins likely aid in uncoating the T-complex. The T-DNA encodes enzymes of auxin, cytokinin, and opine synthesis, the latter a food source for Agrobacterium. The genes associated with T-strand formation and transfer (vir) map to the Ti plasmid and are only expressed when the bacteria are in close association with a plant. Plant signals are recognized by a two-component regulatory system which activates vir genes. Chromosomal genes with pleiotropic functions also play important roles in plant transformation. The data now explain Braun’s old observations and also explain why Agrobacterium is nature’s genetic engineer. Any DNA inserted between the border sequences which define the T-DNA will be transferred and integrated into host cells. Thus, Agrobacterium has become the major vector in plant genetic engineering. PMID:25610442

  19. Plant transformation by Agrobacterium tumefaciens: modulation of single-stranded DNA-VirE2 complex assembly by VirE1.

    PubMed

    Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Albeck, Shira; Unger, Tamar; Peleg, Yoav; Jacobovitch, Jossef; Michael, Yigal; Daube, Shirley; Sharon, Michal; Robinson, Carol V; Svergun, Dmitri I; Fass, Deborah; Tzfira, Tzvi; Elbaum, Michael

    2007-02-09

    Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss) DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand.

  20. [Agrobacterium-mediated sunflower transformation (Helianthus annuus L.) in vitro and in Planta using strain of LBA4404 harboring binary vector pBi2E with dsRNA-suppressor proline dehydrogenase gene].

    PubMed

    Tishchenko, E N; Komisarenko, A G; Mikhal'skaia, S I; Sergeeva, L E; Adamenko, N I; Morgun, B V; Kochetov, A V

    2014-01-01

    To estimate the efficiency of proline dehydrogenase gene suppression towards increasing of sunflower (Helianthus annuus L.) tolerance level to water deficit and salinity, we employed strain LBA4404 harboring pBi2E with double-stranded RNA-suppressor, which were prepared on basis arabidopsis ProDH1 gene. The techniques of Agrobacterium-mediated transformation in vitro and in planta during fertilization sunflower have been proposed. There was shown the genotype-depended integration of T-DNA in sunflower genome. PCR-analysis showed that ProDH1 presents in genome of inbred lines transformed in planta, as well as in T1- and T2-generations. In trans-genic regenerants the essential accumulation of free L-proline during early stages of in vitro cultivation under normal conditions was shown. There was established the essential accumulation of free proline in transgenic regenerants during cultivation under lethal stress pressure (0.4 M mannitol and 2.0% sea water salts) and its decline upon the recovery period. These data are declared about effectiveness of suppression of sunflower ProDH and gene participation in processes connected with osmotolerance.

  1. Maize (Zea mays L.).

    PubMed

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  2. The Agrobacterium Ti Plasmids.

    PubMed

    Christie, Peter J; Gordon, Jay E

    2014-12-01

    Agrobacterium tumefaciens is a plant pathogen with the capacity to deliver a segment of oncogenic DNA carried on a large plasmid called the tumor-inducing or Ti plasmid to susceptible plant cells. A. tumefaciens belongs to the class Alphaproteobacteria, whose members include other plant pathogens (Agrobacterium rhizogenes), plant and insect symbionts (Rhizobium spp. and Wolbachia spp., respectively), human pathogens (Brucella spp., Bartonella spp., Rickettsia spp.), and nonpathogens (Caulobacter crescentus, Rhodobacter sphaeroides). Many species of Alphaproteobacteria carry large plasmids ranging in size from ∼100 kb to nearly 2 Mb. These large replicons typically code for functions essential for cell physiology, pathogenesis, or symbiosis. Most of these elements rely on a conserved gene cassette termed repABC for replication and partitioning, and maintenance at only one or a few copies per cell. The subject of this review is the ∼200-kb Ti plasmids carried by infectious strains of A. tumefaciens. We will summarize the features of this plasmid as a representative of the repABC family of megaplasmids. We will also describe novel features of this plasmid that enable A. tumefaciens cells to incite tumor formation in plants, sense and respond to an array of plant host and bacterial signal molecules, and maintain and disseminate the plasmid among populations of agrobacteria. At the end of this review, we will describe how this natural genetic engineer has been adapted to spawn an entire industry of plant biotechnology and review its potential for use in future therapeutic applications of plant and nonplant species.

  3. Blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing; Sink, Kenneth C

    2006-01-01

    Recent advances in plant biotechnology have led to a reliable and reproductive method for genetic transformation of blueberry. These efforts built on previous attempts at transient and stable transformation of blueberry that demonstrated the potential of Agrobacterium tumefaciens-mediated transformation, and as well, the difficulties of selecting and regenerating transgenic plants. As a prerequisite for successful stable transformation, efficient regeneration systems were required despite many reports on factors controlling shoot regeneration from leaf explants. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining efficient regeneration methods and the results of A. tumefaciens-mediated transient transformation studies to optimize selected parameters for gene transfer. The protocol has led to successful regeneration of transgenic plants of four commercially important highbush blueberry cultivars.

  4. The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes.

    PubMed

    Shkryl, Y N; Veremeichik, G N; Bulgakov, V P; Avramenko, T V; Günter, E A; Ovodov, Y S; Muzarok, T I; Zhuravlev, Y N

    2013-10-10

    The production of plant peroxidases by plant cell cultures is of great interest because of the potential for industrial applications. We used plant cell cultures overexpressing the rolB gene to produce increased amounts of plant class III peroxidases. The rolB gene ensured the stable and permanent activation of peroxidase activity in the transformed callus cultures of different plants. In particular, the total peroxidase activity in transformed Rubia cordifolia cells was increased 23-86-fold, and the abundance of the major peroxidase gene transcripts was increased 17-125-fold (depending on the level of rolB expression) compared with non-transformed control calli. The peroxidase-activating effect of rolB was greater than that of other peroxidase inducers, such as external stresses and methyl jasmonate.

  5. Complete Genome Sequence of Agrobacterium tumefaciens Ach5

    PubMed Central

    Huang, Ya-Yi; Cho, Shu-Ting; Lo, Wen-Sui; Wang, Yi-Chieh; Lai, Erh-Min

    2015-01-01

    Agrobacterium tumefaciens is a phytopathogenic bacterium that causes crown gall disease. The strain Ach5 was isolated from yarrow (Achillea ptarmica L.) and is the wild-type progenitor of other derived strains widely used for plant transformation. Here, we report the complete genome sequence of this bacterium. PMID:26044425

  6. Agrobacterium-mediated transformation of potato using PLRV-rep and PVY CP genes and assessment of replicase mediated resistance against natural infection of PLRV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicase-and coat protein gene-mediated resistances against potato leafroll virus (PLRV) and potato virus Y (PVY), respectively, demonstrated to be an effective way of protecting potato against two major virus problems (PLRV & PVY) world-wide. Potato cultivar Desiree was transformed using Agrobacte...

  7. A Dark Incubation Period Is Important for Agrobacterium-Mediated Transformation of Mature Internode Explants of Sweet Orange, Grapefruit, Citron, and a Citrange Rootstock

    PubMed Central

    Marutani-Hert, Mizuri; Bowman, Kim D.; McCollum, Greg T.; Mirkov, T. Erik; Evens, Terence J.; Niedz, Randall P.

    2012-01-01

    Background Citrus has an extended juvenile phase and trees can take 2–20 years to transition to the adult reproductive phase and produce fruit. For citrus variety development this substantially prolongs the time before adult traits, such as fruit yield and quality, can be evaluated. Methods to transform tissue from mature citrus trees would shorten the evaluation period via the direct production of adult phase transgenic citrus trees. Methodology/Principal Findings Factors important for promoting shoot regeneration from internode explants from adult phase citrus trees were identified and included a dark incubation period and the use of the cytokinin zeatin riboside. Transgenic trees were produced from four citrus types including sweet orange, citron, grapefruit, and a trifoliate hybrid using the identified factors and factor settings. Significance The critical importance of a dark incubation period for shoot regeneration was established. These results confirm previous reports on the feasibility of transforming mature tissue from sweet orange and are the first to document the transformation of mature tissue from grapefruit, citron, and a trifoliate hybrid. PMID:23082165

  8. Horizontal gene transfer from Agrobacterium to plants

    PubMed Central

    Matveeva, Tatiana V.; Lutova, Ludmila A.

    2014-01-01

    Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A. rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named “cellular T-DNA” (cT-DNA). It represents an imperfect inverted repeat and contains homologs of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14) and an opine synthesis gene (Ngmis). A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologs of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role. PMID:25157257

  9. GLYCINE RESISTANCE IN AGROBACTERIUM TUMEFACIENS

    PubMed Central

    Beardsley, Robert E.

    1962-01-01

    Beardsley, Robert E. (Manhattan College, New York, N. Y.). Glycine resistance in Agrobacterium tumefaciens. J. Bacteriol. 83:6–13. 1962.—The application of the fluctuation test of Luria and Delbrück to the distribution of glycine-resistant bacteria among cultures of Agrobacterium tumefaciens strain B6 indicates that resistance arises by mutation in the absence of glycine. On glycine-supplemented medium, additional resistant colonies arise during prolonged periods of incubation. Their appearance is proceded by L-form growth. In general, the number of generations over which glycine resistance is inherited in the absence of glycine is increased by serial transfers on the selection medium. In liquid medium containing glycine, sensitive bacteria form spheroplasts. Resistant bacteria continue to grow as rod forms. In the medium employed, spheroplasts are unstable. Images PMID:13866159

  10. Micro-shock Wave Assisted Plant Transformation

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Datey, Akshay; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Genetically modified (GM) crops are developed by transforming the desired DNA to plant. There are various methods employed to achieve the required transformation in plants. Agrobacterium mediated transformation and Biolistics or particle bombardment method are the most commonly used methods.

  11. Plant responses to Agrobacterium tumefaciens and crown gall development

    PubMed Central

    Gohlke, Jochen; Deeken, Rosalia

    2014-01-01

    Agrobacterium tumefaciens causes crown gall disease on various plant species by introducing its T-DNA into the genome. Therefore, Agrobacterium has been extensively studied both as a pathogen and an important biotechnological tool. The infection process involves the transfer of T-DNA and virulence proteins into the plant cell. At that time the gene expression patterns of host plants differ depending on the Agrobacterium strain, plant species and cell-type used. Later on, integration of the T-DNA into the plant host genome, expression of the encoded oncogenes, and increase in phytohormone levels induce a fundamental reprogramming of the transformed cells. This results in their proliferation and finally formation of plant tumors. The process of reprogramming is accompanied by altered gene expression, morphology and metabolism. In addition to changes in the transcriptome and metabolome, further genome-wide (“omic”) approaches have recently deepened our understanding of the genetic and epigenetic basis of crown gall tumor formation. This review summarizes the current knowledge about plant responses in the course of tumor development. Special emphasis is placed on the connection between epigenetic, transcriptomic, metabolomic, and morphological changes in the developing tumor. These changes not only result in abnormally proliferating host cells with a heterotrophic and transport-dependent metabolism, but also cause differentiation and serve as mechanisms to balance pathogen defense and adapt to abiotic stress conditions, thereby allowing the coexistence of the crown gall and host plant. PMID:24795740

  12. Inter-organ defense networking: Leaf whitefly sucking elicits plant immunity to crown gall disease caused by Agrobacterium tumefaciens.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2015-01-01

    Plants have elaborate defensive machinery to protect against numerous pathogens and insects. Plant hormones function as modulators of defensive mechanisms to maintain plant resistance to natural enemies. Our recent study suggests that salicylic acid (SA) is the primary phytohormone regulating plant responses to Agrobacterium tumefaciens infection. Tobacco (Nicotiana benthamiana Domin.) immune responses against Agrobacterium-mediated crown gall disease were activated by exposure to the sucking insect whitefly, which stimulated SA biosynthesis in aerial tissues; in turn, SA synthesized in aboveground tissues systemically modulated SA secretion in root tissues. Further investigation revealed that endogenous SA biosynthesis negatively modulated Agrobacterium-mediated plant genetic transformation. Our study provides novel evidence that activation of the SA-signaling pathway mediated by a sucking insect infestation has a pivotal role in subsequently attenuating Agrobacterium infection. These results demonstrate new insights into interspecies cross-talking among insects, plants, and soil bacteria.

  13. Construction of disarmed Ti plasmids transferable between Escherichia coli and Agrobacterium species.

    PubMed

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sakuma, Kei; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2009-04-01

    Agrobacterium-mediated plant transformation has been used widely, but there are plants that are recalcitrant to this type of transformation. This transformation method uses bacterial strains harboring a modified tumor-inducing (Ti) plasmid that lacks the transfer DNA (T-DNA) region (disarmed Ti plasmid). It is desirable to develop strains that can broaden the host range. A large number of Agrobacterium strains have not been tested yet to determine whether they can be used in transformation. In order to improve the disarming method and to obtain strains disarmed and ready for the plant transformation test, we developed a simple scheme to make certain Ti plasmids disarmed and simultaneously maintainable in Escherichia coli and mobilizable between E. coli and Agrobacterium. To establish the scheme in nopaline-type Ti plasmids, a neighboring segment to the left of the left border sequence, a neighboring segment to the right of the right border sequence of pTi-SAKURA, a cassette harboring the pSC101 replication gene between these two segments, the broad-host-range IncP-type oriT, and the gentamicin resistance gene were inserted into a suicide-type sacB-containing vector. Replacement of T-DNA with the cassette in pTiC58 and pTi-SAKURA occurred at a high frequency and with high accuracy when the tool plasmid was used. We confirmed that there was stable maintenance of the modified Ti plasmids in E. coli strain S17-1lambdapir and conjugal transfer from E. coli to Ti-less Agrobacterium strains and that the reconstituted Agrobacterium strains were competent to transfer DNA into plant cells. As the modified plasmid delivery system was simple and efficient, conversion of strains to the disarmed type was easy and should be applicable in studies to screen for useful strains.

  14. Utilization of Octopine and Nopaline by Agrobacterium

    PubMed Central

    Lippincott, James A.; Beiderbeck, Rolf; Lippincott, Barbara B.

    1973-01-01

    Tests for utilization of d-octopine and nopaline in defined media containing a carbon and nitrogen source were made on 60 strains of Agrobacterium representing four species and on a representative of each of five species of Rhizobium. Among 46 virulent strains of Agrobacterium, only two strains were found which utilized neither compound, while three strains were found which could utilize both. Of the remaining virulent strains, 27 utilized octopine and 14 utilized nopaline. Each of six strains of A. rhizogenes tested utilized only octopine but at a slower rate relative to growth than most A. tumefaciens. All eight of the A. radiobacter strains failed to utilize either compound, as did four of six nonvirulent strains of A. tumefaciens. The rhizobia did not utilize octopine or, with the possible exception of R. japonicum, nopaline. Virulence in the genus Agrobacterium is concluded to be highly correlated with the ability to utilize one or both of these compounds. PMID:4745420

  15. Agrobacterium tumefaciens responses to plant-derived signaling molecules.

    PubMed

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.

  16. Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains.

    PubMed

    Mhamdi, Ridha; Mrabet, Moncef; Laguerre, Gisèle; Tiwari, Ravi; Aouani, Mohamed Elarbi

    2005-02-01

    Non-nodulating Agrobacterium-like strains identified among root nodule isolates of common bean were labeled with gusA, a reporter gene encoding beta-glucuronidase (GUS). Bean plants were then co-inoculated with an infective Rhizobium strain and labeled transconjugants of Agrobacterium-like strains. Blue staining of nodules showed that Agrobacterium-like strains were able to colonize these symbiotic organs. Isolation and characterization by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes revealed a mixed population of Rhizobium and Agrobacterium-like strains in all nodules showing GUS activity. PCR amplification of the nifH gene and nodulation tests did not show any evidence of acquisition of symbiotic gene by lateral transfer from Rhizobium to Agrobacterium-like strains. Moreover, these strains were able to invade mature nodules. Based on sequencing of the 16S rRNA gene, one of these Agrobacterium-like strains showed 99.4% sequence similarity with Agrobacterium bv. 1 reference strains and 99% similarity with an Agrobacterium bv. 1 strain isolated from Acacia mollisima in Senegal. Agrobacterium tumefaciens C58 and the disarmed variant AT123 did not show any ability to colonize nodules. Co-inoculation of bean seeds with Agrobacterium and Rhizobium strains did not enhance nodulation and plant yield under controlled conditions.

  17. Blueberry (Vaccinium corymbosum L.).

    PubMed

    Song, Guo-Qing

    2015-01-01

    Vaccinium consists of approximately 450 species, of which highbush blueberry (Vaccinium corymbosum) is one of the three major Vaccinium fruit crops (i.e., blueberry, cranberry, and lingonberry) domesticated in the twentieth century. In blueberry the adventitious shoot regeneration using leaf explants has been the most desirable regeneration system to date; Agrobacterium tumefaciens-mediated transformation is the major gene delivery method and effective selection has been reported using either the neomycin phosphotransferase II gene (nptII) or the bialaphos resistance (bar) gene as selectable markers. The A. tumefaciens-mediated transformation protocol described in this chapter is based on combining the optimal conditions for efficient plant regeneration, reliable gene delivery, and effective selection. The protocol has led to successful regeneration of transgenic plants from leaf explants of four commercially important highbush blueberry cultivars for multiple purposes, providing a powerful approach to supplement conventional breeding methods for blueberry by introducing genes of interest.

  18. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  19. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein.

    PubMed

    Lacroix, Benoît; Citovsky, Vitaly

    2015-11-20

    During Agrobacterium-mediated genetic transformation of plants, several bacterial virulence (Vir) proteins are translocated into the host cell to facilitate infection. One of the most important of such translocated factors is VirF, an F-box protein produced by octopine strains of Agrobacterium, which presumably facilitates proteasomal uncoating of the invading T-DNA from its associated proteins. The presence of VirF also is thought to be involved in differences in host specificity between octopine and nopaline strains of Agrobacterium, with the current dogma being that no functional VirF is encoded by nopaline strains. Here, we show that a protein with homology to octopine VirF is encoded by the Ti plasmid of the nopaline C58 strain of Agrobacterium. This protein, C58VirF, possesses the hallmarks of functional F-box proteins: it contains an active F-box domain and specifically interacts, via its F-box domain, with SKP1-like (ASK) protein components of the plant ubiquitin/proteasome system. Thus, our data suggest that nopaline strains of Agrobacterium have evolved to encode a functional F-box protein VirF.

  20. Characteristics of Agrobacterium tumefaciens auxotrophic mutant infectivity.

    PubMed

    Lippincott, B B; Lippincott, J A

    1966-10-01

    Lippincott, Barbara B. (Northwestern University, Evanston, Ill.), and James A. Lippincott. Characteristics of Agrobacterium tumefaciens auxotrophic mutant infectivity. J. Bacteriol. 92:937-945. 166.-Mutants of Agrobacterium tumefaciens auxotrophic for adenine, methionine, or asparagine are less infectious than the wild-type strain B6 from which they were derived and show increased infectivity on pinto bean leaves when the specific compounds required for growth of the mutants are added to the infected leaf. Reversion to a prototrophic form of nutrition is accompanied by increased infectivity. Tumors initiated by these auxotrophic mutants are shown to arise only at large wound sites where nutritional conditions may be less restricting. The data indicate that, after inoculation, the bacteria pass through a phase in which host-supplied nutrients are utilized for the production of one or more factors necessary for successful tumor initiation.

  1. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  2. Two marine Agrobacterium producers of sesbanimide antibiotics.

    PubMed

    Acebal, C; Alcazar, R; Cañedo, L M; de la Calle, F; Rodriguez, P; Romero, F; Fernandez Puentes, J L

    1998-01-01

    Sesbanimides are cytotoxic compounds, originally isolated in 1983 from seeds of the leguminous plants Sesbania drummondii and Sesbania punicea. In this paper we describe the bacterial production of sesbanimides by two "marine Agrobacterium"; strain PH-103 which produces Sesbanimide-A and strain PH-A034C which produces Sesbanimide-C. The isolation and taxonomy of the producing microorganisms, fermentation and isolation of sesbanimides are reported.

  3. Odyssey of agrobacterium T-DNA.

    PubMed

    Ziemienowicz, A

    2001-01-01

    Agrobacterium tumefaciens, a plant pathogen, is characterized by the unique feature of interkingdom DNA transfer. This soil bacterium is able to transfer a fragment of its DNA, called T-DNA (transferred DNA), to the plant cell where T-DNA is integrated into the plant genome leading to "genetic colonization" of the host. The fate of T-DNA, its processing, transfer and integration, resembles the journey of Odysseus, although our hero returns from its long trip in a slightly modified form.

  4. Recombinant synthesis of hyaluronan by Agrobacterium sp.

    PubMed

    Mao, Zichao; Chen, Rachel Ruizhen

    2007-01-01

    Hyaluronan (HA) is a sugar polymer of a repeating disaccharide, beta1-3 D-N-acetylglucosamine (GlcNAc) beta1-4 D-glucuronic acid (GlcA). It finds applications in numerous biomedical procedures such as ophthalmic surgery and osteoarthritis treatment. Until recently, the only commercial sources were extraction of rooster combs and from fermentation of pathogenic Streptococcus. In this work, we demonstrate that metabolic engineering strategies enable the recombinant synthesis of hyaluronan in a safe microorganism. Agrobacterium sp. ATCC 31749 is a commercial production strain for a food polymer, Curdlan. A broad host range expression vector was successfully developed to express the 3 kb HA synthase gene from Pasteurella multocida, along with a kfiD gene encoding UDP-glucose dehydrogenase from Escherichia coli K5 strain. Coexpression of these two heterologous enzymes enables Agrobacterium to produce HA. Hyaluronan was accumulated up to 0.3 g/L in shaker flask cultivation. The molecular weight of the polymer from various Agrobacterium strains is in the range of 0.7-2 MD. To our knowledge, this is the first successful recombinant hyaluronan synthesis in a Gram-negative bacterium that naturally produces a food product. The ease of genetic modifications provides future opportunities to tailor properties of polymers for specific applications.

  5. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  6. Characterization of an Unusual New Agrobacterium tumefaciens Strain from Chrysanthemum morifolium Ram †

    PubMed Central

    Bush, Arla L.; Pueppke, Steven G.

    1991-01-01

    We characterized five isolates of Agrobacterium tumefaciens from naturally occurring galls on Chrysanthemum morifolium. The isolates are similar, possibly identical, members of a single strain of A. tumefaciens that we designate Chry5. The strain is a biotype I, as indicated by its response to both newly described and traditional biotype tests. Chry5 produces tumors on at least 10 plant species. It is unusual in its ability to form efficiently large tumors on soybean (Glycine max), a species normally refractory to transformation. Chry5 is unable to utilize octopine or mannopine as a carbon source. Although Chry5 can catabolize a single isomer each of nopaline and succinamopine, it differs from other known nopaline and succinamopine strains in its insensitivity to agrocin 84. This pattern of opine catabolism is unique among Agrobacterium strains examined to date. All five isolates of Chry5 contain at least two plasmids, one of which shares homology with pTiB6. Images PMID:16348549

  7. A robust family of Golden Gate Agrobacterium vectors for plant synthetic biology.

    PubMed

    Emami, Shahram; Yee, Muh-Ching; Dinneny, José R

    2013-01-01

    Tools that allow for rapid, accurate and inexpensive assembly of multi-component combinatorial libraries of DNA for transformation into plants will accelerate the progress of synthetic biology research. Recent innovations in molecular cloning methods has vastly expanded the repertoire with which plant biologists can engineer a transgene. Here we describe a new set of binary vectors for use in Agrobacterium-mediated plant transformation that utilizes the Golden-Gate Cloning approach. Our optimized protocol facilitates the rapid and inexpensive generation of multi-component transgenes for later introduction into plants.

  8. Overexpression of the HspL Promotes Agrobacterium tumefaciens Virulence in Arabidopsis Under Heat Shock Conditions.

    PubMed

    Hwang, Hau-Hsuan; Liu, Yin-Tzu; Huang, Si-Chi; Tung, Chin-Yi; Huang, Fan-Chen; Tsai, Yun-Long; Cheng, Tun-Fang; Lai, Erh-Min

    2015-02-01

    Agrobacterium tumefaciens transfers a specific DNA fragment from the resident tumor-inducing (Ti) plasmid and effector virulence (Vir) proteins to plant cells during infection. A. tumefaciens VirB1-11 and VirD4 proteins assemble as the type IV secretion system (T4SS), which mediates transfer of the T-DNA and effector Vir protein into plant cells, thus resulting in crown gall disease in plants. Previous studies revealed that an α-crystallin-type, small heat-shock protein (HspL) is a more effective VirB8 chaperone than three other small heat-shock proteins (HspC, HspAT1, and HspAT2). Additionally, HspL contributes to efficient T4SS-mediated DNA transfer and tumorigenesis under room-temperature growth. In this study, we aimed to characterize the impact of HspL on Agrobacterium-mediated transformation efficiency under heat-shock treatment. During heat shock, transient transformation efficiency and VirB8 protein accumulation were lower in the hspL deletion mutant than in the wild type. Overexpression of HspL in A. tumefaciens enhanced the transient transformation efficiency in root explants of both susceptible and recalcitrant Arabidopsis ecotypes. In addition, the reduced transient transformation efficiency during heat stress was recovered by overexpression of HspL in A. tumefaciens. HspL may help maintain VirB8 homeostasis and elevate Agrobacterium-mediated transformation efficiency under both heat-shock and nonheat-shock growth.

  9. Cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Behura, Ratikanta; Kumar, Sanjeev; Saha, Bedabrata; Panda, Manasa Kumar; Dey, Mohitosh; Sadhukhan, Ayan; Mishra, Sagarika; Alam, Shamsher; Sahoo, Debee Prasad; Sugla, Twinkle; Sahoo, Lingaraj

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an efficient method for incorporating genes and recovering stable transgenic plants in cowpea because this method offers several advantages such as the defined integration of transgenes, potentially low copy number, and preferential integration into transcriptional active regions of the chromosome. Cotyledonary node explants of cowpea present an attractive target for T-DNA delivery followed by regeneration of shoots via axillary proliferation without involvement of a de novo regeneration pathway. In this chapter, we describe a detailed protocol for Agrobacterium-mediated transformation of the cowpea variety Pusa Komal. The seedling cotyledonary node explants are used for cocultivation with an Agrobacterium strain EHA105 harboring standard binary vector, pCAMBIA2301 or pNOV2819, and putative transformed plants are selected using aminoglycoside antibiotic or mannose as sole carbon source, respectively. The entire process includes explant infection to transgenic seed generation in greenhouse.

  10. Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis

    PubMed Central

    Li, Xiaoyang; Pan, Shen Q.

    2017-01-01

    Agrobacterium tumefaciens can cause crown gall tumors on a wide range of host plants. As a natural genetic engineer, the bacterium can transfer both single-stranded DNA (ssDNA) [transferred DNA (T-DNA)] molecules and bacterial virulence proteins into various recipient cells. Among Agrobacterium-delivered proteins, VirE2 is an ssDNA binding protein that is involved in various steps of the transformation process. However, it is not clear how plant cells receive the T-DNA or protein molecules. Using a split–green fluorescent protein approach, we monitored the VirE2 delivery process inside plant cells in real time. We observed that A. tumefaciens delivered VirE2 from the bacterial lateral sides that were in close contact with plant membranes. VirE2 initially accumulated on plant cytoplasmic membranes at the entry points. VirE2-containing membranes were internalized through clathrin-mediated endocytosis to form endomembrane compartments. VirE2 colocalized with the early endosome marker SYP61 but not with the late endosome marker ARA6, suggesting that VirE2 escaped from early endosomes for subsequent trafficking inside the cells. Dual endocytic motifs at the carboxyl-terminal tail of VirE2 were involved in VirE2 internalization and could interact with the μ subunit of the plant clathrin-associated adaptor AP2 complex (AP2M). Both the VirE2 cargo motifs and AP2M were important for the transformation process. Because AP2-mediated endocytosis is well conserved, our data suggest that the A. tumefaciens pathogen hijacks conserved endocytic pathways to facilitate the delivery of virulence factors. This might be important for Agrobacterium to achieve both a wide host range and a high transformation efficiency. PMID:28345032

  11. Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones.

    PubMed

    Wolterink-van Loo, Suzanne; Escamilla Ayala, Abril A; Hooykaas, Paul J J; van Heusden, G Paul H

    2015-02-01

    Agrobacterium tumefaciens is a Gram-negative soil bacterium that genetically transforms plants and, under laboratory conditions, also transforms non-plant organisms, such as fungi and yeasts. During the transformation process a piece of ssDNA (T-strand) is transferred into the host cells via a type IV secretion system. The VirD2 relaxase protein, which is covalently attached at the 5' end of the T-strand through Tyr29, mediates nuclear entry as it contains a nuclear localization sequence. How the T-strand reaches the chromatin and becomes integrated in the chromosomal DNA is still far from clear. Here, we investigated whether VirD2 binds to histone proteins in the yeast Saccharomyces cerevisiae. Using immobilized GFP-VirD2 and in vitro synthesized His6-tagged S. cerevisiae proteins, interactions between VirD2 and the histones H2A, H2B, H3 and H4 were revealed. In vivo, these interactions were confirmed by bimolecular fluorescence complementation experiments. After co-cultivation of Agrobacterium strains expressing VirD2 tagged with a fragment of the yellow fluorescent protein analogue Venus with yeast strains expressing histone H2A or H2B tagged with the complementary part of Venus, fluorescence was detected in dot-shaped structures in the recipient yeast cells. The results indicated that VirD2 was transferred from Agrobacterium to yeast cells and that it interacted with histones in the host cell, and thus may help direct the T-DNA (transferred DNA) to the chromatin as a prelude to integration into the host chromosomal DNA.

  12. [Obtaining transgenic rice plants and their progenies using Agrobacterium tumefaciens].

    PubMed

    Yin, Z C; Yang, F; Xu, Y; Li, B J

    1998-12-01

    Rice (Oriza sativa L.) suspension cells of Taipei 309 were co-cultivated with A. tumefaciens stran EHA101 harbouring binary vector pBYT2 for 3 days in the presence of vir inducer, 100 mumol/L acetosyringone (AS). After 2 months of continuous selection, 17 stable hygromycin-resistant, GUS-positive calli were recovered from 364 suspension cell clusters co-cultivated with A. tumefaciens. 10 putative transgenic R0 plants obtained from 8 tansformed calli and their progenies were analyzed for the integration and expression of foreign genes. Southern blot analysis of R0 and R1 generations indicated that foreign genes had been stably integrated in the genome of transgenic rice and sexually transmitted. One of the transgenic lines showed 5 copies of T-DNA integration, while the others had only one copy. Histochemical staining observation and fluorometric assay of GUS activity in transgenic rice cells and plants showed ubiquitin promoter from maize was highly effective in driving the expression of gus reporter gene in transgenic rice cells. GUS protein and its activity were also investigated through ndPAGE-X-Gluc staining assay, and it was found that the GUS protein in transgenic rice cells was smaller in size than the standard GUS protein (Sigma Co. G0786) but as large as that from E.coli HB101 (pBI121). This study suggested that Agrobacterium-mediated transformation of plant is an efficient and reliable method to introduce foreign genes into rice.

  13. AMINO ACID CROSS RESISTANCE IN AGROBACTERIUM TUMEFACIENS

    PubMed Central

    Beardsley, Robert E.

    1962-01-01

    Beardsley, Robert E. (Manhattan College, New York, N. Y.). Amino acid cross resistance in Agrobacterium tumefaciens. J. Bacteriol. 84:1237–1240. 1962.—Resistant clones selected on medium supplemented with glycine were also resistant to d-methionine, d-valine, dl-norleucine, and dl-serine. Cross resistance was similarly exhibited by clones selected on d-methionine, d-valine, or dl-norleucine. Two types of resistant organisms were observed. One produced colonies containing normal rods on selection medium. The other produced translucent colonies containing L forms. Both grew as typical rods in unsupplemented medium. Some resistant clones did not produce a temperate phage carried by the parental strain, but these retained immunity to homologous phage. The toxicity of d-methionine and d-valine for nonresistant bacteria is not reversed by the l isomers. The lethal effects of toxic amino acids are additive. PMID:13969951

  14. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  15. Plant viral vectors for delivery by Agrobacterium.

    PubMed

    Gleba, Yuri Y; Tusé, Daniel; Giritch, Anatoli

    2014-01-01

    Plant viral vectors delivered by Agrobacterium are the basis of several manufacturing processes that are currently in use for producing a wide range of proteins for multiple applications, including vaccine antigens, antibodies, protein nanoparticles such as virus-like particles (VLPs), and other protein and protein-RNA scaffolds. Viral vectors delivered by agrobacterial T-DNA transfer (magnifection) have also become important tools in research. In recent years, essential advances have been made both in the development of second-generation vectors designed using the 'deconstructed virus' approach, as well as in the development of upstream manufacturing processes that are robust and fully scalable. The strategy relies on Agrobacterium as a vector to deliver DNA copies of one or more viral RNA/DNA replicons; the bacteria are delivered into leaves by vacuum infiltration, and the viral machinery takes over from the point of T-DNA transfer to the plant cell nucleus, driving massive RNA and protein production and, if required, cell-to-cell spread of the replicons. Among the most often used viral backbones are those of the RNA viruses Tobacco mosaic virus (TMV), Potato virus X (PVX) and Cowpea mosaic virus (CPMV), and the DNA geminivirus Bean yellow dwarf virus. Prototypes of industrial processes that provide for high yield, rapid scale up and fast manufacturing cycles have been designed, and several GMP-compliant and GMP-certified manufacturing facilities are in place. These efforts have been successful as evidenced by the fact that several antibodies and vaccine antigens produced by magnifection are currently in clinical development.

  16. Effect of Medium Supplements on Agrobacterium rhizogenes Mediated Hairy Root Induction from the Callus Tissues of Camellia sinensis var. sinensis

    PubMed Central

    Rana, Mohammad M.; Han, Zhuo-Xiao; Song, Da-Peng; Liu, Guo-Feng; Li, Da-Xiang; Wan, Xiao-Chun; Karthikeyan, Alagarsamy; Wei, Shu

    2016-01-01

    Tea (Camellia sinensis L.) is recalcitrant to Agrobacterium-mediated genetic transformation largely due to the bactericidal effects of tea polyphenols and phenolics oxidation induced by necrosis of explant tissue over the process of transformation. In this study, different antioxidants/adsorbents were added as supplements to the co-cultivation and post co-cultivation media to overcome these problems for the transformation improvement. Tea-cotyledon-derived calli were used as explants and Agrobacterium rhizognes strain ATCC 15834 was used as a mediator. Results showed that Agrobacterium growth, virulence (vir) gene expression and browning of explant tissue were greatly influenced by different supplements. Murashige and Skoog (MS) basal salts medium supplemented with 30 g·L−1 sucrose, 0.1 g·L−1 l-glutamine and 5 g·L−1 polyvinylpolypyrrolidone (PVPP) as co-cultivation and post co-cultivation media could maintain these parameters better that ultimately led to significant improvement of hairy root generation efficiency compared to that in the control (MS + 30 g·L−1 sucrose). Additionally, the reporter genes β-glucuronidase (gusA) and cyan fluorescent protein (cfp) were also stably expressed in the transgenic hairy roots. Our study would be helpful in establishing a feasible approach for tea biological studies and genetic improvement of tea varieties. PMID:27428960

  17. Cell wall biochemical alterations during Agrobacterium-mediated expression of haemagglutinin-based influenza virus-like vaccine particles in tobacco.

    PubMed

    Le Mauff, François; Loutelier-Bourhis, Corinne; Bardor, Muriel; Berard, Caroline; Doucet, Alain; D'Aoust, Marc-André; Vezina, Louis-Philippe; Driouich, Azeddine; Couture, Manon M-J; Lerouge, Patrice

    2017-03-01

    Influenza virus-like particles (VLPs) have been shown to induce a safe and potent immune response through both humoral and cellular responses. They represent promising novel influenza vaccines. Plant-based biotechnology allows for the large-scale production of VLPs of biopharmaceutical interest using different model organisms, including Nicotiana benthamiana plants. Through this platform, influenza VLPs bud from the plasma membrane and accumulate between the membrane and the plant cell wall. To design and optimize efficient production processes, a better understanding of the plant cell wall composition of infiltrated tobacco leaves is a major interest for the plant biotechnology industry. In this study, we have investigated the alteration of the biochemical composition of the cell walls of N. benthamiana leaves subjected to abiotic and biotic stresses induced by the Agrobacterium-mediated transient transformation and the resulting high expression levels of influenza VLPs. Results show that abiotic stress due to vacuum infiltration without Agrobacterium did not induce any detectable modification of the leaf cell wall when compared to non infiltrated leaves. In contrast, various chemical changes of the leaf cell wall were observed post-Agrobacterium infiltration. Indeed, Agrobacterium infection induced deposition of callose and lignin, modified the pectin methylesterification and increased both arabinosylation of RG-I side chains and the expression of arabinogalactan proteins. Moreover, these modifications were slightly greater in plants expressing haemagglutinin-based VLP than in plants infiltrated with the Agrobacterium strain containing only the p19 suppressor of silencing.

  18. Biolistics Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  19. Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.

    PubMed

    Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng

    2015-01-01

    To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.

  20. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells

    PubMed Central

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-01-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20–25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli. PMID:24376037

  1. Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells.

    PubMed

    Sakalis, Philippe A; van Heusden, G Paul H; Hooykaas, Paul J J

    2014-02-01

    Type IV secretion systems (T4SS) can mediate the translocation of bacterial virulence proteins into host cells. The plant pathogen Agrobacterium tumefaciens uses a T4SS to deliver a VirD2-single stranded DNA complex as well as the virulence proteins VirD5, VirE2, VirE3, and VirF into host cells so that these become genetically transformed. Besides plant cells, yeast and fungi can efficiently be transformed by Agrobacterium. Translocation of virulence proteins by the T4SS has so far only been shown indirectly by genetic approaches. Here we report the direct visualization of VirE2 protein translocation by using bimolecular fluorescence complementation (BiFC) and Split GFP visualization strategies. To this end, we cocultivated Agrobacterium strains expressing VirE2 tagged with one part of a fluorescent protein with host cells expressing the complementary part, either fused to VirE2 (for BiFC) or not (Split GFP). Fluorescent filaments became visible in recipient cells 20-25 h after the start of the cocultivation indicative of VirE2 protein translocation. Evidence was obtained that filament formation was due to the association of VirE2 with the microtubuli.

  2. Sugarcane (Saccharum spp. hybrids).

    PubMed

    Wu, Hao; Altpeter, Fredy

    2015-01-01

    Genetic transformation of sugarcane has a tremendous potential to complement traditional breeding in crop improvement and will likely transform sugarcane into a bio-factory for value-added products. We describe here Agrobacterium tumefaciens-mediated transformation of sugarcane. Embryogenic callus induced from immature leaf whorls was used as target for transformation with the hypervirulent Agrobacterium strain AGL1 carrying a constitutive nptII expression cassette in vector pPZP200. Selection with 30 mg/L geneticin during the callus phase and 30 mg/L paromomycin during regeneration of shoots and roots effectively suppressed the development of non-transgenic plants. This protocol was successful with a commercially important sugarcane cultivar, CP-88-1762, at a transformation efficiency of two independent transgenic plants per g of callus.

  3. Ecological dynamics and complex interactions of Agrobacterium megaplasmids

    PubMed Central

    Platt, Thomas G.; Morton, Elise R.; Barton, Ian S.; Bever, James D.; Fuqua, Clay

    2014-01-01

    As with many pathogenic bacteria, agrobacterial plant pathogens carry most of their virulence functions on a horizontally transmissible genetic element. The tumor-inducing (Ti) plasmid encodes the majority of virulence functions for the crown gall agent Agrobacterium tumefaciens. This includes the vir genes which drive genetic transformation of host cells and the catabolic genes needed to utilize the opines produced by infected plants. The Ti plasmid also encodes, an opine-dependent quorum sensing system that tightly regulates Ti plasmid copy number and its conjugal transfer to other agrobacteria. Many natural agrobacteria are avirulent, lacking the Ti plasmid. The burden of harboring the Ti plasmid depends on the environmental context. Away from diseased hosts, plasmid costs are low but the benefit of the plasmid is also absent. Consequently, plasmidless genotypes are favored. On infected plants the costs of the Ti plasmid can be very high, but balanced by the opine benefits, locally favoring plasmid bearing cells. Cheating derivatives which do not incur virulence costs but can benefit from opines are favored on infected plants and in most other environments, and these are frequently isolated from nature. Many agrobacteria also harbor an At plasmid which can stably coexist with a Ti plasmid. At plasmid genes are less well characterized but in general facilitate metabolic activities in the rhizosphere and bulk soil, such as the ability to breakdown plant exudates. Examination of A. tumefaciens C58, revealed that harboring its At plasmid is much more costly than harboring it’s Ti plasmid, but conversely the At plasmid is extremely difficult to cure. The interactions between these co-resident plasmids are complex, and depend on environmental context. However, the presence of a Ti plasmid appears to mitigate At plasmid costs, consistent with the high frequency with which they are found together. PMID:25452760

  4. Rhizobium pusense is the main human pathogen in the genus Agrobacterium/Rhizobium.

    PubMed

    Aujoulat, F; Marchandin, H; Zorgniotti, I; Masnou, A; Jumas-Bilak, E

    2015-05-01

    Rhizobium pusense was recently described after isolation from the rhizosphere of chickpea. Multilocus sequence-based analysis of clinical isolates identified as Agrobacterium (Rhizobium) radiobacter demonstrated that R. pusense is the main human pathogen within Agrobacterium (Rhizobium) spp. Clinical microbiology of Agrobacterium (Rhizobium) should be considered in the light of recent taxonomic changes.

  5. Two-way chemical signaling in Agrobacterium-plant interactions.

    PubMed Central

    Winans, S C

    1992-01-01

    The discovery in 1977 that Agrobacterium species can transfer a discrete segment of oncogenic DNA (T-DNA) to the genome of host plant cells has stimulated an intense interest in the molecular biology underlying these plant-microbe associations. This attention in turn has resulted in a series of insights about the biology of these organisms that continue to accumulate at an ever-increasing rate. This excitement was due in part to the notion that this unprecedented interkingdom DNA transfer could be exploited to create transgenic plants containing foreign genes of scientific or commercial importance. In the course of these discoveries, Agrobacterium became one of the best available models for studying the molecular interactions between bacteria and higher organisms. One extensively studied aspect of this association concerns the exchange of chemical signals between Agrobacterium spp. and host plants. Agrobacterium spp. can recognize no fewer than five classes of low-molecular-weight compounds released from plants, and other classes probably await discovery. The most widely studied of these are phenolic compounds, which stimulate the transcription of the genes needed for infection. Other compounds include specific monosaccharides and acidic environments which potentiate vir gene induction, acidic polysaccharides which induce one or more chromosomal genes, and a family of compounds called opines which are released from tumorous plant cells to the bacteria as nutrient sources. Agrobacterium spp. in return release a variety of chemical compounds to plants. The best understood is the transferred DNA itself, which contains genes that in various ways upset the balance of phytohormones, ultimately causing neoplastic cell proliferation. In addition to transferring DNA, some Agrobacterium strains directly secrete phytohormones. Finally, at least some strains release a pectinase, which degrades a component of plant cell walls. PMID:1579105

  6. Agrobacterium tumefaciens-Induced Bacteraemia Does Not Lead to Reporter Gene Expression in Mouse Organs

    PubMed Central

    Petrunia, Igor V.; Frolova, Olga Y.; Komarova, Tatiana V.; Kiselev, Sergey L.; Citovsky, Vitaly; Dorokhov, Yuri L.

    2008-01-01

    Agrobacterium tumefaciens is the main plant biotechnology gene transfer tool with host range which can be extended to non-plant eukaryotic organisms under laboratory conditions. Known medical cases of Agrobacterium species isolation from bloodstream infections necessitate the assessment of biosafety-related risks of A. tumefaciens encounters with mammalian organisms. Here, we studied the survival of A. tumefaciens in bloodstream of mice injected with bacterial cultures. Bacterial titers of 108 CFU were detected in the blood of the injected animals up to two weeks after intravenous injection. Agrobacteria carrying Cauliflower mosaic virus (CaMV) 35S promoter-based constructs and isolated from the injected mice retained their capacity to promote green fluorescent protein (GFP) synthesis in Nicotiana benthamiana leaves. To examine whether or not the injected agrobacteria are able to express in mouse organs, we used an intron-containing GFP (GFPi) reporter driven either by a cytomegalovirus (CMV) promoter or by a CaMV 35S promoter. Western and northern blot analyses as well as RT-PCR analysis of liver, spleen and lung of mice injected with A. tumefaciens detected neither GFP protein nor its transcripts. Thus, bacteraemia induced in mice by A. tumefaciens does not lead to detectible levels of genetic transformation of mouse organs. PMID:18523638

  7. Stable Recombinase-Mediated Cassette Exchange in Arabidopsis Using Agrobacterium tumefaciens1

    PubMed Central

    Louwerse, Jeanine D.; van Lier, Miranda C.M.; van der Steen, Dirk M.; de Vlaam, Clementine M.T.; Hooykaas, Paul J.J.; Vergunst, Annette C.

    2007-01-01

    Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation. PMID:17921337

  8. [Construction and fermentation of a recombinant Candida glycerinogenes strain with high glycerol production].

    PubMed

    Liu, Ailing; Rao, Zhiming; Ma, Zheng; Zhuge, Bin; Fang, Huiying; Zhuge, Jian

    2009-06-01

    Candida glycerinogenes WL2002-5 (C.g) is an important industrial strain for glycerol production. To further improve glycerol production, we reconstructed a binary vector pCAM3300-zeocin-CgGPD1, introduced it to Agrobacterium tumefaciens LBA4404 by electroporation, and then transformed the T-DNA harboring the CgGPD1 to Candida glycerinogenes by Agrobacterium tumefaciens-mediated transformation (ATMT). After 96 h fermentation with glucose as the substrate, we screened a transformant named C.g-G8 with high glycerol production. Compared with the wild strain, the glucose consumption rate of C.g-G8 and the glycerol production were 12.97% and 18.06% higher, respectively. During the fermentation, the activity of glycerol-3-phosphate dehydrogenase of C.g-G8 was 27.55% higher than that of the wild strain. The recombinant Candida glycerinogenes with high glycerol production was successful constructed by ATMT method.

  9. [Agrobacterium rubi strains from blueberry plants are highly diverse].

    PubMed

    Abrahamovich, Eliana; López, Ana C; Alippi, Adriana M

    2014-01-01

    The diversity of a collection of Agrobacterium rubi strains isolated from blueberries from different regions of Argentina was studied by conventional microbiological tests and molecular techniques. Results from biochemical and physiological reactions, as well as from rep-PCR and RFLP analysis of PCR-amplified 23S rDNA showed high phenotypic and genotypic intraspecific variation.

  10. Induction of Pseudoactinorhizae by the Plant Pathogen Agrobacterium rhizogenes.

    PubMed

    Berg, R H; Liu, L; Dawson, J O; Savka, M A; Farrand, S K

    1992-02-01

    Infection of Elaeagnus angustifolia cotyledonary wounds by Agrobacterium rhizogenes strain NCPPB 2659 resulted in the formation of pseudoactinorhizae on roots differentiated from callus. These pseudoactinorhizal root nodules were anatomically indistinguishable from the actinorhizae induced by the plant's microsymbiont Frankia. This unusual hairy root phenotype provides support for the concept that the genetic program for actinorhiza morphogenesis resides in the plant's genome.

  11. Draft Genome Sequence of Agrobacterium rhizogenes Strain NCPPB2659

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work reports the draft genome of Agrobacterium rhizogenes strain NCPPB2659 (also known as strain K599). The assembled genome contains 5,277,347 bp, and is composed of 1 circular chromosome, the Ri virulence plasmid, and 17 scaffolds pertaining to the linear chromosome. The wild type strain cau...

  12. Reiterated DNA sequences in Rhizobium and Agrobacterium spp.

    PubMed Central

    Flores, M; González, V; Brom, S; Martínez, E; Piñero, D; Romero, D; Dávila, G; Palacios, R

    1987-01-01

    Repeated DNA sequences are a general characteristic of eucaryotic genomes. Although several examples of DNA reiteration have been found in procaryotic organisms, only in the case of the archaebacteria Halobacterium halobium and Halobacterium volcanii [C. Sapienza and W. F. Doolittle, Nature (London) 295:384-389, 1982], has DNA reiteration been reported as a common genomic feature. The genomes of two Rhizobium phaseoli strains, one Rhizobium meliloti strain, and one Agrobacterium tumefaciens strain were analyzed for the presence of repetitive DNA. Rhizobium and Agrobacterium spp. are closely related soil bacteria that interact with plants and that belong to the taxonomical family Rhizobiaceae. Rhizobium species establish a nitrogen-fixing symbiosis in the roots of legumes, whereas Agrobacterium species is a pathogen in different plants. The four strains revealed a large number of repeated DNA sequences. The family size was usually small, from 2 to 5 elements, but some presented more than 10 elements. Rhizobium and Agrobacterium spp. contain large plasmids in addition to the chromosomes. Analysis of the two Rhizobium strains indicated that DNA reiteration is not confined to the chromosome or to some plasmids but is a property of the whole genome. Images PMID:3450286

  13. Virulence of Agrobacterium tumefaciens strain A281 on legumes

    SciTech Connect

    Hood, E.E.; Fraley, R.T.; Chilton, M.D.

    1987-03-01

    This study addresses the basis of host range on legumes of Agrobacterium tumefaciens strain A281, an L,L-succinamopine strain. The authors tested virulence of T-DNA and vir region constructs from this tumor-inducing (Ti) plasmid with complementary Ti plasmid regions from heterologous nopaline and octopine strains.

  14. Impact of biological amendments on Agrobacterium tumefaciens soil survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paradox, the primary walnut rootstock used in California, is susceptible to Agrobacterium tumefaciens, which causes crown gall. While A. tumefaciens is susceptible to commonly used fumigants such as methyl bromide (MeBr) and Telone-C35 (1,3-dichloropropene and chloropicrin), these fumigants also sig...

  15. Transgene expression in tick cells using agrobacterium tumefaciens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ticks transmit infectious diseases to humans and other animals. Genetic manipulation of these arthropods would allow the development of alternative disease control strategies. Interestingly, Agrobacterium tumefaciens (At) mediated T-DNA transfer has been recently shown to promote the genetic modific...

  16. Low Agrobacterium tumefaciens inoculum levels and a long co-culture period lead to reduced plant defense responses and increase transgenic shoot production of sunflower (Helianthus annuus L.).

    PubMed

    Zhang, Zhifen; Finer, John J

    2016-01-01

    Agrobacterium-mediated plant transformation is typically conducted by inoculating plant tissues with an Agrobacterium suspension containing approximately 10(8)-10(9) bacteria mL(-1), followed by a 2-3-d co-culture period. Use of longer co-culture periods could potentially increase transformation efficiencies by allowing more time for Agrobacterium to interact with plant cells, but bacterial overgrowth is likely to occur, leading to severe tissue browning and reduced transformation and regeneration. Low bacterial inoculum levels were therefore evaluated as a means to reduce the negative outcomes associated with long co-culture. The use of low inoculum bacterial suspensions (approximately 6 × 10(2) bacteria mL(-1)) followed by long co-culture (15 d) led to the production of an average of three transformed sunflower shoots per explant while the use of high inoculum (approximately 6 × 10(8) bacteria mL(-1)) followed by short co-culture (3 d) led to no transformed shoots. Low inoculum and long co-culture acted synergistically, and both were required for the improvement of sunflower transformation. Gene expression analysis via qRT-PCR showed that genes related to plant defense response were generally expressed at lower levels in the explants treated with low inoculum than those treated with high inoculum during 15 d of co-culture, suggesting that low inoculum reduced the induction of plant defense responses. The use of low inoculum with long co-culture (LI/LC) led to large increases in sunflower transformation efficiency. This method has great potential for improving transformation efficiencies and expanding the types of target tissues amenable for transformation of different plant species.

  17. Genetic transformation of carnation (Dianthus caryophylus L.).

    PubMed

    Nontaswatsri, Chalermsri; Fukai, Seiichi

    2010-01-01

    This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).

  18. When plant virology met Agrobacterium: the rise of the deconstructed clones.

    PubMed

    Peyret, Hadrien; Lomonossoff, George P

    2015-10-01

    In the early days of molecular farming, Agrobacterium-mediated stable genetic transformation and the use of plant virus-based vectors were considered separate and competing technologies with complementary strengths and weaknesses. The demonstration that 'agroinfection' was the most efficient way of delivering virus-based vectors to their target plants blurred the distinction between the two technologies and permitted the development of 'deconstructed' vectors based on a number of plant viruses. The tobamoviruses, potexviruses, tobraviruses, geminiviruses and comoviruses have all been shown to be particularly well suited to the development of such vectors in dicotyledonous plants, while the development of equivalent vectors for use in monocotyledonous plants has lagged behind. Deconstructed viral vectors have proved extremely effective at the rapid, high-level production of a number of pharmaceutical proteins, some of which are currently undergoing clinical evaluation.

  19. Reconciliation of Sequence Data and Updated Annotation of the Genome of Agrobacterium tumefaciens C58, and Distribution of a Linear Chromosome in the Genus Agrobacterium

    PubMed Central

    Slater, Steven; Setubal, João C.; Houmiel, Kathryn; Sun, Jian; Kaul, Rajinder; Goldman, Barry S.; Farrand, Stephen K.; Almeida, Nalvo; Burr, Thomas; Nester, Eugene; Rhoads, David M.; Kadoi, Ryosuke; Ostheimer, Trucian; Pride, Nicole; Sabo, Allison; Henry, Erin; Telepak, Erin; Cromes, Lindsey; Harkleroad, Alana; Oliphant, Louis; Pratt-Szegila, Phil; Welch, Roy; Wood, Derek

    2013-01-01

    Two groups independently sequenced the Agrobacterium tumefaciens C58 genome in 2001. We report here consolidation of these sequences, updated annotation, and additional analysis of the evolutionary history of the linear chromosome, which is apparently limited to the biovar I group of Agrobacterium. PMID:23241979

  20. Integration of an insertion-type transferred DNA vector from Agrobacterium tumefaciens into the Saccharomyces cerevisiae genome by gap repair.

    PubMed Central

    Risseeuw, E; Franke-van Dijk, M E; Hooykaas, P J

    1996-01-01

    Recently, it was shown that Agrobacterium tumefaciens can transfer transferred DNA (T-DNA) to Saccharomyces cerevisiae and that this T-DNA, when used as a replacement vector, is integrated via homologous recombination into the yeast genome. To test whether T-DNA can be a suitable substrate for integration via the gap repair mechanism as well, a model system developed for detection of homologous recombination events in plants was transferred to S. cerevisiae. Analysis of the yeast transformants revealed that an insertion type T-DNA vector can indeed be integrated via gap repair. Interestingly, the transformation frequency and the type of recombination events turned out to depend strongly on the orientation of the insert between the borders in such an insertion type T-DNA vector. PMID:8816506

  1. Spike-dip transformation of Setaria viridis.

    PubMed

    Saha, Prasenjit; Blumwald, Eduardo

    2016-04-01

    Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant.

  2. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes

    SciTech Connect

    Scorza, R.; Zimmerman, T.W.; Cordts, J.M.; Footen, K.J. ); Ravelonandro, M. . Station de Pathologie Vegetale)

    1994-09-01

    Wisconsin 38 tobacco (Nicotiana tabacum L.) leaf discs were transformed with the disarmed Agrobacterium tumefaciens strain EHA 101 carrying the rolC gene from A. rhizogenes and NPT II and GUS genes. Shoots that regenerated on kanamycin-containing medium were confirmed as transgenic through GUS assays, polymerase chain reaction (PCR), Southern blot analyses, and transmission of the foreign genes through the sexual cycle. Transgenic plants were as short as half the height of control plants; were earlier flowering by up to 35 days; and had smaller leaves, shorter internodes, smaller seed capsules, fewer seeds, smaller flowers, and reduced pollen viability. The number of seed capsules, leaf number, and specific root length were similar between transgenic and control plants. Transgenic clones varied in the expression of the rolC-induced growth alterations as did the first generation of seedlings from these clones. Such differences suggested the potential for selecting for different levels of expression. Transformation with the rolC gene presents a potentially useful method of genetically modifying horticultural crops, particularly for flowering date, height, and leaf and flower size. Chemical names used: neomycin phosphotransferase (NPTII), [beta]-glucuronidase (GUS).

  3. Analysis of hydroxycinnamic acid degradation in Agrobacterium fabrum reveals a coenzyme A-dependent, beta-oxidative deacetylation pathway.

    PubMed

    Campillo, Tony; Renoud, Sébastien; Kerzaon, Isabelle; Vial, Ludovic; Baude, Jessica; Gaillard, Vincent; Bellvert, Floriant; Chamignon, Cécile; Comte, Gilles; Nesme, Xavier; Lavire, Céline; Hommais, Florence

    2014-06-01

    The soil- and rhizosphere-inhabiting bacterium Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to have species-specific genes involved in ferulic acid degradation. Here, we characterized, by genetic and analytical means, intermediates of degradation as feruloyl coenzyme A (feruloyl-CoA), 4-hydroxy-3-methoxyphenyl-β-hydroxypropionyl-CoA, 4-hydroxy-3-methoxyphenyl-β-ketopropionyl-CoA, vanillic acid, and protocatechuic acid. The genes atu1416, atu1417, and atu1420 have been experimentally shown to be necessary for the degradation of ferulic acid. Moreover, the genes atu1415 and atu1421 have been experimentally demonstrated to be essential for this degradation and are proposed to encode a phenylhydroxypropionyl-CoA dehydrogenase and a 4-hydroxy-3-methoxyphenyl-β-ketopropionic acid (HMPKP)-CoA β-keto-thiolase, respectively. We thus demonstrated that the A. fabrum hydroxycinnamic degradation pathway is an original coenzyme A-dependent β-oxidative deacetylation that could also transform p-coumaric and caffeic acids. Finally, we showed that this pathway enables the metabolism of toxic compounds from plants and their use for growth, likely providing the species an ecological advantage in hydroxycinnamic-rich environments, such as plant roots or decaying plant materials.

  4. Efficiency of different Agrobacterium rhizogenes strains on hairy roots induction in Solanum mammosum.

    PubMed

    Ooi, Chai Theam; Syahida, Ahmad; Stanslas, Johnson; Maziah, Mahmood

    2013-03-01

    This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.

  5. Taro (Colocasia esculenta (L.) Schott).

    PubMed

    He, Xiaoling; Miyasaka, Susan C; Fitch, Maureen M M; Zhu, Yun J

    2015-01-01

    Genetic engineering of taro is an effective method to improve taro quality and the resistance to various diseases of taro. Agrobacterium tumefaciens-mediated transformation of taro is more efficient than the particle bombardment transformation method based on current research. The development of a regeneration system starting from taro shoot tip explants could produce dasheen mosaic virus (DsMV)-free plantlets. Highly regenerative calluses could be developed from DsMV-free, in vitro plantlets on the Murashige and Skoog (MS) medium with 2 mg/L BA and 1 mg/L NAA (M5 medium). The Agrobacterium tumefaciens-mediated transformation method is reported in this chapter. The highly regenerative calluses were selected and cocultivated with the Agrobacterium strain EHA105 harboring the binary vector PBI121 with either a rice chitinase gene chi11 or a wheat oxalate oxidase gene gf2.8. After cocultivation for 3-4 days, these calluses were transferred to selection medium (M5 medium) containing 50 mg/L Geneticin G418 and grown for 3 months in the dark. Transgenic shoot lines could be induced and selected on the MS medium containing 4 mg/L BA (M15 medium) and 50 mg/L Geneticin G418 for 3 months further in the light. Molecular analyses are used to confirm the stable transformation and expression of the disease resistance gene chi11 or gf2.8. Pathologic bioassays could be used to demonstrate whether the transgenic plants had increased disease resistance to taro pathogens Sclerotium rolfsii or Phytophthora colocasiae.

  6. Fate of Agrobacterium radiobacter K84 in the environment.

    PubMed Central

    Stockwell, V O; Moore, L W; Loper, J E

    1993-01-01

    Agrobacterium radiobacter K84 is an effective, commercially applied, biological control agent for the plant disease crown gall, yet little is known about the survival and dissemination of K84. To trace K84 in the environment, spontaneous antibiotic-resistant mutants were used. Growth rates and phenotypes of streptomycin- or rifampin-resistant K84 were similar to those of the parental K84, except the rifampin-resistant mutant produced less agrocin 84 as determined by bioassay. K84 and a strain of Agrobacterium tumefaciens established populations averaging 10(5) CFU/g in the rhizosphere of cherry and persisted on roots for 2 years. K84 established rhizosphere populations between 10(4) and 10(6) CFU/g on cherry, ryegrass, and 11 other herbaceous plants. Populations of K84 declined substantially in fallow soil or water over a 16-week period. K84 was detected in the rhizosphere of ryegrass located up to 40 cm from an inoculum source, indicating lateral dissemination of K84 in soil. In gall tissue on cherry, K84 established populations of 10(5) CFU/g, about 10- to 100-fold less than that of the pathogen. These data demonstrate that K84 persists for up to 2 years in a field environment as a rhizosphere inhabitant or in association with crown gall tissue. PMID:8357247

  7. Highly efficient transformation protocol for plum (Prunus domestica L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high-throughput transformation system for plum has been developed using hypocotyl slices excised from zygotic embryos as the source of explants. The hypocotyl slices are infected in an Agrobacterium tumefaciens suspension and then co-cultivated for 3 days in shoot regeneration three-quarter MS ba...

  8. Citrus transformation using juvenile tissue explants.

    PubMed

    Orbović, Vladimir; Grosser, Jude W

    2015-01-01

    The most frequently used method for production of citrus transgenic plants is via Agrobacterium-mediated transformation of tissues found on explants obtained from juvenile seedlings. Within the last decade and especially within the last 5-6 years, this robust method was employed to produce thousands of transgenic plants. With the newly applied screening methods that allow easier and faster detection of transgenic shoots, estimates of transformation rate for some cultivars have gone up making this approach even more attractive. Although adjustments have to be made regarding the (varietal) source of the starting material and Agrobacterium strain used in each experiment preformed, the major steps of this procedure have not changed significantly if at all. Transgenic citrus plants produced this way belong to cultivars of rootstocks, sweet oranges, grapefruits, mandarins, limes, and lemons.

  9. Agrobacterium rhizogenes GALLS Protein Substitutes for Agrobacterium tumefaciens Single-Stranded DNA-Binding Protein VirE2

    PubMed Central

    Hodges, Larry D.; Cuperus, Josh; Ream, Walt

    2004-01-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes transfer plasmid-encoded genes and virulence (Vir) proteins into plant cells. The transferred DNA (T-DNA) is stably inherited and expressed in plant cells, causing crown gall or hairy root disease. DNA transfer from A. tumefaciens into plant cells resembles plasmid conjugation; single-stranded DNA (ssDNA) is exported from the bacteria via a type IV secretion system comprised of VirB1 through VirB11 and VirD4. Bacteria also secrete certain Vir proteins into plant cells via this pore. One of these, VirE2, is an ssDNA-binding protein crucial for efficient T-DNA transfer and integration. VirE2 binds incoming ssT-DNA and helps target it into the nucleus. Some strains of A. rhizogenes lack VirE2, but they still transfer T-DNA efficiently. We isolated a novel gene from A. rhizogenes that restored pathogenicity to virE2 mutant A. tumefaciens. The GALLS gene was essential for pathogenicity of A. rhizogenes. Unlike VirE2, GALLS contains a nucleoside triphosphate binding motif similar to one in TraA, a strand transferase conjugation protein. Despite their lack of similarity, GALLS substituted for VirE2. PMID:15126468

  10. Effective elimination of chimeric tissue in transgenics for the stable genetic transformation of lesquerella fendleri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to improve the potential of Lesquerella fendleri as a valuable industrial oilseed crop, a stable genetic transformation system was developed. Genetic transformation was performed by inoculating leaf segments with an Agrobacterium tumefaciens strain AGL1 carrying binary vector pCAMBIA 1301.1...

  11. Proteomics and Genetics for Identification of a Bacterial Antimonite Oxidase in Agrobacterium tumefaciens.

    PubMed

    Li, Jingxin; Wang, Qian; Li, Mingshun; Yang, Birong; Shi, Manman; Guo, Wei; McDermott, Timothy R; Rensing, Christopher; Wang, Gejiao

    2015-05-19

    Antimony (Sb) and its compounds are listed by the United States Environmental Protection Agency (USEPA, 1979) and the European Union (CEC, 1976) as a priority pollutant. Microbial redox transformations are presumed to be an important part of antimony cycling in nature; however, regulation of these processes and the enzymology involved are unknown. In this study, comparative proteomics and reverse transcriptase-PCR analysis of Sb(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 revealed an oxidoreductase (anoA) is widely distributed in microorganisms, including at least some documented to be able to oxidize Sb(III). Deletion of the anoA gene reduced Sb(III) resistance and decreased Sb(III) oxidation by ∼27%, whereas the anoA complemented strain was similar to the wild type GW4 and a GW4 anoA overexpressing strain increased Sb(III) oxidation by ∼34%. Addition of Sb(III) up-regulated anoA expression and cloning anoA to Escherichia coli demonstrated direct transferability of this activity. A His-tag purified AnoA was found to require NADP(+) as cofactor, and exhibited a K(m) for Sb(III) of 64 ± 10 μM and a V(max) of 150 ± 7 nmol min(-1) mg(-1). This study contributes important initial steps toward a mechanistic understanding of microbe-antimony interactions and enhances our understanding of how microorganisms participate in antimony biogeochemical cycling in nature.

  12. Hfq Influences Multiple Transport Systems and Virulence in the Plant Pathogen Agrobacterium tumefaciens

    PubMed Central

    Wilms, Ina; Möller, Philip; Stock, Anna-Maria; Gurski, Rosemarie; Lai, Erh-Min

    2012-01-01

    The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens. PMID:22821981

  13. Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene.

    PubMed Central

    Heidekamp, F; Dirkse, W G; Hille, J; van Ormondt, H

    1983-01-01

    The nucleotide sequence of the tmr gene, encoded by the octopine Ti plasmid from Agrobacterium tumefaciens (pTiAch5), was determined. The T-DNA, which encompasses this gene, is involved in tumor formation and maintenance, and probably mediates the cytokinin-independent growth of transformed plant cells. The nucleotide sequence of the tmr gene displays a continuous open reading frame specifying a polypeptide chain of 240 amino acids. The 5'- terminus of the polyadenylated tmr mRNA isolated from octopine tobacco tumor cell lines was determined by nuclease S1 mapping. The nucleotide sequence 5'-TATAAAA-3', which sequence is identical to the canonical "TATA" box, was found 29 nucleotides upstream from the major initiation site for RNA synthesis. Two potential polyadenylation signals 5'-AATAAA-3' were found at 207 and 275 nucleotides downstream from the TAG stopcodon of the tmr gene. A comparison was made of nucleotide stretches, involved in transcription control of T-DNA genes. Images PMID:6312414

  14. Simultaneous denitrification and phosphorus removal by Agrobacterium sp. LAD9 under varying oxygen concentration.

    PubMed

    Ma, Tao; Chen, Qian; Gui, Mengyao; Li, Can; Ni, Jinren

    2016-04-01

    Although efficient aerobic denitrification has received increasing attention, few studies have been made on simultaneous denitrification and phosphorus removal (SDPR) under aerobic condition. In this study, SDPR by an efficient aerobic denitrifier, Agrobacterium sp. LAD9, was firstly demonstrated. High nitrate and phosphorus removal rates of 7.50 and 1.02 mg L(-1) h(-1) were achieved in wide range of O2 concentration from 5.92 to 20.02 mg L(-1). The N2O production would be inhibited as O2 concentration exceeded 11.06 mg L(-1), while the phosphorus removal efficiency would be generally improved with increasing O2 concentration. (15)N mass spectrometry revealed that nitrogen removal accorded with the typical aerobic denitrification pathway, while (31)P nuclear magnetic resonance spectroscopy ((31)P NMR) indicated the fate of phosphorus to cells, extracellular polymeric substances (EPS), and polyphosphate (poly-P) of the denitrifier. EPS acted as a reservoir of phosphorus and the transformation of poly-P was dynamic and depended on initial orthophosphate (ortho-P) content. The aerobic SDPR would greatly simplify the conventional wastewater treatment processes which required separated considerations of nitrogen and phosphorus removal.

  15. Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes1

    PubMed Central

    Lee, Hyewon; Humann, Jodi L.; Pitrak, Jennifer S.; Cuperus, Josh T.; Parks, T. Dawn; Whistler, Cheryl A.; Mok, Machteld C.; Ream, L. Walt

    2003-01-01

    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease. PMID:12972655

  16. Peach (Prunus persica L.).

    PubMed

    Sabbadini, Silvia; Pandolfini, Tiziana; Girolomini, Luca; Molesini, Barbara; Navacchi, Oriano

    2015-01-01

    Until now, the application of genetic transformation techniques in peach has been limited by the difficulties in developing efficient regeneration and transformation protocols. Here we describe an efficient regeneration protocol for the commercial micropropagation of GF677 rootstock (Prunus persica × Prunus amygdalus). The method is based on the production, via organogenesis, of meristematic bulk tissues characterized by a high competence for shoot regeneration. This protocol has also been used to obtain GF677 plants genetically engineered with an empty hairpin cassette (hereafter indicated as hp-pBin19), through Agrobacterium tumefaciens-mediated transformation. After 7-8 months of selection on media containing kanamycin, we obtained two genetically modified GF677 lines. PCR and Southern blot analyses were performed to confirm the genetic status.

  17. Succinoglycan production by solid-state fermentation with Agrobacterium tumefaciens.

    PubMed

    Stredansky, M; Conti, E

    1999-09-01

    Succinoglycan was produced by cultivating Agrobacterium tumefaciens on various solid substrates, including agar medium, spent malt grains, ivory nut shavings, and grated carrots, impregnated with a nutrient+ solution. Fermentations were performed on a laboratory scale, both under static conditions and with agitation, using bottles and a prototype horizontal bioreactor. Several fermentation parameters were examined and optimized, including carbon and nitrogen composition, water content and layer thickness of the substrate. The yields and rheological properties of the polymers obtained under different fermentation conditions were compared. The highest succinoglycan yield was achieved in static cultivation, reaching 42 g/l of impregnating solution, corresponding to 30 g/kg of wet substrate. The polymer production in the horizontal bioreactor was faster, but the final yield was lower (29 g/l of impregnating solution).

  18. Enhancement of Agrobacterium tumefaciens infectivity by mitomycin C.

    PubMed

    Heberlein, G T; Lippincott, J A

    1967-11-01

    The ability of Agrobacterium tumefaciens to induce pinto leaf tumors may be enhanced two- to threefold after treatment with mitomycin C. The enhancement may be obtained with either lethal or nonlethal concentrations. With 10-min treatments, an optimal response was obtained with 0.005 mug of mitomycin C per ml in the absence of any change in the number of viable cells. Both the tumor induction process and the tumors induced by treated cultures appear qualitatively the same as controls. To account for these results, the antibiotic must increase the proportion of viable cells that will subsequently initiate tumors. One, or at most a few, random lesions in the bacterial chromosome seem to be the necessary requirement for this promotion. At mitomycin concentrations of 1 and 5 mug/ml, the ability of A. tumefaciens to initiate tumors is rapidly lost, indicating that a fairly intact bacterial chromosome is one of the essentials for the tumor induction process.

  19. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn)

    PubMed Central

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum ‘Hokkai T10’ cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3, H1, FtF3′H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat. PMID:27014239

  20. Effect of Different Agrobacterium rhizogenes Strains on Hairy Root Induction and Phenylpropanoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum Gaertn).

    PubMed

    Thwe, Aye; Valan Arasu, Mariadhas; Li, Xiaohua; Park, Chang Ha; Kim, Sun Ju; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2016-01-01

    The development of an efficient protocol for successful hairy root induction by Agrobacterium rhizogenes is the key step toward an in vitro culturing method for the mass production of secondary metabolites. The selection of an effective Agrobacterium strain for the production of hairy roots is highly plant species dependent and must be determined empirically. Therefore, our goal was to investigate the transformation efficiency of different A. rhizogenes strains for the induction of transgenic hairy roots in Fagopyrum tataricum 'Hokkai T10' cultivar; to determine the expression levels of the polypropanoid biosynthetic pathway genes, such as ftpAL, FtC4H, Ft4CL, FrCHS, FrCH1, FrF3H, FtFLS1, FtFLS2, FtF3(,) H1, FtF3'H2, FtANS, and FtDFR; and to quantify the in vitro synthesis of phenolic compounds and anthocyanins. Among different strains, R1000 was the most promising candidate for hairy root stimulation because it induced the highest growth rate, root number, root length, transformation efficiency, and total anthocyanin and rutin content. The R1000, 15834, and A4 strains provided higher transcript levels for most metabolic pathway genes for the synthesis of rutin (22.31, 15.48, and 13.04 μg/mg DW, respectively), cyanidin 3-O-glucoside (800, 750, and 650 μg/g DW, respectively), and cyanidin 3-O-rutinoside (2410, 1530, and 1170 μg/g DW, respectively). A suitable A. rhizogenes strain could play a vital role in the fast growth of the bulk amount of hairy roots and secondary metabolites. Overall, R1000 was the most promising strain for hairy root induction in buckwheat.

  1. Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infiltration of tobacco leaves with a suspension of Agrobacterium tumefaciens harboring a binary plant expression plasmid provides a convenient method for laboratory scale protein production. When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana), diffic...

  2. Attachment of Agrobacterium tumefaciens B6 and A. radiobacter K84 to Tomato Root Tips

    PubMed Central

    Penalver, R.; Serra, M. T.; Duran-Vila, N.; Lopez, M. M.

    1996-01-01

    Agrobacterium tumefaciens B6 and the avirulent Agrobacterium radiobacter strain K84 attached to in vitro-cultured tomato root tips, but the binding of strain B6 to root tips was greater than the binding of strain K84. Strain K84 was not able to block the attachment of A. tumefaciens B6 to in vitro-cultured tomato root tips. PMID:16535413

  3. How to get exogenous DNA to cross the cell membrane of plants. Comment on “Physical methods for genetic transformation in plants” by Rivera et al.

    NASA Astrophysics Data System (ADS)

    Cruz Hernández, Andrés; Campos Guillén, Juan

    2012-09-01

    Physical methods for genetic transformation in plants. The most commonly applied methods in plant transformation include Agrobacterium infection and protoplast or microprojectile bombardment. A plant transformation system is a prerequisite for the development of a plant improvement program. The global area utilized for biotech crops increases every year.

  4. Expression of human cytomegalovirus pp150 gene in transgenic Vicia faba L. and immunogenicity of pp150 protein in mice.

    PubMed

    Yan, Hua; Yan, Huishen; Li, Guocai; Gong, Weijuan; Jiao, Hongmei; Chen, Hongju; Ji, Mingchun

    2010-03-01

    The pp150 gene of human cytomegalovirus (HCMV) was transferred into Vicia faba plants by Agrobacterium tumefaciens-mediated transformation. Three of five hygromycin resistant V. faba plants were identified as positive by PCR and dot-blot hybridization. The ELISA results indicated that pp150 protein from three plants of transformed V. faba leaves and seeds made up 0.005-0.015% of the total soluble protein. The results of detection by immunoblot and inhibition of immunofluorescent assay (IFA) showed that pp150 soluble protein had immunity activity. HCMV pp150-specific antibody (IgG, IgA) and IFN-gamma producing T cells were detected in 100% of the mice immunized with pp150 transgenic V. faba seeds by ELISA and intracellular staining and flow cytometry analysis, respectively. The transgenic V. faba plants will provide new material for the development of edible vaccination against HCMV infection.

  5. Phenylpropanoid defence responses in transgenic Lotus corniculatus 1. Glutathione elicitation of isoflavan phytoalexins in transformed root cultures.

    PubMed

    Robbins, M P; Hartnoll, J; Morris, P

    1991-06-01

    When Agrobacterium rhizogenes transformed root cultures of Lotus corniculatus were treated with glutathione, isoflavan phytoalexins accumulated in both tissue and culture medium. This accumulation of phytoalexins was preceded by a transient increase in the activity of phenylalanine ammonia lyase (PAL). Elicitation of PAL occurred throughout the growth curve of Lotus 'hairy roots' and in different sectors of transformed root material.

  6. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter

    PubMed Central

    White, G. F.; Snape, J. R.; Nicklin, S.

    1996-01-01

    Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen. PMID:16535244

  7. Agrobacterium tumefaciens Interaction with Suspension-Cultured Tomato Cells 1

    PubMed Central

    Neff, Nicola T.; Binns, Andrew N.

    1985-01-01

    Adherence of Agrobacterium tumefaciens to suspension-cultured tomato cells has been characterized using a quantitative binding assay. Saturable binding of radiolabeled A. tumefaciens to plant cells resulted in 100 to 300 bacteria bound per cell. Specificity of A. tumefaciens binding was also inferred from two additional results: (a) an initial incubation of plant cells with A. tumefaciens reduced subsequent binding of radiolabeled A. tumefaciens by 60% to 75%; (b) tomato cells bound less than three E. coli per cell. Protease treatment of plant cells had no effect on subsequent bacterial binding, but prior treatment of plant cells with pectinolytic enzymes increased binding 2- to 3-fold. Pectin-enriched and neutral polymer-enriched fractions were obtained from tomato cell walls. The soluble pectin-enriched fraction inhibited binding of bacteria to plant cells by 85% to 95%, whereas the neutral polymer fraction only partially inhibited binding. Preliminary characterization of the activity showed it is heat stable, partially inactivated by protease treatment, and substantially inactivated by acid hydrolysis. Images Fig. 2 PMID:16664024

  8. Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens

    PubMed Central

    Czolkoss, Simon; Fritz, Christiane; Hölzl, Georg; Aktas, Meriyem

    2016-01-01

    Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants. PMID:27472399

  9. Floral-Dip Transformation of Flax (Linum usitatissimum) to Generate Transgenic Progenies with a High Transformation Rate

    PubMed Central

    Bastaki, Nasmah K.; Cullis, Christopher A.

    2014-01-01

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation. PMID:25549243

  10. Improved genetic transformation of cork oak (Quercus suber L.).

    PubMed

    Alvarez-Fernández, Rubén; Ordás, Ricardo-Javier

    2012-01-01

    An Agrobacterium-mediated transformation system for selected mature Quercus suber L. trees has been established. Leaf-derived somatic embryos in an early stage of development are inoculated with an AGL1 strain harboring a kanamycin-selectable plasmid carrying the gene of interest. The transformed embryos are induced to germinate and the plantlets transferred to soil. This protocol, from adult cork oak to transformed plantlet, can be completed in about one and a half years. Transformation efficiencies (i.e., percentage of inoculated explants that yield independent transgenic embryogenic lines) vary depending on the cork oak genotype, reaching up to 43%.

  11. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    PubMed Central

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-01-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2. PMID:28252030

  12. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium

    PubMed Central

    Heindl, Jason E.; Wang, Yi; Heckel, Brynn C.; Mohari, Bitan; Feirer, Nathan; Fuqua, Clay

    2014-01-01

    For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation

  13. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    NASA Astrophysics Data System (ADS)

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-03-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.

  14. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum.

    PubMed

    Kuzmanović, Nemanja; Puławska, Joanna; Prokić, Anđelka; Ivanović, Milan; Zlatković, Nevena; Jones, Jeffrey B; Obradović, Aleksa

    2015-09-01

    Two plant-tumorigenic strains KFB 330(T) and KFB 335 isolated from galls on raspberry (Rubus idaeus) in Serbia, and a non-pathogenic strain AL51.1 recovered from a cherry plum (Prunus cerasifera) tumor in Poland, were genotypically and phenotypically characterized. Phylogenetic reconstruction based on 16S rDNA placed them within the genus Agrobacterium, with A. nepotum as their closest relative. Multilocus sequence analysis (MLSA) based on the partial sequences of atpD, glnA, gyrB, recA and rpoB housekeeping genes suggested that these three strains represent a new Agrobacterium species, that clustered with type strains of A. nepotum, A. radiobacter, "A. fabrum" and A. pusense. This was further supported by average nucleotide identity values (<92%) between the whole genome sequences of strain KFB 330(T) and related Agrobacterium species. The major cellular fatty acids of the novel strains were 18:1 w7c (72.8-77.87%) and 16:0 (6.82-8.58%). Phenotypic features allowed their differentiation from closely related species. Polyphasic characterization showed that the three strains represent a novel species of the genus Agrobacterium, for which the name Agrobacterium arsenijevicii sp. nov. is proposed. The type strain of A. arsenijevicii is KFB 330(T) (= CFBP 8308(T) = LMG 28674(T)).

  15. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice.

    PubMed

    Nishizawa-Yokoi, Ayako; Nonaka, Satoko; Saika, Hiroaki; Kwon, Yong-Ik; Osakabe, Keishi; Toki, Seiichi

    2012-12-01

    Evidence for the involvement of the nonhomologous end joining (NHEJ) pathway in Agrobacterium-mediated transferred DNA (T-DNA) integration into the genome of the model plant Arabidopsis remains inconclusive. Having established a rapid and highly efficient Agrobacterium-mediated transformation system in rice (Oryza sativa) using scutellum-derived calli, we examined here the involvement of the NHEJ pathway in Agrobacterium-mediated stable transformation in rice. Rice calli from OsKu70, OsKu80 and OsLig4 knockdown (KD) plants were infected with Agrobacterium harboring a sensitive emerald luciferase (LUC) reporter construct to evaluate stable expression and a green fluorescent protein (GFP) construct to monitor transient expression of T-DNA. Transient expression was not suppressed, but stable expression was reduced significantly, in KD plants. Furthermore, KD-Ku70 and KD-Lig4 calli exhibited an increase in the frequency of homologous recombination (HR) compared with control calli. In addition, suppression of OsKu70, OsKu80 and OsLig4 induced the expression of HR-related genes on treatment with DNA-damaging agents. Our findings suggest strongly that NHEJ is involved in Agrobacterium-mediated stable transformation in rice, and that there is a competitive and complementary relationship between the NHEJ and HR pathways for DNA double-strand break repair in rice.

  16. Draft Genome Sequence of Agrobacterium sp. Strain R89-1, a Morphine Alkaloid-Biotransforming Bacterium

    PubMed Central

    Kyslíková, Eva

    2016-01-01

    Agrobacterium sp. strain R89-1 isolated from composted wastes of Papaver somniferum can effectively biotransform codeine/morphine into 14-OH-derivatives. Here, we present a 4.7-Mb assembly of the R89-1 strain genome. The draft shows that the strain R89-1 represents a distinct phylogenetic lineage within the genus Agrobacterium. PMID:27056219

  17. Agrobacterium rhizogenes - based transformation of soybean roots to form composite plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composite plants are a powerful tool to rapidly analyze the effects of gene overexpression, gene silencing, and examine test promoter expression in transgenic roots. No sterile tissue culture is needed. This avoids loss of valuable material due to contamination of sterile cultures. This method uses ...

  18. Rapid deletion plasmid construction methods for protoplast and Agrobacterium based fungal transformation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Gene deletion is a critical tool for functional analysis. The targeted deletion of genes requires both a suitable method for the trans...

  19. Development of an Agrobacterium-based transformation system for Rhizoctonia solani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 8.7 kb binary vector containing the 1.9 kb hygromycin B phosphortransferase (hyg) gene was constructed with promoter and terminator regions from the glyceraldehyde-3-phosphate- dehydrogenase (gpd) gene of Rhizoctonia solani anastomosis group 3 (AG-3) at the 5'- and 3'- gene termini of hyg. Promot...

  20. A reliable in vitro fruiting system for armillaria mellea for evaluation of agrobacterium tumefaciens transformation vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Armillaria mellea is a serious pathogen of horticultural and agricultural systems in Europe and North America. The lack of a reliable in vitro fruiting system has hindered research, and necessitated dependence on intermittently available wild-collected basidiospores. Here we describe a reliable, rep...

  1. Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco.

    PubMed

    Wang, Yan; Qiu, Liming; Dai, Chunying; Wang, Jing; Luo, Jianmin; Zhang, Fuchun; Ma, Ji

    2008-08-01

    To elucidate the function of antifreeze protein from Microdera puntipennis dzhungarica for freezing stress tolerance in plant, the construct of MpAFP149 gene with the signal peptide sequence responsible for secreting the native MpAFP149 into the apoplast space under control of a cauliflower mosaic virus 35S promoter was introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. The observation of immunogold localization by TEM (transmission electron microscope) showed that the heterologous MpAFP149 protein was mainly distributed on the cell wall in apoplast of the transgenic tobacco plant. T1 generation transgenic tobacco plants displayed a more frost resistant phenotype and kept the lower ion leakage ratio and MDA (malondialdehyde) content in the leaves compared with wild-type ones at -1 degrees C for 3 days. The results showed that MpAFP149 provided protection and conferred cold tolerance to transgenic tobacco plant during freezing stress.

  2. Disruption of the Subtilase Gene, albin1, in Ophiostoma piliferum

    PubMed Central

    Hoffman, Brad; Breuil, Colette

    2004-01-01

    Wood sapstaining fungi produce multiple proteases that break down wood protein. Three groups of subtilases have been identified in sapstaining fungi; however, it is not known if these groups have distinct physiological roles (B. Hoffman and C. Breuil, Curr. Genet. 41:168-175, 2002). In this work we examined the role of the subtilase Albin1 from Ophiostoma piliferum. Reamplification of cDNA ends PCR was used to obtain the albin1 gene sequence. The encoded subtilase is probably extracellular and involved in nutrient acquisition. This gene was disrupted with an Agrobacterium tumefaciens-mediated transformation system. Two of the disruptants obtained had significantly lower levels of proteolytic activity, slower growth in bovine serum albumin, and significantly reduced growth on wood. Thus, albin1 plays an important role in O. piliferum's ability to acquire nitrogen from wood proteins. PMID:15240261

  3. Expression of cefF significantly decreased deacetoxycephalosporin C formation during cephalosporin C production in Acremonium chrysogenum.

    PubMed

    An, Yang; Dong, Hailing; Liu, Gang

    2012-02-01

    Deacetoxycephalosporin C (DAOC) is not only the precursor but also one of the by-products during cephalosporin C (CPC) biosynthesis. One enzyme (DAOC/DAC synthase) is responsible for the two-step conversion of penicillin N into deacetylcephalosporin C (DAC) in Acremonium chrysogenum, while two enzymes (DAOC synthase and DAOC hydroxylase) were involved in this reaction in Streptomyces clavuligerus and Amycolatopsis lactamdurans (Nocardia lactamdurans). In this study, the DAOC hydroxylase gene cefF was cloned from Streptomyces clavuligerus and introduced into Acremonium chrysogenum through Agrobacterium tumefaciens-mediated transformation. When cefF was expressed under the promoter of pcbC, the ratio of DAOC/CPC in the fermentation broth significantly decreased. These results suggested that introduction of cefF could function quite well in Acremonium chrysogenum and successfully reduce the content of DAOC in the CPC fermentation broth. This work offered a practical way to improve the CPC purification and reduce its production cost.

  4. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress.

    PubMed

    Xu, Jing; Xing, Xiao-Juan; Tian, Yong-Sheng; Peng, Ri-He; Xue, Yong; Zhao, Wei; Yao, Quan-Hong

    2015-01-01

    Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.

  5. Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001.

    PubMed

    Jia, Xiao Qin; Xu, Zhi Nan; Zhou, Li Ping; Sung, Chang Keun

    2010-01-01

    The application of the high-producing pigments industrial strain Monascus purpureus SM001 has been greatly limited by the synchronous production of mycotoxin citrinin. Here we have tried both traditional mutagenesis and metabolic engineering methods to eliminate the production of citrinin. Traditional chemical and physical mutagens were applied to induce mutagenesis, and a bio-screening method based on the antibacterial activity of citrinin against Bacillus subtilis was designed to select mutants. Among the resulting four citrinin-free mutants, only mutant MU2411 can maintain the similar pigments yield. A binary vector system was constructed and successfully disrupted the polyketide synthase gene pksCT in M. purpureus SM001 through the Agrobacterium tumefaciens-mediated transformation. The resulting citrinin-free DeltapksCT mutants maintained the same level of pigments yield. The established Monascus genetic system was comprehensively evaluated and showed high efficiency and specificity, which provides us a potential approach to manipulate and improve industrial Monascus strains.

  6. Plant biotechnology for food security and bioeconomy.

    PubMed

    Clarke, Jihong Liu; Zhang, Peng

    2013-09-01

    This year is a special year for plant biotechnology. It was 30 years ago, on January 18 1983, one of the most important dates in the history of plant biotechnology, that three independent groups described Agrobacterium tumefaciens-mediated genetic transformation at the Miami Winter Symposium, leading to the production of normal, fertile transgenic plants (Bevan et al. in Nature 304:184-187, 1983; Fraley et al. in Proc Natl Acad Sci USA 80:4803-4807, 1983; Herrera-Estrella et al. in EMBO J 2:987-995, 1983; Vasil in Plant Cell Rep 27:1432-1440, 2008). Since then, plant biotechnology has rapidly advanced into a useful and valuable tool and has made a significant impact on crop production, development of a biotech industry and the bio-based economy worldwide.

  7. Transgenic cotton expressing synthesized scorpion insect toxin AaHIT gene confers enhanced resistance to cotton bollworm (Heliothis armigera) larvae.

    PubMed

    Wu, Jiahe; Luo, Xiaoli; Wang, Zhian; Tian, Yingchuan; Liang, Aihua; Sun, Yi

    2008-03-01

    A synthetic scorpion Hector Insect Toxin (AaHIT) gene, under the control of a CaMV35S promoter, was cloned into cotton via Agrobacterium tumefaciens-mediated transformation. Southern blot analyses indicated that integration of the transgene varied from one to more than three estimated copies per genome; seven homozygous transgenic lines with one copy of the T-DNA insert were then selected by PCR and Southern blot analysis. AaHIT expression was from 0.02 to 0.43% of total soluble protein determined by western blot. These homozygous transgenic lines killed larvae of cotton bollworm (Heliothis armigera) by 44-98%. The AaHIT gene could used therefore an alternative to Bt toxin and proteinase inhibitor genes for producing transgenic cotton crops with effective control of bollworm.

  8. Identification of the Genes Involved in the Fruiting Body Production and Cordycepin Formation of Cordyceps militaris Fungus

    PubMed Central

    Zheng, Zhuang-li; Qiu, Xue-hong

    2015-01-01

    A mutant library of Cordyceps militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation and screened for degradation features. Six mutants with altered characters in in vitro and in vivo fruiting body production, and cordycepin formation were found to contain a single copy T-DNA. T-DNA flanking sequences of these mutants were identified by thermal asymmetric interlaced-PCR approach. ATP-dependent helicase, cytochrome oxidase subunit I and ubiquitin-like activating enzyme were involved in in vitro fruiting body production, serine/threonine phosphatase involved in in vivo fruiting body production, while glucose-methanol-choline oxidoreductase and telomerase reverse transcriptase involved in cordycepin formation. These genes were analyzed by bioinformatics methods, and their molecular function and biology process were speculated by Gene Ontology (GO) analysis. The results provided useful information for the control of culture degeneration in commercial production of C. militaris. PMID:25892913

  9. Transformation of somatic embryos of Prunus incisa ‘February Pink’ with a visible reporter gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Agrobacterium-mediated transformation system was developed for the ornamental cherry species Prunus incisa. This system uses both an antibiotic resistance gene (NPTII) and a visible selectable marker, the green fluorescent protein (GFP), to select plants. Cells from leaf and root explants were tr...

  10. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).

    PubMed

    Portilho, Márcia; Matioli, Graciette; Zanin, Gisella Maria; de Moraes, Flávio Faria; Scamparini, Adilma Regina Pippa

    2006-01-01

    Agrobacterium isolated from soil samples produced two extracellular polysaccharides: succinoglycan, an acidic soluble polymer, and curdlan gum, a neutral, insoluble polymer. Maize glucose, cassava glucose, and maize maltose were used in fermentation medium to produce insoluble polysaccharide. Two Agrobacterium sp. strains which were used (ATCC 31749 and IFO 13140) in the production of insoluble exopolysaccharide presented equal or superior yields compared to the literature. The strain ATCC 31749 yielded better production when using maize maltose, whose yield was 85%, whereas strain IFO 13140 produced more when fed maize glucose, producing a yield of 50% (on reducing sugars).

  11. Production of insoluble exopolysaccharide of Agrobacterium sp. (ATCC 31749 and IFO 13140).

    PubMed

    Portilho, Márcia; Matioli, Graciette; Zanin, Gisella Maria; de Moraes, Flávio Faria; Scamparini, Adilma Regina Pippa

    2006-03-01

    Agrobacterium isolated from soil samples produced two extracellular polysaccharides: succinoglycan, an acidic soluble polymer, and curdlan gum, a neutral, insoluble polymer. Maize glucose, cassava glucose, and maize maltose were used in fermentation medium to produce insoluble polysaccharide. Two Agrobacterium sp. strains which were used (ATCC 31749 and IFO 13140) in the production of insoluble exopolysaccharide presented equal or superior yields compared to the literature. The strain ATCC 31749 yielded better production when using maize maltose, whose yield was 85%, whereas strain IFO 13140 produced more when fed maize glucose, producing a yield of 50% (on reducing sugars).

  12. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. II. Effect of the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis.

    PubMed

    Storti, E; Bogani, P; Bettini, P; Bittini, P; Guardiola, M L; Pellegrini, M G; Inzé, D; Buiatti, M

    1994-04-01

    We have studied the effect of a change in the endogenous hormone equilibria on the competence of tomato (Lycopersicon esculentum) cells to defend themselves against the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Calluses from cvs 'Davis' and 'Red River', respectively resistant and susceptible to Fusarium and transgenic for an auxin- or cytokinin-synthesizing gene from Agrobacterium tumefaciens, were used. The integration of Agrobacterium hormone-related genes into susceptible cv 'Red River' can bring the activation of defense processes to a stable competence as assessed by the inhibition of mycelial growth in dual culture and gem-tube elongation of Fusarium conidia, the determination of callose contents, peroxidase induction and ion leakage in the presence of fusaric acid. This is particularly true when the transformation results in a change of phytohormone equilibria towards an higher cytokin in concentration. On the contrary, in resistant cv 'Davis' the inhibition of both fungal growth in dual culture and conidia germination is higher when the hormone balance is modified in favour of the auxins. No significant effect was observed for ion leakage and peroxidase induction, probably because of a constitutive overproduction of cytokinins in 'Davis' cells.

  13. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants.

    PubMed

    Jackson, Mark A; Anderson, David J; Birch, Robert G

    2013-02-01

    Transgene integration complexity in the recipient genome can be an important determinant of transgene expression and field performance in transgenic crops. We provide the first direct comparison of Agrobacterium-mediated transformation (AMT) and particle bombardment using whole plasmid (WP) and excised minimal cassettes (MC), for transformation efficiency, transgene integration complexity and transgene expression in plants. To enable direct comparison, a selectable marker and a luciferase reporter gene were linked in identical configurations in plasmids suitable for AMT or direct gene transfer into sugarcane. Transformation efficiencies were similar between WP and MC when equal molar DNA quantities were delivered. When the MC concentration was reduced from 66 to 6.6 ng per shot, transformation efficiency dropped fourfold, to a level equivalent with AMT in amenable genotype Q117. The highest proportion of transformants combining low copy number (estimated below two integrated copies by qPCR) with expression of the non-selected reporter gene was obtained using AMT (55 %) or MC at low DNA concentration (30 %). In sugarcane, both of these methods yielded high-expressing, single-copy transgenic plant lines at a workable efficiency for practical plant improvement; but AMT is currently limited to a few amenable genotypes. These methods are best coupled with rapid early screens for desired molecular characteristics of transformants, e.g. PCR screens for low copy number and/or transcription of the gene of practical interest.

  14. A new QRT-PCR assay designed for the differentiation between elements provided from Agrobacterium sp. in GMOs plant events and natural Agrobacterium sp. bacteria.

    PubMed

    Nabi, Nesrine; Chaouachi, Maher; Zellama, Mohamed Salem; Ben Hafsa, Ahmed; Mrabet, Besma; Saïd, Khaled; Fathia, Harzallah Skhiri

    2016-04-01

    The question asked in the present work was how to differentiate between contamination of field samples with and GM plants contained sequences provided from this bacterium in order to avoid false positives in the frame of the detection and the quantification of GMO. For this, new set of primers and corresponding TaqMan Minor Groove Binder (MGB) probes were designed to target Agrobacterium sp. using the tumor-morphology-shooty gene (TMS1). Final standard curves were calculated for each pathogen by plotting the threshold cycle value against the bacterial number (log (colony forming units) per milliliter) via linear regression. The method designed was highly specific and sensitive, with a detection limit of 10CFU/ml. No significant cross-reaction was observed. Results from this study showed that TaqMan real-time PCR, is potentially an effective method for the rapid and reliable quantification of Agrobacterium sp. in samples containing GMO or non GMO samples.

  15. Fast recovery of transgenic submergence tolerant rice cultivars of North-East India by early co-cultivation of Agrobacterium with pre-cultured callus.

    PubMed

    Nguyen, Van Cuu; Nguyen, Van Khiem; Singh, Chongtham Henary; Devi, Guruaribam Shantibala; Reddy, Vanga Siva; Leelavathi, Sadhu

    2017-01-01

    Agro-climatic conditions of North-East India are very complex and rice cultivars present in the region have been adapted to grow under harsh environmental conditions. Germplasm present in the region is considered to possess several important and unique traits that are of importance in rice improvement programs. Genetic engineering is a powerful tool to introduce new traits into crop plants. However, not much information is available on the methods to introduce foreign genes into North-East rice cultivars. Therefore, the main objective of this study is to develop transformation procedures for fast recovery of transgenic plants from North-East rice cultivars. To achieve this objective, a systematic study was carried out to identify media components and culture conditions for efficient embryogenic callus induction from the mature seeds and differentiation of callus into plantlets from two North-East deep water rice cultivars, Taothabi and Khongan. Also, role of preculture of callus on Agrobacterium-mediated transformation was studied. Co-cultivation of Agrobacterium with 1-5 days precultured callus was found to result in high frequency of transformation. Detailed characterization of transgenic lines confirmed stable integration of transgenes and expression of reporter gfp gene. The whole process starting from callus induction to regenerating of transgenic rice plants that can be established in the soil was achieved in about 35-45 days. The procedures developed were found to be applicable to a popular variety IR 64. Therefore, methods developed in this study should be useful not only to introduce new traits quickly but also to validate the function(s) of several candidate gene(s) identified under the functional genomics of rice.

  16. Genome Sequence of Agrobacterium tumefaciens Strain F2, a Bioflocculant-Producing Bacterium

    PubMed Central

    Li, Ang; Geng, Jianing; Cui, Di; Shu, Chang; Zhang, Si; Yang, Jixian; Xing, Jie; Wang, Jinna; Ma, Fang; Hu, Songnian

    2011-01-01

    Agrobacterium tumefaciens F2 is an efficient bioflocculant-producing bacterium. But the genes related to the metabolic pathway of bioflocculant biosynthesis in strain F2 are unknown. We present the draft genome of A. tumefaciens F2. It could provide further insight into the biosynthetic mechanism of polysaccharide-like bioflocculant in strain F2. PMID:21914861

  17. Genome sequence of Agrobacterium tumefaciens strain F2, a bioflocculant-producing bacterium.

    PubMed

    Li, Ang; Geng, Jianing; Cui, Di; Shu, Chang; Zhang, Si; Yang, Jixian; Xing, Jie; Wang, Jinna; Ma, Fang; Hu, Songnian

    2011-10-01

    Agrobacterium tumefaciens F2 is an efficient bioflocculant-producing bacterium. But the genes related to the metabolic pathway of bioflocculant biosynthesis in strain F2 are unknown. We present the draft genome of A. tumefaciens F2. It could provide further insight into the biosynthetic mechanism of polysaccharide-like bioflocculant in strain F2.

  18. An enrichment technique for auxotrophs of Agrobacterium tumefaciens using a combination of carbenicillin and lysozyme.

    PubMed

    Klapwijk, P M; de Jonge, A J; Schilperoort, R A; Rörsch, A

    1975-11-01

    A procedure to enrich for auxotrophic and fermentation mutants of Agrobacterium tumefaciens is described. The method is based on the amplification of the killing power of carbenicillin by the addition of lysozyme. Isolation frequencies of some types of mutants are presented, with and without the application of the proposed procedure. The yield of mutants is usually enhanced a hundredfold per enrichment treatment.

  19. Nodulation of Sesbania Species by Rhizobium (Agrobacterium) Strain IRBG74 and Other Rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concatenated sequence analysis with 16S rRNA, rpoB and fusA genes identified a strain (IRBG74) isolated from root nodules of the aquatic legume Sesbania cannabina as a close relative of the plant pathogen Rhizobium radiobacter (syn. Agrobacterium tumefaciens). However, DNA:DNA hybridisation with R. ...

  20. Novel primers for detection of genetically diverse virulent Agrobacterium tumefaciens bv1 strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel primers were developed to amplify a 243 bp fragment of an intergenic region between gene5 and tms2 on the T-DNA of Agrobacterium tumefaciens. These primers exhibit 100% positive correlation with strain virulence, 100% negative correlation with avirulence and did not generate extraneous bands,...

  1. 77 FR 40880 - Agrobacterium radiobacter; Registration Review Proposed Decision; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ...: Ann Sibold, Regulatory Action Leader, Biopesticides and Pollution Prevention Division (7511P), Office... occurring soil bacterium present in many soil types. Two strains of Agrobacterium radiobacter, K84/Kerr-84.... Matthews, Director, Biopesticides and Pollution Prevention Division, Office of Pesticide Programs....

  2. Transformational Learners: Transformational Teachers

    ERIC Educational Resources Information Center

    Jones, Marguerite

    2009-01-01

    Transformational learning, according to Mezirow (1981), involves transforming taken-for-granted frames of reference into more discriminating, flexible "habits of mind". In teacher education, transformative learning impacts on the development of students' action theories, self-efficacy and professional attributes. Although considered…

  3. Iron-Binding Compounds from Agrobacterium spp.: Biological Control Strain Agrobacterium rhizogenes K84 Produces a Hydroxamate Siderophore

    PubMed Central

    Penyalver, Ramón; Oger, Philippe; López, María M.; Farrand, Stephen K.

    2001-01-01

    Iron-binding compounds were produced in various amounts in response to iron starvation by a collection of Agrobacterium strains belonging to the species A. tumefaciens, A. rhizogenes, and A. vitis. The crown gall biocontrol agent A. rhizogenes strain K84 produced a hydroxamate iron chelator in large amounts. Production of this compound, and also of a previously described antibiotic-like substance called ALS84, occurred only in cultures of strain K84 grown in iron-deficient medium. Similarly, sensitivity to ALS84 was expressed only when susceptible cells were tested in low-iron media. Five independent Tn5-induced mutants of strain K84 affected in the production of the hydroxamate iron chelator showed a similar reduction in the production of ALS84. One of these mutants, M8-10, was completely deficient in the production of both agents and grew poorly compared to the wild type under iron-limiting conditions. Thus, the hydroxamate compound has siderophore activity. A 9.1-kb fragment of chromosomal DNA containing the Tn5 insertion from this mutant was cloned and marker exchanged into wild-type strain K84. The homogenote lost the ability to produce the hydroxamate siderophore and also ALS84. A cosmid clone was isolated from a genomic library of strain K84 that restored to strain M8-10 the ability to produce of the siderophore and ALS84, as well as growth in iron-deficient medium. This cosmid clone contained the region in which Tn5 was located in the mutant. Sequence analysis showed that the Tn5 insert in this mutant was located in an open reading frame coding for a protein that has similarity to those of the gramicidin S synthetase repeat superfamily. Some such proteins are required for synthesis of hydroxamate siderophores by other bacteria. Southern analysis revealed that the biosynthetic gene from strain K84 is present only in isolates of A. rhizogenes that produce hydroxamate-type compounds under low-iron conditions. Based on physiological and genetic analyses showing

  4. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana.

    PubMed

    Aoki, Seishiro

    2004-08-01

    The Ng rol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ng rol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ng rol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ng rol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ng rol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ng rol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ng rol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.

  5. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants.

    PubMed

    Bettini, Priscilla P; Marvasi, Massimiliano; Fani, Fabiola; Lazzara, Luigi; Cosi, Elena; Melani, Lorenzo; Mauro, Maria Luisa

    2016-10-01

    Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b6/f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (Fv/Fm, rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis.

  6. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    PubMed

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  7. Osmoregulation in Agrobacterium tumefaciens: accumulation of a novel disaccharide is controlled by osmotic strength and glycine betaine.

    PubMed Central

    Smith, L T; Smith, G M; Madkour, M A

    1990-01-01

    We have investigated the mechanism of osmotic stress adaptation (osmoregulation) in Agrobacterium tumefaciens biotype I (salt-tolerant) and biotype II (salt-sensitive) strains. Using natural-abundance 13C nuclear magnetic resonance spectroscopy, we identified all organic solutes that accumulated to significant levels in osmotically stressed cultures. When stressed, biotype I strains (C58, NT1, and A348) accumulated glutamate and a novel disaccharide, beta-fructofuranosyl-alpha-mannopyranoside, commonly known as mannosucrose. In the salt-sensitive biotype II strain K84, glutamate was observed but mannosucrose was not. We speculate that mannosucrose confers the extra osmotic tolerance observed in the biotype I strains. In addition to identifying the osmoregulated solutes that this species synthesizes, we investigated the ability of A. tumefaciens to utilize the powerful osmotic stress protectant glycine betaine when it is supplied in the medium. Results from growth experiments, nuclear magnetic resonance spectroscopy, and a 14C labeling experiment demonstrated that in the absence of osmotic stress, glycine betaine was metabolized, while in stressed cultures, glycine betaine accumulated intracellularly and conferred enhanced osmotic stress tolerance. Furthermore, when glycine betaine was taken up in stressed cells, its accumulation caused the intracellular concentration of mannosucrose to drop significantly. The possible role of osmoregulation of A. tumefaciens in the transformation of plants is discussed. PMID:2254260

  8. Formation of Se (0) Nanoparticles by Duganella sp. andAgrobacterium sp. isolated from Se-laden soil of North-East Punjab, India

    PubMed Central

    2012-01-01

    Background Selenium (Se) is an essential trace element, but is toxic at high concentrations. Depending upon the geological background, the land use or on anthropogenic pollution, different amounts of Se may be present in soil. Its toxicity is related to the oxyanions selenate and selenite as they are water soluble and bioavailable. Microorganisms play an important role in Se transformations in soil and its cycling in the environment by transforming water-soluble oxyanions into water insoluble, non-toxic elemental Se (0). For this study, soil samples were collected from selenium-contaminated agricultural soils of Punjab/India to enrich and isolate microbes that interacted with the Se cycle. Results A mixed microbial culture enriched from the arable soil of Punjab could reduce 230 mg/l of water soluble selenite to spherical Se (0) nanoparticles during aerobic growth as confirmed by SEM-EDX. Four pure cultures (C 1, C 4, C 6, C 7) of Gram negative, oxidase and catalase positive, aerobic bacteria were isolated from this mixed microbial consortium and identified by 16 S rDNA gene sequence alignment as two strains of Duganella sp. (C 1, C 4) and two strains of Agrobacterium sp.(C 6, C 7). SEM/TEM-EDX analyses of the culture broth of the four strains revealed excretion of uniformly round sharply contoured Se (0) nanoparticles by all cultures. Their size ranged from 140–200 nm in cultures of strains C 1 and C 4, and from 185–190 nm in cultures of strains C 6 and C 7. Both Duganella sp. revealed better selenite reduction efficiencies than the two Agrobacterium sp. Conclusions This is the first study reporting the capability of newly isolated, aerobically growing Duganella sp. and Agrobacterium sp. from soils of Punjab/India to form spherical, regularly formed Se (0) nanoparticles from water soluble selenite. Among others, the four strains may significantly contribute to the biogeochemical cycling of Se in soil. Bioconversion of toxic selenite to non-toxic Se (0

  9. Genetic transformation of Begonia tuberhybrida by Ri rol genes.

    PubMed

    Kiyokawa, S; Kikuchi, Y; Kamada, H; Harada, H

    1996-04-01

    We have developed an Agrobacterium -mediated transformation system for commercial Begonia species. The leaf explants of Begonia semperflorens, Begonia x hiemalis and B. tuberhybrida were inoculated with Agrobacterium tumefaciens LBA4404 harboring a binary vector pBI121 which contains rolA, B and C genes of an agropine type Ri plasmid (pRiA4b). Kanamycin resistant shoots of B. tuberhybrida were obtained on MS agar medium supplemented with 0.1 mg/l NAA, 0.5 mg/l BA, 500 mg/l claforan and 100 mg/l kanamycin. These shoots exhibited GUS activity and Southern analysis showed a single copy insertion into the genome. When the transgenic plants were transferred to soil, they displayed the phenotype specific to the transgenic plants by A. rhizogenes such as dwarfness, delay of flowering, and wrinkled leaves and petals.

  10. Development of an efficient agrobacterium-mediated gene targeting system for rice and analysis of rice knockouts lacking granule-bound starch synthase (Waxy) and β1,2-xylosyltransferase.

    PubMed

    Ozawa, Kenjirou; Wakasa, Yuhya; Ogo, Yuko; Matsuo, Kouki; Kawahigashi, Hiroyuki; Takaiwa, Fumio

    2012-04-01

    We have developed a high-frequency method for Agrobacterium-mediated gene targeting by combining an efficient transformation system using rice suspension-cultured calli and a positive/negative selection system. Compared with the conventional transformation system using calli on solid medium, transformation using suspension-cultured calli resulted in a 5- to 10-fold increase in the number of resistant calli per weight of starting material after positive/negative selection. Homologous recombination occurred in about 1.5% of the positive/negative selected calli. To evaluate the efficacy of our method, we show in this report that knockout rice plants containing either a disrupted Waxy (granule-bound starch synthase) or a disrupted Xyl (β1,2-xylosyltransferase) gene can be easily obtained by homologous recombination. Study of gene function using homologous recombination in higher plants can now be considered routine work as a direct result of this technical advance.

  11. Efficient genetic transformation of red raspberry, Rubus ideaus L.

    PubMed

    Mathews, H; Wagoner, W; Cohen, C; Kellogg, J; Bestwick, R

    1995-05-01

    We have developed an efficient transformation system for red raspberry (Rubus ideaus L.) using Agrobacterium mediated gene transfer. Using this system we have successfully introduced a gene that encodes an enzyme, S-adenosylmethionine hydrolase (SAMase), in raspberry cultivars Meeker (MK), Chilliwack (CH) and Canby (CY). Leaf and petiole expiants were inoculated with disarmed Agrobacterium tumefaciens strain EHA 105 carrying either of two binary vectors, pAG1452 or pAG1552, encoding gene sequences for SAMase under the control of the wound and fruit specific tomato E4 promoter. Primary shoot regenerants on selection medium were chimeral containing both transformed and non-transformed cells. Non-chimeral transgenic clones were developed by iterative culture of petiole, node and leaf explants, on selection medium, from successive generations of shoots derived from the primary regenerants. Percent recovery of transformants was higher with the selection marker gene hygromycin phosphotransferase (hpt), than with neomycin phosphotransferase (nptII). Transformation frequencies of 49.6%, 0.9% and 8.1% were obtained in cultivars Meeker, Chilliwack and Canby respectively from petiole expiants using hygromycin selection. Genomic integration of transgenes was confirmed by Southern hybridization. Transgenic plants from a total of 218 independent transformation events (161 MK, 4 CH, 53 CY) have been successfully established in soil.

  12. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.

    PubMed

    Shin, Hyun-Dong; Liu, Long; Kim, Mi-Kyoung; Park, Yong-Il; Chen, Rachel

    2016-09-01

    Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.

  13. Novel high- and low-copy stable cosmids for use in Agrobacterium and Rhizobium.

    PubMed

    Gallie, D R; Novak, S; Kado, C I

    1985-09-01

    Presented are a set of cosmids based on the unit copy Agrobacterium plasmid, pTAR, and the high-copy-number mutant plasmid, pUCD500, of pTiC58. The addition of a par function derived from pTAR to the vectors allowed them to be stably maintained throughout the cell population in the absence of selective pressure. These vectors, designed for Agrobacterium and Rhizobium, also work in Escherichia coli. The vectors can be cotransferred to Rhizobiaceae from E. coli with the helper plasmid, pRK2013. The pTiC58 origin containing vectors, pUCD1000 and pUCD1001 were found to be incompatible with a 250-kb plasmid harbored by R. meliloti RM102Z1. RM102Z1(pUCD1000) was still capable of nodulating roots in alfalfa.

  14. Isolation and Characterization of Agrobacterium Strains from Soil: A Laboratory Capstone Experience†

    PubMed Central

    Finer, Kim R.; Fox, Lee; Finer, John J.

    2016-01-01

    In this investigation, the students’ goal was to isolate and characterize Agrobacterium strains from soil. Following selection and enrichment on 1A-t medium, putative Agrobacterium isolates were characterized by Gram stain reaction and biochemical tests. Isolates were further evaluated using polymerase chain reaction (PCR) with different primer sets designed to amplify specific regions of bacterial deoxyribonucleic acid (DNA). Primer sets included AGRH to identify isolates that were members of the Rhizobiaceae, BIOVAR1 primers to identify members of Agrobacterium biovar group I, and a third set, VIRG, to determine presence of virG (only present in pathogenic Agrobacterium strains). During the investigation, students applied previously learned techniques including serial dilution, use of selective/differential media, staining protocols, biochemical analysis, molecular analysis via PCR, and electrophoresis. Students also gained practical experience using photo documentation to record data for an eventual mock journal publication of the capstone laboratory experience. Pre- and post-evaluation of class content knowledge related to the techniques, protocols, and learning objectives of these laboratories revealed significant learning gains in the content areas of Agrobacterium–plant interactions (p ≤ 0.001) and molecular biology (p ≤ 0.01). The capstone journal assignment served as the assessment tool to evaluate mastery and application of laboratory technique, the ability to accurately collect and evaluate data, and critical thinking skills associated with experimental troubleshooting and extrapolation. Analysis of journal reports following the capstone experience showed significant improvement in assignment scores (p ≤ 0.0001) and attainment of capstone experience learning outcomes. PMID:28101272

  15. [Construction of the plant expression vector with hepatitis a capsid protein fusion gene and genetic transformation of Citrus. Sinensis Osbeck].

    PubMed

    Hu, Rong; Wei, Hong; Chen, Shan-Chun; He, Yong-Rui

    2004-07-01

    The use of edible plants for the production and delivery of vaccine proteins could provide an economical alternative to fermentation systems. The construction of the plant expression vector pBI121-A was reported, which contained a fusion gene encoding hepatitis A capsid proteins. The gene was located between the left and right Ti border sequences under the control of CaMV35S promoter. The vector was identified via PCR and restriction enzyme analysis and was introduced into Agrobacterium tumerifacience LBA4404. The transgenic Citrus plants were produced by Agrobacterium-mediated transformation of epicotyl segments.13 putatively transformed plants through the kanamycin selection were micrografted onto the seedlings. The presence and integration of the transgene had been verified by PCR analysis. The result showed that five transformants were integrated and the transformation efficiency was 4.1%.

  16. Crystal structure of the Agrobacterium virulence complex VirE1-VirE2 reveals a flexible protein that can accommodate different partners.

    PubMed

    Dym, Orly; Albeck, Shira; Unger, Tamar; Jacobovitch, Jossef; Branzburg, Anna; Michael, Yigal; Frenkiel-Krispin, Daphna; Wolf, Sharon Grayer; Elbaum, Michael

    2008-08-12

    Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its widespread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners.

  17. Genetic transformation and gene expression in white pine (pinus strobus)

    SciTech Connect

    Minocha, R.

    1987-10-01

    The objectives of the study were: (1) to develop protocols for transformation of white pine (Pinus strobus) embryonic tissue; and (2) to analyze the regulation of foreign gene expression in Pinus strobus. A number of Agrobacterium tumefaciens strains containing chimeric genes for neomycin phosphotransferase (NPTII for kanamycin resistance) and chloramphenicol acetyl transferase (CAT) under the control of either a constitutive promoter (NOS-nopaline synthase) or light-inducible promoters (RuBisCO small subunit and chlorophyll a/b binding protein) were used. A variety of tissues from white pine seedlings and mature trees was used. The techniques for transformation were modified from those used for tobacco transformation. The results show that white pine tissue from young seedlings is high suitable for transformation by A. tumefaciens. Whereas the normal tissues are very sensitive to kanamycin, transformed callus was quite resistant to this antibiotic.

  18. Production of Phytophthora infestans-resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14.

    PubMed

    Wendt, Toni; Doohan, Fiona; Mullins, Ewen

    2012-06-01

    Based on the use of Agrobacterium tumefaciens-mediated transformation commodity crop improvement through genetic engineering is the fastest adopted crop technology in the world (James 2010). However, the complexity of the Agrobacterium patent landscape remains a challenge for non-patent holders who wish to generate novel varieties for a commercial purpose. The potential of non-Agrobacterium strains (Transbacter(™)) to modify a plant genome has previously been described. However, they are unlikely to be widely used without significant adjustments in transformation protocols in order to improve their gene transfer efficiencies. In this study we set out to identify alternative bacteria species that could (a) utilize vir genes for genetic transformation and (b) substitute for A. tumefaciens in existing transformation protocols, without a prerequisite for protocol modifications. To this end we isolated a collection (n=751) of plant-associated bacteria from the rhizosphere of commercially grown crops. Based on various screens, including plant transformation with the open-source vector pCAMBIA5105, we identified a strain of the bacterium Ensifer adhaerens with the capacity to transform both Arabidopsis thaliana (0.12%) and potato (mean transformation frequency 35.1%). Thereafter, Ensifer adhaerens was used to generate blight- (causative organism Phytophthora infestans) resistant potato using the Solanum bulbocastanum 'resistance to blight' (RB) gene. Resistant genotypes were confirmed by associated molecular analysis and resistant phenotypes demonstrated by the development of hypersensitive lesions on inoculated leaf tissue post-pathogen inoculation. These data confirm the potential of Ensifer-mediated transformation (EMT) as a novel platform for the high frequency generation of transgenic potato.

  19. Barley (Hordeum vulgare L.) transformation using immature embryos.

    PubMed

    Marthe, Cornelia; Kumlehn, Jochen; Hensel, Goetz

    2015-01-01

    Barley is a major crop species, and also has become a genetic model for the small grain temperate cereals. A draft barley genome sequence has recently been completed, opening many opportunities for candidate gene isolation and functionality testing. Thanks to the development of customizable endonucleases, also site-directed genome modification recently became feasible for higher plants, which marks the beginning of a new era of genetic engineering. The development of improved binary vectors and hypervirulent Agrobacterium tumefaciens strains has raised the efficiency of genetic transformation in barley to a level where the technique has become relatively routine. The transformation method described here involves immature barley embryos cocultivated with Agrobacterium after removal of their embryo axis. Critical adjustments to the protocol have included the supplementation of the cocultivation medium with the polyphenolic signaling compound acetosyringone at comparatively high concentration and the use of cysteine to reduce the extent of cellular oxidation upon agroinfection. In addition, the use of liquid, rather than solid, cocultivation medium promotes the throughput of the method. The protocol has delivered well over 10,000 transgenic barley plants over the past 10 years. Routine transformation efficiency, calculated on the basis of the recovery of independent transgenics per 100 explants, has reached about 25 % in cultivar (cv.) "Golden Promise". The protocol has proven effective for more than 20 barley cultivars, although some adjustments to the culture conditions have had to be made in some cases. The transformation efficiency of cv. "Golden Promise" remains higher than that of any other cultivar tested.

  20. Linear Chromosome-generating System of Agrobacterium tumefaciens C58: Protelomerase Generates and Protects Hairpin Ends

    SciTech Connect

    Huang, Wai Mun; DaGloria, Jeanne; Fox, Heather; Ruan, Qiurong; Tillou, John; Shi, Ke; Aihara, Hideki; Aron, John; Casjens, Sherwood

    2012-09-05

    Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.

  1. Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov.

    PubMed

    Peix, Alvaro; Rivas, Raúl; Trujillo, Martha E; Vancanneyt, Marc; Velázquez, Encarna; Willems, Anne

    2005-05-01

    Members of the species Agrobacterium ferrugineum were isolated from marine environments. The type strain of this species (= LMG 22047(T) = ATCC 25652(T)) was recently reclassified in the new genus Pseudorhodobacter, in the order 'Rhodobacterales' of the class 'Alphaproteobacteria'. Strain LMG 128 (= ATCC 25654) was also initially classified as belonging to the species Agrobacterium ferrugineum; however, the nearly complete 16S rRNA gene sequence of this strain indicated that it does not belong within the genus Agrobacterium or within the genus Pseudorhodobacter. The closest related organism, with 95.5 % 16S rRNA gene similarity, was Aquamicrobium defluvii from the family 'Phyllobacteriaceae' in the order 'Rhizobiales'. The remaining genera from this order had 16S rRNA gene sequence similarities that were lower than 95.1 % with respect to strain LMG 128. These phylogenetic distances suggested that strain LMG 128 belonged to a different genus. The major fatty acid present in strain LMG 128 was mono-unsaturated straight chain 18 : 1omega7c. The G + C content of the DNA was 53.1 mol%. Strain LMG 128 grew at 4 degrees C but not at 40 degrees C, and tolerated up to 5 % NaCl. The pH range for growth was 6-8. It produced urease and beta-galactosidase, and hydrolysed aesculin. Denitrification was negative. Growth was observed with many carbohydrates as the only carbon source. The data from this polyphasic study indicate that this strain belongs to a new genus of the family 'Phyllobacteriaceae', and therefore it is proposed that strain LMG 128(T) should be reclassified as representing a novel species within the new genus Hoeflea gen. nov., for which the name Hoeflea marina sp. nov. is proposed.

  2. Developmental Effects of Zeatin, Ribosyl-Zeatin, and Agrobacterium tumefaciens B6 on Certain Mosses

    PubMed Central

    Spiess, Luretta D.

    1976-01-01

    Eight species of mosses studied were divided into two groups on the basis of their developmental responses to ribosyl-trans-zeatin and Agro-bacterium tumefaciens B6. All eight produced either gametophores or callus on the protonema in response to 6-(γ,γ-dimethylallylamino) purine and trans-zeatin. Three which produced normal gametophores with A. tumefaciens yielded callus or abnormal gametophores with ribosyl-trans-zeatin. Ribosyl-trans-zeatin and A. tumefaciens were relatively ineffective on five other mosses. Characteristics of protonemal growth common to each of these two groups are described. PMID:16659608

  3. Effects of ribosome-inactivating proteins on Escherichia coli and Agrobacterium tumefaciens translation systems.

    PubMed Central

    Girbés, T; Barbieri, L; Ferreras, M; Arias, F J; Rojo, M A; Iglesias, R; Alegre, C; Escarmis, C; Stirpe, F

    1993-01-01

    The effects of 30 type 1 and of 2 (ricin and volkensin) type 2 ribosome-inactivating proteins (RIPs) on Escherichia coli and Agrobacterium tumefaciens cell-free translation systems were compared with the effects on a rabbit reticulocyte translation system. The depurinating activity of RIPs on E. coli ribosomes was also evaluated. Only six type 1 RIPs inhibited endogenous mRNA-directed translational activity of E. coli lysates, with submicromolar 50% inhibitory concentrations. Four RIPs had similar activities on poly(U)-directed phenylalanine polymerization by E. coli ribosomes, and three RIPs inhibited poly(U)-directed polyphenylalanine synthesis by A. tumefaciens ribosomes, with submicromolar 50% inhibitory concentrations. Images PMID:8407849

  4. Highly efficient transformation protocol for plum (Prunus domestica L.).

    PubMed

    Petri, César; Scorza, Ralph; Srinivasan, Chinnathambi

    2012-01-01

    A high-throughput transformation system for plum has been developed using hypocotyl slices excised from zygotic embryos as the source of explants. The hypocotyl slices are infected in an Agrobacterium tumefaciens suspension and then cocultivated for 3 days in shoot regeneration ¾ MS basal medium supplemented with 9 μM 2,4-dichlorophenoxyacetic acid. Transgenic shoots are regenerated in a medium containing 7.5 μM thidiazuron and elongated in a medium containing 3 μM benzyladenine in the presence of 80 mg/L kanamycin in both media. Transformed shoots are rooted in ½ MS basal medium supplemented with 5 μM NAA and 40 mg/L kanamycin. The transgenic plants are acclimatized in a growth chamber and transferred to a temperature-controlled greenhouse. This protocol has allowed transformation efficiencies up to 42% and enabled the production of self-rooted transgenic plum plants within 6 months of transformation.

  5. In planta transformation method for T-DNA transfer in orchids

    NASA Astrophysics Data System (ADS)

    Semiarti, Endang; Purwantoro, Aziz; Mercuriani, Ixora S.; Anggriasari, Anida M.; Jang, Seonghoe; Suhandono, Sony; Machida, Yasunori; Machida, Chiyoko

    2014-03-01

    Transgenic plant technology is an efficient tool to study the function of gene(s) in plant. The most popular and widely used technique is Agrobacterium-mediated transformation in which cocultivation was done by immersing the plant tissues/organ in overnight bacterial cultured for about 30 minutes to one hour under in vitro condition. In this experiment, we developed more easier technique that omitted the in vitro step during cocultivation with Agrobacterium, namely in planta transformation method. Pollinaria (compact pollen mass of orchid) of Phalaenopsis amabilis and Spathoglottis plicata orchids were used as target explants that were immersed into bacterial culture for 30 minutes, then dried up the pollinaria, the transformed pollinaria was used to pollinate orchid flowers. The T-DNA used for this experiments were Ubipro∷PaFT/A. tumefaciens GV3101 for P. amabilis and MeEF1α2 pro∷GUS/ A. tumefaciens LBA 4404 for S.plicata. Seeds that were produced from pollinated flowers were grown onto 10 mg/l hygromicin containing NP (New Phalaenopsis) medium. The existance of transgene in putative transformant protocorm (developing orchid embryo) genome was confirmed using PCR with specific primers of either PaFT or GUS genes. Histochemical GUS assay was also performed to the putative transformants. The result showed that transformation frequencies were 2.1 % in P. amabilis, and 0,53% in S. plicata. These results indicates that in planta transformation method could be used for Agrobacterium-mediated genetic transformation, with advantage easier and more secure work from contaminants than that of the in vitro method.

  6. Advances in Maize Transformation Technologies and Development of Transgenic Maize

    PubMed Central

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K.

    2017-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area. PMID:28111576

  7. Agrobacterium rhizogenes GALLS Protein Contains Domains for ATP Binding, Nuclear Localization, and Type IV Secretion▿

    PubMed Central

    Hodges, Larry D.; Vergunst, Annette C.; Neal-McKinney, Jason; den Dulk-Ras, Amke; Moyer, Deborah M.; Hooykaas, Paul J. J.; Ream, Walt

    2006-01-01

    Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2. PMID:17012398

  8. Identification of Strains of Alcaligenes and Agrobacterium by a Polyphasic Approach

    PubMed Central

    Clermont, Dominique; Harmant, Christine; Bizet, Chantal

    2001-01-01

    The number of stable discriminant biochemical characters is limited in the genera Alcaligenes and Agrobacterium, whose species are consequently difficult to distinguish from one another by conventional tests. Moreover, genomic studies have recently drastically modified the nomenclature of these genera; for example, Alcaligenes xylosoxidans was transferred to the genus Achromobacter in 1998. Twenty-five strains of Achromobacter xylosoxidans, three strains of an Agrobacterium sp., five strains of an Alcaligenes sp., and four unnamed strains belonging to the Centers for Disease Control and Prevention group IVc-2 were examined. These strains were characterized by conventional tests, including biochemical tests. The assimilation of 99 carbohydrates, organic acids, and amino acids was studied by using Biotype-100 strips, and rRNA gene restriction patterns were obtained with the automated Riboprinter microbial characterization system after cleavage of total DNA with EcoRI or PstI restriction endonuclease. This polyphasic approach allowed the two subspecies of A. xylosoxidans to be clearly separated. Relationships between five strains and the Ralstonia paucula type strain were demonstrated. Likewise, three strains were found to be related to the Ochrobactrum anthropi type strain. We showed that substrate assimilation tests and automated ribotyping provide a simple, rapid, and reliable means of identifying A. xylosoxidans subspecies and that these two methods can be used as alternative methods to characterize unidentified strains rapidly when discriminant biochemical characters are missing. PMID:11526136

  9. Plant Enzymes but Not Agrobacterium VirD2 Mediate T-DNA Ligation In Vitro

    PubMed Central

    Ziemienowicz, Alicja; Tinland, Bruno; Bryant, John; Gloeckler, Veronique; Hohn, Barbara

    2000-01-01

    Agrobacterium tumefaciens, a gram-negative soil bacterium, transfers DNA to many plant species. In the plant cell, the transferred DNA (T-DNA) is integrated into the genome. An in vitro ligation-integration assay has been designed to investigate the mechanism of T-DNA ligation and the factors involved in this process. The VirD2 protein, which is produced in Agrobacterium and is covalently attached to T-DNA, did not, under our assay conditions, ligate T-DNA to a model target sequence in vitro. We tested whether plant extracts could ligate T-DNA to target oligonucleotides in our test system. The in vitro ligation-integration reaction did indeed take place in the presence of plant extracts. This reaction was inhibited by dTTP, indicating involvement of a plant DNA ligase. We found that prokaryotic DNA ligases could substitute for plant extracts in this reaction. Ligation of the VirD2-bound oligonucleotide to the target sequence mediated by T4 DNA ligase was less efficient than ligation of a free oligonucleotide to the target. T-DNA ligation mediated by a plant enzyme(s) or T4 DNA ligase requires ATP. PMID:10938108

  10. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants.

  11. X-ray structure of imidazolonepropionase from Agrobacterium tumefaciens at 1.87 Å resolution

    SciTech Connect

    Tyagi, Rajiv; Kumaran, Desigan; Burley, Stephen K.; Swaminathan, Subramanyam

    2010-01-12

    Histidine degradation in Agrobacterium tumefaciens involves four enzymes, including histidase (EC 4.3.1.3), urocanase (EC 4.2.1.49), imidazolonepropionase (EC 3.5.2.7), and N-formylglutamate amidohydrolase (EC 3.5.3.8). The third enzyme of the pathway, imidazolone-propionase, a 45.6 kDa protein, catalyzes conversion of imidazolone-5-propanoate to N-forminio-L-glutamate. Initial studies of the role of imidazolonepropionase in histidine degradation were published in 1953. Subsequent publications have been limited to enzyme kinetics, crystallization, and a recently reported structure determination. The imidazolonepropionases are members of metallodepenent-hydrolases (or amidohydroase) superfamily, which includs ureases, adenosine deaminases, phosphotriesterases, dihydroorotases, allantoinases, hydantoinases, adenine and cytosine deaminases, imidazolonepropionases, aryldial-kylphosphatases, chlorohydrolases, and formylmethanofuran dehydroases. Proteins belonging to this large group share a common three-dimensional structural motif (an eightfold {alpha}/{beta} or TIM barrel) with similar active sites. Most superfamily members also share a conserved metal binding site, involving four histidine residues and one aspartic acid. Imidazolonepropionase is one of the targets selected for X-ray crystallpgrahpic structure determination by the New York Structural GenomiX Research Consortium (NYSGXRC) Target ID: 9252b to correlate the structure function relationship of poorly studied by important enzyme. Here they report the crystal structure of imidazolonepropionase from Agrobacterium tumefaciens determined at 1.87 {angstrom} resolution.

  12. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens

    PubMed Central

    Kado, Clarence I.

    2014-01-01

    The plant tumor disease known as crown gall was not called by that name until more recent times. Galls on plants were described by Malpighi (1679) who believed that these extraordinary growth are spontaneously produced. Agrobacterium was first isolated from tumors in 1897 by Fridiano Cavara in Napoli, Italy. After this bacterium was recognized to be the cause of crown gall disease, questions were raised on the mechanism by which it caused tumors on a variety of plants. Numerous very detailed studies led to the identification of Agrobacterium tumefaciens as the causal bacterium that cleverly transferred a genetic principle to plant host cells and integrated it into their chromosomes. Such studies have led to a variety of sophisticated mechanisms used by this organism to aid in its survival against competing microorganisms. Knowledge gained from these fundamental discoveries has opened many avenues for researchers to examine their primary organisms of study for similar mechanisms of pathogenesis in both plants and animals. These discoveries also advanced the genetic engineering of domesticated plants for improved food and fiber. PMID:25147542

  13. The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens.

    PubMed

    Lee, Jin-Hyung; Kim, Yong-Guy; Baek, Kwang-Hyun; Cho, Moo Hwan; Lee, Jintae

    2015-04-01

    Bacteria utilize signal molecules to ensure their survival in environmental niches, and indole is an interspecies and interkingdom signalling molecule, which is widespread in the natural environment. In this study, we sought to identify novel roles of indole in soil-borne bacterium Agrobacterium tumefaciens. Agrobacterium tumefaciens was found not to synthesize indole and to degrade it rapidly. The addition of exogenous indole dose-dependently inhibited A. tumefaciens growth and decreased its motility. Surprisingly, indole markedly increased A. tumefaciens biofilm formation on polystyrene, glass and nylon membrane surfaces and enhanced its antibiotic tolerance. Transcriptional analysis showed that indole markedly up-regulated several biofilm-related (celA, cheA, exoR, phoB, flgE, fliR and motA), stress-related genes (clpB, dnaK, gsp, gyrB, marR and soxR) and efflux genes (emrA, norM, and Atu2551) in A. tumefaciens, which partially explained the increased biofilm formation and antibiotic tolerance. In contrast, the plant auxin indole-3-acetic acid did not affect biofilm formation, antibiotic tolerance or gene expression. Interestingly, indole was found to exhibit several similarities with antibiotics, as it inhibited the growth of non-indole-producing bacteria, whereas these bacteria countered its effects by rapidly degrading indole, and by enhancing biofilm formation and antibiotic tolerance.

  14. Mineralization of 4-aminobenzenesulfonate (4-ABS) by Agrobacterium sp. strain PNS-1.

    PubMed

    Singh, Poonam; Birkeland, Nils-Kåre; Iyengar, Leela; Gurunath, Ramanathan

    2006-12-01

    A bacterial strain, PNS-1, isolated from activated sludge, could utilize sulphanilic acid (4-ABS) as the sole organic carbon and energy source under aerobic conditions. Determination and comparison of 16S r DNA sequences showed that the strain PNS-1 is closely related to the species of Agrobacterium genus. Growth on 4-ABS was accompanied with ammonia and sulfate release. TOC results showed complete mineralization of sulphanilic acid. This strain was highly specific for 4-ABS as none of the sulphonated aromatics used in the present study including other ABS isomers were utilized. Strain PNS-1 could, however, utilize all the tested monocyclic aromatic compounds devoid of a sulfonate group. No intermediates could be detected either in the growth phase or with dense cell suspensions. Presence of chloramphenicol completely inhibited 4-ABS degradation by cells pregrown on succinate, indicating that degradation enzymes are inducible. No plasmid could be detected in the Agrobacterium sp. Strain PNS-1 suggesting that 4-ABS degradative genes may be chromosomal encoded.

  15. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    SciTech Connect

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  16. Influences of Agrobacterium rhizogenes strains, plant genotypes, and tissue types on the induction of transgenic hairy roots in Vitis species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agrobacterium rhizogenes-mediated induction of transgenic hairy roots was previously demonstrated in Vitis vinifera L. and a few other Vitis species. In this study, 13 Vitis species, including V. aestivalis, V. afghanistan, V. champinii, V. doaniana, V. flexuosa, V. labrusca, V. nesbittiana, V. pal...

  17. Agrochelin, a new cytotoxic antibiotic from a marine Agrobacterium. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity.

    PubMed

    Acebal, C; Cañedo, L M; Puentes, J L; Baz, J P; Romero, F; de la Calle, F; Grávalos, M D; Rodriguez, P

    1999-11-01

    Agrochelin, a new alkaloid cytotoxic substance, was produced by the fermentation of Agrobacterium sp. The compound was obtained from the bacterial cells by solvent extraction and purified by silica gel chromatography. Agrochelin (1) and its acetyl derivative (2) exhibited cytotoxic activity.

  18. Evaluations and modifications of semi-selective media for improved isolation of Agrobacterium tumefaciens biovar 1 from cultivated walnut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agrobacterium tumefaciens, the causal agent of crown gall of walnut, is an aerobic, Gram negative bacterium belonging to the family Rhizobiaceae. Like many in this group, A. tumefaciens is a common inhabitant of soil and plant host tissue. Isolation from these complex environments is difficult even ...

  19. Adapting rice anther culture to gene transformation and RNA interference.

    PubMed

    Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang

    2006-10-01

    Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.

  20. [Construction of transgenic tobacco expressing tomato GGPS2 gene and analysis of its low light tolerance].

    PubMed

    Li, Cuiping; Dong, Weihua; Zhang, Xingguo

    2015-05-01

    To explore the influence of low light on the synthesis of carotenoids, chlorophyll and the adaptability of transgenic plants with tomato Solanum lycopersicon L. GGPS2 gene, we constructed a vector containing a GGPS2 gene with green fluorescent protein (GFP) as report gene under the control of a cauliflower mosaic virus 35S promoter and introduced it into tobacco Nicotiana tabacum L. cv. Wisconsin 38 by Agrobacterium tumefaciens-mediated transformation. PCR analysis of the DNA from kanamycin resistant tobacco indicated that the transgenic tobacco containing the nptII gene, SlaGGPS2 gene and without contamination of Agrobacterium. We also detected the root tip of kanamycin resistant tobacco showing characteristic fluorescence. The contents of carotenoid, chlorophyll and photosynthesis of transgenic tobacco increased in comparison with wild tobacco after low light treatment. In addition, leaf mass per unit area, total dry weight, ratio of root to shoot in transgenic tobacco were all higher than that of the wild tobacco, which proved that the transgenic tobacco could increase the accumulation of biomass and promote it transport to root. The transgenic tobacco with SlaGGPS2 gene can increase the contents of carotenoid, chlorophyll, enhance the photosynthetic rate, promote the biomass accumulation and its distribution to root. Hence, the transgenic tobacco with SlaGGPS2 gene had increased low light tolerance and the SlaGGPS2 gene maybe can be used in other crops.

  1. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies.

    PubMed

    Jiang, Dewei; Zhu, Wei; Wang, Yunchuan; Sun, Chang; Zhang, Ke-Qin; Yang, Jinkui

    2013-12-01

    Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi.

  2. Coordinated Regulation of Species-Specific Hydroxycinnamic Acid Degradation and Siderophore Biosynthesis Pathways in Agrobacterium fabrum

    PubMed Central

    Baude, Jessica; Vial, Ludovic; Villard, Camille; Campillo, Tony; Lavire, Céline; Nesme, Xavier

    2016-01-01

    ABSTRACT The rhizosphere-inhabiting species Agrobacterium fabrum (genomospecies G8 of the Agrobacterium tumefaciens species complex) is known to degrade hydroxycinnamic acids (HCAs), especially ferulic acid and p-coumaric acid, via the novel A. fabrum HCA degradation pathway. Gene expression profiles of A. fabrum strain C58 were investigated in the presence of HCAs, using a C58 whole-genome oligoarray. Both ferulic acid and p-coumaric acid caused variations in the expression of more than 10% of the C58 genes. Genes of the A. fabrum HCA degradation pathway, together with the genes involved in iron acquisition, were among the most highly induced in the presence of HCAs. Two operons coding for the biosynthesis of a particular siderophore, as well as genes of the A. fabrum HCA degradation pathway, have been described as being specific to the species. We demonstrate here their coordinated expression, emphasizing the interdependence between the iron concentration in the growth medium and the rate at which ferulic acid is degraded by cells. The coordinated expression of these functions may be advantageous in HCA-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. The present results confirm that there is cooperation between the A. fabrum-specific genes, defining a particular ecological niche. IMPORTANCE We previously identified seven genomic regions in Agrobacterium fabrum that were specifically present in all of the members of this species only. Here we demonstrated that two of these regions, encoding the hydroxycinnamic acid degradation pathway and the iron acquisition pathway, were regulated in a coordinated manner. The coexpression of these functions may be advantageous in hydroxycinnamic acid-rich but iron-starved environments in which microorganisms have to compete for both iron and carbon sources, such as in plant roots. These data support the view that bacterial genomic species

  3. Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures.

    PubMed

    Otto, Ingrid; Müller, Andrea; Kumlehn, Jochen

    2015-01-01

    The temperate cereal barley is grown as a source of food, feed, and malt. The development of a broad range of genetic resources and associated technologies in this species has helped to establish barley as the prime model for the other Triticeae cereals. The specific advantage of the transformation method presented here is that transgene homozygosity is attained in the same generation as the transgenic event occurred through the coupling of haploid technology with Agrobacterium-mediated transformation. Pollen is haploid and, following transformation, can be induced to regenerate into haploid plantlets, which can subsequently subjected to colchicine treatment to obtain diploid, genetically fixed plants. The routine application of the method based on the winter-type barley cultivar 'Igri' over a period of over 10 years has achieved an average yield of about two transgenic plants per donor spike. The whole procedure from pollen isolation to non-segregating transgenic, mature grain takes less than 12 months.

  4. A host-specific biological control of grape crown gall by Agrobacterium vitis strain F2/5: its regulation and population dynamics.

    PubMed

    Kaewnum, Supaporn; Zheng, Desen; Reid, Cheryl L; Johnson, Kameka L; Gee, Jodi C; Burr, Thomas J

    2013-05-01

    Nontumorigenic Agrobacterium vitis strain F2/5 is able to prevent crown gall caused by tumorigenic A. vitis on grape but not on other plant species such as tobacco. Mutations in a quorum-sensing transcription factor, aviR, and in caseinolytic protease (clp) component genes clpA and clpP1 resulted in reduced or loss of biological control. All mutants were complemented; however, restoration of biological control by complemented clpA and clpP1 mutants was dependent on the copy number of vector that was used as well as timing of application of the complemented mutants to grape wounds in relation to inoculation with pathogen. Mutations in other quorum-sensing and clp genes and in a gene associated with polyketide synthesis did not affect biological control. It was determined that, although F2/5 inhibits transformation by tumorigenic A. vitis strains on grape, it does not affect growth of the pathogen in wounded grape tissue over time.

  5. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

    PubMed Central

    Yamada, Tetsuya; Takagi, Kyoko; Ishimoto, Masao

    2012-01-01

    Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan. PMID:23136488

  6. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    PubMed

    Lang, Julien; Vigouroux, Armelle; Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-10-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  7. [Analysis of signal peptides of the secreted proteins in Agrobacterium tumefaciens C58].

    PubMed

    Fan, Cheng-Ming; Li, Cheng-Yun; Zhao, Ming-Fu; He, Yue-Qiu

    2005-08-01

    The 4554 ORFs of Agrobacterium tumefaciens C58 Cereon were used for the prediction of signal peptides by the network tools, such as SignalP3.0, LipoP1.0, TMHMM2.0 and TargetP1.01. Total 203 signal peptides with conserved amino residues are found, among them, 158 are secretary types, 9 are RR-motif types, 28 are SignalPase II types and 8 are bacteriocin-pheromone types. However, only two signal peptides from the secreted proteins, AGR-C-1878p and AGR-C-1880p have the same amino sequences, showing the signal peptides of the strain are highly variable.

  8. Optimal pH control of batch processes for production of curdlan by Agrobacterium species.

    PubMed

    Lee; Lee; Kim; Park

    1999-08-01

    We sought an optimal pH profile to maximize curdlan production in a batch fermentation of Agrobacterium species. The optimal pH profile was calculated using a gradient iteration algorithm based on the minimum principle of Pontryagin. The model equations describing cell growth and curdlan production were developed as functions of pH, sucrose concentration, and ammonium concentration, since the specific rates of cell growth and curdlan production were highly influenced by those parameters. The pH profile provided the strategy to shift the culture pH from the optimal growth condition (pH 7.0) to the optimal production one (pH 5.5) at the time of ammonium exhaustion. By applying the optimal pH profile in the batch process, we obtained significant improvement in curdlan production (64 g L-1) compared to that of constant pH operation (36 g L-1).

  9. Isolation and characterization of curdlan produced by Agrobacterium HX1126 using α-lactose as substrate.

    PubMed

    Liu, Yongmei; Gu, Qiuya; Ofosu, Fred Kwame; Yu, Xiaobin

    2015-11-01

    A strain Agrobacterium HX1126 was isolated from soil sample near the canal in Wuxi. α-lactose was used as the sole carbon source for the production of an exopolysaccharide which was named PLHX. The highest production of PLHX (21.4g/L) was obtained under nitrogen depletion. PLHX composed mainly of glucose, with lower amounts of galactose and aminogalactose. The structure of the product was confirmed by NMR and FTIR and was identified as curdlan. This exopolysaccharide formed a gel when 30g/L was put in boiling water for 10min, with an achieved gel strength of 831g/cm(2). Moreover, a hypothesis for higher gel strength production is proposed. The gel forming property makes this exopolysaccaride a good potential application in the food, pharmaceutical and cosmetic industries.

  10. Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct.

    PubMed

    West, Thomas P; Nemmers, Beth

    2008-02-01

    The production of the polysaccharide curdlan from the ethanol processing coproduct condensed corn distillers solubles by the bacterium Agrobacterium sp. ATCC 31749 was investigated. It was found that curdlan could be produced by the bacterium using condensed corn distillers solubles as a source of carbon and nitrogen. As the concentration of condensed corn distillers solubles was increased from 50 g l(-1) to 400 g l(-1), the concentration of curdlan increased but not proportionally. The highest curdlan concentration was produced by the strain on 400 g l(-1 )condensed corn distillers solubles after 120 h and its level was higher than was observed for glucose-based curdlan production. Biomass production by ATCC 31749 was also highest after 120 h of growth on 400 g l(-1 )condensed corn distillers solubles and was higher than found for glucose-based biomass production.

  11. Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants

    PubMed Central

    Circelli, Patrizia; Donini, Marcello; Villani, Maria Elena; Benvenuto, Eugenio

    2010-01-01

    We have recently described an efficient transient expression system mediated by Agrobacterium tumefaciens for the production of HIV-1 Nef protein in Nicotiana benthamiana plants. In order to enhance the yield of recombinant protein we assayed the effect of three gene-silencing viral suppressor proteins (P25 of Potato Virus X, P19 of Artichoke Mottled Crinckle virus and Tomato Bushy Stunt virus) on Nef expression levels. Results demonstrated that AMCV-P19 gave the highest Nef yield (1.3% of total soluble protein) and that this effect was correlated to a remarkable decrease of Nef-specific small interfering RNAs (siRNAs) indicating an effective modulation of RNA silencing mechanisms. Here we report additional data on the production of different heterologous proteins including human immunoglobulin heavy and light chains and a virus coat protein that demonstrate the robustness of this co-agroinfiltration expression system boosted by the AMCV-P19 gene-silencing suppressor. PMID:21326930

  12. Characterization of a new pathovar of Agrobacterium vitis causing banana leaf blight in China.

    PubMed

    Huang, Siliang; Long, Mengling; Fu, Gang; Lin, Shanhai; Qin, Liping; Hu, Chunjin; Cen, Zhenlu; Lu, Jie; Li, Qiqin

    2015-01-01

    A new banana leaf blight was found in Nanning city, China, during a 7-year survey (2003-2009) of the bacterial diseases on banana plants. Eight bacterial strains were isolated from affected banana leaves, and identified as an intraspecific taxon of Agrobacterium vitis based on their 16S rDNA sequence similarities with those of 37 randomly selected bacterial strains registered in GenBank database. The representative strain Ag-1 was virulent on banana leaves and shared similar growth and biochemical reactions with the reference strain IAM14140 of A. vitis. The strains causing banana leaf blight were denominated as A. vitis pv. musae. The traditional A. vitis strains virulent to grapevines were proposed to be revised as A. vitis pv. vitis. This is the first record of a new type of A. vitis causing banana leaf blight in China.

  13. Isolation of the Tumor-Inducing RNA from Oncogenic and Nononcogenic Agrobacterium tumefaciens

    PubMed Central

    Beljanski, M.; Cunha, M. I. Aaron-Da; Beljanski, M. S.; Manigault, P.; Bourgarel, P.

    1974-01-01

    Two RNA fractions have been isolated and purified from both oncogenic and nononcogenic strains of Agrobacterium tumefaciens. Both RNAs are capable of inducing the formation of transplantable tumors when introduced at wound sites in stems of Datura stramonium plants. One of these RNA fractions was found to be bound to an RNA-directed DNA polymerase, while the other was associated with the bacterial DNA. Physical evidence suggests that both are single stranded and small in size; linear sucrose gradients show that their size corresponds to a value of 5-6 S. A concentration of 4-5 μg of the RNAs dissolved in 0.01 ml of water is effective in initiating the formation of transplantable tumors in Datura plants. Images PMID:4525450

  14. Characterization of the replication and stability regions of Agrobacterium tumefaciens plasmid pTAR.

    PubMed

    Gallie, D R; Zaitlin, D; Perry, K L; Kado, C I

    1984-03-01

    A 5.4-kilobase region containing the origin of replication and stability maintenance of the 44-kilobase Agrobacterium tumefaciens plasmid pTAR has been mapped and characterized. Within this region is a 1.3-kilobase segment that is capable of directing autonomous replication. The remaining segment contains the stability locus for maintenance of pTAR during nonselective growth. Approximately 35% of pTAR shares sequence homology with pAg119, a 44-kilobase cryptic plasmid in grapevine strain 1D1119. However, no homology was detected between pTAR DNA and several Ti plasmids or several other small cryptic plasmids in many A. tumefaciens strains. A recombinant plasmid containing the origin of replication and stability maintenance region of pTAR was compatible with pTiC58, pTi15955, and pTi119 and incompatible with pAg119. A new compatibility group, Inc Ag-1, is discussed.

  15. Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions

    SciTech Connect

    Cangelosi, G.A.; Hung, L.; Puvanesarajah, V.; Stacey, G.; Ozga, D.A.; Leigh, J.A.; Nester, E.W.

    1987-05-01

    The authors isolated approximately 100 analogous EPS-deficient (Exo) mutants of the closely related plant pathogen Agrobacterium tumefaciens, including strains whose EPS deficiencies were specifically complemented by each of five cloned, R. meliloti exo loci. They also cloned A. tumefaciens genes which complemented EPS defects in three of the R. meliloti Exo mutants. In two of these cases, symbiotic defects were also complemented. All of the A. tumefaciens Exo mutants formed normal crown gall tumors on four different plant hosts, except ExoC mutants, which were nontumorigenic and unable to attach to plant cells in vitro. Like their R. meliloti counterparts, A. tumefaciens Exo mutants were deficient in production of succinoglycan, the major acidic EPS species produced by both genera. A. tumefaciens ExoC mutants also produced extremely low levels of another major EPS, cyclic 1,2-..beta..-D-glucan. This deficiency has been noted previously in a different set of nontumorigenic, attachment-defective A. tumefaciens mutants.

  16. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749.

    PubMed

    West, Thomas P

    2009-12-01

    A mutant strain of the curdlan-producing bacterium Agrobacterium sp. ATCC 31749, isolated by ethylmethane sulfonate mutagenesis and resistance to ampicillin, was capable of elevated curdlan synthesis. Using 2.5% corn syrup, glucose or maltose as a carbon source, the mutant strain was shown to produce a 1.5-fold, 1.5-fold or 1.5-fold higher level of curdlan, respectively, than its parent strain after 120 h of growth. The mutant strain produced higher curdlan levels after 96 or 120 h of growth on glucose or maltose as a carbon source than it did on corn syrup. Biomass production by the mutant strain grown on the carbon sources studied was slightly elevated compared to its parent strain. It was concluded that the elevated curdlan production observed for the mutant strain grown on corn syrup or glucose was not due to an increase in biomass production.

  17. picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome.

    PubMed

    Rong, L; Karcher, S J; O'Neal, K; Hawes, M C; Yerkes, C D; Jayaswal, R K; Hallberg, C A; Gelvin, S B

    1990-10-01

    We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall.

  18. picA, a novel plant-inducible locus on the Agrobacterium tumefaciens chromosome.

    PubMed Central

    Rong, L; Karcher, S J; O'Neal, K; Hawes, M C; Yerkes, C D; Jayaswal, R K; Hallberg, C A; Gelvin, S B

    1990-01-01

    We used the transposon Mu dI1681 to identify genes on the Agrobacterium tumefaciens chromosome that are inducible by extracts from carrot roots. One such locus (picA, for plant inducible chromosomal), harbored by A. tumefaciens At156, was inducible 10- to 50-fold by these extracts. Mutation of picA had no detectable effect upon bacterial growth or virulence under laboratory assay conditions. However, A. tumefaciens cells harboring a mutated picA locus aggregated into long "ropes" when incubated with pea root tip cells. Such aggregation was not displayed by the parental strain A. tumefaciens A136. A preliminary characterization of the inducing compound in the carrot root extract suggests that the active substance is an acidic polysaccharide that is most likely derived from the pectic portion of the plant cell wall. Images PMID:2170328

  19. d-Glucaric Acid and Galactaric Acid Catabolism by Agrobacterium tumefaciens

    PubMed Central

    Chang, Yung Feng; Feingold, David Sidney

    1970-01-01

    Cell-free extract (crude extract) of Agrobacterium tumefaciens grown on d-glucuronate or d-glucarate converts d-glucarate and galactarate to a mixture of 2-keto-3-deoxy- and 4-deoxy-5-keto-d-glucarate. These compounds are then converted by partially purified crude extract to an intermediate tentatively identified as 2,5-diketoadipate. The same enzyme preparation further decarboxylates this intermediate to α-ketoglutarate semialdehyde, which is subsequently oxidized in a nicotinamide adenine dinucleotide-dependent reaction to α-ketoglutaric acid. Since A. tumefaciens converts d-glucuronic acid to d-glucarate, a pathway from d-glucuronate to α-ketoglutarate in A. tumefaciens was determined. PMID:4314480

  20. The putative Agrobacterium transcriptional activator-like virulence protein VirD5 may target T-complex to prevent the degradation of coat proteins in the plant cell nucleus.

    PubMed

    Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong

    2014-09-01

    Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS).

  1. Studies on the extracellular polysaccharide from Agrobacterium radiobacter biovar I S-1231.

    PubMed

    Yu, N; Wang, X; Shi, Z; Shen, A; Yao, R; Chang, L

    1994-01-01

    A strain S-1231 isolated from specimen of soil around Beijing area is gram-negative, non-sporing, motile by peritrichous flagella. It produces exopolysaccharide succinoglycan from carbohydrates as its carbon source but not starch and cellulose. Acid is produced during fermentation of glucose. Growing for 12-24 hr, the cells are rods 0.7-0.8 x 1.3-1.5 microns, round ended, single or in pairs. Colonies on nutrient agar plate are unpigmented, circular, raised, smooth and moist-glistening, edge entire. The organism produces 3-ketolactose and is unable to invade sunflower tissue. The G+C content of DNA is 62.8-63.4 mol%. The organism is referred to as Agrobacterium radiobacter. Moreover, the strain is oxidase-positive, catalase-positive, H2S-produce and can grow at 35 degrees C and 2% NaCl also. Litmus milk is alkalified. Thus, the organism was renamed Agrobacterium radiobacter biovar I. Component analyses showed that the exopolysaccharide (Agran-S) from A. radiobacter biovar I S-1231 consisted of D-glucose (69.1%), D-galactose (8.6%), pyruvic acid (9.5%) and succinic acid (10.5%). Methylation analyses revealed that the polysaccharide Agran-S contained following main structural units: (1-->3)-linked D-glucose (21.2%), (1-->3)-linked D-galactose (11.4%), (1-->6)-linked D-glucose (10.5%), (1-->4)-linked D-glucose (30.4%), (1-->4, 1-->6)-linked D-glucose (22.2%) and terminal D-glucose (4.3%). The -1H-NMR spectrum of the polysaccharide indicated that the linkages in the polymer are all beta-glycosidic. The IR spectra of the polysaccharide revealed the presence of ester linkage in polysaccharide Agran-S.

  2. Genomic Species Are Ecological Species as Revealed by Comparative Genomics in Agrobacterium tumefaciens

    PubMed Central

    Lassalle, Florent; Campillo, Tony; Vial, Ludovic; Baude, Jessica; Costechareyre, Denis; Chapulliot, David; Shams, Malek; Abrouk, Danis; Lavire, Céline; Oger-Desfeux, Christine; Hommais, Florence; Guéguen, Laurent; Daubin, Vincent; Muller, Daniel; Nesme, Xavier

    2011-01-01

    The definition of bacterial species is based on genomic similarities, giving rise to the operational concept of genomic species, but the reasons of the occurrence of differentiated genomic species remain largely unknown. We used the Agrobacterium tumefaciens species complex and particularly the genomic species presently called genomovar G8, which includes the sequenced strain C58, to test the hypothesis of genomic species having specific ecological adaptations possibly involved in the speciation process. We analyzed the gene repertoire specific to G8 to identify potential adaptive genes. By hybridizing 25 strains of A. tumefaciens on DNA microarrays spanning the C58 genome, we highlighted the presence and absence of genes homologous to C58 in the taxon. We found 196 genes specific to genomovar G8 that were mostly clustered into seven genomic islands on the C58 genome—one on the circular chromosome and six on the linear chromosome—suggesting higher plasticity and a major adaptive role of the latter. Clusters encoded putative functional units, four of which had been verified experimentally. The combination of G8-specific functions defines a hypothetical species primary niche for G8 related to commensal interaction with a host plant. This supports that the G8 ancestor was able to exploit a new ecological niche, maybe initiating ecological isolation and thus speciation. Searching genomic data for synapomorphic traits is a powerful way to describe bacterial species. This procedure allowed us to find such phenotypic traits specific to genomovar G8 and thus propose a Latin binomial, Agrobacterium fabrum, for this bona fide genomic species. PMID:21795751

  3. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1.

    PubMed

    Xu, Xinxin; Li, Jinyang; Shi, Pengjun; Ji, Wangli; Liu, Bo; Zhang, Yuhong; Yao, Bin; Fan, Yunliu; Zhang, Wei

    2016-08-10

    Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/10(6) conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens.

  4. The use of T-DNA insertional mutagenesis to improve cellulase production by the thermophilic fungus Humicola insolens Y1

    PubMed Central

    Xu, Xinxin; Li, Jinyang; Shi, Pengjun; Ji, Wangli; Liu, Bo; Zhang, Yuhong; Yao, Bin; Fan, Yunliu; Zhang, Wei

    2016-01-01

    Humicola insolens is an excellent producer of pH-neutral active, thermostable cellulases that find many industrial applications. In the present study, we developed an efficient Agrobacterium tumefaciens-mediated transformation system for H. insolens. We transformed plasmids carrying the promoter of the glyceraldehyde-3-phosphate dehydrogenase gene of H. insolens driving the transcription of genes encoding neomycin phosphotransferase, hygromycin B phosphotransferase, and enhanced green fluorescent protein. We optimized transformation efficiency to obtain over 300 transformants/106 conidia. T-DNA insertional mutagenesis was employed to generate an H. insolens mutant library, and we isolated a transformant termed T4 with enhanced cellulase and hemicellulase activities. The FPase, endoglucanase, cellobiohydrolase, β-glucosidase, and xylanase activities of T4, measured at the end of fermentation, were 60%, 440%, 320%, 41%, and 81% higher than those of the wild-type strain, respectively. We isolated the sequences flanking the T-DNA insertions and thus identified new genes potentially involved in cellulase and hemicellulase production. Our results show that it is feasible to use T-DNA insertional mutagenesis to identify novel candidate genes involved in cellulase production. This will be valuable when genetic improvement programs seeking to enhance cellulase production are planned, and will also allow us to gain a better understanding of the genetics of the thermophilic fungus H. insolens. PMID:27506519

  5. An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.).

    PubMed

    Bhatnagar, Madhurima; Prasad, Kalyani; Bhatnagar-Mathur, Pooja; Narasu, M Lakshmi; Waliyar, Farid; Sharma, Kiran K

    2010-05-01

    Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation for selecting the primary transgenic events. However, these become redundant once the transgenic plants have been developed and identified. Although, there is no evidence that the selectable marker genes are unsafe for consumers and the environment, it would be desirable if the marker genes can be eliminated from the final transgenic events. The availability of efficient transformation methods can enable the possibility of developing transgenic events that are devoid of the marker gene/s upfront. Taking advantage of the high and consistent transformation potential of peanut, we report a technique for developing its transgenics without the use of any selectable marker gene. Marker-free binary vectors harboring either the phytoene synthase gene from maize (Zmpsy1) or the chitinase gene from rice (Rchit) were constructed and used for Agrobacterium tumefaciens-mediated transformation of peanut. The putative transgenic events growing in vitro were initially identified by PCR and further confirmed for gene integration and expression by dot blots assays, Southern blots, and RT-PCR where they showed a transformation frequency of over 75%. This system is simple, efficient, rapid, and does not require the complex segregation steps and analysis for selection of the transgenic events. This approach for generation of marker-free transgenic plants minimizes the risk of introducing unwanted genetic changes, allows stacking of multiple genes and can be applicable to other plant species that have high shoot regeneration efficiencies.

  6. Biological Control of Agrobacterium tumefaciens, Colonization, and pAgK84 Transfer with Agrobacterium radiobacter K84 and the Tra- Mutant Strain K1026

    PubMed Central

    Vicedo, Begonya; Peñalver, Ramón; Asins, María José; López, María M.

    1993-01-01

    The efficacies of Agrobacterium radiobacter K84 and K1026 in root colonization, crown gall control, and plasmid transfer were compared. Levels of root colonization by K84 and K1026 of Montclar and Nemaguard peach seedlings were similar during the 21 days of the experiment. Four strains of A. tumefaciens bv. 1 were used for soil inoculations in biological control experiments on GF677 and Adafuel peach × almond rootstocks; two were sensitive and two were resistant to agrocin 84. Both strains K84 and K1026 were very efficient in controlling the sensitive strains, but some tumors appeared with both treatments. In the biocontrol of resistant strains, no galls were observed in K1026-treated plants, but some K84-treated plants had galls. Recovery of agrobacteria from galls in experiments with sensitive and resistant strains showed that all of the isolates from the controls or K1026-treated plants and most of the isolates from K84-treated plants had the same characteristics as the inoculated strains. Nine isolates from the K84-treated plants growing in soil inoculated with one resistant strain were virulent and produced agrocin 84. These isolates had a plasmid that hybridized with a probe prepared with the BamHI C fragment from pAgK84. These results show the efficiency of K1026 in biocontrol of agrocin 84-sensitive and -resistant strains of A. tumefaciens and suggest the use of K1026 as a safer organism than K84 for biological control of crown gall. Images PMID:16348854

  7. Advancing Crop Transformation in the Era of Genome Editing.

    PubMed

    Altpeter, Fredy; Springer, Nathan M; Bartley, Laura E; Blechl, Ann E; Brutnell, Thomas P; Citovsky, Vitaly; Conrad, Liza J; Gelvin, Stanton B; Jackson, David P; Kausch, Albert P; Lemaux, Peggy G; Medford, June I; Orozco-Cárdenas, Martha L; Tricoli, David M; Van Eck, Joyce; Voytas, Daniel F; Walbot, Virginia; Wang, Kan; Zhang, Zhanyuan J; Stewart, C Neal

    2016-07-01

    Plant transformation has enabled fundamental insights into plant biology and revolutionized commercial agriculture. Unfortunately, for most crops, transformation and regeneration remain arduous even after more than 30 years of technological advances. Genome editing provides novel opportunities to enhance crop productivity but relies on genetic transformation and plant regeneration, which are bottlenecks in the process. Here, we review the state of plant transformation and point to innovations needed to enable genome editing in crops. Plant tissue culture methods need optimization and simplification for efficiency and minimization of time in culture. Currently, specialized facilities exist for crop transformation. Single-cell and robotic techniques should be developed for high-throughput genomic screens. Plant genes involved in developmental reprogramming, wound response, and/or homologous recombination should be used to boost the recovery of transformed plants. Engineering universal Agrobacterium tumefaciens strains and recruiting other microbes, such as Ensifer or Rhizobium, could facilitate delivery of DNA and proteins into plant cells. Synthetic biology should be employed for de novo design of transformation systems. Genome editing is a potential game-changer in crop genetics when plant transformation systems are optimized.

  8. Generation of Doubled Haploid Transgenic Wheat Lines by Microspore Transformation

    PubMed Central

    Liu, Weiguo; Konzak, Calvin F.; von Wettstein, Diter; Rustgi, Sachin

    2013-01-01

    Microspores can be induced to develop homozygous doubled haploid plants in a single generation. In the present experiments androgenic microspores of wheat have been genetically transformed and developed into mature homozygous transgenic plants. Two different transformation techniques were investigated, one employing electroporation and the other co-cultivation with Agrobacterium tumefaciens. Different tissue culture and transfection conditions were tested on nine different wheat cultivars using four different constructs. A total of 19 fertile transformants in five genotypes from four market classes of common wheat were recovered by the two procedures. PCR followed by DNA sequencing of the products, Southern blot analyses and bio/histo-chemical and histological assays of the recombinant enzymes confirmed the presence of the transgenes in the T0 transformants and their stable inheritance in homozygous T1∶2 doubled haploid progenies. Several decisive factors determining the transformation and regeneration efficiency with the two procedures were determined: (i) pretreatment of immature spikes with CuSO4 solution (500 mg/L) at 4°C for 10 days; (ii) electroporation of plasmid DNA in enlarged microspores by a single pulse of ∼375 V; (iii) induction of microspores after transfection at 28°C in NPB-99 medium and regeneration at 26°C in MMS5 medium; (iv) co-cultivation with Agrobacterium AGL-1 cells for transfer of plasmid T-DNA into microspores at day 0 for <24 hours; and (v) elimination of AGL-1 cells after co-cultivation with timentin (200–400 mg/L). PMID:24260351

  9. Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples.

    PubMed

    Buron-Moles, G; López-Pérez, M; González-Candelas, L; Viñas, I; Teixidó, N; Usall, J; Torres, R

    2012-11-15

    Penicillium digitatum and Penicillium expansum are responsible for green and blue molds in citrus and pome fruits, respectively, which result in major monetary losses worldwide. In order to study their infection process in fruits, we successfully introduced a green fluorescent protein (GFP) encoding gene into wild type P. digitatum and P. expansum isolates, using Agrobacterium tumefaciens-mediated transformation (ATMT), with hygromycin B resistance as the selectable marker. To our knowledge, this is the first report describing the transformation of these two important postharvest pathogens with GFP and the use of transformed strains to study compatible and non-host pathogen interactions. Transformation did not affect the pathogenicity or the ecophysiology of either species compared to their respective wild type strains. The GFP-tagged strains were used for in situ analysis of compatible and non-host pathogen interactions on oranges and apples. Knowledge of the infection process of apples and oranges by these pathogens will facilitate the design of novel strategies to control these postharvest diseases and the use of the GFP-tagged strains will help to determine the response of P. digitatum and P. expansum on/in plant surface and tissues to different postharvest treatments.

  10. RNAi-mediated resistance against Cotton leaf curl disease in elite Indian cotton (Gossypium hirsutum) cultivar Narasimha.

    PubMed

    Khatoon, Sameena; Kumar, Abhinav; Sarin, Neera B; Khan, Jawaid A

    2016-08-01

    Cotton leaf curl disease (CLCuD) is caused by several distinct begomovirus species in association with disease-specific betasatellite essential for induction of disease symptoms. CLCuD is a serious threat for the cultivation of cotton (Gossypium sp.) and several species in the family Malvaceae. In this study, RNAi-based approach was applied to generate transgenic cotton (Gossypium hirsutum) plants resistant to Cotton leaf curl Rajasthan virus (CLCuRV). An intron hairpin (ihp) RNAi construct capable of expressing dsRNA homologous to the intergenic region (IR) of CLCuRV was designed and developed. Following Agrobacterium tumefaciens-mediated transformation of cotton (G. hirsutum cv. Narasimha) plants with the designed ihpRNAi construct, a total of 9 independent lines of transformed cotton were obtained. The presence of the potential stretch of IR in the transformed cotton was confirmed by PCR coupled with Southern hybridization. Upon inoculation with viruliferous whiteflies, the transgenic plants showed high degree of resistance. None of them displayed any CLCuD symptoms even after 90 days post inoculation. The transformed cotton plants showed the presence of siRNAs. The present study demonstrated that ihp dsRNA-mediated resistance strategy of RNAi is an effective means to combat the CLCuD infection in cotton.

  11. Apple (Malus x domestica).

    PubMed

    Dandekar, Abhaya M; Teo, Gianni; Uratsu, Sandra L; Tricoli, David

    2006-01-01

    Apple (Malus x domestica) is one of the most consumed fruit crops in the world. The major production areas are the temperate regions, however, because of its excellent storage capacity it is transported to distant markets covering the four corners of the earth. Transformation is a key to sustaining this demand - permitting the potential enhancement of existing cultivars as well as to investigate the development of new cultivars resistant to pest, disease, and storage problems that occur in the major production areas. In this paper we describe an efficient Agrobacterium tumefaciens-mediated transformation protocol that utilizes leaf tissues from in vitro grown plants. Shoot regeneration is selected with kanamycin using the selectable kanamycin phosphotransferase (APH(3)II) gene and the resulting transformants confirmed using the scorable uidA gene encoding the bacterial beta-glucuronidase (GUS) enzyme via histochemical staining. Transformed shoots are propagated, rooted to create transgenic plants that are then introduced into soil, acclimatized and transferred to the greenhouse from where they are taken out into the orchard for field-testing.

  12. Vitreoscilla hemoglobin gene ( vgb) improves lutein production in Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Ma, Ruijuan; Lin, Xiangzhi

    2014-03-01

    Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the efficiency of cell respiration and metabolism. In this study, we introduced a Vitreoscilla hemoglobin gene ( vgb) into Chlorella vulgaris by Agrobacterium tumefaciens -mediated transformation (ATMT). PCR analysis confirmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome. Analysis of biomass obtained in shake flasks revealed transformant biomass concentrations as high as 3.28 g/L, which was 38.81% higher than that of the wild-type strain. Lutein content of transformants also increased slightly. Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants, which was 36.77% higher than that of the wild-type strain. The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris, with applications to lutein production from Chlorella during fermentation.

  13. Scale-up of Agrobacterium-mediated transient protein expression in bioreactor-grown Nicotiana glutinosa plant cell suspension culture.

    PubMed

    O'Neill, Kristin M; Larsen, Jeffrey S; Curtis, Wayne R

    2008-01-01

    The reporter gene beta-glucuronidase was transiently expressed in a 51-L bioreactor-grown plant cell suspension culture of Nicotiana glutinosa at a yield of approximately 1.1 mg through co-culture with an auxotrophic strain of Agrobacterium tumefaciens. The three order of magnitude scale-up involved the investigation of factors contributing to transient expression including the timing of Agrobacterium inoculation relative to the plant cell growth phase, plant tissue culture hormonal triggers and plant cell cycle synchronization. The co-culture process was simplified to facilitate implementation in a pilot-scale bioreactor. At the shake flask scale it was determined that elevated concentrations of oxygen in the headspace were detrimental to transient expression levels and the addition of acetosyringone to the co-culture had a negligible effect. The bacterial preparation process was also streamlined, permitting the direct transfer of the Agrobacterium culture from a bench-scale fermentor to the pilot-scale plant cell culture bioreactor. Increasing expression levels and overcoming batch-to-batch variability despite extensive procedure systemization remain the major technical hurdles.

  14. Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749.

    PubMed

    Yu, Li-Jun; Wu, Jian-Rong; Zheng, Zhi-Yong; Zhan, Xiao-Bei; Lin, Chi Chung

    2011-07-01

    The regulatory function of global regulator NtrC on curdlan biosynthesis and nitrogen consumption under nitrogen-limited condition in Agrobacterium sp. ATCC 31749 was investigated. The ntrC mutant of Agrobacterium sp. was constructed by homologous recombination. The ability to utilize NH4Cl and KNO3 was impaired in the mutant. Other nitrogenous compounds, such as glutamic acid and glutamine, were utilized normally. Curdlan production capability was impaired severely in the mutant. Curdlan production was 5-fold lower than the wild type strain in batch fermentation with NH4Cl as the sole nitrogen source. However, up to 6.5 g l(-1) of a newly found alkali-insoluble biopolymer was produced by the ntrC mutant when glutamic acid was used as nitrogen source. The new biopolymer had glycosidic bond and hydroxyl group but no β-configuration absorption peak on IR spectrum was found as different from curdlan. In addition, the mutant exhibited a rapid morphological change from the dot to rod form. These results deduced that the global regulator NtrC was involved in curdlan and other biopolymer biosynthesis in Agrobacterium sp. ATCC 31749 in response to nitrogen-limited condition.

  15. Transformational Events

    ERIC Educational Resources Information Center

    Denning, Peter J.; Hiles, John E.

    2006-01-01

    Transformational Events is a new pedagogic pattern that explains how innovations (and other transformations) happened. The pattern is three temporal stages: an interval of increasingly unsatisfactory ad hoc solutions to a persistent problem (the "mess"), an offer of an invention or of a new way of thinking, and a period of widespread adoption and…

  16. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  17. Maize transformation technology development for commercial event generation

    PubMed Central

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  18. Stable transformation of maize after gene transfer by electroporation.

    PubMed

    Fromm, M E; Taylor, L P; Walbot, V

    The graminaceous monocots, including the economically important cereals, seem to be refractory to infection by Agrobacterium tumefaciens, a natural gene transfer system that has been successfully exploited for transferring foreign genes into higher plants. Therefore, direct transfer techniques that are potentially applicable to all plant species have been developed using a few dicot and monocot species as model systems. One of these techniques, electroporation, uses electrical pulses of high field strength to permeabilize cell membranes reversibly so as to facilitate the transfer of DNA into cells. Electroporation-mediated gene transfer has resulted in stably transformed animal cells and transient gene expression in monocot and dicot plant cells. Here we report that electroporation-mediated DNA transfer of a chimaeric gene encoding neomycin phosphotransferase results in stably transformed maize cells that are resistant to kanamycin.

  19. Spermidine Inversely Influences Surface Interactions and Planktonic Growth in Agrobacterium tumefaciens

    PubMed Central

    Wang, Yi; Kim, Sok Ho; Natarajan, Ramya; Bruger, Eric L.; Waters, Christopher M.; Michael, Anthony J.

    2016-01-01

    ABSTRACT In bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene in Agrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants for odc grew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite in A. tumefaciens and is synthesized from putrescine in A. tumefaciens via the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to the odc mutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for the odc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. The odc mutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue. IMPORTANCE Polyamines are small, positively charged metabolites that are nearly ubiquitous in cellular life. They are often essential in eukaryotes and more variably in bacteria. Polyamines have been reported to influence the surface-attached biofilm

  20. [Transformation toughening

    SciTech Connect

    Rafa, M.J.

    1993-04-19

    In NiAl, we have succeeded in determining the complete Ginzburg-Landau strain free energy function necessary to model the cubic to tetragonal martensite transformation in a sample of any size. We believe that this is the first time that the parameters of a Ginzburg-Landau functional and the complete strain spinodal for any three-dimensional displacive transformation were used in simulating the transformation near a crack tip under Mode I loading; the transformation pattern and toughening are different from standard transformation toughening theories. Furthermore, the strain spinodal has an approximately conical shape which can be specified by two material dependent experimentally accessible parameters, rather than the ellipsoidal shape in standard theories. Stress induced martensitic transformation in a polycrystalline sample of NiAl was simulated. In the ZrO[sub 2] system, first principles calculations to determine the semi-empirical potentials for simulating the cubic-tetragonal and tetragonal-monoclinic transformations have been started by doing a more elaborate total energy calculation.In the Al[sub 2]0[sub 3] system, we have discovered that the first principles calculations and semi-empirical potentials have just been completed byanother group in England which we will use instead to base our molecular dynamics simulations on.

  1. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection.

    PubMed

    Meng, Yuling; Zhang, Qiang; Zhang, Meixiang; Gu, Biao; Huang, Guiyan; Wang, Qinhu; Shan, Weixing

    2015-01-01

    Protein disulfide isomerase (PDI) is a ubiquitous and multifunction enzyme belonging to the thioredoxin (TRX) superfamily, which can reduce, oxidize, and catalyze dithiol-disulfide exchange reactions. Other than performing housekeeping functions in helping to maintain proteins in a more stable conformation, there is some evidence to indicate that PDI is involved in pathogen infection processes. In a high-throughput screening for necrosis-inducing factors by Agrobacterium tumefaciens-mediated transient expression assay, a typical PDI gene from Phytophthora parasitica (PpPDI1) was identified and confirmed to induce strong cell death in Nicotiana benthamiana leaves. PpPDI1 is conserved in eukaryotes but predicted to be a secreted protein. Deletion mutant analyses showed that the first CGHC motif in the active domain of PpPDI1 is essential for inducing cell death. Using P. parasitica transformation method, the silencing efficiency was found to be very low, suggesting that PpPDI1 is essential for the pathogen. Translational fusion to the enhanced green fluorescent protein (EGFP) in stable P. parasitica transformants showed that PpPDI1 is associated with haustoria-like structures during pathogen infection. Furthermore, the PpPDI1-EGFP-expressing transformants increase the number of haustoria-like structures and exhibit enhanced virulence to N. benthamiana. These results indicate that PpPDI1 might be a virulence factor of P. parasitica and contributes to plant infection.

  2. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  3. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection

    PubMed Central

    Meng, Yuling; Zhang, Qiang; Zhang, Meixiang; Gu, Biao; Huang, Guiyan; Wang, Qinhu; Shan, Weixing

    2015-01-01

    Protein disulfide isomerase (PDI) is a ubiquitous and multifunction enzyme belonging to the thioredoxin (TRX) superfamily, which can reduce, oxidize, and catalyze dithiol–disulfide exchange reactions. Other than performing housekeeping functions in helping to maintain proteins in a more stable conformation, there is some evidence to indicate that PDI is involved in pathogen infection processes. In a high-throughput screening for necrosis-inducing factors by Agrobacterium tumefaciens-mediated transient expression assay, a typical PDI gene from Phytophthora parasitica (PpPDI1) was identified and confirmed to induce strong cell death in Nicotiana benthamiana leaves. PpPDI1 is conserved in eukaryotes but predicted to be a secreted protein. Deletion mutant analyses showed that the first CGHC motif in the active domain of PpPDI1 is essential for inducing cell death. Using P. parasitica transformation method, the silencing efficiency was found to be very low, suggesting that PpPDI1 is essential for the pathogen. Translational fusion to the enhanced green fluorescent protein (EGFP) in stable P. parasitica transformants showed that PpPDI1 is associated with haustoria-like structures during pathogen infection. Furthermore, the PpPDI1-EGFP-expressing transformants increase the number of haustoria-like structures and exhibit enhanced virulence to N. benthamiana. These results indicate that PpPDI1 might be a virulence factor of P. parasitica and contributes to plant infection. PMID:26347756

  4. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter.

    PubMed Central

    Snape, J R; Walkley, N A; Morby, A P; Nicklin, S; White, G F

    1997-01-01

    Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively. PMID:9401040

  5. Isolation and characterization of temperature and alkaline stable bioflocculant from Agrobacterium sp. M-503.

    PubMed

    Li, Qiang; Liu, Hong-lei; Qi, Qing-sheng; Wang, Feng-shan; Zhang, Yu-zhen

    2010-12-31

    A bacterium isolated from activated sludge of propylene epoxide wastewater was identified as Agrobacterium sp. M-503. It was confirmed to produce bioflocculant with excellent flocculation activity. The yield of the bioflocculant reached 14.9 g/l in batch cultivation with a carbon source conversion of 74.5%. This bioflocculant was temperature and alkaline stable, retaining almost all flocculation activity after being treated at 121°C for 20 minutes or at pH 12.0. It consisted of neutral sugar, uronic acid, aminosugar and protein in weight ratios of 85.0:9.9:2.1:3.0. The active polysaccharide fraction of the bioflocculant was purified to homogeneity by ethanol precipitation, DEAE ion-exchange and gel chromatography. Analysis of the purified polysaccharide showed that it consisted of glucose residues and had a molecular weight of 8.1 × 10⁴ Da. Its low molecular weight endowed it with excellent solubility and favorable flocculation activity, especially for small particulates.

  6. Establishment of an Agrobacterium-mediated Inoculation System for Cucumber Green Mottle Mosaic Virus

    PubMed Central

    Kang, Minji; Seo, Jang-Kyun; Song, Dami; Choi, Hong-Soo; Kim, Kook-Hyung

    2015-01-01

    The infectious full-length cDNA clones of Cucumber green mottle mosaic virus (CGMMV) isolates KW and KOM, which were isolated from watermelon and oriental melon, respectively, were constructed under the control of the cauliflower mosaic virus 35S promoter. We successfully inoculated Nicotiana benthamiana with the cloned CGMMV isolates KW and KOM by Agrobacterium-mediated infiltration. Virulence and symptomatic characteristics of the cloned CGMMV isolates KW and KOM were tested on several indicator plants. No obvious differences between two cloned isolates in disease development were observed on the tested indicator plants. We also determined full genome sequences of the cloned CGMMV isolates KW and KOM. Sequence comparison revealed that only four amino acids (at positions 228, 699, 1212, and 1238 of the replicase protein region) differ between the cloned isolates KW and KOM. A previous study reported that the isolate KOM could not infect Chenopodium amaranticolor, but the cloned KOM induced chlorotic spots on the inoculated leaves. When compared with the previously reported sequence of the original KOM isolate, the cloned KOM contained one amino acid mutation (Ala to Thr) at position 228 of the replicase protein, suggesting that this mutation might be responsible for induction of chlorotic spots on the inoculated leaves of C. amaranticolor. PMID:26674677

  7. Effects of cell lysis treatments on the yield of coenzyme Q10 following Agrobacterium tumefaciens fermentation.

    PubMed

    Yuting Tian; Tianli Yue; Jinjin Pei; Yahong Yuan; Juhai Li; Martin Lo, Y

    2010-04-01

    The yield of CoQ₁₀, an intracellular product extracted from Agrobacterium tumefaciens cells is dependent on the effectiveness of cell lysis post fermentation. Various cell lysis approaches are investigated, including ultrasound, repetitive freezing/thawing, grinding and acid-heat treatment. The acid-heat combination using hydrochloric acid is found the most effective in releasing CoQ₁₀, followed by lactic, sulfuric, phosphoric and oxalic acids. The most significant processing parameters, namely the ratio of acid solution volume and bacteria weight (A/B ratio), incubation temperature and reaction time, are optimized by using the central composite design with a quadratic regression model built by response surface methodology. The highest CoQ₁₀ yield at 1.518 mg/g dry cell is attained using hydrochloric acid (3 mol/L) under optimal A/B ratio, temperature and time at 10.8 mL/g, 84.2 °C and 35.3 min, respectively.

  8. Characterization, correction and de novo assembly of an Oxford Nanopore genomic dataset from Agrobacterium tumefaciens.

    PubMed

    Deschamps, Stéphane; Mudge, Joann; Cameron, Connor; Ramaraj, Thiruvarangan; Anand, Ajith; Fengler, Kevin; Hayes, Kevin; Llaca, Victor; Jones, Todd J; May, Gregory

    2016-06-28

    The MinION is a portable single-molecule DNA sequencing instrument that was released by Oxford Nanopore Technologies in 2014, producing long sequencing reads by measuring changes in ionic flow when single-stranded DNA molecules translocate through the pores. While MinION long reads have an error rate substantially higher than the ones produced by short-read sequencing technologies, they can generate de novo assemblies of microbial genomes, after an initial correction step that includes alignment of Illumina sequencing data or detection of overlaps between Oxford Nanopore reads to improve accuracy. In this study, MinION reads were generated from the multi-chromosome genome of Agrobacterium tumefaciens strain LBA4404. Errors in the consensus two-directional (sense and antisense) "2D" sequences were first characterized by way of comparison with an internal reference assembly. Both Illumina-based correction and self-correction were performed and the resulting corrected reads assembled into high-quality hybrid and non-hybrid assemblies. Corrected read datasets and assemblies were subsequently compared. The results shown here indicate that both hybrid and non-hybrid methods can be used to assemble Oxford Nanopore reads into informative multi-chromosome assemblies, each with slightly different outcomes in terms of contiguity and accuracy.

  9. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis.

    PubMed

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E; Fiehn, Oliver; Kim, Young-Ho

    2016-12-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine.

  10. A cytometry microparticle platform approach for screening tobacco microRNA changes after agrobacterium delivery

    SciTech Connect

    Powell, Joshua D.; Chen, Qiang; Mason, Hugh S.

    2016-08-01

    Abstract Key message nta-miR-398 is significantly up-regulated while nta-miR-428d is significantly down-regulated in tobacco after agroinfiltration AbstractMicroRNAs are a class of non-coding regulatory RNAs that can modulate development as well as alter innate antiviral defenses in plants. In this study we explored host changes at the microRNA level within tobacco (Nicotiana benthamiana) after expression of a recombinant anti-Ebola GP1 antibody through Agrobacterium tumefaciens agroinfiltration delivery. A multiplex nanoparticle-based cytometry assay tracked the host expression changes of 53 tobacco microRNAs. Our results revealed that the most abundant microRNAs in actively growing leaves corresponded to nanoparticle probes specific to nta-mir-6149 and nta-miR-168b. After agroinfiltration, probes targeting nta-mir-398 and nta-mir-482d were significantly altered in their respective expression levels and were further verified through RT-qPCR analysis. To our knowledge this study is the first to profile microRNA expression in tobacco after agroinfiltration using a multiplex nanoparticle approach.

  11. Profiling of Disease-Related Metabolites in Grapevine Internode Tissues Infected with Agrobacterium vitis

    PubMed Central

    Jung, Sung-Min; Hur, Youn-Young; Preece, John E.; Fiehn, Oliver; Kim, Young-Ho

    2016-01-01

    Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine. PMID:27904455

  12. Mutational analysis of the active site residues of a D: -psicose 3-epimerase from Agrobacterium tumefaciens.

    PubMed

    Kim, Hye-Jung; Yeom, Soo-Jin; Kim, Kwangsoo; Rhee, Sangkee; Kim, Dooil; Oh, Deok-Kun

    2010-02-01

    D-Psicose 3-epimerase from Agrobacterium tumefacience catalyzes the conversion of D: -fructose to D-psicose. According to mutational analysis, the ring at position 112, the negative charge at position 156, and the positive charge at position 215 were essential components for enzyme activity and for binding fructose and psicose. The surface contact area and distance to the bound substrate by molecular modeling suggest that the positive charge of Arg215 was involved in stabilization of cis-endiol intermediate. The distances between the catalytic residues (Glu150 and Glu244) and Mn(2+) are critical to the catalysis, and the negative charges of the metal-binding residues are important for interaction with metal ion. The kinetic parameters of the D183E and H209A mutants for metal-binding residues with substrate and the near-UV circular dichroism spectra indicate that the metal ion bound to Asp183 and His209 is involved not only in catalysis but also in substrate binding.

  13. Structure And Specificity of a Quorum-Quenching Lactonase (AiiB) From Agrobacterium Tumefaciens

    SciTech Connect

    Liu, D.; Thomas, P.W.; Momb, J.; Hoang, Q.Q.; Petsko, G.A.; Ringe, D.; Fast, W.

    2009-06-03

    N-Acyl-l-homoserine lactone (AHL) mediated quorum-sensing regulates virulence factor production in a variety of Gram-negative bacteria. Proteins capable of degrading these autoinducers have been called 'quorum-quenching' enzymes, can block many quorum-sensing dependent phenotypes, and represent potentially useful reagents for clinical, agricultural, and industrial applications. The most characterized quorum-quenching enzymes to date are the AHL lactonases, which are metalloproteins that belong to the metallo-beta-lactamase superfamily. Here, we report the cloning, heterologous expression, purification, metal content, substrate specificity, and three-dimensional structure of AiiB, an AHL lactonase from Agrobacterium tumefaciens. Much like a homologous AHL lactonase from Bacillus thuringiensis, AiiB appears to be a metal-dependent AHL lactonase with broad specificity. A phosphate dianion is bound to the dinuclear zinc site and the active-site structure suggests specific mechanistic roles for an active site tyrosine and aspartate. To our knowledge, this is the second representative structure of an AHL lactonase and the first of an AHL lactonase from a microorganism that also produces AHL autoinducers. This work should help elucidate the hydrolytic ring-opening mechanism of this family of enzymes and also facilitate the design of more effective quorum-quenching catalysts.

  14. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate.

    PubMed

    Horne, Irene; Sutherland, Tara D; Harcourt, Rebecca L; Russell, Robyn J; Oakeshott, John G

    2002-07-01

    We isolated a bacterial strain, Agrobacterium radiobacter P230, which can hydrolyze a wide range of organophosphate (OP) insecticides. A gene encoding a protein involved in OP hydrolysis was cloned from A. radiobacter P230 and sequenced. This gene (called opdA) had sequence similarity to opd, a gene previously shown to encode an OP-hydrolyzing enzyme in Flavobacterium sp. strain ATCC 27551 and Brevundimonas diminuta MG. Insertional mutation of the opdA gene produced a strain lacking the ability to hydrolyze OPs, suggesting that this is the only gene encoding an OP-hydrolyzing enzyme in A. radiobacter P230. The OPH and OpdA proteins, encoded by opd and opdA, respectively, were overexpressed and purified as maltose-binding proteins, and the maltose-binding protein moiety was cleaved and removed. Neither protein was able to hydrolyze the aliphatic OP malathion. The kinetics of the two proteins for diethyl OPs were comparable. For dimethyl OPs, OpdA had a higher k(cat) than OPH. It was also capable of hydrolyzing the dimethyl OPs phosmet and fenthion, which were not hydrolyzed at detectable levels by OPH.

  15. Identification of an opd (Organophosphate Degradation) Gene in an Agrobacterium Isolate

    PubMed Central

    Horne, Irene; Sutherland, Tara D.; Harcourt, Rebecca L.; Russell, Robyn J.; Oakeshott, John G.

    2002-01-01

    We isolated a bacterial strain, Agrobacterium radiobacter P230, which can hydrolyze a wide range of organophosphate (OP) insecticides. A gene encoding a protein involved in OP hydrolysis was cloned from A. radiobacter P230 and sequenced. This gene (called opdA) had sequence similarity to opd, a gene previously shown to encode an OP-hydrolyzing enzyme in Flavobacterium sp. strain ATCC 27551 and Brevundimonas diminuta MG. Insertional mutation of the opdA gene produced a strain lacking the ability to hydrolyze OPs, suggesting that this is the only gene encoding an OP-hydrolyzing enzyme in A. radiobacter P230. The OPH and OpdA proteins, encoded by opd and opdA, respectively, were overexpressed and purified as maltose-binding proteins, and the maltose-binding protein moiety was cleaved and removed. Neither protein was able to hydrolyze the aliphatic OP malathion. The kinetics of the two proteins for diethyl OPs were comparable. For dimethyl OPs, OpdA had a higher kcat than OPH. It was also capable of hydrolyzing the dimethyl OPs phosmet and fenthion, which were not hydrolyzed at detectable levels by OPH. PMID:12089017

  16. Membrane lipids in Agrobacterium tumefaciens: biosynthetic pathways and importance for pathogenesis

    PubMed Central

    Aktas, Meriyem; Danne, Linna; Möller, Philip; Narberhaus, Franz

    2014-01-01

    Many cellular processes critically depend on the membrane composition. In this review, we focus on the biosynthesis and physiological roles of membrane lipids in the plant pathogen Agrobacterium tumefaciens. The major components of A. tumefaciens membranes are the phospholipids (PLs), phosphatidylethanolamine (PE), phosphatidylglycerol, phosphatidylcholine (PC) and cardiolipin, and ornithine lipids (OLs). Under phosphate-limited conditions, the membrane composition shifts to phosphate-free lipids like glycolipids, OLs and a betaine lipid. Remarkably, PC and OLs have opposing effects on virulence of A. tumefaciens. OL-lacking A. tumefaciens mutants form tumors on the host plant earlier than the wild type suggesting a reduced host defense response in the absence of OLs. In contrast, A. tumefaciens is compromised in tumor formation in the absence of PC. In general, PC is a rare component of bacterial membranes but amount to ~22% of all PLs in A. tumefaciens. PC biosynthesis occurs via two pathways. The phospholipid N-methyltransferase PmtA methylates PE via the intermediates monomethyl-PE and dimethyl-PE to PC. In the second pathway, the membrane-integral enzyme PC synthase (Pcs) condenses choline with CDP-diacylglycerol to PC. Apart from the virulence defect, PC-deficient A. tumefaciens pmtA and pcs double mutants show reduced motility, enhanced biofilm formation and increased sensitivity towards detergent and thermal stress. In summary, there is cumulative evidence that the membrane lipid composition of A. tumefaciens is critical for agrobacterial physiology and tumor formation. PMID:24723930

  17. Replicon-specific regulation of small heat shock genes in Agrobacterium tumefaciens.

    PubMed

    Balsiger, Sylvia; Ragaz, Curdin; Baron, Christian; Narberhaus, Franz

    2004-10-01

    Four genes coding for small heat shock proteins (sHsps) were identified in the genome sequence of Agrobacterium tumefaciens, one on the circular chromosome (hspC), one on the linear chromosome (hspL), and two on the pAT plasmid (hspAT1 and hspAT2). Induction of sHsps at elevated temperatures was revealed by immunoblot analyses. Primer extension experiments and translational lacZ fusions demonstrated that expression of the pAT-derived genes and hspL is controlled by temperature in a regulon-specific manner. While the sHsp gene on the linear chromosome turned out to be regulated by RpoH (sigma32), both copies on pAT were under the control of highly conserved ROSE (named for repression of heat shock gene expression) sequences in their 5' untranslated region. Secondary structure predictions of the corresponding mRNA strongly suggest that it represses translation at low temperatures by masking the Shine-Dalgarno sequence. The hspC gene was barely expressed (if at all) and not temperature responsive.

  18. Replicon-Specific Regulation of Small Heat Shock Genes in Agrobacterium tumefaciens

    PubMed Central

    Balsiger, Sylvia; Ragaz, Curdin; Baron, Christian; Narberhaus, Franz

    2004-01-01

    Four genes coding for small heat shock proteins (sHsps) were identified in the genome sequence of Agrobacterium tumefaciens, one on the circular chromosome (hspC), one on the linear chromosome (hspL), and two on the pAT plasmid (hspAT1 and hspAT2). Induction of sHsps at elevated temperatures was revealed by immunoblot analyses. Primer extension experiments and translational lacZ fusions demonstrated that expression of the pAT-derived genes and hspL is controlled by temperature in a regulon-specific manner. While the sHsp gene on the linear chromosome turned out to be regulated by RpoH (σ32), both copies on pAT were under the control of highly conserved ROSE (named for repression of heat shock gene expression) sequences in their 5′ untranslated region. Secondary structure predictions of the corresponding mRNA strongly suggest that it represses translation at low temperatures by masking the Shine-Dalgarno sequence. The hspC gene was barely expressed (if at all) and not temperature responsive. PMID:15466035

  19. Proteins encoded by Agrobacterium tumefaciens Ti plasmid DNA (T-DNA) in crown gall tumors

    PubMed Central

    McPherson, Joan C.; Nester, Eugene W.; Gordon, Milton P.

    1980-01-01

    In order to detect proteins that may be produced in crown gall tumors as a result of expression of incorporated Agrobacterium tumefaciens Ti plasmid DNA (T-DNA), we have isolated mRNA complementary to T-DNA and translated this in a protein-synthesizing system derived from wheat germ. mRNA prepared from cultured E1 tumor from Nicotiana tabacum hybridized with HindIII fragment 1 sequences of T-DNA immobilized on cellulose nitrate filters. Two proteins of 30,000 and 16,500 Mr were produced when this selected RNA was released and translated. Other tumor lines from N. tabacum were investigated, and a protein of slightly less than 30,000 Mr was encoded by HindIII fragment 1 sequences of 15955/01 tumor. No products were observed for 15955/1 tumor line, which differs from E1/B6-806 and 15955/01 in that it does not produce octopine. mRNA species of each of the tumor lines hybridized to Bst I fragment 8 sequences of T-DNA and produced a common protein of 15,000 Mr. Because this protein is derived from the region of the T-DNA that is conserved in octopine- and nopaline-type crown gall tumors, it may play a role in oncogenicity. Images PMID:16592819

  20. Survival of Agrobacterium radiobacter K84 on various carriers for crown gall control.

    PubMed Central

    Pesenti-Barili, B; Ferdani, E; Mosti, M; Degli-Innocenti, F

    1991-01-01

    Screening was performed on nine carriers to find an improved formulation for Agrobacterium radiobacter K84 cells. The survival data showed that it is possible to preserve A. radiobacter cells on dry solid supports for a long time provided that the storage temperature is 4 degrees C and that the inoculation volume for 4 x 10(9) CFU g-1 is not less than 0.15 ml g of carrier-1. On the other hand, a substantial carrier water content was necessary for room temperature storage. Many materials proved to be suitable as microbial carriers; in some cases, vermiculite allowed long storage times comparable to those reported for peat or carboxymethyl cellulose, which are already employed in some commercial A. radiobacter K84 products. Furthermore, vermiculite assured full and immediate biological activity in the prevention of crown gall, showing that it is suitable for a new formulation of strain K84. A hypothesis to explain the different survival abilities in wet and dry conditions is presented. PMID:1892394

  1. Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum.

    PubMed

    Chu, Weihua; Vattem, Dhiraj A; Maitin, Vatsala; Barnes, Mary B; McLean, Robert J C

    2011-01-01

    In most bacteria, a global level of regulation exists involving intercellular communication via the production and response to cell density-dependent signal molecules. This cell density-dependent regulation has been termed quorum sensing (QS). QS is a global regulator, which has been associated with a number of important features in bacteria including virulence regulation and biofilm formation. Consequently, there is considerable interest in understanding, detecting, and inhibiting QS. Acyl homoserine lactones (acyl HSLs) are used as extracellular QS signals by a variety of Gram-negative bacteria. Chromobacterium violaceum, a Gram-negative bacterium commonly found in soil and water, produces the characteristic purple pigment violacein, the production of which is regulated by acyl HSL-mediated QS. Based on this readily observed pigmentation phenotype, C. violaceum strains can be used to detect various aspects of acyl HSL-mediated QS activity. In another commonly used bioassay organism, Agrobacterium tumefaciens, QS can be detected by the use of a reporter gene such as lacZ. Here, we describe several commonly used approaches incorporating C. violaceum and A. tumefaciens that can be used to detect acyl HSLs and QS inhibition.

  2. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  3. Transformational leadership.

    PubMed

    Luzinski, Craig

    2011-12-01

    This month, the director of the Magnet Recognition Program® takes an in-depth look at the Magnet® model component transformational leadership. The author examines the expectations for Magnet organizations around this component. What are the qualities that make a nursing leader truly transformational, and what is the best approach to successfully lead a healthcare organization through today's volatile healthcare environment?

  4. Gene transfer into Solanum tuberosum via Rhizobium spp.

    PubMed

    Wendt, Toni; Doohan, Fiona; Winckelmann, Dominik; Mullins, Ewen

    2011-04-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) is the preferred technique for gene transfer into crops. A major disadvantage of the technology remains the complexity of the patent landscape that surrounds ATMT which restricts its use for commercial applications. An alternative system has been described (Broothaerts et al. in Nature 433:629-633, 2005) detailing the propensity of three rhizobia to transform the model crop Arabidopsis thaliana, the non-food crop Nicotiana tabacum and, at a very low frequency, the monocotyledonous crop Oryza sativa. In this report we describe for the first time the genetic transformation of Solanum tuberosum using the non-Agrobacterium species Sinorhizobium meliloti, Rhizobium sp. NGR234 and Mesorhizobium loti. This was achieved by combining an optimal bacterium and host co-cultivation period with a low antibiotic regime during the callus and shoot induction stages. Using this optimized protocol the transformation frequency (calculated as % of shoots equipped with root systems with the ability to grow in rooting media supplemented with 25 μg/ml hygromycin) of the rhizobia strains was calculated at 4.72, 5.85 and 1.86% for S. meliloti, R. sp. NGR234 and M. loti respectively, compared to 47.6% for the A. tumefaciens control. Stable transgene integration and expression was confirmed via southern hybridisation, quantitative PCR analysis and histochemical screening of both leaf and/or tuber tissue. In light of the rapid advances in potato genomics, combined with the sequencing of the potato genome, the ability of alternative bacteria species to genetically transform this major food crop will provide a novel resource to the Solanaceae community as it continues to develop potato as both a food and non-food crop.

  5. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles.

    PubMed

    Terakura, Shinji; Kitakura, Saeko; Ishikawa, Masaki; Ueno, Yoshihisa; Fujita, Tomomichi; Machida, Chiyoko; Wabiko, Hiroetsu; Machida, Yasunori

    2006-05-01

    The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.

  6. Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and an analysis of their anthraquinone constituents

    PubMed Central

    Huang, Bing; Lin, Huanjie; Yan, Chuanyan; Qiu, Hongyan; Qiu, Lipeng; Yu, Rongmin

    2014-01-01

    Background: Polygonum multiflorum is an important medicinal plant. Hairy roots systems obtained by transforming plant tissues with the natural genetic engineer Agrobacterium rhizogenes can produce valuable biological active substances, which have immense potential in the pharmaceutical industry. Objective: To optimize the inductive and cultural conditions of P. multiflorum hairy roots and to identify the major active secondary metabolites in hairy roots. Materials and Methods: P. multiflorum hairy root were mediated with A. rhizogenes R1601 to induce hairy roots. Four combinations, including Murashige–Skoog (MS), 1/2 MS, B5, and White, were investigated to optimize the culture medium. MS medium was selected for the growth measurement. The qualitative and quantitative determinations of free anthraquinone in hairy roots were compared with the calli and aseptic plantlets using high-performance liquid chromatography. Results: The inductive rates of hairy roots by leaves were higher than for any other explants. The presence of agropine in the P. multiflorum hairy roots confirmed that they were indeed transgenic. MS medium was the most suitable of the four media for hairy root growth. Meanwhile, the growth kinetics and nutrient consumption results showed that the hairy roots displayed a sigmoidal growth curve and that their optimal inoculation time was 18-21 days. The determination of the anthraquinone constituents indicated that the rhein content of the hairy roots reached 2.495 μg g−1 and was 2.55-fold higher than that of natural plants. Conclusion: Transgenic hairy roots of P. multiflorum could be one of the most potent materials for industrial-scale production of bioactive anthraquinone constituents. PMID:24696550

  7. Psychoanalytic transformations.

    PubMed

    Riolo, Fernando

    2007-12-01

    The author describes how Bion took Freud's conception of dreams as a form of thought and used it as the basis of his theory of transformations. Bion developed an expanded theory of 'dream thought', understood as a process of selection and transformation of sensory and emotional experiences. In this theory, the work of analysis is in turn conceived as a process not only of deciphering symbols, of revealing already existing unconscious meanings, but also of symbol production--of a process for generating thoughts and conferring meaning on experiences that have never been conscious and never been repressed because they have never been 'thought'. Analysis, in its specific operational sense, becomes a system of transformation whereby unconscious somatopsychic processes acquire the conditions for representability and become capable of translation into thoughts, words and interpretations. The rules of transformation applied by the patient in his representations and those applied by the analyst in his interpretations have the same importance for the analytic process as those described by Freud for the process of dreaming. The author discusses the broad categories of transformation adduced by Bion (rigid motion, projective, and in hallucinosis) and introduces some further distinctions within them.

  8. Transgenic resistance in potato plants expressing potato leaf roll virus (PLRV) replicase gene sequences is RNA-mediated and suggests the involvement of post-transcriptional gene silencing.

    PubMed

    Vazquez Rovere, C; Asurmendi, S; Hopp, H E

    2001-07-01

    Genetically engineered expression of replicase encoding sequences has been proposed as an efficient system to confer protection against virus diseases by eliciting protection mechanisms in the plant. Potato leaf-roll was one of the first diseases for which this kind of protection was engineered in potato plants. However, details of the protecting mechanism were not reported, so far. The ORF2b of an Argentinean strain of PLRV was cloned and sequenced finding 94% and 97% of homology with Australian and Dutch strains, respectively. To elucidate the mechanism of protection against PLRV infection, three versions of ORF2b (non-translatable sense, translatable sense with an engineered ATG and antisense) were constructed under the control of the 35S CaMV promoter and the nos terminator and introduced in potato plants (cv. Kennebec) by Agrobacterium tumefaciens-mediated transformation. Grafting infection experiments showed that resistant transgenic plants could be obtained with any of the constructs, suggesting that the mechanism of protection is independent of the expression of protein and is RNA mediated. Field trial infection confirmed that resistant transgenic events were obtained. Biolistic transient transformation experiments of leaves derived from transgenic plants using a gene coding for the fusion protein GUS-ORF2b, followed by scoring of the number of GUS expressing leaf spots, supported that the protection is mediated by a post-transcriptional gene silencing mechanism.

  9. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L.

    PubMed Central

    Dai, Lingmin; Wang, Dan; Xie, Xiaoqing; Zhang, Chaohong; Wang, Xiping; Xu, Yan; Wang, Yuejin; Zhang, Jianxia

    2016-01-01

    Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion. PMID:27303413

  10. UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens

    PubMed Central

    Zheng, Dawei; Wang, Yi; Han, Yu; Xu, Jin-Rong; Wang, Chenfang

    2016-01-01

    Rice false smut caused by Ustilaginoidea virens is one of the most important diseases of rice worldwide. Although its genome has been sequenced, to date there is no report on targeted gene deletion in U. virens and no molecular studies on genetic mechanisms regulating the infection processes of this destructive pathogen. In this study, we attempted to generate knockout mutants of the ortholog of yeast HOG1 MAP kinase gene in U. virens. One Uvhog1 deletion mutant was identified after screening over 600 hygromycin-resistant transformants generated by Agrobacterium tumefaciens mediated transformation. The Uvhog1 mutant was reduced in growth rate and conidiation but had increased sensitivities to SDS, Congo red, and hyperosmotic stress. Deletion of UvHOG1 resulted in reduced expression of the stress response-related genes UvATF1 and UvSKN7. In the Uvhog1 mutant, NaCl treatment failed to stimulate the accumulation of sorbitol and glycerol. In addition, the Uvhog1 mutant had reduced toxicity on shoot growth in rice seed germination assays. Overall, as the first report of targeted gene deletion mutant in U. virens, our results showed that UvHOG1 likely has conserved roles in regulating stress responses, hyphal growth, and possibly secondary metabolism. PMID:27095476

  11. Transgenic Leucaena leucocephala expressing the Rhizobium gene pydA encoding a meta-cleavage dioxygenase shows reduced mimosine content.

    PubMed

    Jube, Sandro L R; Borthakur, Dulal

    2010-04-01

    The use of the tree-legume Leucaena leucocephala (leucaena), which contains high levels of proteins in its foliage, is limited due to the presence of the toxic free amino acid mimosine. The goal of this research was to develop transgenic leucaena with reduced mimosine content. Two genes, pydA and pydB, encoding a meta-cleavage dioxygenase (EC 1.13.11.2) and a pyruvate hydrolase (EC 3.7.1.6), respectively, from the mimosine-degrading leucaena symbiont Rhizobium sp. strain TAL1145, were used to transform leucaena. These bacterial genes were sequence-optimized for expression in leucaena and cloned into the plant binary vector pCAMBIA3201 for Agrobacterium tumefaciens-mediated transformation. Using immature zygotic embryos as the start explant material, six pydA and three pydB transgenic lines were developed. The presence and expression of the bacterial genes in the transgenic lines were verified by PCR, reverse transcriptase PCR, and Southern analyses. HPLC analyses of the transgenic plants determined that the mimosine contents of the pydA-expressing lines were reduced up to 22.5% in comparison to the wild-type. No significant reduction in mimosine content was observed in the pydB-expressing lines. This is the first example of using a gene from a bacterial symbiont to reduce the toxicity of a tree-legume.

  12. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.).

    PubMed

    Wu, Guo-Qiang; Feng, Rui-Jun; Wang, Suo-Min; Wang, Chun-Mei; Bao, Ai-Ke; Wei, Li; Yuan, Hui-Jun

    2015-01-01

    Salinity is one of the major abiotic stresses that limit the growth and productivity of sugar beet (Beta vulgaris L.). To improve sugar beet's salinity tolerance, the ZxNHX and ZxVP1-1 genes encoding tonoplast Na(+)/H(+) antiporter and H(+)-PPase from xerophyte Zygophyllum xanthoxylum were co-expressed by Agrobacterium tumefaciens-mediated transformation. It is showed here that co-expression of ZxNHX and ZxVP1-1 confers enhanced salinity tolerance to the transformed sugar beet plants compared with the wild-type (WT) plants. The chimeric plants grew well in the presence of high salinity (400 mM NaCl), whereas WT plants displayed chlorosis and died within 8 days. Compared to WT plants, the chimeric plants co-expressing ZxNHX and ZxVP1-1 accumulated more proline, Na(+) and K(+) in their leaves and petioles when exposed to high salinity, which caused lower solute potential, retained more water and thus subjected to lesser cell membrane damage. Interestingly, the chimeric plants accumulated higher sucrose, glucose and fructose contents in their storage roots than WT plants in the absence or presence of high salinity. Our results suggested that co-expression of ZxNHX and ZxVP1-1 improved the osmoregulatory capacity in chimeric sugar beet through increased compartmentalization of ions into the vacuoles by enhancing the activity of proton pumps and thus mitigated Na(+)-toxicity for plants.

  13. High expression of a neutral endo-β-glucanase gene from Humicola insolens in Trichoderma reesei.

    PubMed

    Gu, Bintao; Xia, Liming

    2013-07-01

    The neutral endo-β-glucanase gene cel5A from Humicola insolens was cloned and connected with the cellobiohydrolase 1 promoter from Trichoderma reesei to construct a recombinant plasmid pCB-hEG with the hygromycin B resistance marker. The plasmid was introduced into conidia of T. reesei using the Agrobacterium tumefaciens mediated transformation method. Eight transformants were obtained on screening plates with sodium carboxymethyl cellulose as the sole carbon source. Stable integration of the cel5A gene into the chromosomal DNA of T. reesei was confirmed by PCR. An obvious protein band (approximately 52 kDa) was detected by SDS-PAGE from fermentation broth, which showed that the cel5A gene in recombinant T. reesei successfully fulfilled efficient expression and extracellular secretion. After 96 h shaking-flask fermentation, the endo-β-glucanase activity at pH 6.5 from recombinant T. reesei reached 3,068 U/ml, which was 11 times higher than that of the host strain. In a 2 m³ fermenter, the endo-β-glucanase activity could be further increased to 8,012 U/ml after 96 h fermentation. The results showed a good prospect for application of neutral endo-β-glucanase in the textile industry.

  14. Golden Indica and Japonica rice lines amenable to deregulation.

    PubMed

    Hoa, Tran Thi Cuc; Al-Babili, Salim; Schaub, Patrick; Potrykus, Ingo; Beyer, Peter

    2003-09-01

    As an important step toward free access and, thus, impact of GoldenRice, a freedom-to-operate situation has been achieved for developing countries for the technology involved. Specifically, to carry the invention beyond its initial "proof-of-concept" status in a Japonica rice (Oryza sativa) cultivar, we report here on two transformed elite Indica varieties (IR64 and MTL250) plus one Japonica variety Taipei 309. Indica varieties are predominantly consumed in the areas with vitamin A deficiency. To conform with regulatory constraints, we changed the vector backbone, investigated the absence of beyond-border transfer, and relied on Agrobacterium tumefaciens-mediated transformation to obtain defined integration patterns. To avoid an antibiotic selection system, we now rely exclusively on phosphomannose isomerase as the selectable marker. Single integrations were given a preference to minimize potential epigenetic effects in subsequent generations. These novel lines, now in the T(3) generation, are highly valuable because they are expected to more readily receive approval for follow-up studies such as nutritional and risk assessments and for breeding approaches leading to locally adapted variety development.

  15. Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum).

    PubMed

    Zhang, Hui; Zhao, Lingxia; Chen, Yuhui; Cui, Lijie; Ren, Weiwei; Tang, Kexuan

    2007-10-01

    In the present study, a plant binary expression vector PG-pRD12-hFIX (where PG is polygalacturonase) harbouring the hFIX (human coagulation Factor IX) gene was constructed and introduced into tomato (Lycopersicon esculentum) via Agrobacterium tumefaciens-mediated transformation. After kanamycin selection, 32 putative independent transgenic tomato plants were regenerated. PCR and Southern-blot analyses confirmed the transgenic status of some plants. RT (reverse transcription)-PCR analysis for the expression of the introduced gene (hFIX) demonstrated that the hFIX gene was expressed specifically in fruits of the tomato. Western-blot analysis confirmed the presence of a 56 kDa band specific to hFIX in the transformed tomatoes. ELISA results showed that the expression of hFIX protein reached a maximum of 15.84 ng/g fresh weight in mature fruit. A blood-clotting assay demonstrated the clotting activity of the expressed hFIX protein in transgenic tomato fruits. This is the first report on the expression of hFIX in plants, and our research provides potentially valuable knowledge for further development of the plant-derived therapeutic proteins.

  16. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    PubMed

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum.

  17. Construction and Quality Analysis of Transgenic Rehmannia glutinosa Containing TMV and CMV Coat Protein.

    PubMed

    Teng, Zhongqiu; Shen, Ye; Li, Jing; Lin, Zhongping; Chen, Min; Wang, Min; Li, Man; Dong, Hongran; Huang, Luqi

    2016-08-27

    Plant viruses, especially tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) are serious threats to Rehmannia glutinosa which is a "top grade" herb in China. In the present study, TMV- and CMV-resistant Rehmannia glutinosa Libosch. plants were constructed by transforming the protein (CP) genes of TMV and CMV into Rehmannia glutinosa via a modified procedure of Agrobacterium tumefaciens-mediated transformation. Integration and expression of TMV CP and CMV CP transgenes in 2 lines, LBA-1 and LBA-2, were confirmed by PCR, Southern blot and RT-PCR. Both LBA-1 and LBA-2 were resistant to infection of homologous TMV and CMV strains. The quality of transgenic Rehmanniae Radix was evaluated based on fingerprint analysis and components quantitative analysis comparing with control root tubes. These results showed that chemical composition of transgenic Rehmanniae Radix were similar to non-transgenic ones, which demonstrated that the medical quality and biosafety of transgenic Rehmanniae Radix were equivalent to non-transgenic material when consumed as traditional Chinese medicinal (TCM).

  18. A suite of Gateway® compatible ternary expression vectors for functional analysis in Zymoseptoria tritici.

    PubMed

    Sidhu, Y S; Chaudhari, Y K; Usher, J; Cairns, T C; Csukai, M; Haynes, K

    2015-06-01

    Gene overexpression is a widely used functional genomics approach in fungal biology. However, to date it has not been established in Zymoseptoria tritici which is an important pathogen of wheat (Triticum species). Here we report a suite of Gateway® recombination compatible ternary expression vectors for Agrobacterium tumefaciens mediated transformation of Z. tritici. The suite of 32 vectors is based on a combination of four resistance markers for positive selection against glufosinate ammonium, geneticin, hygromycin and sulfonylurea; three constitutive Z. tritici promoters (pZtATUB, pZtGAPDH and pZtTEF) and a nitrogen responsive promoter (pZtNIA1) for controlled expression of the open reading frames. Half of the vectors facilitate expression of proteins tagged with C-terminal EGFP. All 32 vectors allow high frequency targeting of the overexpression cassette into the Ku70 locus and complement the Ku70 gene when transformed into a Z. tritici ku70 null strain, thus circumventing additional phenotypes that can arise from random integration. This suite of ternary expression vectors will be a useful tool for functional analysis through gene overexpression in Z. tritici.

  19. The Novel Gene VpPR4-1 from Vitis pseudoreticulata Increases Powdery Mildew Resistance in Transgenic Vitis vinifera L.

    PubMed

    Dai, Lingmin; Wang, Dan; Xie, Xiaoqing; Zhang, Chaohong; Wang, Xiping; Xu, Yan; Wang, Yuejin; Zhang, Jianxia

    2016-01-01

    Pathogenesis-related proteins (PRs) can lead to increased resistance of the whole plant to pathogen attack. Here, we isolate and characterize a PR-4 protein (VpPR4-1) from a wild Chinese grape Vitis pseudoreticulata which shows greatly elevated transcription following powdery mildew infection. Its expression profiles under a number of abiotic stresses were also investigated. Powdery mildew, salicylic acid, and jasmonic acid methyl ester significantly increased the VpPR4-1 induction while NaCl and heat treatments just slightly induced VpPR4-1 expression. Abscisic acid and cold treatment slightly affected the expression level of VpPR4-1. The VpPR4-1 gene was overexpressed in 30 regenerated V. vinifera cv. Red Globe via Agrobacterium tumefaciens-mediated transformation and verified by the Western blot. The 26 transgenic grapevines exhibited higher expression levels of PR-4 protein content than wild-type vines and six of them were inoculated with powdery mildew which showed that the growth of powdery mildew was repressed. The powdery mildew-resistance of Red Globe transformed with VpPR4-1 was enhanced inoculated with powdery mildew. Moreover, other powdery mildew resistant genes were associated with feedback regulation since VpPR4-1 is in abundance. This study demonstrates that PR-4 protein in grapes plays a vital role in defense against powdery mildew invasion.

  20. In Vitro Binding of Agrobacterium tumefaciens to Plant Cells from Suspension Culture 1

    PubMed Central

    Ohyama, Kanji; Pelcher, Lawrence E.; Schaefer, Angelika; Fowke, Larry C.

    1979-01-01

    In vitro binding experiments were carried out using 32P-labeled cells of the virulent Agrobacterium tumefaciens strain B6 and Datura innoxia cells from suspension culture. Binding kinetics showed that adherence of bacteria to Datura cells increased gradually during the first 60 minutes and attained a maximum level within 120 minutes of incubation. Maximum binding occurred at pH 6.0. The presence of Ca2+ and Mg2+ reduced binding slightly and EDTA had little effect at concentrations of 0.1 to 10 millimolar. The binding of bacteria to Datura cells was temperature-dependent. Escherichia coli, Salmonella typhimurium, Rhizobium japonicum, and Micrococcus lysodeikticus did not compete with virulent A. tumefaciens strain B6 for binding to Datura cells. The admixture of avirulent A. tumefaciens strain IIBNV6 enhanced adherence of virulent A. tumefaciens strain B6 to Datura cells. Octopine had no effect on the binding of virulent A. tumefaciens strain B6 to Datura cells, but 10 millimolar canavanine was inhibitory. Arginine enhanced the adherence of the bacteria at concentrations higher than 0.1 millimolar. Incubation with DNase, RNase, and lipase did not affect the binding, but protease stimulated the adherence of bacteria to Datura cells. Concanavaline A and soybean lectin had little effect whereas lecithin and lysolecithin enhanced binding slightly. Poly-l-lysine markedly stimulated the bacteria-plant cell adherence. Cells from suspension cultures of pea, vetch, and soybean had a 2- to 3-fold higher binding capacity than Datura cells, whereas cells from wheat, corn, rice, and sorghum had a considerably lower affinity for binding with virulent A. tumefaciens strain B6. Bacterial adherence to plant cells was confirmed by autoradiography and electron microscopy. Autoradiographic analysis showed that bacteria were associated with the cell wall, and that often binding of bacteria was localized. Electron micrographs clearly illustrated a tight association of virulent A

  1. Characterization of the mmsAB-araD1 (gguABC) genes of Agrobacterium tumefaciens.

    PubMed

    Zhao, Jinlei; Binns, Andrew N

    2011-12-01

    The chvE-gguABC operon plays a critical role in both virulence and sugar utilization through the activities of the periplasmic ChvE protein, which binds to a variety of sugars. The roles of the GguA, GguB, and GguC are not known. While GguA and GguB are homologous to bacterial ABC transporters, earlier genetic analysis indicated that they were not necessary for utilization of sugars as the sole carbon source. To further examine this issue, in-frame deletions were constructed separately for each of the three genes. Our growth analysis clearly indicated that GguA and GguB play a role in sugar utilization and strongly suggests that GguAB constitute an ABC transporter with a wide range of substrates, including L-arabinose, D-fucose, D-galactose, D-glucose, and D-xylose. Site-directed mutagenesis showed that a Walker A motif was vital to the function of GguA. We therefore propose renaming gguAB as mmsAB, for multiple monosaccharide transport. A gguC deletion affected growth only on L-arabinose medium, suggesting that gguC encodes an enzyme specific to L-arabinose metabolism, and this gene was renamed araD1. Results from bioinformatics and experimental analyses indicate that Agrobacterium tumefaciens uses a pathway involving nonphosphorylated intermediates to catabolize L-arabinose via an L-arabinose dehydrogenase, AraA(At), encoded at the Atu1113 locus.

  2. Ubiquinone-10 production using Agrobacterium tumefaciens dps gene in Escherichia coli by coexpression system.

    PubMed

    Zhang, Dawei; Shrestha, Binaya; Li, Zhaopeng; Tan, Tianwei

    2007-01-01

    Ubiquinone (Coenzyme Q; abbreviation, UQ) acts as a mobile component of the respiratory chain by playing an essential role in the electron transport system, and has been widely used in pharmaceuticals. The biosynthesis of UQ involves 10 sequential reactions brought about by various enzymes. In this study we have cloned, expressed the decaprenyl diphosphate synthase, designated dps gene, from Agrobacterium tumefaciens, and succeeded in detecting UQ-10 in addition to innate UQ-8 in Escherichia coli. Furthermore, the production of UQ-10 was higher than UQ-8. To establish an efficient expression system for UQ- 10 production, we used genes, including ubiC, ubiA, and ubiG involved in UQ biosynthesis in E. coli, to construct a better co-expression system. The expression coupled by dps and ubiCA was effective for increasing UQ-10 production by five times than that by expressing single dps gene in the shake flask culture. To study for a large-scale production of UQ-10 in E. coli, fed-batch fermentations were implemented to achieve a high cell density culture. A cell concentration of 85.40 g/L and 94.58 g/L dry cell weight (DCW), and UQ-10 content of 50.29 mg/L and 45.86 mg/L was obtained after 32.5 h and 27.5 h of cultivation, subsequent to isopropyl-beta-D-thiogalactopyranoside and lactose induction, respectively. In addition, plasmid stability was maintained at high level throughout the fermentation.

  3. Nitrite-mediated synthesis of chiral epichlorohydrin using halohydrin dehalogenase from Agrobacterium radiobacter AD1.

    PubMed

    Jin, Huo-Xi; Hu, Zhong-Ce; Liu, Zhi-Qiang; Zheng, Yu-Guo

    2012-01-01

    In the current study, the haloalcohol dehalogenase HheC gene from Agrobacterium radiobacter AD1 was synthesized and expressed in Escherichia coli. After purification using Ni-nitrilotriacetic acid affinity chromatography, HheC was used in the synthesis of chiral epichlorohydrin in the presence of NO₂⁻. The optimal pH, temperature, and NO₂⁻ concentration for enantioselectivity are 5.0, 37°C, and 60 mM, respectively. The maximum velocity and Michaelis constant values for (S)-epichlorohydrin are 714.3 µmol min⁻¹ mg⁻¹ and 17.2 mM, respectively, whereas those for (R)-epichlorohydrin are 166.8 µmol min⁻¹ mg⁻¹ and 29.0 mM, respectively. Under optimal conditions, (R)-epichlorohydrin with 99% enantiomeric excess was obtained after an 18 Min reaction; the yield reached 41%, which is the highest amount obtained for chiral epichlorohydrin synthesis using haloalcohol dehalogenase. In addition, (R)-epichlorohydrin with 99% enantiomeric excess was successfully obtained from 1,3-dichloro-2-propanol by the ring opening of racemic epichlorohydrin in the presence of NO₂⁻ after the ring closure of 1,3-dichloro-2-propanol with HheC. To the best of our knowledge, the current study is the first report on the kinetic resolution of epichlorohydrin with NO₂⁻ and synthesis of chiral epichlorohydrin with 99% enantiomeric excess from 1,3-dichloro-2-propanol by combining ring closure of 1,3-dichloro-2-propanol and ring opening of racemic epichlorohydrin.

  4. Unmasking host and microbial strategies in the Agrobacterium-plant defense tango

    PubMed Central

    Hwang, Elizabeth E.; Wang, Melinda B.; Bravo, Janis E.; Banta, Lois M.

    2015-01-01

    Coevolutionary forces drive adaptation of both plant-associated microbes and their hosts. Eloquently captured in the Red Queen Hypothesis, the complexity of each plant–pathogen relationship reflects escalating adversarial strategies, but also external biotic and abiotic pressures on both partners. Innate immune responses are triggered by highly conserved pathogen-associated molecular patterns, or PAMPs, that are harbingers of microbial presence. Upon cell surface receptor-mediated recognition of these pathogen-derived molecules, host plants mount a variety of physiological responses to limit pathogen survival and/or invasion. Successful pathogens often rely on secretion systems to translocate host-modulating effectors that subvert plant defenses, thereby increasing virulence. Host plants, in turn, have evolved to recognize these effectors, activating what has typically been characterized as a pathogen-specific form of immunity. Recent data support the notion that PAMP-triggered and effector-triggered defenses are complementary facets of a convergent, albeit differentially regulated, set of immune responses. This review highlights the key players in the plant’s recognition and signal transduction pathways, with a focus on the aspects that may limit Agrobacterium tumefaciens infection and the ways it might overcome those defenses. Recent advances in the field include a growing appreciation for the contributions of cytoskeletal dynamics and membrane trafficking to the regulation of these exquisitely tuned defenses. Pathogen counter-defenses frequently manipulate the interwoven hormonal pathways that mediate host responses. Emerging systems-level analyses include host physiological factors such as circadian cycling. The existing literature indicates that varying or even conflicting results from different labs may well be attributable to environmental factors including time of day of infection, temperature, and/or developmental stage of the host plant. PMID:25873923

  5. A Glutathione Transferase from Agrobacterium tumefaciens Reveals a Novel Class of Bacterial GST Superfamily

    PubMed Central

    Skopelitou, Katholiki; Dhavala, Prathusha; Papageorgiou, Anastassios C.; Labrou, Nikolaos E.

    2012-01-01

    In the present work, we report a novel class of glutathione transferases (GSTs) originated from the pathogenic soil bacterium Agrobacterium tumefaciens C58, with structural and catalytic properties not observed previously in prokaryotic and eukaryotic GST isoenzymes. A GST-like sequence from A. tumefaciens C58 (Atu3701) with low similarity to other characterized GST family of enzymes was identified. Phylogenetic analysis showed that it belongs to a distinct GST class not previously described and restricted only in soil bacteria, called the Eta class (H). This enzyme (designated as AtuGSTH1-1) was cloned and expressed in E. coli and its structural and catalytic properties were investigated. Functional analysis showed that AtuGSTH1-1 exhibits significant transferase activity against the common substrates aryl halides, as well as very high peroxidase activity towards organic hydroperoxides. The crystal structure of AtuGSTH1-1 was determined at 1.4 Å resolution in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH). Although AtuGSTH1-1 adopts the canonical GST fold, sequence and structural characteristics distinct from previously characterized GSTs were identified. The absence of the classic catalytic essential residues (Tyr, Ser, Cys) distinguishes AtuGSTH1-1 from all other cytosolic GSTs of known structure and function. Site-directed mutagenesis showed that instead of the classic catalytic residues, an Arg residue (Arg34), an electron-sharing network, and a bridge of a network of water molecules may form the basis of the catalytic mechanism. Comparative sequence analysis, structural information, and site-directed mutagenesis in combination with kinetic analysis showed that Phe22, Ser25, and Arg187 are additional important residues for the enzyme's catalytic efficiency and specificity. PMID:22496785

  6. Agrobacterium Mediated Transient Gene Silencing (AMTS) in Stevia rebaudiana: Insights into Steviol Glycoside Biosynthesis Pathway

    PubMed Central

    Guleria, Praveen; Yadav, Sudesh Kumar

    2013-01-01

    Background Steviol glycoside biosynthesis pathway has emerged as bifurcation from ent-kaurenoic acid, substrate of methyl erythritol phosphate pathway that also leads to gibberellin biosynthesis. However, the genetic regulation of steviol glycoside biosynthesis has not been studied. So, in present study RNA interference (RNAi) based Agrobacterium mediated transient gene silencing (AMTS) approach was followed. SrKA13H and three SrUGTs (SrUGT85C2, SrUGT74G1 and SrUGT76G1) genes encoding ent-kaurenoic acid-13 hydroxylase and three UDP glycosyltransferases of steviol glycoside biosynthesis pathway were silenced in Stevia rebaudiana to understand its molecular mechanism and association with gibberellins. Methodology/Principal Findings RNAi mediated AMTS of SrKA13H and three SrUGTs has significantly reduced the expression of targeted endogenous genes as well as total steviol glycoside accumulation. While gibberellins (GA3) content was significantly enhanced on AMTS of SrUGT85C2 and SrKA13H. Silencing of SrKA13H and SrUGT85C2 was found to block the metabolite flux of steviol glycoside pathway and shifted it towards GA3 biosynthesis. Further, molecular docking of three SrUGT proteins has documented highest affinity of SrUGT76G1 for the substrates of alternate pathways synthesizing steviol glycosides. This could be a plausible reason for maximum reduction in steviol glycoside content on silencing of SrUGT76G1 than other genes. Conclusions SrKA13H and SrUGT85C2 were identified as regulatory genes influencing carbon flux between steviol glycoside and gibberellin biosynthesis. This study has also documented the existence of alternate steviol glycoside biosynthesis route. PMID:24023961

  7. Molybdate uptake by Agrobacterium tumefaciens correlates with the cellular molybdenum cofactor status.

    PubMed

    Hoffmann, Marie-Christine; Ali, Koral; Sonnenschein, Marleen; Robrahn, Laura; Strauss, Daria; Narberhaus, Franz; Masepohl, Bernd

    2016-09-01

    Many enzymes require the molybdenum cofactor, Moco. Under Mo-limiting conditions, the high-affinity ABC transporter ModABC permits molybdate uptake and Moco biosynthesis in bacteria. Under Mo-replete conditions, Escherichia coli represses modABC transcription by the one-component regulator, ModE, consisting of a DNA-binding and a molybdate-sensing domain. Instead of a full-length ModE protein, many bacteria have a shorter ModE protein, ModE(S) , consisting of a DNA-binding domain only. Here, we asked how such proteins sense the intracellular molybdenum status. We show that the Agrobacterium tumefaciens ModE(S) protein Atu2564 is essential for modABC repression. ModE(S) binds two Mo-boxes in the modA promoter as shown by electrophoretic mobility shift assays. Northern analysis revealed cotranscription of modE(S) with the upstream gene, atu2565, which was dispensable for ModE(S) activity. To identify genes controlling ModE(S) function, we performed transposon mutagenesis. Tn5 insertions resulting in derepressed modA transcription mapped to the atu2565-modE(S) operon and several Moco biosynthesis genes. We conclude that A. tumefaciens ModE(S) activity responds to Moco availability rather than to molybdate concentration directly, as is the case for E. coli ModE. Similar results in Sinorhizobium meliloti suggest that Moco dependence is a common feature of ModE(S) regulators.

  8. Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing.

    PubMed

    Gao, Xiquan; Shan, Libo

    2013-01-01

    Cotton (Gossypium spp.) is one of the most agronomically important crops worldwide for its unique textile fiber production and serving as food and feed stock. Molecular breeding and genetic engineering of useful genes into cotton have emerged as advanced approaches to improve cotton yield, fiber quality, and resistance to various stresses. However, the understanding of gene functions and regulations in cotton is largely hindered by the limited molecular and biochemical tools. Here, we describe the method of an Agrobacterium infiltration-based virus-induced gene silencing (VIGS) assay to transiently silence endogenous genes in cotton at 2-week-old seedling stage. The genes of interest could be readily silenced with a consistently high efficiency. To monitor gene silencing efficiency, we have cloned cotton GrCla1 from G. raimondii, a homolog gene of Arabidopsis Cloroplastos alterados 1 (AtCla1) involved in chloroplast development, and inserted into a tobacco rattle virus (TRV) binary vector pYL156. Silencing of GrCla1 results in albino phenotype on the newly emerging leaves, serving as a visual marker for silencing efficiency. To further explore the possibility of using VIGS assay to reveal the essential genes mediating disease resistance to Verticillium dahliae, a fungal pathogen causing severe Verticillium wilt in cotton, we developed a seedling infection assay to inoculate cotton seedlings when the genes of interest are silenced by VIGS. The method we describe here could be further explored for functional genomic analysis of cotton genes involved in development and various biotic and abiotic stresses.

  9. Arsenite oxidation regulator AioR regulates bacterial chemotaxis towards arsenite in Agrobacterium tumefaciens GW4

    PubMed Central

    Shi, Kaixiang; Fan, Xia; Qiao, Zixu; Han, Yushan; McDermott, Timothy R.; Wang, Qian; Wang, Gejiao

    2017-01-01

    Some arsenite [As(III)]-oxidizing bacteria exhibit positive chemotaxis towards As(III), however, the related As(III) chemoreceptor and regulatory mechanism remain unknown. The As(III)-oxidizing bacterium Agrobacterium tumefaciens GW4 displays positive chemotaxis towards 0.5–2 mM As(III). Genomic analyses revealed a putative chemoreceptor-encoding gene, mcp, located in the arsenic gene island and having a predicted promoter binding site for the As(III) oxidation regulator AioR. Expression of mcp and other chemotaxis related genes (cheA, cheY2 and fliG) was inducible by As(III), but not in the aioR mutant. Using capillary assays and intrinsic tryptophan fluorescence spectra analysis, Mcp was confirmed to be responsible for chemotaxis towards As(III) and to bind As(III) (but not As(V) nor phosphate) as part of the sensing mechanism. A bacterial one-hybrid system technique and electrophoretic mobility shift assays showed that AioR interacts with the mcp regulatory region in vivo and in vitro, and the precise AioR binding site was confirmed using DNase I foot-printing. Taken together, these results indicate that this Mcp is responsible for the chemotactic response towards As(III) and is regulated by AioR. Additionally, disrupting the mcp gene affected bacterial As(III) oxidation and growth, inferring that Mcp may exert some sort of functional connection between As(III) oxidation and As(III) chemotaxis. PMID:28256605

  10. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression.

    PubMed

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  11. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression

    PubMed Central

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area–time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  12. Assessment of the genetic and phenotypic diversity among rhizogenic Agrobacterium biovar 1 strains infecting solanaceous and cucurbit crops.

    PubMed

    Bosmans, Lien; Álvarez-Pérez, Sergio; Moerkens, Rob; Wittemans, Lieve; Van Calenberge, Bart; Kerckhove, Stefan Van; Paeleman, Anneleen; De Mot, René; Rediers, Hans; Lievens, Bart

    2015-08-01

    Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium.

  13. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance.

    PubMed

    Alvarez, Rubén; Alvarez, José M; Humara, Jaime M; Revilla, Angeles; Ordás, Ricardo J

    2009-09-01

    The bar gene was introduced into the cork oak genome. Cork oak embryogenic masses were transformed using the Agrobacterium strain AGL1 which carried the plasmid pBINUbiBar. This vector harbours the genes, nptII and bar, the latter under control of the maize ubiquitin promoter. The transgenic embryogenic lines were cryopreserved. Varying activities of phosphinothricin acetyl transferase were detected among the lines, which carried 1-4 copies of the insert. Molecular and biochemical assays confirmed the stability and expression of the transgenes 3 months after thawing the cultures. These results demonstrate genetic engineering of herbicide tolerance in Quercus spp.

  14. Agrobacterium rubi(T) DSM 6772 produces a lipophilic polysaccharide capsule whose degree of acetylation is growth modulated.

    PubMed

    De Castro, Cristina; Gargiulo, Valentina; Lanzetta, Rosa; Parrilli, Michelangelo

    2007-03-01

    The structure of the capsular polysaccharide produced from the type strain of Agrobacterium rubi DSM 6772 is demonstrated by means of chemical and spectroscopical methodologies. It is constituted from the quite rare monosaccharide 6-deoxy-L-talose, involved in alternating alpha-(1 --> 2) and alpha-(1 --> 3) linkages. This simple backbone is further complicated from the occurrence of O-acetyl substituents located always at O-2 of the O-3 substituted 6-deoxy-talose. This decoration is not stoichiometric and it depends on the growth stadium of the bacterium, leading to an almost regular acetylation pattern only at the stationary phase, where all the potential positions are substituted.

  15. Transforming Schools.

    ERIC Educational Resources Information Center

    Cookson, Peter W., Jr., Ed.; Schneider, Barbara, Ed.

    The authors in this book address the issues that relate to the crisis in American education and review some of the proposed solutions. To transform education, schools must be examined as social systems that are interrelated with families, communities, and the world of work. Following the introduction, section 1, "Conditions for Educational…

  16. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  17. Transforming Curriculum.

    ERIC Educational Resources Information Center

    Cronin, C. H.; Feldman, Phillip

    1994-01-01

    Presents comparisons between the traditional curriculum and the essential learnings curriculum implemented at the Moss Point School District in Moss Point, Mississippi. Describes in detail the curriculum transformation process. Provides insight into the role of technology in the reading/language arts curriculum. (RS)

  18. Transformation Time

    ERIC Educational Resources Information Center

    Berry, John N., III

    2007-01-01

    The program for the march by librarians on America's capital for the American Library Association (ALA) conference is predictably loaded with lobbying, legislation, and DC tours. It also abounds with professional opportunity and reflects the impact of Leslie Burger, one of the most activist ALA presidents in recent history. Her "Transformation"…

  19. Transformative Assessment

    ERIC Educational Resources Information Center

    Popham, W. James

    2008-01-01

    If you're at all skeptical that "formative assessment" is just another buzzword, then here's a book that will change the way you think about the role that formative assessment can play in transforming education into a more powerful and positive process. Renowned expert W. James Popham clarifies what formative assessment really is, why…

  20. RF transformer

    DOEpatents

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  1. Transformation plasmonics

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Guenneau, Sébastien; Enoch, Stefan; Huidobro, Paloma A.; Martín-Moreno, Luis; García-Vidal, Francisco J.; Renger, Jan; Quidant, Romain

    2012-07-01

    Surface plasmons polaritons (SPPs) at metal/dielectric interfaces have raised lots of expectations in the on-going quest towards scaling down optical devices. SPP optics offers a powerful and flexible platform for real two-dimensional integrated optics, capable of supporting both light and electrons. Yet, a full exploitation of the features of SPPs is conditioned by an accurate control of their flow. Most efforts have so far focused on the extrapolation of concepts borrowed from guided optics. This strategy has already led to many important breakthroughs but a fully deterministic control of SPP modes remains a challenge. Recently, the field of optics was stimulated by a novel paradigm, transformation optics, which offers the capability to control light flow in any desired fashion. While it has already significantly contributed to the design of metamaterials with unprecedented optical properties, its versatility offers new opportunities towards a fully deterministic control of SPPs and the design of a new class of plasmonic functionalities. Here, we review recent progress in the application of transformation optics to SPPs. We first briefly describe the theoretical formalism of transformation plasmonics, focusing on its specificities over its three-dimensional optical counterpart. Numerical simulations are then used to illustrate its capability to tame SPP flows at a metal interface patterned with a dielectric load. Finally, we review recent experimental implementations leading to unique SPP functionalities at optical frequencies.

  2. Bioactive constituents from transformed root cultures of Nepeta teydea.

    PubMed

    Fraga, Braulio M; González-Coloma, Azucena; Alegre-Gómez, Sergio; López-Rodríguez, Matías; Amador, Leonardo J; Díaz, Carmen E

    2017-01-01

    A phytochemical study of an extract from transformed root cultures of Nepeta teydea, induced by Agrobacterium rhizogenes, led to the isolation of the following new compounds: the sesquiterpene (-)-cinalbicol, the diterpene teydeadione (6,11,14-trihydroxy-12-methoxy-abieta-5,8,11,13,15-penten-7-one), a degraded C23-triterpene (teydealdehyde) and three fatty acid esters of lanosta-7,24-dien-3β-ol. The propyl ester of rosmarinic acid was also isolated for the first time from a natural source. In addition, two dehydroabietane diterpenes, eight triterpenes and eighteen known phenolic compounds were obtained. The antifeedant, cytotoxic and phytotoxic activities of the isolated compounds have also been investigated.

  3. Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442.

    PubMed

    Liang, Ying; Zhu, Li; Ding, Han; Gao, Minjie; Zheng, Zhiyong; Wu, Jianrong; Zhan, Xiaobei

    2017-02-10

    A coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442 (AT-CFS) with wheat bran as the optimal nitrogen source was established for producing low-molecular-weight curdlan with high production, which can potentially reduce the cost of low-molecular-weight curdlan biosynthesis. The initial inoculate ratio, pH and the fermentation time were optimized. Compared with the curdlan from the single fermentation system of Agrobacterium sp. ATCC 31749 (A-SFS), the molecular weight (Mw) of the curdlan produced from AT-CFS decreased by 34.01% (from 110.85kDa to 73.15kDa), and the curdlan production (47.9g/L) and conversion rate of glucose to curdlan (0.60gg(-1)) increased by 119.93% and 36.36%, respectively. The results of RT-PCR showed high curdlan production in AT-CFS was highly correlated with aerobic respiration intensity and curdlan synthase activity. The structure of the curdlan from AT-CFS was the same as that from A-SFS.

  4. Agrobacterium tumefaciens and A. rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus.

    PubMed

    Ream, Walt

    2009-07-01

    Agrobacterium tumefaciens and A. rhizogenes transport single-stranded DNA (ssDNA; T-strands) and virulence proteins into plant cells through a type IV secretion system. DNA transfer initiates when VirD2 nicks border sequences in the tumour-inducing plasmid, attaches to the 5' end, and pilots T-strands into plant cells. Agrobacterium tumefaciens translocates ssDNA-binding protein VirE2 into plant cells where it targets T-strands into the nucleus. Some A. rhizogenes strains lack VirE2 but transfer T-strands efficiently due to the GALLS gene, which complements an A. tumefaciens virE2 mutant. VirE2 and full-length GALLS (GALLS-FL) contain nuclear localization sequences that target these proteins to the plant cell nucleus. VirE2 binds cooperatively to T-strands allowing it to move ssDNA without ATP hydrolysis. Unlike VirE2, GALLS-FL contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. VirE2 may accumulate in the nucleus and pull T-strands into the nucleus using the force generated by cooperative DNA binding. GALLS-FL accumulates inside the nucleus where its predicted ATP-dependent strand transferase may pull T-strands into the nucleus. These different mechanisms for nuclear import of T-strands may affect the efficiency and quality of transgenic events in plant biotechnology applications.

  5. Characterization of membrane and protein interaction determinants of the Agrobacterium tumefaciens VirB11 ATPase.

    PubMed Central

    Rashkova, S; Spudich, G M; Christie, P J

    1997-01-01

    The VirB11 ATPase is a putative component of the transport machinery responsible for directing the export of nucleoprotein particles (T complexes) across the Agrobacterium tumefaciens envelope to susceptible plant cells. Fractionation and membrane treatment studies showed that approximately 30% of VirB11 partitioned as soluble protein, whereas the remaining protein was only partially solubilized with urea from cytoplasmic membranes of wild-type strain A348 as well as a Ti-plasmidless strain expressing virB11 from an IncP replicon. Mutations in virB11 affecting protein function were mapped near the amino terminus (Q6L, P13L, and E25G), just upstream of a region encoding a Walker A nucleotide-binding site (F154H;L155M), and within the Walker A motif (P170L, K175Q, and delta GKT174-176). The K175Q and delta GKT174-176 mutant proteins partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. The virB11F154H;L155M allele was transdominant over wild-type virB11 in a merodiploid assay, providing strong evidence that at least one form of VirB11 functions as a homo- or heteromultimer. An allele with a deletion of the first half of the gene, virB11 delta1-156, was transdominant in a merodiploid assay, indicating that the C-terminal half of VirB11 contains a protein interaction domain. Products of both virB11 delta1-156 and virB11 delta158-343, which synthesizes the N-terminal half of VirB11, associated tightly with the A. tumefaciens membrane, suggesting that both halves of VirB11 contain membrane interaction determinants. PMID:9006008

  6. Attempts to Detect Agrobacterium tumefaciens DNA in Crown-Gall Tumor Tissue 1

    PubMed Central

    Merlo, Donald J.; Kemp, John D.

    1976-01-01

    Primary and secondary crown gall tissue cultures were established from sunflower plants (Helianthus annuus, variety Mammoth Russian) wound-inoculated with Agrobacterium tumefaciens (Smith and Townsend) Conn strain B6. Growth rates of tumor tissues and habituated healthy sunflower stem section tissues on basal medium lacking auxin and cytokinin were compared to those of healthy sunflower stem section tissue grown on the same medium with added phytohormones. No difference was detected in the thermal denaturation midpoints (74.8 C) and melting profiles in 25 mm sodium phosphate (pH 6.8), or the buoyant densities in cesium chloride equilibrium centrifugation (1.687 g cm−3), between deoxyribonucleic acids (DNAs) isolated from crude nuclear preparations of the four tissue types. No satellite DNA was observed in equilibrium centrifugation of unsheared plant DNAs. Heterologous DNA renaturation kinetic analyses were performed in 0.14 m sodium phosphate (pH 6.8) at 70 C. Thermal stability measurements of reassociated DNA revealed less than 1% of mismatched base pairs. Reannealing of sheared, denatured, radioactive A. tumefaciens B6 DNA (molecular weight, 325,000 daltons) in the presence of a 5400-fold excess of sheared calf thymus, healthy tissue, or secondary sunflower crown gall DNA obeyed second order kinetics, with a Cot½ of 2.8, identical to that observed when B6 DNA was reannealed in the absence of foreign DNA. Reannealing rates of B6 DNA in the presence of 5400-fold excesses of DNA from two lines of primary sunflower crown gall were increased 2.24- or 1.47-fold. Digestion of the tumor DNA preparations with pancreatic deoxyribonuclease I until no detectable DNA remained, followed by restoration of solution viscosity by added calf thymus DNA, failed to remove the acceleration effect of the tumor DNA preparations. Reisolation of the reannealed nucleic acid formed in this experiment, and digestion with ribonuclease A or deoxyribonuclease I revealed that the double

  7. Stable genetic transformation of intact Nicotiana cells by the particle bombardment process

    PubMed Central

    Klein, Theodore M.; Harper, Elisabeth C.; Svab, Zora; Sanford, John C.; Fromm, Michael E.; Maliga, Pal

    1988-01-01

    We show that the genetic transformation of Nicotiana tabacum can be achieved by bombarding intact cells and tissues with DNA-coated particles. Leaves or suspension culture cells were treated with tungsten microprojectiles carrying plasmid DNA containing a neomycin phosphotransferase gene. Callus harboring the foreign gene was recovered from the bombarded tissue by selection on medium containing kanamycin. Kanamycin-resistant plants have subsequently been regenerated from the callus derived from leaves. Transient expression of an introduced β-glucuronidase gene was used to assess the efficiency of DNA delivery by microprojectiles. The frequency of cells that were stably transformed with the neomycin phosphotransferase gene was a few percent of the cells that transiently expressed the β-glucuronidase gene. These results show that gene transfer by high-velocity microprojectiles is a rapid and direct means for transforming intact plant cells and tissues that eliminates the need for production of protoplasts or infection by Agrobacterium. Images PMID:16593993

  8. Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants

    PubMed Central

    Homrich, Milena Schenkel; Wiebke-Strohm, Beatriz; Weber, Ricardo Luís Mayer; Bodanese-Zanettini, Maria Helena

    2012-01-01

    Transgenic plants represent an invaluable tool for molecular, genetic, biochemical and physiological studies by gene overexpression or silencing, transposon-based mutagenesis, protein sub-cellular localization and/or promoter characterization as well as a breakthrough for breeding programs, allowing the production of novel and genetically diverse genotypes. However, the stable transformation of soybean cannot yet be considered to be routine because it depends on the ability to combine efficient transformation and regeneration techniques. Two methods have been used with relative success to produce completely and stably transformed plants: particle bombardment and the Agrobacterium tumefaciens system. In addition, transformation by Agrobacterium rhizogenes has been used as a powerful tool for functional studies. Most available information on gene function is based on heterologous expression systems. However, as the activity of many promoters or proteins frequently depends on specific interactions that only occur in homologous backgrounds, a final confirmation based on a homologous expression system is desirable. With respect to soybean biotech improvement, transgenic lines with agronomical, nutritional and pharmaceutical traits have been obtained, including herbicide-tolerant soybeans, which represented the principal biotech crop in 2011, occupying 47% of the global biotech area. PMID:23412849

  9. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agrobacterium rhizogenes and A. tumefaciens are plant pathogenic bacteria causing abnormal tissue growth such as hairy root and crown gall diseases respectively, through the transfer of DNA fragments (T-DNA) bearing functional genes into the host plant genome. This naturally occurring mechanism of g...

  10. Incidence of Agrobacterium tumefaciens biovar 1 in and on ‘Paradox’ (Juglans hindsii x Juglans regia) walnut seed collected from commercial nurseries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The walnut rootstock Paradox (Juglans hindsii (Jeps) Rehder x J. regia L.) is susceptible to Agrobacterium tumefaciens (7) which often results in a high incidence of crown gall in nursery or walnut production orchards. Though A. tumefaciens is susceptible to the commonly used preplant soil fumigant...

  11. Exploration of new perspectives and limitations in Agrobacterium-mediated gene transfer technology. Final report, June 1, 1992--May 31, 1995

    SciTech Connect

    Marton, L.

    1996-02-01

    Genetic manipulation of plants often involves the introduction of homologous or partly homologous genes. Ectropic introduction of homologous sequences into plant genomes may trigger epigenetic changes, making expression of the genes unpredictable. The main project objective was to examine the feasibility of using Agrobacterium-mediated gene transfer for homologous gene targeting in plants.

  12. Hamlet's Transformation.

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in