Science.gov

Sample records for agrobacterium-mediated transformation transgenic

  1. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments. PMID:26338266

  2. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants. PMID:23821951

  3. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava.

    PubMed

    Bull, S E; Owiti, J A; Niklaus, M; Beeching, J R; Gruissem, W; Vanderschuren, H

    2009-01-01

    Agrobacterium-mediated transformation of friable embryogenic calli (FEC) is the most widely used method to generate transgenic cassava plants. However, this approach has proven to be time-consuming and can lead to changes in the morphology and quality of FEC, influencing regeneration capacity and plant health. Here we present a comprehensive, reliable and improved protocol, taking approximately 6 months, that optimizes Agrobacterium-mediated transformation of FEC from cassava model cultivar TMS60444. We cocultivate the FEC with Agrobacterium directly on the propagation medium and adopt the extensive use of plastic mesh for easy and frequent transfer of material to new media. This minimizes stress to the FEC cultures and permits a finely balanced control of nutrients, hormones and antibiotics. A stepwise increase in antibiotic concentration for selection is also used after cocultivation with Agrobacterium to mature the transformed FEC before regeneration. The detailed information given here for each step should enable successful implementation of this technology in other laboratories, including those being established in developing countries where cassava is a staple crop. PMID:20010938

  4. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation.

    PubMed

    Lu, Chaofu; Kang, Jinling

    2008-02-01

    Camelina sativa is an alternative oilseed crop that can be used as a potential low-cost biofuel crop or a source of health promoting omega-3 fatty acids. Currently, the fatty acid composition of camelina does not uniquely fit any particular uses, thus limit its commercial value and large-scale production. In order to improve oil quality and other agronomic characters, we have developed an efficient and simple in planta method to generate transgenic camelina plants. The method included Agrobacterium-mediated inoculation of plants at early flowering stage along with a vacuum infiltration procedure. We used a fluorescent protein (DsRed) as a visual selection marker, which allowed us to conveniently screen mature transgenic seeds from a large number of untransformed seeds. Using this method, over 1% of transgenic seeds can be obtained. Genetic analysis revealed that most of transgenic plants contain a single copy of transgene. In addition, we also demonstrated that transgenic camelina seeds produced novel hydroxy fatty acids by transforming a castor fatty acid hydroxylase. In conclusion, our results provide a rapid means to genetically improve agronomic characters of camelina, including fatty acid profiles of its seed oils. Camelina may serve as a potential industrial crop to produce novel biotechnology products. PMID:17899095

  5. Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos.

    PubMed

    Uçarlı, C; Tufan, F; Gürel, F

    2015-01-01

    Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study. PMID:25730049

  6. Agrobacterium-mediated transformation of three freshwater microalgal strains.

    PubMed

    Sanitha, Mary; Radha, Sudhakar; Fatima, Anwar Aliya; Devi, Selvaraju Gayathri; Ramya, Mohandass

    2014-01-01

    Microalgal transformation has gained interest in recent years. Agrobacterium-mediated transformation remains as the most efficient method for the development of transgenic plants and microalgae due to its wide host range, inexpensive procedure and transfer of large segments of DNA. In the present study, three different microalgal species were isolated from freshwater environment and identified based on the morphological characteristics and ITS-2 region amplification. Agrobacterium-mediated transformation was successful for the isolates Chlorella sp., Ankistrodesmus sp and Scenedesmus bajacalifornicus. Gene integration and expression was confirmed by PCR amplification of hptII and GUS histochemical assay. A. tumifaciens contamination was checked by amplification of npt II gene (kanamycin resistant) which lies outside the T-border. Based on GUS assay, transformation efficiencies were found to be 12.25% for Chlorella sp. 2.96% for Scenedesmus bajacalifornicus and 3.5% for Ankistrodesmus sp. PMID:25804057

  7. Development of an Efficient Agrobacterium-Mediated Transformation System and Production of Herbicide-Resistant Transgenic Plants in Garlic (Allium sativum L.)

    PubMed Central

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-01-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764

  8. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764

  9. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-01-01

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process. PMID:27323127

  10. Is VIP1 important for Agrobacterium-mediated transformation?

    PubMed

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. PMID:24953893

  11. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    PubMed

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-01

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower. PMID:25729995

  12. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus

    PubMed Central

    Kimura, Mitsuhiro; Cutler, Sean; Isobe, Sachiko

    2015-01-01

    Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops. PMID:26176780

  13. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos.

    PubMed

    Lee, Hyeyoung; Zhang, Zhanyuan J

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is one of the most efficient and simple gene delivery systems for genetic improvement and biology studies in maize. This system has become more widely used by both public and private laboratories. However, transformation efficiencies vary greatly from laboratory to laboratory for the same genotype. Here, we illustrate our advanced Agrobacterium-mediated transformation method in Hi-II maize using simple binary vectors. The protocol utilizes immature embryos as starting explants and the bar gene as a selectable marker coupled with bialaphos as a selective agent. The protocol offers efficient transformation results with high reproducibility, provided that some experimental conditions are well controlled. This transformation method, with minor modifications, can be also employed to transform certain maize inbreds. PMID:24243211

  14. Agrobacterium-Mediated Transformation of the Recalcitrant Vanda Kasem's Delight Orchid with Higher Efficiency

    PubMed Central

    Gnasekaran, Pavallekoodi; James Antony, Jessica Jeyanthi; Uddain, Jasim; Subramaniam, Sreeramanan

    2014-01-01

    The presented study established Agrobacterium-mediated genetic transformation using protocorm-like bodies (PLBs) for the production of transgenic Vanda Kasem's Delight Tom Boykin (VKD) orchid. Several parameters such as PLB size, immersion period, level of wounding, Agrobacterium density, cocultivation period, and concentration of acetosyringone were tested and quantified using gusA gene expression to optimize the efficiency of Agrobacterium-mediated genetic transformation of VKD's PLBs. Based on the results, 3-4 mm PLBs wounded by scalpel and immersed for 30 minutes in Agrobacterium suspension of 0.8 unit at A600nm produced the highest GUS expression. Furthermore, cocultivating infected PLBs for 4 days in the dark on Vacin and Went cocultivation medium containing 200 𝜇M acetosyringone enhanced the GUS expression. PCR analysis of the putative transformants selected in the presence of 250 mg/L cefotaxime and 30 mg/L geneticin proved the presence of wheatwin1, wheatwin2, and nptII genes. PMID:24977213

  15. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    PubMed

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. PMID:25676198

  16. Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications forAgrobacterium-mediated transformation.

    PubMed

    Polito, V S; McGranahan, G; Pinney, K; Leslie, C

    1989-04-01

    Early stages of somatic embryo development from embryogenic cultures ofJuglans regia (Persian or English walnut) are described. Histological examination reveals that secondary somatic embryos arise from cotyledons and hypocotyls of primary embryos cultured in the dark. The embryos originate by transverse to oblique divisions of surface cells. Single-cell origin of the secondary embryos confirms the potential of the repetitive embryogenesis system forAgrobacterium-mediated transformation and regeneration of non-chimeric, transgenic walnut plants. PMID:24233141

  17. Agrobacterium-mediated transformation of Vitis Cv. Monastrell suspension-cultured cells: Determination of critical parameters.

    PubMed

    Chu, Mingyu; Quiñonero, Carmen; Akdemir, Hülya; Alburquerque, Nuria; Pedreño, María Ángeles; Burgos, Lorenzo

    2016-05-01

    Although some works have explored the transformation of differentiated, embryogenic suspension-cultured cells (SCC) to produce transgenic grapevine plants, to our knowledge this is one of the first reports on the efficient transformation of dedifferentiated Vitis vinifera cv Monastrell SCC. This protocol has been developed using the sonication-assisted Agrobacterium-mediated transformation (SAAT) method. A construct harboring the selectable nptII and the eyfp/IV2 marker genes was used in the study and transformation efficiencies reached over 50 independent transformed SCC per gram of infected cells. Best results were obtained when cells were infected at the exponential phase. A high density plating (500 mg/dish) gave significantly better results. As selective agent, kanamycin was inefficient for the selection of Monastrell transformed SCC since wild type cells were almost insensitive to this antibiotic whereas application of paromomycin resulted in very effective selection. Selected eyfp-expressing microcalli were grown until enough tissue was available to scale up a new transgenic SCC. These transgenic SCC lines were evaluated molecularly and phenotypically demonstrating the presence and integration of both transgenes, the absence of Agrobacterium contamination and the ability of the transformed SCC to grow in highly selective liquid medium. The methodology described here opens the possibility of improving the production of valuable metabolites. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:725-734, 2016. PMID:26871543

  18. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea.

    PubMed

    Wang, Jie; Guo, Liqiong; Zhang, Kai; Wu, Qi; Lin, Junfang

    2008-11-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied to the edible straw mushroom, Volvariella volvacea. Mycelium pellets were transformed to cold stress resistance using the afp gene as both a selective marker and a reporter gene, under the control of a heterologous Lentinula edodes gpd promoter. The efficiency of transformation is over 100 times higher than that previously reported in V. volvacea. Stable integration of the afp gene with 1-4 copy numbers was confirmed in all 10 randomly selected transgenic events by Southern blot analysis. The mitotic stability of the transformants was demonstrated after five successive transfers on PDA medium without selection pressure and the PCR analysis of basidiospores harvested from transformants. PMID:18434137

  19. Agrobacterium-mediated transformation for the investigation of somatic recombination in the fungal pathogen Armillaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The honey fungus Armillaria mellea is a destructive soil-borne pathogen that affects over 300 plant species, and is of increasing interest due to its ability to decompose lignin. Here we report the transformation of this fungus. A range of techniques was evaluated, and Agrobacterium-mediated trans...

  20. A Fruiting Body Tissue Method for Efficient Agrobacterium-Mediated Transformation of Agaricus bisporus

    PubMed Central

    Chen, Xi; Stone, Michelle; Schlagnhaufer, Carl; Romaine, C. Peter

    2000-01-01

    We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species. PMID:11010906

  1. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.

    PubMed

    Dutt, M; Grosser, J W

    2010-11-01

    A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars. PMID:20711728

  2. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    PubMed Central

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  3. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica.

    PubMed

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  4. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    PubMed

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation. PMID:24299074

  5. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  6. Agrobacterium-mediated genetic transformation of Prunus salicina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report Agrobacterium tumefaciens-mediated transformation from hypocotyls slices of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supp...

  7. Genetic transformation of wheat via Agrobacterium-mediated DNA delivery.

    PubMed

    Sparks, Caroline A; Doherty, Angela; Jones, Huw D

    2014-01-01

    The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.). PMID:24243208

  8. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration.

    PubMed

    Subramanyam, Kondeti; Subramanyam, Koona; Sailaja, K V; Srinivasulu, M; Lakshmidevi, K

    2011-03-01

    A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana. PMID:21212957

  9. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-01-01

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features. PMID:26681030

  10. Agrobacterium-mediated transformation of two Serbian potato cultivars (Solanum tuberosum L. cv. Dragacevka and cv. Jelica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient protocol for Agrobacterium-mediated transformation of Serbian potato cultivars Dragacevka and Jelica, enabling the introduction of oryzacystatin genes OCI and OCII, was established. Starting with leaf explants a two-stage transformation protocol combining procedures of Webb and Wenzler...

  11. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease.

    PubMed

    Elayabalan, Sivalingam; Kalaiponmani, Kalaimughilan; Subramaniam, Sreeramanan; Selvarajan, Ramasamy; Panchanathan, Radha; Muthuvelayoutham, Ramlatha; Kumar, Krish K; Balasubramanian, Ponnuswami

    2013-04-01

    One of the most severe viral diseases of hill banana is caused by banana bunchy top virus (BBTV), a nanovirus transmitted by the aphid Pentalonia nigronervosa. In this study, we reported the Agrobacterium-mediated transformation on a highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. The target of the RNA interference (RNAi) is the rep gene, encoded by the BBTV-DNA1. In order to develop RNAi construct targeting the BBTV rep gene, the full-length rep gene of 870 bp was polymerase chain reaction amplified from BBTV infected hill banana sample DNA, cloned and confirmed by DNA sequencing. The partial rep gene fragment was cloned in sense and anti sense orientation in the RNAi intermediate vector, pSTARLING-A. After cloning in pSTARLING-A, the cloned RNAi gene cassette was released by NotI enzyme digestion and cloned into the NotI site of binary vector, pART27. Two different explants, embryogenic cells and embryogenic cell suspension derived microcalli were used for co-cultivation. Selection was done in presence of 100 mg/L kanamycin. In total, 143 putative transgenic hill banana lines were generated and established in green house condition. The presence of the transgenes was confirmed in the selected putative transgenic hill banana lines by PCR and reverse transcription PCR analyses. Transgenic hill banana plants expressing RNAi-BBTV rep were obtained and shown to resist infection by BBTV. The transformed plants are symptomless, and the replication of challenge BBTV almost completely suppressed. Hence, the RNAi mediating resistances were shown to be effective management of BBTV in hill banana. PMID:23184576

  12. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation.

    PubMed

    Saika, Hiroaki; Toki, Seiichi

    2010-12-01

    We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning--a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath--a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting. PMID:20853107

  13. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    PubMed

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species. PMID:23242917

  14. Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants.

    PubMed

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Mathur, Ajay Kumar; Shanker, Karuna

    2015-01-01

    Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene. Vindoline content in the DT was two times more than in non-transformed control plants. Alkaloid and tryptophan profiles were almost constant during the 5 years. The cluster analysis revealed that the DT plant is more close to the control Nirmal plant followed by NT plant. PMID:25102992

  15. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency

    PubMed Central

    He, Y.; Jones, H. D.; Chen, S.; Chen, X. M.; Wang, D. W.; Li, K. X.; Wang, D. S.; Xia, L. Q.

    2010-01-01

    An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 μM was added to both the inoculation and cultivation medium, and picloram at 10 mg l−1 and 2 mg l−1 was used in the cultivation and induction medium, respectively. Compared with 200 μM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (β-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l−1 picloram in the co-cultivation medium, increasing the concentration to 10 mg l−1 picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T1 progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci. PMID:20202997

  16. AGROBACTERIUM-MEDIATED TRANSFORMATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    PubMed

    Kathiresan, S; Chandrashekar, A; Ravishankar, G A; Sarada, R

    2009-06-01

    The first successful Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis Flot. using the binary vectors hosting the genes coding for GUS (β-glucuronidase), GFP (green fluorescent protein), and hpt (hygromycin phosphotransferase) is reported here. Colonies resistant to hygromycin at 10 mg · L(-1) expressed β-glucuronidase. The greenish yellow fluorescence of GFP was observed when the hygromycin-resistant cells were viewed with a fluorescent microscope. PCR was used to successfully amplify fragments of the hpt (407 bp) and GUS (515 bp) genes from transformed cells, while Southern blots indicated the integration of the hygromycin gene into the genome of H. pluvialis. SEM indicated that the cell wall of H. pluvialis was altered on infection with Agrobacterium. The transformation achieved here by Agrobacterium does not need treatment with acetosyringone or the wounding of cells. A robust transformation method for this alga would pave the way for manipulation of many important pathways relevant to the food, pharmaceutical, and nutraceutical industries. PMID:27034041

  17. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  18. Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance.

    PubMed

    Matsunaga, Etsuko; Nanto, Kazuya; Oishi, Masatoshi; Ebinuma, Hiroyasu; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Shibata, Daisuke; Shimada, Teruhisa

    2012-01-01

    Eucalyptus globulus is one of the most economically important plantation hardwoods for paper making. However, its low transformation frequency has prevented genetic engineering of this species with useful genes. We found the hypocotyl section with a shoot apex has the highest regeneration ability among another hypocotyl sections, and have developed an efficient Agrobacterium-mediated transformation method using these materials. We then introduced a salt tolerance gene, namely a bacterial choline oxidase gene (codA) with a GUS reporter gene, into E. globulus. The highest frequency of transgenic shoot regeneration from hypocotyls with shoot apex was 7.4% and the average frequency in four experiments was 4.0%, 12-fold higher than that from hypocotyls without shoot apex. Using about 10,000 explants, over 250 regenerated buds were confirmed as transformants by GUS analysis. Southern blot analysis of 100 elongated shoots confirmed successful generation of stable transformants. Accumulation of glycinebetaine was investigated in 44 selected transgenic lines, which showed 1- to 12-fold higher glycinebetaine levels than non-transgenic controls. Rooting of 16 transgenic lines was successful using a photoautotrophic method under enrichment with 1,000 ppm CO(2). The transgenic whole plantlets were transplanted into potting soil and grown normally in a growth room. They showed salt tolerance to 300 mM NaCl. The points of our system are using explants with shoot apex as materials, inhibiting the elongation of the apex on the selection medium, and regenerating transgenic buds from the side opposite to the apex. This approach may also solve transformation problems in other important plants. PMID:22009051

  19. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat

    PubMed Central

    Jones, Huw D; Doherty, Angela; Wu, Huixia

    2005-01-01

    Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties. PMID:16270934

  20. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat.

    PubMed

    Jones, Huw D; Doherty, Angela; Wu, Huixia

    2005-09-01

    Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties. PMID:16270934

  1. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker.

    PubMed

    Chakraborty, M; Sairam Reddy, P; Laxmi Narasu, M; Krishna, Gaurav; Rana, Debashis

    2016-01-01

    Transformation of commercially important indica cultivars remains challenging for the scientific community even though Agrobacterium-mediated transformation protocols for a few indica rice lines have been well established. We report successful transformation of a commercially important restorer line JK1044R of indica rice hybrid JKRH 401. While following existing protocol, we optimized several parameters for callusing, regeneration and genetic transformation of JK1044R. Calli generated from the rice scutellum tissue were used for transformation by Agrobacterium harboring pCAMBIA2201. A novel two tire selection scheme comprising of Geneticin (G418) and Paramomycin were deployed for selection of transgenic calli as well as regenerated plantlets that expressed neomycin phosphotransferase-II gene encoded by the vector. One specific combination of G418 (30 mg l(-1)) and Paramomycin (70 mg l(-1)) was very effective for calli selection. Transformed and selected calli were detected by monitoring the expression of the reporter gene uidA (GUS). Regenerated plantlets were confirmed through PCR analysis of nptII and gus genes specific primers as well as dot blot using gus gene specific as probe. PMID:27186018

  2. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system.

    PubMed

    Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju

    2007-10-01

    A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants. PMID:17551731

  3. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    PubMed

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species. PMID:24097049

  4. Successful Agrobacterium mediated transformation of Thielaviopsis basicola by optimizing multiple conditions.

    PubMed

    Tzima, Aliki K; Paplomatas, Epaminondas J; Schoina, Charikleia; Domazakis, Emmanouil; Kang, Seogchan; Goodwin, Paul H

    2014-08-01

    Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens-mediated transformation (ATMT) protocols were unsuccessful. Successful transformation required the addition of V8 juice (to induce germination of T. basicola chlamydospores) and higher concentrations of acetosyringone in the co-cultivation medium, and of chlamydospores/endoconidia, A. tumefaciens cells during co-cultivation. With these modifications, two T. basicola strains were successfully transformed with the green (egfp) or red (AsRed) fluorescent protein genes. Chlamydospores/endoconidia transformed with the egfp gene exhibited strong green fluorescence, but their fluorescence became weaker as the germ tubes emerged. Transformants harbouring the AsRed gene displayed strong red fluorescence in both chlamydospores/endoconidia and germ tubes. Fluorescent microscopic observations of an AsRed-labelled strain colonizing roots of transgenic Nicotiana benthamiana plants, which express the actin filaments labelled with EGFP, at 24 hours post inoculation showed varying levels of fungal germination and penetration. At this stage, the infection appeared to be biotrophic with the EGFP-labelled host actin filaments not being visibly degraded, even in host root cells in close contact with the hyphae. This is the first report of ATMT of T. basicola, and the use of an AsRed-labelled strain to directly observe the root infection process. PMID:25110130

  5. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference.

    PubMed

    Wang, Geliang; Xu, Yinong

    2008-07-01

    An efficient system of gene transformation is necessary for soybean [Glycine max (L.) Merrill] functional genomics and gene modification by using RNA interference (RNAi) technology. To establish such system, we improved the conditions of tissue culture and transformation for increasing the frequency of adventitious shoots and decreasing the browning and necrosis of hypocotyls. Adding N(6)-benzylaminopurine (BAP) and silver nitrate in culture medium enhanced the shoot formation on hypocotyls. BAP increased the frequency of the hypocotyls containing adventitious shoots, while silver nitrate increased the number of shoots on the hypocotyls. As a result, the number of adventitious shoots on hypocotyls cultured in medium containing both BAP and silver nitrate was 5-fold higher than the controls. Adding antioxidants in co-cultivation medium resulted in a significant decrease in occurrence of browning and necrosis of hypocotyls and increase in levels of beta-Glucuronidase (GUS) gene expression. Histochemical assays showed that the apical meristem of hypocotyls was the "target tissue" for Agrobacterium tumefaciens transformation of soybean. Gene silencing of functional gene by using RNAi technology was carried out under above conditions. A silencing construct containing an inverted-repeat fragment of the GmFAD2 gene was introduced into soybean by using the A. tumefaciens-mediated transformation. Several lines with high oleic acid were obtained, in which mean oleic acid content ranged from 71.5 to 81.9%. Our study demonstrates that this transgenic approach could be efficiently used to improve soybean quality and productivity through functional genomics. PMID:18347801

  6. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.

    PubMed

    Zhang, Tianzhen; Wu, Shen-Jie

    2012-01-01

    Agrobacterium tumefaciens-mediated transformation of cotton embryogenic calli (EC) was enhanced by choosing appropriate EC and improving efficiency of coculture, selection cultivation, and plant regeneration. The binary vector pBI121 (containing a neomycin phosphotransferase II gene npt-II as a selection marker and a uidA gene as a reporter gene) was used to research transformation efficiency. After 48 h cocultivation, the number of β-glucuronidase (GUS)-positive calli characterized by yellow, loose, and fine-grained EC was twofold greater than that of gray, brown, and coarse granule EC. It indicated that the efficiency of transient transformation was affected by EC morphology. Transient transformation efficiency also was improved by cocultivation on the medium by adding 50 mg/L acetosyringone at 19°C for 48 h. Subculturing EC on the selection medium with low cell density increased the production of kanamycin-resistant (Km-R) calli lines. From an original 0.3 g EC, an average of 20 Km-R calli lines were obtained from a selection dish, and the GUS-positive rate of Km-R clones was 81.97%. A large number of normal plants were rapidly regenerated on the differentiation medium with dehydration treatments, and the GUS-positive rate of regeneration plants was about 72.6%. Polymerase chain reaction analysis of GUS-positive plantlets revealed a 100% positive detection rate for neomycin phosphotransferase II gene and gus gene. Southern blot of transgenic plants regenerated from different Km-R calli lines demonstrated that the target gene, mostly with the low copy number, was integrated into the cotton genome. PMID:22351014

  7. A simple shoot multiplication procedure using internode explants, and its application for particle bombardment and Agrobacterium-mediated transformation in watercress.

    PubMed

    Ogita, Shinjiro; Usui, Miki; Shibutani, Nanae; Kato, Yasuo

    2009-07-01

    A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 muM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1-2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 muM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene. PMID:19308313

  8. Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method1

    PubMed Central

    Desfeux, Christine; Clough, Steven J.; Bent, Andrew F.

    2000-01-01

    The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding β-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved. PMID:10889238

  9. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.

    PubMed

    Paul, Anamika; Bakshi, Souvika; Sahoo, Debee Prasad; Kalita, Mohan Chandra; Sahoo, Lingaraj

    2012-04-01

    An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait. PMID:22434351

  10. OPTIMIZING EFFICIENCY AND FLEXIBILITY OF AGROBACTERIUM-MEDIATED TRANSFORMATION OF RED CLOVER (TRIFOLIUM PRATENSE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of plants by the insertion of transgenes can be a powerful experimental approach to answer basic questions about gene product function. This technology can also be used to make improved crop varieties for use in the field. To apply this powerful tool to red clover (Trifolium pra...

  11. Agrobacterium-mediated genetic transformation using cotyledons in Japanese pear (Pyrus pyrifolia)

    PubMed Central

    Nakajima, Ikuko; Sato, Yoshihiko; Saito, Toshihiro; Moriguchi, Takaya; Yamamoto, Toshiya

    2013-01-01

    Genetic transformation was successfully established producing both transformed adventitious shoots and calli in Japanese pear (Pyrus pyrifolia Nakai) by using cotyledons as explants. Cotyledons of five cultivars were co-cultivated with Agrobacterium tumefaciens strain LBA4404 carrying the pBIN19-sgfp, which contained a green fluorescent protein gene and the neomycin phosphotransferase gene. In order to increase transformation efficiency, sonication and ethylenedioxybis (ethylamine)-N,N,N′,N′-tetraacetic acid (EGTA) treatments were applied, which could produce physical wounds across the tissue and prevent plant defense reaction, respectively. Green fluorescent protein (GFP) fluorescence was evaluated two weeks and five months after Agrobacterium inoculation as measures of transient and stable transformations, respectively. As a result, sonication significantly increased both transient and stable expression of GFP fluorescence, whereas EGTA treatment did not show a positive effect on either. Out of 18 regenerated plantlets obtained, one plant regenerated from ‘Agenosho Shinanashi’ showed stable GFP fluorescence. This plant was confirmed as a transformant by PCR and genomic Southern blotting. Three other transformed regenerated shoots by myb gene showed red color, which were derived from ‘Imamuraaki’ by the same transformation method. Transformation system in this study was shown to be reproducible since plural transformants were obtained. PMID:24273422

  12. Genetic transformation of Metroxylon sagu (Rottb.) cultures via Agrobacterium-mediated and particle bombardment.

    PubMed

    Ibrahim, Evra Raunie; Hossain, Md Anowar; Roslan, Hairul Azman

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  13. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera.

    PubMed

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  14. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  15. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  16. Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda.

    PubMed

    Stevens, Micah E; Pijut, Paula M

    2014-06-01

    This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L(-1) adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L(-1) AS, 10 % CW, 400 mg L(-1) timentin, and 20 mg L(-1) kanamycin. Timentin at 400 and 20 mg L(-1) kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB. PMID:24493252

  17. Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression.

    PubMed

    Gorfer, Markus; Klaubauf, Sylvia; Bandian, Dragana; Strauss, Joseph

    2007-07-01

    Hygromycin B resistance was transferred to the sterile mycelia of Cadophora finlandia and Phialocephala fortinii by co-cultivation with Agrobacterium tumefaciens. Constitutively expressed green fluorescent protein (GFP) was also introduced using the same vector. Confocal laser scanning microscopy (CLSM) revealed strong fluorescence of transformants. Both traits were mitotically stable during one year of subculturing on non-selective growth medium. Southern blot analysis showed that the majority of the transformants contained single-copy integrations at random sites in the genome. PMID:17662587

  18. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  19. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  20. Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun.

    PubMed

    Gao, Caixia; Nielsen, Klaus K

    2013-01-01

    Agrobacterium-mediated transformation and direct gene transfer using the gene gun (microparticle -bombardment) are the two most widely used methods for plant genetic modification. The Agrobacterium method has been successfully practiced in dicots for many years, but only recently have efficient protocols been developed for grasses. Microparticle bombardment has evolved as a method delivering exogenous nucleic acids into plant genome and is a commonly employed technique in plant science. Here these two systems are compared for transformation efficiency, transgene integration, and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The tall fescue transformation protocols lead to the production of large numbers of fertile, independent transgenic lines. PMID:23104329

  1. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14.

    PubMed

    Nyaboga, Evans N; Njiru, Joshua M; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1-2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70-80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  2. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14

    PubMed Central

    Nyaboga, Evans N.; Njiru, Joshua M.; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1–2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70–80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  3. Bacterial Transposons Are Co-Transferred with T-DNA to Rice Chromosomes during Agrobacterium-Mediated Transformation

    PubMed Central

    Kim, Sung-Ryul; An, Gynheung

    2012-01-01

    Agrobacterium tumefaciens is widely utilized for delivering a foreign gene into a plant’s genome. We found the bacterial transposon Tn5393 in transgenic rice plants. Analysis of the flanking sequences of the transferred-DNA (T-DNA) identified that a portion of the Tn5393 sequence was present immediately next to the end of the T-DNA. Because this transposon was present in A. tumefaciens strain LBA4404, but not in EHA105 and GV3101, our findings indicated that Tn5393 was transferred from LBA4404 into the rice genome during the transformation process. We also noted that another bacterial transposon, Tn5563, is present in transgenic plants. Analyses of 331 transgenic lines revealed that 26.0% carried Tn5393 and 2.1% contained Tn5563. In most of the lines, an intact transposon was integrated into the T-DNA and transferred to the rice chromosome. More than one copy of T-DNA was introduced into the plants, often at a single locus. This resulted in T-DNA repeats of normal and transposon-carrying T-DNA that generated deletions of a portion of the T-DNA, joining the T-DNA end to the bacterial transposon. Based on these data, we suggest that one should carefully select the appropriate Agrobacterium strain to avoid undesirable transformation of such sequences. PMID:22570148

  4. Agrobacterium-mediated transformation of the β-subunit gene in 7S globulin protein in soybean using RNAi technology.

    PubMed

    Qu, J; Liu, S Y; Wang, P W; Guan, S Y; Fan, Y G; Yao, D; Zhang, L; Dai, J L

    2016-01-01

    The objective of this study was to use RNA interference (RNAi) to improve protein quality and decrease anti-nutritional effects in soybean. Agrobacterium tumefaciens-mediated transformation was conducted using RNAi and an expression vector containing the 7S globulin β-subunit gene. The BAR gene was used as the selective marker and cotyledonary nodes of soybean genotype Jinong 27 were chosen as explant material. Regenerated plants were detected by molecular biology techniques. Transformation of the β-subunit gene in the 7S protein was detected by PCR, Southern blot, and q-PCR. Positive plants (10 T0, and 6 T1, and 13 T2) were tested by PCR. Hybridization bands were detected by Southern blot analysis in two of the T1 transgenic plants. RNAi expression vectors containing the soybean 7S protein β-subunit gene were successfully integrated into the genome of transgenic plants. qRT-PCR analysis in soybean seeds showed a clear decrease in expression of the soybean β-subunit gene. The level of 7S protein β-subunit expression in transgenic plants decreased by 77.5% as compared to that of the wild-type plants. This study has established a basis for the application of RNAi to improve the anti-nutritional effects of soybean. PMID:27173254

  5. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    NASA Technical Reports Server (NTRS)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  6. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal

    PubMed Central

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703

  7. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation.

    PubMed

    Paz, Margie M; Martinez, Juan Carlos; Kalvig, Andrea B; Fonger, Tina M; Wang, Kan

    2006-03-01

    The utility of transformation for soybean improvement requires an efficient system for production of stable transgenic lines. We describe here an improved cotyledonary node method using an alternative explant for Agrobacterium tumefaciens-mediated soybean transformation. We use the term "half-seed" to refer to this alternative cotyledonary explant that is derived from mature seed of soybean following an overnight imbibition and to distinguish it from cotyledonary node derived from 5-7-day-old seedlings. Transformation efficiencies using half-seed explants ranged between 1.4 and 8.7% with an overall efficiency of 3.8% based on the number of transformed events that have been confirmed in the T1 generation by phenotypic assay using the herbicide Liberty (active ingredient glufosinate) and by Southern analysis. This efficiency is 1.5-fold higher than the cotyledonary node method used in our laboratory. Significantly, the half-seed system is simple and does not require deliberate wounding of explants, which is a critical and technically demanding step in the cotyledonary node method. PMID:16249869

  8. In vitro regeneration and optimization of factors affecting Agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant.

    PubMed

    Alok, Anshu; Shukla, Vishnu; Pala, Zarna; Kumar, Jitesh; Kudale, Subhash; Desai, Neetin

    2016-04-01

    Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog's medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog's medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying β-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering. PMID:27436917

  9. Agrobacterium-mediated transformation of Mexican lime (Citrus aurantifolia Swingle) using optimized systems for epicotyls and cotelydons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epicotyl and internodal stem segments provide the predominantly used explants for regeneration of transgenic citrus plants following co-cultivation with Agrobacterium. Previous reports using epicotyls segments from Mexican lime have shown low affinity for Agrobacterium tumefaciens infection which re...

  10. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.

    PubMed

    Bilichak, Andriy; Yao, Youli; Kovalchuk, Igor

    2014-06-01

    Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue. PMID:24472037

  11. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

    PubMed

    Zhang, Tao; Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-08-01

    The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi. PMID:26051491

  12. Identifying a Carotenoid Cleavage Dioxygenase 4a Gene and Its Efficient Agrobacterium-Mediated Genetic Transformation in Bixa orellana L.

    PubMed

    Sankari, Mohan; Hemachandran, Hridya; Anantharaman, Amirtha; Babu, Subramanian; Madrid, Renata Rivera; C, George Priya Doss; Fulzele, Devanand P; Siva, Ramamoorthy

    2016-07-01

    Carotenoids are metabolized to apocarotenoids through the pathway catalysed by carotenoid cleavage oxygenases (CCOs). The apocarotenoids are economically important as it is known to have therapeutic as well as industrial applications. For instance, bixin from Bixa orellana and crocin from Crocus sativus are commercially used as a food colourant and cosmetics since prehistoric time. In our present study, CCD4a gene has been identified and isolated from leaves of B. orellana for the first time and named as BoCCD4a; phylogenetic analysis was carried out using CLUSTAL W. From sequence analysis, BoCCD4a contains two exons and one intron, which was compared with the selected AtCCD4, RdCCD4, GmCCD4 and CmCCD4a gene. Further, the BoCCD4a gene was cloned into pCAMBIA 1301, transformed into Agrobacterium tumefaciens EHA105 strain and subsequently transferred into hypocotyledons and callus of B. orellana by agro-infection. Selection of stable transformation was screened on the basis of PCR detection by using GUS and hptII specific primer, which was followed by histochemical characterization. The percent transient GUS expression in hypocotyledons and callus was 84.4 and 80 %, respectively. The expression of BoCCD4a gene in B. orellana was confirmed through RT-PCR analysis. From our results, the sequence analysis of BoCCD4a gene of B. orellana was closely related to the CsCCD4 gene of C. sativus, which suggests this gene may have a role in various processes such as fragrance, insect attractant and pollination. PMID:26922728

  13. Agrobacterium-mediated transformation of tomato with rolB gene results in enhancement of fruit quality and foliar resistance against fungal pathogens.

    PubMed

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens. PMID:24817272

  14. Agrobacterium-Mediated Transformation of Tomato with rolB Gene Results in Enhancement of Fruit Quality and Foliar Resistance against Fungal Pathogens

    PubMed Central

    Arshad, Waheed; Haq, Ihsan-ul-; Waheed, Mohammad Tahir; Mysore, Kirankumar S.; Mirza, Bushra

    2014-01-01

    Tomato (Solanum lycopersicum L.) is the second most important cultivated crop next to potato, worldwide. Tomato serves as an important source of antioxidants in human diet. Alternaria solani and Fusarium oxysporum cause early blight and vascular wilt of tomato, respectively, resulting in severe crop losses. The foremost objective of the present study was to generate transgenic tomato plants with rolB gene and evaluate its effect on plant morphology, nutritional contents, yield and resistance against fungal infection. Tomato cv. Rio Grande was transformed via Agrobacterium tumefaciens harbouring rolB gene of Agrobacterium rhizogenes. rolB. Biochemical analyses showed considerable improvement in nutritional quality of transgenic tomato fruits as indicated by 62% increase in lycopene content, 225% in ascorbic acid content, 58% in total phenolics and 26% in free radical scavenging activity. Furthermore, rolB gene significantly improved the defence response of leaves of transgenic plants against two pathogenic fungal strains A. solani and F. oxysporum. Contrarily, transformed plants exhibited altered morphology and reduced fruit yield. In conclusion, rolB gene from A. rhizogenes can be used to generate transgenic tomato with increased nutritional contents of fruits as well as improved foliar tolerance against fungal pathogens. PMID:24817272

  15. Complementary DNA cloning of the pear 1-aminocyclopropane-1-carboxylic acid oxidase gene and agrobacterium-mediated anti-sense genetic transformation.

    PubMed

    Qi, Jing; Dong, Zhen; Zhang, Yu-Xing

    2015-12-01

    The aim of the present study was to genetically modify plantlets of the Chinese yali pear to reduce their expression of ripening-associated 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and therefore increase the shelf-life of the fruit. Primers were designed with selectivity for the conserved regions of published ACO gene sequences, and yali complementary DNA (cDNA) cloning was performed by reverse transcription quantitative polymerase chain reaction (PCR). The obtained cDNA fragment contained 831 base pairs, encoding 276 amino acid residues, and shared no less than 94% nucleotide sequence identity with other published ACO genes. The cDNA fragment was inversely inserted into a pBI121 expression vector, between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator, in order to construct the anti‑sense expression vector of the ACO gene; it was transfected into cultured yali plants using Agrobacterium LBA4404. Four independent transgenic lines of pear plantlets were obtained and validated by PCR analysis. A Southern blot assay revealed that there were three transgenic lines containing a single copy of exogenous gene and one line with double copies. The present study provided germplasm resources for the cultivation of novel storage varieties of pears, therefore providing a reference for further applications of anti‑sense RNA technology in the genetic improvement of pears and other fruit. PMID:26460204

  16. Agrobacterium-mediated transformation of potato using PLRV-rep and PVY CP genes and assessment of replicase mediated resistance against natural infection of PLRV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicase-and coat protein gene-mediated resistances against potato leafroll virus (PLRV) and potato virus Y (PVY), respectively, demonstrated to be an effective way of protecting potato against two major virus problems (PLRV & PVY) world-wide. Potato cultivar Desiree was transformed using Agrobacte...

  17. An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana.

    PubMed

    Wang, Haihai; Wang, Cuiting; Liu, Hua; Tang, Renjie; Zhang, Hongxia

    2011-11-01

    Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT-PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding. PMID:21717184

  18. Long-term stability of attacin E expression in transformed apple after 12 years in the field and effect of the expression of this gene on the fruit characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health impact of the modified plants, transgene stability over ...

  19. Transgene expression in pear (Pyrus communis L.) driven by a phloem-specific promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene expression cassette carrying ß-glucuronidase (uidA) reporter gene under the control of the promoter of the Arabidopsis sucrose-H+ symporter gene (AtSUC2) was introduced to pear plants via an Agrobacterium-mediated leaf-explant transformation procedure. Transgenic shoots were regenerated from...

  20. Gateway®-compatible plant transformation vectors.

    PubMed

    Smedley, Mark A; Harwood, Wendy A

    2015-01-01

    Studies in functional genomics and crop improvement programs often rely on the introduction and expression of transgenes in plants. There are two essential components required for in planta transgene expression, a plasmid vector on which the transgene sequence is carried and a delivery system capable of transferring the vector to the target cells. Agrobacterium-mediated plant transformation and the binary plasmid vector system is the preferred method of transgene delivery. The cloning technologies used for DNA manipulation underpin many of these studies. Increased demand for efficient high-throughput transformation systems is driving forward improvements in gene cloning techniques. This chapter gives an overview of Gateway(®)-compatible binary vectors for use in Agrobacterium-mediated transformation systems. It describes a fast, efficient, and robust cloning protocol for the production of an over-expression binary vector using Gateway(®) recombinational cloning. PMID:25300827

  1. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation.

    PubMed

    Chattopadhyay, Tirthartha; Roy, Sheuli; Mitra, Adinpunya; Maiti, Mrinal K

    2011-04-01

    Transgenic hairy root system is important in several recalcitrant plants, where Agrobacterium tumefaciens-mediated plant transformation and generation of transgenic plants are problematic. Jute (Corchorus spp.), the major fibre crop in Indian subcontinent, is one of those recalcitrant plants where in vitro tissue culture has provided a little success, and hence, Agrobacterium-mediated genetic transformation remains to be a challenging proposition in this crop. In the present work, a system of transgenic hairy roots in Corchorus capsularis L. has been developed through genetic transformation by Agrobacterium rhizogenes harbouring two plasmids, i.e. the natural Ri plasmid and a recombinant binary vector derived from the disarmed Ti plasmid of A. tumefaciens. Our findings indicate that the system is relatively easy to establish and reproducible. Molecular analysis of the independent lines of transgenic hairy roots revealed the transfer of relevant transgenes from both the T-DNA parts into the plant genome, indicating the co-transformation nature of the event. High level expression and activity of the gusA reporter gene advocate that the transgenic hairy root system, thus developed, could be applicable as gene expression system in general and for root functional genomics in particular. Furthermore, these transgenic hairy roots can be used in future as explants for plantlet regeneration to obtain stable transgenic jute plants. PMID:21153028

  2. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    PubMed

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-01-01

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation. PMID:25549243

  3. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. PMID:26906624

  4. Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3 LEA gene from B. napus.

    PubMed

    Park, Byong-Jin; Liu, Zaochang; Kanno, Akira; Kameya, Toshiaki

    2005-10-01

    A protocol for producing transgenic radish (Raphanus sativus) was obtained by using both ultrasonic and vacuum infiltration assisted, Agrobacterium-mediated transformation. The Agrobacterium strain LBA4404 contained the binary vector pBI121-LEA (late embyogenesis abundant), which carried a Group 3 LEA gene, from Brassica napus. Among six combinations, Agrobacterium-mediated transformation assisted by a combination of 5-min sonication with 5-min vacuum infiltration resulted in the highest transformation frequency. The existence, integration and expression of transferred LEA gene in transgenic T(1) plants were confirmed by PCR, genomic Southern and Western blot analysis. Transgenic radish demonstrated better growth performance than non-transformed control plants under osmotic and salt stress conditions. Accumulation of Group 3 LEA protein in the vegetative tissue of transgenic radish conferred increased tolerance to water deficit and salt stress. PMID:15843933

  5. Genetic transformation and expression of transgenic lines of Populus x euramericana with insect-resistance and salt-tolerance genes.

    PubMed

    Yang, R L; Wang, A X; Zhang, J; Dong, Y; Yang, M S; Wang, J M

    2016-01-01

    We characterized new transgenic varieties of poplar with multiple insect-resistant and salt stress tolerant genes. Two insect-resistant Bacillus thuringiensis (Bt) genes, Cry1Ac and Cry3A, and a salt-tolerant gene, Betaine aldehyde dehydrogenase (BADH) were inserted into a vector, p209-Cry1Ac-Cry3A-BADH. The clone of Populus x euramericana was transformed by the vector using the Agrobacterium-mediated method. Three transgenic lines were assessed using genetic detection and resistance expression analysis. PCR revealed that exogenous genes Cry1Ac, Cry3A, BADH and selective marker gene NPTII were present in three transgenic lines. Quantitative real-time PCR (qPCR) showed significant differences in the transcriptional abundance of three exogenous genes in different lines. Results of assays for Bt toxic proteins showed that the Cry1Ac and Cry3A toxic protein content of each line was 12.83-26.32 and 2108.91-2724.79 ng/g, respectively. The Cry1Ac toxic protein content of different lines was significantly different; the Cry3A toxic protein content was about 100 times higher than that of the Cry1Ac toxic protein. The insect-resistance test revealed the mortality rate of transgenic lines to Hyphantria cunea L1 larvae varied by 42.2-66.7%, which was significantly higher than non-transgenic lines. The mortality rate of L1 and L2 Plagiodera versicolora larvae was 100%. The insecticidal effect of transgenic lines to P. versicolora larvae was higher than that to H. cunea larvae. NaCl stress tolerance of three transgenic lines under 3-6% NaCl concentration was significantly higher than that of non-transgenic lines. PMID:27173305

  6. Competence of Immature Maize Embryos for Agrobacterium-Mediated Gene Transfer.

    PubMed Central

    Schlappi, M; Hohn, B

    1992-01-01

    Agrobacterium-mediated transfer of viral sequences to plant cells (agroinfection) was applied to study the susceptibility of immature maize embryos to the pathogen. The shoot apical meristem of immature embryos 10 to 20 days after pollination from four different maize genotypes was investigated for competence for agroinfection. There was a direct correlation between different morphological stages of the unwounded immature embryos and their competence for agroinfection. Agroinfection frequency was highest in the embryogenic line A188. All developmental stages tested showed Agrobacterium virulence gene-inducing activity, whereas bacteriocidal substances were produced at stages of the immature embryos competent for agroinfection. The results suggested that Agrobacterium may require differentiated tissue in the maize shoot apical meristem before wounding for successful T-DNA transfer. This requirement for the young maize embryo has implications for the possible use of Agrobacterium for maize transformation. PMID:12297627

  7. Medicago truncatula transformation using cotyledonary explants.

    PubMed

    Wright, Elane; Wang, Zeng-Yu

    2015-01-01

    Medicago truncatula has been developed into a model species for legumes. The M. truncatula genotype Jemalong A17 has been used for EST and genome sequencing. However, this genotype is difficult to regenerate from callus cultures. By using cotyledons as explants for Agrobacterium infection and direct shoot formation, this protocol allows for rapid production of transgenic plants from Jemalong A17 and other genotypes. Transgenic plants can be regenerated and established in the greenhouse in only 3-4 months after Agrobacterium-mediated transformation. Transformation frequency was in the range of 5-12 %. PMID:25300829

  8. Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.

    PubMed

    Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng

    2015-01-01

    To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry. PMID:26024368

  9. Development of an efficient transformation method by Agrobacterium tumefaciens and high throughput spray assay to identify transgenic plants for woodland strawberry (Fragaria vesca) using NPTII selection.

    PubMed

    Pantazis, Christopher J; Fisk, Sarah; Mills, Kerri; Flinn, Barry S; Shulaev, Vladimir; Veilleux, Richard E; Dan, Yinghui

    2013-03-01

    KEY MESSAGE : We developed an efficient Agrobacterium -mediated transformation method using an Ac/Ds transposon tagging construct for F. vesca and high throughput paromomycin spray assay to identify its transformants for strawberry functional genomics. Genomic resources for Rosaceae species are now readily available, including the Fragaria vesca genome, EST sequences, markers, linkage maps, and physical maps. The Rosaceae Genomic Executive Committee has promoted strawberry as a translational genomics model due to its unique biological features and transformability for fruit trait improvement. Our overall research goal is to use functional genomic and metabolic approaches to pursue high throughput gene discovery in the diploid woodland strawberry. F. vesca offers several advantages of a fleshy fruit typical of most fruit crops, short life cycle (seed to seed in 12-16 weeks), small genome size (206 Mbb/C), small plant size, self-compatibility, and many seeds per plant. We have developed an efficient Agrobacterium tumefaciens-mediated strawberry transformation method using kanamycin selection, and high throughput paromomycin spray assay to efficiently identify transgenic strawberry plants. Using our kanamycin transformation method, we were able to produce up to 98 independent kanamycin resistant insertional mutant lines using a T-DNA construct carrying an Ac/Ds transposon Launchpad system from a single transformation experiment involving inoculation of 22 leaf explants of F. vesca accession 551572 within approx. 11 weeks (from inoculation to soil). Transgenic plants with 1-2 copies of a transgene were confirmed by Southern blot analysis. Using our paromomycin spray assay, transgenic F. vesca plants were rapidly identified within 10 days after spraying. PMID:23160638

  10. Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants

    PubMed Central

    2010-01-01

    Background Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. Results In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. Conclusion We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as

  11. Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.)

    PubMed Central

    Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Hu, Xiaowen; Meng, Xuanchen; Luo, Kai; Zhang, Jiyu; Wang, Yanrong

    2015-01-01

    Drought and high salinity are two major abiotic factors that restrict the productivity of alfalfa. By application of the Agrobacterium-mediated transformation method, an oxidative responsive gene, CsALDH12A1, from the desert grass Cleistogenes songorica together with the bar gene associated with herbicide resistance, were co-transformed into alfalfa (Medicago sativa L.). From the all 90 transformants, 16 were positive as screened by spraying 1 mL L-1 10% Basta solution and molecularly diagnosis using PCR. Real-time PCR analysis indicated that drought and salt stress induced high CsALDH expression in the leaves of the transgenic plants. The CsALDH expression levels under drought (15 d) and salt stress (200 mM NaCl) were 6.11 and 6.87 times higher than in the control plants, respectively. In comparison to the WT plants, no abnormal phenotypes were observed among the transgenic plants, which showed significant enhancement of tolerance to 15 d of drought and 10 d of salinity treatment. Evaluation of the physiological and biochemical indices during drought and salt stress of the transgenic plants revealed relatively lower Na+ content and higher K+ content in the leaves relative to the WT plants, a reduction of toxic on effects and maintenance of osmotic adjustment. In addition, the transgenic plants could maintain a higher relative water content level, higher shoot biomass, fewer changes in the photosystem, decreased membrane injury, and a lower level of osmotic stress. These results indicate that the co-expression of the introduced bar and CsALDH genes enhanced the herbicide, drought and salt tolerance of alfalfa and therefore can potentially be used as a novel genetic resource for the future breeding programs to develop new cultivars. PMID:26734025

  12. Recent advances in plant transformation.

    PubMed

    Barampuram, Shyamkumar; Zhang, Zhanyuan J

    2011-01-01

    Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies. PMID:21181522

  13. Regeneration of transgenic cassava from transformed embryogenic tissues.

    PubMed

    Zhang, Peng; Puonti-Kaerlas, Johanna

    2005-01-01

    Production of transgenic plants is gradually becoming routine in cassava biotechnology. Green cotyledons of maturing somatic embryos (somatic cotyledons for short) and friable embryogenic suspensions (FES) are the target tissues for transformation by Agrobacterium or biolistics. Putative transgenic shoots develop from transformed somatic cotyledons via shoot organogenesis or from FES via somatic embryogenesis under selection. Maturation of transgenic somatic embryos is induced by transfer to maturation medium with reduced concentrations of selective agents. Mature somatic embryos can also develop directly from FES cells under selection. Transgenic plants are regenerated by the elongation of transgenic shootlets from organogenesis experiments and by the germination of or shoot development from transgenic mature embryos cultured without selection. beta-Glucuronidase (GUS) assays and rooting tests can be used to screen for escapes from selection, which improves the regeneration rate of truly transgenic plants. PMID:15310920

  14. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods.

    PubMed

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash

    2014-05-01

    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques. PMID:24330327

  15. Micro-shock Wave Assisted Plant Transformation

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Datey, Akshay; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Genetically modified (GM) crops are developed by transforming the desired DNA to plant. There are various methods employed to achieve the required transformation in plants. Agrobacterium mediated transformation and Biolistics or particle bombardment method are the most commonly used methods.

  16. Agrobacterium-mediated gene transfer and enhanced green fluorescent protein visualization in the mycorrhizal ascomycete Tuber borchii: a first step towards truffle genetics.

    PubMed

    Grimaldi, Benedetto; de Raaf, Michiel A; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2005-07-01

    Mycorrhizal ascomycetes are ecologically and commercially important fungi that have proved impervious to genetic transformation so far. We report here on the successful transient transformation of Tuber borchii, an ectomycorrhizal ascomycete that colonizes a variety of trees and produces highly prized hypogeous fruitbodies known as "truffles". A hypervirulent Agrobacterium tumefaciens strain bearing the binary plasmid pBGgHg was used for transformation. The genes for hygromycin resistance and the enhanced green fluorescent protein (EGFP), both under the control of vector-borne promoters, were employed as selection markers. Patches of dark and fluorescent hyphae were observed upon fluorescence microscopic examination of hygromycin-resistant mycelia. The presence of EGFP was confirmed by both confocal microscopy and PCR analysis. The lack in the transformed mycelia of the DNA coding for kanamicin resistance (a trait encoded by a vector-borne gene located outside of the T-DNA region) indicates that Agrobacterium-mediated gene transfer correctly occurred in T. borchii. PMID:15868150

  17. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis

    PubMed Central

    Yamada, Tetsuya; Takagi, Kyoko; Ishimoto, Masao

    2012-01-01

    Herbicide-resistant transgenic soybean plants hold a leading market share in the USA and other countries, but soybean has been regarded as recalcitrant to transformation for many years. The cumulative and, at times, exponential advances in genetic manipulation have made possible further choices for soybean transformation. The most widely and routinely used transformation systems are cotyledonary node–Agrobacterium-mediated transformation and somatic embryo–particle-bombardment-mediated transformation. These ready systems enable us to improve seed qualities and agronomic characteristics by transgenic approaches. In addition, with the accumulation of soybean genomic resources, convenient or promising approaches will be requisite for the determination and use of gene function in soybean. In this article, we describe recent advances in and problems of soybean transformation, and survey the current transgenic approaches for applied and basic research in Japan. PMID:23136488

  18. Creation of transgenic Brassica napus L. plants expressing human alpha 2b interferon gene.

    PubMed

    Sakhno, L O; Kvasko, O Y; Olevinska, Z M; Spivak, M Y; Kuchuk, M V

    2012-01-01

    Spring rapeseed transgenic lines expressing human interferon alpha 2b were created by Agrobacterium-mediated transformation of aseptic plant leaf explants. The maximum antiviral activity of the leaf extracts reached 4500 IU/g fresh weight. It was determined that the antioxidant activity and the activity of an enzyme of plant antioxidant system--superoxide dismutase (SOD)--in the leaf tissues of transgenic plants increased compared to controls. There were no correlations between the interferon and antioxidant activities, as well as between SOD and interferon activities. Using the obtained transgenic rapeseed plants with high interferon and antioxidant activities as a feed additive for animals might have preventive effect on their body, increasing resistance to infections of various origins. PMID:23285745

  19. Production of transgenic kiwifruit plants harboring the SbtCry1Ac gene.

    PubMed

    Zhang, H Y; Liu, H M; Liu, X Z

    2015-01-01

    The kiwifruit (Actinidia chinensis Planch.) is an economically and nutritionally important fruit crop that has a remarkably high vitamin C content and is popular throughout the world. However, kiwifruit plants are vulnerable to attack from pests, and effective pest control is urgently required. Transgenic kiwifruit plants containing the synthetic chimeric gene SbtCry1Ac that encodes the insecticidal protein btCrylAc were obtained through an Agrobacterium-mediated transformation of kiwifruit leaf discs. The kanamycin resistance of the transgenic plants was then analyzed. Results from polymerase chain reactions and genomic DNA Southern blot analyses indicated that SbtCrylAc had been integrated into the genomes of these plants. The results of insect bioassays revealed that the average Oraesia excavate inhibition rate of plants tested at 10 days post-infestation was 75.2%. To our knowledge, this is the first study that has developed insect-resistant transgenic kiwifruit plants. PMID:26345776

  20. Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue.

    PubMed

    Kenel, Fernand; Eady, Colin; Brinch, Sheree

    2010-03-01

    Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop. PMID:20099065

  1. Genetic transformation of Vitis vinifera via organogenesis

    PubMed Central

    Mezzetti, Bruno; Pandolfini, Tiziana; Navacchi, Oriano; Landi, Lucia

    2002-01-01

    Background Efficient transformation and regeneration methods are a priority for successful application of genetic engineering to vegetative propagated plants such as grape. The current methods for the production of transgenic grape plants are based on Agrobacterium-mediated transformation followed by regeneration from embryogenic callus. However, grape embryogenic calli are laborious to establish and the phenotype of the regenerated plants can be altered. Results Transgenic grape plants (V. vinifera, table-grape cultivars Silcora and Thompson Seedless) were produced using a method based on regeneration via organogenesis. In vitro proliferating shoots were cultured in the presence of increasing concentrations of N6-benzyl adenine. The apical dome of the shoot was removed at each transplantation which, after three months, produced meristematic bulk tissue characterized by a strong capacity to differentiate adventitious shoots. Slices prepared from the meristematic bulk were used for Agrobacterium-mediated transformation of grape plants with the gene DefH9-iaaM. After rooting on kanamycin containing media and greenhouse acclimatization, transgenic plants were transferred to the field. At the end of the first year of field cultivation, DefH9-iaaM grape plants were phenotypically homogeneous and did not show any morphological alterations in vegetative growth. The expression of DefH9-iaaM gene was detected in transgenic flower buds of both cultivars. Conclusions The phenotypic homogeneity of the regenerated plants highlights the validity of this method for both propagation and genetic transformation of table grape cultivars. Expression of the DefH9-iaaM gene takes place in young flower buds of transgenic plants from both grape cultivars. PMID:12354328

  2. Spike-dip transformation of Setaria viridis.

    PubMed

    Saha, Prasenjit; Blumwald, Eduardo

    2016-04-01

    Traditional method of Agrobacterium-mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium-mediated genetic transformation of S. viridis using spike dip. Pre-anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β-glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5-day-old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike-dip medium supplemented with 0.025% Silwet L-77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β-glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron-interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high-throughput transformation and potentially facilitates translational research in a monocot model plant. PMID:26932666

  3. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    SciTech Connect

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  4. Generation of Backbone-Free, Low Transgene Copy Plants by Launching T-DNA from the Agrobacterium Chromosome1[W][OA

    PubMed Central

    Oltmanns, Heiko; Frame, Bronwyn; Lee, Lan-Ying; Johnson, Susan; Li, Bo; Wang, Kan; Gelvin, Stanton B.

    2010-01-01

    In both applied and basic research, Agrobacterium-mediated transformation is commonly used to introduce genes into plants. We investigated the effect of three Agrobacterium tumefaciens strains and five transferred (T)-DNA origins of replication on transformation frequency, transgene copy number, and the frequency of integration of non-T-DNA portions of the T-DNA-containing vector (backbone) into the genome of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). Launching T-DNA from the picA locus of the Agrobacterium chromosome increases the frequency of single transgene integration events and almost eliminates the presence of vector backbone sequences in transgenic plants. Along with novel Agrobacterium strains we have developed, our findings are useful for improving the quality of T-DNA integration events. PMID:20023148

  5. Preservation and Faithful Expression of Transgene via Artificial Seeds in Alfalfa

    PubMed Central

    Liu, Wenting; Liang, Zongsuo; Wang, Xinhua; Sibbald, Susan; Hunter, David; Tian, Lining

    2013-01-01

    Proper preservation of transgenes and transgenic materials is important for wider use of transgenic technology in plants. Here, we report stable preservation and faithful expression of a transgene via artificial seed technology in alfalfa. DNA constructs containing the uid reporter gene coding for β-glucuronidase (GUS) driven by a 35S promoter or a tCUP promoter were introduced into alfalfa via Agrobacterium-mediated genetic transformation. Somatic embryos were subsequently induced from transgenic alfalfa plants via in vitro technology. These embryos were treated with abscisic acid to induce desiccation tolerance and were subjected to a water loss process. After the desiccation procedure, the water content in dried embryos, or called artificial seeds, was about 12–15% which was equivalent to that in true seeds. Upon water rehydration, the dried somatic embryos showed high degrees of viability and exhibited normal germination. Full plants were subsequently developed and recovered in a greenhouse. The progeny plants developed from artificial seeds showed GUS enzyme activity and the GUS expression level was comparable to that of plants developed from somatic embryos without the desiccation process. Polymerase chain reaction analysis indicated that the transgene was well retained in the plants and Southern blot analysis showed that the transgene was stably integrated in plant genome. The research showed that the transgene and the new trait can be well preserved in artificial seeds and the progeny developed. The research provides a new method for transgenic germplasm preservation in different plant species. PMID:23690914

  6. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed. PMID:10945344

  7. Transformation of pecan and regeneration of transgenic plants.

    PubMed

    McGranahan, G H; Leslie, C A; Dandekar, A M; Uratsu, S L; Yates, I E

    1993-09-01

    A gene transfer system developed for walnut (Juglans regia L.) was successfully applied to pecan (Carya illinoensis [Wang] K. Koch). Repetitively embryogenic somatic embryos derived from open-pollinated seed of 'Elliott', 'Wichita', and 'Schley' were co-cultivated with Agrobacterium strain EHA 101/pCGN 7001, which contains marker genes for beta-glucuronidase activity and resistance to kanamycin. Several modifications of the standard walnut transformation techniques were tested, including a lower concentration of kanamycin and a modified induction medium, but these treatments had no measurable effect on efficiency of transformation. Nineteen of the 764 viable inoculated embryos produced transgenic subclones; 13 of these were from the line 'Elliott'6, 3 from 'Schley'5/3, and 3 from 'Wichita'9. Transgenic embryos of 'Wichita'9 germinated most readily and three subclones were successfully micropropagated. Three transgenic plants of one of these subclones were obtained by grafting the tissue cultured shoots to seedling pecan rootstock in the greenhouse. Gene insertion, initially detected by GUS activity, was confirmed by detection of integrated T-DNA sequences using Southern analysis. PMID:24201878

  8. Establishment of an Agrobacterium-mediated Inoculation System for Cucumber Green Mottle Mosaic Virus

    PubMed Central

    Kang, Minji; Seo, Jang-Kyun; Song, Dami; Choi, Hong-Soo; Kim, Kook-Hyung

    2015-01-01

    The infectious full-length cDNA clones of Cucumber green mottle mosaic virus (CGMMV) isolates KW and KOM, which were isolated from watermelon and oriental melon, respectively, were constructed under the control of the cauliflower mosaic virus 35S promoter. We successfully inoculated Nicotiana benthamiana with the cloned CGMMV isolates KW and KOM by Agrobacterium-mediated infiltration. Virulence and symptomatic characteristics of the cloned CGMMV isolates KW and KOM were tested on several indicator plants. No obvious differences between two cloned isolates in disease development were observed on the tested indicator plants. We also determined full genome sequences of the cloned CGMMV isolates KW and KOM. Sequence comparison revealed that only four amino acids (at positions 228, 699, 1212, and 1238 of the replicase protein region) differ between the cloned isolates KW and KOM. A previous study reported that the isolate KOM could not infect Chenopodium amaranticolor, but the cloned KOM induced chlorotic spots on the inoculated leaves. When compared with the previously reported sequence of the original KOM isolate, the cloned KOM contained one amino acid mutation (Ala to Thr) at position 228 of the replicase protein, suggesting that this mutation might be responsible for induction of chlorotic spots on the inoculated leaves of C. amaranticolor. PMID:26674677

  9. Generation of Doubled Haploid Transgenic Wheat Lines by Microspore Transformation

    PubMed Central

    Liu, Weiguo; Konzak, Calvin F.; von Wettstein, Diter; Rustgi, Sachin

    2013-01-01

    Microspores can be induced to develop homozygous doubled haploid plants in a single generation. In the present experiments androgenic microspores of wheat have been genetically transformed and developed into mature homozygous transgenic plants. Two different transformation techniques were investigated, one employing electroporation and the other co-cultivation with Agrobacterium tumefaciens. Different tissue culture and transfection conditions were tested on nine different wheat cultivars using four different constructs. A total of 19 fertile transformants in five genotypes from four market classes of common wheat were recovered by the two procedures. PCR followed by DNA sequencing of the products, Southern blot analyses and bio/histo-chemical and histological assays of the recombinant enzymes confirmed the presence of the transgenes in the T0 transformants and their stable inheritance in homozygous T1∶2 doubled haploid progenies. Several decisive factors determining the transformation and regeneration efficiency with the two procedures were determined: (i) pretreatment of immature spikes with CuSO4 solution (500 mg/L) at 4°C for 10 days; (ii) electroporation of plasmid DNA in enlarged microspores by a single pulse of ∼375 V; (iii) induction of microspores after transfection at 28°C in NPB-99 medium and regeneration at 26°C in MMS5 medium; (iv) co-cultivation with Agrobacterium AGL-1 cells for transfer of plasmid T-DNA into microspores at day 0 for <24 hours; and (v) elimination of AGL-1 cells after co-cultivation with timentin (200–400 mg/L). PMID:24260351

  10. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    PubMed

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement. PMID:26660352

  11. A transgenic perspective on plant functional genomics.

    PubMed

    Pereira, A

    2000-01-01

    Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops. PMID:11131004

  12. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus.

    PubMed

    Clarke, Jihong Liu; Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W; Moe, Roar; Blystad, Dag-Ragnar

    2008-06-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated. PMID:18327592

  13. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus

    PubMed Central

    Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W.; Moe, Roar; Blystad, Dag-Ragnar

    2008-01-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2–3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated. PMID:18327592

  14. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.

    PubMed

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-06-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  15. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  16. A Built-In Strategy to Mitigate Transgene Spreading from Genetically Modified Corn

    PubMed Central

    Li, Jing; Yu, Hui; Zhang, Fengzhen; Lin, Chaoyang; Gao, Jianhua; Fang, Jun; Ding, Xiahui; Shen, Zhicheng; Xu, Xiaoli

    2013-01-01

    Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement. PMID:24324711

  17. Consistent transcriptional silencing of 35S-driven transgenes in gentian.

    PubMed

    Mishiba, Kei-ichiro; Nishihara, Masahiro; Nakatsuka, Takashi; Abe, Yoshiko; Hirano, Hiroshi; Yokoi, Takahide; Kikuchi, Akiko; Yamamura, Saburo

    2005-11-01

    In this study, no transgenic gentian (Gentiana triflora x Gentiana scabra) plants produced via Agrobacterium-mediated transformation exhibited transgene (GtMADS, gentian-derived MADS-box genes or sGFP, green fluorescent protein) expression in their leaf tissues, despite the use of constitutive Cauliflower mosaic virus (CaMV) 35S promoter. Strikingly, no expression of the selectable marker gene (bar) used for bialaphos selection was observed. To investigate the possible cause of this drastic transgene silencing, methylation-specific sequences were analysed by bisulfite genomic sequencing using tobacco transformants as a control. Highly methylated cytosine residues of CpG and CpWpG (W contains A or T) sites were distinctively detected in the promoter and 5' coding regions of the transgenes 35S-bar and 35S-GtMADS in all gentian lines analysed. These lines also exhibited various degrees of cytosine methylation in asymmetrical sequences. The methylation frequencies in the other transgene, nopaline synthase (NOS) promoter-driven nptII, and the endogenous GtMADS gene coding region, were much lower and were variable compared with those in the 35S promoter regions. Transgene methylation was observed in the bialaphos-selected transgenic calluses expressing the transgenes, and methylation sequences were distributed preferentially around the as-1 element in the 35S promoter. Calluses derived from leaf tissues of silenced transgenic gentian also exhibited transgene suppression, but expression was recovered by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine (aza-dC). These results indicated that cytosine methylation occurs exclusively in the 35S promoter regions of the expressed transgenes during selection of gentian transformants, causing transcriptional gene silencing. PMID:16262705

  18. High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd 21-3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brachypodium distachyon (Brachypodium) is a small grass with biological attributes (rapid generation time, small genome, diploid accessions, small stature and simple growth requirements) that make it suitable for use as a model system. In addition, a growing list of genomic resources have been devel...

  19. Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea).

    PubMed

    Singh, Natwar; Mishra, Avinash; Jha, Bhavanath

    2014-08-15

    Peroxisomal ascorbate peroxidase gene (SbpAPX) of an extreme halophyte Salicornia brachiata imparts abiotic stress endurance and plays a key role in the protection against oxidative stress. The cloned SbpAPX gene was transformed to local variety of peanut and about 100 transgenic plants were developed using optimized in vitro regeneration and Agrobacterium mediated genetic transformation method. The T0 transgenic plants were confirmed for the gene integration; grown under controlled condition in containment green house facility; seeds were harvested and T1 plants were raised. Transgenic plants (T1) were further confirmed by PCR using gene specific primers and histochemical GUS assay. About 40 transgenic plants (T1) were selected randomly and subjected for salt stress tolerance study. Transgenic plants remained green however non-transgenic plants showed bleaching and yellowish leaves under salt stress conditions. Under stress condition, transgenic plants continued normal growth and completed their life cycle. Transgenic peanut plants exhibited adequate tolerance under salt stress condition and thus could be explored for the cultivation in salt affected areas for the sustainable agriculture. PMID:24954532

  20. Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA.

    PubMed

    Leibman, Diana; Prakash, Shanmugam; Wolf, Dalia; Zelcer, Aaron; Anfoka, Ghandi; Haviv, Sabrina; Brumin, Marina; Gaba, Victor; Arazi, Tzahi; Lapidot, Moshe; Gal-On, Amit

    2015-11-01

    Gene silencing is a natural defense response of plants against invading RNA and DNA viruses. The RNA post-transcriptional silencing system has been commonly utilized to generate transgenic crop plants that are "immune" to plant virus infection. Here, we applied this approach against the devastating DNA virus tomato yellow leaf curl virus (TYLCV) in its host tomato (Solanum lycopersicum L.). To generate broad resistance to a number of different TYLCV viruses, three conserved sequences (the intergenic region [NCR], V1-V2 and C1-C2 genes) from the genome of the severe virus (TYLCV) were synthesized as a single insert and cloned into a hairpin configuration in a binary vector, which was used to transform TYLCV-susceptible tomato plants. Eight of 28 independent transgenic tomato lines exhibited immunity to TYLCV-Is and to TYLCV-Mld, but not to tomato yellow leaf curl Sardinia virus, which shares relatively low sequence homology with the transgene. In addition, a marker-free (nptII-deleted) transgenic tomato line was generated for the first time by Agrobacterium-mediated transformation without antibiotic selection, followed by screening of 1180 regenerated shoots by whitefly-mediated TYLCV inoculation. Resistant lines showed a high level of transgene-siRNA (t-siRNA) accumulation (22% of total small RNA) with dominant sizes of 21 nt (73%) and 22 nt (22%). The t-siRNA displayed hot-spot distribution ("peaks") along the transgene, with different distribution patterns than the viral-siRNA peaks observed in TYLCV-infected tomato. A grafting experiment demonstrated the mobility of 0.04% of the t-siRNA from transgenic rootstock to non-transformed scion, even though scion resistance against TYLCV was not achieved. PMID:26255053

  1. Maize transformation technology development for commercial event generation

    PubMed Central

    Que, Qiudeng; Elumalai, Sivamani; Li, Xianggan; Zhong, Heng; Nalapalli, Samson; Schweiner, Michael; Fei, Xiaoyin; Nuccio, Michael; Kelliher, Timothy; Gu, Weining; Chen, Zhongying; Chilton, Mary-Dell M.

    2014-01-01

    Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed. PMID:25140170

  2. Co-transformation of canola by chimeric chitinase and tlp genes towards improving resistance to Sclerotinia sclerotiorum.

    PubMed

    Aghazadeh, Rustam; Zamani, Mohammadreza; Motallebi, Mostafa; Moradyar, Mehdi; Moghadassi Jahromi, Zahra

    2016-09-01

    Canola (Brassica napus) plants were co-transformed with two pathogenesis-related protein genes expressing a Trichoderma atroviride chitinase with a chitin-binding domain (chimeric chitinase) and a thaumatin-like protein (tlp) from Oryza sativa conferring resistance to phytopatogenic fungi by Agrobacterium-mediated transformation. The putative transgenic plants were confirmed by PCR. After measuring the specific activity of the chimeric chitinase and glucanase activity for tlp genes, transgenic plants with high specific activity were selected for southern blot analysis to confirm the copy number of the genes. In vitro assays, the antifungal activity of crude extracted protein against Sclerotinia sclerotiorum showed that the inhibition percentage in double transgenic plants was between 55 and 62, whereas the inhibition percentage in single-gene transformants (chimeric chitinase) ranged from 35 to 45 percent. Importantly, in greenhouse conditions, the double transgenic plants showed significant resistance than the single-gene transformant and wild type plants. The results in T2 generation using the intact leaf inoculation method showed that the average lesion diameters were 10, 14.7 and 29 mm for the double transformant, single-gene transformant and non-transgenic plants, respectively. Combined expression of chimeric chitinase and tlp in transgenic plants showed significantly enhanced resistance against S. sclerotiorum than the one that express single-gene transformant plants. These results suggest that the co-expression of chimeric chitinase and tlp can confer enhanced disease resistance in canola plant. PMID:27430511

  3. rbcS SRS4 promoter from Glycine max and its expression activity in transgenic tobacco.

    PubMed

    Cui, X Y; Chen, Z Y; Wu, L; Liu, X Q; Dong, Y Y; Wang, F W; Li, H Y

    2015-01-01

    The regulatory region of the ribulose-1,5-bisphosphate carboxylase small subunit gene SRS4 from soybean (Glycine max) was cloned using TAIL-PCR and general PCR, and named the rbcS promoter. The promoter was fused with the GUS gene and introduced into Nicotiana tabacum via Agrobacterium-mediated leaf disk transformation. In 4-week-old transgenic tobacco plants, the highest GUS expression levels were observed in the leaves, GUS activity was 7.13- and 7.40-fold higher in leaves than in stems and roots, respectively. Moreover, GUS activity was stimulated by light. In conclusion, spatial and light regulation of the soybean rbcS promoter was observed in N. tabacum, thus illustrating a leaf-specific and light-induced promoter. PMID:26214418

  4. Quinic acids from Aster caucasicus and from transgenic callus expressing a beta-amyrin synthase.

    PubMed

    Pecchia, Paola; Cammareri, Maria; Malafronte, Nicola; Consiglio, M Federica; Gualtieri, Maria Josefina; Conicella, Clara

    2011-11-01

    Several different classes of secondary metabolites, including flavonoids, triterpenoid saponins and quinic acid derivatives, are found in Aster spp. (Fam. Asteraceae). Several Aster compounds revealed biological as well as pharmacological activities. In this work, a phytochemical investigation of A. caucasicus evidenced the presence of quinic acid derivatives, as well as the absence of triterpene saponins. To combine in one species the production of different phytochemicals, including triterpenes, an Agrobacterium-mediated transformation of A. caucasicus was set up to introduce A. sedifolius beta-amyrin synthase (AsOXA1)-encoding gene under the control of the constitutive promoter CaMV35S. The quali-quantitative analysis of transgenic calli with ectopic expression of AsOXA1 showed, in one sample, a negligible amount of triterpene saponins combined with higher amount of quinic acid derivatives as compared with the wild type callus. PMID:22224284

  5. [Genetic transformation of flax (Linum usitatissimum L.) with chimeric GFP-TUA6 gene for visualisation of microtubules].

    PubMed

    Shisha, E N; Korkhovoĭ, V I; Baer, G Ia; Guzenko, E V; Lemesh, V A; Kartel', N A; Emets, A I; Blium, Ia B

    2013-01-01

    The data of Agrobacterium-mediated transformation of some Linum usitatissimum cultivars zoned on the territories of Belarus and Ukraine with the plasmid carrying chimeric GFP-TUA6 gene and nptII gene as selectable marker conferring resistance to kanamycin are presented in this study. Transformation was affected by a number of factors including optical density (OD600), time of inoculation of explants with Agrobacterium and co-culture conditions. Transgenic nature of obtained lines was confirmed by PCR analysis. Expression of GFP-TUA6 gene was detected with confocal laser scanning microscopy. The obtained transgenic lines can be used for further functional studies the role of microtubules in the processes of building the flax fibres and resistance to wind. PMID:23745358

  6. In planta transformation method for T-DNA transfer in orchids

    NASA Astrophysics Data System (ADS)

    Semiarti, Endang; Purwantoro, Aziz; Mercuriani, Ixora S.; Anggriasari, Anida M.; Jang, Seonghoe; Suhandono, Sony; Machida, Yasunori; Machida, Chiyoko

    2014-03-01

    Transgenic plant technology is an efficient tool to study the function of gene(s) in plant. The most popular and widely used technique is Agrobacterium-mediated transformation in which cocultivation was done by immersing the plant tissues/organ in overnight bacterial cultured for about 30 minutes to one hour under in vitro condition. In this experiment, we developed more easier technique that omitted the in vitro step during cocultivation with Agrobacterium, namely in planta transformation method. Pollinaria (compact pollen mass of orchid) of Phalaenopsis amabilis and Spathoglottis plicata orchids were used as target explants that were immersed into bacterial culture for 30 minutes, then dried up the pollinaria, the transformed pollinaria was used to pollinate orchid flowers. The T-DNA used for this experiments were Ubipro∷PaFT/A. tumefaciens GV3101 for P. amabilis and MeEF1α2 pro∷GUS/ A. tumefaciens LBA 4404 for S.plicata. Seeds that were produced from pollinated flowers were grown onto 10 mg/l hygromicin containing NP (New Phalaenopsis) medium. The existance of transgene in putative transformant protocorm (developing orchid embryo) genome was confirmed using PCR with specific primers of either PaFT or GUS genes. Histochemical GUS assay was also performed to the putative transformants. The result showed that transformation frequencies were 2.1 % in P. amabilis, and 0,53% in S. plicata. These results indicates that in planta transformation method could be used for Agrobacterium-mediated genetic transformation, with advantage easier and more secure work from contaminants than that of the in vitro method.

  7. In vitro plant regeneration and genetic transformation of Dichanthium annulatum.

    PubMed

    Kumar, Jitendra; Shukla, Sharad M; Bhat, Vishnu; Gupta, Sanjay; Gupta, M G

    2005-11-01

    Optimization of in vitro plant regeneration and genetic transformation of apomictic species such as Dichanthium annulatum would enable transfer of desirable genes. Seven genotypes of this grass species were screened through mature seed explant for embryogenic callus induction, callus growth and quality (color and texture), and shoot induction. Genotype IG-1999, which produced highly embryogenic, rapidly growing good-quality callus capable of regenerating at a high frequency, was selected for transformation experiments. Using a binary vector (pCAMBIA1305), frequency of GUS expression was compared between two methods of transformation. Bombardment of embryogenic calli with gold particles coated with pCAMBIA1305 at a distance of 11 cm, pressure of 4 bars, and vacuum of 27 Hg passing through 100 muM mesh produced maximum GUS expression (23%). Agrobacterium infection was maximum at an optical density of 2.0 when cocultured under vacuum for 15 min and cocultivated for 3 days at 28 degrees C in constant dark on MS medium of pH 5.8 with 3 mg/l 2,4-D, and 400 muM acetosyringone. Among two binary vectors used for Agrobacterium-mediated transformation, pCAMBIA1301 showed higher frequency of GUS expression while pCAMBIA1305 recorded more of the GUS spots per callus. Supplementation of acetosyringone in the cocultivation medium was found indispensable for Agrobacterium-mediated transformation. Injuring the calli through gold particle bombardment before their cocultivation with Agrobacterium improved the transformation efficiency. Several transgenic plants were developed using the PIG method, while stable GUS-expressing calli were multiplied during selection on MS medium containing 250 mg/l cefotaxime and 50 mg/l hygromycin, incubated in constant dark. A highly significant difference was observed between two methods of transformation for both frequency of GUS expression and GUS spots per callus. PIG-mediated transformation resulted in higher GUS expression compared to the

  8. Silencing the HaAK Gene by Transgenic Plant-Mediated RNAi Impairs Larval Growth of Helicoverpa armigera

    PubMed Central

    Liu, Feng; Wang, Xiao-Dong; Zhao, Yi-Ying; Li, Yan-Jun; Liu, Yong-Chang; Sun, Jie

    2015-01-01

    Insect pests have caused noticeable economic losses in agriculture, and the heavy use of insecticide to control pests not only brings the threats of insecticide resistance but also causes the great pollution to foods and the environment. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been is currently developed for protection against insect pests. In this study, we used this technology to silence the arginine kinase (AK) gene of Helicoverpa armigera (HaAK), encoding a phosphotransferase that plays a critical role in cellular energy metabolism in invertebrate. Transgenic Arabidopsis plants producing HaAK dsRNA were generated by Agrobacterium-mediated transformation. The maximal mortality rate of 55% was reached when H. armigera first-instar larvae were fed with transgenic plant leaves for 3 days, which was dramatically higher than the 18% mortality recorded in the control group. Moreover, the ingestion of transgenic plants significantly retarded larval growth, and the transcript levels of HaAK were also knocked down by up to 52%. The feeding bioassays further indicated that the inhibition efficiency was correlated with the integrity and concentration of the produced HaAK dsRNA in transgenic plants. These results strongly show that the resistance to H. armigera was improved in transgenic Arabidopsis plants, suggesting that the RNAi targeting of AK has the potential for the control of insect pests. PMID:25552931

  9. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression.

    PubMed

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  10. Environment Control to Improve Recombinant Protein Yields in Plants Based on Agrobacterium-Mediated Transient Gene Expression

    PubMed Central

    Fujiuchi, Naomichi; Matoba, Nobuyuki; Matsuda, Ryo

    2016-01-01

    Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: (1) recombinant protein content per unit biomass and (2) recombinant protein productivity per unit area–time at the end of the upstream production. Because environmental factors in the upstream production have impacts on these parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and postinoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Preinoculation environmental factors associated with planting density, light quality, and nutrient supply affect plant characteristics, such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, postinoculation environmental factors, such as temperature, light intensity, and humidity, have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the postinoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain high recombinant

  11. Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene.

    PubMed

    Wang, Lin; Samac, Deborah A; Shapir, Nir; Wackett, Lawrence P; Vance, Carroll P; Olszewski, Neil E; Sadowsky, Michael J

    2005-09-01

    Atrazine is one of the most widely used herbicides in the USA. Atrazine chlorohydrolase (AtzA), the first enzyme in a six-step pathway leading to the mineralization of atrazine in Gram-negative soil bacteria, catalyses the hydrolytic dechlorination and detoxification of atrazine to hydroxyatrazine. In this study, we investigated the potential use of transgenic plants expressing atzA to take up, dechlorinate and detoxify atrazine. Alfalfa, Arabidopsis thaliana and tobacco were transformed with a modified bacterial atzA gene, p-atzA, under the control of the cassava vein mosaic virus promoter. All transgenic plant species actively expressed p-atzA and grew over a wide range of atrazine concentrations. Thin layer chromatography analyses indicated that in planta expression of p-atzA resulted in the production of hydroxyatrazine. Hydroponically grown transgenic tobacco and alfalfa dechlorinated atrazine to hydroxyatrazine in leaves, stems and roots. Moreover, p-atzA was found to be useful as a conditional-positive selection system to isolate alfalfa and Arabidopsis transformants following Agrobacterium-mediated transformation. Our work suggests that the in planta expression of p-atzA may be useful for the development of plants for the phytoremediation of atrazine-contaminated soils and soil water, and as a marker gene to select for the integration of exogenous DNA into the plant genome. PMID:17173634

  12. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    PubMed Central

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  13. Use of Agrobacterium rhizogenes strain 18r12v and paromomycin selection for transformation of Brachypodium distachyon and Brachypodium sylvaticum

    DOE PAGESBeta

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-05-24

    In this study, the genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This studymore » demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticurn. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. turnefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation.« less

  14. Use of Agrobacterium rhizogenes Strain 18r12v and Paromomycin Selection for Transformation of Brachypodium distachyon and Brachypodium sylvaticum

    PubMed Central

    Collier, Ray; Bragg, Jennifer; Hernandez, Bryan T.; Vogel, John P.; Thilmony, Roger

    2016-01-01

    The genetic transformation of monocot grasses is a resource intensive process, the quality and efficiency of which is dependent in part upon the method of DNA introduction, as well as the ability to effectively separate transformed from wildtype tissue. Agrobacterium-mediated transformation of Brachypodium has relied mainly on Agrobacterium tumefaciens strain AGL1. Currently the antibiotic hygromycin B has been the selective agent of choice for robust identification of transgenic calli in Brachypodium distachyon and Brachypodium sylvaticum but few other chemicals have been shown to work as well for selection of transgenic Brachypodium cells in tissue culture. This study demonstrates that Agrobacterium rhizogenes strain 18r12v and paromomycin selection can be successfully used for the efficient generation of transgenic B. distachyon and B. sylvaticum. Additionally we observed that the transformation rates were similar to or higher than those obtained with A. tumefaciens strain AGL1 and hygromycin selection. The A. rhizogenes strain 18r12v harboring the pARS1 binary vector and paromomycin selection is an effective means of generating transgenic Brachypodium plants. This novel approach will facilitate the transgenic complementation of T-DNA knockout mutants of B. distachyon which were created using hygromycin selection, as well as aid the implementation of more complex genome manipulation strategies which require multiple rounds of transformation. PMID:27252729

  15. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project.

    PubMed

    Toh, Su San; Treves, David S; Barati, Michelle T; Perlin, Michael H

    2016-10-01

    Microbotryum lychnidis-dioicae is a member of a species complex infecting host plants in the Caryophyllaceae. It is used as a model system in many areas of research, but attempts to make this organism tractable for reverse genetic approaches have not been fruitful. Here, we exploited the recently obtained genome sequence and transcriptome analysis to inform our design of constructs for use in Agrobacterium-mediated transformation techniques currently available for other fungi. Reproducible transformation was demonstrated at the genomic, transcriptional and functional levels. Moreover, these initial proof-of-principle experiments provide evidence that supports the findings from initial global transcriptome analysis regarding expression from the respective promoters under different growth conditions of the fungus. The technique thus provides for the first time the ability to stably introduce transgenes and over-express target M. lychnidis-dioicae genes. PMID:27215216

  16. A high-throughput transformation system in plum (Prunus domestica L.) provides a powerful tool for functional genomics in Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved Agrobacterium-mediated protocol in plum (Prunus domestica L.) is described, whereby, the addition of 2,4-D to the regeneration media increased the regeneration efficiency of independent transgenic plants up to 10 fold over previous reports. DNA blot analysis of putative transgenic shoot...

  17. The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat.

    PubMed

    Han, Yonghua; Blechl, Ann; Wang, Daowen

    2015-12-01

    Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing co-transformed high molecular weight glutenin subunit genes and the selectable marker bar using fluorescence in situ hybridization. Transgene loci were shown to distribute unevenly throughout the genome and incorporate into different locations along individual chromosomes. There was only a slight tendency towards the localization of transgenes in distal chromosome regions. High proportions of transgenes in separate plasmids integrated at the same site and only 7 lines had 2 or 3 loci. Such loci may not segregate frequently in subsequent generations so it is difficult to remove selectable markers from transgenic lines after regeneration. We also found that three transgene lines were associated with rearranged chromosomes, suggesting a the close relationship between particle bombardment-mediated transgene integration and chromosomal rearrangements. PMID:26405007

  18. Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector.

    PubMed

    Yamazaki, M; Son, L; Hayashi, T; Morita, N; Asamizu, T; Mourakoshi, I; Saito, K

    1996-01-01

    Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15-60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established. PMID:24178349

  19. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana.

    PubMed

    Chan, Hui-Ting; Chia, Min-Yuan; Pang, Victor Fei; Jeng, Chian-Ren; Do, Yi-Yin; Huang, Pung-Ling

    2013-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. 'Pei chiao' (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium-mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%-0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2-week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination-dependent gradational increase in the elicitation of serum and saliva anti-PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV. PMID:23116484

  20. Wheat (Triticum aestivum L.) transformation using mature embryos.

    PubMed

    Medvecká, Eva; Harwood, Wendy A

    2015-01-01

    In most protocols for the Agrobacterium-mediated transformation of wheat, the preferred target tissues are immature embryos. However, transformation methods relying on immature embryos require the growth of plants under controlled conditions to provide a continuous supply of good-quality target tissue. The use of mature embryos as a target tissue has the advantage of only requiring good-quality seed as the starting material. Here we describe a transformation method based on the Agrobacterium-mediated transformation of callus cultures derived from mature wheat embryos of the genotype Bobwhite S56. PMID:25300842

  1. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-01

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications. PMID:23889215

  2. Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects.

    PubMed

    Manimaran, P; Ramkumar, G; Sakthivel, K; Sundaram, R M; Madhav, M S; Balachandran, S M

    2011-01-01

    Genetically modified crops are one of the prudent options for enhancing the production and productivity of crop plants by safeguarding from the losses due to biotic and abiotic stresses. Agrobacterium-mediated and biolistic transformation methods are used to develop transgenic crop plants in which selectable marker genes (SMG) are generally deployed to identify 'true' transformants. The commonly used SMG obtained from prokaryotic sources when employed in transgenic plants pose risks due to their lethal nature during selection process. In the recent past, some non-lethal SMGs have been identified and used for selection of transformants with increased precision and high selection efficiency. Considering the concerns related to bio-safety of the environment, it is desirable to remove the SMG in order to maximize the commercial success through wide adoption and public acceptance of genetically modified (GM) food crops. In this review, we examine the availability, and the suitability of wide range of non-lethal selection markers and elimination of SMG methods to develop marker-free transgenics for achieving global food security. As the strategies for marker-free plants are still in proof-of-concept stage, adaptation of new genomics tools for identification of novel non-lethal marker systems and its application for developing marker-free transgenics would further strengthen the crop improvement program. PMID:21672619

  3. Agrobacterium mediated transfer of a mutant Arabidopsis acetolactate synthase gene confers resistance to chlorsulfuron in chicory (Cichorium intybus L.).

    PubMed

    Vermeulen, A; Vaucheret, H; Pautot, V; Chupeau, Y

    1992-06-01

    Leaf discs of C. intybus were inoculated with an Agrobacterium tumefaciens strain harboring a neomycin phosphotransferase (neo) gene for kanamycin resistance and a mutant acetolactate synthase gene (csr1-1) from Arabidopsis thaliana conferring resistance to sulfonylurea herbicides. A regeneration medium was optimized which permitted an efficient shoot regeneration from leaf discs. Transgenic shoots were selected on rooting medium containing 100 mg/l kanamycin sulfate. Integration of the csr1-1 gene into genomic DNA of kanamycin resistant chicory plants was confirmed by Southern blot hybridizations. Analysis of the selfed progenies (S1 and S2) of two independent transformed clones showed that kanamycin and chlorsulfuron resistances were inherited as dominant Mendelian traits. The method described here for producing transformed plants will allow new opportunities for chicory breeding. PMID:24203132

  4. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation.

    PubMed

    Renovell, Agueda; Gago, Selma; Ruiz-Ruiz, Susana; Velázquez, Karelia; Navarro, Luis; Moreno, Pedro; Vives, Mari Carmen; Guerri, José

    2010-10-25

    Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis. PMID:20708769

  5. [Development of transgenic maize with anti-rough dwarf virus artificial miRNA vector and their disease resistance].

    PubMed

    Xuan, Ning; Zhao, Chuanzhi; Peng, Zhenying; Chen, Gao; Bian, Fei; Lian, Mingzheng; Liu, Guoxia; Wang, Xingjun; Bi, Yuping

    2015-09-01

    Maize is one of the most important food crops. Rice black-streaked dwarf virus is a maize rough dwarf disease pathogen. The occurrence and transmission of maize rough dwarf disease brings great damage to maize production. The technology of using artificial miRNA to build antiviral plant has been proven effective in a variety of plants. However, such trials in maize have not been reported. We designed primers based on the sequence of maize zea-miR159a precursor and sequence of function protein genes and silencing RBSDV coding genes in RBSDV genome. We constructed amiRNA (artificial miRNA) gene for silencing RBSDV coding gene and gene silencing suppressor. We constructed pCAMBIA3301-121-amiRNA plant expression vector for transforming maize inbred lines Z31 by using agrobacterium mediated method. After molecular analysis of transgenic maize, homozygous lines with high miRNA expression were selected by molecular detection for a subsequent natural infection experiment. We studied the severity of maize rough dwarf disease according to a grading standard (grade 0 to 4). The experiment results showed that the disease resistance of transgenic homozygous maize with the anti-rough dwarf virus amiRNA vector was better than that of wild type. Among the transgenic maize, S6-miR159 transgenic maize had high disease resistance. It is feasible to create new maize variety by the use of artificial miRNA. PMID:26955715

  6. Production of herbicide-resistant medicinal plant Salvia miltiorrhiza transformed with the bar gene.

    PubMed

    Liu, Yu; Yang, Shi Xin; Cheng, Yan; Liu, Dong Qing; Zhang, Yong; Deng, Ke Jun; Zheng, Xue Lian

    2015-12-01

    In this study, we successfully performed Agrobacterium-mediated genetic transformation of Salvia miltiorrhiza and produced herbicide-resistant transformants. Leaf discs of S. miltiorrhiza were infected with Agrobacterium tumefaciens EHA105 harboring pCAMBIA 3301. The pCAMBIA 3301 includes an intron-containing gus reporter and a bar selection marker. To increase stable transformation efficiency, a two-step selection was employed which consists of herbicide resistance and gus expression. Here, we put more attention to the screening step of herbicide resistance. The current study provides an efficient screening system for the transformed plant of S. miltiorrhiza harboring bar gene. To determine the most suitable phosphinothricin concentration for plant selection, non-transformed leaf discs were grown on selection media containing six different phosphinothricin concentrations (0, 0.2, 0.4, 0.6, 0.8, and 1.0 mg/l). Based on the above results of non-transformed calluses, the sensitivity of phosphinothricin (0, 0.4, 0.8, 1.2, 1.6 mg/l) was tested in the screening of transgenic S. miltiorrhiza. We identified that 0.6 mg/l phosphinothricin should be suitable for selecting putatively transformed callus because non-transformed callus growth was effectively inhibited under this concentrations. When sprayed with Basta, the transgenic S. miltiorrhiza plants were tolerant to the herbicide. Hence, we report successful transformation of the bar gene conferring herbicide resistance to S. miltiorrhiza. PMID:26364310

  7. Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests

    PubMed Central

    Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750

  8. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W.

    PubMed

    Yu, Tsong-Ann; Chiang, Chu-Hui; Wu, Hui-Wen; Li, Chin-Mei; Yang, Ching-Fu; Chen, Jun-Han; Chen, Yu-Wen; Yeh, Shyi-Dong

    2011-03-01

    Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line). PCR and Southern blot analyses confirmed that the chimeric construct was incorporated into the genomic DNA of the transformants. Greenhouse evaluation of the selected ten transgenic lines of 'Feeling' cultivar revealed that two immune lines conferred complete resistance to ZYMV and PRSV W, from which virus accumulation were not detected by Western blotting 4 weeks after inoculation. The transgenic transcript was not detected, but small interfering RNA (siRNA) was readily detected from the two immune lines and T(1) progeny of line ZW 10 before inoculation, indicating that RNA-mediated post-transcriptional gene silencing (PTGS) is the underlying mechanism for the double-virus resistance. The segregation ratio of T(1) progeny of the immune line ZW10 indicated that the single inserted transgene is nuclearly inherited and associated with the phenotype of double-virus resistance as a dominant trait. The transgenic lines derived from the commercial watermelon cultivars have great potential for control of the two important viruses and can be implemented directly without further breeding. PMID:21079966

  9. Transgenic indica rice lines, expressing Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1), exhibit enhanced resistance to major pathogens.

    PubMed

    Sadumpati, Vijayakumar; Kalambur, Muralidharan; Vudem, Dashavantha Reddy; Kirti, Pulugurtha Bharadwaja; Khareedu, Venkateswara Rao

    2013-07-10

    Brassica juncea Nonexpressor of pathogenesis-related genes 1 (BjNPR1) has been introduced into commercial indica rice varieties by Agrobacterium-mediated genetic transformation. Transgenic rice plants were regenerated from the phosphinothricin-resistant calli obtained after co-cultivation with Agrobacterium strain LBA4404 harbouring Ti plasmid pSB111-bar-BjNPR1. Molecular analyses confirmed the stable integration and expression of BjNPR1 in various transgenic rice lines. Transgenes NPR1 and bar were stably inherited and disclosed co-segregation in subsequent generations in a Mendelian fashion. Homozygous transgenic rice lines expressing BjNPR1 protein displayed enhanced resistance to rice blast, sheath blight and bacterial leaf blight diseases. Rice transformants with higher levels of NPR1 revealed notable increases in plant height, panicle length, flag-leaf length, number of seeds/panicle and seed yield/plant as compared to the untransformed plants. The overall results amply demonstrate the profound impact of BjNPR1 in imparting resistance against major pathogens of rice. The multipotent BjNPR1, as such, seems promising as a prime candidate gene to fortify crop plants with durable resistance against various pathogens. PMID:23664883

  10. Enhanced resistance to blister blight in transgenic tea (Camellia sinensis [L.] O. Kuntze) by overexpression of class I chitinase gene from potato (Solanum tuberosum).

    PubMed

    Singh, H Ranjit; Deka, Manab; Das, Sudripta

    2015-07-01

    Tea is the second most consumed beverage in the world. A crop loss of up to 43 % has been reported due to blister blight disease of tea caused by a fungus, Exobasidium vexans. Thus, it directly affects the tea industry qualitatively and quantitatively. Solanum tuberosum class I chitinase gene (AF153195) is a plant pathogenesis-related gene. It was introduced into tea genome via Agrobacterium-mediated transformation with hygromycin phosphotransferase (hpt) gene conferring hygromycin resistance as plant selectable marker. A total of 41 hygromycin resistant plantlets were obtained, and PCR analysis established 12 plantlets confirming about the stable integration of transgene in the plant genome. Real-time PCR detected transgene expression in four transgenic plantlets (T28, C57, C9, and T31). Resistance to biotrophic fungal pathogen, E. vexans, was tested by detached leaf infection assay of greenhouse acclimated plantlets. An inhibitory activity against the fungal pathogen was evident from the detached leaves from the transformants compared with the control. Fungal lesion formed on control plantlet whereas the transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area. This result suggests that constitutive expression of the potato class I chitinase gene can be exploited to improve resistance to fungal pathogen, E. vexans, in economical perennial plantation crop like tea. PMID:25772466

  11. Cloning of TPS gene from eelgrass species Zostera marina and its functional identification by genetic transformation in rice.

    PubMed

    Zhao, Feng; Li, Qiuying; Weng, Manli; Wang, Xiuliang; Guo, Baotai; Wang, Li; Wang, Wei; Duan, Delin; Wang, Bin

    2013-12-01

    The full-length cDNA sequence (2613 bp) of the trehalose-6-phosphate synthase (TPS) gene of eelgrass Zostera marina (ZmTPS) was identified and cloned. Z. marina is a kind of seed-plant growing in sea water during its whole life history. The open reading frame (ORF) region of ZmTPS gene encodes a protein of 870 amino acid residues and a stop codon. The corresponding genomic DNA sequence is 3770 bp in length, which contains 3 exons and 2 introns. The ZmTPS gene was transformed into rice variety ZH11 via Agrobacterium-mediated transformation method. After antibiotic screening, molecular characterization, salt-tolerance and trehalose content determinations, two transgenic lines resistant to 150 mM NaCL solutions were screened. Our study results indicated that the ZmTPS gene was integrated into the genomic DNA of the two transgenic rice lines and could be expressed well. Moreover, the detection of the transformed ZmTPS gene in the progenies of the two transgenic lines was performed from T1 to T4 generations; and results suggested that the transformed ZmTPS gene can be transmitted from parent to the progeny in transgenic rice. PMID:24035935

  12. AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L.

    PubMed

    Tsuboyama-Tanaka, Shoko; Kodama, Yutaka

    2015-03-01

    The dioecious liverwort, Marchantia polymorpha L., is an emerging model plant. Various molecular biological techniques have been optimized for M. polymorpha for the past several years, and recently we reported a simplified Agrobacterium-mediated transformation method using sporelings (immature thalli from spores) of M. polymorpha. This method, termed AgarTrap (Agar-utilized Transformation with Pouring Solutions), completed by exchanging appropriate solutions on a single Petri dish to produce a sufficient number of independent transgenic sporelings. However, because spores are produced by crosses between males and females, the genetic backgrounds of resulting transgenic sporelings are not uniform. To easily produce transgenic liverworts with a uniform genetic background using AgarTrap, we developed an AgarTrap-mediated transformation method using intact gemmae/gemmalings produced by asexual reproduction. Using AgarTrap with male and female gemmae/gemmalings produced a sufficient number of independent transgenic gemmalings with uniform genetic backgrounds. The optimized transformation efficiencies were approximately 30 and 50 % in males and females, respectively. As with AgarTrap using sporelings, AgarTrap using intact gemmae/gemmalings will be useful in promoting studies of the molecular biology of M. polymorpha. PMID:25663453

  13. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes

    PubMed Central

    Kumar, Shashi; Dhingra, Amit; Daniell, Henry

    2012-01-01

    Chloroplast genetic engineering overcomes concerns of gene containment, low levels of transgene expression, gene silencing, positional and pleiotropic effects or presence of vector sequences in transformed genomes. Several therapeutic proteins and agronomic traits have been highly expressed via the tobacco chloroplast genome but extending this concept to important crops has been a major challenge; lack of 100% homologous species-specific chloroplast transformation vectors containing suitable selectable markers, ability to regulate transgene expression in developing plastids and inadequate tissue culture systems via somatic embryogenesis are major challenges. We employed a ‘Double Gene/Single Selection (DGSS)’ plastid transformation vector that harbors two selectable marker genes (aphA-6 and nptII) to detoxify the same antibiotic by two enzymes, irrespective of the type of tissues or plastids; by combining this with an efficient regeneration system via somatic embryogenesis, cotton plastid transformation was achieved for the first time. The DGSS transformation vector is at least 8-fold (1 event/2.4 bombarded plates) more efficient than ‘Single Gene/Single Selection (SGSS)’ vector (aphA-6; 1 event per 20 bombarded plates). Chloroplast transgenic lines were fertile, flowered and set seeds similar to untransformed plants. Transgenes stably integrated into the cotton chloroplast genome were maternally inherited and were not transmitted via pollen when out-crossed with untransformed female plants. Cotton is one of the most important genetically modified crops ($ 120 billion US annual economy). Successful transformation of the chloroplast genome should address concerns about transgene escape, insects developing resistance, inadequate insect control and promote public acceptance of genetically modified cotton. PMID:15604738

  14. Evaluation of the Agronomic Performance of Atrazine-Tolerant Transgenic japonica Rice Parental Lines for Utilization in Hybrid Seed Production

    PubMed Central

    Li, Yanlan; Li, Yanan; Wang, Shengjun; Su, Jinping; Liu, Xuejun; Chen, Defu; Chen, Xiwen

    2014-01-01

    Currently, the purity of hybrid seed is a crucial limiting factor when developing hybrid japonica rice (Oryza sativa L.). To chemically control hybrid seed purity, we transferred an improved atrazine chlorohydrolase gene (atzA) from Pseudomonas ADP into hybrid japonica parental lines (two maintainers, one restorer), and Nipponbare, by using Agrobacterium-mediated transformation. We subsequently selected several transgenic lines from each genotype by using PCR, RT-PCR, and germination analysis. In the presence of the investigated atrazine concentrations, particularly 150 µM atrazine, almost all of the transgenic lines produced significantly larger seedlings, with similar or higher germination percentages, than did the respective controls. Although the seedlings of transgenic lines were taller and gained more root biomass compared to the respective control plants, their growth was nevertheless inhibited by atrazine treatment compared to that without treatment. When grown in soil containing 2 mg/kg or 5 mg/kg atrazine, the transgenic lines were taller, and had higher total chlorophyll contents than did the respective controls; moreover, three of the strongest transgenic lines completely recovered after 45 days of growth. After treatment with 2 mg/kg or 5 mg/kg of atrazine, the atrazine residue remaining in the soil was 2.9–7.0% or 0.8–8.7% respectively, for transgenic lines, and 44.0–59.2% or 28.1–30.8%, respectively, for control plants. Spraying plants at the vegetative growth stage with 0.15% atrazine effectively killed control plants, but not transgenic lines. Our results indicate that transgenic atzA rice plants show tolerance to atrazine, and may be used as parental lines in future hybrid seed production. PMID:25275554

  15. A Novel Thylakoid Ascorbate Peroxidase from Jatrophacurcas Enhances Salt Tolerance in Transgenic Tobacco

    PubMed Central

    Liu, Zhibin; Bao, Han; Cai, Jin; Han, Jun; Zhou, Lirong

    2014-01-01

    Ascorbate peroxidase (APX) plays an important role in the metabolism of hydrogen peroxide in higher plants. In the present study, a novel APX gene (JctAPX) was cloned from Jatropha curcas L. The deduced amino acid sequence was similar to that of APX of some other plant species. JctAPX has a chloroplast transit peptide and was localized to the chloroplasts by analysis with a JctAPX-green fluorescent protein (GFP) fusion protein. Quantitative polymerase chain reaction (qPCR) analysis showed that JctAPX was constitutively expressed in different tissues from J. curcas and was upregulated by NaCl stress. To characterize its function in salt tolerance, the construct p35S: JctAPX was created and successfully introduced into tobacco by Agrobacterium-mediated transformation. Compared with wild type (WT), the transgenic plants exhibited no morphological abnormalities in the no-stress condition. However, under 200 mM NaCl treatment, JctAPX over-expressing plants showed increased tolerance to salt during seedling establishment and growth. In addition, the transgenic lines showed higher chlorophyll content and APX activity, which resulted in lower H2O2 content than WT when subjected to 400 mM NaCl stress. These results suggest that the increased APX activity in the chloroplasts from transformed plants increased salt tolerance by enhancing reactive oxygen species (ROS)-scavenging capacity under short-term NaCl stress conditions. PMID:24368517

  16. Stress tolerance of transgenic barley accumulating the alfalfa aldose reductase in the cytoplasm and the chloroplast.

    PubMed

    Nagy, Bettina; Majer, Petra; Mihály, Róbert; Pauk, János; Horváth, Gábor V

    2016-09-01

    Barley represents one of the major crops grown worldwide; its genetic transformation provides an important tool for the improvement of crop quality and tolerance to environmental stress factors. Biotic and abiotic stresses produce reactive oxygen species in the plant cells that can directly oxidize the cellular components including lipid membranes; resulting in lipid peroxidation and subsequently the accumulation of reactive carbonyl compounds. In order to protect barley plants from the effects of stress-produced reactive carbonyls, an Agrobacterium-mediated transformation was carried out using the Medicago sativa aldose reductase (MsALR) gene. In certain transgenic lines the produced MsALR enzyme was targeted to the chloroplasts to evaluate its protective effect in these organelles. The dual fluorescent protein-based method was used for the evaluation of tolerance of young seedlings to diverse stresses; our results demonstrated that this technique could be reliably applied for the detection of cellular stress in a variety of conditions. The chlorophyll and carotenoid content measurements also supported the results of the fluorescent protein-based method and the stress-protective effect of the MsALR enzyme. Targeting of MsALR into the chloroplast has also resulted in increased stress tolerance, similarly to the observed effect of the cytosolic MsALR accumulation. The results of the DsRed/GFP fluorescent protein-based method indicated that both the cytosol and chloroplast accumulation of MsALR can increase the abiotic stress tolerance of transgenic barley lines. PMID:27469099

  17. High efficiency plum (Prunus domestica L.) transformation: a functional genomics tool for Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an improved Agrobacterium-mediated protocol in plum (Prunus domestica L.) through the addition of 2,4-D to the regeneration media. This method has increased the regeneration efficiency of independent transgenic plants up to 10-fold over previous reports. DNA blot analysis of puta...

  18. Assessment of heat shock protein 70 induction by heat in alfalfa varieties and constitutive overexpression in transgenic plants.

    PubMed

    Ferradini, Nicoletta; Iannacone, Rina; Capomaccio, Stefano; Metelli, Alessandra; Armentano, Nadia; Semeraro, Lucia; Cellini, Francesco; Veronesi, Fabio; Rosellini, Daniele

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock. PMID:25951604

  19. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2012-01-01

    Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C-terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium-mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana. PMID:22745785

  20. Assessment of Heat Shock Protein 70 Induction by Heat in Alfalfa Varieties and Constitutive Overexpression in Transgenic Plants

    PubMed Central

    Ferradini, Nicoletta; Iannacone, Rina; Capomaccio, Stefano; Metelli, Alessandra; Armentano, Nadia; Semeraro, Lucia; Cellini, Francesco; Veronesi, Fabio; Rosellini, Daniele

    2015-01-01

    Heat shock proteins (HSPs) are molecular chaperones involved in many cellular functions. It has been shown that mammalian cytosolic HSP70 binds antigenic peptides mediating the activation of the immune system, and that it plays a determining role in tumour immunogenicity. This suggests that HSP70 may be used for the production of conjugated vaccines. Human and plant HSPs share high sequence similarity and some important biological functions in vitro. In addition, plant HSPs have no endotoxic side effects. Extraction of HSP70 from plants for use as vaccine adjuvant requires enhancing its concentration in plant tissues. In this work, we explored the possibility to produce HSP70 in both transgenic and non-transgenic plants, using alfalfa as a model species. First, a transcriptional analysis of a constitutive and an inducible HSP70 genes was conducted in Arabidopsis thaliana. Then the coding sequence of the inducible form was cloned and introduced into alfalfa by Agrobacterium-mediated transformation, and the accumulation of the protein in leaf tissue of transgenic plants was demonstrated. We also tested diverse alfalfa varieties for heat-inducible expression of endogenous HSP70, revealing variety-specific responses to heat shock. PMID:25951604

  1. Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor.

    PubMed

    Cheng, Yu-Jie; Kim, Myoung-Duck; Deng, Xi-Ping; Kwak, Sang-Soo; Chen, Wei

    2013-12-01

    IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes. PMID:24378636

  2. Sexually mature transgenic American chestnut trees via embryogenic suspension-based transformation.

    PubMed

    Andrade, Gisele M; Nairn, Campbell J; Le, Huong T; Merkle, Scott A

    2009-09-01

    The availability of a system for direct transfer of anti-fungal candidate genes into American chestnut (Castanea dentata), devastated by a fungal blight in the last century, would offer an alternative or supplemental approach to conventional breeding for production of chestnut trees resistant to the blight fungus and other pathogens. By taking advantage of the strong ability of embryogenic American chestnut cultures to proliferate in suspension, a high-throughput Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into the tree was established. Proembryogenic masses (PEMs) were co-cultivated with A. tumefaciens strain AGL1 harboring the plasmid pCAMBIA 2301, followed by stringent selection with 50 or 100 mg/l Geneticin. A protocol employing size-fractionation to enrich for small PEMs to use as target material and selection in suspension culture was applied to rapidly produce transgenic events with an average efficiency of four independent transformation events per 50 mg of target tissue and minimal escapes. Mature somatic embryos, representing 18 transgenic events and derived from multiple American chestnut target genotypes, were germinated and over 100 transgenic somatic seedlings were produced and acclimatized to greenhouse conditions. Multiple vigorous transgenic somatic seedlings produced functional staminate flowers within 3 years following regeneration. PMID:19578855

  3. The expression of analgesic-antitumor peptide (AGAP) from Chinese Buthus martensii Karsch in transgenic tobacco and tomato.

    PubMed

    Lai, Linlin; Huang, Tingting; Wang, Yi; Liu, Yanfeng; Zhang, Jinghai; Song, Yongbo

    2009-05-01

    The present study aimed to obtain analgesic-antitumor peptide (AGAP) gene expression in plants. The analgesic-antitumor peptide (AGAP) gene was from the venom of Buthus martensii Karsch. Previous studies showed that AGAP has both analgesic and antitumor activities, suggesting that AGAP would be useful in clinical situations as an antitumor drug. Given that using a plant as an expression vector has more advantages than prokaryotic expression, we tried to obtain transgenic plants containing AGAP. In the present study, the AGAP gene was cloned into the plasmid pBI121 to obtain the plant expression vector pBI-AGAP. By tri-parental mating and freeze-thaw transformation, pBI-AGAP was transformed into Agrobacterium tumefaciens LBA4404. Tobacco (Nicotiana tabacum) and tomato (Lycopersicom esculentum) were transformed by the method of Agrobacterium-mediated leaf disc transformation. The transformants were then screened to grow and root on media containing kanamycin. Finally, transformations were confirmed by analysis of PCR, RT-PCR and western blotting. The results showed that the AGAP gene was integrated into the genomic DNA of tobacco and tomato and was successfully expressed. Therefore, the present study suggests a potential industrial application of AGAP expressed in plants. PMID:18546060

  4. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea.

    PubMed

    Coca, María; Bortolotti, Cristina; Rufat, Mar; Peñas, Gisela; Eritja, Ramón; Tharreau, Didier; del Pozo, Alvaro Martinez; Messeguer, Joaquima; San Segundo, Blanca

    2004-01-01

    The Aspergillus giganteus antifungal protein (AFP), encoded by the afp gene, has been reported to possess in vitro antifungal activity against various economically important fungal pathogens, including the rice blast fungus Magnaporthe grisea. In this study, transgenic rice ( Oryza sativa ) constitutively expressing the afp gene was generated by Agrobacterium -mediated transformation. Two different DNA constructs containing either the afp cDNA sequence from Aspergillus or a chemically synthesized codon-optimized afp gene were introduced into rice plants. In both cases, the DNA region encoding the signal sequence from the tobacco AP24 gene was N-terminally fused to the coding sequence of the mature AFP protein. Transgenic rice plants showed stable integration and inheritance of the transgene. No effect on plant morphology was observed in the afp -expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of afp plants on the in vitro growth of M. grisea indicated that the AFP protein produced by the trangenic rice plants was biologically active. Several of the T(2) homozygous afp lines were challenged with M. grisea in a detached leaf infection assay. Transformants exhibited resistance to rice blast at various levels. Altogether, the results presented here indicate that AFP can be functionally expressed in rice plants for protection against the rice blast fungus M. grisea. PMID:15159626

  5. A high-throughput transformation system in plum (Prunus domestica L.) for functional genomics research in Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an improved Agrobacterium-mediated protocol in plum (Prunus domestica L.) through the addition of 2, 4-D to the regeneration media. This method has increased the regeneration efficiency of independent transgenic plants up to 10 fold over previous reports. DNA blot analysis of put...

  6. A high-throughput transformation system in plum (Prunus domestica L.) useful for functional genomics in Rosaceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an improved Agrobacterium-mediated protocol in plum (Prunus domestica L.) through the addition of 2,4-D to the regeneration media. This method has increased the regeneration efficiency of independent transgenic plants up to 10 fold over previous reports. DNA blot analysis of puta...

  7. FluxTransgenics: a flexible LIMS-based tool for management of plant transformation experimental data

    PubMed Central

    2014-01-01

    Background The production and commercial release of Genetically Modified Organisms (GMOs) are currently the focus of important discussions. In order to guarantee the quality and reliability of their trials, companies and institutions working on this subject must adopt new approaches on management, organization and recording of laboratory conditions where field studies are performed. Computational systems for management and storage of laboratory data known as Laboratory Information Management Systems (LIMS) are essential tools to achieve this. Results In this work, we have used the SIGLa system – a workflow based LIMS as a framework to develop the FluxTransgenics system for a GMOs laboratory of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Maize and Sorghum (Sete Lagoas, MG - Brazil). A workflow representing all stages of the transgenic maize plants generation has been developed and uploaded in FluxTransgenics. This workflow models the activities involved in maize and sorghum transformation using the Agrobacterium tumefaciens method. By uploading this workflow in the SIGLa system we have created Fluxtransgenics, a complete LIMS for managing plant transformation data. Conclusions FluxTransgenics presents a solution for the management of the data produced by a laboratory of genetically modified plants that is efficient and supports different kinds of information. Its adoption will contribute to guarantee the quality of activities and products in the process of transgenic production and enforce the use of Good Laboratory Practices (GLP). The adoption of the transformation protocol associated to the use of FluxTransgenics has made it possible to increase productivity by at least 300%, increasing the efficiency of the experiments from between 0.5 and 1 percent to about 3%. This has been achieved by an increase in the number of experiments performed and a more accurate choice of parameters, all of which have been made possible because it became easier to

  8. BrUGE1 transgenic rice showed improved growth performance with enhanced drought tolerance.

    PubMed

    Abdula, Sailila E; Lee, Hye Jung; Kim, Joonki; Niño, Marjohn C; Jung, Yu-Jin; Cho, Young-Chan; Nou, Illsup; Kang, Kwon-Kyoo; Cho, Yong-Gu

    2016-03-01

    UDP-glucose 4-epimerase (UGE) catalyzes the reversible conversion of UDP-glucose to UDP-galactose. To understand the biological function of UGE from Brassica rapa, the gene BrUGE1 was cloned and introduced into the genome of wild type rice 'Gopum' using the Agrobacterium-mediated transformation method. Four lines which carried a single copy gene were selected and forwarded to T3 generation. Agronomic traits evaluation of the transgenic T3 lines (CB01, CB03, and CB06) under optimal field conditions revealed enriched biomass production particularly in panicle length, number of productive tillers, number of spikelets per panicle, and filled spikelets. These remarkably improved agronomic traits were ascribed to a higher photosynthetic rate complemented with higher CO2 assimilation. Transcripts of BrUGE1 in transgenic lines continuously accumulated at higher levels after the 20% PEG6000 treatment, implying its probable role in drought stress regulation. This was paralleled by rapid accumulation of soluble sugars which act as osmoprotectants, leading to delayed leaf rolling and drying. Our findings suggest the potential of BrUGE1 in improving rice growth performance under optimal and water deficit conditions. PMID:27162494

  9. BrUGE1 transgenic rice showed improved growth performance with enhanced drought tolerance

    PubMed Central

    Abdula, Sailila E.; Lee, Hye Jung; Kim, Joonki; Niño, Marjohn C.; Jung, Yu-Jin; Cho, Young-Chan; Nou, Illsup; Kang, Kwon-Kyoo; Cho, Yong-Gu

    2016-01-01

    UDP-glucose 4-epimerase (UGE) catalyzes the reversible conversion of UDP-glucose to UDP-galactose. To understand the biological function of UGE from Brassica rapa, the gene BrUGE1 was cloned and introduced into the genome of wild type rice ‘Gopum’ using the Agrobacterium-mediated transformation method. Four lines which carried a single copy gene were selected and forwarded to T3 generation. Agronomic traits evaluation of the transgenic T3 lines (CB01, CB03, and CB06) under optimal field conditions revealed enriched biomass production particularly in panicle length, number of productive tillers, number of spikelets per panicle, and filled spikelets. These remarkably improved agronomic traits were ascribed to a higher photosynthetic rate complemented with higher CO2 assimilation. Transcripts of BrUGE1 in transgenic lines continuously accumulated at higher levels after the 20% PEG6000 treatment, implying its probable role in drought stress regulation. This was paralleled by rapid accumulation of soluble sugars which act as osmoprotectants, leading to delayed leaf rolling and drying. Our findings suggest the potential of BrUGE1 in improving rice growth performance under optimal and water deficit conditions. PMID:27162494

  10. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress.

    PubMed

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P; Dobaria, Jentilal R

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  11. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes.

    PubMed

    Ma, Xue-Feng; Wright, Elane; Ge, Yaxin; Bell, Jeremey; Xi, Yajun; Bouton, Joseph H; Wang, Zeng-Yu

    2009-04-01

    Phosphate is one of the least available macronutrients restricting crop production in many ecosystems. A phytase gene (MtPHY1) and a purple acid phosphatase gene (MtPAP1), both isolated from the model legume Medicago truncatula, were introduced into white clover (Trifolium repens L.) by Agrobacterium-mediated transformation. The transgenes were driven by the constitutive CaMV35S promoter or the root-specific MtPT1 promoter. Transcripts were detected in roots of the transgenic plants. Phytase or acid phosphatase (APase) activities in root apoplasts of the transgenic plants were increased up to three-fold compared to the wild type control. After the plants were grown 80 days in sand pots supplied with organic phosphorus (Po) as the sole P source, dry weights of shoot tissues of the best performing transgenic plants almost doubled that of the control and were comparable to the counterparts supplied with inorganic phosphorus (Pi). Relative biomass production of the transgenics under Po treatment was over 90% and 80% of that from the Pi treatment when the plants were grown in hydroponics (40 days) and sand pots (80 days), respectively. In contrast, biomass of the wild type controls under Po treatment was only about 50% of the Pi treatment in either hydroponic cultures or sand pots. In addition, shoot P concentrations of the transgenic plants were significantly increased compared to the control. Transgenic plants accumulated much higher amounts of total P (up to 2.6-fold after 80 days of growth) than the control in Po supplied sand pots. The results showed that transgenic expression of MtPHY1 or MtPAP1 in white clover plants increased their abilities of utilizing organic phosphorus in response to P deficiency. PMID:26493137

  12. Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress

    PubMed Central

    Sarkar, Tanmoy; Thankappan, Radhakrishnan; Kumar, Abhay; Mishra, Gyan P.; Dobaria, Jentilal R.

    2016-01-01

    Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In this study, eight independent transgenic peanut (cv. GG20) lines were developed using AtDREB1A gene, encoding for a transcription factor, through Agrobacterium-mediated genetic transformation. The transgene insertion was confirmed in (T0) using PCR and Dot-blot analysis, while copy-number(s) was ascertained using Southern-blot analysis. The inheritance of AtDREB1A gene in individual transgenic plants (T1 and T2) was confirmed using PCR. In homozygous transgenic plants (T2), under soil-moisture deficit stress, elevated level of AtDREB1A transgene expression was observed by RT-PCR assay. The transgenic plants at 45-d or reproductive growth stage showed tolerance to severe soil-moisture deficit stress. Physio-biochemical parameters such as proline content, osmotic potential, relative water content, electrolytic leakage, and total-chlorophyll content were found positively correlated with growth-related traits without any morphological abnormality, when compared to wild-type. qPCR analysis revealed consistent increase in expression of AtDREB1A gene under progressive soil-moisture deficit stress in two homozygous transgenic plants. The transgene expression showed significant correlation with improved physio-biochemical traits. The improvement of drought-stress tolerance in combination with improved growth-related traits is very essential criterion for a premium peanut cultivar like GG20, so that marginal farmers of India can incur the economic benefits during seasonal drought and water scarcity. PMID:27446163

  13. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens

    PubMed Central

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2014-01-01

    Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens. PMID:25426132

  14. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone.

    PubMed

    Liu, R; Zhang, H H; Chen, Z X; Shahid, M Q; Fu, X L; Liu, X D

    2015-01-01

    Oryza officinalis has proven to be a natural gene reservoir for the improvement of domesticated rice as it carries many desirable traits; however, the transfer of elite genes to cultivated rice by conventional hybridization has been a challenge for rice breeders. In this study, the conserved sequence of plant stress-related NAC transcription factors was selected as a probe to screen the O. officinalis genomic transformation-competent artificial chromosome library by Southern blot; 11 positive transformation-competent artificial chromosome clones were subsequently detected. By Agrobacterium-mediated transformation, an indica rice variety, Huajingxian 74 (HJX74), was transformed with a TAC clone harboring a NAC gene-positive genomic fragment from O. officinalis. Molecular analysis revealed that the O. officinalis genomic fragment was integrated into the genome of HJX74. The transgenic lines exhibited high tolerance to drought stress. Our results demonstrate that the introduction of stress-related transformation-competent artificial chromosome clones, coupled with a transgenic validation approach, is an effective method of transferring agronomically important genes from O. officinalis to cultivated rice. PMID:26535682

  15. Germin-like protein 2 gene promoter from rice is responsive to fungal pathogens in transgenic potato plants.

    PubMed

    Munir, Faiza; Hayashi, Satomi; Batley, Jacqueline; Naqvi, Syed Muhammad Saqlan; Mahmood, Tariq

    2016-01-01

    Controlled transgene expression via a promoter is particularly triggered in response to pathogen infiltration. This is significant for eliciting disease-resistant features in crops through genetic engineering. The germins and germin-like proteins (GLPs) are known to be associated with plant and developmental stages. The 1107-bp Oryza sativa root GLP2 (OsRGLP2) gene promoter fused to a β-glucuronidase (GUS) reporter gene was transformed into potato plants through an Agrobacterium-mediated transformation. The OsRGLP2 promoter was activated in response to Fusarium solani (Mart.) Sacc. and Alternaria solani Sorauer. Quantitative real-time PCR results revealed 4-5-fold increase in promoter activity every 24 h following infection. There was a 15-fold increase in OsRGLP2 promoter activity after 72 h of F. solani (Mart.) Sacc. treatment and a 12-fold increase observed with A. solani Sorauer. Our results confirmed that the OsRGLP2 promoter activity was enhanced under fungal stress. Furthermore, a hyperaccumulation of H2O2 in transgenic plants is a clear signal for the involvement of OsRGLP2 promoter region in the activation of specific genes in the potato genome involved in H2O2-mediated defense response. The OsRGLP2 promoter evidently harbors copies of GT-I and Dof transcription factors (AAAG) that act in response to elicitors generated in the wake of pathogen infection. PMID:26277722

  16. Broad-Spectrum Transgenic Resistance against Distinct Tospovirus Species at the Genus Level

    PubMed Central

    Raja, Joseph A. J.; Yang, Ching-Fu; Chien, Wan-Chu; Lin, Chen-Hsuan; Liu, Fang-Lin; Wu, Hui-Wen; Yeh, Shyi-Dong

    2014-01-01

    Thrips-borne tospoviruses cause severe damage to crops worldwide. In this investigation, tobacco lines transgenic for individual WLm constructs containing the conserved motifs of the L RNA-encoded RNA-dependent RNA polymerase (L) gene of Watermelon silver mottle virus (WSMoV) were generated by Agrobacterium-mediated transformation. The WLm constructs included: (i) translatable WLm in a sense orientation; (ii) untranslatable WLmt with two stop codons; (iii) untranslatable WLmts with stop codons and a frame-shift; (iv) untranslatable antisense WLmA; and (v) WLmhp with an untranslatable inverted repeat of WLm containing the tospoviral S RNA 3′-terminal consensus sequence (5′-ATTGCTCT-3′) and an NcoI site as a linker to generate a double-stranded hairpin transcript. A total of 46.7–70.0% transgenic tobacco lines derived from individual constructs showed resistance to the homologous WSMoV; 35.7–100% plants of these different WSMoV-resistant lines exhibited broad-spectrum resistance against four other serologically unrelated tospoviruses Tomato spotted wilt virus, Groundnut yellow spot virus, Impatiens necrotic spot virus and Groundnut chlorotic fan-spot virus. The selected transgenic tobacco lines also exhibited broad-spectrum resistance against five additional tospoviruses from WSMoV and Iris yellow spot virus clades, but not against RNA viruses from other genera. Northern analyses indicated that the broad-spectrum resistance is mediated by RNA silencing. To validate the L conserved region resistance in vegetable crops, the constructs were also used to generate transgenic tomato lines, which also showed effective resistance against WSMoV and other tospoviruses. Thus, our approach of using the conserved motifs of tospoviral L gene as a transgene generates broad-spectrum resistance against tospoviruses at the genus level. PMID:24811071

  17. Mammary tumor suppression by transforming growth factor beta 1 transgene expression.

    PubMed Central

    Pierce, D F; Gorska, A E; Chytil, A; Meise, K S; Page, D L; Coffey, R J; Moses, H L

    1995-01-01

    In cell culture, type alpha transforming growth factor (TGF-alpha) stimulates epithelial cell growth, whereas TGF-beta 1 overrides this stimulatory effect and is growth inhibitory. Transgenic mice that overexpress TGF-alpha under control of the mouse mammary tumor virus (MMTV) promoter/enhancer exhibit mammary ductal hyperplasia and stochastic development of mammary carcinomas, a process that can be accelerated by administration of the chemical carcinogen 7,12-dimethylbenz[a]anthracene. MMTV-TGF-beta 1 transgenic mice display mammary ductal hypoplasia and do not develop mammary tumors. We report that in crossbreeding experiments involving the production of mice carrying both the MMTV-TGF-beta 1 and MMTV-TGF-alpha transgenes, there is marked suppression of mammary tumor formation and that MMTV-TGF-beta 1 transgenic mice are resistant to 7,12-dimethylbenz[a]anthracene-induced mammary tumor formation. These data demonstrate that overexpression of TGF-beta 1 in vivo can markedly suppress mammary tumor development. Images Fig. 1 Fig. 3 PMID:7753792

  18. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase.

    PubMed

    Wang, Yan; Ren, Hejun; Pan, Hongyu; Liu, Jinliang; Zhang, Lanying

    2015-04-01

    Polychlorinated biphenyls (PCBs) and 2,4-dichlorophenol (2,4-DCP) generally led to mixed contamination of soils as a result of commercial and agricultural activities. Their accumulation in the environment poses great risks to human and animal health. Therefore, the effective strategies for disposal of these pollutants are urgently needed. In this study, genetic engineering to enhance PCBs/2,4-DCP phytoremediation is a focus. We cloned the 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC.B) from a soil metagenomic library, which is the key enzyme of aerobic catabolism of a variety of aromatic compounds, and then it was expressed in alfalfa driven by CaMV 35S promoter using Agrobacterium-mediated transformation. Transgenic line BB11 was selected out through PCR, Western blot analysis and enzyme activity assays. Its disposal and tolerance to both PCBs and 2,4-DCP were examined. The tolerance capability of transgenic line BB11 towards complex contaminants of PCBs/2,4-DCP significantly increased compared with non-transgenic plants. Strong dissipation of PCBs and high removal efficiency of 2,4-DCP were exhibited in a short time. It was confirmed expressing BphC.B would be a feasible strategy to help achieving phytoremediation in mixed contaminated soils with PCBs and 2,4-DCP. PMID:25590820

  19. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    SciTech Connect

    Chou, Hong L.; Dai, Ziyu; Hsieh, Chia W.; Ku, Maurice S.

    2011-12-10

    Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. In this study, the cellulose hydrolytic enzyme {beta}-1, 4-endoglucanase (E1) from the thermophilic bacterium Acidothermus cellulolyticus was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer with the signal peptide of tobacco pathogenesis-related protein for targeting the protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial enzyme were obtained, which expressed the gene at high levels with a normal phenotype. The specific activities of E1 in the leaves of the highest expressing transgenic rice lines were about 20 fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. Zymogram and temperature-dependent activity analyses demonstrated the thermostability of the enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid yielded almost twice more reducing sugars than wild type straw. Taken together, these data suggest that transgenic rice can effectively serve as a bioreactor for large-scale production of active, thermostable cellulose hydrolytic enzymes. As a feedstock, direct expression of large amount of cellulases in

  20. Effect of dual Bt-expression transformation vectors on transgene expression in tobacco.

    PubMed

    Xu, L N; Dong, Y; Zhang, J; Wang, R X; Liu, H M; Yang, Q; Yang, M S

    2016-01-01

    This study aimed to determine the influence of vector structure on dual Bt gene expression and establish an efficient expression vector using Cry1Ac and Cry3A genes. Four vectors (N4, N5, N10, and S23) were developed and used for genetic transformation of tobacco to obtain insect-resistant transgenic lines. The vectors were constructed using the MAR structure, applying different promoter and enhancer sequences, and changing the transgene open-reading frame sequence. The average Cry1Ac toxalbumin expression quantity was 67 times higher in N5 than in N4 transgenic lines (8.77 and 0.13 μg/g, respectively). In contrast, the average Cry3A toxalbumin expression quantity was 1.5 times higher in N4 than in N5 lines (12.70 and 8.21 μg/g, respectively). The sequences of both Bt genes significantly influenced toxalbumin expression, although upstream Bt genes presented lower expression levels. The average Cry1Ac toxalbumin content was 13 times higher in the transgenic lines of AtADH 5'-non-translated sequence N5 (8.77 mg/g) than in the omega N10 lines (0.67 mg/g). Furthermore, the average Cry1Ac toxalbumin content was 5 times higher in MAR N5 than in non-MAR S23 lines (8.77 and 1.63 mg/g, respectively). The average Cry3A toxalbumin content was 1.3 times higher in N5 than in S23 lines (8.21 and 6.48 mg/g, respectively). Moreover, toxalbumin expression levels differed significantly among the S23-transformed lines. The MAR structure applied on both ends of the genes increased both the level and stability of exogenous gene expression. In conclusion, N5 was the most optimal of the four tested vectors. PMID:27525887

  1. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation.

    PubMed

    Boyko, Alex; Matsuoka, Aki; Kovalchuk, Igor

    2011-04-01

    Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations. PMID:21132499

  2. Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene.

    PubMed

    Niklaus, Michael; Gruissem, Wilhelm; Vanderschuren, Hervé

    2011-01-01

    Cassava is one of the most important crops in the tropics. Its industrial use for starch and biofuel production is also increasing its importance for agricultural production in tropical countries. In the last decade cassava biotechnology has emerged as a valuable alternative to the breeding constraints of this highly heterozygous crop for improved trait development of cassava germplasm. Cassava transformation remains difficult and time-consuming because of limitations in selecting transgenic tissues and regeneration of transgenic plantlets. We have recently reported an efficient and robust cassava transformation protocol using the hygromycin phosphotransferase II (hptII) gene as selection marker and the aminoglycoside hygromycin at optimal concentrations to maximize the regeneration of transgenic plantlets. In the present work, we expanded the transformation protocol to the use of the neomycin phosphotransferase II (nptII) gene as selection marker. Several aminoglycosides compatible with the use of nptII were tested and optimal concentrations for cassava transformation were determined. Given its efficiency equivalent to hptII as selection marker with the described protocol, the use of nptII opens new possibilities to engineer transgenic cassava lines with multiple T-DNA insertions and to produce transgenic cassava with a resistance marker gene that is already deregulated in several commercial transgenic crops. PMID:22179195

  3. Bean [alpha]-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus pisorum) in Transgenic Peas (Pisum sativum L.).

    PubMed Central

    Schroeder, H. E.; Gollasch, S.; Moore, A.; Tabe, L. M.; Craig, S.; Hardie, D. C.; Chrispeels, M. J.; Spencer, D.; Higgins, TJV.

    1995-01-01

    Bruchid larvae cause major losses of grain legume crops through-out the world. Some bruchid species, such as the cowpea weevil and the azuki bean weevil, are pests that damage stored seeds. Others, such as the pea weevil (Bruchus pisorum), attack the crop growing in the field. We transferred the cDNA encoding the [alpha]-amylase inhibitor ([alpha]-AI) found in the seeds of the common bean (Phaseolus vulgaris) into pea (Pisum sativum) using Agrobacterium-mediated transformation. Expression was driven by the promoter of phytohemagglutinin, another bean seed protein. The [alpha]-amylase inhibitor gene was stably expressed in the transgenic pea seeds at least to the T5 seed generation, and [alpha]-AI accumulated in the seeds up to 3% of soluble protein. This level is somewhat higher than that normally found in beans, which contain 1 to 2% [alpha]-AI. In the T5 seed generation the development of pea weevil larvae was blocked at an early stage. Seed damage was minimal and seed yield was not significantly reduced in the transgenic plants. These results confirm the feasibility of protecting other grain legumes such as lentils, mungbean, groundnuts, and chickpeas against a variety of bruchids using the same approach. Although [alpha]-AI also inhibits human [alpha]-amylase, cooked peas should not have a negative impact on human energy metabolism. PMID:12228429

  4. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions.

    PubMed

    Sanderson, N; Factor, V; Nagy, P; Kopp, J; Kondaiah, P; Wakefield, L; Roberts, A B; Sporn, M B; Thorgeirsson, S S

    1995-03-28

    Aberrant expression of transforming growth factor beta 1 (TGF-beta 1) has been implicated in a number of disease processes, particularly those involving fibrotic and inflammatory lesions. To determine the in vivo effects of overexpression of TGF-beta 1 on the function and structure of hepatic as well as extrahepatic tissues, transgenic mice were generated containing a fusion gene (Alb/TGF-beta 1) consisting of modified porcine TGF-beta 1 cDNA under the control of the regulatory elements of the mouse albumin gene. Five transgenic lines were developed, all of which expressed the Alb/TGF-beta 1 transgene selectively in hepatocytes. The transgenic line 25 expressing the highest level of the transgene in the liver also had high (> 10-fold over control) plasma levels of TGF-beta 1. Hepatic fibrosis and apoptotic death of hepatocytes developed in all the transgenic lines but was more pronounced in line 25. The fibrotic process was characterized by deposition of collagen around individual hepatocytes and within the space of Disse in a radiating linear pattern. Several extrahepatic lesions developed in line 25, including glomerulonephritis and renal failure, arteritis and myocarditis, as well as atrophic changes in pancreas and testis. The results from this transgenic model strongly support the proposed etiological role for TGF-beta 1 in a variety of fibrotic and inflammatory disorders. The transgenic model may also provide an appropriate paradigm for testing therapeutic interventions aimed at neutralizing the detrimental effects of this important cytokine. PMID:7708687

  5. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    PubMed

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice. PMID:26172549

  6. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision

    PubMed Central

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice. PMID:26172549

  7. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor.

    PubMed

    Heidmann, Iris; de Lange, Brenda; Lambalk, Joep; Angenent, Gerco C; Boutilier, Kim

    2011-06-01

    Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop. PMID:21305301

  8. High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An improved Agrobacterium-mediated transformation protocol in plum (Prunus domestica L.) cv 'Bluebyrd' using hypocotyl slices as source of explants is described. The addition of 2, 4-D to the regeneration media during co-culture allowed us to increase transformation efficiency up to 10 times over p...

  9. Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus)

    PubMed Central

    2014-01-01

    Background The potential biofuel plant Jatropha curcas L. is affected by larvae of Archips micaceanus (Walker), a moth of the family Tortricidae. The hybrid Bacillus thuringiensis (Bt) δ-endotoxin protein Cry1Ab/1Ac confers resistance to lepidopteran insects in transgenic rice. Results Here, we report the production of a marker-free transgenic line of J. curcas (L10) expressing Cry1Ab/1Ac using Agrobacterium-mediated transformation and a chemically regulated, Cre/loxP-mediated DNA recombination system. L10 carries a single copy of marker-free T-DNA that contains the Cry1Ab/1Ac gene under the control of a maize phosphoenolpyruvate carboxylase gene promoter (P Pepc :Cry1Ab/1Ac:T Nos ). The P Pepc :Cry1Ab/1Ac:T Nos gene was highly expressed in leaves of L10 plants. Insecticidal bioassays using leaf explants of L10 resulted in 80-100% mortality of larvae of A. micaceanus at 4 days after infestation. Conclusion The results demonstrate that the hybrid Bt δ-endotoxin protein Cry1Ab/1Ac expressed in Jatropha curcas displays strong insecticidal activity to A. micaceanus. The marker-free transgenic J. curcas line L10 can be used for breeding of insect resistance to A. micaceanus. PMID:24808924

  10. Overexpression of transforming growth factor-alpha causes liver enlargement and increased hepatocyte proliferation in transgenic mice.

    PubMed Central

    Webber, E. M.; Wu, J. C.; Wang, L.; Merlino, G.; Fausto, N.

    1994-01-01

    Transforming growth factor-alpha (TGF-alpha) expression is associated with hepatocyte DNA replication both in vivo and in culture. Our previous work using TGF-alpha transgenic mice showed that constitutive overexpression of this growth factor in the liver causes hepatic tumors in 75 to 80% of the animals at 12 to 15 months of age. To understand the cellular events by which TGF-alpha overexpression leads to abnormal liver growth, we examined hepatocyte proliferative activity in young and old TGF-alpha transgenic mice and hepatocyte ploidy in normal, dysplastic, and neoplastic livers of these animals. At 4 weeks of age, transgenic mice had higher liver weights and liver weight/body weight ratios than non-transgenic mice of the same age and hepatocyte proliferative activity, measured by 3H-thymidine incorporation after 3- and 7-day infusion, proliferating cell nuclear antigen staining, and mitotic index determination, was 2 to 3 times higher than in controls. In both transgenic and non-transgenic mice hepatocyte proliferation declined with age but the decrease was much more pronounced in control animals, so that at 8 months of age, hepatocyte replication was 8 to 10 times higher in transgenic animals. Surprisingly, however, transgenic and non-transgenic mice at this age had similar liver weight/body weight ratios. Labeling studies done in 3-month-old animals revealed that hepatocyte turnover was much faster in transgenic than in control animals, suggesting that a homeostatic compensatory mechanism involving cell death tended to restore normal liver weight/body weight ratios in older transgenic mice. Ploidy analyses showed that at 4 weeks of age transgenic mice had a higher proportion of diploid and tetraploid hepatocytes and that the hepatocellular tumors which developed in TGF-alpha transgenic mice at 13 months of age contained a higher fraction of diploid hepatocytes than that present in adjacent tissue or in dysplastic livers. The results demonstrate that

  11. Construction and Validation of a Dual-Transgene Vector System for Stable Transformation in Plants.

    PubMed

    He, Zhimin; Liu, Bin; Wang, Xu; Bian, Mingdi; He, Reqing; Yan, Jindong; Zhong, Ming; Zhao, Xiaoying; Liu, Xuanming

    2016-04-20

    In this study, we constructed dual-transgene vectors (pDT1, pDT7, and pDT7G) that simultaneously co-expressed two genes in plants. ACTIN2 and UBQ10 promoters were used to control the expression of these two genes. The 4×Myc, 3×HA, and 3×Flag reporter genes allowed for the convenient identification of a tunable co-expression system in plants, whereas the dexamethasone (Dex) inducible reporter gene C-terminus of the glucocorticoid receptor (cGR) provided Dex-dependent translocation of the fusion gene between the nucleus and cytoplasm. The function of pDT vectors was validated using four pairwise genes in Nicotiana benthamiana or Arabidopsis thaliana. The co-expression efficiency of two genes from the pDT1 and pDT7G vectors was 35% and 42%, respectively, which ensured the generation of sufficient transgenic materials. These pDT vectors are simple, reliable, efficient, and time-saving tools for the co-expression of two genes through a single transformation event and can be used in the study of protein-protein interactions or multi-component complexes. PMID:27157807

  12. Transformation of somatic embryos of Prunus incisa ‘February Pink’ with a visible reporter gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Agrobacterium-mediated transformation system was developed for the ornamental cherry species Prunus incisa. This system uses both an antibiotic resistance gene (NPTII) and a visible selectable marker, the green fluorescent protein (GFP), to select plants. Cells from leaf and root explants were tr...

  13. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants.

    PubMed

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2016-03-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801

  14. The elicitor-inducible alfalfa isoflavone reductase promoter confers different patterns of developmental expression in homologous and heterologous transgenic plants.

    PubMed Central

    Oommen, A; Dixon, R A; Paiva, N L

    1994-01-01

    In legumes, the synthesis of infection- and elicitor-inducible antimicrobial phytoalexins occurs via the isoflavonoid branch of the phenylpropanoid pathway. To study transcriptional regulation of isoflavonoid pathway-specific genes, we have isolated the gene encoding isoflavone reductase (IFR), which is the enzyme that catalyzes the penultimate step in the synthesis of the phytoalexin medicarpin in alfalfa. Chimeric gene fusions were constructed between 765- and 436-bp promoter fragments of the IFR gene and the beta-glucuronidase reporter gene and transferred to alfalfa and tobacco by Agrobacterium-mediated transformation. Both promoter fragments conferred elicitor-mediated expression in cell suspension cultures derived from transgenic plants of both species and fungal infection-mediated expression in leaves of transgenic alfalfa. Developmental expression directed by both promoter fragments in transgenic alfalfa was observed only in the root meristem, cortex, and nodules, which is consistent with the accumulation of endogenous IFR transcripts. However, in transgenic tobacco, expression from the 765-bp promoter was observed in vegetative tissues (root meristem and cortex, inner vascular tissue of stems and petioles, leaf tips, and stem peripheries adjacent to petioles) and in reproductive tissues (stigma, placenta, base of the ovary, receptacle, seed, tapetal layer, and pollen grains), whereas the 436-bp promoter was expressed only in fruits, seed, and pollen. These data indicate that infection/elicitor inducibility of the IFR promoter in both species and developmental expression in alfalfa are determined by sequences downstream of position -436, whereas sequences between -436 and -765 confer a complex pattern of strong ectopic developmental expression in the heterologous species that lacks the isoflavonoid pathway. PMID:7866024

  15. Developing Fiber Specific Promoter-Reporter Transgenic Lines to Study the Effect of Abiotic Stresses on Fiber Development in Cotton

    PubMed Central

    Chen, Junping; Burke, John J.

    2015-01-01

    Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality. PMID:26030401

  16. Unlocking the potential of tropical root crop biotechnology in east Africa by establishing a genetic transformation platform for local farmer-preferred cassava cultivars

    PubMed Central

    Nyaboga, Evans; Njiru, Joshua; Nguu, Edward; Gruissem, Wilhelm; Vanderschuren, Herve; Tripathi, Leena

    2013-01-01

    Cassava genetic transformation capacity is still mostly restricted to advanced laboratories in the USA, Europe and China; and its implementation and maintenance in African laboratories has remained scarce. The impact of transgenic technologies for genetic improvement of cassava will depend largely on the transfer of such capabilities to researchers in Africa, where cassava has an important socioeconomic niche. A major constraint to the development of genetic transformation technologies for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite the success achieved in genetic modification of few cassava cultivars, including the model cultivar 60444, transgenic cassava production remains difficult for farmer-preferred cultivars. In this study, a protocol for cultivar 60444 developed at ETH Zurich was successfully implemented and optimized to establish transformation of farmer-preferred cassava cultivars popular in east Africa. The conditions for production and proliferation of friable embryogenic calli (FEC) and Agrobacterium-mediated transformation were optimized for three east African farmer-preferred cultivars (Ebwanatereka, Kibandameno and Serere). Our results demonstrated transformation efficiencies of about 14–22 independent transgenic lines per 100 mg of FEC for farmer-preferred cultivars in comparison to 28 lines per 100 mg of the model cultivar 60444. The presence, integration and expression of the transgenes were confirmed by PCR, Southern blot analysis and histochemical GUS assay. This study reports the establishment of a cassava transformation platform at International Institute of Tropical Agriculture (IITA) hosted by Biosciences eastern and central Africa (BecA) hub in Kenya and provides the basis for transferring important traits such as virus resistance and prolonged shelf-life to farmer-preferred cultivars in east Africa. We anticipate that such platform will also be instrumental to transfer

  17. Disrupted Differentiation and Oncogenic Transformation of Lymphoid Progenitors in E2A-HLF Transgenic Mice

    PubMed Central

    Smith, Kevin S.; Rhee, Joon Whan; Naumovski, Louie; Cleary, Michael L.

    1999-01-01

    The hepatic leukemia factor (HLF) gene codes for a basic region-leucine zipper (bZIP) protein that is disrupted by chromosomal translocations in a subset of pediatric acute lymphoblastic leukemias. HLF undergoes fusions with the E2A gene, resulting in chimeric E2a-Hlf proteins containing the E2a transactivation domains and the Hlf bZIP DNA binding and dimerization motifs. To investigate the in vivo role of this chimeric bZIP protein in oncogenic transformation, its expression was directed to the lymphoid compartments of transgenic mice. Within the thymus, E2a-Hlf induced profound hypoplasia, premature involution, and progressive accumulation of a T-lineage precursor population arrested at an early stage of maturation. In the spleen, mature T cells were present but in reduced numbers, and they lacked expression of the transgene, suggesting further that E2a-Hlf expression was incompatible with T-cell differentiation. In contrast, mature splenic B cells expressed E2a-Hlf but at lower levels and without apparent adverse or beneficial effects on their survival. Approximately 60% of E2A-HLF mice developed lymphoid malignancies with a mean latency of 10 months. Tumors were monoclonal, consistent with a requirement for secondary genetic events, and displayed phenotypes of either mid-thymocytes or, rarely, B-cell progenitors. We conclude that E2a-Hlf disrupts the differentiation of T-lymphoid progenitors in vivo, leading to profound postnatal thymic depletion and rendering B- and T-cell progenitors susceptible to malignant transformation. PMID:10330184

  18. Versatile Transformation System That Is Applicable to both Multiple Transgene Expression and Gene Targeting for Thraustochytrids

    PubMed Central

    Sakaguchi, Keishi; Matsuda, Takanori; Kobayashi, Takumi; Ohara, Jun-ichiro; Hamaguchi, Rie; Abe, Eriko; Nagano, Naoki; Hayashi, Masahiro; Ueda, Mayumi; Honda, Daiske; Okita, Yuji; Taoka, Yousuke; Sugimoto, Shinichi; Okino, Nozomu

    2012-01-01

    A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neor), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neor marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neor mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C20:3n-6) and eicosatetraenoic acid (C20:4n-3), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids. PMID:22344656

  19. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids.

    PubMed

    Sakaguchi, Keishi; Matsuda, Takanori; Kobayashi, Takumi; Ohara, Jun-Ichiro; Hamaguchi, Rie; Abe, Eriko; Nagano, Naoki; Hayashi, Masahiro; Ueda, Mayumi; Honda, Daiske; Okita, Yuji; Taoka, Yousuke; Sugimoto, Shinichi; Okino, Nozomu; Ito, Makoto

    2012-05-01

    A versatile transformation system for thraustochytrids, a promising producer for polyunsaturated fatty acids and fatty acid-derived fuels, was established. G418, hygromycin B, blasticidin, and zeocin inhibited the growth of thraustochytrids, indicating that multiple selectable marker genes could be used in the transformation system. A neomycin resistance gene (neo(r)), driven with an ubiquitin or an EF-1α promoter-terminator from Thraustochytrium aureum ATCC 34304, was introduced into representatives of two thraustochytrid genera, Aurantiochytrium and Thraustochytrium. The neo(r) marker was integrated into the chromosomal DNA by random recombination and then functionally translated into neo(r) mRNA. Additionally, we confirmed that another two genera, Parietichytrium and Schizochytrium, could be transformed by the same method. By this method, the enhanced green fluorescent protein was functionally expressed in thraustochytrids. Meanwhile, T. aureum ATCC 34304 could be transformed by two 18S ribosomal DNA-targeting vectors, designed to cause single- or double-crossover homologous recombination. Finally, the fatty acid Δ5 desaturase gene was disrupted by double-crossover homologous recombination in T. aureum ATCC 34304, resulting in an increase of dihomo-γ-linolenic acid (C(20:3n-6)) and eicosatetraenoic acid (C(20:4n-3)), substrates for Δ5 desaturase, and a decrease of arachidonic acid (C(20:4n-6)) and eicosapentaenoic acid (C(20:5n-3)), products for the enzyme. These results clearly indicate that a versatile transformation system which could be applicable to both multiple transgene expression and gene targeting was established for thraustochytrids. PMID:22344656

  20. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance.

    PubMed

    Pandey, Sonika; Patel, Manish Kumar; Mishra, Avinash; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas. PMID:27411057

  1. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance

    PubMed Central

    Pandey, Sonika; Patel, Manish Kumar; Jha, Bhavanath

    2016-01-01

    Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas. PMID:27411057

  2. Development of grapevine somatic embryogenesis using an air-lift bioreactor as an efficient tool in the generation of transgenic plants.

    PubMed

    Tapia, Eduardo; Sequeida, Alvaro; Castro, Alvaro; Montes, Christian; Zamora, Pablo; López, Reinaldo; Acevedo, Fernando; Prieto, Humberto

    2009-01-01

    The grapevine genetic transformation programs have relayed on the use of solid media-based somatic embryogenesis. To reach a high throughput of candidate gene evaluation in 'Thompson Seedless', a semi-automatic system allowing viable transformation of explants was designed. An intermediate procedure using liquid media and agitated flasks was first characterized, leading to reduction in the biomass duplication time of pro-embryogenic (PE) cells from 30 d in dishes to 14 d. The oxygen transfer coefficient value in this system was 213h(-1) at 120rpm and 25 degrees C with a 16/8-h (light/darkness) photoperiod. The scaling-up to the air-lift bioreactor decreased the biomass duplication time of PE cells up to 5.3 d post-inoculation (pi) and an average volumetric productivity of 1.6g/(dxL). Although slight browning was seen in the explants during the phase of 8-14 d pi, no losses in their viability and regenerative capability were observed. Cultured cells showed normal elongation in the transition from heart- to the torpedo-shape and finally to advanced developmental stages, with radicle emergence and whole plant generation. Agrobacterium-mediated transformation of cells was efficiently incorporated after this multiplication process by use of conventional procedures in dishes, allowing the generation of transgenic plantlets confirmed by PCR. PMID:18984020

  3. TRANSFORMATION EFFICIENCIES AND EXPRESSION PATTERNS OF A SERIES OF TRUNCATED GS1-2 PROMOTER/GUS TRANSGENES IN MAIZE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One isoform of maize glutamine synthetase, encoded by GS1-2, is localized exclusively within the maternal tissues of the developing kernel. In this report, a series GS1-2 promoter/GUS reporter transgenes, progressively truncated from the 5' end of the promoter, were evaluated for transformation eff...

  4. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus

    PubMed Central

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7–242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  5. Efficient Production of a Bioactive Bevacizumab Monoclonal Antibody Using the 2A Self-cleavage Peptide in Transgenic Rice Callus.

    PubMed

    Chen, Lei; Yang, Xiaoyu; Luo, Da; Yu, Weichang

    2016-01-01

    Bevacizumab, a humanized monoclonal antibody (mAb) targeting to the vascular endothelial growth factor (VEGF), has been widely used in clinical practice for the treatment of multiple cancers. Bevacizumab was mostly produced by the mammalian cell expression system. We here reported the first plant-derived Bevacizumab by using transgenic rice callus as an alternative gene expression system. Codon-optimized Bevacizumab light chain (BLC) and Bevacizumab heavy chain (BHC) genes were designed, synthesized as a polyprotein with a 2A self-cleavage linker peptide from the Foot-and-mouth disease virus, cloned into a plant binary vector under a constitutive maize ubiquitin promoter, and transformed into rice nuclear genome through Agrobacterium-mediated transformation. Southern blot and western blot analyses confirmed the integration and expression of BLC and BHC genes in transgenic rice callus. Enzyme-linked immunosorbent assay (ELISA) analysis indicated that the rice-derived Bevacizumab mAb was biologically active and the recombinant mAb was expressed at high levels (160.7-242.8 mg/Kg) in transgenic rice callus. The mAb was purified by using protein A affinity chromatography and the purified antibody was tested for its binding affinity with its target human VEGF (hVEGF) antigen by ELISA. Rice callus produced Bevacizumab and a commercial Bevacizumab (Avastin) were shown to have similar binding affinity to hVEGF. These results indicated that rice callus produced Bevacizumab could have similar biological activity and might potentially be used as a cost-effective biosimilar molecule in future cancer treatment. PMID:27555853

  6. The expression of the Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.].

    PubMed

    Ellul, P; Ríos, G; Atarés, A; Roig, L A; Serrano, R; Moreno, V

    2003-08-01

    An optimised Agrobacterium-mediated gene transfer protocol was developed in order to obtain watermelon transgenic plants [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Transformation efficiencies ranged from 2.8% to 5.3%, depending on the cultivar. The method was applied to obtain genetically engineered watermelon plants expressing the Saccharomyces cerevisiae HAL1 gene related to salt tolerance. In order to enhance its constitutive expression in plants, the HAL1 gene was cloned in a pBiN19 plasmid under control of the 35S promoter with a double enhancer sequence from the cauliflower mosaic virus and the RNA4 leader sequence of the alfalfa mosaic virus. This vector was introduced into Agrobacterium tumefaciens strain LBA4404 for further inoculation of watermelon half-cotyledon explants. The introduction of both the neomycin phosphotransferase II and HAL1 genes was assessed in primary transformants (TG1) by polymerase chain reaction analysis and Southern hybridisation. The expression of the HAL1 gene was determined by Northern analysis, and the diploid level of transgenic plants was confirmed by flow cytometry. The presence of the selectable marker gene in the expected Mendelian ratios was demonstrated in TG2 progenies. The TG2 kanamycin-resistant plantlets elongated better and produced new roots and leaves in culture media supplemented with NaCl compared with the control. Salt tolerance was confirmed in a semi-hydroponic system (EC=6 dS m(-1)) on the basis of the higher growth performance of homozygous TG3 lines with respect to their respective azygous control lines without the transgene. The halotolerance observed confirmed the inheritance of the trait and supports the potential usefulness of the HAL1 gene of S. cerevisiae as a molecular tool for genetic engineering of salt-stress protection in other crop species. PMID:12783167

  7. The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing c...

  8. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.

    PubMed

    Wu, Tingquan; Tang, Dingzhong; Chen, Weida; Huang, Hexun; Wang, Rui; Chen, Yongfang

    2013-09-15

    Thanatin(S) is an analog of thanatin, an insect antimicrobial peptide possessing strong and broad spectrum of antimicrobial activity. In order to investigate if the thanatin could be used in engineering transgenic plants for increased resistance against phytopathogens, the synthetic thanatin(S) was introduced into Arabidopsis thaliana plants. To increase the expression level of thanatin(S) in plants, the coding sequence was optimized by plant-preference codon. To avoid cellular protease degradation, signal peptide of rice Cht1 was fused to N terminal of thanatin(S) for secreting the expressed thanatin(S) into intercellular spaces. To evaluate the application value of thanatin(S) in plant disease control, the synthesized coding sequence of Cht1 signal peptide (Cht1SP)-thanatin(S) was ligated to plant gateway destination binary vectors pGWB11 (with FLAG tag). Meanwhile, in order to observe the subcellular localization of Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP, the sequences of Cht1SP-thanatin(S) and thanatin(S) were respectively linked to pGWB5 (with GFP tag). The constructs were transformed into Arabidopsis ecotype Col-0 and mutant pad4-1 via Agrobacterium-mediated transformation. The transformants with Cht1SP-thanatin(S)-FLAG fusion gene were analyzed by genomic PCR, real-time PCR, and western blots and the transgenic Arabidopsis plants introduced respectively Cht1SP-thanatin(S)-GFP and thanatin(S)-GFP were observed by confocal microscopy. Transgenic plants expressing Cht1SP-thanatin(S)-FLAG fusion protein showed antifungal activity against Botrytis cinerea and powdery mildew, as well as antibacterial activity against Pseudomonas syringae pv. tomato. And the results from confocal observation showed that the GFP signal from Cht1SP-thanatin(S)-GFP transgenic Arabidopsis plants occurred mainly in intercellular space, while that from thanatin(S)-GFP transgenic plants was mainly detected in the cytoplasm and that from empty vector transgenic plants was distributed

  9. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    PubMed

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature. PMID:25986972

  10. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.

    PubMed Central

    Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G

    1993-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177

  11. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

    PubMed Central

    Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849

  12. Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton

    PubMed Central

    Bajwa, Kamran S.; Shahid, Ahmad A.; Rao, Abdul Q.; Bashir, Aftab; Aftab, Asia; Husnain, Tayyab

    2015-01-01

    Cotton fiber is multigenic trait controlled by number of genes. Previous studies suggest that one of these genes may be responsible for switching cotton fiber growth on and off to influence the fiber quality produced from a cotton seed. In the present study, the Gossypium hirsutum GhEXPA8 fiber expansin gene was introduced into local cotton variety NIAB 846 by using an Agrobacterium-mediated gene transformation. The neomycin phosphotransferase (NPTII) gene was used as a selection marker for screening of putative transgenic cotton plants. Integration and expression of the fiber expansin gene in cotton plants was confirmed with molecular techniques including Southern blot analyses, real-time PCR. Cellulose assay was used for measurement of cellulose contents of transgenic cotton fiber. The data collected from 3 years of field performance of the transgenic cotton plants expressing GhEXPA8 showed that significant improvement has been made in fiber lengths and micronaire values as compared to control G. hirsutum variety NIAB 846 cotton plants. Statistical techniques were also used for analysis of fiber and agronomic characteristics. The results of this study support improvement of cotton fiber through genetic modification. PMID:26583018

  13. Efficient transformation and artificial miRNA gene silencing in Lemna minor.

    PubMed

    Cantó-Pastor, A; Mollá-Morales, A; Ernst, E; Dahl, W; Zhai, J; Yan, Y; Meyers, B C; Shanklin, J; Martienssen, R

    2015-01-01

    Despite rapid doubling time, simple architecture and ease of metabolic labelling, a lack of genetic tools in the Lemnaceae (duckweed) has impeded the full implementation of this organism as a model for biological research. Here, we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via Agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a magnesium chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic L. minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. PMID:24989135

  14. A novel gateway-compatible binary vector series (PC-GW) for flexible cloning of multiple genes for genetic transformation of plants.

    PubMed

    Dalal, Jyoti; Yalamanchili, Roopa; La Hovary, Christophe; Ji, Mikyoung; Rodriguez-Welsh, Maria; Aslett, Denise; Ganapathy, Sowmya; Grunden, Amy; Sederoff, Heike; Qu, Rongda

    2015-09-01

    The rapidly advancing field of plant synthetic biology requires transforming plants with multiple genes. This has sparked a growing interest in flexible plant transformation vectors, which can be used for multi-gene transformations. We have developed a novel binary vector series, named the PC-GW series (GenBank: KP826769-KP826773), for Agrobacterium-mediated plant transformation. The PC-GW vectors use the pCAMBIA vector backbone, and contain NPTII, hpt, bar, mCherry or egfp genes as selectable markers for plant transformation. In a modified multiple cloning site (MCS) of the T-DNA region, we have placed the attR1, attR2 and ccdB sequences for rapid cloning of one to four genes by Gateway™-assisted recombination. In addition, we have introduced four meganuclease sites, and other restriction sites for multi-gene vector construction. Finally, we have placed a CaMV 35S promoter and a 35S terminator on the 5' and 3' ends of the MCS. The CaMV 35S promoter is flanked by PstI restriction sites that can be used to replace it with another promoter sequence if needed. The PC-GW vectors provide choices for selectable markers, cloning methods, and can accommodate up to eight gene constructs in a single T-DNA, thereby significantly reducing the number of transformations or crosses needed to generate multi-transgene expressing plants. PMID:26188330

  15. High efficiency transformation of banana [Musa acuminata L. cv. Matti (AA)] for enhanced tolerance to salt and drought stress through overexpression of a peanut salinity-induced pathogenesis-related class 10 protein.

    PubMed

    Rustagi, Anjana; Jain, Shalu; Kumar, Deepak; Shekhar, Shashi; Jain, Mukesh; Bhat, Vishnu; Sarin, Neera Bhalla

    2015-01-01

    Bananas and plantains (Musa spp. L.) are important subsistence crops and premium export commodity in several countries, and susceptible to a wide range of environmental and biotic stress conditions. Here, we report efficient, rapid, and reproducible Agrobacterium-mediated transformation and regeneration of an Indian niche cultivar of banana [M. acuminata cv. Matti (AA)]. Apical meristem-derived highly proliferative multiple shoot clump (MSC) explants were transformed with the Agrobacterium strain EHA105 harboring a binary vector pCAMBIA-1301 carrying hptII and uidA. Sequential agro-infiltration (10 min, 400 mmHg), infection (additional 35 min, Agrobacterium density A 600 = 0.8) and co-cultivation (18 h) regimen in 100 µM acetosyringone containing liquid medium were critical factors yielding high transformation efficiency (~81 %) corroborated by transient GUS expression assay. Stable transgenic events were recovered following two cycles of meristem initiation and selection on hygromycin containing medium. Histochemical GUS assay in several tissues of transgenic plants and molecular analyses confirmed stable integration and expression of transgene. The protocol described here allowed recovery of well-established putative transgenic plantlets in as little as 5 months. The transgenic banana plants could be readily acclimatized under greenhouse conditions, and were phenotypically similar to the wild-type untransformed control plants (WT). Transgenic plants overexpressing Salinity-Induced Pathogenesis-Related class 10 protein gene from Arachis hypogaea (AhSIPR10) in banana cv. Matti (AA) showed better photosynthetic efficiency and less membrane damage (P < 0.05) in the presence of NaCl and mannitol in comparison to WT plants suggesting the role of AhSIPR10 in better tolerance of salt stress and drought conditions. PMID:25173686

  16. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests

    PubMed Central

    Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao

    2008-01-01

    Background Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Results Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. Conclusion In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high

  17. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  18. Expression of kenaf mitochondrial chimeric genes HM184 causes male sterility in transgenic tobacco plants.

    PubMed

    Zhao, Yanhong; Liao, Xiaofang; Huang, Zhipeng; Chen, Peng; Zhou, Bujin; Liu, Dongmei; Kong, Xiangjun; Zhou, Ruiyang

    2015-08-01

    Chimeric genes resulting from the rearrangement of a mitochondrial genome were generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). In the study, earlier we reported that identifying a 47 bp deletion at 3'- flanking of atp9 that was linked to male sterile cytoplasm in kenaf. The truncated fragment was fused with atp9, a mitochondrial transit signal (MTS) and/or GFP, comprised two chimeric genes MTS-HM184-GFP and MTS-HM184. The plant expression vector pBI121 containing chimeric genes were then introduced to tobacco plants by Agrobacterium-mediated T-DNA transformation. The result showed that certain transgenic plants were male sterility or semi-sterility, while some were not. The expression analysis further demonstrated that higher level of expression were showed in the sterility plants, while no expression or less expression in fertility plants, the levels of expression of semi-sterility were in between. And the sterile plant (containing MTS-HM184-GFP) had abnormal anther produced malformed/shriveled pollen grains stained negative that failed to germinate (0%), the corresponding fruits was shrunken, the semi-sterile plants having normal anther shape produced about 10-50% normal pollen grains, the corresponding fruits were not full, and the germination rate was 58%. Meanwhile these transgenic plants which altered on fertility were further analyzed in phenotype. As a result, the metamorphosis leaves were observed in the seedling stage, the plant height of transgenic plants was shorter than wild type. The growth duration of transgenic tobacco was delayed 30-45 days compared to the wild type. The copy numbers of target genes of transgenic tobacco were analyzed using the real-time quantitative method. The results showed that these transgenic plants targeting-expression in mitochondrial containing MTS-HM184-GFP had 1 copy and 2 copies, the other two plants containing MTS-HM184 both had 3 copies, but 0 copy in wild type. In

  19. Cloning and functional characterization of the promoter of PsSEOF1 gene from Pisum sativum under different stress conditions using Agrobacterium-mediated transient assay

    PubMed Central

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Narendra

    2014-01-01

    PsSEOF1, a SEO (sieve element occlusion) gene family protein (forisome) is calcium powered motor protein and is located close to plasma membrane of sieve element. In sieve element (SE) it senses the calcium ion levels and undergoes ATP-independent conformational shifts. Forisome, meaning gate-bodies (Latin foris: wing of a gate; Greek soma: body). Recent reports show that SEO gene family protein can prevent the loss of nutrient rich photoassimilate upon wound injury. The regulation of SEO protein forisome under abiotic/ biotic stress is still unknown. The analysis of cis-regulatory element present in the upstream region is not well understood. Tissue specific promoters guarantee correct expression when it perceives particular stimuli. Here we report isolation of tissue specific promoter of PsSEOF1 was isolated by gene walking PCR from P. sativum (pea) genomic DNA library constructed by BD genome walker kit. In silico analysis revealed several putative cis element within this promoter sequence like wound response, cold, dehydration. Putative elements which might be required for its vascular tissue specificity has also been identified. The GUS activities of PsSEOF1 promoter-GUS chimeric construct in the agroinfiltrated leaves under different environmental stress abiotic and biotic like wound, cold, salt and phytohormones has shown high level of GUS activity. To identify the activity of PsSEOF1 promoter under different stress condition an Agrobacterium-mediated transient expression of tobacco plants were subjected to histochemical GUS staining. Stress-inducible nature of PsSEOF1 promoter opens possibility for the study of the PsSEOF1 gene regulation under stress condition. The isolated promoter sequence could serve as an important candidate for tissue specific promoter in genetic engineering of plant under stress conditions. PMID:25763698

  20. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    PubMed

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-01

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. PMID:25499296

  1. Transgenic tobacco plants overexpressing a grass PpEXP1 gene exhibit enhanced tolerance to heat stress.

    PubMed

    Xu, Qian; Xu, Xiao; Shi, Yang; Xu, Jichen; Huang, Bingru

    2014-01-01

    Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well understood. The objectives of this study were to isolate and clone an expansin gene in a perennial grass species (Poa pratensis) and to determine whether over-expression of expansin may improve plant heat tolerance. Tobacco (Nicotiana tabacum) was used as the model plant for gene transformation and an expansin gene PpEXP1 from Poa pratensis was cloned. Sequence analysis showed PpEXP1 belonged to α-expansins and was closely related to two expansin genes in other perennial grass species (Festuca pratensis and Agrostis stolonifera) as well as Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Transgenic tobacco plants over-expressing PpEXP1 were generated through Agrobacterium-mediated transformation. Under heat stress (42°C) in growth chambers, transgenic tobacco plants over-expressing the PpEXP1 gene exhibited a less structural damage to cells, lower electrolyte leakage, lower levels of membrane lipid peroxidation, and lower content of hydrogen peroxide, as well as higher chlorophyll content, net photosynthetic rate, relative water content, activity of antioxidant enzyme, and seed germination rates, compared to the wild-type plants. These results demonstrated the positive roles of PpEXP1 in enhancing plant tolerance to heat stress and the possibility of using expansins for genetic modification of cool-season perennial grasses in the development of heat-tolerant germplasm and cultivars. PMID:25003197

  2. Transgenic Tobacco Plants Overexpressing a Grass PpEXP1 Gene Exhibit Enhanced Tolerance to Heat Stress

    PubMed Central

    Xu, Qian; Xu, Xiao; Shi, Yang; Xu, Jichen; Huang, Bingru

    2014-01-01

    Heat stress is a detrimental abiotic stress limiting the growth of many plant species and is associated with various cellular and physiological damages. Expansins are a family of proteins which are known to play roles in regulating cell wall elongation and expansion, as well as other growth and developmental processes. The in vitro roles of expansins regulating plant heat tolerance are not well understood. The objectives of this study were to isolate and clone an expansin gene in a perennial grass species (Poa pratensis) and to determine whether over-expression of expansin may improve plant heat tolerance. Tobacco (Nicotiana tabacum) was used as the model plant for gene transformation and an expansin gene PpEXP1 from Poa pratensis was cloned. Sequence analysis showed PpEXP1 belonged to α-expansins and was closely related to two expansin genes in other perennial grass species (Festuca pratensis and Agrostis stolonifera) as well as Triticum aestivum, Oryza sativa, and Brachypodium distachyon. Transgenic tobacco plants over-expressing PpEXP1 were generated through Agrobacterium-mediated transformation. Under heat stress (42°C) in growth chambers, transgenic tobacco plants over-expressing the PpEXP1 gene exhibited a less structural damage to cells, lower electrolyte leakage, lower levels of membrane lipid peroxidation, and lower content of hydrogen peroxide, as well as higher chlorophyll content, net photosynthetic rate, relative water content, activity of antioxidant enzyme, and seed germination rates, compared to the wild-type plants. These results demonstrated the positive roles of PpEXP1 in enhancing plant tolerance to heat stress and the possibility of using expansins for genetic modification of cool-season perennial grasses in the development of heat-tolerant germplasm and cultivars. PMID:25003197

  3. Accumulation of Extracellular Matrix and Developmental Dysregulation in the Pancreas by Transgenic Production of Transforming Growth Factor-β1

    PubMed Central

    Lee, Myung-Shik; Gu, Danling; Feng, Lili; Curriden, Scott; Arnush, Marc; Krahl, Troy; Gurushanthaiah, Deepak; Wilson, Curtis; Loskutoff, David L.; Fox, Howard; Sarvetnick, Nora

    1995-01-01

    Transgenic mice expressing transforming growth factor-β1 (TGF-β1) in the pancreatic β-islet cells directed by human insulin promoter were produced to study in vivo effects of TGF-β1. Fibroblast proliferation and abnormal deposition of extracellular matrix were observed from birth onward, finally replacing almost all the exocrine pancreas. Cellular infiltrates comprising macrophages and neutrophils were also observed. Plasminogen activator inhibitor was induced in the transgenic pancreas as well as fibronectin and laminin, partly explaining accumulation of extracellular matrix. TGF-β1 inhibited proliferation of acinar cells in vivo as evidenced by decreased bromodeoxyuridine incorporation. Development of pancreatic islets was dysregulated, resulting in small islet cell clusters without formation of normal adult islets; however, the overall islet cell mass was not signfifcantly diminished. Additional transgenic lines with less pronounced phenotypes had less expression of TGF-β1 transgene. These findings suggest that TGF-β1 might be a mediator of diseases associated with extracellular matrix deposition such as chronic pancreatitis, and this mouse model will be useful for further analysis of the in vivo effects of TGF-β1, including its potential for immunosuppression. Imagesp43-aFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:7604884

  4. Activating the Expression of Human K-rasG12D Stimulates Oncogenic Transformation in Transgenic Goat Fetal Fibroblast Cells

    PubMed Central

    Gong, Jianhua; Wang, Zhongde; Polejaeva, Irina; Salgia, Ravi; Kao, Chien-Min; Chen, Chin-Tu; Chen, Guangchun; Chen, Liaohai

    2014-01-01

    Humane use of preclinical large animal cancer models plays a critical role in understanding cancer biology and developing therapeutic treatments. Among the large animal candidates, goats have great potentials as sustainable sources for large animal cancer model development. Goats are easier to handle and cheaper to raise. The genome of the goats has been sequenced recently. It has been known that goats develop skin, adrenal cortex, breast and other types of cancers. Technically, goats are subject to somatic cell nuclear transfer more efficiently and exhibit better viability through the cloning process. Towards the development of a goat cancer model, we created a transgenic goat fetal fibroblast (GFF) cell as the donor cell for SCNT. Human mutated K-ras (hK-rasG12D) was chosen as the transgene, as it is present in 20% of cancers. Both hK-rasG12D and a herpes simplex viral thymidine kinase (HSV1-tk) reporter genes, flanked by a pair of LoxP sites, were knocked in the GFF endogenous K-ras locus through homologous recombination. Following Cre-mediated activation (with a 95% activation efficiency), hK-rasG12D and HSV1-tk were expressed in the transgenic GFF cells, evidently through the presence of corresponding mRNAs, and confirmed by HSV1-tk protein function assay. The hK-rasG12D expressing GFF cells exhibited enhanced proliferation rates and an anchorage-independent growth behavior. They were able to initiate tumor growth in athymic nude mice. In conclusion, after activating hK-rasG12D gene expression, hK-rasG12D transgenic GFF cells were transformed into tumorgenesis cells. Transgenic goats via SCNT using the above-motioned cells as the donor cells have been established. PMID:24594684

  5. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    PubMed Central

    2011-01-01

    Background Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. Results In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1) gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice straw. Conclusion Taken together

  6. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hübner) in transgenic Bt-shallots (Allium cepa L.).

    PubMed

    Zheng, Si-Jun; Henken, Betty; de Maagd, Ruud A; Purwito, Agus; Krens, Frans A; Kik, Chris

    2005-06-01

    Agrobacterium-mediated genetic transformation was applied to produce beet armyworm (Spodoptera exigua Hübner) resistant tropical shallots (Allium cepa L. group Aggregatum). A cry1Ca or a H04 hybrid gene from Bacillus thuringiensis, driven by the chrysanthemum ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (Rubisco SSU) promoter, along with the hygromycin phosphotransferase gene (hpt) driven by the CaMV 35S promoter, was employed for genetic transformation. An average transformation frequency of 3.68% was obtained from two shallot cultivars, Tropix and Kuning. After transfer of the in vitro plants to the greenhouse 69% of the cry1Ca and 39% of the H04 transgenic shallots survived the first half year. After one year of cultivation in the greenhouse the remaining cry1Ca and H04 transgenic plants grew vigorously and had a normal bulb formation, although the cry1Ca transgenic plants (and controls) had darker green leaves compared to their H04 counterparts. Standard PCR, adaptor ligation PCR and Southern analyses confirmed the integration of T-DNA into the shallot genome. Northern blot and ELISA analyses revealed expression of the cry1Ca or H04 gene in the transgenic plants. The amount of Cry1Ca expressed in transgenic plants was higher than the expression levels of H04 (0.39 vs. 0.16% of the total soluble leaf proteins, respectively). There was a good correlation between protein expression and beet armyworm resistance. Cry1Ca or H04 gene expression of at least 0.22 or 0.08% of the total soluble protein in shallot leaves was sufficient to give a complete resistance against beet armyworm. This confirms earlier observations that the H04 toxin is more toxic to S. exigua than the Cry1Ca toxin. The results from this study suggest that the cry1Ca and H04 transgenic shallots developed could be used for introducing resistance to beet armyworm in (sub) tropical shallot. PMID:16145834

  7. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants

    PubMed Central

    2012-01-01

    overexpression of DAT increased the yield of vindoline in transgenic plants. Conclusions In the present study, we report an efficient Agrobacterium-mediated transformation system for C. roseus plants with 11% of transformation frequency. To our knowledge, this is the first report on the establishment of A. tumefaciens mediated transformation and regeneration of C. roseus. More importantly, the C. roseus transformation system developed in this work was confirmed in the successful transformation of C. roseus using a key gene DAT involved in TIAs biosynthetic pathway resulting in the higher accumulation of vindoline in transgenic plants. PMID:22748182

  8. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses.

    PubMed

    Liu, Hongxia; Zhou, Xianyao; Dong, Na; Liu, Xin; Zhang, Huaiyu; Zhang, Zengyan

    2011-09-01

    MYB transcription factors play diverse roles in plant growth, developmental processes and stress responses. A full-length cDNA sequence of a MYB gene, namely TaPIMP1, was isolated from wheat (Triticum aestivum L.). The TaPIMP1 transcript level was significantly up-regulated by inoculation with a fungal pathogen Bipolaris sorokiniana and by drought treatment. TaPIMP1 encodes the MYB protein TaPIMP1 consisting of 323 amino acids. TaPIMP1 contains two MYB DNA binding domains (R2, R3), two putative nuclear localization sites and two putative transcription activation domains. TaPIMP1 is a new member of the R2R3-MYB transcription factor subfamily. Transient expression in onion epidermal cells of GFP fused with TaPIMP1 proved that subcellular localization of TaPIMP1 occurred in the nucleus. The TaPIMP1 gene was transferred into tobacco (Nicotiana tabacum L.) cultivar W38 by Agrobacterium-mediated transformation. After screening through PCR and RT-PCR analyses, transgenic tobacco lines expressing TaPIMP1 were identified and evaluated for pathogen resistance, and drought and salt tolerance. Compared to untransformed tobacco host plants, TaPIMP1 expressing plants displayed significantly enhanced resistance to Ralstonia solanacearum and exhibited improved tolerances to drought and salt stresses. In these transgenic lines, the activities of phenylalanine ammonia-lyase (PAL) and superoxide dismutase (SOD) were significantly increased relative to wild-type tobacco plants. The results suggested that the wheat R2R3-MYB transcription factor plays an important role in modulating responses to biotic and abiotic stresses. PMID:21597961

  9. Transformation and Evaluation of Cry1Ac+Cry2A and GTGene in Gossypium hirsutum L.

    PubMed Central

    Puspito, Agung N.; Rao, Abdul Q.; Hafeez, Muhammad N.; Iqbal, Muhammad S.; Bajwa, Kamran S.; Ali, Qurban; Rashid, Bushra; Abbas, Muhammad A.; Latif, Ayesha; Shahid, Ahmad A.; Nasir, Idrees A.; Husnain, Tayyab

    2015-01-01

    More than 50 countries around the globe cultivate cotton on a large scale. It is a major cash crop of Pakistan and is considered “white gold” because it is highly important to the economy of Pakistan. In addition to its importance, cotton cultivation faces several problems, such as insect pests, weeds, and viruses. In the past, insects have been controlled by insecticides, but this method caused a severe loss to the economy. However, conventional breeding methods have provided considerable breakthroughs in the improvement of cotton, but it also has several limitations. In comparison with conventional methods, biotechnology has the potential to create genetically modified plants that are environmentally safe and economically viable. In this study, a local cotton variety VH 289 was transformed with two Bt genes (Cry1Ac and Cry2A) and a herbicide resistant gene (cp4 EPSPS) using the Agrobacterium mediated transformation method. The constitutive CaMV 35S promoter was attached to the genes taken from Bacillus thuringiensis (Bt) and to an herbicide resistant gene during cloning, and this promoter was used for the expression of the genes in cotton plants. This construct was used to develop the Glyphosate Tolerance Gene (GTGene) for herbicide tolerance and insecticidal gene (Cry1Ac and Cry2A) for insect tolerance in the cotton variety VH 289. The transgenic cotton variety performed 85% better compared with the non-transgenic variety. The study results suggest that farmers should use the transgenic cotton variety for general cultivation to improve the production of cotton. PMID:26617613

  10. A dark incubation period is important for Agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Citrus has an extended juvenile phase and trees can take 2-20 years to transition to the adult reproductive phase and produce fruit. For citrus variety development this substantially prolongs the time before adult traits, such as fruit yield and quality, can be evaluated. Methods to...

  11. Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava.

    PubMed

    Chetty, C C; Rossin, C B; Gruissem, W; Vanderschuren, H; Rey, M E C

    2013-01-25

    Knowledge and technology transfer to African laboratories and farmers is an important objective for achieving food security and sustainable crop production on the sub-Saharan African continent. Cassava (Manihot esculenta Crantz) is a vital source of calories for more than a billion people in developing countries, and its potential industrial use for starch and bioethanol in the tropics is increasingly being recognized. However, cassava production remains constrained by the susceptibility of the crop to several biotic and abiotic stresses. For more than a decade, biotechnology has been considered an attractive tool to improve cassava as it substantially circumvents the limitations of traditional breeding, which is particularly time-consuming and tedious because of the high heterozygosity of the crop. A major constraint to the development of biotechnological approaches for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite some success achieved in genetic modification of the model cassava cultivar Tropical Manihot Series (TMS), TMS 60444, in some European and U.S. laboratories, the lack of a reproducible and robust protocol has not allowed the establishment of a routine transformation system in sub-Saharan Africa. In this study, we optimized a robust and efficient protocol developed at ETH Zurich to successfully establish transformation of a commercially cultivated South African landrace, T200, and compared this with the benchmark model cultivar TMS 60444. Results from our study demonstrated high transformation rates for both T200 (23 transgenic lines from 100 friable embryogenic callus (FEC) clusters) compared with TMS 60444 (32 transgenic lines from 100 FEC clusters). The success in transforming landraces or farmer-preferred cultivars has been limited, and the high transformation rate of an industry-preferred landrace in this study is encouraging for a feasible transformation program for cassava

  12. Origin, structure, and regulation of argK, encoding the phaseolotoxin-resistant ornithine carbamoyltransferase in Pseudomonas syringae pv. phaseolicola, and functional expression of argK in transgenic tobacco.

    PubMed Central

    Hatziloukas, E; Panopoulos, N J

    1992-01-01

    Pseudomonas syringae pv. phaseolicola produces the tripeptide N delta(N'-sulfo-diaminophosphinyl)-ornithylalanyl-homoarginin e (phaseolotoxin), which functions as a chlorosis-inducing toxin in the bean halo blight disease by inhibiting ornithine carbamoyltransferase (OCT). The bacterium possesses duplicate OCT genes, one of which, argK, encodes a toxin-resistant enzyme (ROCT) and imparts resistance to phaseolotoxin. We sequenced the argK gene from strain NPS3121, defined its promoter region, analyzed its regulation, and characterized its transcripts. The gene probably originated from another organism, since it is very distantly related to the argF gene encoding the housekeeping toxin-sensitive OCT and has low G+C content compared with the bacterial genome as a whole and with other protein-coding genes from P. syringae pv. phaseolicola. Optimized alignments of 13 OCT sequences allowed us to define key residues that may be responsible for toxin resistance and to identify a distinct prokaryotic amino acid signature, in ROCT, which argues for a prokaryotic origin of argK. An in-frame fusion of the argK coding region with the chloroplast transit peptide segment of the pea rbcS gene was introduced in Nicotiana tabacum by Agrobacterium-mediated transformation. The presence of an ROCT activity in transgenic plants was demonstrated by in vitro and in vivo assays. Some plants were toxin resistant, suggesting that pathogen-derived resistance to the toxin should be feasible in the pathogen's host. Images PMID:1522066

  13. Functional analysis of the rice rubisco activase promoter in transgenic Arabidopsis

    SciTech Connect

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang; Chen, Fan; Lu, Congming

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of the bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.

  14. TRANSFORMATION OF ANTHURIUM WITH TRANSGENES FOR BACTERIAL BLIGHT AND NEMATODE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthurium transformation was undertaken to engineer plants for resistance to bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae and to the nematodes Radopholus simile and Meloidogyne javanica. Agrobacterium tumefaciens transformation of embryogenic calli of ‘Marian Seefurth’ was sh...

  15. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds.

    PubMed

    Wang, Qing; Zhu, Yi; Sun, Lin; Li, Lebin; Jin, Shuangxia; Zhang, Xianlong

    2016-02-01

    A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS (β-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 μg g(-1) fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 μg g(-1) fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 μg g(-1) fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology. PMID:26728504

  16. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice.

    PubMed

    Ravikumar, G; Manimaran, P; Voleti, S R; Subrahmanyam, D; Sundaram, R M; Bansal, K C; Viraktamath, B C; Balachandran, S M

    2014-06-01

    The cultivation of rice (Oryza sativa L.), a major food crop, requires ample water (30 % of the fresh water available worldwide), and its productivity is greatly affected by drought, the most significant environmental factor. Much research has focussed on identifying quantitative trait loci, stress-regulated genes and transcription factors that will contribute towards the development of climate-resilient/tolerant crop plants in general and rice in particular. The transcription factor DREB1A, identified from the model plant Arabidopsis thaliana, has been reported to enhance stress tolerance against drought stress. We developed transgenic rice plants with AtDREB1A in the background of indica rice cultivar Samba Mahsuri through Agrobacterium-mediated transformation. The AtDREB1A gene was stably inherited and expressed in T1 and T2 plants and in subsequent generations, as indicated by the results of PCR, Southern blot and RT-PCR analyses. Expression of AtDREB1A was induced by drought stress in transgenic rice lines, which were highly tolerant to severe water deficit stress in both the vegetative and reproductive stages without affecting their morphological or agronomic traits. The physiological studies revealed that the expression of AtDREB1A was associated with an increased accumulation of the osmotic substance proline, maintenance of chlorophyll, increased relative water content and decreased ion leakage under drought stress. Most of the homozygous lines were highly tolerant to drought stress and showed significantly a higher grain yield and spikelet fertility relative to the nontransgenic control plants under both stressed and unstressed conditions. The improvement in drought stress tolerance in combination with agronomic traits is very essential in high premium indica rice cultivars, such as Samba Mahsuri, so that farmers can benefit in times of seasonal droughts and water scarcity. PMID:24398893

  17. Improvement of benzylisoquinoline alkaloid productivity by overexpression of 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase in transgenic Coptis japonica plants.

    PubMed

    Inui, Takayuki; Kawano, Noriaki; Shitan, Nobukazu; Yazaki, Kazufumi; Kiuchi, Fumiyuki; Kawahara, Nobuo; Sato, Fumihiko; Yoshimatsu, Kayo

    2012-01-01

    Coptis japonica (Cj) rhizomes are used as a crude drug for gastroenteritis, since they accumulate antimicrobial berberine. Berberine also shows various useful bioactivities, including cholesterol-lowering activity. Unfortunately, Cj is a slow-growing plant and more than 5 years are required to obtain a crude drug suitable for the Japanese Pharmacopoeia. To improve alkaloid productivity, we overexpressed the 3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT) gene in Cj. We established the transgenic plant (named CjHE4') by introducing one copy of Cj4'OMT by Agrobacterium-mediated transformation. The successful overexpression of 4'OMT was confirmed in all tissues of CjHE4' by real-time polymerase chain reaction (PCR) analysis. HPLC analysis revealed that the berberine content of CjHE4' leaves and roots cultivated for 4 months was increased to 2.7- and 2.0-fold, respectively, compared with non-transgenic wild-type (CjWT), and these inductions of alkaloids were stable for at least 20 months. Furthermore, in CjHE4' cultivated for 20 months, the berberine content in medicinal parts, stems and rhizomes was significantly increased (1.6-fold). As a consequence, increased amounts of alkaloids in CjHE4' resulted in the improvement of berberine yields (1.5-fold), whereas CjHE4' showed slower growth than CjWT. These results indicated that 4'OMT is one of the key-step enzymes in berberine biosynthesis and is useful for metabolic engineering in Cj. PMID:22687397

  18. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    PubMed

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  19. Effective elimination of chimeric tissue in transgenics for the stable genetic transformation of lesquerella fendleri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to improve the potential of Lesquerella fendleri as a valuable industrial oilseed crop, a stable genetic transformation system was developed. Genetic transformation was performed by inoculating leaf segments with an Agrobacterium tumefaciens strain AGL1 carrying binary vector pCAMBIA 1301.1...

  20. Persistence of unselected transgenic DNA during a plastid transformation and segregation approach to herbicide resistance.

    PubMed

    Ye, Guang-Ning; Colburn, Susan M; Xu, Charles W; Hajdukiewicz, Peter T J; Staub, Jeffrey M

    2003-09-01

    The use of a nonlethal selection scheme, most often using the aadA gene that confers resistance to spectinomycin and streptomycin, has been considered critical for recovery of plastid transformation events. In this study, the plastid-lethal markers, glyphosate or phosphinothricin herbicides, were used to develop a selection scheme for plastids that circumvents the need for integration of an antibiotic resistance marker. The effect of selective agents on tobacco (Nicotiana tabacum) mesophyll chloroplasts was first examined by transmission electron microscopy. We found that at concentrations typically used for selection of nuclear transformants, herbicides caused rapid disintegration of plastid membranes, whereas antibiotics had no apparent effect. To overcome this apparent herbicide lethality to plastids, a "transformation segregation" scheme was developed that used two independent transformation vectors for a cotransformation approach and two different selective agents in a phased selection scheme. One transformation vector carried an antibiotic resistance (aadA) marker used for early nonlethal selection, and the other transformation vector carried the herbicide (CP4 or bar) resistance marker for use in a subsequent lethal selection phase. Because the two markers were carried on separate plasmids and were targeted to different locations on the plastid genome, we reasoned that segregation of the two markers in some transplastomic lines could occur. We report here a plastid cotransformation frequency of 50% to 64%, with a high frequency (20%) of these giving rise to transformation segregants containing exclusively the initially nonselected herbicide resistance marker. Our studies indicate a high degree of persistence of unselected transforming DNA, providing useful insights into plastid chromosome dynamics. PMID:12970505

  1. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants.

    PubMed

    Kyozuka, Junko; Shimamoto, Ko

    2002-01-01

    In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we expressed OsMADS3, a rice (Oryza sativa L.) AGAMOUS(AG) ortholog, in rice plants under the control of an Actin1 promoter. As a consequence of the ectopic expression of the OsMADS3, lodicules were homeotically transformed into stamens. In total, the transformation of lodicules to staminoid organs was observed in 18 out of 26 independent transgenic lines. In contrast to the almost complete transformation occurring in lodicules, none of the transgenic plants exhibited any morphological alterations in the palea or the lemma. Our results confirmed the prediction that the lodicule is an equivalent of a dicot petal and that the ABC model can be applied to rice at least for organ specification in lodicules and stamens. PMID:11828031

  2. [Transformation of sainfoin by Agrobacterium rhizogenes LBA9402 Bin19 and regeneration of transgenic plants].

    PubMed

    Xu, Z Q; Ma, H J; Hao, J G; Jia, J F

    2000-03-01

    Hypocotyl segments of Onobrychis viciaefolia were transformed by Agrobacterium rhizogenes LBA9402 which harboured pBin19 and pRi1855. Seedling age and preculture time of hypocotyl segments influenced the transformation frequency. Paper electrophoresis revealed that 70% of single hairy root cultures could synthesize agropine. Calli were induced from hairy root segments on MS medium containing 0-9.05 mumol/L 2,4-D and 0-2.22 mumol/L 6-BA at first, then they were transferred onto MS0 medium without kanamycin for regeneration. Constitution and concentration of phytohormones in callus induction media affected subsequent regeneration of calluses on MS0 medium remarkably. Regeneration frequency and shoot number per callus declined when 2,4-D concentration in callus induction media increased from 4.52 to 9.05 mumol/L, while they ascended when 6-BA in callus induction media increased from 0 to 2.22 mumol/L. On MS medium supplemented with 4.52 mumol/L 2,4-D and 2.22 mumol/L 6-BA, only 14.2% hairy root segments could produce calluses, but the regeneration frequency reached 58.1% and the shoot number per callus was 37.2. In 32 analysed plants regenerated from 8 kanamycin resistant hairy root lines, 25 were nptII positive and showed different copy numbers. PMID:12548853

  3. Transgenic mice overexpressing APP and transforming growth factor-beta1 feature cognitive and vascular hallmarks of Alzheimer's disease.

    PubMed

    Ongali, Brice; Nicolakakis, Nektaria; Lecrux, Clotilde; Aboulkassim, Tahar; Rosa-Neto, Pedro; Papadopoulos, Panayiota; Tong, Xin-Kang; Hamel, Edith

    2010-12-01

    High brain levels of amyloid-β (Aβ) and transforming growth factor-β1 (TGF-β1) have been implicated in the cognitive and cerebrovascular alterations of Alzheimer's disease (AD). We sought to investigate the impact of combined increases in Aβ and TGF-β1 on cerebrovascular, neuronal, and mnemonic function using transgenic mice overproducing these peptides (A/T mice). In particular, we measured cerebrovascular reactivity, evoked cerebral blood flow and glucose uptake during brain activation, cholinergic status, and spatial memory, along with cerebrovascular fibrosis, amyloidosis, and astrogliosis, and their evolution with age. An assessment of perfusion and metabolic responses was considered timely, given ongoing efforts for their validation as AD biomarkers. Relative to wild-type littermates, A/T mice displayed an early progressive decline in cerebrovascular dilatory ability, preserved contractility, and reduction in constitutive nitric oxide synthesis that establishes resting vessel tone. Altered levels of vasodilator-synthesizing enzymes and fibrotic proteins, resistance to antioxidant treatment, and unchanged levels of the antioxidant enzyme, superoxide dismutase-2, accompanied these impairments. A/T mice featured deficient neurovascular and neurometabolic coupling to whisker stimulation, cholinergic denervation, cerebral and cerebrovascular Aβ deposition, astrocyte activation, and impaired Morris water maze performance, which gained severity with age. The combined Aβ- and TGF-β1-driven pathology recapitulates salient cerebrovascular, neuronal, and cognitive AD landmarks and yields a versatile model toward highly anticipated diagnostic and therapeutic tools for patients featuring Aβ and TGF-β1 increments. PMID:21088218

  4. Co-transformation of grapevine somatic embryos to produce transgenic plants free of marker genes.

    PubMed

    Dutt, Manjul; Li, Zhijian T; Dhekney, Sadanand A; Gray, Dennis J

    2012-01-01

    A cotransformation system using somatic embryos was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. "Thompson Seedless" somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bidirectional dual promoter complex. Our technique included a short positive selection phase of cotransformed somatic embryos on liquid medium containing 100 mg/L kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg/L 5-fluorocytosine. PMID:22351010

  5. Glucose lowering effect of transgenic human insulin-like growth factor-I from rice: in vitro and in vivo studies

    PubMed Central

    2011-01-01

    Background Human insulin-like growth factor-I (hIGF-I) is a growth factor which is highly resemble to insulin. It is essential for cell proliferation and has been proposed for treatment of various endocrine-associated diseases including growth hormone insensitivity syndrome and diabetes mellitus. In the present study, an efficient plant expression system was developed to produce biologically active recombinant hIGF-I (rhIGF-I) in transgenic rice grains. Results The plant-codon-optimized hIGF-I was introduced into rice via Agrobacterium-mediated transformation. To enhance the stability and yield of rhIGF-I, the endoplasmic reticulum-retention signal and glutelin signal peptide were used to deliver rhIGF-I to endoplasmic reticulum for stable accumulation. We found that only glutelin signal peptide could lead to successful expression of hIGF-I and one gram of hIGF-I rice grain possessed the maximum activity level equivalent to 3.2 micro molar of commercial rhIGF-I. In vitro functional analysis showed that the rice-derived rhIGF-I was effective in inducing membrane ruffling and glucose uptake on rat skeletal muscle cells. Oral meal test with rice-containing rhIGF-I acutely reduced blood glucose levels in streptozotocin-induced and Zucker diabetic rats, whereas it had no effect in normal rats. Conclusion Our findings provided an alternative expression system to produce large quantities of biologically active rhIGF-I. The provision of large quantity of recombinant proteins will promote further research on the therapeutic potential of rhIGF-I. PMID:21486461

  6. Enhanced tumor formation in cyclin D1 x transforming growth factor beta1 double transgenic mice with characterization by magnetic resonance imaging.

    PubMed

    Deane, Natasha G; Lee, Haakil; Hamaamen, Jalal; Ruley, Anna; Washington, M Kay; LaFleur, Bonnie; Thorgeirsson, Snorri S; Price, Ronald; Beauchamp, R Daniel

    2004-02-15

    Transgenic mice that overexpress cyclin D1 protein in the liver develop liver carcinomas with high penetrance. Transforming growth factor beta (TGF-beta) serves as either an epithelial cell growth inhibitor or a tumor promoter, depending on the cellular context. We interbred LFABP-cyclin D1 and Alb-TGF-beta1 transgenic mice to produce cyclin D1/TGF-beta1 double transgenic mice and followed the development of liver tumors over time, characterizing cellular and molecular changes, tumor incidence, tumor burden, and tumor physiology noninvasively by magnetic resonance imaging. Compared with age-matched LFABP-cyclin D1 single transgenic littermates, cyclin D1/TGF-beta1 mice exhibited a significant increase in tumor incidence. Tumor multiplicity, tumor burden, and tumor heterogeneity were higher in cyclin D1/TGF-beta1 mice compared with single transgenic littermates. Characteristics of cyclin D1/TGF-beta1 livers correlated with a marked induction of the peripheral periductal oval cell/stem cell compartment of the liver. A number of cancerous lesions from cyclin D1/TGF-beta1 mice exhibited unique features such as ductal plate malformations and hemorrhagic nodules. Some lesions were contiguous with the severely diseased background liver and, in some cases, replaced the normal architecture of the entire organ. Cyclin D1/TGF-beta1 lesions, in particular, were associated with malignant features such as areas of vascular invasion by hepatocytes and heterogeneous hyperintensity of signal on T2-weighted magnetic resonance imaging. These findings demonstrate that TGF-beta1 promotes stem cell activation and tumor progression in the context of cyclin D1 overexpression in the liver. PMID:14973059

  7. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative n...

  8. Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice.

    PubMed Central

    Korfhagen, T R; Swantz, R J; Wert, S E; McCarty, J M; Kerlakian, C B; Glasser, S W; Whitsett, J A

    1994-01-01

    Increased production of EGF or TGF-alpha by the respiratory epithelial cells has been associated with the pathogenesis of various forms of lung injury. Growth factors and cytokines are thought to act locally, via paracrine and autocrine mechanisms, to stimulate cell proliferation and matrix deposition by interstitial lung cells resulting in pulmonary fibrosis. To test whether TGF-alpha mediates pulmonary fibrotic responses, we have generated transgenic mice expressing human TGF-alpha under control of regulatory regions of the human surfactant protein C (SP-C) gene. Human TGF-alpha mRNA was expressed in pulmonary epithelial cells in the lungs of the transgenic mice. Adult mice bearing the SP-C-TGF-alpha transgene developed severe pulmonary fibrosis. Fibrotic lesions were observed in peribronchial, peribronchiolar, and perivascular regions, as well as subjacent to pleural surfaces. Lesions consisted of fibrous tissue that included groups of epithelial cells expressing endogenous SP-C mRNA, consistent with their identification as distal respiratory epithelial cells. Peripheral fibrotic regions consisted of thickened pleura associated with extensive collagen deposition. Alveolar architecture was disrupted in the transgenic mice with loss of alveoli in the lung parenchyma. Pulmonary epithelial cell expression of TGF-alpha in transgenic mice disrupts alveolar morphogenesis and produces fibrotic lesions mediated by paracrine signaling between respiratory epithelial and interstitial cells of the lung. Images PMID:8163670

  9. Evolution of neoplastic development in the liver of transgenic mice co-expressing c-myc and transforming growth factor-alpha.

    PubMed Central

    Santoni-Rugiu, E.; Nagy, P.; Jensen, M. R.; Factor, V. M.; Thorgeirsson, S. S.

    1996-01-01

    We have previously shown that co-expression of c-myc and transforming growth factor (TGF)-alpha as transgenes in mouse liver results in major enhancement of neoplastic development in this organ as compared with expression of either of these transgenes alone. In this report we describe in detail the progression from liver cell dysplasia to hepatocellular carcinomas (HCCs) occurring in the liver of c-myc/TGF-alpha and c-myc transgenic mice. Despite morphological similarities in the sequence of events between the two transgenic lines, the dramatic acceleration, extent, and severity of hepatic lesions in c-myc/TGF-alpha mice clearly demonstrated the synergistic effects of this transgenic combination. Although c-myc/TGF-alpha and c-myc females displayed longer latency and lower tumor incidence, the pathological changes were the same as those seen in the male mice, including the formation of HCCs, which are absent in TGF-alpha single-transgenic females. Tumors in single- and double-transgenic mice showed induction of the endogenous c-myc and TGF-alpha and, most frequently, unchanged or decreased epidermal growth factor receptor, further indicating the collaborative role of c-myc and TGF-alpha in providing a selective growth advantage to tumor cells independently of the epidermal growth factor receptor levels. To identify possible tumor precursors, we focused particularly on the dysplastic changes preceding and accompanying the appearance of preneoplastic and neoplastic lesions in the double-transgenic mice. Early on, these changes were characterized by the appearance of large dysplastic hepatocytes, mostly pericentrally, expressing high levels of TGF-alpha and uPA, as well as TGF-beta 1, particularly in apoptotic cells. After a short period of replication and expansion into the liver parenchyma, as well as penetration into the central veins, these cells underwent apoptotic cell death while preneoplastic and neoplastic lesions were forming. The peritumorous tissues also

  10. Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1.

    PubMed Central

    Wyss-Coray, T.; Feng, L.; Masliah, E.; Ruppe, M. D.; Lee, H. S.; Toggas, S. M.; Rockenstein, E. M.; Mucke, L.

    1995-01-01

    A number of important neurological diseases, including HIV-1 encephalitis, Alzheimer's disease, and brain trauma, are associated with increased cerebral expression of the multifunctional cytokine transforming growth factor-beta 1 (TGF-beta 1). To determine whether overexpression of TGF-beta 1 within the central nervous system (CNS) can contribute to the development of neuropathological alterations, a bioactive form of TGF-beta 1 was expressed in astrocytes of transgenic mice. Transgenic mice with high levels of cerebral TGF-beta 1 expression developed a severe communicating hydrocephalus, seizures, motor incoordination, and early runting. While unmanipulated heterozygous transgenic mice from a low expressor line showed no such alterations, increasing TGF-beta 1 expression in this line by injury-induced astroglial activation or generation of homozygous offspring did result in the abnormal phenotype. Notably, astroglial overexpression of TGF-beta 1 consistently induced a strong upmodulation of the extracellular matrix proteins laminin and fibronectin in the CNS, particularly in the vicinity of TGF-beta 1-expressing perivascular astrocytes, but was not associated with obvious CNS infiltration by hematogenous cells. While low levels of extracellular matrix protein expression may assist in CNS wound repair and regeneration, excessive extracellular matrix deposition could result in the development of hydrocephalus. As an effective inducer of extracellular matrix components, TGF-beta 1 may also contribute to the development of other neuropathological alterations, eg, the formation of amyloid plaques in Alzheimer's disease. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7604885

  11. Agrobacterium-Mediated Disruption of a Nonribosomal Peptide Synthetase Gene in the Invertebrate Pathogen Metarhizium anisopliae Reveals a Peptide Spore Factor▿ †

    PubMed Central

    Moon, Yong-Sun; Donzelli, Bruno G. G.; Krasnoff, Stuart B.; McLane, Heather; Griggs, Mike H.; Cooke, Peter; Vandenberg, John D.; Gibson, Donna M.; Churchill, Alice C. L.

    2008-01-01

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative nonribosomal peptide synthetase (NPS) gene, MaNPS1. Four of six gene disruption mutants identified were examined further. Chemical analyses showed the presence of serinocyclins, cyclic heptapeptides, in the extracts of conidia of control strains, whereas the compounds were undetectable in ΔManps1 mutants treated identically or in other developmental stages, suggesting that MaNPS1 encodes a serinocyclin synthetase. Production of the cyclic depsipeptide destruxins, M. anisopliae metabolites also predicted to be synthesized by an NPS, was similar in ΔManps1 mutant and control strains, indicating that MaNPS1 does not contribute to destruxin biosynthesis. Surprisingly, a MaNPS1 fragment detected DNA polymorphisms that correlated with relative destruxin levels produced in vitro, and MaNPS1 was expressed concurrently with in vitro destruxin production. ΔManps1 mutants exhibited in vitro development and responses to external stresses comparable to control strains. No detectable differences in pathogenicity of the ΔManps1 mutants were observed in bioassays against beet armyworm and Colorado potato beetle in comparison to control strains. This is the first report of targeted disruption of a secondary metabolite gene in M. anisopliae, which revealed a novel cyclic peptide spore factor. PMID:18502925

  12. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants.

    PubMed

    Podevin, Nancy; du Jardin, Patrick

    2012-01-01

    Multiple variants of the Cauliflower mosaic virus 35S promoter (P35S) are used to drive the expression of transgenes in genetically modified plants, for both research purposes and commercial applications. The genetic organization of the densely packed genome of this virus results in sequence overlap between P35S and viral gene VI, encoding the multifunctional P6 protein. The present paper investigates whether introduction of P35S variants by genetic transformation is likely to result in the expression of functional domains of the P6 protein and in potential impacts in transgenic plants. A bioinformatic analysis was performed to assess the safety for human and animal health of putative translation products of gene VI overlapping P35S. No relevant similarity was identified between the putative peptides and known allergens and toxins, using different databases. From a literature study it became clear that long variants of the P35S do contain an open reading frame, when expressed, might result in unintended phenotypic changes. A flowchart is proposed to evaluate possible unintended effects in plant transformants, based on the DNA sequence actually introduced and on the plant phenotype, taking into account the known effects of ectopically expressed P6 domains in model plants. PMID:22892689

  13. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism

    PubMed Central

    2010-01-01

    Background The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful. Results Hpa1Xoo is a harpin protein from Xanthomonas oryzae pv. oryzae which induces the hypersensitive cell death in plants. When hpa1Xoo was transformed into the susceptible cotton line Z35 through Agrobacterium-mediated transformation, the transgenic cotton line (T-34) with an improved resistance to Verticillium dahliae was obtained. Cells of the transgenic T-34, when mixed with the conidia suspension of V. dahliae, had a higher tolerance to V. dahliae compared to cells of untransformed Z35. Cells of T-34 were more viable 12 h after mixing with V. dahliae conidia suspension. Immunocytological analysis showed that Hpa1Xoo, expressed in T-34, accumulated as clustered particles along the cell walls of T-34. In response to the infection caused by V. dahliae, the microscopic cell death and the generation of reactive oxygen intermediates were observed in leaves of T-34 and these responses were absent in leaves of Z35 inoculated with V. dahliae. Quantitative RT-PCR analysis indicated that five defense-related genes, ghAOX1, hin1, npr1, ghdhg-OMT, and hsr203J, were up-regulated in T-34 inoculated with V. dahliae. The up-regulations of these defense-relate genes were not observed or in a less extent in leaves of Z-35 after the inoculation. Conclusions Hpa1Xoo accumulates along the cell walls of the transgenic T-34, where it triggers the generation of H2O2 as an endogenous elicitor. T-34 is thus in a primed state, ready to protect the host from the pathogen. The results of this study suggest that the transformation of cotton with hpa1Xoo could be an effective approach for the development of cotton varieties with the improved resistance against soil

  14. Transgenic Fish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish into which foreign DNA is artificially introduced and integrated into their genome are called transgenic fish. Since the development of the first transgenic fish in 1985, techniques to produce transgenic fish have improved tremendously, resulting in the production of genetically modified (GM) ...

  15. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco.

    PubMed

    Yao, Wenjing; Wang, Lei; Zhou, Boru; Wang, Shengji; Li, Renhua; Jiang, Tingbo

    2016-07-01

    Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco. PMID:27123829

  16. Increased susceptibility to atrial fibrillation secondary to atrial fibrosis in transgenic goats expressing transforming growth factor - B1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in people with significant morbidity and mortality. There is a strong association between atrial fibrosis and AF. Transforming growth factor B1 (TGF-B1) is an essential mediator of atrial fibrosis in animal models and human pat...

  17. Overexpression of TSC-22 (transforming growth factor- β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice.

    PubMed

    Uchida, Daisuke; Kawamata, Hitoshi; Omotehara, Fumie; Miwa, Yoshihiro; Horiuchi, Hideki; Furihata, Tadashi; Tachibana, Masatsugu; Fujimori, Takahiro

    2016-03-22

    In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells. PMID:26872059

  18. Overexpression of TSC-22 (transforming growth factor-β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice

    PubMed Central

    Miwa, Yoshihiro; Horiuchi, Hideki; Furihata, Tadashi; Tachibana, Masatsugu; Fujimori, Takahiro

    2016-01-01

    In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells. PMID:26872059

  19. Decreased expression of Toll-like receptor 4 and 5 during progression of prostate transformation in transgenic adenocarcinoma of mouse prostate mice.

    PubMed

    Han, Ju-Hee; Park, Jong-Hwan; Kim, Bo-Yeon; Chang, Seo-Na; Kim, Tae-Hyoun; Park, Jae-Hak; Kim, Dong-Jae

    2015-01-01

    Chronic inflammation has been considered an important risk factor for development of prostate cancer. Toll-like receptors (TLRs) recognize microbial moieties or endogenous molecules and play an important role in the triggering and promotion of inflammation. In this study, we examined whether expression of TLR4 and TLR5 was associated with progression of prostate transformation in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. The expression of TLR4 and TLR5 was evaluated by immunohistochemisty in formalin-fixed paraffin-embedded prostate tissue from wild-type (WT) and TRAMP mice. Normal prostate tissue from WT mice showed strong expression of TLR4 and TLR5. However, TLR4 expression in the prostate tissue from TRAMP mice gradually decreased as pathologic grade became more aggressive. TLR5 expression in the prostate tissue from TRAMP mice also decreased in low-grade prostate intraepithelial neoplasia (PIN), high-grade PIN and poorly differentiated adenocarcinoma. Overall, our results suggest that decreased expression of TLR4 and TLR5 may contribute to prostate tumorigenesis. PMID:25797291

  20. Different Effects of Transgenic Maize and Nontransgenic Maize on Nitrogen-Transforming Archaea and Bacteria in Tropical Soils

    PubMed Central

    Cotta, Simone Raposo; Dias, Armando Cavalcante Franco; Marriel, Ivanildo Evódio; Andreote, Fernando Dini; van Elsas, Jan Dirk

    2014-01-01

    The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants. PMID:25107970

  1. Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils.

    PubMed

    Cotta, Simone Raposo; Dias, Armando Cavalcante Franco; Marriel, Ivanildo Evódio; Andreote, Fernando Dini; Seldin, Lucy; van Elsas, Jan Dirk

    2014-10-01

    The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants. PMID:25107970

  2. Determination of Transgene Copy Number by Real-time Quantitative-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods to characterize transgenic plants are important to quickly understand the state of the transformant. Determining transgene copy number is an important step in transformant characterization and can differentiate between complex and simple transformation events. This knowledge can ...

  3. [Oncogenesis in transgenic mice].

    PubMed

    Shvemberger, I N; Ermilov, A N

    1994-01-01

    Oncogenesis in transgenic mice is at present a model, most adequately reflecting the natural conditions of tumor development. One of more important traits of this model is that it allows to study malignant growth simultaneously at all the structure-function levels in the context of the whole organism. This paper is a review of results of a series of experiments in which the localization of tumors was dependent or independent on the tissue specificity of a promoter, as well as development of multiple tumors with the use of viral regulatory sequences in genetic constructions. It has been shown that although a transgene is expressed in most of the tissues, tumors develop in some particular tissues only. These observations are interpreted by some authors in favour of the concept of multistep cancerogenesis. In this view, of primary importance are the results of studies on oncogenesis in transgenic mice, which contradict this concept and are regarded by their authors as an evidence of the possibility of a one-step transformation of normal cell into malignant one. The analysis of the obtained material enabled us to put forward an assumption that the key role in oncogenesis is played not only by certain genetic disturbances, but also by multi-level homeostatic mechanisms. Apparently, it is just the transgenic mice with cellular or viral oncogenes in their genome that represent a more adequate model for the detection of certain molecular-biological mechanisms underlying these disturbances. Also, of much importance is abundant material accumulated by now on oncogenesis of transgenic mice which shows a possibility of the effective use of various genetic constructions with prokaryotic and eukaryotic regulatory sequences, a possibility to induce not only tumors of some particular tissues, but also multiple hyperplastic and neoplastic changes in one and the same mouse. Development of tumors in such transgenic mice can be regarded as a model of different types of cancer disease

  4. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  5. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  6. Transgenic Animals.

    ERIC Educational Resources Information Center

    Jaenisch, Rudolf

    1988-01-01

    Describes three methods and their advantages and disadvantages for introducing genes into animals. Discusses the predictability and tissue-specificity of the injected genes. Outlines the applications of transgenic technology for studying gene expression, the early stages of mammalian development, mutations, and the molecular nature of chromosomes.…

  7. Development of a transgenic goat model wih cardiac-specific overexpression of transforming growth factor - {beta} 1 to study the relationship between atrial fibrosis and atrial fibrillation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies on patients, large animal models and transgenic mouse models have shown a strong association of atrial fibrosis with atrial fibrillation (AF). However, it is unclear whether there is a causal relationship between atrial fibrosis and AF or whether these events appear as a result of independen...

  8. Stability of transgene integration and expression in subsequent generations of doubled haploid oilseed rape transformed with chitinase and beta-1,3-glucanase genes in a double-gene construct.

    PubMed

    Melander, Margareta; Kamnert, Iréne; Happstadius, Ingrid; Liljeroth, Erland; Bryngelsson, Tomas

    2006-09-01

    A double-gene construct with one chitinase and one beta-1,3-glucanase gene from barley, both driven by enhanced 35S promoters, was transformed into oilseed rape. From six primary transformants expressing both transgenes 10 doubled haploid lines were produced and studied for five generations. The number of inserted copies for both the genes was determined by Southern blotting and real-time PCR with full agreement between the two methods. When copy numbers were analysed in different generations, discrepancies were found, indicating that at least part of the inserted sequences were lost in one of the alleles of some doubled haploids. Chitinase and beta-1,3-glucanase expression was analysed by Western blotting in all five doubled haploid generations. Despite that both the genes were present on the same T-DNA and directed by the same promoter their expression pattern between generations was different. The beta-1,3-glucanase was expressed at high and stable levels in all generations, while the chitinase displayed lower expression that varied between generations. The transgenic plants did not show any major impact on fungal resistance when assayed in greenhouse, although purified beta-1,3-glucanase and chitinase caused retardment of fungal growth in vitro. PMID:16565860

  9. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    PubMed Central

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-01-01

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively. PMID:26262617

  10. Alfalfa (Medicago sativa L.).

    PubMed

    Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu

    2015-01-01

    Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation. PMID:25300843

  11. Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors

    PubMed Central

    Sewell, Duane A.; Pan, Zhen Kun; Paterson, Yvonne

    2008-01-01

    We have shown that Listeria-based cancer vaccines inhibit the growth of transplanted tumors in a transgenic mouse model of immune tolerance where HPV-16 E7 is expressed in the thyroid gland. In this study we determine whether these vaccines are able to inhibit autochthonous tumor growth in this animal model. Mice treated with Listeria vaccines expressing E7 had significantly smaller thyroid tumors than did mice treated with controls and possessed higher numbers of antigen-specific CD8+ T cells within the spleens, tumors, and peripheral blood. This study shows that Listeria-based vaccines are able to slow autochthonous tumor growth and break immunological tolerance. PMID:18680778

  12. Increase in nervonic acid content in transformed yeast and transgenic plants by introduction of a Lunaria annua L. 3-ketoacyl-CoA synthase (KCS) gene.

    PubMed

    Guo, Yiming; Mietkiewska, Elzbieta; Francis, Tammy; Katavic, Vesna; Brost, Jennifer M; Giblin, Michael; Barton, Dennis L; Taylor, David C

    2009-03-01

    Nervonic acid is a Very Long-Chain Monounsaturated Fatty Acid (VLCMFA), 24:1 Delta15 (cis-tetracos-15-enoic acid) found in the seed oils of Lunaria annua, borage, hemp, Acer (Purpleblow maple) and Tropaeolum speciosum (Flame flower). However, of these, only the "money plant" (Lunaria annua L.) has been studied and grown sparingly for future development as a niche crop and the outlook has been disappointing. Therefore, our goal was to isolate and characterize strategic new genes for high nervonic acid production in Brassica oilseed crops. To this end, we have isolated a VLCMFA-utilizing 3-Keto-Acyl-CoA Synthase (KCS; fatty acid elongase; EC 2.3.1.86) gene from Lunaria annua and functionally expressed it in yeast, with the recombinant KCS protein able to catalyze the synthesis of several VLCMFAs, including nervonic acid. Seed-specific expression of the Lunaria KCS in Arabidopsis resulted in a 30-fold increase in nervonic acid proportions in seed oils, compared to the very low quantities found in the wild-type. Similar transgenic experiments using B. carinata as the host resulted in a 7-10 fold increase in seed oil nervonic acid proportions. KCS enzyme activity assays indicated that upon using (14)C-22:1-CoA as substrate, the KCS activity from developing seeds of transgenic B. carinata was 20-30-fold higher than the low erucoyl-elongation activity exhibited by wild type control plants. There was a very good correlation between the Lun KCS transcript intensity and the resultant 22:1-CoA KCS activity in developing seed. The highest nervonic acid level in transgenic B. carinata expressing the Lunaria KCS reached 30%, compared to 2.8% in wild type plant. In addition, the erucic acid proportions in these transgenic lines were considerably lower than that found in native Lunaria oil. These results show the functional utility of the Lunaria KCS in engineering new sources of high nervonate/reduced erucic oils in the Brassicaceae. PMID:19082744

  13. Improvement of peanut (Arachis hypogaea L.) transformation efficiency and determination of transgene copy number by relative quantitative real-time PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...

  14. Pineapple [Ananas comosus (L.) Merr].

    PubMed

    Gangopadhyay, Gaurab; Mukherjee, Kalyan K

    2015-01-01

    The efficacy of Agrobacterium-mediated pineapple transformation technique has been improved (mean percentage of transgenic micro-shoots regenerated from initial callus explants up to 20.6%) using a novel encapsulation-based, antibiotic selection procedure. The detailed protocol using a standard plant transformation vector (pCAMBIA1304) as reported in an 'elite' Indian variety (Queen) of pineapple [Ananas comosus (L.) Merr] can be applied to other varieties of pineapple for introgression of target genes. PMID:25416266

  15. Finger millet [Eleusine coracana (L.) Gaertn].

    PubMed

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation. PMID:25300836

  16. Constitutive expression of the tzs gene from Agrobacterium tumefaciens virG mutant strains is responsible for improved transgenic plant regeneration in cotton meristem transformation.

    PubMed

    Ye, Xudong; Chen, Yurong; Wan, Yuechun; Hong, Yun-Jeong; Ruebelt, Martin C; Gilbertson, Larry A

    2016-03-01

    KEY MESSAGE : virG mutant strains of a nopaline type of Agrobacterium tumefaciens increase the transformation frequency in cotton meristem transformation. Constitutive cytokinin expression from the tzs gene in the virG mutant strains is responsible for the improvement. Strains of Agrobacterium tumefaciens were tested for their ability to improve cotton meristem transformation frequency. Two disarmed A. tumefaciens nopaline strains with either a virGN54D constitutively active mutation or virGI77V hypersensitive induction mutation significantly increased the transformation frequency in a cotton meristem transformation system. The virG mutant strains resulted in greener explants after three days of co-culture in the presence of light, which could be attributed to a cytokinin effect of the mutants. A tzs knockout strain of virGI77V mutant showed more elongated, less green explants and decreased cotton transformation frequency, as compared to a wild type parental strain, suggesting that expression of the tzs gene is required for transformation frequency improvement in cotton meristem transformation. In vitro cytokinin levels in culture media were tenfold higher in the virGN54D strain, and approximately 30-fold higher in the virGI77V strain, in the absence of acetosyringone induction, compared to the wild type strain. The cytokinin level in the virGN54D strain is further increased upon acetosyringone induction, while the cytokinin level in the virGI77V mutant is decreased by induction, suggesting that different tzs gene expression regulation mechanisms are present in the two virG mutant strains. Based on these data, we suggest that the increased cytokinin levels play a major role in increasing Agrobacterium attachment and stimulating localized division of the attached plant cells. PMID:26650837

  17. Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants

    PubMed Central

    De Block, Marc; De Brouwer, Dirk; Tenning, Paul

    1989-01-01

    An efficient and largely genotype-independent transformation method for Brassica napus and Brassica oleracea was established based on neo or bar as selectable marker genes. Hypocotyl explants of Brassica napus and Brassica oleracea cultivars were infected with Agrobacterium strains containing chimeric neo and bar genes. The use of AgNO3 was a prerequisite for efficient shoot regeneration under selective conditions. Vitrification was avoided by decreasing the water potential of the medium, by decreasing the relative humidity in the tissue culture vessel, and by lowering the cytokinin concentration. In this way, rooted transformed shoots were obtained with a 30% efficiency in 9 to 12 weeks. Southern blottings and genetic analysis of S1-progeny showed that the transformants contained on average between one and three copies of the chimeric genes. A wide range of expression levels of the chimeric genes was observed among independent transformants. Up to 25% of the transformants showed no detectable phosphinotricin acetyltransferase or neomycin phosphotransferase II enzyme activities although Southern blottings demonstrated that these plants were indeed transformed. Images Figure 1 Figure 2 PMID:16667089

  18. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  19. c-Myc and Transforming Growth Factor α Enhance the Development of Hepatic Lesions Due to Mutant β-Catenin in Transgenic Mice

    PubMed Central

    Jochem, Adam S; Holmes, Katie E; Stein, Timothy J

    2014-01-01

    Alterations in the Wnt signaling pathway are associated with diverse cancers, including hepatocellular carcinoma (HCC). The development of HCC is thought to be a multistage process in which multiple genetic alterations are necessary. Few studies have assessed the effect of aberrant Wnt signaling activity in association with other molecular alterations in HCC. Here we sought to determine whether co-overexpression of c-Myc or TGFα, 2 signaling molecules known to contribute to HCC development, enhanced the development of hepatic lesions associated with a stabilized β-catenin. The coexpression of mutant β-catenin with either c-Myc or TGFα within hepatocytes increased the severity of hepatic lesions compared with that associated with any of the transgenes expressed individually. The coexpression of mutant β-catenin with c-Myc or TGFα resulted in severe hepatomegaly necessitating the euthanasia of mice by an average of 156 and 128 d, respectively, after the cessation of doxycycline. The expression of mutant β-catenin alone resulted in mild to moderate hepatomegaly that prompted the euthanasia of mice by an average of 75 d after the cessation of doxycycline. Collectively, these findings indicate that coexpression of c-Myc or TGFα delays the onset of endstage hepatic disease yet enhances the severity of hepatic lesions due to mutant β-catenin. PMID:25402175

  20. Site-specific recombination for precise and clean transgene integration in plant genome. In: Touraev, A., Citovsky, V., Tzfira, T., Editors of book. Plant Transformation Technologies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant Transformation Technologies is a comprehensive, authoritative book focusing on cutting-edge plant biotechnologies, offering in-depth, forward-looking information on methods for controlled and accurate genetic engineering. In response to ever-increasing pressure for precise and efficient integr...

  1. Corn transformed

    SciTech Connect

    Moffat, A.S.

    1990-08-10

    Researchers have produced fertile corn transformed with a foreign gene that makes the plants resistant to the herbicide bialaphos. This achievement, is the first report of fertile transgenic corn in the reviewed literature, and it is the capstone of almost a decade's efforts to genetically engineer this country's most important crop. The only other major crop to be so manipulated is rice. The ability produce transgenic corn gives biologists a valuable tool to probe the whys and hows of gene expression and regulation. It may also give plant breeders a way to develop new corn varieties with a speed and predictability that would be impossible with classical breeding techniques.

  2. Neuroanatomy and transgenic technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a short review that introduces recent advances of neuroanatomy and transgenic technologies. The anatomical complexity of the nervous system remains a subject of tremendous fascination among neuroscientists. In order to tackle this extraordinary complexity, powerful transgenic technologies a...

  3. Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens.

    PubMed

    Sebastianes, Fernanda L S; Lacava, Paulo T; Fávaro, Léia C L; Rodrigues, Maria B C; Araújo, Welington L; Azevedo, João L; Pizzirani-Kleiner, Aline A

    2012-02-01

    We describe the genetic transformation of the mycelial tissue of Diaporthe phaseolorum, an endophytic fungus isolated from the mangrove species Laguncularia racemosa, using Agrobacterium tumefaciens-mediated transformation (ATMT). ATMT uses both the hygromycin B resistant (hph) gene and green fluorescent protein as the selection agents. The T-DNA integration into the fungal genome was assessed by both PCR and Southern blotting. All transformants examined were mitotically stable. An analysis of the T-DNA flanking sequences by thermal asymmetric interlaced PCR (TAIL-PCR) demonstrated that the disrupted genes in the transformants had similarities with conserved domains in proteins involved in antibiotic biosynthesis pathways. A library of 520 transformants was generated, and 31 of these transformants had no antibiotic activity against Staphylococcus aureus, an important human pathogen. The protocol described here, using ATMT in D. phaseolorum, will be useful for the identification and analysis of fungal genes controlling pathogenicity and antibiotic pathways. Moreover, this protocol may be used as a reference for other species in the Diaporthe genus. This is the first report to describe Agrobacterium-mediated transformation of D. phaseolorum as a tool for insertional mutagenesis. PMID:22210192

  4. [Review of transgenic crop breeding in China].

    PubMed

    Huang, Dafang

    2015-06-01

    The development history and fundamental experience of transgenic crops (Genetically modified crops) breeding in China for near 30 years were reviewed. It was illustrated that a scientific research, development and industrialization system of transgenic crops including gene discovery, transformation, variety breeding, commercialization, application and biosafety assessment has been initially established which was few in number in the world. The research innovative capacity of transgenic cotton, rice and corn has been lifted. The research features as well as relative advantages have been initially formed. The problems and challenges of transgenic crop development were discussed. In addition, three suggestions of promoting commercialization, speeding up implementation of the Major National Project of GM Crops, and enhancing science communication were made. PMID:26672365

  5. Overview on the investigations of transgenic plums in Romania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6, PT3 and PT5 were evaluated for Sharka resistance under high natu...

  6. Overview of the investigation of transgenic plums in Romania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plums of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP) were the subjects of three experiments undertaken in Romania. In the first experiment, PPV-CP transgenic clones C2, C3, C4, C5, C6 and PT3 were evaluated for Sharka resistance under high natural i...

  7. Transgenic Resistance to Citrus tristeza virus in Grapefruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapefruit (Citrus paradisi) transgenic plants transformed with a variety of constructs derived from the Citrus tristeza virus (CTV) genome were tested for their resistance to the virus. Most transgenic lines were susceptible (27 lines), a few were partially resistant (6 lines) and only one line, tr...

  8. Molecular Analyses of Transgenic Plants.

    PubMed

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue. PMID:26614292

  9. SCREENING OF TRANSGENIC ANTHURIUMS FOR BACTERIAL BLIGHT AND NEMATODE RESISTANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthuriums exhibit limited resistance to bacterial blight caused by Xanthomonas axonopodis pv. dieffenbachiae and to the nematodes Radopholus simile and Meloidogyne javanica. Agrobacterium tumefaciens transformation of embryogenic calli with strains LBA4404, EHA105, and AGLO resulted in transgenic p...

  10. Establishment of mesenchymal stem cell lines derived from the bone marrow of green fluorescent protein-transgenic mice exhibiting a diversity in intracellular transforming growth factor-β and bone morphogenetic protein signaling.

    PubMed

    Sawada, Shunsuke; Chosa, Naoyuki; Takizawa, Naoki; Yokota, Jun; Igarashi, Yasuyuki; Tomoda, Koichi; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-03-01

    Cytokines and their intercellular signals regulate the multipotency of mesenchymal stem cells (MSCs). The present study established the MSC lines SG‑2, ‑3, and ‑5 from the bone marrow of green fluorescent protein (GFP)‑transgenic mice. These cell lines clearly expressed mouse MSC markers Sca‑1 and CD44, and SG‑2 and ‑5 cells retained the potential for osteogenic and adipogenic differentiation in the absence of members of the transforming growth factor (TGF)‑β superfamily. By contrast, SG‑3 cells only retained adipogenic differentiation potential. Analysis of cytokine and cytokine receptor expression in these SG cell lines showed that bone morphogenetic protein (BMP) receptor 1B was most highly expressed in the SG‑3 cells, which underwent osteogenesis in response to BMP, while TGF‑β receptor II was most highly expressed in SG‑3 and ‑5 cells. However, it was unexpectedly noted that phosphorylation of Smad 2, a major transcription factor, was induced by TGF‑β1 in SG‑2 cells but not in SG‑3 or ‑5 cells. Furthermore, TGF‑β1 clearly induced the expression of Smad‑interacting transcription factor CCAAT/enhancer binding protein‑β in SG‑2 but not in SG‑3 or ‑5 cells. These results demonstrated the establishment of TGF‑β‑responsive SG‑2 MSCs, BMP‑responsive SG‑3 MSCs and TGF‑β/BMP‑unresponsive SG‑5 MSCs, each of which was able to be traced by GFP fluorescence after transplantation into in vivo experimental models. In conclusion, the present study suggested that these cell lines may be used to explore how the TGF‑β superfamily affects the proliferation and differentiation status of MSCs in vivo. PMID:26781600

  11. The distribution of transgene insertion sites in barley determined by physical and genetic mapping.

    PubMed Central

    Salvo-Garrido, Haroldo; Travella, Silvia; Bilham, Lorelei J; Harwood, Wendy A; Snape, John W

    2004-01-01

    The exact site of transgene insertion into a plant host genome is one feature of the genetic transformation process that cannot, at present, be controlled and is often poorly understood. The site of transgene insertion may have implications for transgene stability and for potential unintended effects of the transgene on plant metabolism. To increase our understanding of transgene insertion sites in barley, a detailed analysis of transgene integration in independently derived transgenic barley lines was carried out. Fluorescence in situ hybridization (FISH) was used to physically map 23 transgene integration sites from 19 independent barley lines. Genetic mapping further confirmed the location of the transgenes in 11 of these lines. Transgene integration sites were present only on five of the seven barley chromosomes. The pattern of transgene integration appeared to be nonrandom and there was evidence of clustering of independent transgene insertion events within the barley genome. In addition, barley genomic regions flanking the transgene insertion site were isolated for seven independent lines. The data from the transgene flanking regions indicated that transgene insertions were preferentially located in gene-rich areas of the genome. These results are discussed in relation to the structure of the barley genome. PMID:15280249

  12. A robust family of Golden Gate Agrobacterium vectors for plant synthetic biology

    PubMed Central

    Emami, Shahram; Yee, Muh-ching; Dinneny, José R.

    2013-01-01

    Tools that allow for rapid, accurate and inexpensive assembly of multi-component combinatorial libraries of DNA for transformation into plants will accelerate the progress of synthetic biology research. Recent innovations in molecular cloning methods has vastly expanded the repertoire with which plant biologists can engineer a transgene. Here we describe a new set of binary vectors for use in Agrobacterium-mediated plant transformation that utilizes the Golden-Gate Cloning approach. Our optimized protocol facilitates the rapid and inexpensive generation of multi-component transgenes for later introduction into plants. PMID:24032037

  13. Towards the development of better crops by genetic transformation using engineered plant chromosomes.

    PubMed

    Dhar, Manoj K; Kaul, Sanjana; Kour, Jasmeet

    2011-05-01

    Plant Biotechnology involves manipulation of genetic material to develop better crops. Keeping in view the challenges being faced by humanity in terms of shortage of food and other resources, we need to continuously upgrade the genomic technologies and fine tune the existing methods. For efficient genetic transformation, Agrobacterium-mediated as well as direct delivery methods have been used successfully. However, these methods suffer from many disadvantages especially in terms of transfer of large genes, gene complexes and gene silencing. To overcome these problems, recently, some efforts have been made to develop genetic transformation systems based on engineered plant chromosomes called minichromosomes or plant artificial chromosomes. Two approaches namely, "top-down" or "bottom-up" have been used for minichromosomes. The former involves engineering of the existing chromosomes within a cell and the latter de novo assembling of chromosomes from the basic constituents. While some success has been achieved using these chromosomes as vectors for genetic transformation in maize, however, more studies are needed to extend this technology to crop plants. The present review attempts to trace the genesis of minichromosomes and discusses their potential of development into plant artificial chromosome vectors. The use of these vectors in genetic transformation will greatly ameliorate the food problem and help to achieve the UN Millennium development goals. PMID:21249368

  14. Generation of Transgenic Mice

    PubMed Central

    Cho, Andrew; Haruyama, Naoto; Kulkarni, Ashok B.

    2009-01-01

    This unit describes detailed step-by-step protocols, reagents, and equipment required for successful generation of transgenic mice using pronuclear injection. The experimental methods and practical tips given here will help guide beginners in understanding what is required and what to avoid in these standard protocols for efficiently generating transgenic mice. PMID:19283729

  15. WEEDING IN TRANSGENES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenes promise to reduce insecticide and fungicide use, but relatively little has been done to significantly reduce herbicide use through genetic engineering. Three strategies for transgene utilization are discussed which have the potential to change this: 1) improvement of weed-specific biocon...

  16. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020. PMID:11171275

  17. Development of antibiotic marker-free creeping bentgrass resistance against herbicides.

    PubMed

    Lee, Ki-Won; Kim, Ki-Yong; Kim, Kyung-Hee; Lee, Byung-Hyun; Kim, Jin-Seog; Lee, Sang-Hoon

    2011-01-01

    Herbicide-resistant creeping bentgrass plants (Agrostis stolonifera L.) without antibiotic-resistant markers were produced by Agrobacterium-mediated transformation. Embryogenic callus tissues were infected with Agrobacterium tumefaciens EHA105, harboring the bar and the CP4-EPSPS genes for bialaphos and glyphosate resistance. Phosphinothricin-resistant calli and plants were selected. Soil-grown plants were obtained at 14-16 weeks after transformation. Genetic transformation of the selected, regenerated plants was validated by PCR. Southern blot analysis revealed that at least one copy of the transgene was integrated into the genome of the transgenic plants. Transgene expression was confirmed by Northern blot. CP4-EPSPS protein was detected by ELISA. Transgenic plants remained green and healthy when sprayed with Basta, containing 0.5% glufosinate ammonium or glyphosate. The optimized Agrobacterium-mediated transformation method resulted in an average of 9.4% transgenic plants. The results of the present study suggest that the optimized marker-free technique could be used as an effective and reliable method for routine transformation, which may facilitate the development of varieties of new antibiotic-free grass species. PMID:21173055

  18. Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis.

    PubMed

    Kathiresan, S; Chandrashekar, Arun; Ravishankar, G A; Sarada, R

    2015-02-20

    Astaxanthin, a high-value ketocarotenoid used in the pharmaceutical and nutraceutical industries is mainly produced from green alga, Haematococcus pluvialis. It is biosynthesized by the action of key enzyme, β-carotene ketolase (BKT) on β-carotene through intermediates echinenone and canthaxanthin. In this study, the β-carotene ketolase (bkt) gene was isolated from H. pluvialis and cloned in a vector pRT100 and further mobilized to a binary vector pCAMBIA 1304. The T-DNA of pCAMBIA 1304, which consists of cloned bkt, was successfully transformed to H. pluvialis through Agrobacterium mediation. The cloning and transformation of bkt in H. pluvialis was confirmed by Southern blotting and also by PCR analysis. Total carotenoids and astaxanthin content in the transformed cells were found to be 2-3-fold higher, while the intermediates like echinenone and canthaxanthin were found to be 8-10-fold higher than in the control cells. The expression level of carotenogenic genes like phytoene synthase (psy), phytoene desaturase (pds), lycopene cyclase (lcy), bkt, and β-carotene hydroxylase (bkh) were found to be higher in transformed cells compared to the non-transformed (NT) H. pluvialis. PMID:25612872

  19. Morpho-anatomical characterization of mature embryo-derived callus of rice (Oryza sativa L.) suitable for transformation.

    PubMed

    Bevitori, R; Popielarska-Konieczna, M; dos Santos, E M; Grossi-de-Sá, M F; Petrofeza, S

    2014-05-01

    The objective of this study was to morpho-anatomically characterize embryogenic rice calli during early induction of somatic embryogenesis of three Brazilian rice cultivars. Herein, we explored embryogenic units (EUs) from 2-week-old cut proliferated calli to verify whether they were suitable for Agrobacterium tumefasciens-mediated transformation. Histological analysis and scanning electron microscopy (SEM) were used to analyze these types of calli during early rice callogenesis in the cultivars BRS Primavera, BRS Bonança, and BRS Caiapó. The characteristics of the embryogenic cells were preserved in the EUs, which showed a globular, compact structure that contained tightly packed cells and thus rendered the cells suitable for transformation. The EUs of BRS Caiapó also maintained the characteristics of the non-embryogenic callus, such as an elongated morphology and a lack of cellular organization. In general, the observations of the histological sections corresponded with those of the SEM images. The histological analysis suggested that all cultivars used in these experiments have morphogenic potential. The EUs from proliferated 2-week-old cut calli maintained their embryogenic features. The EUs were subjected to Agrobacterium-mediated transformation, which exhibited a regeneration frequency of 58 % for transformed hygromycin-resistant cell lines. These results show that EUs from proliferated 2-week-old cut calli are suitable for plant transformation. PMID:24085343

  20. Suppression of Transgene Silencing by Matrix Attachment Regions in Maize

    PubMed Central

    Brouwer, Cory; Bruce, Wesley; Maddock, Sheila; Avramova, Zoya; Bowen, Ben

    2002-01-01

    Matrix attachment regions (MARs) are DNA sequences that bind an internal nuclear network of nonhistone proteins called the nuclear matrix. Thus, they may define discrete gene-containing chromatin loops in vivo. We have studied the effects of flanking transgenes with MARs on transgene expression levels in maize callus and in transformed maize plants. Three MAR elements, two from maize (Adh1 5′ MAR and Mha1 5′ MAR) and one from yeast (ARS1), had very different effects on transgene expression that bore no relation to their affinity for the nuclear matrix in vitro. In callus, two of the MAR elements (Adh1 5′ MAR and ARS1) reduced transgene silencing but had no effect on the variability of expression. In transgenic plants, Adh1 5′ MAR had the effect of localizing β-glucuronidase expression to lateral root initiation sites. A possible model accounting for the function of Adh1 5′ MAR is discussed. PMID:12215518

  1. Hybridization and backcrossing between transgenic oilseed rape and two related weed species under field conditions.

    PubMed

    Halfhill, Matthew D; Zhu, Bin; Warwick, Suzanne I; Raymer, Paul L; Millwood, Reginald J; Weissinger, Arthur K; Stewart, C Neal

    2004-01-01

    Determining the frequency of crop-wild transgene flow under field conditions is a necessity for the development of regulatory strategies to manage transgenic hybrids. Gene flow of green fluorescent protein (GFP) and Bacillus thuringiensis (Bt) transgenes was quantified in three field experiments using eleven independent transformed Brassica napus L. lines and the wild relatives, B. rapa L. and Raphanus raphanistrum L. Under a high crop to wild relative ratio (600:1), hybridization frequency with B. rapa differed among the individual transformed B. napus lines (ranging from ca. 4% to 22%), however, this difference could be caused by the insertion events or other factors, e.g., differences in the hybridization frequencies among the B. rapa plants. The average hybridization frequency over all transformed lines was close to 10%. No hybridization with R. raphanistrum was detected. Under a lower crop to wild relative ratio (180:1), hybridization frequency with B. rapa was consistent among the transformed B. napus lines at ca. 2%. Interspecific hybridization was higher when B. rapa occurred within the B. napus plot (ca. 37.2%) compared with plot margins (ca. 5.2%). No significant differences were detected among marginal plants grown at 1, 2, and 3 m from the field plot. Transgene backcrossing frequency between B. rapa and transgenic hybrids was determined in two field experiments in which the wild relative to transgenic hybrid ratio was 5-15 plants of B. rapa to 1 transgenic hybrid. As expected, ca. 50% of the seeds produced were transgenic backcrosses when the transgenic hybrid plants served as the maternal parent. When B. rapa plants served as the maternal parent, transgene backcrossing frequencies were 0.088% and 0.060%. Results show that transgene flow from many independent transformed lines of B. napus to B. rapa can occur under a range of field conditions, and that transgenic hybrids have a high potential to produce transgenic seeds in backcrosses. PMID:15612504

  2. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    PubMed

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies. PMID:23975012

  3. Design and Management of Field Trials of Transgenic Cereals

    NASA Astrophysics Data System (ADS)

    Bedő, Zoltán; Rakszegi, Mariann; Láng, László

    The development of gene transformation systems has allowed the introgression of alien genes into plant genomes, thus providing a mechanism for broadening the genetic resources available to plant breeders. The design and the management of field trials vary according to the purpose for which transgenic cereals are developed. Breeders study the phenotypic and genotypic stability of transgenic plants, monitor the increase in homozygosity of transgenic genotypes under field conditions, and develop backcross generations to transfer the introduced genes into secondary transgenic cereal genotypes. For practical purposes, they may also multiply seed of the transgenic lines to produce sufficient amounts of grain for the detailed analysis of trait(s) of interest, to determine the field performance of transgenic lines, and to compare them with the non-transformed parental genotypes. Prior to variety registration, the Distinctness, Uniformity and Stability (DUS) tests and Value for Cultivation and Use (VCU) experiments are carried out in field trials. Field testing includes specific requirements for transgenic cereals to assess potential environmental risks. The capacity of the pollen to survive, establish and disseminate in the field test environment, the potential for gene transfer, the effects of products expressed by the introduced sequences and phenotypic and genotypic instability that might cause deleterious effects must all be specifically monitored, as required by EU Directives 2003/701/EC (1) on the release of genetically modified higher plants in the environment.

  4. Initiation and transformation of grapevine embryogenic cultures.

    PubMed

    Dhekney, Sadanand A; Li, Zhijian T; Dutt, Manjul; Gray, Dennis J

    2012-01-01

    Protocols for the production and transformation of grapevine embryogenic cultures are described. Embryogenic cultures are initiated from leaves or stamens and pistils and transformed with Agrobacterium containing an enhanced green fluorescent protein/neomycin phosphotransferase II (egfp/nptII) fusion gene. Cultures are transferred to induction medium in the dark for callus formation and proliferation. Resulting cultures are transferred to somatic embryo development medium to induce secondary embryogenesis and formation of transgenic somatic embryos. Transgenic embryos identified on the basis on GFP fluorescence and kanamycin resistance are transferred to germination medium to regenerate transgenic plants. The presence of transgenes in independent plant lines is confirmed by PCR. PMID:22351011

  5. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  6. Efficient Generation of Marker-Free Transgenic Rice Plants Using an Improved Transposon-Mediated Transgene Reintegration Strategy1

    PubMed Central

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  7. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic tobacco (Nicotiana tabacum) lines were engineered to ectopically over-express AtMYB90 (PAP2), an R2-R3 Myb gene associated with regulation of anthocyanin production in Arabidopsis thaliana. Independently transformed transgenic lines Myb27 and Myb237 accumulated large quantities of anthoc...

  8. BAC TransgeneOmics

    PubMed Central

    Poser, Ina; Sarov, Mihail; Hutchins, James R A; Hériché, Jean-Karim; Toyoda, Yusuke; Pozniakovsky, Andrei; Weigl, Daniela; Nitzsche, Anja; Hegemann, Björn; Bird, Alexander W; Pelletier, Laurence; Kittler, Ralf; Hua, Sujun; Naumann, Ronald; Augsburg, Martina; Sykora, Martina M; Hofemeister, Helmut; Zhang, Youming; Nasmyth, Kim; White, Kevin P; Dietzel, Steffen; Mechtler, Karl; Durbin, Richard; Stewart, A Francis; Peters, Jan-Michael; Buchholz, Frank; Hyman, Anthony A

    2009-01-01

    The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems. PMID:18391959

  9. Improved Transformation of Anthurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to increase transformation efficiency and yields of transgenic Anthurium andraeanum Linden ex. André hybrids were sought while effecting gene transfer for resistance to the two most important pests, bacterial blight (Xanthomonas axonopodis pv. dieffenbachiae) and nematodes (Radopholus simili...

  10. Transgenic plants with increased calcium stores

    NASA Technical Reports Server (NTRS)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  11. Clovers (Trifolium spp.).

    PubMed

    Rahimi-Ashtiani, Samira; Sahab, Sareena; Panter, Stephen; Mason, John; Spangenberg, German

    2015-01-01

    Clovers (Trifolium spp.) constitute one of the major forage legumes widely grown for its rich protein content and its major role in maintaining environmental sustainability by improving the soil fertility. Gene technology can assist plant improvement efforts in clovers (Trifolium spp.), aiming to improve forage quality, yield, and adaptation to biotic and abiotic stresses. An efficient and reproducible protocol for Agrobacterium-mediated transformation of a range of Trifolium species, using cotyledonary explants and different selectable marker genes, is described. The protocol is robust and allows for genotype and Agrobacterium strain-independent transformation of clovers. Stable meiotic transmission of transgenes has been demonstrated for selected transgenic clovers carrying single T-DNA inserts recovered from Agrobacterium-mediated transformation. This methodology can also be successfully used for "isogenic transformation" in clovers: the generation of otherwise identical plants with and without the transgene from the two cotyledons of a single seed. Stable transgenes may be used in further functional genomics, develop new traits and profile gene expression using reporters, and facilitate purification of tissue or single cells. PMID:25300844

  12. Transgenic Crops for Herbicide Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  13. Efficient production of transgenic cassava using negative and positive selection.

    PubMed

    Zhang, P; Potrykus, I; Puonti-Kaerlas, J

    2000-12-01

    In order to improve the efficiency of cassava (Manihot esculenta Crantz) transformation, two different selection systems were assessed, a positive one based on the use of mannose as the selective agent, and a negative one based on hygromycin resistance encoded by an intron-containing hph gene. Transgenic plants selected on mannose or hygromycin were regenerated for the first time from embryogenic suspensions cocultivated with Agrobacterium. After the initial selection using mannose and hygromycin, 82.6% and 100% of the respective developing embryogenic callus lines were transgenic. A system allowing plant regeneration from only transgenic lines was designed by combining chemical selection with histochemical GUS assays. In total, 12 morphologically normal transgenic plant lines were produced, five using mannose and seven using hygromycin. The stable integration of the transgenes into the nuclear genome was verified using PCR and Southern analysis. RT-PCR and northern analyses confirmed the transgene expression in the regenerated plants. A rooting test on mannose containing medium was developed as an alternative to GUS assays in order to eliminate escapes from the positive selection system. Our results show that transgenic cassava plants can be obtained by using either antibiotic resistance genes that are not expressed in the micro-organisms or an antibiotic-free positive selection system. PMID:11206969

  14. Stability of the MON 810 transgene in maize.

    PubMed

    La Paz, Jose Luis; Pla, Maria; Papazova, Nina; Puigdomènech, Pere; Vicient, Carlos M

    2010-12-01

    We analysed the DNA variability of the transgene insert and its flanking regions in maize MON 810 commercial varieties. Southern analysis demonstrates that breeding, since the initial transformation event more than 10 years ago, has not resulted in any rearrangements. A detailed analysis on the DNA variability at the nucleotide level, using DNA mismatch endonuclease assays, showed the lack of polymorphisms in the transgene insert. We conclude that the mutation rate of the transgene is not significantly different from that observed in the maize endogenous genes. Six SNPs were observed in the 5'flanking region, corresponding to a Zeon1 retrotransposon long terminal repeat. All six SNPs are more than 500 bp upstream of the point of insertion of the transgene and do not affect the reliability of the established PCR-based transgene detection and quantification methods. The mutation rate of the flanking region is similar to that expected for a maize repetitive sequence. We detected low levels of cytosine methylation in leaves of different transgenic varieties, with no significant differences on comparing different transgenic varieties, and minor differences in cytosine methylation when comparing leaves at different developmental stages. There was also a reduction in cryIAb mRNA accumulation during leaf development. PMID:20936423

  15. Transgenic Farm Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of recombinant DNA technology has enabled scientists to isolate single genes, analyze and modify their nucleotide structure(s), make copies of these isolated genes, and insert copies of these genes into the genome of plants and animals. The transgenic technology of adding genes to li...

  16. Ear leaf photosynthesis and related parameters of transgenic and non-GMO maize hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid maize (Zea mays L.) has undergone transformation by using transgenic technology to include d-endotoxins for insect control and tolerance for the herbicides glyphosate and glufosinate . Maize hybrids are being grown with multiple transgenic traits into their genotype (stacked-gene). Limited...

  17. Silencing mechansim of C5 transgenic plums is stable under challenge inoculation with heterologous viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic C5 'HoneySweet' is a clone of Prunus domestica L. transformed with the Plum pox virus coat protein gene (PPV-CP). This transgenic plum displays post-transcriptional gene silencing (PTGS) which makes it highly resistant to PPV infection. To test the effect of heterologous viruses on the ...

  18. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  19. IMPROVED TOLERANCE TO ENVIRONMENTALLY INDUCED OXIDATIVE STRESSES IN TRANSGENIC TOMATO OVEREXPRESSING ASCORBATE PEROXIDASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effect on oxidative stress resistance of overexpressing, in transgenic tomato (Lycopersicon esculentum) plants, a cytosolic ascorbate peroxidase (APX) gene derived from pea (Pisum sativum). Transformants were selected using Kanamycin resistance and confirmed by PCR, Southern and Nort...

  20. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  1. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    PubMed

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2. PMID:24274014

  2. Developing Transgenic Citrus for Resistance to Huanglongbing and Citrus Canker

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB) and Citrus Bacterial Canker (CBC) are serious threats to citrus production, and resistant transgenic citrus is desirable. Genes for antimicrobial peptides (AMPs) with diverse promoters have been used to generate thousands of rootstock and scion transformants. D35S::D4E1 transfor...

  3. Transgene expression in the basidiomycete root pathogen Armillaria mellea.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toward development of a genetic transformation system for Armillaria mellea, we used particle bombardment to identify promoters for driving transgene expression. The plasmid tested was pYES-hph-004iGFP, on which the green fluorescence protein gene, gfp, is linked to the Agaricus bisporus gpdII promo...

  4. Transgenic Crops in Argentina: The Ecological and Social Debt

    ERIC Educational Resources Information Center

    Pengue, Walter A.

    2005-01-01

    There is no doubt that soybean is the most important crop for Argentina, with a planted surface that rose 11,000,000 hectares and a production of around 35,000,000 metric tons. During the 1990s, there was a significant agriculture transformation in the country, motorize by the adoption of transgenic crops (soy-bean, maize, and cotton) under the…

  5. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  6. Sugar beet (Beta vulgaris L.).

    PubMed

    Kagami, Hiroyo; Kurata, Masayuki; Matsuhira, Hiroaki; Taguchi, Kazunori; Mikami, Tetsuo; Tamagake, Hideto; Kubo, Tomohiko

    2015-01-01

    Creating transgenic plants is invaluable for the genetic analysis of sugar beet and will be increasingly important as sugar beet genomic technologies progress. A protocol for Agrobacterium-mediated transformation of sugar beet is described in this chapter. Our protocol is optimized for a sugar beet genotype that performs exceptionally well in tissue culture, including the steps of dedifferentiation, callus proliferation, and regeneration. Because of the infrequent occurrence of such a genotype in sugar beet populations, our protocol includes an in vitro propagation method for germplasm preservation. The starting materials for transgenic experiments are aseptic shoots grown from surface-sterilized seed balls. Callus is induced from leaf explants and subsequently infected with Agrobacterium. Plantlets are regenerated from transgenic callus and vernalized for flowering, if necessary. The efficiency of transformation was quite high; in our laboratory, the culture of only ten leaf explants, on average, generated one transgenic plant. PMID:25300853

  7. Recombination technologies for enhanced transgene stability in bioengineered insects

    PubMed Central

    Schetelig, Marc F.; Götschel, Frank; Viktorinová, Ivana; Handler, Alfred M.

    2010-01-01

    Transposon-based vectors currently provide the most suitable gene transfer systems for insect germ-line transformation and are used for molecular improvement of the Sterile Insect Technique. However, the long time stability of genome-integrated transposon constructs depends on the absence of transposase activity that could remobilize the transposon-embedded transgenes. To achieve transgene stability transposon vectors are usually non-autonomous, lacking a functional transposase gene, and chosen so that endogenous or related transposon activities are not present in the host. Nevertheless, the non-autonomous transposon-embedded transgenes could become unstable by the unintended presence of a mobilizing transposase that may have been undetected or subsequently entered the host species by horizontal gene transfer. Since the field release of transgenic insects will present environmental concerns relating to large populations and high mobility, it will be important to ensure that transgene constructs are stably integrated for maintaining strain integrity and eliminating the possibility for unintentional transfer into the genome of another organism. Here we review efficient methods to delete or rearrange terminal repeat sequences of transposons necessary for their mobility, subsequent to their initial genomic integration. These procedures should prevent transposase-mediated remobilization of the transgenes, ensuring their genomic stability. PMID:20844938

  8. Physical methods for genetic plant transformation

    NASA Astrophysics Data System (ADS)

    Rivera, Ana Leonor; Gómez-Lim, Miguel; Fernández, Francisco; Loske, Achim M.

    2012-09-01

    Production of transgenic plants is a routine process for many crop species. Transgenes are introduced into plants to confer novel traits such as improved nutritional qualities, tolerance to pollutants, resistance to pathogens and for studies of plant metabolism. Nowadays, it is possible to insert genes from plants evolutionary distant from the host plant, as well as from fungi, viruses, bacteria and even animals. Genetic transformation requires penetration of the transgene through the plant cell wall, facilitated by biological or physical methods. The objective of this article is to review the state of the art of the physical methods used for genetic plant transformation and to describe the basic physics behind them.

  9. Cryopreservation of Xenopus transgenic lines.

    PubMed

    Buchholz, Daniel R; Fu, Liezhen; Shi, Yun-Bo

    2004-01-01

    Xenopus laevis has been widely used for molecular, cellular, and developmental studies. With the development of the sperm-mediated transgenic method, it is now possible to study gene function during vertebrate development by using this popular model. On the other hand, like other animal species, it is labor intensive, and the maintenance of transgenic lines is expensive. In this article, we investigated the possibility of using sperm-cryopreservation as a means to preserve transgenic frog lines. We demonstrated that cryopreserved sperms are viable but not fertile under our in vitro fertilization (IVF) conditions. However, by microinjecting cryopreserved sperm nuclei, we successfully regenerated a transgenic line carrying a double promoter transgene construct, where the marker gene encoding the green fluorescent protein (GFP) is driven by the gamma-crystallin gene promoter and a gene of interest, encoding a fusion protein of GFP with the matrix metalloproteinase stromelysin-3 (ST3-GFP), is driven by a heat shock-inducible promoter. We demonstrated the functional transmission of the ST3-GFP transgene by analyzing the phenotype of the F1 animals after heat-shock to induce its expression. Our method thus provides an inexpensive means to preserve transgenic frog lines and a convenient way for distribution of transgenic lines. Furthermore, the ease with which to microinject nuclei compared to the technically demanding transgenesis procedure with variable outcome should facilitate more laboratories to use transgenic Xenopus laevis for functional studies in vivo. Mol. Reprod. Dev. 67: 65-69, 2004. PMID:14648875

  10. Transgenic expression of PML/RARalpha impairs myelopoiesis.

    PubMed Central

    Early, E; Moore, M A; Kakizuka, A; Nason-Burchenal, K; Martin, P; Evans, R M; Dmitrovsky, E

    1996-01-01

    The translocation found in acute promyelocytic leukemia rearranges the promyelocytic leukemia gene (PML) on chromosome 15 with the retinoic acid receptor alpha (RARalpha) on chromosome 17. This yields a fusion transcript, PML/RARalpha, a transcription factor with reported dominant negative functions in the absence of hormone. Clinical remissions induced with all-trans retinoic acid (RA) treatment in acute promyelocytic leukemia are linked to PML/RARalpha expression in leukemic cells. To evaluate the PML/RARalpha role in myelopoiesis, transgenic mice expressing PML/RARalpha were engineered. A full-length PML/RARalpha cDNA driven by the CD11b promoter was expressed in transgenic mice. Expression was confirmed in the bone marrow with a reverse transcription PCR assay. Basal total white blood cell and granulocyte counts did not appreciably differ between PML/RARalpha transgenic and control mice. Cell sorter analysis of CD11b+ bone marrow cells revealed similar CD11b+ populations in transgenic and control mice. However, in vitro clonal growth assays performed on peripheral blood from transgenic versus control mice revealed a marked reduction of myeloid progenitors, especially in those responding to granulocyte/ macrophage colony-stimulating factor. Granulocyte/macrophage colony-stimulating factor and kit ligand cotreatment did not overcome this inhibition. Impaired myelopoiesis in vivo was shown by stressing these mice with sublethal irradiation. Following irradiation, PML/RARalpha transgenic mice, as compared with controls, more rapidly depressed peripheral white blood cell and granulocyte counts. As expected, nearly all control mice (94.4%) survived irradiation, yet this irradiation was lethal to 45.8% of PML/RARalpha transgenic mice. Lethality was associated with more severe leukopenia in transgenic versus control mice. Retinoic acid treatment of irradiated PML/RARalpha mice enhanced granulocyte recovery. These data suggest that abnormal myelopoiesis due to PML

  11. Establishing Molecular Tools for Genetic Manipulation of the Pleuromutilin-Producing Fungus Clitopilus passeckerianus▿

    PubMed Central

    Kilaru, Sreedhar; Collins, Catherine M.; Hartley, Amanda J.; Bailey, Andy M.; Foster, Gary D.

    2009-01-01

    We describe efficient polyethylene glycol (PEG)-mediated and Agrobacterium-mediated transformation systems for a pharmaceutically important basidiomycete fungus, Clitopilus passeckerianus, which produces pleuromutilin, a diterpene antibiotic. Three dominant selectable marker systems based on hygromycin, phleomycin, and carboxin selection were used to study the feasibility of PEG-mediated transformation of C. passeckerianus. The PEG-mediated transformation of C. passeckerianus protoplasts was successful and generated hygromycin-resistant transformants more efficiently than either phleomycin or carboxin resistance. Agrobacterium-mediated transformation with plasmid pBGgHg containing hph gene under the control of the Agaricus bisporus gpdII promoter led to hygromycin-resistant colonies and was successful when homogenized mycelium and fruiting body gill tissue were used as starting material. Southern blot analysis of transformants revealed the apparently random integration of the transforming DNA to be predominantly multiple copies for the PEG-mediated system and a single copy for the Agrobacterium-mediated system within the genome. C. passeckerianus actin and tubulin promoters were amplified from genomic DNA and proved successful in driving green fluorescent protein and DsRed expression in C. passeckerianus, but only when constructs contained a 5′ intron, demonstrating that the presence of an intron is prerequisite for efficient transgene expression. The feasibility of RNA interference-mediated gene silencing was investigated using gfp as a target gene easily scored in C. passeckerianus. Upon transformation of gfp antisense constructs into a highly fluorescent strain, transformants were recovered that exhibited either reduced or undetectable fluorescence. This was confirmed by Northern blotting showing depletion of the target mRNA levels. This demonstrated that gene silencing is a suitable tool for modulating gene expression in C. passeckerianus. The molecular tools

  12. Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [O-acetylserine(thiol)-lyase].

    PubMed

    Saito, K; Kurosawa, M; Tatsuguchi, K; Takagi, Y; Murakoshi, I

    1994-11-01

    Cysteine synthase [O-acetyl-L-serine(thiol)-lyase, EC 4.2.99.8] (CSase), which is responsible for the terminal step of cysteine biosynthesis, catalyzes the formation of L-cysteine from O-acetyl-L-serine (OAS) and hydrogen sulfide. Three T-DNA vectors carrying a spinach (Spinacia oleracea) cytoplasmic CSase A cDNA (K. Saito, N. Miura, M. Yamazaki, H. Horano, I. Murakoshi [1992] Proc Natl Acad Sci USA 89: 8078-8082) were constructed as follows: pCSK3F, cDNA driven by the cauliflower mosaic virus (CaMV) 35S RNA promoter with a sense orientation; pCSK3R, cDNA driven by the CaMV 355 promoter with an antisense orientation; pCSK4F, cDNA fused with the sequence for chloroplast-targeting transit peptide of pea ribulose-1,5-biphosphate carboxylase small subunit driven by the CaMV 35S promoter with a sense orientation. These chimeric genes were transferred into tobacco (Nicotiana tabacum) with Agrobacterium-mediated transformation, and self-fertilized progeny were obtained. CSase activities in cell-free extracts of pCSK3F and pCSK4F transformants were 2- to 3-fold higher than those of control and pCSK3R plants. CSase activities in chloroplasts of pCSK4F transformants were severalfold higher than those of control and pCSK3F plants, indicating that the foreign CSase protein is transported and accumulated in a functionally active form in chloroplasts of pCSK4F plants. Isolated chloroplasts of a pCSK4F transformant had a more pronounced ability to form cysteine in response to addition of OAS and sulfur compounds than those of a control plant. In particular, feeding of OAS and sulfite resulted in enhanced cysteine formation, which required photoreduction of sulfite in chloroplasts. The enhanced cysteine formation in a pCSK4F plant responding to sulfite was also observed in leaf discs. In addition, these leaf discs were partially resistant to sulfite toxicity, possibly due to metabolic detoxification of sulfite by fixing into cysteine. These results suggested that overaccumulated

  13. Cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Behura, Ratikanta; Kumar, Sanjeev; Saha, Bedabrata; Panda, Manasa Kumar; Dey, Mohitosh; Sadhukhan, Ayan; Mishra, Sagarika; Alam, Shamsher; Sahoo, Debee Prasad; Sugla, Twinkle; Sahoo, Lingaraj

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an efficient method for incorporating genes and recovering stable transgenic plants in cowpea because this method offers several advantages such as the defined integration of transgenes, potentially low copy number, and preferential integration into transcriptional active regions of the chromosome. Cotyledonary node explants of cowpea present an attractive target for T-DNA delivery followed by regeneration of shoots via axillary proliferation without involvement of a de novo regeneration pathway. In this chapter, we describe a detailed protocol for Agrobacterium-mediated transformation of the cowpea variety Pusa Komal. The seedling cotyledonary node explants are used for cocultivation with an Agrobacterium strain EHA105 harboring standard binary vector, pCAMBIA2301 or pNOV2819, and putative transformed plants are selected using aminoglycoside antibiotic or mannose as sole carbon source, respectively. The entire process includes explant infection to transgenic seed generation in greenhouse. PMID:25300846

  14. Transgenic horticultural crops in Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...

  15. Epigenetic silencing in transgenic plants

    PubMed Central

    Rajeevkumar, Sarma; Anunanthini, Pushpanathan; Sathishkumar, Ramalingam

    2015-01-01

    Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review. PMID:26442010

  16. A Double Built-In Containment Strategy for Production of Recombinant Proteins in Transgenic Rice

    PubMed Central

    Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice. PMID:25531447

  17. [Transgenics without Manichaeism].

    PubMed

    Valle, S

    2000-01-01

    We live in an era characterized by the hegemony of science and technology, an era fraught with questions awaiting answers which would enable a safe and sustainable future for humankind. The development of agro-industrial processes - food products in particular - through recombinant DNA technology has enhanced the profit prospects of the few big biotechnology companies and of large-scale farmers who have access to the latest technological developments. We thus oppose a moratorium on recombinant DNA technology. Moreover, hasty statements about risk-free transgenics may be misleading in the absence of extensive safety tests. There is a pressing need for the establishment of biosafety policy in this country involving the organized civil society and every government agency responsible for monitoring such matters. There is also the need to put in place a bio-surveillance and a code of ethics regarding genetic manipulation. PMID:16680900

  18. Expression of an endochitinase gene from Trichoderma virens confers enhanced tolerance to Alternaria blight in transgenic Brassica juncea (L.) czern and coss lines.

    PubMed

    Kamble, Suchita; Mukherjee, Prasun K; Eapen, Susan

    2016-01-01

    An endochitinase gene 'ech42' from the biocontrol fungus 'Trichoderma virens' was introduced to Brassica juncea (L). Czern and Coss via Agrobaterium tumefaciens mediated genetic transformation method. Integration and expression of the 'ech42' gene in transgenic lines were confirmed by PCR, RT-PCR and Southern hybridization. Transgenic lines (T1) showed expected 3:1 Mendelian segregation ratio when segregation analysis for inheritance of transgene 'hpt' was carried out. Fluorimetric analysis of transgenic lines (T0 and T1) showed 7 fold higher endochitinase activity than the non-transformed plant. Fluorimetric zymogram showed presence of endochitinase (42 kDa) in crude protein extract of transgenic lines. In detached leaf bioassay with fungi Alternaria brassicae and Alternaria brassicicola, transgenic lines (T0 and T1) showed delayed onset of lesions as well as 30-73 % reduction in infected leaf area compared to non-transformed plant. PMID:27186020

  19. Effects of Down- and Up-regulated Lignin Biosynthesis in Populus of Soil Carbon Transformation and Storage

    SciTech Connect

    Chiang, Vincent, L.; Pregitzer, Kurt, S.

    2010-03-30

    Our objective is to understand how rates of soil C formation and plant biomass are influenced by changes in plant growth and performance resulting from lowered lignin and altered lignin S/G ratios. A greenhouse study of the effects of altered lignin in SOC formation and plant biomass has been completed as of November 2009. Wild-type (control) and three transgenic aspen lines expressing reduced stem lignin concentrations and/or increased syringyl (S) to guaiacyl (G) ratio lignin were grown in greenhouse mesocosms. Soil was collected from the Colorado Central Plains Experimental Range (CPER) northeast of Fort Collins, Colorado. The Colorado soil is an Olney fine sandy loam (fine-loamy, mixed, superactive, mesic Ultic Haplargrid). Plants at the surface mineral soil up to 5 cm depth were removed and the underlying soil was sampled to a depth of 30 cm. Soils were immediately shipped to Reno, NV. This C4 soil was then used to trace belowground C inputs by the C3 plants into the soil using the 13C natural abundance methods as described in the DOE proposal. Transgenic quaking aspen were generated by the Forest Biotechnology Group at North Carolina State University (NCSU) using Agrobacterium-mediated transformation, the seedlings were then shipped to Reno, NV. Rooted seedlings were transferred from sterile agar into small pots with 250 g of C4 grass-dominated soil and kept in mist chambers in a greenhouse for four to six weeks. Plants were arranged randomly in adjacent greenhouse benches, soil blanks were placed randomly among the plants and treated in the same manner as pots with plants. Growth measurements were conducted for all plants in both groups and consisted of height, width at base of stem, number of leaves and length and width of every leaf in every tree. Plants were grown for a period of 120-140 days. At harvest, the aboveground portions of the trees were separated into leaves, litter, and stems. Soils were immediately frozen after harvest and roots were

  20. Transgenic plants: from first successes to future applications.

    PubMed

    Van Lijsebettens, Mieke; Angenon, Geert; De Block, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc De Block. He was one of the first scientists worldwide to obtain transgenic plants transformed with the chimeric selectable marker genes encoding neomycin phosphotransferase and bialaphos that confer resistance against the antibiotic kanamycin and the herbicide Basta®/glufosinate, respectively at the Department of Genetics of Ghent University and, later on, at the spin-off company, Plant Genetic Systems. Today, these two genes are still the most frequently utilized markers in transgene technology. Marc De Block chose to work on the improvement of crops in an industrial environment to help realize the production of superior seeds or products. He was part of the team that developed the male sterility/restorer system in canola (Brassica napus var. napus) that led to the first hybrid lines to be commercialized as successful products of transgene technology. In more than 30 years of research, he developed transformation procedures for numerous crops, designed histochemical, biochemical and physiological assays to monitor plant performance, and made original and innovative contributions to plant biology. Presently, he considers transgenic research part of the toolbox for plant improvement and essential for basic plant research. PMID:24166429

  1. Sorghum (Sorghum bicolor).

    PubMed

    Guo, Xiaomei; Ge, Zhengxiang; Sato, Shirley J; Clemente, Tom E

    2015-01-01

    Agrobacterium-mediated transformation of sorghum (Sorghum bicolor L. Moench) targeting immature embryo explants is a route to introduce transgenic alleles into the crop. The protocol requires maintenance of quality stock plants under greenhouse conditions for a constant supply of immature embryo explants. This is typically carried out by a regular sowing of seeds, minimal use of pesticides, and monitoring of plants to document pollen dispersal and bagging of heads. The time frame from explant inoculation to establishment of a primary transgenic event in the greenhouse typically ranges from 4 to 6 months. Seed set in the primary transformants is comparable to greenhouse-grown stock plants, with the majority of the transgenic alleles being inherited as a single functional locus. PMID:25300840

  2. Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants.

    PubMed

    Saelim, Laddawan; Phansiri, Salak; Suksangpanomrung, Malinee; Netrphan, Supatcharee; Narangajavana, Jarunya

    2009-03-01

    The efficacy of the ipt-type Multi-Auto-Transformation (MAT) vector system to transform the extensively grown cassava cultivar "KU50" was evaluated. This system utilizes the isopentenyltransferase (ipt) gene as morphological marker for visual selection of transgenic lines. The extreme shooty phenotype (ESP) of transgenic lines is lost due to the removal of ipt gene mediated by the yeast Rint/RS system. As a result, phenotypically normal shoots, considered marker-free transgenic plants, could be obtained. When transforming KU50 cassava cultivar with two different ipt-type MAT vectors, transformation frequency at 19-21% was observed. Among the total number of ESP explants, 32-38% regained normal extended shoot phenotype and 88-96% of which were confirmed to represent the marker-free transgenic plants. This is the first demonstration of the efficacy of Rint/RS system in promoting excision of ipt marker gene in cassava specie, with the consequent rapid production of marker-free transgenic plants. The high efficiency of this system should facilitate pyramiding a number of transgenes by repeated transformation without having to undergo through laborious, expensive and time-consuming processes of sexual crossing and seed production. The generation of marker-free, thus environmentally safe, genetically modified cassava clones should also ease the public concerns regarding the use of transgenic cassava in both food and nonfood industries. PMID:19093119

  3. A multi-year assessment of the environmental impact of transgenic Eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community.

    PubMed

    Oguchi, Taichi; Kashimura, Yuko; Mimura, Makiko; Yu, Xiang; Matsunaga, Etsuko; Nanto, Kazuya; Shimada, Teruhisa; Kikuchi, Akira; Watanabe, Kazuo N

    2014-10-01

    A 4-year field trial for the salt tolerant Eucalyptus globulus Labill. harboring the choline oxidase (codA) gene derived from the halobacterium Arthrobacter globiformis was conducted to assess the impact of transgenic versus non-transgenic trees on biomass production, the adjacent soil microbial communities and vegetation by monitoring growth parameters, seasonal changes in soil microbes and the allelopathic activity of leaves. Three independently-derived lines of transgenic E. globulus were compared with three independent non-transgenic lines including two elite clones. No significant differences in biomass production were detected between transgenic lines and non-transgenic controls derived from same seed bulk, while differences were seen compared to two elite clones. Significant differences in the number of soil microbes present were also detected at different sampling times but not between transgenic and non-transgenic lines. The allelopathic activity of leaves from both transgenic and non-transgenic lines also varied significantly with sampling time, but the allelopathic activity of leaves from transgenic lines did not differ significantly from those from non-transgenic lines. These results indicate that, for the observed variables, the impact on the environment of codA-transgenic E. globulus did not differ significantly from that of the non-transformed controls on this field trial. PMID:24927812

  4. Germline Transformation of Caenorhabditis elegans by Injection

    NASA Astrophysics Data System (ADS)

    Kadandale, Pavan; Chatterjee, Indrani; Singson, Andrew

    Microinjection is a commonly used technique for DNA transformation in Caenorhabditis elegans. It is a powerful tool that links genetic and molecular analysis to phenotypic analysis. In this chapter we shall provide an overview of microinjection for germline transformation in worms. Our discussion will emphasize C. elegans reproductive biology, applications and protocols for carrying out microinjection in order to successfully obtain transgenic worms.

  5. Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization.

    PubMed

    Newhouse, Andrew E; Schrodt, Franziska; Liang, Haiying; Maynard, Charles A; Powell, William A

    2007-07-01

    The American elm (Ulmus americana L.) was once one of the most common urban trees in eastern North America until Dutch-elm disease (DED), caused by the fungus Ophiostoma novo-ulmi, eliminated most of the mature trees. To enhance DED resistance, Agrobacterium was used to transform American elm with a transgene encoding the synthetic antimicrobial peptide ESF39A, driven by a vascular promoter from American chestnut. Four unique, single-copy transgenic lines were produced and regenerated into whole plants. These lines showed less wilting and significantly less sapwood staining than non-transformed controls after O. novo-ulmi inoculation. Preliminary observations indicated that mycorrhizal colonization was not significantly different between transgenic and wild-type trees. Although the trees tested were too young to ensure stable resistance was achieved, these results indicate that transgenes encoding antimicrobial peptides reduce DED symptoms and therefore hold promise for enhancing pathogen resistance in American elm. PMID:17310333

  6. Overexpression of mouse follistatin causes reproductive defects in transgenic mice.

    PubMed

    Guo, Q; Kumar, T R; Woodruff, T; Hadsell, L A; DeMayo, F J; Matzuk, M M

    1998-01-01

    from lines 4 and 9 had thin uteri and small ovaries due to a block in folliculogenesis at various stages. Many of the line 9 female mice eventually became infertile, and all of the line 4 female mice were infertile. Suppressed serum FSH levels were seen in only the line 4 transgenic male and female mice, the line with widespread expression of the transgene. Serum FSH levels were not significantly different in gonadectomized wild-type and line 5 transgenic male mice despite high levels of the follistatin transgene mRNA in the liver of these transgenic mice. These results suggest that follistatin exerts its effects at the levels of the gonads and pituitary as a local regulator of activin and possibly other transforming growth factor-beta family members. PMID:9440814

  7. Biolistic-mediated production of transgenic oil palm.

    PubMed

    Parveez, Ghulam Kadir Ahmad; Bahariah, Bohari

    2012-01-01

    The effectiveness of mannose (using phosphomannose isomerase [pmi] gene) as a positive selection agent to preferably allow the growth of transformed oil palm embryogenic calli was successfully evaluated. Using the above selection agent in combination with the previously optimized physical and biological parameters and the best constitutive promoter, oil palm embryogenic calli were transformed with pmi gene for producing transgenic plants. Bombarded embryogenic calli were exposed to embryogenic calli medium containing 30:0 g/L mannose to sucrose 3 weeks postbombardment. Selectively, proliferating embryogenic calli started to emerge around 6 months on the above selection medium. The proliferated embryogenic calli were individually isolated once they reached a specific size and regenerated to produce complete plantlets. The complete regenerated plantlets were evaluated for the presence of transgenes by PCR and Southern analyses. PMID:22351007

  8. [Produce of marker-free transgenic tobacco plants by FLP/frt recombination system].

    PubMed

    Shan, Xiao-Yi; Li, Bei; Zhang, Ju-Ren

    2006-09-01

    Selectable marker genes that usually encode antibiotic or herbicide resistances are widely used for the selection of the transgenic plants, but they become unnecessary and undesirable after transformation selection. An important strategy to improve the transgenic plants' biosafety is to eliminate the marker genes after successful selection. In the FLP/frt site-specific system of the 2 microm plasmid of Saccharomyces cerevisiae, the FLP enzyme efficiently catalyzes recombination between two directly repeated FLP recombination target (frt) sites, eliminating the sequence between them. By controlled expression of the FLP recombinase and specific allocation of the frt sites within transgenic constructs, the system can be applied to eliminate the marker genes after selection. Through a series of procedures, the plant FLP/frt site-specific recombination system was constructed, which included the frt containing vector pCAMBIA1300-betA-frt-als-frt and the FLP expression vector pCAMBIA1300-hsp-FLP-hpt. The FLP recombinase gene was introduced into transgenic (betA-frt-als-frt) tobacco plants by re-transformation. In re-transgenic plants, after heat shock treatment, the marker gene als flanked by two identical orientation frt sites could be excised by the inducible expression of FLP recombinase under the control of hsp promoter. Excision of the als gene was found in 41% re-transgenic tobacco plants, which indicated that this systerm could make a great contribution to obtain the marker free transgenic plants. PMID:17037196

  9. Transgenic plants and biosafety: science, misconceptions and public perceptions.

    PubMed

    Stewart, C N; Richards, H A; Halfhill, M D

    2000-10-01

    One usually thinks of plant biology as a non-controversial topic, but the concerns raised over the biosafety of genetically modified (GM) plants have reached disproportionate levels relative to the actual risks. While the technology of changing the genome of plants has been gradually refined and increasingly implemented, the commercialization of GM crops has exploded. Today's commercialized transgenic plants have been produced using Agrobacterium tumefaciens-mediated transformation or gene gun-mediated transformation. Recently, incremental improvements of biotechnologies, such as the use of green fluorescent protein (GFP) as a selectable marker, have been developed. Non-transformation genetic modification technologies such as chimeraplasty will be increasingly used to more precisely modify germplasm. In spite of the increasing knowledge about genetic modification of plants, concerns over ecological and food biosafety have escalated beyond scientific rationality. While several risks associated with GM crops and foods have been identified, the popular press, spurred by colorful protest groups, has left the general public with a sense of imminent danger. Reviewed here are the risks that are currently under research. Ecological biosafety research has identified potential risks associated with certain crop/transgene combinations, such as intra- and interspecific transgene flow, persistence and the consequences of transgenes in unintended hosts. Resistance management strategies for insect resistance transgenes and non-target effects of these genes have also been studied. Food biosafety research has focused on transgenic product toxicity and allergenicity. However, an estimated 3.5 x 10(12) transgenic plants have been grown in the U.S. in the past 12 years, with over two trillion being grown in 1999 and 2000 alone. These large numbers and the absence of any negative reports of compromised biosafety indicate that genetic modification by biotechnology poses no immediate or

  10. Transgenic plants as factories for biopharmaceuticals.

    PubMed

    Giddings, G; Allison, G; Brooks, D; Carter, A

    2000-11-01

    Plants have considerable potential for the production of biopharmaceutical proteins and peptides because they are easily transformed and provide a cheap source of protein. Several biotechnology companies are now actively developing, field testing, and patenting plant expression systems, while clinical trials are proceeding on the first biopharmaceuticals derived from them. One transgenic plant-derived biopharmaceutical, hirudin, is now being commercially produced in Canada for the first time. Product purification is potentially an expensive process, and various methods are currently being developed to overcome this problem, including oleosin-fusion technology, which allows extraction with oil bodies. In some cases, delivery of a biopharmaceutical product by direct ingestion of the modified plant potentially removes the need for purification. Such biopharmaceuticals and edible vaccines can be stored and distributed as seeds, tubers, or fruits, making immunization programs in developing countries cheaper and potentially easier to administer. Some of the most expensive biopharmaceuticals of restricted availability, such as glucocerebrosidase, could become much cheaper and more plentiful through production in transgenic plants. PMID:11062432

  11. Development of a Remote Sensing Program to Monitor for Resistance Development in Transgenic Crops

    NASA Astrophysics Data System (ADS)

    Copenhaver, K.; Glaser, J. A.; Fridgen, J.; Carroll, M.

    2006-12-01

    During the 2004 and 2005 growing seasons, a study was conducted by the Environmental Protection Agency and United States Department of Agriculture's Agricultural Research Service at several sites across the Corn Belt to evaluate the use of the remotely sensed imagery for the detection of transgenic and European corn borer infested corn hybrids. A number of statistical and image analysis techniques were used to evaluate the imagery's ability to distinguish the transgenic corn hybrids from non-transgenic hybrids and delineate infested plots. Analysis techniques varied in complexity from simple band thresholds to wavelet transforms and neural networks. Accuracies greater than 90% were obtained using these methods. Accuracies typically improved with increasing algorithm complexity and were highest when comparing individual transgenic hybrids to multiple non-transgenic hybrids. Efforts in 2006 focused on the rapid production of infestation and transgenic delineation maps from the imagery using algorithms developed from the 2004 and 2005 plot level experiments. Throughout the season, the Institute for Technology Development delivered maps identifying potential infestation sites and transgenic/non- transgenic field delineations to the EPA in a pseudo-operational manner. Scouts visited locations identified and test for accurate delineation using assays and infestation measurements.

  12. Using Metabolomics To Estimate Unintended Effects in Transgenic Crop Plants: Problems, Promises, and Opportunities

    PubMed Central

    Hoekenga, Owen A.

    2008-01-01

    Transgenic crops are widespread in some countries and sectors of the agro-economy, but are also highly contentious. Proponents of transgenic crop improvement often cite the “substantial equivalence” of transgenic crops to the their nontransgenic parents and sibling varieties. Opponents of transgenic crop improvement dismiss the substantial equivalence standard as being without statistical basis and emphasize the possible unintended effects to food quality and composition due to genetic transformation. Systems biology approaches should help consumers, regulators, and other stakeholders make better decisions regarding transgenic crop improvement by characterizing the composition of conventional and transgenically improved crop species and products. In particular, metabolomic profiling via mass spectrometry and nuclear magnetic resonance can make broad and deep assessments of food quality and content. The metabolome observed in a transgenic variety can then be assessed relative to the consumer and regulator accepted phenotypic range observed among conventional varieties. I briefly discuss both targeted (closed architecture) and nontargeted (open architecture) metabolomics with respect to the transgenic crop debate and highlight several challenges to the field. While most experimental examples come from tomato (Solanum lycoperiscum), analytical methods from all of systems biology are discussed. PMID:19137102

  13. 20 Years of unc-119 as a transgene marker

    PubMed Central

    Maduro, Morris F

    2015-01-01

    This fall marks 20 years since the cloning of unc-119 was reported. Despite having a strong phenotype that makes animals somewhat difficult to grow and handle, unc-119 mutant rescue has become one of the most frequently-used markers for C. elegans transformation. In this Commentary, I describe the history of how unc-119 rescue traveled through the worm community, contributing to the development of transgene methods in C. elegans. PMID:26430568

  14. 20 Years of unc-119 as a transgene marker.

    PubMed

    Maduro, Morris F

    2015-01-01

    This fall marks 20 years since the cloning of unc-119 was reported. Despite having a strong phenotype that makes animals somewhat difficult to grow and handle, unc-119 mutant rescue has become one of the most frequently-used markers for C. elegans transformation. In this Commentary, I describe the history of how unc-119 rescue traveled through the worm community, contributing to the development of transgene methods in C. elegans. PMID:26430568

  15. Transgenic hepatocarcinogenesis in the rat.

    PubMed Central

    Hully, J. R.; Su, Y.; Lohse, J. K.; Griep, A. E.; Sattler, C. A.; Haas, M. J.; Dragan, Y.; Peterson, J.; Neveu, M.; Pitot, H. C.

    1994-01-01

    Although transgenic hepatocarcinogenesis has been accomplished in the mouse with a number of genetic constructs targeting the oncogene to expression primarily in the liver, no example of this process has yet been developed in the rat. Because our understanding of the multistage nature of hepatocarcinogenesis is most advanced in the rat, we have developed a strain of transgenic rats carrying the promoter-enhancer sequences of the mouse albumin gene linked 5' to the simian virus-40 T antigen gene. A line of transgenic rats bearing this transgene has been developed from a single founder female. Five to six copies of the transgene, possibly in tandem, occur within the genome of the transgenic animals, which are maintained by heterozygous matings. Livers of transgenic animals are histologically normal after weaning; at 2 months of age, small foci of vacuolated cells appear in this organ. By 4 months of age, all animals exhibit focal lesions and nodules consisting primarily of small basophilic cells, many of which exhibit considerable cytoplasmic vacuolization. Mating of animals each bearing the transgene results in rats with a demyelinating condition that develops acutely in pregnant females and more chronically in males. Ultrastructural studies of these cells indicate that the vacuoles contain substantial amounts of glycogen, with the cells resembling hepatoblasts. Malignant neoplasms with both a glandular and a hepatoblastoma/hepatocellular carcinoma pattern arise from the nodules. Enzyme and immunohistochemical studies of all lesions reveal many similarities in gene expression to comparable lesions in rats subjected to chemically induced hepatocarcinogenesis, with certain exceptions. The placental form of glutathione-S-transferase is absent from all lesions in the transgenic animal, as is the expression of connexin 32. A significant number of lesions express serum albumin, and many, but not all, exhibit the T antigen. Lesions expressing the T antigen also contain

  16. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans.

    PubMed Central

    Praitis, V; Casey, E; Collar, D; Austin, J

    2001-01-01

    In Caenorhabditis elegans, transgenic lines are typically created by injecting DNA into the hermaphrodite germline to form multicopy extrachromosomal DNA arrays. This technique is a reliable means of expressing transgenes in C. elegans, but its use has limitations. Because extrachromosomal arrays are semistable, only a fraction of the animals in a transgenic extrachromosomal array line are transformed. In addition, because extrachromosomal arrays can contain hundreds of copies of the transforming DNA, transgenes may be overexpressed, misexpressed, or silenced. We have developed an alternative method for C. elegans transformation, using microparticle bombardment, that produces single- and low-copy chromosomal insertions. Using this method, we find that it is possible to create integrated transgenic lines that reproducibly express GFP reporter constructs without the variations in expression level and pattern frequently exhibited by extrachromosomal array lines. In addition, we find that low-copy integrated lines can also be used to express transgenes in the C. elegans germline, where conventional extrachromosomal arrays typically fail to express due to germline silencing. PMID:11238406

  17. Improved antioxidant activity in transgenic Perilla frutescens plants via overexpression of the γ-tocopherol methyltransferase (γ-tmt) gene.

    PubMed

    Ghimire, Bimal Kumar; Seong, Eun Soo; Lee, Chan Ok; Lee, Jae Geun; Yu, Chang Yeon; Kim, Seung Hyun; Chung, Ill Min

    2015-09-01

    The main goal of this study was to generate transgenic Perilla frutescens with enhanced antioxidant properties by overexpressing the γ-tocopherol methyltransferase (γ-tmt) gene. In this study, the antioxidant activity of methanolic crude extracts of transgenic and non-transgenic control plants was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. Free radical scavenging activity was evaluated using α-tocopherol and butylated hydroxyl toluene as standard antioxidants. In general, the ethyl acetate fraction of transgenic P. frutescens showed stronger DPPH radical scavenging activity than the ethyl acetate fraction from non-transgenic control plants (IC50 2.00 ± 0.10 and 5.53 ± 0.40 μg ∙ ml(-1), respectively). High-performance liquid chromatography analysis of phenolic acids in leaf extracts confirmed increased levels of 16 individual phenolic compounds in two transgenic lines (pf47-5 and pf47-8) compared with control plants. Changes in the phenolic compound profile and α-tocopherol content were correlated with the antioxidant properties of transgenic plants, indicating that the introduction of transgene γ-tmt influenced the metabolism of phenolic compounds and subsequently produced biochemical changes in the transformants. There were no significant differences in photosynthetic rate in the transgenic plants as compared to the non-transgenic control plants, suggesting that the alteration of phenolic compounds and tocopherol composition had little impact on photosynthesis. PMID:25604637

  18. Transcriptomic analyses of Hand2 transgenic embryos.

    PubMed

    Funato, Noriko; Kokubo, Hiroki; Saga, Yumiko

    2016-09-01

    In this article, we further provide the data generated for the previously published research article "Specification of jaw identity by the Hand2 transcription factor." To better understand the downstream genes of the basic helix-loop-helix transcription factor Hand2, we generated double-transgenic mice (Hand2 (NC) ) by intercrossing CAG-floxed CAT-Hand2 mice with Wnt1-Cre mice for conditional activation of Hand2 expression in the neural crest. Altered expression of Hand2 induces transformation of the upper jaw to the lower jaw in Hand2 (NC) mutant mice. This data article provides Tables detailing the differentially expressed genes between wild-type and Hand2 (NC) mutant embryos. The raw array data of our transcriptomes as generated using Affymetrix microarrays are available on the NCBI Gene Expression Omnibus (GEO) browser (Reference number GSE75805). PMID:27408813

  19. Tandem constructs to mitigate transgene persistence: tobacco as a model.

    PubMed

    Al-Ahmad, Hani; Galili, Shmuel; Gressel, Jonathan

    2004-03-01

    Some transgenic crops can introgress genes into other varieties of the crop, to related weeds or themselves remain as 'volunteer' weeds, potentially enhancing the invasiveness or weediness of the resulting offspring. The presently suggested mechanisms for transgene containment allow low frequency of gene release (leakage), requiring the mitigation of continued spread. Transgenic mitigation (TM), where a desired primary gene is tandemly coupled with mitigating genes that are positive or neutral to the crop but deleterious to hybrids and their progeny, was tested as a mechanism to mitigate transgene introgression. Dwarfism, which typically increases crop yield while decreasing the ability to compete, was used as a mitigator. A construct of a dominant ahasR (acetohydroxy acid synthase) gene conferring herbicide resistance in tandem with the semidominant mitigator dwarfing Delta gai (gibberellic acid-insensitive) gene was transformed into tobacco (Nicotiana tabacum). The integration and the phenotypic stability of the tandemly linked ahasR and Delta gai genomic inserts in later generations were confirmed by polymerase chain reaction. The hemizygous semidwarf imazapyr-resistant TM T1 (= BC1) transgenic plants were weak competitors when cocultivated with wild type segregants under greenhouse conditions and without using the herbicide. The competition was most intense at close spacings typical of weed offspring. Most dwarf plants interspersed with wild type died at 1-cm, > 70% at 2.5-cm and 45% at 5-cm spacing, and the dwarf survivors formed no flowers. At 10-cm spacing, where few TM plants died, only those TM plants growing at the periphery of the large cultivation containers formed flowers, after the wild type plants terminated growth. The highest reproductive TM fitness relative to the wild type was 17%. The results demonstrate the suppression of crop-weed hybrids when competing with wild type weeds, or such crops as volunteer weeds, in seasons when the selector

  20. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.

    PubMed

    Stefano, Biricolti; Patrizia, Bogani; Matteo, Cerboneschi; Massimo, Gori

    2016-06-01

    One of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial. After assessing the transgene copy number of a set of apple transgenic clones with Southern blotting, we describe two alternative methods: the first is based on inverse PCR (i-PCR) and the second on the quantitative PCR (q-PCR). The methods produced comparable results with the exception of the data regarding a high copy number clone, but while the q-PCR-based system is rapid and easily adaptable to high throughput systems, the i-PCR-based method can provide information regarding the transformation event and the characteristics of the sequences flanking the transgenic construct. PMID:26895172

  1. Oral immunization of animals with transgenic cherry tomatillo expressing HBsAg

    PubMed Central

    Gao, Yi; Ma, Ying; Li, Mei; Cheng, Tong; Li, Shao-Wei; Zhang, Jun; Xia, Ning-Shao

    2003-01-01

    AIM: To investigate the expression of recombinant HBsAg (rHBsAg) in transgenic cherry tomatillo in order to explore the feasibility of producing HBV oral vaccine with cherry tomatillo by animal immune tests. METHODS: The recombinant plant expression vector containing HBsAg gene was constructed. Mediated with Agrobacterium tumefaciens, HBsAg gene was transferred into cotyledons of cherry tomatillo. Transformed cherry tomatillos were obtained through hygromycin delay-selection. Integrated DNA in transgenic cherry tomatillo was confirmed by hygromycin resistance selection, Gus detection, polymerase chain reaction (PCR) and dot blotting analysis. Antigenicity of rHBsAg was examined by ELISA and the immunogenicity of rHBsAg derived from transgenic cherry tomatillo tissues was confirmed by oral feed of transformed tissues to BALB/c mice primed with commercial HBV vaccines. Specific antibody titers in mice’s serum were examined by ELISA every week. RESULTS: By far, 10 positive lines of transgenic cherry tomatillos containing HBsAg gene were obtained. Among different organs of the same transgenic cherry tomatillo, level of rHBsAg expressed in leaves was the highest with the yield up to 300 ng/g fresh weight. And the rHBsAg expression level in fruits was about 10 ng/g fresh weight. In animal immune tests, oral delivery with transgenic tissues to mice primed with commercial vaccine instead of naive mice resulted in significant immune response. CONCLUSION: The result of this animal immune test indicated the rHBsAg derived from transgenic cherry tomatillo possessed normal immunogenicity. This work demonstrated the feasibility to generate oral immunogenic rHBsAg in transgenic cherry tomatillo, and would provide some experimental approach for the production of low-cost oral vaccines using transgenic cherry tomatillo in large scale. PMID:12717845

  2. Field performance of transgenic citrus trees: Assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics

    PubMed Central

    2012-01-01

    Background The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. Results The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Conclusions Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the

  3. [Transgenic animals and animal welfare

    PubMed

    Reinhardt, Christoph

    1998-01-01

    Under the pressure of a public vote in Switzerland (7 June 1998) on an initiative to ban the production, use and patenting of transgenic animals, their value for biomedical research and development is intensely debated. In addition, the Swiss legislation has adopted (1992) a constitutional obligation to "take into account the dignity of creatures". The term "dignity of creatures", however, can be interpreted in anthropocentric or biocentric ways. The government has now formulated the legal implications of this term for transgenic animals and plants in various laws including the animal and environmental protection laws. This paper gives arguments for a fair evaluation of trangenic animals from an animal welfare point of view where not only the costs of animal suffering must be considered but also the probability of potential benefit for man. A self-confident research community should allow such an evaluation procedure even in view of an outcome which could ban many uses of transgenic animals PMID:11208266

  4. Cryopreservation of transgenic mouse lines.

    PubMed

    Pomeroy, K O

    1993-01-01

    A transgenic animal represents an enormous investment in time and money. Animals can be destroyed through disease, fire, malfuncnons in the control of the environment, negligence, sabotage, or accidental disposal. Researchers can protect valuable transgenic lines from accrdental destruction by "banking" them in liquid nitrogen. Cryopreservation can also reduce animal costs by decreasing the number of live animals investigators must maintain. Often, when one is trying to produce a transgenic animal, some lines will be derived that may not initially appear interesting. These animals can be stored in liquid nitrogen for future recovery and study. The maintenance of just one line of mice, say 25 mice at 15 cents/d, can cost over $1000 (US) in a single year. PMID:21390665

  5. Auxin Synthesis-Encoding Transgene Enhances Grape Fecundity1[OA

    PubMed Central

    Costantini, Elisa; Landi, Lucia; Silvestroni, Oriana; Pandolfini, Tiziana; Spena, Angelo; Mezzetti, Bruno

    2007-01-01

    Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs. PMID:17337528

  6. Auxin synthesis-encoding transgene enhances grape fecundity.

    PubMed

    Costantini, Elisa; Landi, Lucia; Silvestroni, Oriana; Pandolfini, Tiziana; Spena, Angelo; Mezzetti, Bruno

    2007-04-01

    Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs. PMID:17337528

  7. How To Produce and Characterize Transgenic Plants.

    ERIC Educational Resources Information Center

    Savka, Michael A.; Wang, Shu-Yi; Wilson, Mark

    2002-01-01

    Explains the process of establishing transgenic plants which is a very important tool in plant biology and modern agriculture. Produces transgenic plants with the ability to synthesize opines. (Contains 17 references.) (YDS)

  8. [Current status and industrialization of transgenic tomatoes].

    PubMed

    Wang, Ao-Xue; Chen, Xiu-Ling

    2011-09-01

    In this review, the progress in transgenic tomato research, including disease and insect resistance, herbicide resistance, stress tolerance, long-term storage, quality improvement, and male sterility, were described. The recent researches on producing heterologous proteins using transgenic tomatoes were also reviewed. Furthermore, the industrialization status and problems of transgenic tomatoes were analyzed and the prospects of both research and industrialization in transgenic tomatoes were discussed. PMID:21951797

  9. Development of Cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene

    PubMed Central

    Sohrab, Sayed Sartaj; Kamal, Mohammad A.; Ilah, Abdul; Husen, Azamal; Bhattacharya, P.S.; Rana, D.

    2014-01-01

    Cotton leaf curl virus (CLCuV) is a serious pathogen causing leaf curl disease and affecting the cotton production in major growing areas. The transgenic cotton (Gossypium hirsutum cv. Coker 310) plants were developed by using βC1 gene in antisense orientation gene driven by Cauliflower mosaic virus-35S promoter and nos (nopaline synthase) terminator and mediated by Agrobacterium tumefaciens transformation and somatic embryogenesis system. Molecular confirmation of the transformants was carried out by polymerase chain reaction (PCR) and Southern blot hybridization. The developed transgenic and inoculated plants remained symptomless till their growth period. In conclusion, the plants were observed as resistant to CLCuV. PMID:27081361

  10. Development of Cotton leaf curl virus resistant transgenic cotton using antisense ßC1 gene.

    PubMed

    Sohrab, Sayed Sartaj; Kamal, Mohammad A; Ilah, Abdul; Husen, Azamal; Bhattacharya, P S; Rana, D

    2016-05-01

    Cotton leaf curl virus (CLCuV) is a serious pathogen causing leaf curl disease and affecting the cotton production in major growing areas. The transgenic cotton (Gossypium hirsutum cv. Coker 310) plants were developed by using βC1 gene in antisense orientation gene driven by Cauliflower mosaic virus-35S promoter and nos (nopaline synthase) terminator and mediated by Agrobacterium tumefaciens transformation and somatic embryogenesis system. Molecular confirmation of the transformants was carried out by polymerase chain reaction (PCR) and Southern blot hybridization. The developed transgenic and inoculated plants remained symptomless till their growth period. In conclusion, the plants were observed as resistant to CLCuV. PMID:27081361

  11. TRANSGENIC FISH: In Genomics and Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fish into which foreign DNA is artificially introduced and integrated into their genome are called transgenic fish. Since the development of the first transgenic fish in 1985, techniques to produce transgenic fish have improved tremendously, resulting in the production of genetically modified (GM)...

  12. Analysis of T-DNA integration and generative segregation in transgenic winter triticale (x Triticosecale Wittmack)

    PubMed Central

    2012-01-01

    Background While the genetic transformation of the major cereal crops has become relatively routine, to date only a few reports were published on transgenic triticale, and robust data on T-DNA integration and segregation have not been available in this species. Results Here, we present a comprehensive analysis of stable transgenic winter triticale cv. Bogo carrying the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) and a synthetic green fluorescent protein gene (gfp). Progeny of four independent transgenic plants were comprehensively investigated with regard to the number of integrated T-DNA copies, the number of plant genomic integration loci, the integrity and functionality of individual T-DNA copies, as well as the segregation of transgenes in T1 and T2 generations, which also enabled us to identify homozygous transgenic lines. The truncation of some integrated T-DNAs at their left end along with the occurrence of independent segregation of multiple T-DNAs unintendedly resulted in a single-copy segregant that is selectable marker-free and homozygous for the gfp gene. The heritable expression of gfp driven by the maize UBI-1 promoter was demonstrated by confocal laser scanning microscopy. Conclusions The used transformation method is a valuable tool for the genetic engineering of triticale. Here we show that comprehensive molecular analyses are required for the correct interpretation of phenotypic data collected from the transgenic plants. PMID:23006412

  13. Construction and Quality Analysis of Transgenic Rehmannia glutinosa Containing TMV and CMV Coat Protein.

    PubMed

    Teng, Zhongqiu; Shen, Ye; Li, Jing; Lin, Zhongping; Chen, Min; Wang, Min; Li, Man; Dong, Hongran; Huang, Luqi

    2016-01-01

    Plant viruses, especially tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV) are serious threats to Rehmannia glutinosa which is a "top grade" herb in China. In the present study, TMV- and CMV-resistant Rehmannia glutinosa Libosch. plants were constructed by transforming the protein (CP) genes of TMV and CMV into Rehmannia glutinosa via a modified procedure of Agrobacterium tumefaciens-mediated transformation. Integration and expression of TMV CP and CMV CP transgenes in 2 lines, LBA-1 and LBA-2, were confirmed by PCR, Southern blot and RT-PCR. Both LBA-1 and LBA-2 were resistant to infection of homologous TMV and CMV strains. The quality of transgenic Rehmanniae Radix was evaluated based on fingerprint analysis and components quantitative analysis comparing with control root tubes. These results showed that chemical composition of transgenic Rehmanniae Radix were similar to non-transgenic ones, which demonstrated that the medical quality and biosafety of transgenic Rehmanniae Radix were equivalent to non-transgenic material when consumed as traditional Chinese medicinal (TCM). PMID:27618888

  14. Agrobacterium-mediated inoculation of chrysanthemum (Chrysanthemum morifolium) plants with chrysanthemum stunt viroid.

    PubMed

    Nabeshima, Tomoyuki; Doi, Motoaki; Hosokawa, Munetaka

    2016-08-01

    Agroinfiltration was tested as a method of inoculation of chrysanthemum plants with chrysanthemum stunt viroid (CSVd). Binary vectors harboring dimeric CSVd sequences in sense and antisense orientations were constructed, and Agrobacterium transfected with these binary vectors was infiltrated into chrysanthemum leaves. Northern blotting and reverse transcription polymerase chain reaction analysis showed that local infection was established within 7 days and systemic infection within 20 days. CSVd polarities showed no difference in infectivity. This study showed that agroinfiltration of chrysanthemum plants is an easy, rapid, and cost-effective method for CSVd inoculation. PMID:27155239

  15. Transformation of oil palm using Agrobacterium tumefaciens.

    PubMed

    Izawati, Abang Masli Dayang; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul

    2012-01-01

    Transgenic oil palm (Elaeis guineensis Jacq.) plantlets are regenerated after Agrobacterium tumefaciens-mediated transformation of embryogenic calli derived from young leaves of oil palm. The calli are transformed with an Agrobacterium strain, LBA4404, harboring the plasmid pUBA, which carries a selectable marker gene (bar) for resistance to the herbicide Basta and is driven by a maize ubiquitin promoter. Modifications of the transformation method, treatment of the target tissues using acetosyringone, exposure to a plasmolysis medium, and physical injury via biolistics are applied. The main reasons for such modifications are to activate the bacterial virulence system and, subsequently, to increase the transformation efficiency. Transgenic oil palm cells are selected and regenerated on a medium containing herbicide Basta. Molecular analyses revealed the presence and integration of the introduced bar gene into the genome of the transformants. PMID:22351008

  16. Human health and transgenic crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under the joint auspices of the Agrochemical and the Agricultural and Food Chemistry Divisions of the American Chemical Society, we organized a short symposium on “Human Health and Transgenic Crops” at the 244th ACS national meeting, held August 19-23, 2012 in Philadelphia, PA, to examine an array o...

  17. Production of fertile transgenic wheat plants by laser micropuncture.

    PubMed

    Badr, Y A; Kereim, M A; Yehia, M A; Fouad, O O; Bahieldin, A

    2005-10-01

    A modified, non-damaging, protocol for the production of fertile transgenic wheat (Triticum aestivum L. cultivar Giza 164) plants by laser micropuncture was developed. The new homemade setup secures the transformation of as many as 60 immature embryo-derived calli (10000 cells each) in less than one hour using a UV excimer laser with two dimensional translation stages, a suitable computer program and a proper optical system. Five-day-old calli were irradiated by a focused laser microbeam to puncture momentarily made self-healing holes ( approximately 0.5 microm) in the cell wall and membrane to allow uptake of the exogenous DNA. The plant expression vector pAB6 containing bar gene as a selectable marker for the herbicide bialaphos resistance and GUS (uidA) gene as a reporter gene was used for transformation. No selection pressure was conducted during the four-week callus induction period. Induced calli were transferred to a modified MS medium with 1 mg l(-1) bialaphos for regeneration, followed by selection on 2 mg l(-1) bialaphos for rooting. Three regenerated putative transgenic events were evaluated for the integration and stable expression of both genes and results indicated that this modified procedure of laser-mediated transformation can be successfully used in transforming wheat. PMID:16189555

  18. Production of transgenic rice with agronomically useful genes: an assessment.

    PubMed

    Giri, C C; Vijaya Laxmi, G

    2000-12-01

    Rice is the most important food crop in tropical and subtropical regions of the world. Yield enhancement to increase rice production is one of the essential strategies to meet the demand for food of the growing population. Both abiotic and biotic features limit adversely the productivity of rice growing areas. Conventional breeding has been an effective means for developing high yielding varieties, however; it is associated with its own limitations. It is envisaged that recent trends in biotechnology can contribute to the agronomic improvement of rice in terms of yield and nutritional quality as a supplement to traditional breeding methods. Genetic transformation of rice has demonstrated numerous important opportunities resulting in the genetic improvement of existing elite rice varieties and production of new plant types. Significant advances have been made in the genetic engineering of rice since the first transgenic rice plant production in the late 1980s. Several gene transfer protocols have been employed successfully for the introduction of foreign genes to rice. In more than 60 rice cultivars belonging to indica, japonica, javanica, and elite African cultivars, the protocol has been standardized for transgenic rice production. Selection and use of appropriate promoters, selectable markers, and reporter genes has been helpful for development of efficient protocols for transgenic rice in a number of rice cultivars. The present review is an attempt to assess the current state of development in transgenic rice for the transfer of agronomically useful genes, emphasizing the application and future prospects of transgenic rice production for the genetic improvement of this food crop. PMID:14538093

  19. Cassava (Manihot esculenta Crantz).

    PubMed

    Bull, Simon E

    2015-01-01

    Genetic transformation of plants is an indispensable technique used for fundamental research and crop improvement. Recent advances in cassava (Manihot esculenta Crantz) transformation have facilitated the effective generation of stably transformed cassava plants with favorable traits. Agrobacterium-mediated transformation of friable, embryogenic callus has evolved to become the most widely used approach and has been adopted by research laboratories in Africa. This procedure utilizes axillary meristem tissue (buds) to produce primary and secondary somatic embryos and subsequently friable, embryogenic callus. Agrobacterium harboring a binary expression cassette is used to transform this tissue, which is regenerated via cotyledons and shoot organogenesis to produce rooted in vitro plantlets. This chapter details each step of the procedure using the model cultivar 60444 and provides supplementary notes to successfully produce transgenic cassava. PMID:25416250

  20. Remobilizing deleted piggyBac vector post-integration for transgene stability in silkworm.

    PubMed

    Wang, Feng; Wang, Riyuan; Wang, Yuancheng; Xu, Hanfu; Yuan, Lin; Ding, Huan; Ma, Sanyuan; Zhou, You; Zhao, Ping; Xia, Qingyou

    2015-06-01

    Deletion of transposable elements post-genomic integration holds great promise for stability of the transgene in the host genome and has an essential role for the practical application of transgenic animals. In this study, a modified piggyBac vector that mediated deletion of the transposon sequence post-integration for transgene stability in the economically important silkworm Bombyx mori was constructed. The piggyBac vector architecture contains inversed terminal repeat sequences L1, L2 and R1, which can form L1/R1 and L2/R1 types of transposition cassettes. hsp70-PIG as the piggyBac transposase expression cassette for initial transposition, further remobilization and transgene stabilization test was transiently expressed in a helper vector or integrated into the modified vector to produce a transgenic silkworm. Shortening L2 increased the transformation frequency of L1/R1 into the silkworm genome compared to L2/R1. After the integration of L1/R1 into the genome, the remobilization of L2/R1 impaired the transposon structure and the resulting transgene linked with an impaired transposon was stable in the genome even in the presence of exogenously introduced transposase, whereas those flanked by the intact transposon were highly mobile in the genome. Our results demonstrated the feasibility of post-integration deletion of transposable elements to guarantee true transgene stabilization in silkworm. We suggest that the modified vector will be a useful resource for studies of transgenic silkworms and other piggyBac-transformed organisms. PMID:25589404

  1. Effect of the citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits.

    PubMed

    Guo, Fei; Zhou, Wenjing; Zhang, Jiancheng; Xu, Qiang; Deng, Xiuxin

    2012-01-01

    Lycopene β-cyclase (LYCB) is the key enzyme for the synthesis of β-carotene, a valuable component of the human diet. In this study, tomato constitutively express Lycb-1 was engineered. The β-carotene level of transformant increased 4.1 fold, and the total carotenoid content increased by 30% in the fruits. In the transgenic line, the downstream α-branch metabolic fluxes were repressed during the three developmental stages while α-carotene content increased in the ripe stage. Microarray analysis in the ripe stage revealed that the constitutive expression of Lycb-1 affected a number of pathways including the synthesis of fatty acids, flavonoids and phenylpropanoids, the degradation of limonene and pinene, starch and sucrose metabolism and photosynthesis. This study provided insight into the regulatory effect of Lycb-1 gene on plant carotenoid metabolism and fruit transcriptome. PMID:22384184

  2. Flanking sequence determination and event specific detection of transgenic wheat B72-8-11b strain.

    PubMed

    Zhang, Piqiao; Xu, Junyi; Zheng, Qiuyue; Luan, Fengxia; Cao, Jijuan; Hou, Hesheng

    2013-03-01

    Exogenous fragment sequence and flanking sequence between exogenous fragment and recombinant chromosome of transgenic wheat B72-8-11b were successfully acquired through PCR amplification with cross-matched primers from exogenous genes. Newly acquired exogenous fragment covered the full-length sequence of transformed genes such as transformed plasmid and corresponding functional genes including marker uidA, promoter ubiquitin, lacZ, 1Dx5, and part of sequence of the wheat genome. A specific PCR detection method for transgenic wheat B72-8-11b strain was established on the basis of primers designed according to flanking sequence. The designed primers revealed specific amplification of 132 bp product of transgenic wheat B72-8-11b strain. This method is characteristics of high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B72-8-11b strain. PMID:23319185

  3. Transgenic Expression in Arabidopsis of a Polyprotein Construct Leading to Production of Two Different Antimicrobial Proteins1

    PubMed Central

    François, Isabelle E.J.A.; De Bolle, Miguel F.C.; Dwyer, Geoff; Goderis, Inge J.W.M.; Woutors, Piet F.J.; Verhaert, Peter D.; Proost, Paul; Schaaper, Wim M.M.; Cammue, Bruno P.A.; Broekaert, Willem F.

    2002-01-01

    We developed a method for expression in Arabidopsis of a transgene encoding a cleavable chimeric polyprotein. The polyprotein precursor consists of a leader peptide and two different antimicrobial proteins (AMPs), DmAMP1 originating from Dahlia merckii seeds and RsAFP2 originating from Raphanus sativus seeds, which are linked by an intervening sequence (“linker peptide”) originating from a natural polyprotein occurring in seed of Impatiens balsamina. The chimeric polyprotein was found to be cleaved in transgenic Arabidopsis plants and the individual AMPs were secreted into the extracellular space. Both AMPs were found to exert antifungal activity in vitro. It is surprising that the amount of AMPs produced in plants transformed with some of the polyprotein transgene constructs was significantly higher compared with the amount in plants transformed with a transgene encoding a single AMP, indicating that the polyprotein expression strategy may be a way to boost expression levels of small proteins. PMID:11950983

  4. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  5. Transgenic mouse offspring generated by ROSI.

    PubMed

    Moreira, Pedro; Pérez-Cerezales, Serafín; Laguna, Ricardo; Fernández-Gonzalez, Raúl; Sanjuanbenito, Belén Pintado; Gutiérrez-Adán, Alfonso

    2016-01-01

    The production of transgenic animals is an important tool for experimental and applied biology. Over the years, many approaches for the production of transgenic animals have been tried, including pronuclear microinjection, sperm-mediated gene transfer, transfection of male germ cells, somatic cell nuclear transfer and the use of lentiviral vectors. In the present study, we developed a new transgene delivery approach, and we report for the first time the production of transgenic animals by co-injection of DNA and round spermatid nuclei into non-fertilized mouse oocytes (ROSI). The transgene used was a construct containing the human CMV immediate early promoter and the enhanced GFP gene. With this procedure, 12% of the live offspring we obtained carried the transgene. This efficiency of transgenic production by ROSI was similar to the efficiency by pronuclear injection or intracytoplasmic injection of male gamete nuclei (ICSI). However, ICSI required fewer embryos to produce the same number of transgenic animals. The expression of Egfp mRNA and fluorescence of EGFP were found in the majority of the organs examined in 4 transgenic lines generated by ROSI. Tissue morphology and transgene expression were not distinguishable between transgenic animals produced by ROSI or pronuclear injection. Furthermore, our results are of particular interest because they indicate that the transgene incorporation mediated by intracytoplasmic injection of male gamete nuclei is not an exclusive property of mature sperm cell nuclei with compact chromatin but it can be accomplished with immature sperm cell nuclei with decondensed chromatin as well. The present study also provides alternative procedures for transgene delivery into embryos or reconstituted oocytes. PMID:26498042

  6. Apricot (Prunus armeniaca L.).

    PubMed

    Petri, César; Alburquerque, Nuria; Burgos, Lorenzo

    2015-01-01

    A protocol for Agrobacterium-mediated stable transformation of whole leaf explants of the apricot (Prunus armeniaca) cultivars 'Helena' and 'Canino' is described. Regenerated buds were selected using a two-step selection strategy with paromomycin sulfate and transferred to bud multiplication medium 1 week after they were detected for optimal survival. After buds were transferred to bud multiplication medium, antibiotic was changed to kanamycin and concentration increased gradually at each transfer to fresh medium in order to eliminate possible escapes and chimeras. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines, was 5.6%. Green and healthy buds, surviving high kanamycin concentration, were transferred to shoot multiplication medium where they elongated in shoots and proliferated. Elongated transgenic shoots were rooted in a medium containing 70 μM kanamycin. Rooted plants were acclimatized following standard procedures. This constitutes the only transformation protocol described for apricot clonal tissues and one of the few of Prunus. PMID:25416253

  7. Ectopic expression of Atleafy in Brassica juncea cv. Geeta for early flowering.

    PubMed

    Sahni, Sumit; Ganie, Showkat Hussain; Narula, Alka; Srivastava, Prem Shankar; Singh, Hari Bansh

    2013-07-01

    High temperature stress during pod filling severely affects the yield of Brassica juncea. Early flowering can evade the terminal heat stress and result in early maturity of the crop. In this study, a regeneration and transformation protocol has been standardized for B. juncea cv. Geeta. Hypocotyl from 5-day-old seedlings were used as explants. Of the various combinations of auxins and cytokinins tried along with Murashige and Skoog's (Physiol Plant 15:473-497, 1962) medium, MS + IAA (0.2 mg/l) + BA (3 mg/l) proved best for shoot regeneration with 89.9 % regeneration efficiency. To induce early flowering Leafy gene from Arabidopsis thaliana was transformed using Agrobacterium mediated transformation method. After 12 weeks transgenic plants showed flowering in vitro whereas their untransformed counterpart did not flower even after 16 weeks. The maximum transformation frequency was 4 %. PMID:24431514

  8. Transgene expression for Gladiolus plants grown outdoors and in the greenhouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgene expression was evaluated for Gladiolus plants transformed with either the CaMV 35S, double CaMV 35S, rolD, or Arabidopsis UBQ3 promoter controlling the uidA or bean yellow mosaic virus coat protein gene in either the sense or antisense orientation to determine differences in expression for...

  9. Evaluations of transgenic potatoes for resistance to potato tuberworm in the laboratory and field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potato variety ‘Spunta’ was previously transformed to constitutively express the cry1Ia1 gene from Bacillus thuringiensis from which three transgenic lines (Spunta G2, Spunta G3 and Spunta 6a3) were chosen to evaluate for resistance to potato tuberworm (Phthorimaea operculella Zeller). Because ...

  10. A WHEAT DNA FRAGMENT EXHIBITS REDUCED POLLEN TRANSMISSION IN TRANSGENIC MAIZE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An 8.2 kb fragment of wheat genomic DNA containing the Glu1-Dx5 gene has been transferred to maize using biolistic transformation. The Glu1-Dx5 gene encodes the 1Dx5 high molecular weight glutenin subunit, a seed storage protein associated with good bread making properties. The transgenic maize plan...

  11. Enhanced Myogenesis in adult skeletal muscle by transgenic expression of Myostatin Propeptide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle growth and maintenance are essential for human health. One of the muscle regulatory genes, namely myostatin, a member of transforming growth factor-ß, plays a dominant role in the genetic control of muscle mass. Transgenic expression of myostatin propeptide in skeletal muscle showed ...

  12. Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic transformation of plants has become a necessary tool for fundamental plant biology research, as well as the generation of engineered plants exhibiting improved agronomic and industrial traits. However, this technology is significantly hindered by the fact that transgene expression is hi...

  13. A Transgenic Durum Wheat Line that is Free of Marker Genes and Expresses 1dy10

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a combination of “clean gene” technology and positive selection to generate transgenic durum wheat lines free of herbicide and antibiotic resistance marker genes. Biolistic transformation experiments were carried out using three “minimal gene cassettes” consisting of linear DNA fragments exc...

  14. Antifungal traits of a 14 kDa maize kernel trypsin inhibitor protein in transgenic cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic cotton plants expressing the maize kernel trypsin inhibitor (TI) protein were produced and evaluated for antifungal traits. This 14 kD trypsin inhibitor protein has been previously associated with resistance to aflatoxin-producing fungus Aspergillus flavus. Successful transformation of ...

  15. The Mutational Consequences of Plant Transformation

    PubMed Central

    Latham, Jonathan R.; Wilson, Allison K.; Steinbrecher, Ricarda A.

    2006-01-01

    Plant transformation is a genetic engineering tool for introducing transgenes into plant genomes. It is now being used for the breeding of commercial crops. A central feature of transformation is insertion of the transgene into plant chromosomal DNA. Transgene insertion is infrequently, if ever, a precise event. Mutations found at transgene insertion sites include deletions and rearrangements of host chromosomal DNA and introduction of superfluous DNA. Insertion sites introduced using Agrobacterium tumefaciens tend to have simpler structures but can be associated with extensive chromosomal rearrangements, while those of particle bombardment appear invariably to be associated with deletion and extensive scrambling of inserted and chromosomal DNA. Ancillary procedures associated with plant transformation, including tissue culture and infection with A tumefaciens, can also introduce mutations. These genome-wide mutations can number from hundreds to many thousands per diploid genome. Despite the fact that confidence in the safety and dependability of crop species rests significantly on their genetic integrity, the frequency of transformation-induced mutations and their importance as potential biosafety hazards are poorly understood. PMID:16883050

  16. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants.

    PubMed

    Azab, Ehab; Hegazy, Ahmad K; El-Sharnouby, Mohamed E; Abd Elsalam, Hassan E

    2016-07-01

    The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants. PMID:26771455

  17. Heat treatment results in a loss of transgene-encoded activities in several tobacco lines.

    PubMed Central

    Neumann, K; Dröge-Laser, W; Köhne, S; Broer, I

    1997-01-01

    Heat treatment (37 degrees C) of transgenic tobacco (Nicotiana tabacum) plants led to a reversible reduction or complete loss of transgene-encoded activities in about 40% of 10 independent transformants carrying the luciferase-coding region fused to the 355 cauliflower mosaic virus or the soybean small subunit promoter and the nopaline synthase promoter driving the neomycin phosphotransferase gene, whereas the other lines had temperature-tolerant activities. Temperature sensitivity or tolerance of transgene-encoded activities was heritable. In some of the lines, temperature sensitivity of the transgene-encoded activities depended on the stage of development, occurring in either seedlings (40% luciferase and 50% neomycin phosphotransferase) or adult plants (both 40%). The phenomenon did not correlate with copy numbers or the homo- or hemizygous state of the transgenes. In lines harboring a temperature-sensitive luciferase activity, reduction of bioluminescence was observed after 2 to 3 h at 37 degrees C. Activity was regained after 2 h of subsequent cultivation at 25 degrees C. Irrespective of the reaction to the heat treatment, the level of luciferase RNA was slightly increased at 37 degrees C. Only in lines showing temperature sensitivity of transgene-encoded activities was the amount of luciferase and neomycin phosphotransferase strongly reduced. In sterile culture, heat treatment for 15 d did not cause visible damage or changes in plant morphology. In all plants tested a slight induction of the heat-shock response was observed at 37 degrees C. PMID:9390430

  18. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions

    PubMed Central

    Lebedev, V. G.; Faskhiev, V. N.; Kovalenko, N. P.; Shestibratov, K. A.; Miroshnikov, A. I.

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014–2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity. PMID:27437143

  19. Cell Suspension Culture-Mediated Incorporation of the Rice Bel Gene into Transgenic Cotton

    PubMed Central

    Yu, Xiushuang; Sun, Jie; Jones, Brian; Pan, Gang; Cheng, Xiaofei; Wang, Huizhong; Zhu, Shuijin; Sun, Yuqiang

    2012-01-01

    Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 µmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops. PMID:22768325

  20. [Construction of transgenic tobacco expressing popW and analysis of its biological phenotype].

    PubMed

    Wang, Cui; Liu, Hongxia; Cao, Jing; Wang, Chao; Guo, Jianhua

    2014-04-01

    In a previous study, we cloned popW from Ralstonia solanacearum strain ZJ3721, coding PopW, a new harpin protein. The procaryotically expressed PopW can induce resistance to Tobacco mosaic virus (TMV), enhance growth and improve quality of tobacco, when sprayed onto tobacco leaves. Here, we constructed an expression vector pB- popW by cloning popW into the bionary vector pBI121 and transformed it into Agrobacterium tumefaciens strain EHA105 via freeze-thaw method. Tobacco (Nicotiana tobacum cv. Xanthi nc.) transformation was conducted by infection of tobacco leaf discs with recombinant A. tumefaciens. After screening on MS medium containing kanamycin, PCR and RT-PCR analysis, 21 T3 lines were identified as positive transgenic. Genomic intergration and expression of the transferred gene were determined by PCR and RT-PCR. And GUS staining analysis indicated that the protein expressed in transgenic tobacco was bioactive and exhibited different expression levels among lines. Disease bioassays showed that the transgenic tobacco had enhanced resistance to TMV with biocontrol efficiency up to 54.25%. Transgenic tobacco also exhibited enhanced plant growth, the root length of 15 d old seedlings was 1.7 times longer than that of wild type tobacco. 60 d after transplanting to pots, the height, fresh weight and dry weight of transgenic tobacco were 1.4, 1.7, 1.8 times larger than that of wild type tobacco, respectively. PMID:25195247

  1. Cell suspension culture-mediated incorporation of the rice bel gene into transgenic cotton.

    PubMed

    Ke, Liping; Liu, RuiE; Chu, Bijue; Yu, Xiushuang; Sun, Jie; Jones, Brian; Pan, Gang; Cheng, Xiaofei; Wang, Huizhong; Zhu, Shuijin; Sun, Yuqiang

    2012-01-01

    Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 µmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops. PMID:22768325

  2. Selectable marker genes in transgenic plants: applications, alternatives and biosafety.

    PubMed

    Miki, Brian; McHugh, Sylvia

    2004-02-01

    Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are

  3. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene*

    PubMed Central

    ZHAO, Qi-chao; LIU, Ming-hong; ZHANG, Xian-wen; LIN, Chao-yang; ZHANG, Qing; SHEN, Zhi-cheng

    2015-01-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice. PMID:26465130

  4. Generation of insect-resistant and glyphosate-tolerant rice by introduction of a T-DNA containing two Bt insecticidal genes and an EPSPS gene.

    PubMed

    Zhao, Qi-chao; Liu, Ming-hong; Zhang, Xian-wen; Lin, Chao-yang; Zhang, Qing; Shen, Zhi-cheng

    2015-10-01

    Insect resistance and glyphosate tolerance have been two of the most important traits in the genetic improvement of various crops. In this study, two Bacillus thuringiensis (Bt) insecticidal genes, Cry1Ac and Cry1Ig, and a modified glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (G10) were combined into a single transferred DNA (T-DNA) fragment and introduced into rice by Agrobacterium-mediated transformation. A transgenic line with single-copy T-DNA insertion named GAI-14 was found to be highly resistant to striped stem borer and rice leaf roller, and tolerant to glyphosate. Analysis of T-DNA border sequence suggested that the transgenes were inserted at the chromosome 3 and appeared to have not interrupted any known or putative genes. A field trial observed no significant difference in the basic agronomic traits between GAI-14 and the recipient rice. PMID:26465130

  5. A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice.

    PubMed

    Lin, Chaoyang; Fang, Jun; Xu, Xiaoli; Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  6. A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    PubMed Central

    Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  7. Analysis of promoters in transgenic barley and wheat.

    PubMed

    Furtado, Agnelo; Henry, Robert J; Pellegrineschi, Alessandro

    2009-04-01

    Advances in the genetic transformation of cereals have improved the prospects of using biotechnology for plant improvement, and a toolbox of promoters with defined specificities would be a valuable resource in controlling the expression of transgenes in desired tissues for both plant improvement and molecular farming. A number of promoters have been isolated from the important cereals (wheat, barley, rice and maize), and these promoters have been tested mostly in homologous cereal systems and, to a lesser extent, in heterologous cereal systems. The use of these promoters across the important cereals would add value to the utility of each promoter. In addition, promoters with less sequence homology, but with similar specificities, will be crucial in avoiding homology-based gene silencing when expressing more than one transgene in the same tissue. We have tested wheat and barley promoters in transgenic barley and wheat to determine whether their specificity is shared across these two species. The barley bifunctional alpha-amylase/subtilisin inhibitor (Isa) promoter, specific to the pericarp in barley, failed to show any activity in wheat, whereas the wheat early-maturing (Em) promoter showed similar activity in wheat and barley. The wheat high-molecular-weight glutenin (HMW-Glu) and barley D-hordein (D-Hor) and B-hordein (B-Hor) storage protein promoters maintained endosperm-specific expression of green fluorescent protein (GFP) in wheat and barley, respectively. Using gfp, we have demonstrated that the Isa and Em promoters can be used as strong promoters to direct transgenes in specific tissues of barley and wheat grain. Differential promoter activity across cereals expands and adds value to a promoter toolbox for utility in plant biotechnology. PMID:19175520

  8. Transgenic Models in Retinoblastoma Research

    PubMed Central

    Nair, Rohini M.; Vemuganti, Geeta K.

    2015-01-01

    Understanding the mechanism of retinoblastoma (Rb) tumor initiation, development, progression and metastasis in vivo mandates the use of animal models that mimic this intraocular tumor in its genetic, anatomic, histologic and ultrastructural features. An early setback for developing mouse Rb models was that Rb mutations did not cause tumorigenesis in murine retinas. Subsequently, the discovery that the p107 protein takes over the role of pRb in mice led to the development of several animal models that phenotypically and histologically resemble the human form. This paper summarizes the transgenic models that have been developed over the last three decades. PMID:27171579

  9. Transgenic Models in Retinoblastoma Research.

    PubMed

    Nair, Rohini M; Vemuganti, Geeta K

    2015-04-01

    Understanding the mechanism of retinoblastoma (Rb) tumor initiation, development, progression and metastasis in vivo mandates the use of animal models that mimic this intraocular tumor in its genetic, anatomic, histologic and ultrastructural features. An early setback for developing mouse Rb models was that Rb mutations did not cause tumorigenesis in murine retinas. Subsequently, the discovery that the p107 protein takes over the role of pRb in mice led to the development of several animal models that phenotypically and histologically resemble the human form. This paper summarizes the transgenic models that have been developed over the last three decades. PMID:27171579

  10. Transgene expression in regenerated roots.

    PubMed

    Malamy, Jocelyn

    2007-01-01

    INTRODUCTIONThis procedure, which uses a root transformation protocol, provides a rapid method for assessing gene expression in Arabidopsis roots. It is useful for testing promoter:reporter gene constructs, for expressing genes, the overexpression of which is lethal in whole plants, and for transforming the roots of plants that are recalcitrant to conventional transformation techniques. The protocol has been used successfully with Ws, No-0, and RLD ecotypes. PMID:21357026

  11. High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos.

    PubMed

    Abdollahi, M R; Moieni, A; Mousavi, A; Salmanian, A H

    2011-02-01

    Transgenic doubled haploid rapeseed (Brassica napus L. cvs. Global and PF(704)) plants were obtained from microspore-derived embryo (MDE) hypocotyls using the microprojectile bombardment. The binary vector pCAMBIA3301 containing the gus and bar genes under control of CaMV 35S promoter was used for bombardment experiments. Transformed plantlets were selected and continuously maintained on selective medium containing 10 mg l(-1) phosphinothricin (PPT) and transgenic plants were obtained by selecting transformed secondary embryos. The presence, copy numbers and expression of the transgenes were confirmed by PCR, Southern blot, RT-PCR and histochemical GUS analyses. In progeny test, three out of four primary transformants for bar gene produced homozygous lines. The ploidy level of transformed plants was confirmed by flow cytometery analysis before colchicine treatment. All of the regenerated plants were haploid except one that was spontaneous diploid. High frequency of transgenic doubled haploid rapeseeds (about 15.55% for bar gene and 11.11% for gus gene) were considerably produced after colchicines treatment of the haploid plantlets. This result show a remarkable increase in production of transgenic doubled haploid rapeseed plants compared to previous studies. PMID:20419350

  12. Introduction of Pea DNA Helicase 45 Into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability And Upregulation Of Stress-responsive Genes Leads To Abiotic Stress Tolerance.

    PubMed

    Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N

    2015-05-01

    DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45. PMID:25875731

  13. Transgenic Papaya: Development, Release, Impact, and Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the technology for developing virus-resistant transgenic plants through the use of the coat protein of a virus was unveiled twenty years ago, it is surprising to note that only a three virus-resistant plants (squash, potato, and papaya) have been commercialized in the U.S. The transgenic p...

  14. Transgenic Biofuel Feedstocks and Strategies for Biocontainment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several reasons to believe that transgenic plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels. Much of the commercialization potential for the use of transgenic plant cellulosic feedstocks may be impacted by regulatio...

  15. 2008 FHB Analysis of Transgenic Barley Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic lines have been developed with the goal of reducing FHB and DON in barley. Replicated field trials for FHB reaction of 48 Conlon transgenic lines were conducted in 2008 in Langdon, ND and Rosemount, MN. The Langdon trials consisted of three replicates in hill plots in an inoculated misted...

  16. Accumulation of nickel in transgenic tobacco

    NASA Astrophysics Data System (ADS)

    Sidik, Nik Marzuki; Othman, Noor Farhan

    2013-11-01

    The accumulation of heavy metal Ni in the roots and leaves of four T1 transgenic lines of tobacco (T(1)20E, T(1)24C, T(1)18B1 and T(1)20B) expressing eiMT1 from E.indica was assessed. The aim of the study was to investigate the level of Ni accumulation in the leaves and roots of each transgenic lines and to evaluate the eligibility of the plants to be classified as a phytoremediation agent. All of the transgenic lines showed different ability in accumulating different metals and has translocation factor (TF) less than 1 (TF<1) at all levels of metal treatment. Among the 4 transgenic lines, transgenic line T(1)24C showed the highest accumulation of Ni (251.9 ± 0.014 mg/kg) and the lowest TF value (TFT(1)24C=0.0875) at 60 ppm Ni.

  17. Transgenic strawberry: state of the art for improved traits.

    PubMed

    Qin, Yonghua; Teixeira da Silva, Jaime A; Zhang, Lingxiao; Zhang, Shanglong

    2008-01-01

    Strawberry (Fragaria x ananassa Duch.), a member of the Rosaceae family, is one of the most important fruit crops cultivated worldwide. Strawberry is unique within the Rosaceae because it is a rapidly growing herbaceous perennial with a small genome, short reproductive cycle, and facile vegetative and generative propagation for genetic transformation. For these reasons, strawberry has been recognized as excellent germplasm for genetic and molecular studies for the Rosaceae family. Although traditional breeding methods have achieved steady improvement in agronomic traits, the lack of useful economic characters still remains a major challenge. Genetic transformation has opened a new era for greater creativity in strawberry breeding and germplasm by offering an effective method for creating new varieties that selectively targets a specific interested gene or a few heterologous traits. Enormous advances have been made in strawberry genetic transformation since the first transgenic strawberry plant was obtained in 1990. This paper reviews recent progress in genetic transformation of strawberry on increasing resistance to viruses, fungi, insects, herbicides, stress, and achieving better quality. Problems and prospects for future applications of genetic transformation in strawberry are also discussed. PMID:18280082

  18. The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants.

    PubMed

    Goossens, A; Dillen, W; De Clercq, J; Van Montagu, M; Angenon, G

    1999-08-01

    The regulatory sequences of many genes encoding seed storage proteins have been used to drive seed-specific expression of a variety of proteins in transgenic plants. Because the levels at which these transgene-derived proteins accumulate are generally quite low, we investigated the utility of the arcelin-5 regulatory sequences in obtaining high seed-specific expression in transgenic plants. Arcelin-5 is an abundant seed protein found in some wild common bean (Phaseolus vulgaris L.) genotypes. Seeds of Arabidopsis and Tepary bean (Phaseolus acutifolius A. Gray) plants transformed with arcelin-5 gene constructs synthesized arcelin-5 to levels of 15% and 25% of the total protein content, respectively. To our knowledge, such high expression levels directed by a transgene have not been reported before. The transgenic plants also showed low plant-to-plant variation in arcelin expression. Complex transgene integration patterns, which often result in gene silencing effects, were not associated with reduced arcelin-5 expression. High transgene expression was the result of high mRNA steady-state levels and was restricted to seeds. This indicates that all requirements for high seed-specific expression are cis elements present in the cloned genomic arcelin-5 sequence and trans-acting factors that are available in Arabidopsis and Phaseolus spp., and thus probably in most dicotyledonous plants. PMID:10444093

  19. Expression and Chloroplast Targeting of Cholesterol Oxidase in Transgenic Tobacco Plants

    PubMed Central

    Corbin, David R.; Grebenok, Robert J.; Ohnmeiss, Thomas E.; Greenplate, John T.; Purcell, John P.

    2001-01-01

    Cholesterol oxidase represents a novel type of insecticidal protein with potent activity against the cotton boll weevil (Anthonomus grandis grandis Boheman). We transformed tobacco (Nicotiana tabacum) plants with the cholesterol oxidase choM gene and expressed cytosolic and chloroplast-targeted versions of the ChoM protein. Transgenic leaf tissues expressing cholesterol oxidase exerted insecticidal activity against boll weevil larvae. Our results indicate that cholesterol oxidase can metabolize phytosterols in vivo when produced cytosolically or when targeted to chloroplasts. The transgenic plants exhibiting cytosolic expression accumulated low levels of saturated sterols known as stanols, and displayed severe developmental aberrations. In contrast, the transgenic plants expressing chloroplast-targeted cholesterol oxidase maintained a greater accumulation of stanols, and appeared phenotypically and developmentally normal. These results are discussed within the context of plant sterol distribution and metabolism. PMID:11457962

  20. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    SciTech Connect

    Tien, Ming; Carlson, John; Liang, Haiying

    2015-06-02

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  1. Compositions and methods relating to transgenic plants and cellulosic ethanol production

    DOEpatents

    Tien, Ming; Carlson, John; Liang, Haiying

    2012-04-24

    Transgenic lignocellulosic plants are provided according to embodiments of the present invention, the transgenic plants transformed with an expression cassette encoding a protein operably linked to a signal peptide which targets the protein to a cell wall of the transgenic plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine. Methods of increasing lignin-protein bonds in a lignocellulosic plant are provided according to embodiments of the present invention which include expressing a recombinant nucleic acid in a lignocellulosic plant, the recombinant nucleic acid encoding a protein operably linked to a signal peptide which targets the protein to the cell wall of a plant, where at least 5% of the total amino acid residues of the protein are tyrosine, lysine, serine, threonine or cysteine.

  2. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  3. Genetic transformation of cassava (Manihot esculenta Crantz).

    PubMed

    Li, H Q; Sautter, C; Potrykus, I; Puonti-Kaerlas, J

    1996-06-01

    Genetic engineering can be used to complement traditional breeding methods in crop plant improvement. Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. The prerequisites for genetic engineering are efficient transformation and tissue culture systems that allow selection and regeneration of transgenic plants. Cassava, an integral plant for food security in developing countries, has until now been recalcitrant to transformation approaches. We report here a method for regenerating stably transformed cassava plants after cocultivation with Agrobacterium tumefaciens, which opens cassava for future improvement via biotechnology. PMID:9630981

  4. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.

    PubMed

    Zhang, Jun; Cai, Lin; Cheng, Jiaqin; Mao, Huizhu; Fan, Xiaoping; Meng, Zhaohong; Chan, Ka Man; Zhang, Huijun; Qi, Jianfei; Ji, Lianghui; Hong, Yan

    2008-04-01

    While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to

  5. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco.

    PubMed Central

    Allen, G C; Hall, G; Michalowski, S; Newman, W; Spiker, S; Weissinger, A K; Thompson, W F

    1996-01-01

    We have previously shown that yeast scaffold attachment regions (SARs) flanking a chimeric beta-glucuronidase (GUS) reporter gene increased per-copy expression levels by 24-fold in tobacco suspension cell lines stably transformed by microprojectile bombardment. In this study, we examined the effect of a DNA fragment originally identified in a tobacco genomic clone by its activity in an in vitro binding assay. The tobacco SAR has much greater scaffold binding affinity than does the yeast SAR, and tobacco cell lines stably transformed with constructs containing the tobacco SAR accumulated greater than fivefold more GUS enzyme activity than did lines transformed with the yeast SAR construct. Relative to the control construct, flanking the GUS gene with plant SARs increased overall expression per transgene copy by almost 140-fold. In transient expression assays, the same construct increased expression only approximately threefold relative to a control without SARs, indicating that the full SAR effect requires integration into chromosomal DNA. GUS activity in individual stable transformants was not simply proportional to transgene copy number, and the SAR effect was maximal in cell lines with fewer than approximately 10 transgene copies per tobacco genome. Lines with significantly higher copy numbers showed greatly greatly reduced expression relative to the low-copy-number lines. Our results indicate that strong SARs flanking a transgene greatly increases expression without eliminating variation between transformants. We propose that SARs dramatically reduce the severity or likelihood of homology-dependent gene silencing in cells with small numbers of transgenes but do not prevent silencing of transgenes present in many copies. PMID:8672887

  6. Generation of transgenic Hydra by embryo microinjection.

    PubMed

    Juliano, Celina E; Lin, Haifan; Steele, Robert E

    2014-01-01

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost. PMID:25285460

  7. Glyphostate-drift but not herbivory alters the rate of transgene flow from single and stacked trait transgenic canola (Brassica napus L.) to non-transgenic B. napus and B. rapa

    EPA Science Inventory

    While transgenic plants can offer agricultural benefits, the escape of transgenes out of crop fields is a major environmental concern. Escape of transgenic herbicide resistance has occurred between transgenic Brassica napus (canola) and weedy species in numerous locations. In t...

  8. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans

    PubMed Central

    Khachatoorian, Careen; Judelson, Howard S.

    2015-01-01

    Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies. PMID:26716454

  9. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene.

    PubMed Central

    Lavigueur, A; Maltby, V; Mock, D; Rossant, J; Pawson, T; Bernstein, A

    1989-01-01

    We have investigated the role of the p53 gene in oncogenesis in vivo by generating transgenic mice carrying murine p53 genomic fragments isolated from a mouse Friend erythroleukemia cell line or BALB/c mouse liver DNA. Elevated levels of p53 mRNA were detected in several tissues of two transgenic lines tested. Increased levels of p53 protein were also detected in most of the tissues analyzed by Western blotting (immunoblotting). Because both transgenes encoded p53 proteins that were antigenically distinct from wild-type p53, it was possible to demonstrate that overexpression of the p53 protein was mostly, if not entirely, due to the expression of the transgenes. Neoplasms developed in 20% of the transgenic mice, with a high incidence of lung adenocarcinomas, osteosarcomas, and lymphomas. Tissues such as ovaries that expressed the transgene at high levels were not at higher risk of malignant transformation than tissues expressing p53 protein at much lower levels. The long latent period and low penetrance suggest that overexpression of p53 alone is not sufficient to induce malignancies and that additional events are required. These observations provide direct evidence that mutant alleles of the p53 oncogene have oncogenic potential in vivo and that different cell types show intrinsic differences in susceptibility to malignant transformation by p53. Since recent data suggest that p53 may be a recessive oncogene, it is possible that the elevated tumor incidence results from functional inactivation of endogenous p53 by overexpression of the mutant transgene. The high incidence of lung and bone tumors suggests that p53 transgenic mice may provide a useful model to investigate the molecular events that underlie these malignancies in humans. Images PMID:2476668

  10. The HSP terminator of Arabidopsis thaliana induces a high level of miraculin accumulation in transgenic tomatoes.

    PubMed

    Hirai, Tadayoshi; Kurokawa, Natsuko; Duhita, Narendra; Hiwasa-Tanase, Kyoko; Kato, Kazuhisa; Kato, Ko; Ezura, Hiroshi

    2011-09-28

    High-level accumulation of the target recombinant protein is a significant issue in heterologous protein expression using transgenic plants. Miraculin, a taste-modifying protein, was accumulated in transgenic tomatoes using an expression cassette in which the miraculin gene was expressed by the cauliflower mosaic virus (CaMV) 35S promoter and the heat shock protein (HSP) terminator (MIR-HSP). The HSP terminator was derived from heat shock protein 18.2 in Arabidopsis thaliana . Using this HSP-containing cassette, the miraculin concentration in T0 transgenic tomato lines was 1.4-13.9% of the total soluble protein (TSP), and that in the T1 transgenic tomato line homozygous for the miraculin gene reached 17.1% of the TSP. The accumulation level of the target protein was comparable to levels observed with chloroplast transformation. The high-level accumulation of miraculin in T0 transgenic tomato lines achieved by the HSP terminator was maintained in the successive T1 generation, demonstrating the genetic stability of this accumulation system. PMID:21861502

  11. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics.

    PubMed

    Liu, Wei; Liu, Changhong; Hu, Xiaohua; Yang, Jianbo; Zheng, Lei

    2016-11-01

    Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of transgenic rice seeds from its non-transgenic counterparts was examined by terahertz spectroscopy imaging system combined with chemometrics. Principal component analysis (PCA), least squares support vector machines (LS-SVM), PCA-back propagation neural network (PCA-BPNN), and random forest (RF) models with the first and second derivative and standard normal variate transformation (SNV) pre-treatments were applied to classify rice seeds based on genotype. The results demonstrated that differences between non-transgenic and transgenic rice seeds did exist, and an excellent classification (accuracy was 96.67% in the prediction set) could be achieved using the RF model combined with the first derivative pre-treatment. The results indicated that THz spectroscopy imaging together with chemometrics would be a promising technique to identify transgenic rice seeds with high efficiency and without any sample preparation. PMID:27211665

  12. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice

    PubMed Central

    Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.

    2009-01-01

    The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531

  13. Long-term persistence and bacterial transformation potential of transplastomic plant DNA in soil.

    PubMed

    Pontiroli, Alessandra; Ceccherini, Maria-Teresa; Poté, John; Wildi, Walter; Kay, Elisabeth; Nannipieri, Paolo; Vogel, Timothy M; Simonet, Pascal; Monier, Jean-Michel

    2010-06-01

    The long-term physical persistence and biological activity of transplastomic plant DNA (transgenes contained in the chloroplast genome) either purified and added to soil or naturally released by decaying tobacco leaves in soil was determined. Soil microcosms were amended with transplastomic tobacco leaves or purified plant DNA and incubated for up to 4 years. Total DNA was extracted from soil and the number of transgenes (aadA, which confers resistance to both spectinomycin and streptomycin) was quantified by quantitative PCR. The biological activity of these transgenes was assessed by transformation in the bacterial strain Acinetobacter sp. BD413(pBAB2) in vitro. While the proportion of transgenes recovered increased with the increasing amount of transplastomic DNA added, plant DNA was rapidly degraded over time. The number of transgenes recovered decreased about 10,000 fold within 2 weeks. Data reveal, however, that a small fraction of the plant DNA escaped degradation. Transgene sequences were still detected after 4 years and transformation assays showed that extracted DNA remained biologically active and could still transform competent cells of Acinetobacter sp. BD413(pBAB2). The approach presented here quantified the number of transgenes (based on quantitative PCR of 50% of the gene) released and persisting in the environment over time and provided new insights into the fate of transgenic plant DNA in soil. PMID:20493252

  14. Transgenic fish: present status and future directions.

    PubMed

    Hew, C L

    1989-06-01

    Successful production of transgenic fish by gene transfer technology is a very important breakthrough in the techniques of genetic manipulation in animals. This will have an impact of an unprecedented scale in fish biology, aquaculture and mariculture. This is a summary of the workshop on the Transgenic Fish presented at this Symposium. The Workshop discussed the current knowledge, experimental difficulties and related topics of the transgenic fish. It recommended further research on better gene constructs, methods development, safety containment and the closer collaboration of researchers of different disciplines. PMID:24221801

  15. [Transgenic technology and soybean quality improvement].

    PubMed

    Cheng, Hao; Jin, Hang-Xia; Gai, Jun-Yi; Yu, De-Yue

    2011-05-01

    Soybean is an important source of edible oil, protein and protein diet. The breeding process of high quality soybean can be accelerated via employment of transgenic technology, by which the key genes for soybean quality traits could be directly manipulated. Thus, various soybean varieties could be bred to fulfill different needs for specific consumers. Here, we reviewed the contribution of transgenic technology to improvement of soybean qualities in recent years. We also introduce some newly developed safe transgenic technologies and hope this information could relieve some concerns on the GM food. PMID:21586389

  16. Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.

    PubMed

    Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi

    2016-01-01

    Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations. PMID:27557690

  17. OBTAINING OF THE TRANSGENIC HELIANTHUS TUBEROSUS L. PLANTS, CALLUS AND "HAIRY" ROOT CULTURES ABLE TO EXPRESS THE RECOMBINANT HUMAN INTERFERON ALPHA-2b GENE.

    PubMed

    Maistrenko, O M; Luchakivska, Yu S; Zholobak, N M; Spivak, M Ya; Kuchuk, M V

    2015-01-01

    This work is the first to our knowledge to describe the successful attempt of Agrobacterium rhizogenes-mediated transformation of topinambour in order to obtain the transgenic H. tuberosus plants, callus and "hairy" root cultures. The plasmid vectors contained the sequence of interferon gene fused with Nicotiana plumbagenifolia L. calreticulin apoplast targeting signal driven by 35S CaMV promoter or root-specific Mll promoter. Nearly 75% isolated Ri-root lines and callus cultures were proved (by PCR analysis) to contain HuINFa-2b transgene. We also managed to obtain H. tuberosus transgenic plants through somatic embryogenesis on the transgenic "hairy" root culture. The obtained transgenic H. tuberosus cultures exhibited high-level antiviral activity that ranged from 2000 to 54500 IU/g FW that makes this crop considered a promising source of recombinant interferon alpha 2b protein. PMID:26638495

  18. Genetic transformation of Sorghum bicolor.

    PubMed

    Girijashankar, V; Swathisree, V

    2009-10-01

    Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals. Sexual incompatibility and shortage of available genes in germplasm to combat biotic and abiotic stresses resulted in marginalized yields of this crop. Genetic modification of sorghum with agronomically useful genes can address this problem. Here, we tried to review and summarize the key aspects of sorghum transformation work being carried out so far by various research groups across the world. The approaches used and the obstacles in generating transgenic sorghum are also pointed out and discussed. PMID:23572939

  19. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice.

    PubMed Central

    Kumpatla, S P; Teng, W; Buchholz, W G; Hall, T C

    1997-01-01

    Despite a growing number of reports indicating non-Mendelian inheritance of transgene expression in monocots, no detailed description of the structure and stability of the transgene exists for transformants generated by direct DNA-transfer techniques, making the cause for these observations difficult to determine. In this paper we describe the complex organization of Btt cryIIIA and bar transgenes in rice (Oryza sativa L.) that displayed aberrant segregation in R1 progeny. Silencing rather than rearrangement of the bar gene was implicated because the herbicide-sensitive R1 plants had a DNA hybridization profile identical to that of the resistant R0 parent and R1 siblings. Genomic DNA analysis revealed substantial methylation of the Ubi1/bar sequences in silenced plants and, to a lesser degree, in herbicide-resistant plants, suggesting that the transgene locus was potentiated for silencing. Nuclease protection and nuclear run-on assays confirmed that silencing was due to transcriptional inactivation. Treatment of R2 progeny of silenced plants with 5-azacytidine resulted in demethylation of the Ubi1 promoter and reactivation of bar gene expression, demonstrating a functional relationship for methylation in gene silencing. These findings indicate that methylation-based silencing may be frequent in cereals transformed by direct DNA protocols that insert multiple, often rearranged sequences. PMID:9342860

  20. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes

    SciTech Connect

    Scorza, R.; Zimmerman, T.W.; Cordts, J.M.; Footen, K.J. ); Ravelonandro, M. . Station de Pathologie Vegetale)

    1994-09-01

    Wisconsin 38 tobacco (Nicotiana tabacum L.) leaf discs were transformed with the disarmed Agrobacterium tumefaciens strain EHA 101 carrying the rolC gene from A. rhizogenes and NPT II and GUS genes. Shoots that regenerated on kanamycin-containing medium were confirmed as transgenic through GUS assays, polymerase chain reaction (PCR), Southern blot analyses, and transmission of the foreign genes through the sexual cycle. Transgenic plants were as short as half the height of control plants; were earlier flowering by up to 35 days; and had smaller leaves, shorter internodes, smaller seed capsules, fewer seeds, smaller flowers, and reduced pollen viability. The number of seed capsules, leaf number, and specific root length were similar between transgenic and control plants. Transgenic clones varied in the expression of the rolC-induced growth alterations as did the first generation of seedlings from these clones. Such differences suggested the potential for selecting for different levels of expression. Transformation with the rolC gene presents a potentially useful method of genetically modifying horticultural crops, particularly for flowering date, height, and leaf and flower size. Chemical names used: neomycin phosphotransferase (NPTII), [beta]-glucuronidase (GUS).

  1. Comparative transcriptional and proteomic profiling of bread wheat cultivar and its derived transgenic line over-expressing a low molecular weight glutenin subunit gene in the endosperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have carried out a parallel transcriptional and proteomic comparison of seeds from a transformed bread wheat line that over-expresses a transgenic low molecular weight glutenin subunit gene relative to the corresponding non-transformed genotype. Proteomic analyses showed that, during seed develop...

  2. AN APPROACH TO TRANSGENIC CROP MONITORING

    EPA Science Inventory

    Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...

  3. Overview: Engineering transgenic constructs and mice

    PubMed Central

    Haruyama, Naoto; Cho, Andrew; Kulkarni, Ashok B

    2009-01-01

    Cell biology research encompasses everything from single cells to whole animals. Recent discoveries concerning particular gene functions can be applied to the whole animal for understanding genotype-phenotype relationships underlying disease mechanisms. For this reason, genetically manipulated mouse models are now considered essential to correctly understand disease processes in whole animals. This unit provides the basic mouse technologies used to generate conventional transgenic mice, which represents gain-of-function approach. First, an overview of the transgenic construct design is presented. This unit then explains basic strategies for the identification and establishment of independent transgenic mouse lines, followed by comments on historical and emerging techniques, and then on typical problems that are encountered when researchers start to generate transgenic mice. PMID:19283728

  4. Transgenic plants with enhanced growth characteristics

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  5. Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes.

    PubMed

    Moon, Hong S; Halfhill, Matthew D; Good, Laura L; Raymer, Paul L; Neal Stewart, C

    2007-07-01

    Crop to weed transgene flow, which could result in more competitive weed populations, is an agricultural biosafety concern. Crop Brassica napus to weedy Brassica rapa hybridization has been extensively characterized to better understand the transgene flow and its consequences. In this study, weedy accessions of B. rapa were transformed with Bacillus thuringiensis (Bt) cry1Ac- and green fluorescence protein (gfp)-coding transgenes using Agrobacterium to assess ecological performance of the wild biotype relative to introgressed hybrids in which the transgenic parent was the crop. Regenerated transgenic B. rapa events were characterized by progeny analysis, Bt protein enzyme-linked immunosorbent assay (ELISA), Southern blot analysis, and GFP expression assay. GFP expression level and Bt protein concentration were significantly different between independent transgenic B. rapa events. Similar reproductive productivity was observed in comparison between transgenic B. rapa events and B. rapa x B. napus introgressed hybrids in greenhouse and field experiments. In the greenhouse, Bt transgenic plants experienced significantly less herbivory damage from the diamondback moth (Plutella xylostella). No differences were found in the field experiment under ambient, low, herbivore pressure. Directly transformed transgenic B. rapa plants should be a helpful experimental control to better understand crop genetic load in introgressed transgenic weeds. PMID:17333014

  6. In vitro selection of transgenic sugarcane callus utilizing a plant gene encoding a mutant form of acetolactate synthase.

    PubMed

    van der Vyver, Christell; Conradie, Tobie; Kossmann, Jens; Lloyd, James

    2013-04-01

    Selection genes are routinely used in plant genetic transformation protocols to ensure the survival of transformed cells by limiting the regeneration of non-transgenic cells. In order to find alternatives to the use of antibiotics as selection agents, we followed a targeted approach utilizing a plant gene, encoding a mutant form of the enzyme acetolactate synthase, to convey resistance to herbicides. The sensitivity of sugarcane callus (Saccharum spp. hybrids, cv. NCo310) to a number of herbicides from the sulfonylurea and imidazolinone classes was tested. Callus growth was most affected by sulfonylurea herbicides, particularly 3.6 μg/l chlorsulfuron. Herbicide-resistant transgenic sugarcane plants containing mutant forms of a tobacco acetolactate synthase (als) gene were obtained following biolistic transformation. Post-bombardment, putative transgenic callus was selectively proliferated on MS medium containing 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 20 g/l sucrose, 0.5 g/l casein, and 3.6 μg/l chlorsulfuron. Plant regeneration and rooting was done on MS medium lacking 2,4-D under similar selection conditions. Thirty vigorously growing putative transgenic plants were successfully ex vitro-acclimatized and established under glasshouse conditions. Glasshouse spraying of putative transgenic plants with 100 mg/l chlorsulfuron dramatically decreased the amount of non-transgenic plants that had escaped the in vitro selection regime. PCR analysis showed that six surviving plants were als-positive and that five of these expressed the mutant als gene. This report is the first to describe a selection system for sugarcane transformation that uses a selectable marker gene of plant origin targeted by a sulfonylurea herbicide. PMID:23543883

  7. Transgene flow: facts, speculations and possible countermeasures.

    PubMed

    Ryffel, Gerhart U

    2014-01-01

    Convincing evidence has accumulated that unintended transgene escape occurs in oilseed rape, maize, cotton and creeping bentgrass. The escaped transgenes are found in variant cultivars, in wild type plants as well as in hybrids of sexually compatible species. The fact that in some cases stacked events are present that have not been planted commercially, implies unintended recombination of transgenic traits. As the consequences of this continuous transgene escape for the ecosystem cannot be reliably predicted, I propose to use more sophisticated approaches of gene technology in future. If possible GM plants should be constructed using either site-directed mutagenesis or cisgenic strategies to avoid the problem of transgene escape. In cases where a transgenic trait is needed, efficient containment should be the standard approach. Various strategies available or in development are discussed. Such a cautious approach in developing novel types of GM crops will enhance the sustainable potential of GM crops and thus increase the public trust in green gene technology. PMID:25523171

  8. Delay of Disease Development in Transgenic Plants that Express the Tobacco Mosaic Virus Coat Protein Gene

    NASA Astrophysics Data System (ADS)

    Powell Abel, Patricia; Nelson, Richard S.; de, Barun; Hoffmann, Nancy; Rogers, Stephen G.; Fraley, Robert T.; Beachy, Roger N.

    1986-05-01

    A chimeric gene containing a cloned cDNA of the coat protein (CP) gene of tobacco mosaic virus (TMV) was introduced into tobacco cells on a Ti plasmid of Agrobacterium tumefaciens from which tumor inducing genes had been removed. Plants regenerated from transformed cells expressed TMV mRNA and CP as a nuclear trait. Seedlings from self-fertilized transgenic plants were inoculated with TMV and observed for development of disease symptoms. The seedlings that expressed the CP gene were delayed in symptom development and 10 to 60 percent of the transgenic plants failed to develop symptoms for the duration of the experiments. Increasing the concentration of TMV in the inoculum shortened the delay in appearance of symptoms. The results of these experiments indicate that plants can be genetically transformed for resistance to virus disease development.

  9. Using quantitative real-time PCR to detect chimeras in transgenic tobacco and apricot and to monitor their dissociation

    PubMed Central

    2010-01-01

    Background The routine generation of transgenic plants involves analysis of transgene integration into the host genome by means of Southern blotting. However, this technique cannot distinguish between uniformly transformed tissues and the presence of a mixture of transgenic and non-transgenic cells in the same tissue. On the other hand, the use of reporter genes often fails to accurately detect chimerical tissues because their expression can be affected by several factors, including gene silencing and plant development. So, new approaches based on the quantification of the amount of the transgene are needed urgently. Results We show here that chimeras are a very frequent phenomenon observed after regenerating transgenic plants. Spatial and temporal analyses of transformed tobacco and apricot plants with a quantitative, real-time PCR amplification of the neomycin phosphotransferase (nptII) transgene as well as of an internal control (β-actin), used to normalise the amount of target DNA at each reaction, allowed detection of chimeras at unexpected rates. The amount of the nptII transgene differed greatly along with the sub-cultivation period of these plants and was dependent on the localisation of the analysed leaves; being higher in roots and basal leaves, while in the apical leaves it remained at lower levels. These data demonstrate that, unlike the use of the gus marker gene, real-time PCR is a powerful tool for detection of chimeras. Although some authors have proposed a consistent, positive Southern analysis as an alternative methodology for monitoring the dissociation of chimeras, our data show that it does not provide enough proof of uniform transformation. In this work, however, real-time PCR was applied successfully to monitor the dissociation of chimeras in tobacco plants and apricot callus. Conclusions We have developed a rapid and reliable method to detect and estimate the level of chimeras in transgenic tobacco and apricot plants. This method can be

  10. Expression Patterns in Transgenic Wheats with Elevated Levels of Dx5 and/or Dy10 Glutenin Subunits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to study the effects of independently increasing the levels of high-molecular-weight glutenin subunits Dx5 and Dy10, we added copies of their genes to wheat by genetic transformation. Among 30 lines produced, six exhibited transgene-mediated co-suppression and eight showed the presence of e...

  11. Inherited transgene expression of the uidA and bar genes in Lilium longiflorum cv. Nellie White

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of two transgenes, bar and uidA, was studied in Lilium longiflorum cv. Nellie White plants. ‘Nellie White’ had been transformed using the gene gun to bombard with pDM327 that contains the bar-uidA fusion gene under control of the CaMV 35S promoter. PCR analysis confirmed that eight ...

  12. Expression patterns in transgenic wheats with elevated levels of Dx5 and/or Dy10 glutenin subunits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to study the effects of independently increasing the levels of high-molecular-weight glutenin subunits (HMW-GS) Dx5 and Dy10, we added copies of their genes to wheat by genetic transformation. Among 29 homozygous lines produced, seven exhibited transgene-mediated co-suppression and seven sh...

  13. Chloroplast transformation for engineering of photosynthesis.

    PubMed

    Hanson, Maureen R; Gray, Benjamin N; Ahner, Beth A

    2013-01-01

    Many efforts are underway to engineer improvements in photosynthesis to meet the challenges of increasing demands for food and fuel in rapidly changing environmental conditions. Various transgenes have been introduced into either the nuclear or plastid genomes in attempts to increase photosynthetic efficiency. We examine the current knowledge of the critical features that affect levels of expression of plastid transgenes and protein accumulation in transplastomic plants, such as promoters, 5' and 3' untranslated regions, RNA-processing sites, translation signals and amino acid sequences that affect protein turnover. We review the prior attempts to manipulate the properties of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through plastid transformation. We illustrate how plastid operons could be created for expression of the multiple genes needed to introduce new pathways or enzymes to enhance photosynthetic rates or reduce photorespiration. We describe here the past accomplishments and future prospects for manipulating plant enzymes and pathways to enhance carbon assimilation through plastid transformation. PMID:23162121

  14. Transgenic screwworm applications and SIT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The New World screwworm, Cochliomyia hominivorax, presented unique challenges to transformation efforts. First, the eggs of this insect are deposited by the female on a warm-blooded host with an adhesive substance that must be removed. Embryological developement is complete after only nine hours und...

  15. Regulated expression of a vitellogenin fusion gene in transgenic nematodes.

    PubMed

    Spieth, J; MacMorris, M; Broverman, S; Greenspoon, S; Blumenthal, T

    1988-11-01

    In Caenorhabditis elegans the vitellogenin genes are expressed abundantly in the adult hermaphrodite intestine, but are otherwise silent. In order to begin to understand the mechanisms by which this developmental regulation occurs, we used the transformation procedure developed for C. elegans by A. Fire (EMBO. J., 1986, 5, 2673-2680) to obtain regulated expression of an introduced vitellogenin fusion gene. A plasmid with vit-2 upstream and coding sequences fused to coding and downstream sequences of vit-6 was injected into oocytes and stable transgenic strains were selected. We obtained seven independent strains, in which the plasmid DNA is integrated at a low copy number. All strains synthesize substantial amounts of a novel vitellogenin-like polypeptide of 155 kDa that accumulates in the intestine and pseudocoelom, but is not transported efficiently into oocytes. In two strains examined in detail the fusion gene is expressed with correct sex, tissue, and stage specificity. Thus we have demonstrated that the nematode transgenic system can give proper developmental expression of introduced genes and so can be used to identify DNA regulatory regions. PMID:3181632

  16. Metabolism of the herbicide glufosinate-ammonium in plant cell cultures of transgenic (rhizomania-resistant) and non-transgenic sugarbeet (Beta vulgaris), carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium).

    PubMed

    Müller, B P; Zumdick, A; Schuphan, I; Schmidt, B

    2001-01-01

    The metabolism of the herbicide glufosinate-ammonium was investigated in heterotrophic cell suspension and callus cultures of transgenic (bar-gene) and non-transgenic sugarbeet (Beta vulgaris). Similar studies were performed with suspensions of carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium). 14C-labelled chemicals were the (racemic) glufosinate, L-glufosinate, and D-glufosinate, as well as the metabolites N-acetyl L-glufosinate and 3-(hydroxymethylphosphinyl)propionic acid (MPP). Cellular absorption was generally low, but depended noticeably on plant species, substance and enantiomer. Portions of non-extractable residues ranged from 0.1% to 1.2% of applied 14C. Amounts of soluble metabolites resulting from glufosinate or L-glufosinate were between 0.0% and 26.7% of absorbed 14C in non-transgenic cultures and 28.2% and 59.9% in transgenic sugarbeet. D-Glufosinate, MPP and N-acetyl L-glufosinate proved to be stable. The main metabolite in transgenic sugarbeet was N-acetyl L-glufosinate, besides traces of MPP and 4-(hydroxymethylphosphinyl)butanoic acid (MPB). In non-transgenic sugarbeet, glufosinate was transformed to a limited extent to MPP and trace amounts of MPB. In carrot, D stramonium and D purpurea, MPP was also the main product; MPB was identified as a further trace metabolite in D stramonium and D purpurea. PMID:11455632

  17. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    PubMed Central

    2012-01-01

    Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750

  18. The Rb7 Matrix Attachment Region Increases the Likelihood and Magnitude of Transgene Expression in Tobacco Cells: A Flow Cytometric Study

    PubMed Central

    Halweg, Christopher; Thompson, William F.; Spiker, Steven

    2005-01-01

    Many studies in both plant and animal systems have shown that matrix attachment regions (MARs) can increase expression of transgenes in whole organisms or cells in culture. Because histochemical assays often indicate variegated transgene expression, a question arises: Do MARs increase transgene expression by increasing the percentage of cells expressing the transgene (likelihood), by increasing the level of expression in expressing cells (magnitude), or both? To address this question, we used flow cytometry to measure green fluorescent protein (GFP) expression in individual tobacco (Nicotiana tabacum) cells from lines transformed by Agrobacterium tumefaciens. We conclude that MAR-mediated overall increases in transgene expression involve both likelihood and magnitude. On average, cell lines transformed with the Rb7 MAR-containing vector expressed GFP at levels 2.0- to 3.7-fold higher than controls. MAR lines had fewer nonexpressing cells than control lines (10% versus 45%), and the magnitude of GFP expression in expressing cells was greater in MAR lines by 1.9- to 2.9-fold. We also show that flow cytometry measurements on cells from isogenic lines are consistent with those from populations of independently transformed cell lines. By obviating the need to establish isogenic lines, this use of flow cytometry could greatly simplify the evaluation of MARs or other sequence elements that affect transgene expression. PMID:15659622

  19. A Primer for Using Transgenic Insecticidal Cotton in Developing Countries

    PubMed Central

    Showalter, Ann M.; Heuberger, Shannon; Tabashnik, Bruce E.; Carrière, Yves

    2009-01-01

    Many developing countries face the decision of whether to approve the testing and commercial use of insecticidal transgenic cotton and the task of developing adequate regulations for its use. In this review, we outline concepts and provide information to assist farmers, regulators and scientists in making decisions concerning this technology. We address seven critical topics: 1) molecular and breeding techniques used for the development of transgenic cotton cultivars, 2) properties of transgenic cotton cultivars and their efficacy against major insect pests, 3) agronomic performance of transgenic cotton in developing countries, 4) factors affecting transgene expression, 5) impact of gene flow between transgenic and non-transgenic cotton, 6) non-target effects of transgenic cotton, and 7) management of pest resistance to transgenic cotton. PMID:19613464

  20. Phycoremediation of heavy metals using transgenic microalgae.

    PubMed

    Rajamani, Sathish; Siripornadulsil, Surasak; Falcao, Vanessa; Torres, Moacir; Colepicolo, Pio; Sayre, Richard

    2007-01-01

    Microalgae account for most of the biologically sequestered trace metals in aquatic environments. Their ability to adsorb and metabolize trace metals is associated with their large surface:volume ratios, the presence of high-affinity, metal-binding groups on their cell surfaces, and efficient metal uptake and storage systems. Microalgae may bind up to 10% of their biomass as metals. In addition to essential trace metals required for metabolism, microalgae can efficiently sequester toxic heavy metals. Toxic heavy metals often compete with essential trace metals for binding to and uptake into cells. Recently, transgenic approaches have been developed to further enhance the heavy metal specificity and binding capacity of microalgae with the objective of using these microalgae for the treatment of heavy metal contaminated wastewaters and sediments. These transgenic strategies have included the over expression of enzymes whose metabolic products ameliorate the effects of heavy metal-induced stress, and the expression of high-affinity, heavy metal binding proteins on the surface and in the cytoplasm of transgenic cells. The most effective strategies have substantially reduced the toxicity of heavy metals allowing transgenic cells to grow at wild-type rates in the presence of lethal concentrations of heavy metals. In addition, the metal binding capacity of transgenic algae has been increased five-fold relative to wild-type cells. Recently, fluorescent heavy metal biosensors have been developed for expression in transgenic Chlamydomonas. These fluorescent biosensor strains can be used for the detection and quantification of bioavailable heavy metals in aquatic environments. The use of transgenic microalgae to monitor and remediate heavy metals in aquatic environments is not without risk, however. Strategies to prevent the release of live microalgae having enhanced metal binding properties are described. PMID:18161494

  1. Overexpression of Arabidopsis Dehydration-Responsive Element-Binding protein 2A confers tolerance to salinity stress to transgenic canola.

    PubMed

    Shafeinie, Alireza; Mohammadi, Valiollah; Alizadeh, Houshang; Zali, Abas Ali

    2014-05-01

    Stress responsive transcriptional regulation is an adaptive strategy of plants that alleviates the adverse effects of environmental stresses. The ectopic overexpression of Dehydration-Responsive Element Binding transcription factors (DREBs) either in homologous or in heterologous plants are the classical transcriptional regulators involved in plant responses to drought, salt and cold stresses. To elucidate the transcriptional mechanism associated with the DREB2A gene after removing PEST sequence, which acts as a signal peptide for protein degradation, 34 transgenic T0 canola plants overexpressing DREB2A were developed. The quantitative Real time PCR of transgenic plants showed higher expression of downstream stress-responsive genes including COR14, HSF3, HSP70, PEROX and RD20. The transgenic plants exhibited enhanced tolerance to salt stress. At the high concentration of NaCl the growth of non-transformed plants had been clearly diminished, whereas transgenic line was survived. These results indicated that transformed DREB2A gene might improve the plant response to salinity in transgenic canola plants. PMID:26030994

  2. Genetic modification; the development of transgenic ornamental plant varieties.

    PubMed

    Chandler, Stephen F; Sanchez, Cory

    2012-10-01

    Plant transformation technology (hereafter abbreviated to GM, or genetic modification) has been used to develop many varieties of crop plants, but only a few varieties of ornamental plants. This disparity in the rate and extent of commercialisation, which has been noted for more than a decade, is not because there are no useful traits that can be engineered into ornamentals, is not due to market potential and is not due to a lack of research and development activity. The GM ornamental varieties which have been released commercially have been accepted in the marketplace. In this article, progress in the development of transgenic ornamentals is reviewed and traits useful to both consumers and producers are identified. In considering possible factors limiting the release of genetically modified ornamental products it is concluded that the most significant barrier to market is the difficulty of managing, and the high cost of obtaining, regulatory approval. PMID:22537268

  3. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest. PMID:25636481

  4. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  5. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. PMID:24084493

  6. Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple.

    PubMed

    Smolka, Anders; Li, Xue-Yuan; Heikelt, Catrin; Welander, Margareta; Zhu, Li-Hua

    2010-12-01

    Although cultivation of genetic modified (GM) annual crops has been steadily increasing in the recent 10 years, the commercial cultivation of GM fruit tree is still very limited and reports of field trials on GM fruit trees are rare. This is probably because development and evaluation of GM fruit trees require a long period of time due to long life cycles of trees. In this study, we report results from a field trial on three rolB transgenic dwarfing apple rootstocks of M26 and M9 together with non-transgenic controls grafted with five non-transgenic scion cultivars. We intended to investigate the effects of transgenic rootstock on non-transgenic scion cultivars under natural conditions as well as to evaluate the potential value of using the rolB gene to modify difficult-to-root rootstocks of fruit trees. The results showed that all rolB transgenic rootstocks significantly reduced vegetative growth including tree height regardless of scion cultivar, compared with the non-transgenic rootstocks. Flowering and fruiting were also decreased for cultivars grown on the transgenic rootstocks in most cases, but the fruit quality was not clearly affected by the transgenic rootstocks. Cutting experiment and RT-PCR analysis showed that the rolB gene was stably expressed under field conditions. PCR and RT-PCR analyses displayed that the rolB gene or its mRNA were not detectable in the scion cultivars, indicating no translocation of the transgene or its mRNA from rootstock to scion. Our results suggest that rolB modified rootstocks should be used in combination with vigorous scion cultivars in order to obtain sufficient vegetative growth and good yield. Alternatively, the rolB gene could be used to dwarf vigorous rootstocks of fruit trees or produce bonzai plants as it can significantly reduce the vegetative growth of plants. PMID:20135223

  7. Soluble methionine enhances accumulation of a 15 kDa zein, a methionine-rich storage protein, in transgenic alfalfa but not in transgenic tobacco plants.

    PubMed

    Amira, Golan; Ifat, Matityahu; Tal, Avraham; Hana, Badani; Shmuel, Galili; Rachel, Amir

    2005-09-01

    With the general aim of elevating the content of the essential amino acid methionine in vegetative tissues of plants, alfalfa (Medicago sativa L.) and tobacco plants, as well as BY2 tobacco suspension cells, were transformed with a beta-zein::3HA gene under the 35S promoter of cauliflower mosaic virus encoding a rumen-stable methionine-rich storage protein of 15 kDa zein. To examine whether soluble methionine content limited the accumulation of the 15 kDa zein::3HA, methionine was first added to the growth medium of the different transgenic plants and the level of the alien protein was determined. Results demonstrated that the added methionine enhanced the accumulation of the 15 kDa zein::3HA in transgenic alfalfa and tobacco BY2 cells, but not in whole transgenic tobacco plants. Next, the endogenous levels of methionine were elevated in the transgenic tobacco and alfalfa plants by crossing them with plants expressing the Arabidopsis cystathionine gamma-synthase (AtCGS) having significantly higher levels of soluble methionine in their leaves. Compared with plants expressing only the 15 kDa zein::3HA, transgenic alfalfa co-expressing both alien genes showed significantly enhanced levels of this protein concurrently with a reduction in the soluble methionine content, thus implying that soluble methionine was incorporated into the 15 kDa zein::3HA. Similar phenomena also occurred in tobacco, but were considerably less pronounced. The results demonstrate that the accumulation of the 15 kDa zein::3HA is regulated in a species-specific manner and that soluble methionine plays a major role in the accumulation of the 15 kDa zein in some plant species but less so in others. PMID:16061510

  8. Transformation of Stomoxys calcitrans with a Hermes gene vector.

    PubMed

    O'Brochta, D A; Atkinson, P W; Lehane, M J

    2000-10-01

    The ability of the Hermes transposable element to function as a germ line transformation vector was tested in the stable fly, Stomoxys calcitrans. Plasmid-based transposable element mobility assays indicated moderate mobility of Hermes in this species. Germline transformants were created using a Hermes element containing the enhanced green fluorescent protein (EGFP) under the regulatory control of the promoter from Actin5C gene of Drosophila melanogaster. Approximately 4% of the fifty-five adults that developed from the 1903 G(0) embryos injected with the vector produced transgenic progeny. In the four transgenic lines established, the EGFP expression pattern was distinctly nonuniform and levels of expression were low. Promoters other than the one from the Actin5C gene of D. melanogaster should be considered for widespread, constitutive expression. All transgenic lines contained multiple (2-4) integrated Hermes elements. Hermes integration events occurred through a canonical cut-and-paste mechanism. PMID:11029672

  9. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer.

    PubMed

    Gao, Shiwu; Yang, Yingying; Wang, Chunfeng; Guo, Jinlong; Zhou, Dinggang; Wu, Qibin; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines. PMID:27093437

  10. Enhanced Whitefly Resistance in Transgenic Tobacco Plants Expressing Double Stranded RNA of v-ATPase A Gene

    PubMed Central

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C.; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K.

    2014-01-01

    Background Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. Methodology/Principal Findings Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. Conclusions/Significance Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops. PMID:24595215

  11. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance.

    PubMed

    Shavrukov, Yuri; Baho, Manahil; Lopato, Sergiy; Langridge, Peter

    2016-01-01

    Drought tolerance of the wheat cultivar Bobwhite was previously enhanced by transformation with a construct containing the wheat DREB3 gene driven by the stress-inducible maize Rab17 promoter. Progeny of a single T2 transgenic line were used as pollinators in crosses with four elite bread wheat cultivars from Western Australia: Bonnie Rock, IGW-2971, Magenta and Wyalkatchem, with the aim of evaluating transgene performance in different genetic backgrounds. The selected pollinator line, BW8-9-10-3, contained multiple transgene copies, had significantly improved drought tolerance compared with wild-type plants and showed no growth and development penalties or abnormalities. A single hybrid plant was selected from each cross-combination for three rounds of backcrossing with the corresponding maternal wheat cultivar. The transgene was detected in all four F1 BC3 combinations, but stress-inducible transgene expression was found in only three of the four combinations. Under well-watered conditions, the phenotypes and grain yield components of the F2 BC3 transgene-expressing lines were similar to those of corresponding recurrent parents and null-segregants. Under severe drought conditions, the backcross lines demonstrated 12-18% higher survival rates than the corresponding control plants. Two from four F3 BC3 transgenic lines showed significantly higher yield (18.9% and 21.5%) than control plants under limited water conditions. There was no induction of transgene expression under cold stress, and therefore, no improvement of frost tolerance observed in the progenies of drought-tolerant F3 BC3 lines. PMID:25940960

  12. Expression of the Native Cholera Toxin B Subunit Gene and Assembly as Functional Oligomers in Transgenic Tobacco Chloroplasts

    PubMed Central

    Daniell, Henry; Lee, Seung-Bum; Panchal, Tanvi; Wiebe, Peter O.

    2012-01-01

    The B subunits of enterotoxigenic Escherichia coli (LTB) and cholera toxin of Vibrio cholerae (CTB) are candidate vaccine antigens. Integration of an unmodified CTB-coding sequence into chloroplast genomes (up to 10,000 copies per cell), resulted in the accumulation of up to 4.1% of total soluble tobacco leaf protein as functional oligomers (410-fold higher expression levels than that of the unmodified LTB gene expressed via the nuclear genome). However, expresssion levels reported are an underestimation of actual accumulation of CTB in transgenic chloroplasts, due to aggregation of the oligomeric forms in unboiled samples similar to the aggregation observed for purified bacterial antigen. PCR and Southern blot analyses confirmed stable integration of the CTB gene into the chloroplast genome. Western blot analysis showed that the chloroplast-synthesized CTB assembled into oligomers and were antigenically identical with purified native CTB. Also, binding assays confirmed that chloroplast- synthesized CTB binds to the intestinal membrane GM1-ganglioside receptor, indicating correct folding and disulfide bond formation of CTB pentamers within transgenic chloroplasts. In contrast to stunted nuclear transgenic plants, chloroplast transgenic plants were morphologically indistinguishable from untransformed plants, when CTB was constitutively expressed in chloroplasts. Introduced genes were inherited stably in subsequent generations, as confirmed by PCR and Southern blot analyses. Increased production of an efficient transmucosal carrier molecule and delivery system, like CTB, in transgenic chloroplasts makes plant-based oral vaccines and fusion proteins with CTB needing oral administration commercially feasible. Successful expression of foreign genes in transgenic chromoplasts and availability of marker-free chloroplast transformation techniques augurs well for development of vaccines in edible parts of transgenic plants. Furthermore, since the quaternary structure of

  13. Transgenic Sugarcane with a cry1Ac Gene Exhibited Better Phenotypic Traits and Enhanced Resistance against Sugarcane Borer

    PubMed Central

    Gao, Shiwu; Yang, Yingying; Wang, Chunfeng; Guo, Jinlong; Zhou, Dinggang; Wu, Qibin; Su, Yachun; Xu, Liping

    2016-01-01

    We developed sugarcane plants with improved resistance to the sugarcane borer, Diatraea saccharalis (F). An expression vector pGcry1Ac0229, harboring the cry1Ac gene and the selectable marker gene, bar, was constructed. This construct was introduced into the sugarcane cultivar FN15 by particle bombardment. Transformed plantlets were identified after selection with Phosphinothricin (PPT) and Basta. Plantlets were then screened by PCR based on the presence of cry1Ac and 14 cry1Ac positive plantlets were identified. Real-time quantitative PCR (RT-qPCR) revealed that the copy number of cry1Ac gene in the transgenic lines varied from 1 to 148. ELISA analysis showed that Cry1Ac protein levels in 7 transgenic lines ranged from 0.85 μg/FWg to 70.92 μg/FWg in leaves and 0.04 μg/FWg to 7.22 μg/FWg in stems, and negatively correlated to the rate of insect damage that ranged from 36.67% to 13.33%, respectively. Agronomic traits of six transgenic sugarcane lines with medium copy numbers were similar to the non-transgenic parental line. However, phenotype was poor in lines with high or low copy numbers. Compared to the non-transgenic control plants, all transgenic lines with medium copy numbers had relatively equal or lower sucrose yield and significantly improved sugarcane borer resistance, which lowered susceptibility to damage by insects. This suggests that the transgenic sugarcane lines harboring medium copy numbers of the cry1Ac gene may have significantly higher resistance to sugarcane borer but the sugarcane yield in these lines is similar to the non-transgenic control thus making them superior to the control lines. PMID:27093437

  14. The transgenic animal platform for biopharmaceutical production.

    PubMed

    Bertolini, L R; Meade, H; Lazzarotto, C R; Martins, L T; Tavares, K C; Bertolini, M; Murray, J D

    2016-06-01

    The recombinant production of therapeutic proteins for human diseases is currently the largest source of innovation in the pharmaceutical industry. The market growth has been the driving force on efforts for the development of new therapeutic proteins, in which transgenesis emerges as key component. The use of the transgenic animal platform offers attractive possibilities, residing on the low production costs allied to high productivity and quality of the recombinant proteins. Although many strategies have evolved over the past decades for the generation of transgenic founders, transgenesis in livestock animals generally faces some challenges, mainly due to random transgene integration and control over transgene copy number. But new developments in gene editing with CRISPR/Cas system promises to revolutionize the field for its simplicity and high efficiency. In addition, for the final approval of any given recombinant protein for animal or human use, the production and characterization of bioreactor founders and expression patterns and functionality of the proteins are technical part of the process, which also requires regulatory and administrative decisions, with a large emphasis on biosafety. The approval of two mammary gland-derived recombinant proteins for commercial and clinical use has boosted the interest for more efficient, safer and economic ways to generate transgenic founders to meet the increasing demand for biomedical proteins worldwide. PMID:26820414

  15. Neighbor effects of neurons bearing protective transgenes

    PubMed Central

    Lee, Angela L; Campbell, Laura B; Sapolsky, Robert M

    2010-01-01

    Viral vectors bearing protective transgenes can decrease neurotoxicity after varied necrotic insults. A neuron that dies necrotically releases glutamate, calcium and reactive oxygen species, thereby potentially damaging neighboring neurons. This raises the possibility that preventing such neuron death via gene therapy can secondarily protect neighboring neurons that, themselves, do not express a protective transgene. We determined whether such “good neighbor” effects occur, by characterizing neurons that, while uninfected themselves, are in close proximity to a transgene-bearing neuron. We tested two genes whose overexpression protects against excitotoxicity: anti-apoptotic Bcl-2, and a calcium-activated K+ channel, SK2. Using herpes simplex virus type 2-mediated transgene delivery to hippocampal cultures, we observed “good neighbor” effects on neuronal survival following an excitotoxic insult. However, in the absence of insult, “bad neighbor effects” could also occur (i.e., where being in proximity to a neuron constitutively expressing one of those transgenes is deleterious). We also characterized the necessity for cell-cell contact for these effects. These phenomena may have broad implications for the efficacy of gene overexpression strategies in the CNS. PMID:20417625

  16. Manipulation of glutathione metabolism in transgenic plants.

    PubMed

    Creissen, G; Broadbent, P; Stevens, R; Wellburn, A R; Mullineaux, P

    1996-05-01

    There is clear potential for the genetic manipulation of key enzymes involved in stress metabolism in transgenic plants. However, the data emerging so far from such experiments are equivocal. The detailed analysis of stress responses in progeny of primary transgenics, coupled with comparisons with control transgenic plants that do not contain the GR transgene, allows us to take into account the possible variation in response to stress associated with regeneration of plants from tissue culture. The picture that is now beginning to emerge with respect to the role of GR in stress protection is that, although there are clearly benefits to be had from overexpression of the enzymes, there is no direct correlation between enzyme levels and stress tolerance. It may be that overexpression of the cytosolic isoform (gor2) will prove to be of greater benefit. Furthermore, the types of stresses to which transgenic plants have been exposed in order to assess the consequences of oxidative stress tolerance cannot reproduce those that will experienced in field conditions. Only when plants with higher GR levels and increased glutathione synthesis capacity are grown in field trials will it be possible to make a full assessment of the benefits of engineering plants with altered glutathione metabolism. PMID:8736785

  17. Expression of Multiple Resistance Genes Enhances Tolerance to Environmental Stressors in Transgenic Poplar (Populus × euramericana ‘Guariento’)

    PubMed Central

    Su, Xiaohua; Chu, Yanguang; Li, Huan; Hou, Yingjie; Zhang, Bingyu; Huang, Qinjun; Hu, Zanmin; Huang, Rongfeng; Tian, Yingchuan

    2011-01-01

    Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana ‘Guariento’) harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I) were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi) in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II) under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting)] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height) of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although additional

  18. Engineering herbicide resistance in plants by expression of a detoxifying enzyme

    PubMed Central

    Block, M. De; Botterman, J.; Vandewiele, M.; Dockx, J.; Thoen, C.; Gosselé, V.; Movva, N. Rao; Thompson, C.; Montagu, M. Van; Leemans, J.

    1987-01-01

    Phosphinothricin (PPT) is a potent inhibitor of glutamine synthetase in plants and is used as a non-selective herbicide. The bar gene which confers resistance in Streptomyces hygroscopicus to bialaphos, a tripeptide containing PPT, encodes a phosphinothricin acetyltransferase (PAT) (see accompanying paper). The bar gene was placed under control of the 35S promoter of the cauliflower mosaic virus and transferred to plant cells using Agrobacterium-mediated transformation. PAT was used as a selectable marker in protoplast co-cultivation. The chimeric bar gene was expressed in tobacco, potato and tomato plants. Transgenic plants showed complete resistance towards high doses of the commercial formulations of phosphinothricin and bialaphos. These data present a successful approach to obtain herbicide-resistant plants by detoxification of the herbicide. ImagesFig. 2.Fig. 4.Fig. 5. PMID:16453789

  19. A simple agroinfiltration method for transient gene expression in plant leaf discs.

    PubMed

    Matsuo, Kouki; Fukuzawa, Noriho; Matsumura, Takeshi

    2016-09-01

    In the present study, we developed a simple transient gene expression system based on Agrobacterium-mediated transformation. Vacuum infiltration was applied to leaf discs from Nicotiana benthamiana plants with Agrobacterium suspension solution under conventional vacuum conditions in a needleless plastic syringe. Model proteins, green fluorescent protein, β-glucuronidase, mouse granulocyte-macrophage colony-stimulating factor, and human fibroblast growth factor 1 were successfully expressed in leaf discs within 4 days after infiltration. In addition, the functional evaluation of viral RNA silencing suppressors, Artichoke mottled crinkle virus p19 protein, was also performed. Using this method, the contamination and diffusion of genetically modified bacterium to the environment and important transgenic plants were prevented. This method can be conducted without specialized apparatuses or large amounts of Agrobacterium suspension solutions; thus, the simultaneous evaluation of multiple vectors will be easily possible. PMID:26995064

  20. Lightweight transformer

    SciTech Connect

    Swallom, D.W.; Enos, G.

    1990-05-01

    The technical effort described in this report relates to the program that was performed to design, fabricate, and test a lightweight transformer for Strategic Defense Initiative Organization (SDIO) mission requirements. The objectives of this program were two-fold: (1) design and fabricate a lightweight transformer using liquid hydrogen as the coolant; and (2) test the completed transformer assembly with a low voltage, dc power source. Although the full power testing with liquid helium was not completed, the program demonstrated the viability of the design approach. The lightweight transformer was designed and fabricated, and low and moderate power testing was completed. The transformer is a liquid hydrogen cooled air core transformer that uses thin copper for its primary and secondary windings. The winding mass was approximately 12 kg, or 0.03 kg/kW. Further refinements of the design to a partial air core transformer could potentially reduce the winding mass to as low as 4 or 5 kg, or 0.0125 kg/kW. No attempt was made on this program to reduce the mass of the related structural components or cryogenic container. 8 refs., 39 figs., 2 tabs.

  1. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection.

    PubMed

    Shekhawat, Upendra K S; Ganapathi, Thumballi R; Hadapad, Ashok B

    2012-08-01

    The banana aphid-transmitted Banana bunchy top virus (BBTV) is the most destructive viral pathogen of bananas and plantains worldwide. Lack of natural sources of resistance to BBTV has necessitated the exploitation of proven transgenic technologies for obtaining BBTV-resistant banana cultivars. In this study, we have explored the concept of using intron-hairpin-RNA (ihpRNA) transcripts corresponding to viral master replication initiation protein (Rep) to generate BBTV-resistant transgenic banana plants. Two ihpRNA constructs namely ihpRNA-Rep and ihpRNA-ProRep generated using Rep full coding sequence or Rep partial coding sequence together with its 5' upstream regulatory region, respectively, and castor bean catalase intron were successfully transformed into banana embryogenic cells. ihpRNA-Rep- and ihpRNA-ProRep-derived transgenic banana plants, selected based on preliminary screening for efficient reporter gene expression, were completely resistant to BBTV infection as indicated by the absence of disease symptoms after 6 months of viruliferous aphid inoculation. The resistance to BBTV infection was also evident by the inability to detect cDNAs coding for viral coat protein, movement protein and Rep protein by RT-PCR from inoculated transgenic leaf extracts. Southern analysis of the two groups of transgenics showed that ihpRNA transgene was stably integrated into the banana genome. The detection of small interfering RNAs (siRNAs) derived from the ihpRNA transgene sequence in transformed BBTV-resistant plants positively established RNA interference as the mechanism underlying the observed resistance to BBTV. Efficient screening of optimal transformants in this vegetatively propagated non-segregating fruit crop ensured that all the transgenic plants assayed were resistant to BBTV infection. PMID:22552945

  2. Transgenic Mouse Technology: Principles and Methods

    PubMed Central

    Kumar, T. Rajendra; Larson, Melissa; Wang, Huizhen; McDermott, Jeff; Bronshteyn, Illya

    2014-01-01

    Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the “Cre-lox” technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our Institute. PMID:19763515

  3. Toxins for Transgenic Resistance to Hemipteran Pests

    PubMed Central

    Chougule, Nanasaheb P.; Bonning, Bryony C.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests. PMID:22822455

  4. Screening for transgenic Japanese quail offspring.

    PubMed

    Poynter, Greg; Huss, David; Lansford, Rusty

    2009-01-01

    After mosaic founder breeding pairs of Japanese quail start to produce fertile eggs, the hatchlings must be screened for germ-line transmission to the subsequent G1 generation. This article describes how to isolate hatchling genomic DNA from the chorioallantoic membrane (CAM), which remains inside the egg after hatching. Collecting genomic DNA from the CAM decreases the hatchling's stress during handling and eliminates the need for a blood draw. By following this protocol, the CAM of a single egg will provide 50 microg or more of high-quality genomic DNA. The article also describes how to screen the genomic DNA samples for the transgene by the polymerase chain reaction (PCR). PCR genotyping should be used for screening hatchlings with a nonfluorescent transgene or with a fluorescently labeled transgene that does not lend itself well to phenotypic screening. PMID:20147014

  5. Biolistic transformation of cotton embryogenic cell suspension cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation of cotton is highly dependent on the ability to regenerate fertile plants from transgenic cells through somatic embryogenesis. Induction of embryogenic cell cultures is genotype-dependant. However, once embryogenic cell cultures are available, they can be effectively used fo...

  6. Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein.

    PubMed

    Abhary, Mohammad; Siritunga, Dimuth; Stevens, Gene; Taylor, Nigel J; Fauquet, Claude M

    2011-01-01

    Although calorie dense, the starchy, tuberous roots of cassava provide the lowest sources of dietary protein within the major staple food crops (Manihot esculenta Crantz). (Montagnac JA, Davis CR, Tanumihardjo SA. (2009) Compr Rev Food Sci Food Saf 8:181-194). Cassava was genetically modified to express zeolin, a nutritionally balanced storage protein under control of the patatin promoter. Transgenic plants accumulated zeolin within de novo protein bodies localized within the root storage tissues, resulting in total protein levels of 12.5% dry weight within this tissue, a fourfold increase compared to non-transgenic controls. No significant differences were seen for morphological or agronomic characteristics of transgenic and wild type plants in the greenhouse and field trials, but relative to controls, levels of cyanogenic compounds were reduced by up to 55% in both leaf and root tissues of transgenic plants. Data described here represent a proof of concept towards the potential transformation of cassava from a starchy staple, devoid of storage protein, to one capable of supplying inexpensive, plant-based proteins for food, feed and industrial applications. PMID:21283593

  7. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics.

    PubMed

    Xu, Wendao; Xie, Lijuan; Ye, Zunzhong; Gao, Weilu; Yao, Yang; Chen, Min; Qin, Jianyuan; Ying, Yibin

    2015-01-01

    Spectroscopic techniques combined with chemometrics methods have proven to be effective tools for the discrimination of objects with similar properties. In this work, terahertz time-domain spectroscopy (THz-TDS) combined with discriminate analysis (DA) and principal component analysis (PCA) with derivative pretreatments was performed to differentiate transgenic rice (Hua Hui 1, containing the Cry1Ab protein) from its parent (Ming Hui 63). Both rice samples and the Cry1Ab protein were ground and pressed into pellets for terahertz (THz) measurements. The resulting time-domain spectra were transformed into frequency-domain spectra, and then, the transmittances of the rice and Cry1Ab protein were calculated. By applying the first derivative of the THz spectra in conjunction with the DA model, the discrimination of transgenic from non-transgenic rice was possible with accuracies up to 89.4% and 85.0% for the calibration set and validation set, respectively. The results indicated that THz spectroscopic techniques and chemometrics methods could be new feasible ways to differentiate transgenic rice. PMID:26154950

  8. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings.

    PubMed

    Nagatani, A; Kay, S A; Deak, M; Chua, N H; Furuya, M

    1991-06-15

    We have examined the biological activity of rice type I phytochrome (PI) in transgenic tobacco seedlings. The progeny of four independent transformants that expressed the rice PI gene segregated 3:1 for shorter hypocotyl length under dim white light (0.04 W/m2). By contrast, this phenotype was not observed either in the dark or under white light at higher intensity (6.0 W/m2). This suggests that the phenotype is dependent not only on light but also on light intensity. The increased light sensitivity cosegregated with the kanamycin-resistance marker as well as with the rice PI polypeptides, indicating that this phenotype is directly related to the expression of the transgene. The transgenic plants showing short hypocotyls exhibited a reduced growth rate throughout the elongation period, and the resulting shorter hypocotyl length was attributable to shorter epidermal cell length but not to reduced cell number. Furthermore, successive pulse irradiations with red light elicited short hypocotyls similar to those obtained under dim white light, and the effect was reversed by immediate far-red light treatment, providing a direct indication that the phenotype is caused by biologically active rice PI. Therefore, the far-red-absorbing form of the introduced rice PI appears to regulate the hypocotyl length of the transgenic tobacco plants through endogenous signal-transduction pathways. This assay system will be a powerful tool for testing the biological activity of introduced phytochrome molecules. PMID:11607192

  9. Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita.

    PubMed

    Papolu, Pradeep K; Dutta, Tushar K; Tyagi, Nidhi; Urwin, Peter E; Lilley, Catherine J; Rao, Uma

    2016-01-01

    Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant-nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield. PMID:27516765

  10. Expression of bkt and bch genes from Haematococcus pluvialis in transgenic Chlamydomonas.

    PubMed

    Zheng, KaiJing; Wang, ChaoGang; Xiao, Ming; Chen, Jun; Li, JianCheng; Hu, ZhangLi

    2014-10-01

    β-carotene ketolase and β-carotene hydroxylase encoded by bkt and bch, respectively, are key enzymes required for astaxanthin biosynthesis in Haematococcu pluvialis 34-1n. Two expression vectors containing cDNA sequences of bkt and bch were constructed and co-transformed into cell-wall-deficient Chlamydomonas reinhardtii CC-849. Transgenic algae were screened on TAP agar plates containing 10 μg mL(-1) Zeomycin. PCR-Southern analysis showed that bkt and bch were integrated into the genomes of C. reinhardtii. Transcripts of bkt and bch were further confirmed by RT-PCR-Southern analysis. Compared with the wild type, transgenic algae produced 29.04% and 30.27% more carotenoids and xanthophylls, respectively. Moreover, the transgenic algae could accumulate 34% more astaxanthin than wild type. These results indicate that foreign bkt and bch genes were successfully translated into β-carotene ketolase and β-carotene hydroxylase, which were responsible for catalyzing the biosynthesis of astaxanthin in transgenic algae. PMID:25209726

  11. Reduced Susceptibility to Xanthomonas citri in Transgenic Citrus Expressing the FLS2 Receptor From Nicotiana benthamiana.

    PubMed

    Hao, Guixia; Pitino, Marco; Duan, Yongping; Stover, Ed

    2016-02-01

    Overexpression of plant pattern-recognition receptors by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. Citrus canker disease associated with Xanthomonas citri is one of the most important diseases damaging citrus production worldwide. In this study, we cloned the FLS2 gene from Nicotiana benthamiana cDNA and inserted it into the binary vector pBinPlus/ARS to transform Hamlin sweet orange and Carrizo citrange. Transgene presence was confirmed by polymerase chain reaction (PCR) and gene expression of NbFLS2 was compared by reverse transcription quantitative PCR. Reactive oxygen species (ROS) production in response to flg22Xcc was detected in transgenic Hamlin but not in nontransformed controls. Low or no ROS production was detected from nontransformed Hamlin seedlings challenged with flg22Xcc. Transgenic plants highly expressing NbFLS2 were selected and were evaluated for resistance to canker incited by X. citri 3213. Our results showed that the integration and expression of the NbFLS2 gene in citrus can increase canker resistance and defense-associated gene expression when challenged with X. citri. These results suggest that canker-susceptible Citrus genotypes lack strong basal defense induced by X. citri flagellin and the resistance of these genotypes can be enhanced by transgenic expression of the flagellin receptor from a resistant species. PMID:26554734

  12. Dealing with transgene flow of crop protection traits from crops to their relatives.

    PubMed

    Gressel, Jonathan

    2015-05-01

    Genes regularly move within species, to/from crops, as well as to their con- specific progenitors, feral and weedy forms ('vertical' gene flow). Genes occasionally move to/from crops and their distantly related, hardly sexually interbreeding relatives, within a genus or among closely related genera (diagonal gene flow). Regulators have singled out transgene flow as an issue, yet non-transgenic herbicide resistance traits pose equal problems, which cannot be mitigated. The risks are quite different from genes flowing to natural (wild) ecosystems versus ruderal and agroecosystems. Transgenic herbicide resistance poses a major risk if introgressed into weedy relatives; disease and insect resistance less so. Technologies have been proposed to contain genes within crops (chloroplast transformation, male sterility) that imperfectly prevent gene flow by pollen to the wild. Containment does not prevent related weeds from pollinating crops. Repeated backcrossing with weeds as pollen parents results in gene establishment in the weeds. Transgenic mitigation relies on coupling crop protection traits in a tandem construct with traits that lower the fitness of the related weeds. Mitigation traits can be morphological (dwarfing, no seed shatter) or chemical (sensitivity to a chemical used later in a rotation). Tandem mitigation traits are genetically linked and will move together. Mitigation traits can also be spread by inserting them in multicopy transposons which disperse faster than the crop protection genes in related weeds. Thus, there are gene flow risks mainly to weeds from some crop protection traits; risks that can and should be dealt with. PMID:24977384

  13. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics

    NASA Astrophysics Data System (ADS)

    Xu, Wendao; Xie, Lijuan; Ye, Zunzhong; Gao, Weilu; Yao, Yang; Chen, Min; Qin, Jianyuan; Ying, Yibin

    2015-07-01

    Spectroscopic techniques combined with chemometrics methods have proven to be effective tools for the discrimination of objects with similar properties. In this work, terahertz time-domain spectroscopy (THz-TDS) combined with discriminate analysis (DA) and principal component analysis (PCA) with derivative pretreatments was performed to differentiate transgenic rice (Hua Hui 1, containing the Cry1Ab protein) from its parent (Ming Hui 63). Both rice samples and the Cry1Ab protein were ground and pressed into pellets for terahertz (THz) measurements. The resulting time-domain spectra were transformed into frequency-domain spectra, and then, the transmittances of the rice and Cry1Ab protein were calculated. By applying the first derivative of the THz spectra in conjunction with the DA model, the discrimination of transgenic from non-transgenic rice was possible with accuracies up to 89.4% and 85.0% for the calibration set and validation set, respectively. The results indicated that THz spectroscopic techniques and chemometrics methods could be new feasible ways to differentiate transgenic rice.

  14. Discrimination of Transgenic Rice containing the Cry1Ab Protein using Terahertz Spectroscopy and Chemometrics

    PubMed Central

    Xu, Wendao; Xie, Lijuan; Ye, Zunzhong; Gao, Weilu; Yao, Yang; Chen, Min; Qin, Jianyuan; Ying, Yibin

    2015-01-01

    Spectroscopic techniques combined with chemometrics methods have proven to be effective tools for the discrimination of objects with similar properties. In this work, terahertz time-domain spectroscopy (THz-TDS) combined with discriminate analysis (DA) and principal component analysis (PCA) with derivative pretreatments was performed to differentiate transgenic rice (Hua Hui 1, containing the Cry1Ab protein) from its parent (Ming Hui 63). Both rice samples and the Cry1Ab protein were ground and pressed into pellets for terahertz (THz) measurements. The resulting time-domain spectra were transformed into frequency-domain spectra, and then, the transmittances of the rice and Cry1Ab protein were calculated. By applying the first derivative of the THz spectra in conjunction with the DA model, the discrimination of transgenic from non-transgenic rice was possible with accuracies up to 89.4% and 85.0% for the calibration set and validation set, respectively. The results indicated that THz spectroscopic techniques and chemometrics methods could be new feasible ways to differentiate transgenic rice. PMID:26154950

  15. Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita

    PubMed Central

    Papolu, Pradeep K.; Dutta, Tushar K.; Tyagi, Nidhi; Urwin, Peter E.; Lilley, Catherine J.; Rao, Uma

    2016-01-01

    Root-knot nematodes (RKN) cause substantial yield decline in eggplant and sustainable management options to minimize crop damage due to nematodes are still limited. A number of genetic engineering strategies have been developed to disrupt the successful plant–nematode interactions. Among them, delivery of proteinase inhibitors from the plant to perturb nematode development and reproduction is arguably the most effective strategy. In the present study, transgenic eggplant expressing a modified rice cystatin (OC-IΔD86) gene under the control of the root-specific promoter, TUB-1, was generated to evaluate the genetically modified nematode resistance. Five putative transformants were selected through PCR and genomic Southern blot analysis. Expression of the cystatin transgene was confirmed in all the events using western blotting, ELISA and qPCR assay. Upon challenge inoculation, all the transgenic events exhibited a detrimental effect on RKN development and reproduction. The best transgenic line (a single copy event) showed 78.3% inhibition in reproductive success of RKN. Our results suggest that cystatins can play an important role for improving nematode resistance in eggplant and their deployment in gene pyramiding strategies with other proteinase inhibitors could ultimately enhance crop yield. PMID:27516765

  16. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  17. [Transformation of Volvariella volvacea with a thermal hysteresis protein gene by particle bombardment].

    PubMed

    Guo, Li-qiong; Lin, Jun-fang; Xiong, Sheng; Chen, Shou-cai

    2005-02-01

    A cDNA encoding a thermal hysteresis protein was isolated from the Swedish Arctic insect spruce budwor