A renewed perspective on agroforestry concepts and classification.
Torquebiau, E F
2000-11-01
Agroforestry, the association of trees with farming practices, is progressively becoming a recognized land-use discipline. However, it is still perceived by some scientists, technicians and farmers as a sort of environmental fashion which does not deserve credit. The peculiar history of agroforestry and the complex relationships between agriculture and forestry explain some misunderstandings about the concepts and classification of agroforestry and reveal that, contrarily to common perception, agroforestry is closer to agriculture than to forestry. Based on field experience from several countries, a structural classification of agroforestry into six simple categories is proposed: crops under tree cover, agroforests, agroforestry in a linear arrangement, animal agroforestry, sequential agroforestry and minor agroforestry techniques. It is argued that this pragmatic classification encompasses all major agroforestry associations and allows simultaneous agroforestry to be clearly differentiated from sequential agroforestry, two categories showing contrasting ecological tree-crop interactions. It can also contribute to a betterment of the image of agroforestry and lead to a simplification of its definition.
NASA Astrophysics Data System (ADS)
Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita
2017-01-01
Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.
ERIC Educational Resources Information Center
Landicho, Leila D.; Cabahug, Rowena D.; De Luna, Catherine C.
2009-01-01
The Agroforestry Support Program for Empowering Communities Towards Self-Reliance (ASPECTS) was conceived to develop a model of two-stage approach in agroforestry promotion by capacitating the upland communities to establish community-managed agroforestry extension services, while strengthening the agroforestry education programs of the three…
Analyzing ex-ante agroforestry adoption decisions with attribute based choice experiments
Evan Mercer; Ann Snook
2004-01-01
Although many cases of successful agroforestry extension efforts exist (for examples, see Chapter 2), all too often attempts to promote agroforestry have resulted in low adoption rates, with farmers reluctant to adopt new or improved agroforestry systems or abandoning agroforestry shortly after establishment. As a result, the recent increase in research on the adoption...
Adoption of Agroforestry Innovations in the Tropics: A Review
D. Evan Mercer
2004-01-01
The period since the early 1990s has witnessed an explosion of research on the adoption of agroforestry innovations in the tropics. Much of this work was motivated by a perceived gap between advances in agroforestry science and the success of agroforestry-based development programs and projects. Achieving the full promise of agroforestry requires a fundamental...
[Research progress on carbon sink function of agroforestry system under climate change].
Xie, Ting-Ting; Su, Pei-Xi; Zhou, Zi-Juan; Shan, Li-Shan
2014-10-01
As a land comprehensive utilization system, agroforestry system can absorb and fix CO2 effectively to increase carbon storage, and also reduces greenhouse effect convincingly while reaching the aim of harvest. The regulatory role in CO2 makes humans realize that agroforestry systems have significant superiority compared with single cropping systems, therefore, understanding the carbon sinks of different components in an agroforestry system and its influencing factors play an important role in studying global carbon cycle and accurate evaluation of carbon budget. This paper reviewed the concept and classification of agroforestry system, and then the carbon sequestration potentials of different components in agroforestry systems and influencing factors. It was concluded that the carbon sequestration rate of plants from different agroforestry systems in different regions are highly variable, ranging from 0.59 to 11.08 t C · hm(-2) · a(-1), and it is mainly influenced by climatic factors and the characteristics of agroforestry systems (species composition, tree density and stand age). The soil C sequestration of any agroforestry system is influenced by the amount and quality of biomass input provided by tree and nontree components of the system and the soil properties such as soil texture and soil structure. Overall the amount of carbon storage in any agroforestry system depends on the structure and function of its each component. The future studies should focus on the carbon sink functions of structurally optimized agroforestry systems, the temporal variation and spatial distribution pattern of carbon storage in agroforestry system and its carbon sequestration mechanism in a long time.
D. Evan Mercer; Frederick W. Cubbage; Gregory E. Frey
2014-01-01
This chapter provides principles, literature and a case study about the economics of agroforestry. We examine necessary conditions for achieving efficiency in agroforestry system design and economic analysis tools for assessing efficiency and adoptability of agroforestry. The tools presented here (capital budgeting, linear progranuning, production frontier analysis...
Agroforestry: mapping the way with GIS
Gary Bentrup; Tim Leininger
2002-01-01
Agroforestry combines agriculture and forestry technologies to create diverse, profitable, and sustainable land-use systems (Rietveld, 1995). Agroforestry practices include alley cropping, forest farming, riparian forest buffers, silvopasture, and windbreaks-each of which meets environmental, social, and economic needs (Gold et al., 2000). Environmentally, agroforestry...
Landowner interest in multifunctional agroforestry riparian buffers.
Katie Trozzo; John Munsell; James Chamberlain
2014-01-01
Adoption of temperate agroforestry practices generally remains limited despite considerable advances in basic science. This study builds on temperate agroforestry adoption research by empirically testing a statistical model of interest in native fruit and nut tree riparian buffers using technology and agroforestry adoption theory. Data...
Agroforestry programs and issues in the northern Marianas Islands
Anthony Paul Tudela
1993-01-01
Agroforestry is an important land-use in the Commonwealth of the Northern Marianas (CNMI) and provides many benefits. Various agencies are involved in forestry and agroforestry, and their programs are summarized in this paper. Major issues involving agroforestry in the CNMI are also discussed.
A Role for Agroforestry in Forest Restoration in the Lower Mississippi Alluvial Valley
Michael G. Dosskey; Gary Bentrup; Michele Schoeneberger
2012-01-01
Agroforestry options are explored for restoring important functions and values of bottomland hardwood (BLH) forests in the lower Mississippi River Alluvial Valley (LMAV). Agroforestry practices can augment the size and quality of BLH habitat, provide corridors between BLH areas, and enable restoration of natural hydrologic patterns and water quality. Agroforestry...
Measuring the socio-economic impacts of agroforestry projects in the Philippines
Evan Mercer; Belita Vega; Hermie Francisco; Robin Maille
1994-01-01
Conventional wisdom suggests that agroforestry projects can provide both ecological and economic benefits. Most agroforestry project evaluations, however, have failed to adequately assess the soci0-economic impacts. For example, a review of 108 agroforestry project impact evaluations by Sara Scherr of IFPRJ reported that only 8% assessed economic costs or benefits, 5%...
Mao, Rong; Zeng, De-Hui; Li, Lu-Jun; Hu, Ya-Lin
2012-11-01
Labile fractions of soil organic matter (SOM) respond rapidly to land management practices and can be used as a sensitive indicator of changes in SOM. However, there is little information about the effect of agroforestry practices on labile SOM fractions in semiarid regions of China. In order to test the effects of land use change from monocropping to agroforestry systems on labile SOM fractions, we investigated soil microbial biomass C (MBC) and N, particulate organic matter C (POMC) and N (POMN), as well as total organic C (TOC) and total N (TN) in the 0- to 15-cm and the 15- to 30-cm layers in 4-year-old poplar-based agroforestry systems and adjoining monocropping systems with two different soil textures (sandy loam and sandy clay loam) in a semiarid region of Northeast China. Our results showed that poplar-based agroforestry practices affected soil MBC, POMC, and POMN, albeit there was no significant difference in TOC and TN. Agroforestry practices increased MBC, POMC, and POMN in sandy clay loam soils. However, in sandy loam soils, agroforestry practices only increased MBC and even decreased POMC and POMN at the 0- to 15-cm layer. Our results suggest that labile SOM fractions respond sensitively to poplar-based agroforestry practices and can provide early information about the changes in SOM in semiarid regions of Northeast China and highlight that the effects of agroforestry practices on labile SOM fractions vary with soil texture.
Seasonal contrasts in the response of coffee ants to agroforestry shade-tree management.
Teodoro, A V; Sousa-Souto, L; Klein, A-M; Tscharntke, T
2010-12-01
In many tropical landscapes, agroforestry systems are the last forested ecosystems, providing shade, having higher humidity, mitigating potential droughts, and possessing more species than any other crop system. Here, we tested the hypothesis that higher levels of shade and associated humidity in agroforestry enhance coffee ant richness more during the dry than rainy season, comparing ant richness in 22 plots of three coffee agroforestry types in coastal Ecuador: simple-shade agroforests (intensively managed with low tree species diversity), complex-shade agroforests (extensively managed with intermediate tree species diversity) and abandoned coffee agroforests (abandoned for 10-15 yr and resembling secondary forests). Seasonality affected responses of ant richness but not composition to agroforestry management, in that most species were observed in abandoned coffee agroforests in the dry season. In the rainy season, however, most species were found in simple-shade agroforests, and complex agroforestry being intermediate. Foraging coffee ants species composition did not change differently according to agroforestry type and season. Results show that shade appears to be most important in the dry seasons, while a mosaic of different land-use types may provide adequate environmental conditions to ant species, maximizing landscape-wide richness throughout the year. © 2010 Entomological Society of America
Determinants of bacterial communities in Canadian agroforestry systems.
Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X
2016-06-01
Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Integrating walnut and other hardwoods into agroforestry practices
Shibu. Jose
2013-01-01
Agroforestry systems have been proposed as alternative, environmentally benign systems for agricultural production in temperate North America. Walnut and other hardwoods have been successfully integrated in most agroforestry practices include alley cropping, silvopastural, windbreaks, and riparian buffers. Because of walnuts relatively thin crowns and nut production,...
USDA-ARS?s Scientific Manuscript database
Agroforestry systems offer many ecosystem benefits, but such systems have previously been marginalized in temperate environments due to overriding economic goals and perceived management complexity. In view of adaptation to a changing climate, agroforestry systems offer advantages that require quan...
Soil microbial communities under cacao agroforestry and cover crop systems in Peru
USDA-ARS?s Scientific Manuscript database
Cacao (Theobroma cacao) trees are grown in tropical regions worldwide for chocolate production. We studied the effects of agroforestry management systems and cover cropping on soil microbial communities under cacao in two different replicated field experiments in Peru. Two agroforestry systems, Imp...
Socioeconomic research in agroforestry: progress, prospects, priorities
D. Evan Mercer; R.P. Miller
1998-01-01
Fourteen years after the birth of the journal Agroforestry Systems, biophysical studies continue to dominate agroforestry research while other important areas have not received the attention they deserve. This paper reviews the progress in one of these under-researched areas, socioeconomics. A quantitative and qualitative analysis of published socioeconomic research...
John W. Brown
1993-01-01
The concept of sustainability is an underlying theme in much of the literature dealing with the economics of agroforestry. Four major areas of concern for economic investigation into sustainable agroforestry systems â profitability, dynamics, externalities, and markets â are addressed using examples from the available literature. Finally, the social constraints that...
Visualizing agroforestry alternatives or pixel this!
Gary Bentrup
2005-01-01
Natural resource professionals often hear the words, What will it look like? " from landowners who have difficulty in understanding a proposed agroforestry or conservation plan. Planting plans and engineering drawings, while necessary, often mean little to the general public. When practices require a long-term commitment like agroforestry, landowners want to know...
Agroforestry Systems in Zimbabwe: Promoting Trees in Agriculture.
ERIC Educational Resources Information Center
Vukasin, Helen L., Ed.
Agroforestry has been defined as a sustainable crop management system which combines the production of forest crops with field crops. In June, 1987, an agroforestry workshop took place in Nyanga, Manicaland, Zimbabwe. This document was prepared to share the information presented at this workshop with other non-government organizations around the…
Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.
Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E
2002-01-01
A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.
ERIC Educational Resources Information Center
Faulkner, Paula E.; Owooh, Bismark; Idassi, Joshua
2014-01-01
Agroforestry is a natural resource management system that integrates trees, forages, and livestock. The study reported here was conducted to determine farmers' knowledge about and willingness to adopt agroforestry technologies in North Carolina. The study reported participants were primarily older, male farmers, suggesting the need to attract more…
Soil quality indicators of a mature alley-cropping agroforestry system in temperate North America
USDA-ARS?s Scientific Manuscript database
Although agroforestry practices are believed to improve soil quality, reports on long-term effects of alley cropping on soils within agroforestry in the temperate zone are limited. The objective of this study was to examine effects of management, landscape, and soil depth of an established agrofores...
Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions
Michele M. Schoeneberger; Gary Bentrup; Toral Patel-Weynand
2017-01-01
Agroforestry, the intentional integration of trees and shrubs into crop and animal production systems, is being deployed to enhance productivity, profitability, and environmental stewardship of agricultural operations and lands across the United States. This assessment provides a science-based synthesis on the use of agroforestry for mitigation and adaptation services...
Taking stock of agroforestry adoption studies
Subhrendu K. Pattanayak; D. Evan Mercer; Erin Sills; Jui-Chen Yang
2003-01-01
In light of the large number of empirical studies of agroforestry adoption published during the last decade, we believe it is time to take stock and identify general determinants of agroforestry adoption. In reviewing 120 articles on adoption of agricultural and forestry technology by small holders, we find five categories of factors that explain technology adoption...
Knowledge systems in agroforestry
Wieland Kunzel
1993-01-01
Pacific Islands agroforestry has evolved into sustainable, diverse and productive a land use systems in many areas. We marvel at these systems, and the scientific world is trying to catch up with the traditional knowledge. At the same time, Pacific Islands farmers are abandoning their agroforestry systems in great numbers. It is mainly intensified agriculture for cash...
Agroforestry Adoption By Smallholders
D. Evan Mercer; Subhrendu K. Pattanayak
2003-01-01
Agroforestry is a joint forest production system whereby land, labor, and capital inputs are combined to produce trees and agricultural crops (and/or livestock) on the same unit of land. Although existing for centuries (maybe millennia) as an array of traditional land use practices in the tropics, agroforestry emerged in the late 1970s as a modern, improved tropical...
Weed competition with soybean in no-tillage agroforestry and sole-crop systems in subtropical Brazil
USDA-ARS?s Scientific Manuscript database
Weed competition on soybean [Glycine max (L.) Merr.] growth and yield was expected to be different when managed in an agroforestry system as compared with solecropping without trees. Therefore agronomic practices to control weeds might need to be modified in agroforestry systems. We analyzed weed co...
Linger, Ewuketu
2014-01-01
Homegarden agroforestry is believed to be more diverse and provide multiple services for household than other monocropping system and this is due to the combination of crops, trees and livestock. The aim of this study was to assess socio-economic and agro-ecological role of homegardens in Jabithenan district, North-western Ethiopia. Two sites purposively and two villages randomly from each site were selected. Totally 96 households; in which 48 from homegarden agroforestry user and 48 from non-tree based garden user were selected for this study. Socio-economic data and potential economic and agro-ecosystem role of homegarden agroforestry over non-tree based garden were collected by using semi-structured and structured questionnaires to the households. Homegarden agroforestry significantly (P < 0.05) improved the farmers cash income than non-tree based garden. With insignificant garden size; homegarden agroforestry practice provides good socio-economical and agro-ecological service for farmers which have a higher implication for climate change adaptation than non-tree based garden.
Abbas, Farhat; Hammad, Hafiz Mohkum; Fahad, Shah; Cerdà, Artemi; Rizwan, Muhammad; Farhad, Wajid; Ehsan, Sana; Bakhat, Hafiz Faiq
2017-04-01
Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO 2 ) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win-win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO 2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.
Bill Raynor; Roger R. Bay
1993-01-01
Includes 19 papers presented at the workshop, covering such topics as sampling techniques and statistical considerations, indigenous agricultural and agroforestry systems, crop testing and evaluation, and agroforestry practices in the Pacific Islands, including Micronesia, Northern Marianas Islands, Palau, and American Samoa.
Computer-based tools for decision support in agroforestry: Current state and future needs
E.A. Ellis; G. Bentrup; Michelle M. Schoeneberger
2004-01-01
Successful design of agroforestry practices hinges on the ability to pull together very diverse and sometimes large sets of information (i.e., biophysical, economic and social factors), and then implementing the synthesis of this information across several spatial scales from site to landscape. Agroforestry, by its very nature, creates complex systems with impacts...
Qi Chen; Dengsheng Lu; Michael Keller; Maiza dos-Santos; Edson Bolfe; Yunyun Feng; Changwei Wang
2015-01-01
Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems...
An assessment of agroforestry systems in the southern USA
F. C. Zinkhan; D. Evan Mercer
1997-01-01
An assessment of the southern USA, based on a survey of land-use professionalsand a review of theliterature, revealed that it is a diverse region with substantial potential for agroforestry to address a combination of problems and opportunities. The survey indicated that silvopastoml systems are the most common form of agroforestry in the region. Increased economic...
Birds as predators in tropical agroforestry systems.
Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S
2008-04-01
Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.
Nobuko K. Conroy; Ali Fares; Katherine C. Ewel; Tomoaki Miura; Halina M. Zaleski
2011-01-01
Traditional food and its supporting agricultural and agroforestry systems still play a large part in peopleâs daily lives in Federated Sates of Micronesia (FSM). To date, however, there are few publications on details of these systems in the country. On Kosrae Island, the easternmost island of FSM, one type of agroforestry has been practiced for centuries in coastal...
Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study,
1995-01-01
and tropical latitudes, afforestation in the temperate regions, and agroforestry and natural reforestation in the tropics. Least promising from a...t-C. The most cost-efficient forestry and agroforestry practices, based on establishment costs, within zones of latitude are shown in the...Press, New Haven, CT. Schroeder, P.E., R.K. Dixon, and J.K. Winjum. 1993. Forest management and agroforestry to sequester and conserve atmospheric
Doug Wallace; Rich Straight
2010-01-01
Are you looking for a way to increase your revenue stream? Do you have other agricultural landsâcrops, hay, or pasturesâin addition to your woodlot? If so, you know how to manage both crops and trees. Why not put that hard-earned knowledge to work? Think agroforestry. Thatâs rightâagroforestry. What better solution to your conservation issues and needs than...
Wu, Junen; Liu, Wenjie; Chen, Chunfeng
2016-01-01
Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ18O, and δ13C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ18O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ13C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer. PMID:26781071
Wu, Junen; Liu, Wenjie; Chen, Chunfeng
2016-01-19
Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.
Waldron, A; Justicia, R; Smith, L E
2015-03-01
The twin United Nations' Millennium Development Goals of biodiversity preservation and poverty reduction both strongly depend on actions in the tropics. In particular, traditional agroforestry could be critical to both biological conservation and human livelihoods in human-altered rainforest areas. However, traditional agroforestry is rapidly disappearing, because the system itself is economically precarious, and because the forest trees that shade traditional crops are now perceived to be overly detrimental to agricultural yield. Here, we show a case where the commonly used agroforestry shade metric, canopy cover, would indeed suggest complete removal of shade trees to maximize yield, with strongly negative biodiversity and climate implications. However, a yield over 50% higher was achievable if approximately 100 shade trees per hectare were planted in a spatially organized fashion, a win-win for biodiversity and the smallholder. The higher yield option was detected by optimizing simultaneously for canopy cover, and a second shade metric, neighboring tree density, which was designed to better capture the yield value of ecological services flowing from forest trees. Nevertheless, even a 50% yield increase may prove insufficient to stop farmers converting away from traditional agroforestry. To further increase agroforestry rents, we apply our results to the design of a sustainable certification (eco-labelling) scheme for cocoa-based products in a biodiversity hotspot, and consider their implications for the use of the United Nations REDD (reducing emissions from deforestation and forest degradation) program in agroforestry systems. Combining yield boost, certification, and REDD has the potential to incentivize eco-friendly agroforestry and lift smallholders out of poverty, simultaneously.
Forecasting the Performance of Agroforestry Systems
NASA Astrophysics Data System (ADS)
Luedeling, E.; Shepherd, K.
2014-12-01
Agroforestry has received considerable attention from scientists and development practitioners in recent years. It is recognized as a cornerstone of many traditional agricultural systems, as well as a new option for sustainable land management in currently treeless agricultural landscapes. Agroforestry systems are diverse, but most manifestations supply substantial ecosystem services, including marketable tree products, soil fertility, water cycle regulation, wildlife habitat and carbon sequestration. While these benefits have been well documented for many existing systems, projecting the outcomes of introducing new agroforestry systems, or forecasting system performance under changing environmental or climatic conditions, remains a substantial challenge. Due to the various interactions between system components, the multiple benefits produced by trees and crops, and the host of environmental, socioeconomic and cultural factors that shape agroforestry systems, mechanistic models of such systems quickly become very complex. They then require a lot of data for site-specific calibration, which presents a challenge for their use in new environmental and climatic domains, especially in data-scarce environments. For supporting decisions on the scaling up of agroforestry technologies, new projection methods are needed that can capture system complexity to an adequate degree, while taking full account of the fact that data on many system variables will virtually always be highly uncertain. This paper explores what projection methods are needed for supplying decision-makers with useful information on the performance of agroforestry in new places or new climates. Existing methods are discussed in light of these methodological needs. Finally, a participatory approach to performance projection is proposed that captures system dynamics in a holistic manner and makes probabilistic projections about expected system performance. This approach avoids the temptation to take spuriously precise model results at face value, and it is able to make predictions even where data is scarce. It thus provides a rapid and honest assessment option that can quickly supply decision-makers with system performance estimates, offering an opportunity to improve the targeting of agroforestry interventions.
Rivest, David; Lorente, Miren; Olivier, Alain; Messier, Christian
2013-10-01
Agroforestry is increasingly viewed as an effective means of maintaining or even increasing crop and tree productivity under climate change while promoting other ecosystem functions and services. This study focused on soil biochemical properties and resilience following disturbance within agroforestry and conventional agricultural systems and aimed to determine whether soil differences in terms of these biochemical properties and resilience would subsequently affect crop productivity under extreme soil water conditions. Two research sites that had been established on agricultural land were selected for this study. The first site included an 18-year-old windbreak, while the second site consisted in an 8-year-old tree-based intercropping system. In each site, soil samples were used for the determination of soil nutrient availability, microbial dynamics and microbial resilience to different wetting-drying perturbations and for a greenhouse pot experiment with wheat. Drying and flooding were selected as water stress treatments and compared to a control. These treatments were initiated at the beginning of the wheat anthesis period and maintained over 10 days. Trees contributed to increase soil nutrient pools, as evidenced by the higher extractable-P (both sites), and the higher total N and mineralizable N (tree-based intercropping site) found in the agroforestry compared to the conventional agricultural system. Metabolic quotient (qCO2) was lower in the agroforestry than in the conventional agricultural system, suggesting higher microbial substrate use efficiency in agroforestry systems. Microbial resilience was higher in the agroforestry soils compared to soils from the conventional agricultural system (windbreak site only). At the windbreak site, wheat growing in soils from agroforestry system exhibited higher aboveground biomass and number of grains per spike than in conventional agricultural system soils in the three water stress treatments. At the tree-based intercropping site, higher wheat biomass, grain yield and number of grains per spike were observed in agroforestry than in conventional agricultural system soils, but in the drought treatment only. Drought (windbreak site) and flooding (both sites) treatments significantly reduced wheat yield and 1000-grain weight in both types of system. Relationships between soil biochemical properties and soil microbial resilience or wheat productivity were strongly dependent on site. This study suggests that agroforestry systems may have a positive effect on soil biochemical properties and microbial resilience, which could operate positively on crop productivity and tolerance to severe water stress. Copyright © 2013 Elsevier B.V. All rights reserved.
Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.
Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert
2011-01-01
Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
USDA-ARS?s Scientific Manuscript database
The impacts of agroforestry systems (AFS) on soil management in temperate, subtropical, and tropical biomes support the beneficial, holistic role of tree components in agricultural land-use systems. Compared to annual monocultures, AFS can enhance several soil physical properties improving soil resi...
Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.
2014-01-01
Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and their communities as potential management tools against coffee plant pests and pathogens. PMID:24887512
Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C
2014-01-01
Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and their communities as potential management tools against coffee plant pests and pathogens.
NASA Astrophysics Data System (ADS)
Sistla, S.; Roddy, A. B.; Williams, N. E.; Kramer, D.; Stevens, K.; Allison, S. D.
2016-12-01
The conversion of forest to pasture and other agricultural uses has increased interest in the role that small-scale agroforestry systems can play in linking sustainable agriculture to biodiversity conservation, particularly in rapidly developing areas of the tropics. Complementing the provisioning of natural resources (i.e. food, medicine, lumber), agroforestry systems tend to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. We studied the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforest, and secondary forest: three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics.
Paul, Carola; Weber, Michael; Knoke, Thomas
2017-06-01
Increasing land-use conflicts call for the development of land-use systems that reconcile agricultural production with the provisioning of multiple ecosystem services, including climate change mitigation. Agroforestry has been suggested as a global solution to increase land-use efficiency, while reducing environmental impacts and economic risks for farmers. Past research has often focused on comparing tree-crop combinations with agricultural monocultures, but agroforestry has seldom been systematically compared to other forms of land-use diversification, including a farm mosaic. This form of diversification mixes separate parcels of different land uses within the farm. The objective of this study was to develop a modelling approach to compare the performance of the agroforestry and farm mosaic diversification strategies, accounting for tree-crop interaction effects and economic and climate uncertainty. For this purpose, Modern Portfolio Theory and risk simulation were coupled with the process-based biophysical simulation model WaNuLCAS 4.0. For an example application, we used data from a field trial in Panama. The results show that the simulated agroforestry systems (Taungya, alley cropping and border planting) could outperform a farm mosaic approach in terms of cumulative production and return. Considering market and climate uncertainty, agroforestry showed an up to 21% higher economic return at the same risk level (i.e. standard deviation of economic returns). Farm compositions with large shares of land allocated to maize cultivation were also more severely affected by an increasing drought frequency in terms of both risks and returns. Our study demonstrates that agroforestry can be an economically efficient diversification strategy, but only if the design allows for economies of scope, beneficial interactions between trees and crops and higher income diversification compared to a farm mosaic. The modelling approach can make an important contribution to support land-use decisions at the farm level and reduce land-use conflicts at the landscape level. Copyright © 2017 Elsevier B.V. All rights reserved.
Wicke, Birka; Smeets, Edward M W; Akanda, Razzaque; Stille, Leon; Singh, Ranjay K; Awan, Abdul Rasul; Mahmood, Khalid; Faaij, Andre P C
2013-09-30
This study explores the greenhouse gas balance and the economic performance (i.e. net present value (NPV) and production costs) of agroforestry and forestry systems on salt-affected soils (biosaline (agro)forestry) based on three case studies in South Asia. The economic impact of trading carbon credits generated by biosaline (agro)forestry is also assessed as a potential additional source of income. The greenhouse gas balance shows carbon sequestration over the plantation lifetime of 24 Mg CO2-eq. ha(-1) in a rice-Eucalyptus camaldulensis agroforestry system on moderately saline soils in coastal Bangladesh (case study 1), 6 Mg CO2-eq. ha(-1) in the rice-wheat- Eucalyptus tereticornis agroforestry system on sodic/saline-sodic soils in Haryana state, India (case study 2), and 96 Mg CO2-eq. ha(-1) in the compact tree (Acacia nilotica) plantation on saline-sodic soils in Punjab province of Pakistan. The NPV at a discount rate of 10% is 1.1 k€ ha(-1) for case study 1, 4.8 k€ ha(-1) for case study 2, and 2.8 k€ ha(-1) for case study 3. Carbon sequestration translates into economic values that increase the NPV by 1-12% in case study 1, 0.1-1% in case study 2, and 2-24% in case study 3 depending on the carbon credit price (1-15 € Mg(-1) CO2-eq.). The analysis of the three cases indicates that the economic performance strongly depends on the type and severity of salt-affectedness (which affect the type and setup of the agroforestry system, the tree species and the biomass yield), markets for wood products, possibility of trading carbon credits, and discount rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Statistical considerations for agroforestry studies
James A. Baldwin
1993-01-01
Statistical topics that related to agroforestry studies are discussed. These included study objectives, populations of interest, sampling schemes, sample sizes, estimation vs. hypothesis testing, and P-values. In addition, a relatively new and very much improved histogram display is described.
Impacts of public policies and farmer preferences on agroforestry practices in Kerala, India.
Guillerme, S; Kumar, B M; Menon, A; Hinnewinkel, C; Maire, E; Santhoshkumar, A V
2011-08-01
Agroforestry systems are fundamental features of the rural landscape of the Indian state of Kerala. Yet these mixed species systems are increasingly being replaced by monocultures. This paper explores how public policies on land tenure, agriculture, forestry and tree growing on private lands have interacted with farmer preferences in shaping land use dynamics and agroforestry practices. It argues that not only is there no specific policy for agroforestry in Kerala, but also that the existing sectoral policies of land tenure, agriculture, and forestry contributed to promoting plantation crops, even among marginal farmers. Forest policies, which impose restrictions on timber extraction from farmers' fields under the garb of protecting natural forests, have often acted as a disincentive to maintaining tree-based mixed production systems on farmlands. The paper argues that public policies interact with farmers' preferences in determining land use practices.
Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M.; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S. Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G.; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S.; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja
2007-01-01
Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by ≈75% and species richness of forest-using species by ≈60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by ≈40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends. PMID:17360392
Steffan-Dewenter, Ingolf; Kessler, Michael; Barkmann, Jan; Bos, Merijn M; Buchori, Damayanti; Erasmi, Stefan; Faust, Heiko; Gerold, Gerhard; Glenk, Klaus; Gradstein, S Robbert; Guhardja, Edi; Harteveld, Marieke; Hertel, Dietrich; Höhn, Patrick; Kappas, Martin; Köhler, Stefan; Leuschner, Christoph; Maertens, Miet; Marggraf, Rainer; Migge-Kleian, Sonja; Mogea, Johanis; Pitopang, Ramadhaniel; Schaefer, Matthias; Schwarze, Stefan; Sporn, Simone G; Steingrebe, Andrea; Tjitrosoedirdjo, Sri S; Tjitrosoemito, Soekisman; Twele, André; Weber, Robert; Woltmann, Lars; Zeller, Manfred; Tscharntke, Teja
2007-03-20
Losses of biodiversity and ecosystem functioning due to rainforest destruction and agricultural intensification are prime concerns for science and society alike. Potentially, ecosystems show nonlinear responses to land-use intensification that would open management options with limited ecological losses but satisfying economic gains. However, multidisciplinary studies to quantify ecological losses and socioeconomic tradeoffs under different management options are rare. Here, we evaluate opposing land use strategies in cacao agroforestry in Sulawesi, Indonesia, by using data on species richness of nine plant and animal taxa, six related ecosystem functions, and on socioeconomic drivers of agroforestry expansion. Expansion of cacao cultivation by 230% in the last two decades was triggered not only by economic market mechanisms, but also by rarely considered cultural factors. Transformation from near-primary forest to agroforestry had little effect on overall species richness, but reduced plant biomass and carbon storage by approximately 75% and species richness of forest-using species by approximately 60%. In contrast, increased land use intensity in cacao agroforestry, coupled with a reduction in shade tree cover from 80% to 40%, caused only minor quantitative changes in biodiversity and maintained high levels of ecosystem functioning while doubling farmers' net income. However, unshaded systems further increased income by approximately 40%, implying that current economic incentives and cultural preferences for new intensification practices put shaded systems at risk. We conclude that low-shade agroforestry provides the best available compromise between economic forces and ecological needs. Certification schemes for shade-grown crops may provide a market-based mechanism to slow down current intensification trends.
Enhanced biodiversity and pollination in UK agroforestry systems.
Varah, Alexa; Jones, Hannah; Smith, Jo; Potts, Simon G
2013-07-01
Monoculture farming systems have had serious environmental impacts such as loss of biodiversity and pollinator decline. The authors explain how temperate agroforestry systems show potential in being able to deliver multiple environmental benefits. © 2013 Society of Chemical Industry.
Synergy of agroforestry and bottomland hardwood afforestation
Twedt, D.J.; Portwood, J.; Clason, Terry R.
2003-01-01
Afforestation of bottomland hardwood forests has historically emphasized planting heavy-seeded tree species such as oak (Quercus spp.) and pecan (Caryaillinoensis) with little or no silvicultural management during stand development. Slow growth of these tree species, herbivory, competing vegetation, and limited seed dispersal, often result in restored sites that are slow to develop vertical vegetation structure and have limited tree diversity. Where soils and hydrology permit, agroforestry can provide transitional management that mitigates these historical limitations on converting cropland to forests. Planting short-rotation woody crops and intercropping using wide alleyways are two agroforestry practices that are well suited for transitional management. Weed control associated with agroforestry systems benefits planted trees by reducing competition. The resultant decrease in herbaceous cover suppresses small mammal populations and associated herbivory of trees and seeds. As a result, rapid vertical growth is possible that can 'train' under-planted, slower-growing, species and provide favorable environmental conditions for naturally invading trees. Finally, annual cropping of alleyways or rotational pulpwood harvest of woody crops provides income more rapidly than reliance on future revenue from traditional silviculture. Because of increased forest diversity, enhanced growth and development, and improved economic returns, we believe that using agroforestry as a transitional management strategy during afforestation provides greater benefits to landowners and to the environment than does traditional bottomland hardwood afforestation.
Kristina Connor; Rebecca Barlow; Luben Dimov; Mark Smith
2012-01-01
While ecosystem restoration of longleaf pine (Pinus palustris Mill.) forests represents a worthy ideal, it is not always a practical alternative for landowners. Agroforestry systems, which can be developed in existing agricultural land, natural forest stands, plantations, or pasturelands, offer the opportunity to provide multiple benefits: high value...
Greenhouse gas emissions in an agroforestry system in the southeastern USA
USDA-ARS?s Scientific Manuscript database
Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...
1989-06-09
in the suburbs of Beijing. But they must be made more productive, said Bai Youguang, director of Beijing’s municipal government’s Agroforestry ...prises, building materials and the textiles and garments industry," said Zhuang Peiwei, an official with the municipal government’s Agroforestry
Agroforestry management in vineyards: effects on soil microbial communities
NASA Astrophysics Data System (ADS)
Montagne, Virginie; Nowak, Virginie; Guilland, Charles; Gontier, Laure; Dufourcq, Thierry; Guenser, Josépha; Grimaldi, Juliette; Bourgade, Emilie; Ranjard, Lionel
2017-04-01
Some vineyard practices (tillage, chemical weeding or pest management) are generally known to impact the environment with particular negative effects on the diversity and the abundance of soil microorganisms, and cause water and soil pollutions. In an agro-ecological context, innovative cropping systems have been developed to improve ecosystem services. Among them, agroforestry offers strategies of sustainable land management practices. It consists in intercropping trees with annual/perennial/fodder crop on the same plot but it is weakly referenced with grapevine. The present study assesses the effects of intercropped and neighbouring trees on the soil of three agroforestry vineyards, in south-western France regions. More precisely soils of the different plots were sampled and the impact of the distance to the tree or to the neighbouring trees (forest) on soil microbial community has been considered. Indigenous soil microbial communities were characterized by a metagenomic approach that consisted in extracting the molecular microbial biomass, then in calculating the soil fungi/bacteria ratio - obtained by qPCR - and then in characterizing the soil microbial diversity - through Illumina sequencing of 16S and 18S regions. Our results showed a significant difference between the soil of agroforestry vineyards and the soil sampled in the neighbouring forest in terms of microbial abundance and diversity. However, only structure and composition of bacterial community seem to be influenced by the implanted trees in the vine plots. In addition, the comparison of microbial co-occurrence networks between vine and forest plots as well as inside vine plots according to distance to the tree allow revealing a more sensitive impact of agroforestry practices. Altogether, the results we obtained build up the first references for concerning the soil of agroforestry vineyards which will be interpreted in terms of soil quality, functioning and sustainability.
General considerations in testing and evaluating crop varieties for agroforestry systems
Lolita N. Ragus
1993-01-01
Introduction of new crops in agroforestry is often suggested as a way to improve productivity. This paper provides general guidelines in selecting companion plant combinations and general considerations in evaluating, testing, naming, maintaining genetic purity and distributing crop varieties to farmers.
Agroforestry systems for bioenergy in the southeastern USA
USDA-ARS?s Scientific Manuscript database
Agricultural landscapes are an important component of a biofuel strategy to develop energy independence. Agroforestry systems offer an opportunity to produce both food and biofuel feedstocks from the same land area. Such a strategy could improve numerous ecosystem services more so than either of t...
Greenhouse gas emissions in an agroforestry system in the southeastern U.S.
USDA-ARS?s Scientific Manuscript database
Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...
NASA Astrophysics Data System (ADS)
Maxwell, Justin J.; Howarth, Jamie D.; Vandergoes, Marcus J.; Jacobsen, Geraldine E.; Barber, Ian G.
2016-10-01
Identifying arboriculture and agroforestry in Polynesian Societies has usually relied heavily upon the ethnographic record in the absence of direct archaeological evidence. In this paper we outline a multi-proxy research design, including ethnography, palynology, anthracology, archaeology and a high precision chronology to evaluate arboriculture and agroforestry as components of Moriori subsistence practices before the arrival of Europeans in 1791. The colonisers of Rekohu brought with them a mainland New Zealand endemic tree, Corynocarpus laevigatus, and the technology to propagate the tree in a less than ideal climate and to process its drupe into a storable source of carbohydrate in what was a difficult environment for Polynesian cultivation practices. We also present a conceptual model of forest change due to Moriori fuel selection practices which suggests that Moriori were actively managing these forest spaces for food, fuel, medicine, construction material and as a habitation space, therefore making agroforestry an important component of Moriori subsistence.
Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua.
Sistla, Seeta A; Roddy, Adam B; Williams, Nicholas E; Kramer, Daniel B; Stevens, Kara; Allison, Steven D
2016-01-01
Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region's first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics.
Agroforestry Practices Promote Biodiversity and Natural Resource Diversity in Atlantic Nicaragua
Sistla, Seeta A.; Roddy, Adam B.; Williams, Nicholas E.; Kramer, Daniel B.; Stevens, Kara; Allison, Steven D.
2016-01-01
Tropical forest conversion to pasture, which drives greenhouse gas emissions, soil degradation, and biodiversity loss, remains a pressing socio-ecological challenge. This problem has spurred increased interest in the potential of small-scale agroforestry systems to couple sustainable agriculture with biodiversity conservation, particularly in rapidly developing areas of the tropics. In addition to providing natural resources (i.e. food, medicine, lumber), agroforestry systems have the potential to maintain higher levels of biodiversity and greater biomass than lower diversity crop or pasture systems. Greater plant diversity may also enhance soil quality, further supporting agricultural productivity in nutrient-limited tropical systems. Yet, the nature of these relationships remains equivocal. To better understand how different land use strategies impact ecosystem services, we characterized the relationships between plant diversity (including species richness, phylogenetic diversity, and natural resource diversity), and soil quality within pasture, agroforests, and secondary forests, three common land use types maintained by small-scale farmers in the Pearl Lagoon Basin, Nicaragua. The area is undergoing accelerated globalization following the 2007 completion of the region’s first major road; a change which is expected to increase forest conversion for agriculture. However, farmer agrobiodiversity maintenance in the Basin was previously found to be positively correlated with affiliation to local agricultural NGOs through the maintenance of agroforestry systems, despite these farmers residing in the communities closest to the new road, highlighting the potential for maintaining diverse agroforestry agricultural strategies despite heightened globalization pressures. We found that agroforestry sites tended to have higher surface soil %C, %N, and pH relative to neighboring to secondary forest, while maintaining comparable plant diversity. In contrast, pasture reduced species richness, phylogenetic diversity, and natural resource diversity. No significant relationships were found between plant diversity and the soil properties assessed; however higher species richness and phylodiversity was positively correlated with natural resource diversity. These finding suggest that small, diversified agroforestry systems may be a viable strategy for promoting both social and ecological functions in eastern Nicaragua and other rapidly developing areas of the tropics. PMID:27606619
NASA Astrophysics Data System (ADS)
Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire
2018-01-01
Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep-rooted trees modify OC inputs to soil, a process that deserves further study given its potential effects on SOC dynamics.
Soil Quality in a Pecan Agroforestry System is Improved with Intercropped Kura Clover
USDA-ARS?s Scientific Manuscript database
Intercropping alleys of agroforestry systems provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial crops maintain a continuous soil cover, m...
Intercropping with Kura Clover Improves Soil Quality in a Pecan Agroforestry System
USDA-ARS?s Scientific Manuscript database
Intercropping the alleys of agroforestry systems provides income until the tree crop begins to yield. However, cultivation of annual crops or intensive herbicidal control of vegetation in the alleys decreases soil organic matter and increases soil erosion, especially on sloping landscapes. Perennial...
USDA-ARS?s Scientific Manuscript database
There are technical and financial advantages for pursuing agroforestry-derived mitigation and adaptation services simultaneously, with a recognition that carbon (C) payments could assist in supporting the deployment of adaptation strategies (Motocha et al. (2012). However, we lack the repeated/repea...
Indigenous agroforestry in American Samoa
Malala (Mike) Misa; Agnes M. Vargo
1993-01-01
Agroforestry exists in American Samoa as a system where indigenous trees and natural vegetation used for food, fuelwood, crafts and medicine are incorporated with traditional staple crops and livestock on a set piece of land, usually a mountainous slope. Most agroforests are taro-based (Colocasia esculenta). While nutritional, cultural, social,...
Status of microbial diversity in agroforestry systems in Tamil Nadu, India.
Radhakrishnan, Srinivasan; Varadharajan, Mohan
2016-06-01
Soil is a complex and dynamic biological system. Agroforestry systems are considered to be an alternative land use option to help and prevent soil degradation, improve soil fertility, microbial diversity, and organic matter status. An increasing interest has emerged with respect to the importance of microbial diversity in soil habitats. The present study deals with the status of microbial diversity in agroforestry systems in Tamil Nadu. Eight soil samples were collected from different fields in agroforestry systems in Cuddalore, Villupuram, Tiruvanamalai, and Erode districts, Tamil Nadu. The number of microorganisms and physico-chemical parameters of soils were quantified. Among different microbial population, the bacterial population was recorded maximum (64%), followed by actinomycetes (23%) and fungi (13%) in different samples screened. It is interesting to note that the microbial population was positively correlated with the physico-chemical properties of different soil samples screened. Total bacterial count had positive correlation with soil organic carbon (C), moisture content, pH, nitrogen (N), and micronutrients such as Iron (Fe), copper (Cu), and zinc (Zn). Similarly, the total actinomycete count also showed positive correlations with bulk density, moisture content, pH, C, N, phosphorus (P), potassium (K), calcium (Ca), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn). It was also noticed that the soil organic matter, vegetation, and soil nutrients altered the microbial community under agroforestry systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized?
Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H; Sporn, Simone G; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S; Tscharntke, Teja
2012-01-01
Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential 'win-win' scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227-362 Mg C ha(-1) to agroforests with 82-211 Mg C ha(-1) showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels.
[Changes of soil physical properties during the conversion of cropland to agroforestry system].
Wang, Lai; Gao, Peng Xiang; Liu, Bin; Zhong, Chong Gao; Hou, Lin; Zhang, Shuo Xin
2017-01-01
To provide theoretical basis for modeling and managing agroforestry systems, the influence of conversion of cropland to agroforestry system on soil physical properties was investigated via a walnut (Juglans regia)-wheat (Triticum aestivum) intercropping system, a wide spreading local agroforestry model in northern Weihe River of loess area, with the walnut and wheat monoculture systems as the control. The results showed that the improvement of the intercropping system on soil physical properties mainly appeared in the 0-40 cm soil layer. The intercropping system could prevent soil bulk density rising in the surface soil (0-20 cm), and the plow pan in the 20-40 cm soil layer could be significantly alleviated. The intercropping system had conti-nuous improvement on soil field capacity in each soil layer with the planting age increase, and the soil field capacity was higher than that of each monoculture system in each soil layer (except 20-40 cm soil layer) since the 5th year after planting. The intercropping system had continuous improvement on soil porosity in each soil layer, but mainly in the 0-20 and 20-40 cm soil layer, and the ratio of capillary porosity was also improved. The soil bulk density, field capacity and soil porosity obtained continuous improvement during the conversion of cropland to agroforestry system, and the improvement on soil physical properties was stronger in shallow soil layer than in deep soil.
Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?
Kessler, Michael; Hertel, Dietrich; Jungkunst, Hermann F.; Kluge, Jürgen; Abrahamczyk, Stefan; Bos, Merijn; Buchori, Damayanti; Gerold, Gerhard; Gradstein, S. Robbert; Köhler, Stefan; Leuschner, Christoph; Moser, Gerald; Pitopang, Ramadhanil; Saleh, Shahabuddin; Schulze, Christian H.; Sporn, Simone G.; Steffan-Dewenter, Ingolf; Tjitrosoedirdjo, Sri S.; Tscharntke, Teja
2012-01-01
Managing ecosystems for carbon storage may also benefit biodiversity conservation, but such a potential ‘win-win’ scenario has not yet been assessed for tropical agroforestry landscapes. We measured above- and below-ground carbon stocks as well as the species richness of four groups of plants and eight of animals on 14 representative plots in Sulawesi, Indonesia, ranging from natural rainforest to cacao agroforests that have replaced former natural forest. The conversion of natural forests with carbon stocks of 227–362 Mg C ha−1 to agroforests with 82–211 Mg C ha−1 showed no relationships to overall biodiversity but led to a significant loss of forest-related species richness. We conclude that the conservation of the forest-related biodiversity, and to a lesser degree of carbon stocks, mainly depends on the preservation of natural forest habitats. In the three most carbon-rich agroforestry systems, carbon stocks were about 60% of those of natural forest, suggesting that 1.6 ha of optimally managed agroforest can contribute to the conservation of carbon stocks as much as 1 ha of natural forest. However, agroforestry systems had comparatively low biodiversity, and we found no evidence for a tight link between carbon storage and biodiversity. Yet, potential win-win agroforestry management solutions include combining high shade-tree quality which favours biodiversity with cacao-yield adapted shade levels. PMID:23077569
Impact of agroforestry plantings for bioenergy production on soil organic carbon
USDA-ARS?s Scientific Manuscript database
Tree windbreaks are an attractive multiple-benefit land use through their ability to mitigate climate change by modifying the local microclimate to improve crop growth and by sequestering carbon in the soil and tree biomass. Recently, such agroforestry practices are also being considered for their b...
ERIC Educational Resources Information Center
Wanjiku, Julliet; Mairura, Franklin; Place, Frank
2010-01-01
The following survey was undertaken in 2005 to assess the effectiveness of professional training activities in international agricultural research organizations that were undertaken between 1999 and 2002 at ICRAF (International Centre for Research in Agroforestry), now World Agroforestry Centre, Nairobi. Trainees were randomly selected from…
Cacau Cabruca Agroforestry System of Production in Bahia, Brazil
USDA-ARS?s Scientific Manuscript database
The Cacao Cabruca Agroforestry system of production was developed by farmers in Southern Bahia probably in the beginning of the 19th century. To establish such system, farmers in the Atlantic rain forest region selectively maintained around 75 adult individual native trees per hectare, removed the o...
Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil
USDA-ARS?s Scientific Manuscript database
Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...
National Food Strategy: Kenya’s Approach to the Problem of Feeding the Nation
1990-02-01
intercropping, agroforestry , preven- tion of soil erosion and rural afforestation. The new Arid and Semi Arid Lands Authority (ASAL) will establish irrigation...international organizations such as the International Council for Research in Agroforestry (ICRAF) has been beneficial. 13 To preserve Kenya’s forests, the
Barriers and Coping Mechanisms Relating to Agroforestry Adoption by Smallholder Farmers in Zimbabwe
ERIC Educational Resources Information Center
Chitakira, Munyaradzi; Torquebiau, Emmanuel
2010-01-01
Purpose: The purpose of the present study was to investigate agroforestry adoption by smallholder farmers in Gutu District, Zimbabwe. Design/Methodology/Approach: The methodology was based on field data collected through household questionnaires, key informant interviews and direct observations. Findings: Major findings reveal that traditional…
Long-term above-ground biomass production in a red oak-pecan agroforestry system
USDA-ARS?s Scientific Manuscript database
Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...
USDA-ARS?s Scientific Manuscript database
The development of sustainable agricultural production systems in the tropics is challenging in part because the local and external conditions that affect sustainability are constantly in flux. The Quesungual Agroforestry System (QSMAS) was developed in response to these changing conditions. The his...
Janaki R.R. Alavalapati; D. Evan Mercer
2004-01-01
This chapter summarizes the main results from the preceding chapters, identifies gaps, and provides direction for fbture economics research on agroforestry systems. Although a common theme throughout the 1990s was that economic research on agroforestry continued to lag the advances made in the bio-physical sciences, the wide range of systems, regions, and techniques...
Documentation of indigenous Pacific agroforestry systems: a review of methodologies
Bill Raynor
1993-01-01
Recent interest in indigenous agroforestry has led to a need for documentation of these systems. However, previous work is very limited, and few methodologies are well-known or widely accepted. This paper outlines various methodologies (including sampling methods, data to be collected, and considerations in analysis) for documenting structure and productivity of...
Agroforestry systems and valuation methodologies
Janaki R.R. Alavalapati; D. Evan Mercer; Jensen R. Montambault
2004-01-01
Agroforestry, the deliberate integration of trees with agricultural crops andor livestock either simultaneously or sequentially on the same unit of land, has been an established practice for centuries. Throughout the tropics and, to some extent, temperate zones, farmers have a long tradition of retaining trees on their fields and pastures, as well as growing crops or...
Agroforestry: working trees for sequestering carbon on agricultural lands
M.M. Schoeneberger
2008-01-01
Agroforestry is an appealing option for sequestering carbon on agricultural lands because it can sequester significant amounts of carbon while leaving the bulk of the land in agricultural production. Simultaneously, it can help landowners and society address many other issues facing these lands, such as economic diversification, biodiversity, and water quality....
Agroforestry-working trees for sequestering carbon on ag-lands
Michele M. Schoeneberger
2005-01-01
Agroforestry is an appealing option for sequestering carbon on agricultural lands because it can sequester significant amounts of carbon whle leaving the bulk of the land in agricultural production. Simultaneously, it can help landowners and society address many other issues, such as economic diversification, biodiversity, and water quality, facing these lands....
Toral Patel-Weynand; Gary Bentrup; Michele M. Schoeneberger
2017-01-01
Agroforestry, the intentional integration of trees and shrubs into crop and animal production systems, is being deployed to enhance productivity, profitability, and environmental stewardship of agricultural operations and lands across the United States. The full assessment at https://doi.org/10.2737/WO-GTR-96...
Agroforestry adoption in the Calakmul biosphere reserve, Campeche, Mexico
D. Evan Mercer; Jeremy Haggar; Ann Snook; Mauricio Sosa
2005-01-01
Since farmers engage in a complex, dynamic process of learning-by-doing, evaluating economic incentives, and assessing risks in deciding whether to adopt agroforestry systems, a multi-pronged research approach is required for a complete analysis of adoption potential and to develop effective technological and institutional interventions. A case study is presented for...
Resolving Controlled Vocabulary in DITA Markup: A Case Example in Agroforestry
ERIC Educational Resources Information Center
Zschocke, Thomas
2012-01-01
Purpose: This paper aims to address the issue of matching controlled vocabulary on agroforestry from knowledge organization systems (KOS) and incorporating these terms in DITA markup. The paper has been selected for an extended version from MTSR'11. Design/methodology/approach: After a general description of the steps taken to harmonize controlled…
A review of traditional agroforestry in Micronesia
Harley I. Manner
1993-01-01
For the many Micronesian islands, agroforestry was a sustainable land use system, and an integral component of the traditional subsistence system which provided the people with many of the necessities of life. Given the increasing pressures on limited land resources, the social and environmental problems associated with modern agriculture, particularly its use of...
A model for estimating windbreak carbon within COMET-Farm™
Justin Ziegler; Mark Easter; Amy Swan; James Brandle; William Ballesteros; Grant Domke; Adam Chambers; Marlen Eve; Keith Paustian
2016-01-01
Agroforestry as a land management practice presents a method for partially offsetting greenhouse gas emissions from agricultural land. Of all agroforestry practices in the United States, windbreaks in particular are used throughout the United States providing a useful starting point for deriving a modelling systemwhich could quantify the amount of carbon sequestered on...
An indigenous Pacific Island agroforestry system: Pohnpei Island
Bill Raynor; James Fownes
1993-01-01
The indigenous agroforestry system on Pohnpei was studied using circular plots laid out in transect across 57 randomly-selected farms. Data were collected on species and cultivar presence, size, density, frequency, as well as soil type, slope, aspect, and other related information. Through farmer interviews, farm family demographic data was also recorded. Seasonality...
Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele
2015-01-01
Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322
Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele
2015-01-01
Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted.
Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax
2015-01-01
Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems. PMID:26181053
Arévalo-Gardini, Enrique; Canto, Manuel; Alegre, Julio; Loli, Oscar; Julca, Alberto; Baligar, Virupax
2015-01-01
Growing cacao (Theobroma cacao L.) in an agroforestry system generates a productive use of the land, preserves the best conditions for physical, chemical and biological properties of tropical soils, and plays an important role in improving cacao production and fertility of degraded tropical soils. The aim of this study was to evaluate the impact of two long term agroforestry systems of cacao management on soil physical and chemical properties in an area originally inhabited by 30 years old native secondary forest (SF). The two agroforestry systems adapted were: improved natural agroforestry system (INAS) where trees without economic value were selectively removed to provide 50% shade and improved traditional agroforestry system (ITAS) where all native trees were cut and burnt in the location. For evaluation of the changes of soil physical and chemical properties with time due to the imposed cacao management systems, plots of 10 cacao genotypes (ICS95, UF613, CCN51, ICT1112, ICT1026, ICT2162, ICT2171, ICT2142, H35, U30) and one plot with a spontaneous hybrid were selected. Soil samples were taken at 0-20, 20-40 and 40-60 cm depths before the installation of the management systems (2004), and then followed at two years intervals. Bulk density, porosity, field capacity and wilting point varied significantly during the years of assessment in the different soil depths and under the systems assessed. Soil pH, CEC, exchangeable Mg and sum of the bases were higher in the INAS than the ITAS. In both systems, SOM, Ext. P, K and Fe, exch. K, Mg and Al+H decreased with years of cultivation; these changes were more evident in the 0-20 cm soil depth. Overall improvement of SOM and soil nutrient status was much higher in the ITAS than INAS. The levels of physical and chemical properties of soil under cacao genotypes showed a marked difference in both systems.
R. A., II Pierce; D. T. Farrand; W. B. Kurtz
2001-01-01
Evolving agricultural policies have influenced management practices within agroecosystems, impacting available habitats for many species of wildlife. Enhancing wildlife habitat has become an explicit objective of existing agricultural policy. Thus, there is renewed focus on field borders and the use of shelterbelt agroforestry systems to achieve conservation goals in...
James F. Weigand
1998-01-01
Experimental prescriptions compare agroforestry systems designed to increase financial returns from high-elevation stands in the southern Oregon Cascade Range. The prescriptions emphasize alternative approaches for joint production of North American matsutake mushrooms (also known as North American pine mushrooms; Tricholoma magnivelare) and high-...
Agroforestry landscapes and global change: landscape ecology tools for management and conservation
Guillermo Martinez Pastur; Emilie Andrieu; Louis R. Iverson; Pablo Luis Peri
2012-01-01
Forest ecosystems are impacted by multiple uses under the influence of global drivers, and where landscape ecology tools may substantially facilitate the management and conservation of the agroforestry ecosystems. The use of landscape ecology tools was described in the eight papers of the present special issue, including changes in forested landscapes due to...
USDA-ARS?s Scientific Manuscript database
Traditional slash and burn agriculture practiced in the Peruvian Amazon region is leading to soil degradation and deforestation of native forest flora. The only way to stop such destructive processes is through the adoptation of sustainable alternatives such as growing crops in agroforestry systems....
Field Note: Standard Web Application for Information Exchange on Agroforestry in India
ERIC Educational Resources Information Center
Ajit; Nighat Jabeen; Handa, A. K.; Uma
2008-01-01
Agroforestry (AF)/forestry is no longer an isolated field, with so many developmental activities having links with this sector, and thus the information required to be handled by the researchers all over the world has increased exponentially. This article discusses a website that was developed by the National Research Centre for Agroforestry…
Indexing Soil Conservation: Farmer Perceptions of Agroforestry Benefits
Subhrendu K. Pattanayak; D. Evan Mercer
2002-01-01
Soil erosion poses economic and environmental concerns in many tropical uplands. Agroforestry has been proposed as a sustainable land use that can mitigate soil erosion and promote the economic welfare of small farmers. To evaluate such claims, we must (a) develop a composite measure of effectiveness, such as a soil conservation index, and (b) define it in terms...
NASA Astrophysics Data System (ADS)
Rojas, Marcela; Malard, Julien; Adamowski, Jan; Carrera, Jaime Luis; Maas, Raúl
2017-04-01
While it is known that climate change will impact future plant-pest population dynamics, potentially affecting crop damage, agroforestry with its enhanced biodiversity is said to reduce the outbreaks of pest insects by providing natural enemies for the control of pest populations. This premise is known in the literature as the natural enemy hypothesis and has been widely studied qualitatively. However, disagreement still exists on whether biodiversity enhancement reduces pest outbreaks, showing the need of quantitatively understanding the mechanisms behind the interactions between pests and natural enemies, also known as trophic interactions. Crop pest models that study insect population dynamics in agroforestry contexts are very rare, and pest models that take trophic interactions into account are even rarer. This may be due to the difficulty of representing complex food webs in a quantifiable model. There is therefore a need for validated food web models that allow users to predict the response of these webs to changes in climate in agroforestry systems. In this study we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web models; the program uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. Tiko'n was run using coffee leaf miner (Leucoptera coffeella) and associated parasitoid data from a shaded coffee plantation, showing the mechanisms of insect population dynamics within a tri-trophic food web in an agroforestry system.
Klein, Alexandra-Maria; Steffan-Dewenter, Ingolf; Tscharntke, Teja
2006-03-01
1. Human alteration of natural ecosystems to agroecosystems continues to accelerate in tropical countries. The resulting world-wide decline of rain forest causes a mosaic landscape, comprising simple and complex agroecosystems and patchily distributed rain forest fragments of different quality. Landscape context and agricultural management can be expected to affect both species diversity and ecosystem services by trophic interactions. 2. In Central Sulawesi, Indonesia, 24 agroforestry systems, differing in the distance to the nearest natural forest (0-1415 m), light intensity (37.5-899.6 W/m(-2)) and number of vascular plant species (7-40 species) were studied. Ten standardized trap nests for bees and wasps, made from reed and knotweed internodes, were exposed in each study site. Occupied nests were collected every month, over a period totalling 15 months. 3. A total of 13,617 brood cells were reared to produce adults of 14 trap-nesting species and 25 natural enemy species, which were mostly parasitoids. The total number of species was affected negatively by increasing distance from forest and increased with light intensity of agroforestry systems. The parasitoids in particular appeared to benefit from nearby forests. Over a 500-m distance, the number of parasitoid species decreased from eight to five, and parasitism rates from 12% to 4%. 4. The results show that diversity and parasitism, as a higher trophic interaction and ecosystem service, are enhanced by (i) improved connectivity of agroecosystems with natural habitats such as agroforestry adjacent to rain forest and (ii) management practices to increase light availability in agroforestry, which also enhances richness of flowering plants in the understorey.
Reyes, Teija; Quiroz, Roberto; Msikula, Shija
2005-11-01
The East Usambara Mountains, recognized as one of the 25 most important biodiversity hot spots in the world, have a high degree of species diversity and endemism that is threatened by increasing human pressure on resources. Traditional slash and burn cultivation in the area is no longer sustainable. However, it is possible to maintain land productivity, decrease land degradation, and improve rural people's livelihood by ameliorating cultivation methods. Improved agroforestry seems to be a very convincing and suitable method for buffer zones of conservation areas. Farmers could receive a reasonable net income from their farm with little investment in terms of time, capital, and labor. By increasing the diversity and production of already existing cultivations, the pressure on natural forests can be diminished. The present study shows a significant gap between traditional cultivation methods and improved agroforestry systems in socio-economic terms. Improved agroforestry systems provide approximately double income per capita in comparison to traditional methods. More intensified cash crop cultivation in the highlands of the East Usambara also results in double income compared to that in the lowlands. However, people are sensitive to risks of changing farming practices. Encouraging farmers to apply better land management and practice sustainable cultivation of cash crops in combination with multipurpose trees would be relevant in improving their economic situation in the relatively short term. The markets of most cash crops are already available. Improved agroforestry methods could ameliorate the living conditions of the local population and protect the natural reserves from human disturbance.
Xinhua Zhou; Michele M. Schoeneberger; James R. Brandle; Tala N. Awada; Jianmin Chu; Derrel L. Martin; Jihong Li; Yuqiang Li; Carl W. Mize
2014-01-01
Quantifying carbon in agroforestry trees requires biomass equations that capture the growth differences (e.g., tree specific gravity and architecture) created in the more open canopies of agroforestry plantings compared with those generally encountered in forests. Whereas forest-derived equations are available, equations for open-grown trees are not. Data from...
W.D. " Dusty" Walter; H.E. " Gene" Garrett; Larry D. Godsey
2004-01-01
When establishing an agroforestry practice, the number of trees planted will often exceed the densities needed to achieve a final spacing or configuration. While tight spacings may facilitate certain growth parameters, such as height development, timely thinnings of plantings are required in order to maintain desirable growth rates. In managed plantations especially,...
K.E. Trozzo; J.F. Munsell; J.L. Chamberlain; W.M. Aust
2014-01-01
Riparian forest buffers provide numerous environmental benefits, yet obstacles to landowner adoption are many. One barrier is the perception that riparian forest buffers are used for conservation at the expense of production. We present a study that focused on why landowners are more or less inclined to adopt native fruit and nut tree agroforestry riparian buffers that...
Abdulai, Issaka; Vaast, Philippe; Hoffmann, Munir P; Asare, Richard; Jassogne, Laurence; Asten, Piet Van; Rötter, Reimund P; Graefe, Sophie
2018-05-01
Resilience of cocoa agroforestry vs. full sun under extreme climatic conditions. In the specific case of our study, the two shade tree species associated with cocoa resulted in strong competition for water and became a disadvantage to the cocoa plants contrary to expected positive effects. © 2018 John Wiley & Sons Ltd.
Agroforestry for landscape restoration and livelihood development in Central Asia.
U. Djanibekov; Klara Dzhakypbekova; James Chamberlain; Horst Weyerhaeuser; Robert Zomer; G. Villamor; J. Xu
2016-01-01
This paper discusses how the adoption of agroforestry for ecosystem and livelihood improvement in Central Asian countries can be enhanced. First, it describes how previous and current developments lead to changing environmental conditions, and how these changing conditions consequently affected the welfare of people. Environmental issues on a global level, such as...
Wayne A. Geyer; Felix Ponder
2013-01-01
Black walnut (Juglans nigra) is an important tree species for temperate agroforestry in the United States for timber, nuts, wildlife, and abrasives. Predictions of forestland productivity are needed for proper species selection in tree planting. Potential productivity can be estimated for nonforested areas and agricultural croplands by relating site...
The silviculture of silvopasture
Rebecca J. Barlow; Seth Hunt; John S. Kush
2016-01-01
Silvopasture is an agroforestry practice where livestock, forage, and timber are managed on the same parcel of land. The most common form of agroforestry in the Southeastern US is silvopasture. According to the most recent USDA Census of Agriculture, six of the top ten states in the Nation that report that they practice alley cropping or silvopasture are southern....
ERIC Educational Resources Information Center
Raedeke, Andrew H.; Green, John J.; Hodge, Sandra S.; Valdivia, Corinne
2003-01-01
Agroforestry, the practice of raising crops and trees together in ways that are mutually beneficial, provides farmers with an alternative to more conventional farming practices. In this paper, we apply Bourdieu's concepts of "field" and "habitus" in an attempt to better understand the practice of farming and the role that…
Flood tolerance evaluation of bottomland oaks in a multi-channel field laboratory
Mark V. Coggeshall; J. W. Van Sambeek; Scott E. Schlarbaum
2005-01-01
A multi-channel field laboratory was designed and constructed by the University of Missouri Center for Agroforestry at the Horticulture and Agroforestry Research Center to assess the flood tolerance of forages and hardwood seedlings. This facility located in the Missouri River floodplain consists of twelve 6-m wide x 180-m long channels that had minimal disturbance to...
Agroforestry: a refuge for tropical biodiversity?
Bhagwat, Shonil A; Willis, Katherine J; Birks, H John B; Whittaker, Robert J
2008-05-01
As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.
Dacia M. Meneguzzo; Greg C. Liknes
2015-01-01
The USDA Agroforestry Strategic Framework and the 2014 Farm Bill call for inventory and monitoring of agroforestry practices; however, collecting such data over very large non-forested areas is costly. The Forest Inventory and Analysis (FIA) program at the Northern Research Station has addressed this challenge by forming a targeted task team whose primary purpose is to...
Subhrendu Patanayak; D. Evan Mercer
1998-01-01
Trecs can he considered as investments made by economic agents to prevent depreciation of natural assets such as stocks of top soil and water. In agroforestq systems farmers use trees in this manner by deliberately combining them with agricultural crops on the same unit of land. Although advocates of agroforestry have asserted that soil conservation is one of its...
Agroforestry planting design affects loblolly pine growth
D.M. Burner
2013-01-01
The effect of plantation design on resource utilization has not been adequately investigated in agroforestry plantations. An experiment was conducted near Booneville, AR, on a silt loam soil with a fragipan. Loblolly pine (Pinus taeda L.) trees were planted in 1994 in three designs: two rows (1.2 by 2.4 m) with a 7.3-m alley, four rows (1.2 by 2.4 m...
Ranking the shade tolerance of forty-five candidate groundcovers for agroforestry plantings
J.W. Van Sambeek; N.E. Navarrete-Tindall; H.E. Garrett; C.-H. Lin; R.L. McGraw; D.C. Wallace
2007-01-01
Several large-scale screening trials evaluating native and introduced herbaceous ground covers have been conducted in the last half century. Most trials have used shade cloth to evaluate growth of potted plants under moderate shade (45 to 55 percent of full sunlight) similar to what might be found in many agroforestry practices and heavy shade (20 to 30 percent of full...
Brandt, Regine; Mathez-Stiefel, Sarah-Lan; Lachmuth, Susanne; Hensen, Isabell; Rist, Stephan
2013-12-20
Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. The culturally most important woody species were mainly trees and exotic species (e.g.Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees,loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Age and migration affect how people value woody species and what they know about their uses.For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in agroforestry. These native species should be ecologically sound and selected on their potential to provide subsistence and promising commercial uses. In addition to offering socio-economic and environmental services,agroforestry initiatives using native trees and shrubs can play a crucial role in recovering elements of the lost ancient landscape that still forms part of local people’s collective identity.
Increased soil organic carbon stocks under agroforestry: A survey of six different sites in France
NASA Astrophysics Data System (ADS)
Cardinael, Rémi; Chevallier, Tiphaine; Cambou, Aurélie; Beral, Camille; Barthes, Bernard; Dupraz, Christian; Kouakoua, Ernest; Chenu, Claire
2017-04-01
Introduction: Agroforestry systems are land use management systems in which trees are grown in combination with crops or pasture in the same field. In silvoarable systems, trees are intercropped with arable crops, and in silvopastoral systems trees are combined with pasture for livestock. These systems may produce forage and timber as well as providing ecosystem services such as climate change mitigation. Carbon (C) is stored in the aboveground and belowground biomass of the trees, and the transfer of organic matter from the trees to the soil can increase soil organic carbon (SOC) stocks. Few studies have assessed the impact of agroforestry systems on carbon storage in soils in temperate climates, as most have been undertaken in tropical regions. Methods: This study assessed five silvoarable systems and one silvopastoral system in France. All sites had an agroforestry system with an adjacent, purely agricultural control plot. The land use management in the inter-rows in the agroforestry systems and in the control plots were identical. The age of the study sites ranged from 6 to 41 years after tree planting. Depending on the type of soil, the sampling depth ranged from 20 to 100 cm and SOC stocks were assessed using equivalent soil masses. The aboveground biomass of the trees was also measured at all sites. Results: In the silvoarable systems, the mean organic carbon stock accumulation rate in the soil was 0.24 (0.09-0.46) Mg C ha-1 yr-1 at a depth of 30 cm and 0.65 (0.004-1.85) Mg C ha-1 yr-1 in the tree biomass. Increased SOC stocks were also found in deeper soil layers at two silvoarable sites. Young plantations stored additional SOC but mainly in the soil under the rows of trees, possibly as a result of the herbaceous vegetation growing in the rows. At the silvopastoral site, the SOC stock was significantly greater at a depth of 30-50 cm than in the control. Overall, this study showed the potential of agroforestry systems to store C in both soil and biomass in temperate regions.
Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin
2017-08-01
In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.
Niether, Wiebke; Smit, Inga; Armengot, Laura; Schneider, Monika; Gerold, Gerhard; Pawelzik, Elke
2017-11-29
Cocoa beans are produced all across the humid tropics under different environmental conditions provided by the region but also by the season and the type of production system. Agroforestry systems compared to monocultures buffer climate extremes and therefore provide a less stressful environment for the understory cocoa, especially under seasonally varying conditions. We measured the element concentration as well as abiotic stress indicators (polyamines and total phenolic content) in beans derived from five different production systems comparing monocultures and agroforestry systems and from two harvesting seasons. Concentrations of N, Mg, S, Fe, Mn, Na, and Zn were higher in beans produced in agroforestry systems with high stem density and leaf area index. In the dry season, the N, Fe, and Cu concentration of the beans increased. The total phenolic content increased with proceeding of the dry season while other abiotic stress indicators like spermine decreased, implying an effect of the water availability on the chemical composition of the beans. Agroforestry systems did not buffer the variability of stress indicators over the seasons compared to monocultures. The effect of environmental growing conditions on bean chemical composition was not strong but can contribute to variations in cocoa bean quality.
Gregory E. Frey; D. Evan Mercer; Frederick W. Cubbage; Robert C. Abt
2013-01-01
Efforts to restore the Lower Mississippi Alluvial Valleyâs forests have not achieved desired levels of ecosystem services production.We examined how the variability of returns and the flexibility to change or postpone decisions (option value) affects the economic potential of forestry and agroforestry systems to keep private land in production while still providing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickramasinghe, A.
1992-01-01
Village agroforestry systems in Sri Lanka have evolved through farmers' efforts to meet their survival needs. The paper examines farmers' land-use systems and their perceptions of the role of trees in the villages of Bambarabedda and Madugalla in central Sri Lanka. The benefits of village agroforestry are diverse food, fuelwood, fodder, timber, and mulch, but food products are of outstanding importance. The ability of Artocarpus heterophyllus (the jackfruit tree) and Cocos nucifera (coconut) to ensure food security during the dry season and provide traditional foods throughout the year, as well as to grow in limited space, make them popular cropsmore » in the two study villages. The study recommends that further research precede the formulation of agricultural interventions and that efforts to promote improved tree varieties recognize farmers' practices and expressed needs.« less
Spatial pattern and ecological process in the coffee agroforestry system.
Perfecto, Ivette; Vandermeer, John
2008-04-01
The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.
NASA Astrophysics Data System (ADS)
Latifah, S.; Afifuddin, Y.; Widya, S.
2018-02-01
Agroforestry is the management and integration of trees, crops and/or livestock on the same plot of land and can be an integral component of productive agriculture. It may include existing native forests and forests established by landholders. The study was conducted in Mekar Sari Raya village, Panei sub, Simalungun regency, North Sumatera. This study aims to gain the ability to use agroforestry in suren crops and cocoa that provides benefits to farmers and the feasibility of the model farm. The study site has Net Present Value (NPV) is 2,670,306,905 ( IDR) for 15 of year, Gross B/C Ratio (BCR) is 2.3; Internal Rate of Return ( IRR) is 28 %; and Payback Period (PP) for 5 years 4 months 24 days. Agroforestry using commodities cacao and suren crops are financially feasible to be cultivated and developed.
Muhammed, Nur; Koike, Masao; Haque, Farhana; Miah, Md Danesh
2008-07-01
Forests represent more than just a livelihood to many people in developing countries. In Bangladesh, for example, overwhelming poverty and socio-economic pressures have resulted in an unstable situation where intensive pressure on forest resources is having increasingly negative consequences for the population. Some studies have evaluated the benefits of people-oriented forestry activities from an investment, as well as a participant, point of view. In the study area located in the Tangail Forest Division, a total of 11,854 ha of woodlot, 2704 ha of agroforestry and 945 km of strip plantations have been raised in a benefit-sharing program that is inclusive of land encroachers and other economically disadvantaged people. Since 2000-2001, a total of 3716 ha of woodlot, 890 ha of agroforestry and 163 km of strip plantations have been harvested to the benefit of 6326 individuals. Investment analysis indicates that woodlot plantation is not financially viable but agroforestry is the most profitable. These results were somewhat unexpected since initial analysis suggested that the woodlot plantation profit would be greater than, or at least equal to, that of the agroforestry plantation if the number of planted seedlings per unit area was taken into account. The per unit area net present value (NPV) was highest in the agroforestry plantation ($1662) and negative in the woodlot plantation (-$397). The benefit cost ratio (BCR) was also highest in the agroforestry plantation (1.64) and lowest in the woodlot plantation (0.86). This study also showed that some individuals who were formally classified as encroachers have now become vital stakeholders. On average, participants received $800, $1866 and $1327 over the course of 13 years from strip, agroforestry and woodlot plantations, respectively. Average annual return per participant was $62, $144 and $102, respectively, which was in addition to each individual's yearly income. This added income is a significant contribution to monetary resources and improves socio-economic conditions at a grass roots level. Overall then this program can be considered a financial success as a plantation raising strategy. However, despite this financial progress, the program cannot be considered a true form of participatory people-oriented forestry because it shows serious deviations from the original concept or model for participatory people-oriented forestry that is outlined in the project document. These discrepancies are especially notable with regard to (i) beneficiary selection, (ii) gender equity, (iii) professional attitude and corruption, (iv) funding and (v) program approach. However, other countries faced with similar challenges of forest overuse and degradation may adopt this practice for achieving self-reliance and environmental stability.
2013-01-01
Background Agroforestry is a sustainable land use method with a long tradition in the Bolivian Andes. A better understanding of people’s knowledge and valuation of woody species can help to adjust actor-oriented agroforestry systems. In this case study, carried out in a peasant community of the Bolivian Andes, we aimed at calculating the cultural importance of selected agroforestry species, and at analysing the intracultural variation in the cultural importance and knowledge of plants according to peasants’ sex, age, and migration. Methods Data collection was based on semi-structured interviews and freelisting exercises. Two ethnobotanical indices (Composite Salience, Cultural Importance) were used for calculating the cultural importance of plants. Intracultural variation in the cultural importance and knowledge of plants was detected by using linear and generalised linear (mixed) models. Results and discussion The culturally most important woody species were mainly trees and exotic species (e.g. Schinus molle, Prosopis laevigata, Eucalyptus globulus). We found that knowledge and valuation of plants increased with age but that they were lower for migrants; sex, by contrast, played a minor role. The age effects possibly result from decreasing ecological apparency of valuable native species, and their substitution by exotic marketable trees, loss of traditional plant uses or the use of other materials (e.g. plastic) instead of wood. Decreasing dedication to traditional farming may have led to successive abandonment of traditional tool uses, and the overall transformation of woody plant use is possibly related to diminishing medicinal knowledge. Conclusions Age and migration affect how people value woody species and what they know about their uses. For this reason, we recommend paying particular attention to the potential of native species, which could open promising perspectives especially for the young migrating peasant generation and draw their interest in agroforestry. These native species should be ecologically sound and selected on their potential to provide subsistence and promising commercial uses. In addition to offering socio-economic and environmental services, agroforestry initiatives using native trees and shrubs can play a crucial role in recovering elements of the lost ancient landscape that still forms part of local people’s collective identity. PMID:24359597
ERIC Educational Resources Information Center
Fillion, Jacob; Weeks, Julius
The Forestry/Natural Resources Sector in the Office of Training and Program Support of the Peace Corps conducted an agroforestry inservice training workshop in Honiara, Solomon Islands, in 1983. Participants included Peace Corps volunteers and their host country national counterparts from six countries of the Pacific Islands and Asia (Western…
Modeling of afforestation possibilities on one part of Hungary
NASA Astrophysics Data System (ADS)
Bozsik, Éva; Riczu, Péter; Tamás, János; Burriel, Charles; Helilmeier, Hermann
2015-04-01
Agroforestry systems are part of the history of the European Union rural landscapes, but the regional increase of size of agricultural parcels had a significant effect on European land use in the 20th century, thereby it has radically reduced the coverage of natural forest. However, this cause conflicts between interest of agricultural and forestry sectors. The agroforestry land uses could be a solution of this conflict management. One real - ecological - problem with the remnant forests and new forest plantation is the partly missing of network function without connecting ecological green corridors, the other problem is verifiability for the agroforestry payment system, monitoring the arable lands and plantations. Remote sensing methods are currently used to supervise European Union payments. Nowadays, next to use satellite imagery the airborne hyperspectral and LiDAR (Light Detection And Ranging) remote sensing technologies are becoming more widespread use for nature, environmental, forest, agriculture protection, conservation and monitoring and it is an effective tool for monitoring biomass production. In this Hungarian case study we made a Spatial Decision Support System (SDSS) to create agroforestry site selection model. The aim of model building was to ensure the continuity of ecological green corridors, maintain the appropriate land use of regional endowments. The investigation tool was the more widely used hyperspectral and airborne LiDAR remote sensing technologies which can provide appropriate data acquisition and data processing tools to build a decision support system
Sharma, E; Rai, S C; Sharma, R
2001-02-01
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.
NASA Astrophysics Data System (ADS)
Fonte, S.; Pauli, N.; Rousseau, L.; SIX, J. W. U. A.; Barrios, E.
2014-12-01
The Quesungual agroforestry system from western Honduras has been increasingly promoted as a promising alternative to traditional slash-and-burn agriculture in tropical dry forest regions of the Americas. Improved residue management and the lack of burning in this system can greatly impact soil biological functioning and a number of key soil-based ecosystem services, yet our understanding of these processes has not been thoroughly integrated to understand system functionality as a whole that can guide improved management. To address this gap, we present a synthesis of various field studies conducted in Central America aimed at: 1) quantifying the influence of the Quesungual agroforestry practices on soil macrofauna abundance and diversity, and 2) understanding how these organisms influence key soil-based ecosystem services that ultimately drive the success of this system. A first set of studies examined the impact of agroecosystem management on soil macrofauna populations, soil fertility and key soil processes. Results suggest that residue inputs (derived from tree biomass pruning), a lack of burning, and high tree densities, lead to conditions that support abundant, diverse soil macrofauna communities under agroforestry, with soil organic carbon content comparable to adjacent forest. Additionally, there is great potential in working with farmers to develop refined soil quality indicators for improved land management. A second line of research explored interactions between residue management and earthworms in the regulation of soil-based ecosystem services. Earthworms are the most prominent ecosystem engineers in these soils. We found that earthworms are key drivers of soil structure maintenance and the stabilization of soil organic matter within soil aggregates, and also had notable impacts on soil nutrient dynamics. However, the impact of earthworms appears to depend on residue management practices, thus indicating the need for an integrated approach for management of soil biological function and ecosystem services in the Quesungual agroforestry system.
Management of Agroforestry Practices in Assosa District, Benishangul Gumuze Region, Ethiopia
NASA Astrophysics Data System (ADS)
Kifle, E. T.; Asfaw, Z.; Abdelkadir, A.
2017-12-01
Trees on farms have evolved from the selective retention of useful trees on agricultural lands following the severe forest destruction and degradation for agriculture and other uses. As a consequence, trees on farms form the main vegetation types in much of rural Ethiopia in general and Assosa district in particular. In order to increase the products and services of these important agroforestry species there is a need to identify and document the species type and their management practices. To this end, this study is intended to:1) identify agroforestry types, species richness, use-diversity and management of the woody and non-woody plant species 2) record on-farm tree management practices and 3) assess the perception and attitude of farmers towards tree management. A combination of assessment methods including species inventory, key informant discussions and questionnaire surveys were employed in the study. The key findings of the study have shown that a) there were four major agroforestry practices namely homrgardens, parklands, alley cropping and farm boundary plantings with homegardens and parklands appearing to be the dominant practices, b) a total of 57 woody and non-woody species were found to form the main vegetation species with about 21 species commonly shared by both homegardens and parklands c)the difference in mean number of stems in homegardens and parklands was significantly different (p<0.05), d) retained trees in the study area are multifunctional with more than six use types and were managed by more than five management practices including slant-cut of mango (Mangifera indica) trees. According to household respondents and key informants land tenure insecurity, prevalence of pests/diseases, scarcity of water and poor survival of seedlings were the major problems. Therefore, land certification, water resource development, integrated pest management(IPM), training of farmers and further research on the cultural management practices are key recommendations for further development of agroforestry in the study area. Keywords: homegardens; parklands; local knowledge; slant-cut; inventory; key informants; questionnaire
Mitigation potential and cost in tropical forestry - relative role for agroforestry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makundi, Willy R.; Sathaye, Jayant A.
2004-01-01
This paper summarizes studies of carbon mitigation potential (MP) and costs of forestry options in seven developing countries with a focus on the role of agroforestry. A common methodological approach known as comprehensive mitigation assessment process (COMAP) was used in each study to estimate the potential and costs between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios derived from the demand for forest products and forestland for other uses such as agriculture and pasture. By using data on estimated carbon sequestration, emission avoidance, costs and benefits, the model enables one to estimate cost effectivenessmore » indicators based on monetary benefit per t C, as well as estimates of total mitigation costs and potential when the activities are implemented at equilibrium level. The results show that about half the MP of 6.9 Gt C (an average of 223 Mt C per year) between 2000 and 2030 in the seven countries could be achieved at a negative cost, and the other half at costs not exceeding $100 per t C. Negative cost indicates that non-carbon revenue is sufficient to offset direct costs of about half of the options. The agroforestry options analyzed bear a significant proportion of the potential at medium to low cost per t C when compared to other options. The role of agroforestry in these countries varied between 6% and 21% of the MP, though the options are much more cost effective than most due to the low wage or opportunity cost of rural labor. Agroforestry options are attractive due to the large number of people and potential area currently engaged in agriculture, but they pose unique challenges for carbon and cost accounting due to the dispersed nature of agricultural activities in the tropics, as well as specific difficulties arising from requirements for monitoring, verification, leakage assessment and the establishment of credible baselines.« less
NASA Astrophysics Data System (ADS)
Rasul, Golam; Thapa, Gopal B.
2007-08-01
As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation ( jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and facilities.
Rasul, Golam; Thapa, Gopal B
2007-08-01
As in other mountain regions of Asia, agricultural lands in the Chittagong Hill Tracts (CHT) of Bangladesh are undergoing degradation due primarily to environmentally incompatible land-use systems such as shifting cultivation (jhum) and annual cash crops. The suitable land-use systems such as agroforestry and timber tree plantation provide benefit to the society at large, but they might not provide attractive economic benefits to farmers, eventually constraining a wide-scale adoption of such land-use systems. Therefore, it is essential to evaluate agricultural land-use systems from both societal and private perspectives in the pursuit of promoting particularly environmentally sustainable systems. This article evaluated five major land-use systems being practiced in CHT, namely jhum, annual cash crops, horticulture, agroforestry, and timber plantation. The results of the financial analysis revealed the annual cash crops as the most attractive land use and jhum as the least attractive of the five land-use systems considered under the study. Horticulture, timber plantation, and agroforestry, considered to be suitable land-use systems particularly for mountainous areas, held the middle ground between these two systems. Annual cash crops provided the highest financial return at the cost of a very high rate of soil erosion. When the societal cost of soil erosion is considered, annual cash crops appear to be the most costly land-use system, followed by jhum and horticulture. Although financially less attractive compared to annual cash crops and horticulture, agroforestry and timber plantation are the socially most beneficial land-use systems. Findings of the alternative policy analyses indicate that there is a good prospect for making environmentally sustainable land-use systems, such as agroforestry and timber plantation, attractive for the farmers by eliminating existing legal and institutional barriers, combined with the provision of necessary support services and facilities.
Richards, Meryl Breton; Méndez, V Ernesto
2014-04-01
Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Jacobi, Johanna; Mathez-Stiefel, Sarah-Lan; Gambon, Helen; Rist, Stephan; Altieri, Miguel
2017-03-01
Agroforestry often relies on local knowledge, which is gaining recognition in development projects. However, how local knowledge can articulate with external and scientific knowledge is little known. Our study explored the use and integration of local and external knowledge in agroforestry projects in Bolivia. In 42 field visits and 62 interviews with agroforestry farmers, civil society representatives, and policymakers, we found a diverse knowledge base. We examined how local and external knowledge contribute to livelihood assets and tree and crop diversity. Projects based predominantly on external knowledge tended to promote a single combination of tree and crop species and targeted mainly financial capital, whereas projects with a local or mixed knowledge base tended to focus on food security and increased natural capital (e.g., soil restoration) and used a higher diversity of trees and crops than those with an external knowledge base. The integration of different forms of knowledge can enable farmers to better cope with new challenges emerging as a result of climate change, fluctuating market prices for cash crops, and surrounding destructive land use strategies such as uncontrolled fires and aerial fumigation with herbicides. However, many projects still tended to prioritize external knowledge and undervalue local knowledge—a tendency that has long been institutionalized in the formal educational system and in extension services. More dialogue is needed between different forms of knowledge, which can be promoted by strengthening local organizations and their networks, reforming agricultural educational institutions, and working in close interaction with policymakers.
Jacobi, Johanna; Mathez-Stiefel, Sarah-Lan; Gambon, Helen; Rist, Stephan; Altieri, Miguel
2017-03-01
Agroforestry often relies on local knowledge, which is gaining recognition in development projects. However, how local knowledge can articulate with external and scientific knowledge is little known. Our study explored the use and integration of local and external knowledge in agroforestry projects in Bolivia. In 42 field visits and 62 interviews with agroforestry farmers, civil society representatives, and policymakers, we found a diverse knowledge base. We examined how local and external knowledge contribute to livelihood assets and tree and crop diversity. Projects based predominantly on external knowledge tended to promote a single combination of tree and crop species and targeted mainly financial capital, whereas projects with a local or mixed knowledge base tended to focus on food security and increased natural capital (e.g., soil restoration) and used a higher diversity of trees and crops than those with an external knowledge base. The integration of different forms of knowledge can enable farmers to better cope with new challenges emerging as a result of climate change, fluctuating market prices for cash crops, and surrounding destructive land use strategies such as uncontrolled fires and aerial fumigation with herbicides. However, many projects still tended to prioritize external knowledge and undervalue local knowledge-a tendency that has long been institutionalized in the formal educational system and in extension services. More dialogue is needed between different forms of knowledge, which can be promoted by strengthening local organizations and their networks, reforming agricultural educational institutions, and working in close interaction with policymakers.
NASA Astrophysics Data System (ADS)
Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping
2017-05-01
The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.
Hipólito-Romero, E; Carcaño-Montiel, M G; Ramos-Prado, J M; Vázquez-Cabañas, E A; López-Reyes, L; Ricaño-Rodríguez, J
Cocoa plant (Theobroma cacao L.) is native from South America and it represents one of the most significant "bio-cultural" resources of Mesoamerica, since it is a region where it was domesticated and had a relevance as ritual drink and as currency in many pre-hispanic cultures until the arrival of the Spaniards who spread its use worldwide, and became it one of the most consumed commodity goods. Through this research, an alternative is proposed to address the problem of cultivars through the introduction of a wide variety of cocoa plants in traditional agroforestry systems, in synergy with the inoculation of nitrogen-fixing and insoluble phosphor solubilizing edaphic bacterial consortia. Four cultivars of improved grafted cocoa plants were introduced in a traditional agroforestry plot and three fertilization treatments were applied: application of biofertilizer, application of chemical fertilizer and control. Measurements of height, stem diameter, number of leaves and branches were recorded at 2 and 12 months after planting and rhizosphere microbial populations were characterized. Growth results showed good potential for all studied cultivars and it was observed that biofertilization foresees significant effects in some of the growth indicators of cocoa plant. Thereby, plant associations in an agroforestry system could be favorable to promote fruit development and resistance to pests and diseases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
Baah-Acheamfour, Mark; Carlyle, Cameron N; Lim, Sang-Sun; Bork, Edward W; Chang, Scott X
2016-11-15
Western Canada's prairie region is extensively cultivated for agricultural production, which is a large source of greenhouse gas emissions. Agroforestry systems are common land uses across Canada, which integrate trees into the agricultural landscape and could play a substantial role in sequestering carbon and mitigating increases in atmospheric GHG concentrations. We measured soil CO2, CH4 and N2O fluxes and the global warming potential of microbe-mediated net greenhouse gas emissions (GWPm) in forest and herbland (areas without trees) soils of three agroforestry systems (hedgerow, shelterbelt and silvopasture) over two growing seasons (May through September in 2013 and 2014). We measured greenhouse gas fluxes and environmental conditions at 36 agroforestry sites (12 sites for each system) located along a south-north oriented soil/climate gradient of increasing moisture availability in central Alberta, Canada. The temperature sensitivity of soil CO2 emissions was greater in herbland (4.4) than in forest (3.1), but was not different among agroforestry systems. Over the two seasons, forest soils had 3.4% greater CO2 emission, 36% higher CH4 uptake, and 66% lower N2O emission than adjacent herbland soils. Combining the CO2 equivalents of soil CH4 and N2O fluxes with the CO2 emitted via heterotrophic (microbial) respiration, forest soils had a smaller GWPm than herbland soils (68 and 89kgCO2ha(-1), respectively). While emissions of total CO2 were silvopasture>hedgerow>shelterbelt, soils under silvopasture had 5% lower heterotrophic respiration, 15% greater CH4 uptake, and 44% lower N2O emission as compared with the other two agroforestry systems. Overall, the GWPm of greenhouse gas emissions was greater in hedgerow (88) and shelterbelt (85) than in the silvopasture system (76kgCO2ha(-1)). High GWPm in the hedgerow and shelterbelt systems reflects the greater contribution from the monoculture annual crops within these systems. Opportunities exist for reducing soil greenhouse gas emissions and mitigating climate change by promoting the establishment of perennial vegetation in the agricultural landscape. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling and validation of directional reflectance for heterogeneous agro-forestry scenarios
NASA Astrophysics Data System (ADS)
Yelu, Z.; Jing, L.; Qinhuo, L.; Huete, A. R.
2015-12-01
Landscape heterogeneity is a common natural phenomenon but is seldom considered in current radiative transfer models for predicting the surface reflectance. This paper developed an explicit analytical Radiative Transfer model for heterogeneous Agro-Forestry scenarios (RTAF) by dividing the scenario into non-boundary regions and boundary regions. The scattering contribution of the non-boundary regions that are treated as homogeneous canopies can be estimated from the SAILH model, whereas that of the boundary regions with lengths, widths, canopy heights, and orientations of the field patches, is calculated based on the bidirectional gap probability by considering the interactions and mutual shadowing effects among different patches. The hot spot factor is extended for heterogeneous scenarios, the Hapke model for soil anisotropy is incorporated, and the contributions of the direct and diffuse radiation are separately calculated. The multi-angular airborne observations and the Discrete Anisotropic Radiative Transfer (DART) model simulations were used for validating and evaluating the RTAF model over an agro-forestry scenario in Heihe River Basin, China. It indicates that the RTAF model can accurately simulate the hemispherical-directional reflectance factors (HDRFs) of the heterogeneous agro-forestry scenario, with an RMSE of 0.0016 and 0.0179 in the red and near-infrared (NIR) bands, respectively. The RTAF model was compared with two widely used models, the dominant cover type (DCT) model and the spectral linear mixture (SLM) model, which either neglected the interactions and mutual shadowing effects between the shelterbets and crops, or did not account for the contribution of the shelterbets. Results suggest that the boundary effect can significantly influence the angular distribution of the HDRFs, and consequently enlarged the HDRF variations between the backward and forward directions in the principle plane. The RTAF model reduced the maximum relative error from 25.7% (SLM) and 23.0% (DCT) to 9.8% in the red band, and from 19.6% (DCT) and 13.7% (SLM) to 8.7% in the NIR band. According to the findings in this paper, the RTAF model provides a promising way to improve the retrieval of biophysical parameters (e.g. leaf area index) from remote sensing data over heterogeneous agro-forestry scenarios.
Ethnopedology and soil quality of bamboo (Bambusa sp.) based agroforestry system.
Arun Jyoti, Nath; Lal, Rattan; Das, Ashesh Kumar
2015-07-15
It is widely recognized that farmers' hold important knowledge of folk soil classification for agricultural land for its uses, yet little has been studied for traditional agroforestry systems. This article explores the ethnopedology of bamboo (Bambusa sp.) based agroforestry system in North East India, and establishes the relationship of soil quality index (SQI) with bamboo productivity. The study revealed four basic folk soil (mati) types: kalo (black soil), lal (red soil), pathal (stony soil) and balu (sandy soil). Of these, lal mati soil was the most predominant soil type (~ 40%) in bamboo-based agroforestry system. Soil physio-chemical parameters were studied to validate the farmers' soil hierarchal classification and also to correlate with productivity of the bamboo stand. Farmers' hierarchal folk soil classification was consistent with the laboratory scientific analysis. Culm production (i.e. measure of productivity of bamboo) was the highest (27culmsclump(-1)) in kalo mati (black soil) and the lowest (19culmsclump(-1)) in balu mati (sandy soil). Linear correlation of individual soil quality parameter with bamboo productivity explained 16 to 49% of the variability. A multiple correlation of the best fitted linear soil quality parameter (soil organic carbon or SOC, water holding capacity or WHC, total nitrogen) with productivity improved explanatory power to 53%. Development of SQI from ten relevant soil quality parameters and its correlation with bamboo productivity explained the 64% of the variation and therefore, suggest SQI as the best determinant of bamboo yield. Data presented indicate that the kalo mati (black soil) is sustainable or sustainable with high input. However, the other three folk soil types (red, stony and sandy soil) are also sustainable but for other land uses. Therefore, ethnopedological studies may move beyond routine laboratory analysis and incorporate SQI for assessing the sustainability of land uses managed by the farmers'. Additional research is required to incorporate principal component analysis for improving the SQI and site potential assessment. It is also important to evaluate the minimum data set (MDS) required for SQI and productivity assessment in agroforestry systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Lalthanzara, H; Ramanujam, S N; Jha, L K
2011-09-01
Earthworm population dynamics was studied in two agroforestry systems in the tropical hilly terrain of Mizoram, north-east India, over a period of 24 months, from July 2002 to June 2004. Two sites of agroforestry situated at Sakawrtuichhun (SKT) and Pachhunga University College (PUC) campus, Aizawl, having pineapple as the main crop, were selected for detail studies on population dynamics. Five of the total twelve species of earthworm reported from the state were recorded in the study sites. The density of earthworm ranged from 6 to 243 ind.m(-2) and biomass from 3.2 - 677.64 g.m(-2) in SKT. Comparatively the density and biomass in PUC, which is at relatively higher altitude were lowerwith a range of 0 to 176 ind.m(-2) and biomass from 0 - 391.36 g.m(-2) respectively. Population dynamics of earthworm was significantly correlated with rainfall and physical characters of the soil. Earthworm biomass was significantly affected by rainfall and moisture content of the soil. The influence of chemical factors was relatively less.
[Transpiration of Choerospondias axillaris in agro-forestrial system and its affecting factors].
Zhao, Ying; Zhang, Bin; Zhao, Huachun; Wang, Mingzhu
2005-11-01
Measurement of transpiration is essential to assess plant water use efficiency. Applying Grainer method, this paper measured the sap flow of Choerospondias axillaries in an agro-forestrial system, aimed to evaluate the effects of intercropping and pruning on the diurnal variation of transpiration, and to relate the transpiration rate with climatic factors. The results showed that the diurnal variation of Choerospondias arillaries transpiration rate appeared in parabola, low in the morning and evening, and high at noon. The transpiration rate was closely related to leaf stomatal conductivity and soil water potential, especially the water potential in 100 cm soil depth (R = 0.737). The transpiration rate of Choerospondias axillaries was increased by about 40% approximately 160% in agro-forestrial system through the changes in regional environment and in the deep soil water use by tree. Correlation analysis and multi-factor successive regression analysis indicated that the transpiration was controlled by ray radiation intensity, air temperature and ground temperature, followed by the difference between saturated and actual vapor pressure and the wind speed. A statistical model for calculating the sap flow rate by micrometeorological factors was also provided.
Cocoa based agroforestry: An economic perspective in resource scarcity conflict era
NASA Astrophysics Data System (ADS)
Jumiyati, S.; Arsyad, M.; Rajindra; Pulubuhu, D. A. T.; Hadid, A.
2018-05-01
Agricultural development towards food self-sufficiency based on increasing production alone has caused the occurrence of environmental disasters that are the impact of the exploitation of natural resources resulting in the scarcity of resources. This paper describes the optimization of land area, revenue, cost (production inputs), income and use of production input based on economic and ecological aspects. In order to sustainability farming by integrating environmental and economic consideration can be made through farmers’ decision making with the goal of optimizing revenue based on cost optimization through cocoa based agroforestry model in order to cope with a resource conflict resolution.
Assessing Local Knowledge Use in Agroforestry Management with Cognitive Maps
NASA Astrophysics Data System (ADS)
Isaac, Marney E.; Dawoe, Evans; Sieciechowicz, Krystyna
2009-06-01
Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 ± 3 variables and 19 ± 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.
Assessing local knowledge use in agroforestry management with cognitive maps.
Isaac, Marney E; Dawoe, Evans; Sieciechowicz, Krystyna
2009-06-01
Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 +/- 3 variables and 19 +/- 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.
Muñoz Gutiérrez, Jhonatan Andrés; Roussea, Guillaume Xavier; Andrade-Silva, Joudellys; Delabie, Jacques Hubert Charles
2017-03-01
Deforestation in Amazon forests is one of the main causes for biodiversity loss worldwide. Ants are key into the ecosystem because act like engineers; hence, the loss of ants’ biodiversity may be a guide to measure the loss of essential functions into the ecosystems. The aim of this study was to evaluate soil ant’s richness and to estimate whether higher taxa levels (Subfamily and Genus) can be used as surrogates of species richness in different vegetation types (fallows, old-growth forests and agroforestry systems) in Eastern Amazon. The samples were taken in 65 areas in the Maranhão and Pará States in the period 2011-2014. The sampling scheme followed the procedure of Tropical Soil Biology and Fertility (TSBF). Initially, the vegetation types were characterized according to their age and estimated species richness. Linear and exponential functions were applied to evaluate if higher taxa can be used as surrogates and correlated with the Pearson coefficient. In total, 180 species distributed in 60 genera were identified. The results showed that ant species richness was higher in intermediate fallows (88) and old secondary forest (76), and was lower in agroforestry systems (38) and mature riparian forest (35). The genus level was the best surrogate to estimate the ant’s species richness across the different vegetation types, and explained 72-97 % (P < 0.001) of the total species variability. The results confirmed that the genus level is an excellent surrogate to estimate the ant’s species richness in the region and that both fallows and agroforestry systems may contribute in the conservation of Eastern Amazon ant community.
Kotowska, Martyna M; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brokensha, D.; Castro, A.P.; Kundu, M.
1984-04-01
Using a systems approach and focusing on the social context, the study examines natural resource management in relation to fuelwood production and agroforestry. An initial section describing the use and interlinkage of the concepts of ecozone and ecosystem is followed by a discussion of problem ecozones, human use of ecozones, agricultural ecosystems, resource competition, uses of trees and forest products, and tree planting. Rural resource management strategies at the household, community, local, and state levels are discussed in the context of political economy, land tenure and rights, tenancy and sharecropping, group or public landholding, and acquisition and transfer of land.
Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A
2009-01-15
This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.
NASA Astrophysics Data System (ADS)
Ceperley, Natalie; Mande, Theophile; Parlange, Marc B.
2013-04-01
Understanding water use by agroforestry trees in dry-land ecosystems is essential for improving water management. Agroforestry trees are valued and promoted for many of their ecologic and economic benefits but are often criticized as competing for valuable water resources. In order to understand the seasonal patterns of source water used by agroforestry trees, samples from rain, ground, and surface water were collected weekly in the subcatchment of the Singou watershed that is part of the Volta Basin. Soil and vegetation samples were collected from and under a Sclerocarya birrea agroforstry trees located in this catchment in sealed vials, extracted, and analyzed with a Picarro L2130-i CRDS to obtain both δO18 and δDH fractions. Meteorological measurements were taken with a network of wireless, autonomous stations that communicate through the GSM network (Sensorscope) and two complete eddy-covariance energy balance stations, in addition to intense monitoring of sub-canopy solar radiation, throughfall, stemflow, and soil moisture. Examination of the time series of δO18 concentrations confirm that values in soil and xylem water are coupled, both becoming enriched during the dry season and depleted during the rainy season. Xylem water δO18 levels drops to groundwater δO18 levels in early March when trees access groundwater for leafing out, however soil water does not reach this level until soil moisture increases in mid-June. The relationship between the δDH and δO18 concentrations of water extracted from soil and tree samples do not fall along the global meteoric water line. In order to explore whether this was a seasonally driven, we grouped samples into an "evaporated" group or a "meteoric" group based on the smaller residual to the respective lines. Although more soil samples were found along the m-line during the rainy season than tree samples or dry season soil samples, there was no significant difference in days since rain for any group This suggests that xylem water is always under stress from evapotranspiration and soil water underwent evaporation soon after a rain event. Visual observation of tree confirms conclusion that trees access deep ground water in March and April, before rain begins and before soil is connected to groundwater. Results from the research are being integrated into a local outreach project to improve use of agroforestry.
Lu, Sen; Meng, Ping; Zhang, Jinsong; Yin, Changjun; Sun, Shiyou
2015-11-01
Limited information is available on the effects of agroforestry system practices on soil properties in the Loess Plateau of China. Over the last decade, a vegetation restoration project has been conducted in this area by converting cropland into tree-based agroforestry systems and orchards to combat soil erosion and degradation. The objective of the present study was to determine the effects of land use conversion on soil organic carbon and total nitrogen in southeastern Loess Plateau. The experiment included three treatments: walnut intercropping system (AF), walnut orchard (WO), and traditional cropland (CR). After 7 years of continual management, soil samples were collected at 0-10, 10-30, and 30-50-cm depths for three treatments, and soil organic carbon (SOC) and total nitrogen (TN) were measured. Results showed that compared with the CR and AF treatments, WO treatment decreased both SOC and TN concentrations in the 0-50-cm soil profile. However, similar patterns of SOC and TN concentrations were observed in the AF and CR treatments across the entire profile. The SOC stocks at 0-50-cm depth were 5.42, 5.52, and 4.67 kg m(-2) for CR, AF, and WO treatments, respectively. The calculated TN stocks at 0-50-cm depth were 0.63, 0.62, and 0.57 kg m(-2) for CR, AF, and WO treatments, respectively. This result demonstrated that the stocks of SOC and TN in WO were clearly lower than those of AF and CR and that the walnut-based agroforestry system was more beneficial than walnut monoculture in terms of SOC and TN sequestration. Owing to the short-term intercropping practice, the changes in SOC and TN stocks were slight in AF compared with those in CR. However, a significant decrease in SOC and TN stocks was observed during the conversion of cropland to walnut orchard after 7 years of management. We also found that land use types had no significant effect on soil C/N ratio. These findings demonstrated that intercropping between walnut rows can potentially maintain more SOC and TN stocks than walnut monoculture and that agroforestry is a sustainable management pattern for vegetation restoration in the Loess Plateau area.
NASA Astrophysics Data System (ADS)
Paembonan, S. A.; Millang, S.; Dassir, M.; Ridwan, M.
2018-05-01
Home-garden is one of the types of agroforestry which is commonly practiced by rural communities in South Sulawesi, Indonesia. The study aimed to determine the diversity levels of the species constituting the home-gardens and their contribution to the farmers’ incomes. The variables used in the study were the widths variation of the land owned as the home-gardens and the socioeconomic backgrounds of the community. The study results indicated that in small land, the community cultivated annual crop plants interspersed with agricultural commodities, and the trees as the boundary, while in the wider land they integrated various species plants within the area. The diversity index of the home-gardens was categorized as moderate with a value of 1.25 to 2.18, while species uniformity index was ranging from moderate to high with values of 0.49 to 0.77. The total incomes from home gardens varied greatly from one community to another, and it was largely determined by the composition and density of the constituent species. The contribution of the home-gardens to the income of the farmers amounted to 43.27%–49.06%. The sustainable management of the home-garden agroforestry can give a significant contribution to the farmers’ incomes and the preservation of biodiversity and environment.
Coffee agroforestry for sustainability of Upper Sekampung Watershed management
NASA Astrophysics Data System (ADS)
Fitriani; Arifin, Bustanul; Zakaria, Wan Abbas; Hanung Ismono, R.
2018-03-01
The main objective of watershed management is to ensure the optimal hydrological and natural resource use for ecological, social and economic importance. One important adaptive management step in dealing with the risk of damage to forest ecosystems is the practice of agroforestry coffee. This study aimed to (1) assess the farmer's response to ecological service responsibility and (2) analyze the Sekampung watersheds management by providing environmental services. The research location was Air Naningan sub-district, Tanggamus, Lampung Province, Indonesia. The research was conducted from July until November 2016. Stratification random sampling based on the pattern of ownership of land rights is used to determine the respondents. Data were analyzed using descriptive statistics and logistic regression analysis. Based on the analysis, it was concluded that coffee farmers' participation in the practice of coffee agroforestry in the form of 38% shade plants and multiple cropping (62%). The logistic regression analysis indicated that the variables of experience and status of land ownership, and incentive-size plans were able to explain variations in the willingness of coffee growers to follow the scheme of providing environmental services. The existence of farmer with partnership and CBFM scheme on different land tenure on upper Sekampung has a strategic position to minimize the deforestation and recovery watersheds destruction.
Integrated production of warm season grasses and agroforestry for biomass production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samson, R.; Omielan, J.; Girouard, P.
1993-12-31
Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to havemore » distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.« less
Assessment of agroforestry residue potentials for the bioeconomy in the European Union.
Thorenz, Andrea; Wietschel, Lars; Stindt, Dennis; Tuma, Axel
2018-03-01
The biobased chemical industry is characterised by strong growth. Innovative products and materials such as biopolymers have been developed, and current European demand for biopolymers exceeds the domestic supply. Agroforestry residues can serve as main sources of the basic building blocks for chemicals and materials. This work assesses sustainably available agroforestry residues to feed a high added-value materials and product bioeconomy. To evaluate bioeconomic potential, a structured three-step approach is applied. Cultivation practices, sustainability issues, legislative restrictions, technical limitations and competitive applications are considered. All data regarding bioeconomic potential are processed on a regional level and mapped by ArcGIS. Our results identify wheat straw as the most promising source in the agricultural sector, followed by maize stover, barley straw and rape straw, which all contain a total concentration of lignocellulose of more than 80% of dry matter. In the forestry sector, residue bark from two coniferous species, spruce and pine, is the most promising source, with approximately 70% lignocellulose. Additionally, coniferous bark contains considerable amounts of tannin, which has attracted increasing interest for industrial utilisation. A sensitivity analysis concerning removal rates, residue-to-crop ratios, changes in farming technologies and competing applications is applied at the end of the study to consolidate our results.
Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.
Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme
2017-12-01
Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.
Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C
2015-09-01
Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
2012-04-01
In collaboration with experts in agroforestry, agricultural economics and policy, development economist Utkur Djanibekov estimated the viability of small-scale Clean Development Mechanism afforestation in Uzbekistan.
Trees, soils, and food security
Sanchez, P. A.; Buresh, R. J.; Leakey, R. R. B.
1997-01-01
Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, 'Cinderella' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases.
Gramlich, A; Tandy, S; Andres, C; Chincheros Paniagua, J; Armengot, L; Schneider, M; Schulin, R
2017-02-15
Cadmium (Cd) uptake by cocoa has recently attracted attention, after the European Union (EU) decided to establish values for tolerable Cd concentrations in cocoa products. Bean Cd concentrations from some cocoa provenances, especially from Latin America, were found to exceed these values. Cadmium uptake by cocoa is expected not only to depend on a variety of soil factors, but also on plant and management factors. In this study, we investigated the influence of different production systems on Cd uptake by cocoa in a long-term field trial in the Alto Beni Region of Bolivia, where cocoa trees are grown in monocultures and in agroforestry systems, both under organic and conventional management. Leaf, fruits and roots of two cultivars were sampled from each production system along with soil samples collected around these trees. Leaf, pod husk and bean samples were analysed for Cd, iron (Fe) and zinc (Zn), the roots for mycorrhizal abundance and the soil samples for 'total' and 'available' Cd, Fe and Zn as well as DGT-available Cd and Zn, pH, organic matter, texture, 'available' phosphorus (P) and potassium (K). Only a small part of the variance in bean and pod husk Cd was explained by management, soil and plant factors. Furthermore, the production systems and cultivars alone had no significant influence on leaf Cd. However, we found lower Cd leaf contents in agroforestry systems than in monocultures when analysed in combination with DGT-available soil Cd, cocoa cultivar and soil organic matter. Overall, this model explained 60% of the variance of the leaf Cd concentrations. We explain lower leaf Cd concentrations in agroforestry systems by competition for Cd uptake with other plants. The cultivar effect may be explained by cultivar specific uptake capacities or by a growth effect translating into different uptake rates, as the cultivars were of different size. Copyright © 2016 Elsevier B.V. All rights reserved.
Mazón, Marina; Sánchez-Angarita, Daniel; Díaz, Francisco A; Gutiérrez, Néstor; Jaimez, Ramón
2018-04-20
Agroforestry systems are environment-friendly production systems which help to preserve biodiversity while providing people with a way of earning a living. Cacao is a historically important crop in Venezuela that traditionally has been produced in agroforestry systems. However, few studies have evaluated how different trees used in those systems affect the dynamics and abundance of insects. The present study evaluated the entomofauna assemblages associated with different combinations of four timber-yielding trees and four Criollo cacao cultivars established in a lowland tropical ecosystem in Venezuela. A randomized block design with two replicates was used, each block having 16 plots which included all 16 possible combinations of four native timber trees ( Cordia thaisiana , Cedrela odorata , Swietenia macrophylla , and Tabebuia rosea ) and four Criollo cacao cultivars (Porcelana, Guasare, Lobatera and Criollo Merideño). Insects were collected with yellow pan traps and sorted to order. Coleoptera and parasitoid Hymenoptera were determined to the family level. In total, 49,538 individuals of seven orders were collected, with Hymenoptera, Diptera, and Hemiptera being the most abundant, although only Lepidoptera and Coleoptera abundances were significantly influenced by the timber tree species. Twenty-three families of parasitoid Hymenoptera and 26 of Coleoptera were found. Significant differences in insects’ assemblages were found both in parasitoid Hymenoptera and Coleoptera families associated to every shade tree, with the families Eulophidae and Lycidae being indicators for Cordia , and Chalcididae for Swietenia . The entomofauna relationship with the cacao cultivar was barely significant, although Scydmaenidae and Scarabaeidae were indicators for Lobatera and Merideño, respectively. No significant effects were found for interaction with cacao cultivars and native trees. We concluded that the particular insect assemblages found in Cedrela odorata and Cordia thaisiana , together with their high growing rates, make these two species an optimal choice for cacao agroforestry systems.
Kotowska, Martyna M.; Hertel, Dietrich; Rajab, Yasmin Abou; Barus, Henry; Schuldt, Bernhard
2015-01-01
For decades it has been assumed that the largest vessels are generally found in roots and that vessel size and corresponding sapwood area-specific hydraulic conductivity are acropetally decreasing toward the distal twigs. However, recent studies from the perhumid tropics revealed a hump-shaped vessel size distribution. Worldwide tropical perhumid forests are extensively replaced by agroforestry systems often using introduced species of various biogeographical and climatic origins. Nonetheless, it is unknown so far what kind of hydraulic architectural patterns are developed in those agroforestry tree species and which impact this exerts regarding important tree functional traits, such as stem growth, hydraulic efficiency and wood density (WD). We investigated wood anatomical and hydraulic properties of the root, stem and branch wood in Theobroma cacao and five common shade tree species in agroforestry systems on Sulawesi (Indonesia); three of these were strictly perhumid tree species, and the other three tree species are tolerating seasonal drought. The overall goal of our study was to relate these properties to stem growth and other tree functional traits such as foliar nitrogen content and sapwood to leaf area ratio. Our results confirmed a hump-shaped vessel size distribution in nearly all species. Drought-adapted species showed divergent patterns of hydraulic conductivity, vessel density, and relative vessel lumen area between root, stem and branch wood compared to wet forest species. Confirming findings from natural old-growth forests in the same region, WD showed no relationship to specific conductivity. Overall, aboveground growth performance was better predicted by specific hydraulic conductivity than by foliar traits and WD. Our study results suggest that future research on conceptual trade-offs of tree hydraulic architecture should consider biogeographical patterns underlining the importance of anatomical adaptation mechanisms to environment. PMID:25873922
Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia
NASA Astrophysics Data System (ADS)
Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel
2008-06-01
Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those areas where climatic and edaphic conditions allow for intensive agriculture. This scenario is probably preferable over the alternative of agriculture extensification, which would imply a dramatic increase in deforestation rates with accompanying CO2 emissions.
Borland, Anne M.; Wullschleger, Stan D.; Weston, David J.; ...
2014-12-15
We know that global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour–pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. Onemore » approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO 2 uptake and fixation to the night-time when leaf:air VPD is low. CAMmembers of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. Moreover, the introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, Anne M.; Wullschleger, Stan D.; Weston, David J.
We know that global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour–pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. Onemore » approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO 2 uptake and fixation to the night-time when leaf:air VPD is low. CAMmembers of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. Moreover, the introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.« less
Huang, Ji; Long, Chunlin
2007-06-01
Coptis teeta (Ranunculaceae), is a nontimber forest product (NTFP) that only grows in northwest Yunnan and northeast India. Its tenuous rhizome, known as "Yunnan goldthread" in the traditional Chinese medicine system, has been used as an antibacterial and as an antiinflammatory medicine for a long time. The increasing demand has resulted in commercial harvesting pressure on wild populations that were already dwindling as a result of deforestation, and wild populations are at risk of extinction. Fortunately, there exists at least 2000 hectares of a C. teeta-based agroforestry system initiated by the Lisu people in Nujiang, northwest Yunnan. This cultivation supplies us with a valuable study case for the balance between conservation and sustainable use. This case study investigated the traditional management system and history of C. teeta in Nujiang through ethnobotanical methods and field investigation. We also contrasted initial costs, economic returns, and labor demands for C. teeta cultivation with other major land uses in the region. Compared with swidden agriculture, the major land-use type in the region, C. teeta cultivation offers high economic returns and low labor and initial costs; moreover, C. teeta cultivation does not interfere with subsistence agricultural duties. This agroforestry system reflected that the cultivation of NTFPs is a conservation strategy for maintaining forest diversity, while providing a stable economic return to local forest communities, and indicates how local people manage biodiversity effectively.
Zhang, Chun-Hua; Tang, Guo-Yong; Liu, Fang-Yan; Li, Kun
2012-10-01
To evaluate the effect of agroforestry models on the inhibition of Oncomelania snails in the plateau mountainous area of Yunnan Province. The experimental field was established at Sanying Village of Eryuan County, Yunnan Province, where the "Flourishing Forest and Controlling Snails Project" was implemented. Different drought crops (alfalfa, vegetables, broad bean, garlic, lettuce, celery, green onions, and wheat) were intercropped under walnut forest in experimental groups, and the crops were not intercropped under walnut forest in a control group. The growth of forest, the change of snails and short-term income of residents were investigated. Agroforestry models promoted the forestry growth and effectively inhibited the growth of snails. There was a little snail in one of the experimental group that forest was intercropped with alfalfa (the occurrence rate of frames with living snails was 3.33%, the average density of living snails was 0.004/0.1 m2, and the declining rates were both 50.00%). The snails were not found in other intercropped models. The income of residents in the experimental groups increased (900-6 800 Yuan per year) compared with that in the control group. The model of walnut forest intercropped with crops not only has the obvious effect on inhibition of snails, but also has good economic and ecological benefits in the plateau mountainous area of Yunnan Province.
Agroforestry management and phytoseiid communities in vineyards in the South of France.
Liguori, Marialivia; Tixier, Marie-Stéphane; Hernandes, Akashi Fabio; Douin, Martial; Kreiter, Serge
2011-10-01
This study deals with the long-term effect of agroforestry management (trees within vine crops) on communities of phytoseiid mites. Several plots were considered: vineyards co-planted with Sorbus domestica or Pinus pinea, monocultures of vines and monocultures of S. domestica or P. pinea. All vine plots included two vine cultivars, Syrah and Grenache. Phytoseiid mites have been surveyed in these plots during several years within the previous 10 years. In 2010, samplings were again carried out in these same plots, from May to September, twice a month. Significantly higher densities of Phytoseiidae were observed on the cultivar Syrah (0.85 phytoseiids per leaf) than on Grenache (0.26 phytoseiids per leaf). Furthermore, significantly higher phytoseiid mite densities were observed in the monocultural grapevine plot than in the two co-planted ones. The main species found was Typhlodromus (Typhlodromus) exhilaratus in all vine plots considered. However, Kampimodromus aberrans was observed in the grapevine plots co-planted with the two trees, but never in the monocultural vine plot. Surprisingly, this phytoseiid species was not found on the co-planted trees, nor in the neighbouring uncultivated vegetation. Several hypotheses are discussed to explain such an unexpected distribution. Furthermore, contrary to what has been observed previously, agroforestry management did not seem to favour phytoseiid mite development, especially on the Grenache cultivar. Again, some hypotheses are developed to explain such observations and density modifications.
Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?
NASA Astrophysics Data System (ADS)
Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea
2017-04-01
In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (<20 cm depth); after the soil reached water potentials below -100 kPa, root water uptake moved to deeper soil layers (<40 cm). Because of the higher wind and solar radiation exposure the reference soil profile was severely dried out. Also in the crop strips of the agroforestry system, crops took up water in the upper soil. However, the lower soil layers remained wet for an extended period of time. The tree strips reduced the wind speed, hence lowering evapotranspiration in the crop strip. The plot was not aligned directly to North and we observed steeper soil water potential gradients in the part of the crop strip more exposed to sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and belowground tree-crop interactions and demonstrate the positive effect of tree strips in reducing drought stress in crops.
Projecting the long-term biogeochemical impacts of a diverse agroforestry system in the Midwest
NASA Astrophysics Data System (ADS)
Wolz, K. J.; DeLucia, E. H.; Paul, R. F.
2014-12-01
Annual, monoculture cropping systems have become the standard agricultural model in the Midwestern US. Unintended consequences of these systems include surface and groundwater pollution, greenhouse gas emissions, loss of biodiversity, and soil erosion. Diverse agroforestry (DA) systems dominated by fruit and nut trees/shrubs have been proposed as an agricultural model for the Midwestern US that can restore ecosystem services while simultaneously providing economically viable and industrially relevant staple food crops. A DA system including six species of fruit and nut crops was established on long-time conventional agricultural land at the University of Illinois at Urbana-Champaign in 2012, with the conventional corn-soybean rotation (CSR) as a control. Initial field measurements of the nitrogen and water cycles during the first two years of transition have indicated a significant decrease in N losses and modification of the seasonal evapotranspiration (ET) pattern. While these early results suggest that the land use transition from CSR to DA can have positive biogeochemical consequences, models must be utilized to make long-term biogeochemical projections in agroforestry systems. Initial field measurements of plant phenology, net N2O flux, nitrate leaching, soil respiration, and soil moisture were used to parameterize the DA system within the DayCENT biogeochemical model as the "savanna" ecosystem type. The model was validated with an independent subset of field measurements and then run to project biogeochemical cycling in the DA system for 25 years past establishment. Model results show that N losses via N2O emission or nitrate leaching reach a minimum within the first 5 years and then maintain this tight cycle into the future. While early ET field measurements revealed similar magnitudes between the DA and CSR systems, modeled ET continued to increase for the DA system throughout the projected time since the trees would continue to grow larger. These modeling results illustrate the potential long-term biogeochemical impacts that can be generated by a land-use transition to a diverse agroforestry system in the Midwest.
Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun.
Abdulai, Issaka; Vaast, Philippe; Hoffmann, Munir P; Asare, Richard; Jassogne, Laurence; Van Asten, Piet; Rötter, Reimund P; Graefe, Sophie
2018-01-01
Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region. We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm -2 day -1 , whereas cocoa in full sun maintained higher sap flux density of 170 g cm -2 day -1 . Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm -2 day -1 ) than under A. toxicaria (37 g cm -2 day -1 ). Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under extended severe drought. © 2017 John Wiley & Sons Ltd.
Analysis of vegetation changes in Cidanau watershed, Indonesia
NASA Astrophysics Data System (ADS)
Khairiah, R. N.; Kunihiko, Y.; Prasetyo, L. B.; Setiawan, Y.
2018-05-01
Vegetation change detection is needed for conserve of quality and water cycle in Cidanau watershed. The NDVI was applied to quantify the vegetation changes of Cidanau watershed for three different years 1989, 2001, and 2015. Using NDVI we mapped the reflectance from chlorophyll and distinguished varying amounts of vegetation at the pixel level by index. In the present study, as a preliminary study, we proposed a vegetation change detection analysis based on the NDVI from 1989 through 2015. Multi-temporal satellite data i.e. Landsat imagery with 30 m spatial resolution are used in the present study. It is reported that agroforestry land exhibited the greatest reductions in highly dense vegetation class in 1989-2001 and also moderate vegetation class in 2001-2015. It’s mean that amount of vegetation present in agroforestry land is getting lower year by year.
NASA Astrophysics Data System (ADS)
Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.
2017-12-01
Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.
Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang
2013-01-01
Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems. PMID:23936246
A participative approach to develop sustainability indicators for dehesa agroforestry farms.
Escribano, M; Díaz-Caro, C; Mesias, F J
2018-05-29
This paper provides a list of specific indicators that will allow the managers of dehesa farms to assess their sustainability in an easy and reliable way. To this end a Delphi analysis has been carried out with a group of experts in agroforestry systems and sustainability. A total of 30 experts from public institutions, farming, research bodies, environmental and rural development associations, agricultural organizations and companies took part in the study which intended to design a set of sustainability indicators adapted to dehesa agroforestry systems. The experts scored 83 original indicators related to the basic pillars of sustainability (environmental, social and economic) through a two-round procedure. Finally, 24 indicators were selected based on their importance and the consensus achieved. From an environmental point of view, and in line with its significance for dehesa ecosystems, it has been observed that "Stocking rate" is the indicator with greater relevance. Within the economic pillar, "Farm profitability" is the most important indicator, while regarding the technical indicators "Percentage of animal diet based on grazing" is the one that got the highest score. Finally, the "Degree of job satisfaction" and the "Generational renewal" were the most relevant labor indicators. It is considered that the Delphi approach used in this research settles some of the flaws of other sustainability models, such as the adaptation to the system to be studied and the involvement of stakeholders in the design. Copyright © 2018 Elsevier B.V. All rights reserved.
Gao, Lubo; Xu, Huasen; Bi, Huaxing; Xi, Weimin; Bao, Biao; Wang, Xiaoyan; Bi, Chao; Chang, Yifang
2013-01-01
Agroforestry has been widely practiced in the Loess Plateau region of China because of its prominent effects in reducing soil and water losses, improving land-use efficiency and increasing economic returns. However, the agroforestry practices may lead to competition between crops and trees for underground soil moisture and nutrients, and the trees on the canopy layer may also lead to shortage of light for crops. In order to minimize interspecific competition and maximize the benefits of tree-based intercropping systems, we studied photosynthesis, growth and yield of soybean (Glycine max L. Merr.) and peanut (Arachis hypogaea L.) by measuring photosynthetically active radiation, net photosynthetic rate, soil moisture and soil nutrients in a plantation of apple (Malus pumila M.) at a spacing of 4 m × 5 m on the Loess Plateau of China. The results showed that for both intercropping systems in the study region, soil moisture was the primary factor affecting the crop yields followed by light. Deficiency of the soil nutrients also had a significant impact on crop yields. Compared with soybean, peanut was more suitable for intercropping with apple trees to obtain economic benefits in the region. We concluded that apple-soybean and apple-peanut intercropping systems can be practical and beneficial in the region. However, the distance between crops and tree rows should be adjusted to minimize interspecies competition. Agronomic measures such as regular canopy pruning, root barriers, additional irrigation and fertilization also should be applied in the intercropping systems.
Needs and priorities in agroforestry research in the Pacific
Roger R. Bay
1993-01-01
This paper summarizes a longer presentation of research needs identified by two working groups commissioned by the Land Grant Colleges of the Pacific. Major discussion points by the workshop participants are also summarized.
NASA Astrophysics Data System (ADS)
Seserman, Diana-Maria; Veste, Maik; Freese, Dirk
2017-04-01
The profitability of reclaiming post-mining areas depends on the tree biomass productivity and the restoration of ecosystem functions, such as improving soil and water quality. Agroforestry systems, regarded as combined land-use systems of trees and crops, have the ability to facilitate soil development while reducing wind speed, soil erosion and evaporation. Achieving the maximum biomass productivity of the tree stands depends on the corresponding soil conditions and water availability, but is also influenced by stand structure and the competition between individual trees. For this purpose, black locust (Robinia pseudoacacia L.) trees were planted in a Nelder design in 2010, on a reclaimed post-mining site of the open-cast lignite mining in Welzow Süd (Brandenburg, Germany). Black locust is regarded as a drought-adapted tree species and commonly used for the reclamation of former lignite mining sites in Lower Lusatia, Germany. The Nelder design encompasses angles of arc of equal measure and with the same origin traversed by successive circumferences set at a predefined radial distance. Accordingly, a total of 1071 trees were planted in Welzow Süd at the intersection between 63 spokes and 17 circumferences and at densities ranging from 0.4 to 8.0 m2, with the aim of examining the influence of stand density on the tree growth in a timeframe of six years. In order to evaluate the biomass production of the trees and to determine an optimal planting density on a marginal land, various scenarios were assessed with the help of the Yield-SAFE model, a parameter-sparse process-based agroforestry model. The study revealed the consequences of choosing different tree densities on the tree biomass productivity and water use of trees in relation to the competition for light and water. References Keesman KJ, van der Werf W, van Keulen H, 2007. Production ecology of agroforestry systems: A minimal mechanistic model and analytical derivation of the land equivalent ratio. Mathematical Biosciences, vol. 209, pp. 608-623. Mantovani D, Veste M, Böhm C, Vignudelli M, Freese D, 2015. Drought impact on the spatial and temporal variation of growth performance and plant water status of black locust (Robinia pseudoacacia L.) in agroforestry systems in Lower Lusatia (Germany). iForest 8, 743-757. Mantovani D, Veste M, Freese D, 2014. Black locust (Robinia pseudoacacia L.) ecophysiological and morphological adaptations to drought and their consequence on biomass production and water use efficiency. New Zealand Journal of Forestry 44, 29. van der Werf W, Keesman K, Burgess PJ, Graves AR, Pilbeam D, Incoll LD, Metselaar K, Mayus M, Stappers R, van Keulen H, Palma JHN, Dupraz C, 2007. Yield-SAFE: a parameter-sparse process-based dynamic model for predicting resource capture, growth and production in agroforestry systems. Ecological Engineering, vol. 29, pp. 419-433.
Sulfamethazine transport in agroforestry and cropland soils
USDA-ARS?s Scientific Manuscript database
Knowledge of veterinary antibiotic transport and persistence is critical to understanding environmental risks associated with these potential contaminants. To understand mobility of sulfamethazine (SMZ) and sorption processes involved during SMZ transport in soil, column leaching experiments were p...
Response and potential of agroforestry crops under global change.
Calfapietra, C; Gielen, B; Karnosky, D; Ceulemans, R; Scarascia Mugnozza, G
2010-04-01
The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level. 2009 Elsevier Ltd. All rights reserved.
Carbon Storage in Soil Size Fractions Under Two Cacao Agroforestry Systems in Bahia, Brazil
NASA Astrophysics Data System (ADS)
Gama-Rodrigues, Emanuela F.; Ramachandran Nair, P. K.; Nair, Vimala D.; Gama-Rodrigues, Antonio C.; Baligar, Virupax C.; Machado, Regina C. R.
2010-02-01
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao ( Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250-53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.
Leal, J B; Santos, R P; Gaiotto, F A
2014-01-28
The fragments of the Atlantic Forest of southern Bahia have a long history of intense logging and selective cutting. Some tree species, such as jequitibá rosa (Cariniana legalis), have experienced a reduction in their populations with respect to both area and density. To evaluate the possible effects of selective logging on genetic diversity, gene flow, and spatial genetic structure, 51 C. legalis individuals were sampled, representing the total remaining population from the cacao agroforestry system. A total of 120 alleles were observed from the 11 microsatellite loci analyzed. The average observed heterozygosity (0.486) was less than the expected heterozygosity (0.721), indicating a loss of genetic diversity in this population. A high fixation index (FIS = 0.325) was found, which is possibly due to a reduction in population size, resulting in increased mating among relatives. The maximum (1055 m) and minimum (0.095 m) distances traveled by pollen or seeds were inferred based on paternity tests. We found 36.84% of unique parents among all sampled seedlings. The progenitors of the remaining seedlings (63.16%) were most likely out of the sampled area. Positive and significant spatial genetic structure was identified in this population among classes 10 to 30 m away with an average coancestry coefficient between pairs of individuals of 0.12. These results suggest that the agroforestry system of cacao cultivation is contributing to maintaining levels of diversity and gene flow in the studied population, thus minimizing the effects of selective logging.
Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.
Isaac, Marney E; Kimaro, Anthony A
2011-01-01
Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil.
Gama-Rodrigues, Emanuela F; Ramachandran Nair, P K; Nair, Vimala D; Gama-Rodrigues, Antonio C; Baligar, Virupax C; Machado, Regina C R
2010-02-01
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 microm, 250-53 microm, and <53 microm)-corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions-and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.
Wang, Jinchuang; Ren, Changqi; Cheng, Hanting; Zou, Yukun; Bughio, Mansoor Ahmed; Li, Qinfen
2017-10-01
Microbial communities and their associated enzyme activities affect quantity and quality of phosphorus (P) in soils. Land use change is likely to alter microbial community structure and feedback on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to land use and shifts in the amount and quality of soil phosphorus (P). We investigated effects of the conversion of rainforests into rubber agroforests (AF), young rubber (YR), and mature rubber (MR) plantations on soil P fractions (i.e., labile P, moderately labile P, occluded P, Ca P, and residual P) in Hainan Island, Southern China. Microbial community composition and microbial enzyme were assayed to assess microbial community response to forest conversion. In addition, we also identified soil P fractions that were closely related to soil microbial and chemical properties in these forests. Conversion of forest to pure rubber plantations and agroforestry system caused a negative response in soil microorganisms and activity. The bacteria phospholipid fatty acid (PLFAs) levels in young rubber, mature rubber and rubber agroforests decreased after forest conversion, while the fungal PLFAs levels did not change. Arbuscular mycorrhizal fungi (AMF) (16:1w5c) had the highest value of 0.246μmol(gOC) -1 in natural forest, followed by rubber agroforests, mature rubber and young rubber. Level of soil acid phosphatase activity declined soon (5 years) after forest conversion compared to natural forest, but it improved in mature rubber and agroforestry system. Labile P, moderately labile P, occluded P and residual P were highest in young rubber stands, while moderately labile, occluded and residual P were lowest in rubber agroforestry system. Soil P fractions such as labile P, moderately labile P, and Ca P were the most important contributors to the variation in soil microbial community composition. We also found that soil P factions differ significantly among the four transformation systems. Soil labile P faction and its potential sources (moderately labile P, occluded P, and residual P) were positively correlated with NO 3 - , but negatively correlated with AMF, suggesting that these properties play key roles in P transformation. Our study indicated that land use had an impact on microbial community composition and functions, which consequently influenced soil phosphorus availability and cycling. Copyright © 2017 Elsevier B.V. All rights reserved.
Béliveau, Annie; Lucotte, Marc; Davidson, Robert; Paquet, Serge; Mertens, Frédéric; Passos, Carlos J; Romana, Christine A
2017-12-01
In addition to causing physical degradation and nutrient depletion, erosion of cultivated soils in the Amazon affects aquatic ecosystems through the release of natural soil mercury (Hg) towards lakes and rivers. While traditional agriculture is generally cited as being among the main causes of soil erosion, agroforestry practices are increasingly appreciated for soil conservation. This study was carried out in family farms of the rural Tapajós region (Brazil) and aimed at evaluating soil erosion and associated Hg release for three land uses. Soils, runoff water and eroded sediments were collected at three sites representing a land cover gradient: a recently burnt short-cycle cropping system (SCC), a 2-year-old agroforestry system (AFS) and a mature forest (F). At each site, two PVC soil erosion plots (each composed of three 2 × 5 m isolated subplots) were implemented on steep and moderate slopes respectively. Sampling was done after each of the 20 rain events that occurred during a 1-month study period, in the peak of the 2011 rain season. Runoff volume and rate, as well as eroded soil particles with their Hg and cation concentrations were determined. Total Hg and cation losses were then calculated for each subplot. Erosion processes were dominated by land use type over rainfall or soil slope. Eroded soil particles, as well as the amount of Hg and cations (CaMgK) mobilized at the AFS site were similar to those at the F site, but significantly lower than those at the SCC site (p < 0.0001). Erosion reduction at the AFS site was mainly attributed to the ground cover plants characterizing the recently established system. Moreover, edaphic change throughout AFS and F soil profiles differed from the SCC site. At the latter site, losses of fine particles and Hg were enhanced towards soil surface, while they were less pronounced at the other sites. This study shows that agroforestry systems, even in their early stages of implementation, are characterized by low erosion levels resembling those of local forest environments, thus contributing to the maintenance of soil integrity and to the reduction of Hg and nutrient mobility. Copyright © 2017 Elsevier Ltd. All rights reserved.
C. H. Michler; P.M. Pijut; J. Van Sambeek; M. Coggeshall; J. Seifert; K. Woeste; R. Overton; F., Jr., eds. Ponder
2004-01-01
Presents papers and abstracts relating to genetic improvement, nursery production, plantation establishment, natural stand management, pest management, agroforestry and economics of black walnut and related Juglans species.
36 CFR 230.40 - Eligible practices for cost-share assistance.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., silvopasture, alley cropping, or other agroforestry practices, including purposes for energy conservation and... Improvement and Watershed Protection—Establishment, maintenance, renovation, and restoration practices... restoration practices to create, protect, or improve fish and wildlife habitat, including any necessary design...
Micronesian agroforestry: evidence from the past, implications for the future
Marjorie V. C. Falanruw
1993-01-01
Traditional agroforest systems exist throughout Micronesia. The system found on one Micronesian group of islands, Yap, is described and evaluated in ecological terms. Implications for future development of agriculture in Micronesia are discussed and some specific recommendations are given.
Permanent field plot methodology and equipment
Thomas G. Cole
1993-01-01
Long-term research into the composition, phenology, yield, and growth rates of agroforests can be accomplished with the use of permanent field plots. The periodic remeasurement of these plots provides researchers a quantitative measure of what changes occur over time in indigenous agroforestry systems.
Descriptor data of Castanea accessions at the University of Missouri
USDA-ARS?s Scientific Manuscript database
Chestnut, Castanea L., trees were propagated and planted in repositories at the Horticulture and Agroforestry Research Center, New Franklin, Missouri in 1996, 2002, 2009 with additional accessions acquired annually. Trees have been pruned, fertilized, irrigated, and pests controlled following Unive...
Establishing oaks in Big River floodplains
Dan Dey; John Kabrick; Michael Gold
2003-01-01
Successful tree establishment is fundamental to implementing agroforestry practices, reforesting bottomland cropfields or regenerating green-tree reservoirs. Planting trees can be problematic in floodplains and riparian areas because of intense competition from herbaceous and woody plants, animal herbivory and browsing, and flooding and saturated soils.
NASA Astrophysics Data System (ADS)
Biel, C.; Molina, A.; Aranda, X.; Llorens, P.; Savé, R.
2012-04-01
Tree plantation for wood production has been proposed to mitigate CO2-related climate change. Although these agroforestry systems can contribute to maintain the agriculture in some areas placed between rainfed crops and secondary forests, water scarcity in Mediterranean climate could restrict its growth, and their presence will affect the water balance. Tree plantations management (species, plant density, irrigation, etc), hence, can be used to affect the water balance, resulting in water availability improvement and buffering of the water cycle. Soil water content and meteorological data are widely used in agroforestry systems as indicators of vegetation water use, and consequently to define water management. However, the available information of ecohydrological processes in this kind of ecosystem is scarce. The present work studies how the temporal and spatial variation of soil water content is affected by transpiration and interception loss fluxes in a Mediterranean rainfed plantation of cherry tree (Prunus avium) located in Caldes de Montbui (Northeast of Spain). From May till December 2011, rainfall partitioning, canopy transpiration, soil water content and meteorological parameters were continuously recorded. Rainfall partitioning was measured in 6 trees, with 6 automatic rain recorders for throughfall and 1 automatic rain recorder for stemflow per tree. Transpiration was monitored in 12 nearby trees by means of heat pulse sap flow sensors. Soil water content was also measured at three different depths under selected trees and at two depths between rows without tree cover influence. This work presents the relationships between rainfall partitioning, transpiration and soil water content evolution under the tree canopy. The effect of tree cover on the soil water content dynamics is also analyzed.
Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin
2015-01-01
Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832
Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin
2015-01-01
Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.
Streamflow, sediment and carbon transport from a Himalayan watershed
NASA Astrophysics Data System (ADS)
Sharma, P.; Rai, S. C.
2004-04-01
Rivers indeed serve an important role in the carbon fluxes being recognized as a major component to regional and global environmental change. The present study focuses the sediment and carbon transports in a Himalayan watershed (elevational range 300-2650 m asl, area of 3014 ha) at Sikkim, India. The watershed has five perennial streams, all attain significant size during rainy season. The micro-watershed for each perennial stream has a mosaic distribution of land-use practices, viz. forests, agroforestry, agriculture and wastelands. The average discharge in the Rinjikhola, the watershed outlet was 840-850 l s -1 in summer season that increased by 5-6 times in rainy season. Sediment concentration varied distinctly with seasons in different streams and the outlet of the watershed. The soil loss rate from the total watershed ranged from 6 to 7 t ha -1 yr -1 that accounts to a net loss of 833 t yr -1 organic carbon, and 2025 t yr -1 dissolved organic carbon from the watershed, and more than 90% of soil losses were attributable to open cropped area. The stream discharge, soil and carbon loss and precipitation partitioning through different pathways in forest and agroforestry land-use suggest that these land-uses promote conservation of soil and carbon. It is emphasized that a good understanding of carbon transfer through overland flow and discharge is important for policy decisions and management of soil and carbon loss of a Himalayan watershed as it is very sensitive to land-use/cover changes. Therefore, the conversion of forest to agricultural land should be reversed. Agroforestry systems should be included in agricultural land in mountainous regions.
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2016-01-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is influenced by the type of the agroforestry system established, the soil and climatic conditions, and management. In this regional-scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): home garden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across 4 climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of home garden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture SOC stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in home garden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
NASA Astrophysics Data System (ADS)
Hombegowda, H. C.; van Straaten, O.; Köhler, M.; Hölscher, D.
2015-08-01
Tropical agroforestry has an enormous potential to sequester carbon while simultaneously producing agricultural yields and tree products. The amount of soil organic carbon (SOC) sequestered is however influenced by the type of the agroforestry system established, the soil and climatic conditions and management. In this regional scale study, we utilized a chronosequence approach to investigate how SOC stocks changed when the original forests are converted to agriculture, and then subsequently to four different agroforestry systems (AFSs): homegarden, coffee, coconut and mango. In total we established 224 plots in 56 plot clusters across four climate zones in southern India. Each plot cluster consisted of four plots: a natural forest reference plot, an agriculture reference and two of the same AFS types of two ages (30-60 years and > 60 years). The conversion of forest to agriculture resulted in a large loss the original SOC stock (50-61 %) in the top meter of soil depending on the climate zone. The establishment of homegarden and coffee AFSs on agriculture land caused SOC stocks to rebound to near forest levels, while in mango and coconut AFSs the SOC stock increased only slightly above the agriculture stock. The most important variable regulating SOC stocks and its changes was tree basal area, possibly indicative of organic matter inputs. Furthermore, climatic variables such as temperature and precipitation, and soil variables such as clay fraction and soil pH were likewise all important regulators of SOC and SOC stock changes. Lastly, we found a strong correlation between tree species diversity in homegarden and coffee AFSs and SOC stocks, highlighting possibilities to increase carbon stocks by proper tree species assemblies.
Field windbreaks for bioenergy production and carbon sequestration
USDA-ARS?s Scientific Manuscript database
Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...
Agroforestry, climate change, and food security
USDA-ARS?s Scientific Manuscript database
Successfully addressing global climate change effects on agriculture will require a holistic, sustained approach incorporating a suite of strategies at multiple spatial scales and time horizons. In the USA of the 1930’s, bold and innovative leadership at high levels of government was needed to enact...
Tree establishment in floodplain agroforestry practices
Daniel C. Dey; John M. Kabrick; Michael A. Gold
2004-01-01
The benefits of soil mounding, a cover crop, and various nursery stock types were evaluated for establishing pin and swamp white oaks in floodplain crop fields. The two stock types were 1-0 bareroot and large (3- and 5-gallon) container seedlings grown by the RPMTM method.
Microbial community diversity in agroforestry and grass vegetative filter strips
USDA-ARS?s Scientific Manuscript database
Vegetative filter strips (VFS) have long been promoted as a soil conservation practice that yields many additional environmental benefits. Most previous studies have focused primarily on the role of vegetation and/or soil physical properties in these ecosystem services. Few studies have investigated...
NASA Astrophysics Data System (ADS)
Purnomo, D.; Budiastuti, M. S.; Sakya, A. T.; Cholid, M. I.
2018-03-01
Turmeric (Curcuma xanthorrhiza Roxb.) is a traditional medicinal plant. In Indonesia, it is generally cultivated in village home gardens. Famers conducted very simpple cultivation method of turmeric, without specific maintenance and below varies tree. The experiment was conducted by cultivating turmeric below silk trees as in agroforetry system. The experiment was arranged split plot design, the first factor was three level of irradiation (turmeric monoculture/full irradiation, turmeric below silktree with pruning canopy, and turmeric below silk tree no pruning). The second factor was fertilizer NPK 15-15-15 with three levels of doses (100, 150, and 200 kg ha-1). Cultivating turmeric in agroforestry system based on silk tree which were one year old and not yet needed pruning, application of NPK 15-15-15 fertilizer 100 kg ha-1 was enough. The rhizome yield of turmeric 3 months age reaches 139 g per plant (fresh weight). Litter fall from a silk tree one year old in one year is 30 kg per tree per year.
Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing
2012-11-01
By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.
Bats and birds increase crop yield in tropical agroforestry landscapes.
Maas, Bea; Clough, Yann; Tscharntke, Teja
2013-12-01
Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.
Wang, Qian; Xu, Zheng; Hu, Tingxing; Rehman, Hafeez Ur; Chen, Hong; Li, Zhongbin; Ding, Bo; Hu, Hongling
2014-01-01
Walnut agroforestry systems have many ecological and economic benefits when intercropped with cool-season species. However, decomposing leaf litter is one of the main sources of allelochemicals in such systems. In this study, lettuce (Lactuca sativa var. angustata) was grown in the soil incorporated with walnut leaf litter to assess its allelopathic activity. Lettuce growth and physiological processes were inhibited by walnut leaf litter, especially during early growth stage (1-2 euphylla period) or with large amount of litter addition. The plants treated by small amount of leaf litter recovered their growth afterwards, while the inhibition for 180 g leaf litter persisted until harvest. Twenty-eight compounds were identified in the leaf litter, and several of them were reported to be phytotoxic, which may be responsible for the stress induced by walnut leaf litter. Thus, for highest economic value of vegetables such as lettuce, excessive incorporation of leaf litter should be discouraged.
Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.
2007-06-01
Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under themore » project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.« less
Soil carbon dynamics of tree plantings for woody biomass feedstock
USDA-ARS?s Scientific Manuscript database
Agroforestry practices are being considered for their bioenergy potential as the wood could be harvested for direct combustion, cellulose to ethanol conversion, or pyrolysis to bio-oils. The objective of this project was to use spatially-distributed soil sampling and soil profile descriptions to det...
Soil quality in a pecan – Kura clover alley cropping system in the midwestern USA
USDA-ARS?s Scientific Manuscript database
Intercropping alleys in agroforestry provides an income source until the tree crop produces harvestable yields. However, cultivation of annual crops decreases soil organic matter and increases soil erosion potential, especially on sloping landscapes. Perennial crops maintain a continuous soil cover,...
Phenological responses of juvenile pecan and white oak on an upland site
USDA-ARS?s Scientific Manuscript database
Pecan (Carya illinoiensis) and white oak (Quercus alba) produce multiple products and wildlife values, but their phenological responses to N fertilization have not been well characterized in an mixed species agroforestry practice. We compared tree height at planting and for six consecutive growing ...
USDA-ARS?s Scientific Manuscript database
Veterinary antibiotics (VAs), such as sulfamethazine (SMZ) are released into the environment by application of manure to agricultural fields. Understanding the fate and transport of VAs is important for assessing and mitigating possible environmental hazards. To study the effects of dissolved organi...
Soil quality indicator responses to row crop, grazed pasture, and agroforestry buffer management
USDA-ARS?s Scientific Manuscript database
Incorporation of trees and establishment of grass buffers within agroecosystems are management practices shown to enhance soil quality. Soil enzyme activities and water stable aggregates (WSA) have been identified as sensitive soil quality indicators to evaluate early responses to soil management. ...
Recreation and Agroforestry: Examining New Dimensions of Multifunctionality in Family Farms
ERIC Educational Resources Information Center
Barbieri, Carla; Valdivia, Corinne
2010-01-01
Multifunctionality serves as an analytical framework to recognize many services that farms provide to their surrounding communities and society. This study explores an often overlooked dimension of multifunctionality by examining different recreational services provided by landowners in Missouri and analyzing the relationship between recreational…
36 CFR 230.36 - State priority plan-purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-07-01
...—purpose and scope. (a) The State priority plan shall be used to guide FLEP implementation in each... describe the various roles and responsibilities of the State Forester, State Forest Stewardship... private forest and agroforestry resources; (3) Identification of the desired objectives and environmental...
APEX Model Simulation for Row Crop Watersheds with Agroforestry and Grass Buffers
USDA-ARS?s Scientific Manuscript database
Watershed model simulation has become an important tool in studying ways and means to reduce transport of agricultural pollutants. Conducting field experiments to assess buffer influences on water quality are constrained by the large-scale nature of watersheds, high experimental costs, private owner...
NASA Astrophysics Data System (ADS)
Monteiro, Filipa; Vidigal, Patricia; Romeiras, Maria Manuel; Ribeiro, Ana; Abreu, Maria Manuela; Viegas, Wanda; Catarino, Luís
2017-04-01
During the last decades, agriculture in West Africa has been marked by dramatic shifts with the coverage of single crops, increasing pressure over the available arable land. Yet, West African countries are still striving to achieve sustainable production at an increased scale for global market needs. Market-driven rapid intensification is often a major cause for cropland area expansion at the expense of deforestation and soil degradation, especially to export commodities in times of high prices. Cashew (Anacardium occidentale L.) is nowadays an important export-oriented crop, being produced under intensive cultivation regimes in several tropical regions. Particularly, among the main cashew production areas, West Africa is the most recent and dynamic in the world, accounting for 45% of the world cashew nuts production in 2015. Considering its global market values, several developing countries rely on cashew nuts as national economy revenues, namely in Guinea-Bissau. Considering the intensive regime of cashew production in Guinea-Bissau, and as widely recognized, intensive agriculture linked with extensification can negatively impact ecosystems, affecting natural resources availability, soil erosion and arability compromised by excessive salinity. Ultimately this will result in the disruption of carbon - nitrogen cycle, important to the agricultural ecosystem sustainability. As such, tree intercropped with legumes as cover crops, offers a sustainable management of the land area, thus creating substantial benefits both economically and environmentally, as it enhances diversification of products outputs and proving to be more sustainable than forestry and/or agricultural monocultures. Soil fertility improvement is a key entry point for achieving food security, and also increment agriculture commodities of the agro-system. Without using inorganic fertilizers, the green solution for improving soil management is to incorporate adapted multi-purpose legumes as cover crops, reducing soil erosion as well as insect pests and associated diseases, while improves the yield of the main crop. The integration of legume in agroforestry systems offers an alternative and resilient strategy to increase N availability without increasing mineral N additions. As such, we present a case study of a forest-based system under intensive agriculture regime and propose an alternative sustainable system - the agroforestry system - by intercropping legumes, thus ensuring the sustainability of a cash crop sector both in terms of food security and soil resources. Results obtained from this case-study will therefore be important to demonstrate the global importance of agroforestry systems as key strategy for land use planning, sustainability of the agricultural systems as well as the preserving the environment of smallholder farms in the sub-Saharan Africa.
Agroforestry systems and environmental quality: introduction.
Nair, P K Ramachandran
2011-01-01
Investments in agroforestry research during the past three decades-albeit modest-have yielded significant gains in understanding the role of trees on farmlands, and the ecological and economic advantages of integrated farming systems. While early research focused mostly on farm or local levels, broader-level ecosystem services of agroforestry systems (AFS) have raised high expectations in recent years. The nine papers included in this special collection deal with three of such environmental benefits of AFS: water-quality enhancement, carbon sequestration, and soil improvement. These benefits are based on the perceived ability of (i) vegetative buffer strips (VBS) to reduce surface transport of agrochemical pollutants, (ii) large volumes of aboveground and belowground biomass of trees to store high amounts of C deeper in the soil profile, and (iii) trees to enhance soil productivity through biological nitrogen fixation, efficient nutrient cycling, and deep capture of nutrients. The papers included have, in general, substantiated these premises and provided new insights. For example, the riparian VBS are reported to increase the reservoir life, in addition to reducing transport of agrochemicals; the variations in C storage in different soil-fraction sizes suggest that microaggregate (250-53 μm) dynamics in the soil could be a good indicator of its C-storage potential; and the use of vector analysis technique is recommended in AFS to avoid consequences of inaccurate and overuse of fertilizers. The papers also identified significant knowledge gaps in these areas. A common theme across all three environmental quality issues covered is that more and varied research datasets across a broad spectrum of conditions need to be generated and integrated with powerful statistical tools to ensure wide applicability of the results. Furthermore, appropriate management practices that are acceptable to the targeted land users and agroforestry practitioners need to be designed to exploit these environmental benefits. The relative newness of research in environmental quality of AFS will pose some additional challenges as well. These include the lack of allometric equations for tree-biomass determination, absence of standardized norms on soil sampling depth, and limitations of fixed-effect models arising from issues such as pseudo-replication and repeated measures that are common in studies on preexisting field plots. Overall, this special collection is a timely effort in highlighting the promise of AFS in addressing some of the environmental quality issues, and the challenges in realizing that potential. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Sustainable development and use of ecosystems with non-forest trees
USDA-ARS?s Scientific Manuscript database
Non-forest trees are components of managed ecosystems including orchards and agroforestry systems and natural ecosystems such as savannas and riparian corridors. Each of these ecosystems includes trees but does not have a complete tree canopy or spatial extent necessary to create a true forest ecosy...
APEX simulation: environmental benefits of agroforestry and grass buffers on corn-soybean watersheds
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy Environmental Extender (APEX) model has the ability to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. The objectives of this study were to calibrate and validate the APEX model for three adjacent watersheds and...
Assessing Farmer Innovations in Agroforestry in Eastern Zambia
ERIC Educational Resources Information Center
Katanga, R.; Kabwe, G.; Kuntashula, E.; Mafongoya, P. L.; Phiri, S.
2007-01-01
This paper describes farmer innovations on improved fallows developed by researchers to replenish soil fertility. The reasons for the innovations and how these innovations are facilitating wide adoption of improved fallows are discussed. Research designed trial results to evaluate the ecological robustness of these innovations are also analyzed in…
Soil quality parameters for row-crop and grazed pasture systems with agroforestry buffers
USDA-ARS?s Scientific Manuscript database
Incorporation of trees and establishment of buffers are practices that can improve soil quality. Soil enzyme activities and water stable aggregates are sensitive indices for assessing soil quality by detecting early changes in soil management. However, studies comparing grazed pasture and row crop...
Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture
USDA-ARS?s Scientific Manuscript database
The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...
USDA-ARS?s Scientific Manuscript database
A standardized plate meter for measuring pasture mass was calibrated at the Agroforestry Research and Demonstration Site in Blacksburg, VA, using six ungrazed plots of established tall fescue (Festuca arundinaceae) overseeded with orchardgrass (Dactylis glomerata). Each plot was interplanted with b...
USDA-ARS?s Scientific Manuscript database
The Agricultural Policy Environmental Extender (APEX) model is used to simulate the effects of vegetative filter strips on runoff and pollutant loadings from agricultural watersheds. A long-term paired watershed study under corn (Zea mays L-soybean [Glycine max (L.) Merr.] rotation with agroforestr...
Influence of low light intensity and soil flooding on cacao physiology
USDA-ARS?s Scientific Manuscript database
Growth and development of plants frequently are limited by multiple abiotic stresses that occur simultaneously in the environment. Cabruca’ an agroforestry system is a main cropping system invariably adapted for cultivation of cacao in southern Bahia, Brazil. In this system of management cacao is gr...
Soil quality differences in a mature alley cropping system in temperate North America
USDA-ARS?s Scientific Manuscript database
Alley cropping in agroforestry practices has been shown to improve soil quality, however information on long-term effects (>10 years) of alley cropping on soils in the temperate zone is very limited. The objective of this study was to examine effects of management, landscape, and soil depth on soil...
Inventorying trees in agricultural landscapes: towards an accounting of working trees
C. H. Perry; C. W. Woodall; M.M. Schoeneberger
2005-01-01
Agroforestry plantings and other trees intentionally established in rural and urban areas are emerging as innovative management options for addressing resource issues and achieving landscape-level goals. An understanding of the contributions from these and future plantings would provide critical information to policy and program developers, and a comprehensive...
Inventorying trees in agricultural landscapes: toward an accounting of working trees
Carol H. Perry; Christopher W. Woodall; Michele M. Schoeneberger
2005-01-01
Agroforestry plantings and other trees intentionally established in rural and urban areas are emerging as innovative managemnt options for addressing resource issues and achieving landscape-level goals, An understanding of the contributions from these and future plantings would provide critical information to policy and program developers, and a comprehensive inventory...
Pine straw production: from forest to front yard
Janice F. Dyer; Rebecca J. Barlow; John S. Kush; John C. Gilbert
2012-01-01
Southern forestry may be undergoing a paradigm shift in which timber production is not necessarily the major reason for owning forested land. However, there remains interest in generating income from the land and landowners are exploring alternatives, including agroforestry practices and production of non-timber forest products (NTFPs). One such alternative more recent...
Tool time: melding watershed and site goals on private lands
Gary Bentrup; Michele Schoeneberger; Mike Dosskey; Gary Wells; Todd Kellerman
2005-01-01
Creating effective agroforestry systems with broad public support requires simultaneously addressing landowner and societal goals while paying respect to ecological processes that cross spatial and political boundaries. To meet this challenge, a variety of planning and design tools are needed that are straight-forward and flexible enough to accommodate the range of...
The Status of Agroforestry in the South
F. Christian Zinkhan; D. Evan. Mercer
1997-01-01
Southern agroforestty has emerged as a significant research topic. Research results indicate that agroforestty can address such sustainability problems as erosion and water pollution, while improving economic performance in selected situatiOII& Silvopastoral systems are the most commonly adopted agroforestty application in the region; le!6-common alley-cropping...
Breanna L. Riedel; Kevin R. Russell; W. Mark Ford; Katherine P. O' Neill; Harry W. Godwin
2008-01-01
Woodland salamander responses to either traditional grazing or silvopasture systems are virtually unknown. An information-theoretic modelling approach was used to evaluate responses of red-backed salamanders (Plethodon cinereus) to silvopasture and meadow conversions in southern West Virginia. Searches of area-constrained plots and artificial...
J.W. Van Sambeek
1997-01-01
Proceedings of the Fifth Black Walnut Symposium held 28-31 July 1996 in Springfield, Missouri. Includes 46 manuscripts and abstracts dealing with establishment, management, and utilization of black walnut with emphasis on increased use for agroforestry and nut culture.
Filling the gap: improving estimates of working tree resources in agricultural landscapes
C.H. Perry; C.W. Woodall; G.C. Liknes; M.M. Schoeneberger
2008-01-01
Agroforestry plantings and other trees intentionally established in rural and urban areas are emerging as innovative management options for addressing resource issues and achieving landscapelevel goals. An understanding of the ecosystem services contributed by these and future plantings would provide critical information to policy and program developers, and a...
Indigenous Fallow Management on Yap Island
M.V.C. Falanruw; Francis Ruegorong
2002-01-01
On Yap Island, indigenous management of the fallow in shifting agriculture has resulted in the development of site-stable taro patch and tree garden agroforestry systems. These systems are relatively sustainable and supportive of household economies , with some surplus for local market sales. however, a broad range of crops whose harvest is complementary to those...
USDA-ARS?s Scientific Manuscript database
Optimal utilization of animal manures as a plant nutrient source should also prevent adverse impacts on water quality. The objective of this study was to evaluate long-term poultry litter and N fertilizer application on nutrient cycling following establishment of an alley cropping system with easter...
USDA-ARS?s Scientific Manuscript database
There is a pressing need to rejuvenate rural populations in this country with new and innovative ventures. Investing resources in beginning farmers is one way to make rural populations more vibrant. However, beginning farmers lack adequate farm skills and background to initiate and maintain viable a...
USDA-ARS?s Scientific Manuscript database
Farming offers a viable avenue for returning veterans to transition into society and capitalizes on skills that made them successful in the military. The goal of this project is to develop and expand on a personalized comprehensive/integrated educational program that provides military veterans and b...
USDA-ARS?s Scientific Manuscript database
Farming offers a viable avenue for returning veterans to transition into society and capitalizes on skills that made them successful in the military. The goal of this project is to develop and expand on a personalized comprehensive/integrated educational program that provides military veterans begin...
Certifying the harvest: developments in NTFP certification
Patrick Mallet
2001-01-01
I coordinate a Certification and Marketing program for Falls Brook Centre, an environmental organization based in New Brunswick. I first got interested in certification issues during my work with an international agroforestry network whose members wanted to highlight the ecological practices inherent in their production system. In my initial research, I found that a...
Methods to prioritize placement of riparian buffers for improved water quality
Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer
2008-01-01
Agroforestry buffers in riparian zones can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, surficial geology, and hydrology determine the capability of forest buffers to intercept and treat these flows. This paper describes two landscape analysis techniques for identifying...
USDA-ARS?s Scientific Manuscript database
Black walnut (Juglans nigra L.) is commonly grown in agroforestry practices for nuts and/or timber with little knowledge of how understory herbage management might affect tree phenology. We compared black walnut plant type (variety and wild-type) for phenological response in date of budburst, leaf ...
Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model
USDA-ARS?s Scientific Manuscript database
The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), co...
USDA-ARS?s Scientific Manuscript database
The Atlantic Rain Forest is one of the most complex natural environments of the earth and, linked with this ecosystem, the cacao-cabruca system is agroforestry cultivation with an arrangement including a range of environmental, social and economical benefits and can protect many features of the biod...
Watershed management implications of agroforestry expansion on Minnesota's farmlands
C. Hobart Perry; Ryan C. Miller; Anthony R. Kaster; Kenneth N. Brooks
2000-01-01
Minnesotaâs agricultural landscape is changing. The increasing use of woody perennials in agricultural fields, living snow fences, windbreaks, and riparian areas has important watershed management implications for agricultural watersheds in northwestern Minnesota. These changes in land use could lead to reductions in annual water yield, annual flood peaks, and dry...
Intercropping of two Leucaena spp. with sweet potato: yield, growth rate and biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, J.F.
1982-01-01
Results of trials with Leucaena leucocephala and Leucaena diversifolia at Wau, Papua New Guinea, showed potential benefits of the agroforestry cropping system. The total biomass yield (sweet potato plus firewood and green manure) was considerably greater than the yield per unit area of sweet potato alone. 3 references.
[Light competition and productivity of agroforestry system in loess area of Weibei in Shaanxi].
Peng, Xiao-bang; Cai, Jing; Jiang, Zai-min; Zhang, Yuan-ying; Zhang, Shuo-xin
2008-11-01
Agroforestry is the most effective way for the restoration of disturbed land on Loess Plateau and the development of poorly local economy. Taking the tree-based intercropping systems of walnut or plum with soybean or pepper in the loess area of Weibei as test objects, the photosynthesis, growth, and yield of soybean (Qindou 8) and pepper (Shanjiao 981) in the systems were studied. The results showed that the photosynthetic active radiation (PAR), net photosynthetic rate (Pn), growth, and yield of individual soybean or pepper plants were significantly decreased, with the effects increased with decreasing distance from tree rows. Leaf water potential was not significantly or poorly correlated with the Pn, growth, and yield of the two crops. However, there were significant positive correlations between the soil moisture content in 10-20 cm layer and the biomass and yield of soybean, and the above-ground biomass of pepper. PAR was highly correlated with the yield of both crops, which indicated that light competition was one of the key factors leading to the decrease of crop yield.
Enhanced selective metal adsorption on optimised agroforestry waste mixtures.
Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta
2015-04-01
The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pérez-Negrón, Edgar; Dávila, Patricia; Casas, Alejandro
2014-12-23
TEK, ecological and economic aspects of columnar cacti were studied in the Tehuacán Valley, Mexico to design sustainable regimes of fruit harvest. We analysed the amounts of edible fruit, seeds and flowers produced per hectare of cardonal, jiotillal and tetechera forests, their economic value and actual extraction rates, hypothesizing that the economic benefits of these NTFP would potentially be comparable to maize agriculture, which involves forest removal. Our study comprised the whole territory of the community of Quiotepec, Oaxaca. Sustainable gathering rates were analysed through population dynamics models and simulations of harvesting regimes (10%, 25%, and 50% of fruit gathered) per hectare of forest type. We used estimations on economic benefit and ecological impact of these scenarios to evaluate their relative sustainability, compared with maize agroforestry systems harbouring 2-47% of vegetation cover. For the whole territory, the total annual fruit production is 509.3 ton of Pachycereus weberi, 267.4 ton of Neobuxbaumia tetetzo, 99.5 ton of Escontria chiotilla, and 8.1 ton of Myrtillocactus geometrizans. The total economic value of fruits per hectare was $315.00 U.S. dollars for cardonal, $244.60 for jiotillal, and $113.80 for tetechera, whereas rainfed agriculture of maize was on average $945.52. Demographic models for E. chiotilla and N. tetetzo indicate that 70% and 95% of fruit harvesting, respectively maintain λ > 1, but these harvest rates cannot be recommendable since the models do not consider the high inter-annual environmental variations and the non-estimated amount of fruit consumed by natural frugivorous. Extracting 25% of fruit is ecologically more sustainable, but with low economic benefits. Agroforestry systems maintaining the higher vegetation cover provide economic benefits from agriculture and forest resources. Combining forest extraction and agroforestry systems are ideal scenarios to sustainable fruit harvest programmes. In addition, fair commerce of transformed products would substantially favour goals of sustainable management.
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.
2010-04-01
Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month experiment, we compared soil surface CO2 efflux (soil respiration) from three roof plots with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture conditions and decreased under increasingly dry conditions (drought induced), or increasingly wet conditions (as evidenced in control plots). The roof plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly (responsive) to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all (non-responsive) (n=7). A significant correlation was measured between responsive soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. The litter layer contributed approximately 3-4% of the total CO2 efflux during dry periods and up to 40% during wet periods. Within days of roof opening soil CO2 efflux rose to control plot levels. Thereafter, CO2 efflux remained comparable between roof and control plots. The cumulative effect on soil CO2 emissions over the duration of the experiment was not significantly different: the control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1. The relatively mild decrease measured in soil CO2 efflux indicates that this agroforestry ecosystem is capable of mitigating droughts with only minor stress symptoms.
Ali, Arshad; Mattsson, Eskil
2017-01-01
Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry zone homegarden agroforestry systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Zeng, Xueting; Li, Tienan; Chen, Cong; Si, Zhenjiang; Huang, Guohe; Guo, Ping; Zhuang, Xiaowen
2018-08-15
In this study, a hybrid land-water-environment (LWE) model is developed for identifying ecological effect and risk under uncertain precipitation in an agroforestry ecosystem. A simulation-based fuzzy-stochastic programming with risk analysis (SFSR) method is used into LWE model to reflect the meteorological impacts; meanwhile, it also can quantify artificial fuzziness (e.g., risk attitude of policymaker) and natural vagueness (e.g., ecological function) in decision-making. The developed LWE model with SFSR method is applied to a practical agroforestry ecosystem in China. Results of optimized planting scale, irrigative water schedule, pollution mitigation scheme, and system benefit under changed rainfall, precise risk-adoption and vague ecological function are obtained; meanwhile their corresponding ecological effects and risks are analyzed. It found that current LWE plans could generate massive water deficits (e.g., 23.22×10 6 m 3 in crop irrigation and 26.32×10 6 m 3 in forest protection at highest) due to over-cultivation and excessive pollution discharges (e.g., the highest excessive TP and TN discharges would reach 460.64 and 15.30×10 3 ton) due to irrational fertilization, which would increase regional ecological risks. In addition, fifteen scenarios associated with withdrawing cultivation and recovering forest based on regional environment heterogeneity (such as soil types) have been discussed to adjust current agriculture-environment policies. It found that, the excessive pollution discharges (TN and TP) could be reduced 12.95% and 18.32% at highest through ecological expansions, which would generate higher system benefits than that without withdrawing farmland and recovering forest. All above can facilitate local policymakers to modulate a comprehensive LWE with more sustainable and robust manners, achieving regional harmony between socio-economy and eco-environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluating management practices for log-grown shiitake production in Midwestern agroforestry
Johann N. Bruhn; Jeanne D. Mihail; James J., Jr. Wetteroff; Travis A. Clark; James B. Pickens
2003-01-01
Two experiments evaluating outdoor shiitake cultivation practices in the Central United States were established at the same site in December 1999 and May 2000. Natural fruiting began in August 2000. We compare two response variables: traditional Biological Efficiency and W/UV (the weight of harvested mushrooms in g per 100-cm³ of initial undiscolored wood...
Socio-cultural studies of indigenous agricultural systems: the case for applied research
Randall L. Workman
1993-01-01
Agroforestry has the potential to contribute greatly to Pacific island development efforts. However, success will depend on fully realizing the social implications of agricultural research on island cultures. Agroforesters must recognize their role as "agents of change." Because of this, they must strive for the involvement of the community in all stages of...
Design and analysis of mixed cropping experiments for indigenous Pacific Islands
Mareko P. Tofinga
1993-01-01
Mixed cropping (including agroforestry) often gives yield advan-tages as opposed to monocropping. Many criteria have been used to assess yield advantage in crop mixtures. Some of these are presented. In addition, the relative merits of replacement, additive and bivariate factorial designs are discussed. The concepts of analysis of mixed cropping are applied to an...
USDA-ARS?s Scientific Manuscript database
Cacao has achieved great importance due to its globally consumed products such as chocolate. In addition to the environmental benefits, since this culture is mainly managed in agroforestry systems, contributing to climate change mitigation. However, the assessment of soils physical attributes for ef...
Roles for agroforestry in hardwood regeneration and natural-stand management
H. E. ' Gene' Garrett
2003-01-01
A convincing case can be made that current land-use patterns in the Central Hardwood region reflect a significant underutilization of our land-based resources. A land-use strategy is required that would allow landowners who are interested in converting marginal crop lands to forests, or unproductive woodlots to productive woodlots, to make the change without financial...
J.W. Van Sambeek; Elizabeth A. Jackson; Mark V. Coggeshall; Andrew L. Thomas; Charles H. eds. Michler
2013-01-01
This report presents information from the Seventh Walnut Council Research Symposium, held August 1-3, 2011. This report includes 14 papers and abstracts relating to economics and utilization, pest management, nursery production, plantation establishment, tree improvement, stand management, agroforestry, and nut production of black walnut, related Juglans species, and...
USDA-ARS?s Scientific Manuscript database
In southern Bahia, cabruca is the agroforestry system in which cocoa is cultivated under the shade of sparse native forest trees. Aiming to characterize the tree component of this system and its management practices, we conducted an inventory of the non-cocoa trees in 16 ha of cabruca and do intervi...
Shade Tolerance of Festuca paradoxa Desv., a Cool-Season Grass Native to North America
Nadia Navarrete-Tindall; Larry Mechlin; J. W. Van Sambeek
2003-01-01
Paradox grass (Festuca paradoxa Desv.) is a native cool-season grass found in prairies and forest openings. Paradox grass has not been included in tree plantings. To determine paradox grass adaptation to shaded environmmts, we established a pot experiment in the shade laboratory at the University of Missouri Horticulture and Agroforestry Research...
Roles for agroforestry in hardwood regeneration and natural-stand management
H. E. ' Gene' Garrett
2003-01-01
A convincing case can be made that current land-use patterns in the Central Hardwood region reflect a significant underutilization of our land-based resources. A landuse strategy is required that would allow landowners who are interested in converting marginal crop lands to forests, or unproductive woodlots to productive woodlots, to make the change without financial...
USDA-ARS?s Scientific Manuscript database
Existence of a claypan layer in soils at depths ranging from 4 to 37 cm restricts water movement and has contributed significantly to high rates of runoff, sediment transport, and other non-point source loadings from croplands in watersheds. The deposition of these pollutants in rivers, streams and...
The effect of human activity on the structure and composition of a tropical forest in Puerto Rico
D.C. Garcia-Montiel; F.N. Scatena
1994-01-01
From European settlement to the 1940s, the Bisley watersheds of the Luquilio Experimental Forest, Puerto Rico, were used for agroforestry, selective logging, charcoal production, and timber management. Each of these activities affected different parts of the landscape in different ways and at different times. After nearly 50 years of unhindered regeneration, six...
Eco-buffers: A high density agroforestry design using native species
William Schroeder
2012-01-01
This study showed that Eco-Buffers are characterized by rapid establishment and superior survival when compared to single species buffers. Height of green ash (Fraxinus pennsylvanica Marsh. var. subintegerrima (Vahl.) Fern.) after eight growing seasons averaged 415 cm when growing in an Eco-Buffer compared to 333cm in the single species buffer. Site capture in the Eco-...
Kevin C. Ryan; Eric Rigolot; Francisco C. Rego; Herminio Botelho; Jose A. Vega; Paulo M. Fernandes; Tatiana M. Sofronova
2010-01-01
Globally prescribed burning is widely used for agro-forestry, restoration, and conservation to modify species composition and stand structure. Commonly stated goals of prescribed burns include to reduce hazardous fuels, improve speciesâ habitat, reduce the potential for severe fires in the wildland urban interface or protect municipal watersheds. Treatments may focus...
Community-based agroforestry initiatives in Nicaragua and Costa Rica
David I. King; Richard B. Chandler; John H. Rappole; Raul Raudales; Rich. Turbey
2012-01-01
Curbing the loss of biodiversity is a primary challenge to conservationists. Estimates of current rates of species loss range from 14,000 - 40,000 species per year (Hughes et al., 2007), and although a variety of factors are implicated, habitat loss is repeatedly cited as an important cause (Sala et al., 2000). Most ecosystems are under some degree of threat, however...
Quality and Quantity Evaluations of Shade Grown Forages
K. P. Ladyman; M. S. Kerley; R. L. Kallenbach; H. E. Garrett; J. W. Van Sambeek; N. E. Navarrete-Tindall
2003-01-01
Seven legumes were grown during the summer-fall of 2000, at the Horticulture and Agroforestry Research Center (39? 01 ' N, 92? 46' W) near New Franklin, MO. The forages were grown in 7.5L white pots placed on light-colored gravel either under full sunlight, 45% sunlight, or 20% sunlight created by a shade cloth over a rectangular frame. Drip irrigation was...
Gregory E. Frey; D. Evan Mercer; Frederick W. Cubbage; Robert C. Abt
2011-01-01
Conversion of bottomland hardwood forests in the Lower Mississippi Alluvial Valley (LMAV) to agricultural land has caused a loss of ecosystem services. The primary approaches to reverse this have been the Wetlands Reserve Program and the Conservation Reserve Program, which provide financial incentives to landowners to reforest. However, other forest production regimes...
Agroforestry Economics and Policy
L.D. Godsey; D. Evan Mercer; Robert K. Grala; Stephen C. Grado; Janaki R.R. Alavalapati
2009-01-01
Essentially every living thing on Earth has applied the basic concepts of economics. That is, every living thing has had to use a limited set of resources to meet a minimum set of needs or wants. Although the study of economics is often confused with the study of markets or finance, economics is simply a social science that studies the choices people make. As a social...
A win-win on agricultural lands: creating wildlife habitat through agroforestry
Gary Bentrup
2014-01-01
The 2014 Farm Bill reduces conservation program spending by $6 billionâthe first decrease in conservation funding by a Farm Bill since the inclusion of conservation incentives in 1985. These funding cuts will impact habitat enhancement on private lands, typically accomplished through Farm Bill incentive programs such as the Conservation Reserve Program (CRP) and the...
Emily E. Atkinson; Erika Marín-Spiotta
2015-01-01
Tropical dry forests are subject to intense human pressure and land change, including conversion to agricultural crops, pasture or agroforestry, and urban encroachment. Decades, and even centuries, of conversion, expansion, regrowth, and changing land-use practices can result in a mosaic of secondary growth patches with different land-use histories. Whereas post-...
USDA-ARS?s Scientific Manuscript database
Existence of a claypan layer in soils at depths ranging from 4 to 37 cm restricts vertical water movement and has contributed significantly to high rates of runoff, sediment transport, and other non-point source loadings from croplands in watersheds. The deposition of these pollutants in rivers, st...
ERIC Educational Resources Information Center
Thacheen, Piyaporn; Lauzon, Allan C.
2006-01-01
Rural areas in both developed and developing countries are being increasingly marginalized through structural changes. Furthermore, the disinvestment in state-provided supports and services means that rural people are left to their own devices to cope with these changes. Numerous authors argue that the most effective way of dealing with these…
Tree disease and wood decay as agents of environmental and social change
Kevin T. Smith
2018-01-01
The breakdown or decay of wood is a prominent process in landscape health and disease. The bulk of the energy captured and stored by natural woodlands, orchards, and agroforestry operations is allocated to produce wood. The release of that stored energy and the cycling of the constituent mineral elements into environmental pools and other organisms is through processes...
Yapese land classification and use in relation to agroforests
Pius Liyagel
1993-01-01
Traditional land use classification on Yap Island, especially in regards to agroforestry, is described. Today there is a need to classify land on Yap to protect culturally significant areas and to make the best possible use of the land to support a rapidly growing population. Any new uses of land should be evaluated to assure that actions in one area, even private...
The effects of land use change on soil infiltration capacity in China: A meta-analysis.
Sun, Di; Yang, Hong; Guan, Dexin; Yang, Ming; Wu, Jiabing; Yuan, Fenghui; Jin, Changjie; Wang, Anzhi; Zhang, Yushu
2018-06-01
Land use changes are often considered to be the main factors influencing soil infiltration. But the difference of soil infiltration capacity for different land use type is less clear. In this paper, we conduct a meta-analysis of all 42 papers that could be found associated with the effects of land use changes on soil infiltration capacity. The results showed that soil initial and steady infiltration rates increased after land use changes from grassland to forest (+41.35%, /), shrubland to forest (+42.73%, /) and cropland to agroforestry (+70.28%, +84.17%). Soil infiltration rates declined after land use changes from grassland to cropland (/, -45.23%), shrubland to cropland (-64.24%, /) and forest to cropland (-53.58%, -42.15%). It was evident that soil infiltration rates were negatively related to soil bulk density and initial moisture and positively related to soil total porosity and organic matter content. In sum, establishing agroforestry ecosystem was beneficial to improve soil infiltration capacity compare to cropland and plantation, which has important implications for developing sustainable agriculture and forest from the viewpoint of soil and water conservation. Copyright © 2018 Elsevier B.V. All rights reserved.
Advances in pollination ecology from tropical plantation crops.
Klein, Alexandra-Maria; Cunningham, Saul A; Bos, Merijn; Steffan-Dewenter, Ingolf
2008-04-01
Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.
Floristic evolution in an agroforestry system cultivation in Southern Brazil.
Silva, Luís C R; Machado, Sebastião A; Galvão, Franklin; Figueiredo, Afonso
2016-06-07
Bracatinga (Mimosa scabrella Bentham) is an important pioneer tree species in Ombrophylous Mixed Forest of Brazil and is widely used as an energy source. In traditional agroforestry systems, regeneration is induced by fire, then pure and dense stands known as bracatinga stands (bracatingais) are formed. In the first year, annual crops are intercalated with the seedlings. At that time the seedlings are thinned, then the stands remain at a fallow period and cut at seven years old. The species is very important mainly for small landowners. We studied the understory species that occur naturally during the succession over several years in order to manage them rationally in the future and maintain the natural vegetation over time. Three to 20 year-old Bracatinga stands were sampled between 1998 and 2011. All tree species with diameter at breast height (DBH) ≥ 5 cm were measured.The floristic evolution was assessed with respect to Sociability Index, the Shannon Diversity Index and the Pielou Evenness Index. Graphs of rank/abundance over different age groups were evaluated using the Kolmogorov-Smirnov test. We identified 153 species dispersed throughout the understory and tend to become aggregated over time.
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
Mouen Bedimo, J A; Njiayouom, I; Bieysse, D; Ndoumbè Nkeng, M; Cilas, C; Nottéghem, J L
2008-12-01
Coffee berry disease (CBD), caused by Colletotrichum kahawae, is a major constraint for Arabica coffee cultivation in Africa. The disease is specific to green berries and can lead to 60% harvest losses. In Cameroon, mixed cropping systems of coffee with other crops, such as fruit trees, are very widespread agricultural practices. Fruit trees are commonly planted at random on coffee farms, providing a heterogeneous shading pattern for coffee trees growing underneath. Based on a recent study of CBD, it is known that those plants can reduce disease incidence. To assess the specific effect of shade, in situ and in vitro disease development was compared between coffee trees shaded artificially by a net and trees located in full sunlight. In the field, assessments confirmed a reduction in CBD on trees grown under shade compared with those grown in full sunlight. Artificial inoculations in the laboratory showed that shade did not have any effect on the intrinsic susceptibility of coffee berries to CBD. Coffee shading mainly acts on environmental parameters in limiting disease incidence. In addition to reducing yield losses, agroforestry system may also be helpful in reducing chemical control of the disease and in diversifying coffee growers' incomes.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2015-06-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (high Agri Valley - Basilicata region) that occurred over 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European onshore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the forest/non-forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, and expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
NASA Astrophysics Data System (ADS)
Simoniello, T.; Coluzzi, R.; Imbrenda, V.; Lanfredi, M.
2014-08-01
The present study focuses on the transformations of a typical Mediterranean agroforestry landscape of southern Italy (High Agri Valley - Basilicata region) occurred during 24 years. In this period, the valuable agricultural and natural areas that compose such a landscape were subjected to intensive industry-related activities linked to the exploitation of the largest European on-shore oil reservoir. Landsat imagery acquired in 1985 and 2009 were used to detect changes in forest areas and major land use trajectories. Landscape metrics indicators were adopted to characterize landscape structure and evolution of both the complex ecomosaic (14 land cover classes) and the Forest/Non Forest arrangement. Our results indicate a net increase of 11% of forest areas between 1985 and 2009. The major changes concern: increase of all forest covers at the expense of pastures and grasses, enlargement of riparian vegetation, expansion of artificial areas. The observed expansion of forests was accompanied by a decrease of the fragmentation levels likely due to the reduction of small glades that break forest homogeneity and to the recolonization of herbaceous areas. Overall, we observe an evolution towards a more stable configuration depicting a satisfactory picture of vegetation health.
Private and public incomes in dehesas and coniferous forests in Andalusia, Spain
Paola Ovando; Pablo Campos; Jose L. Oviedo; Alejandro Caparrós
2015-01-01
We apply an ecosystem accounting system to estimate the total social income accrued from private and public products in a group of agroforestry farms in Andalusia (Spain). We provide bio-physical and economic indicators for two contrasting farm types, a sub-group of 15 publicly owned coniferous forests and a sub-group of 24 privately owned dehesa farms. Total social...
Agroforestry systems in the Sonora River Watershed, Mexico: An example of effective land stewardship
Diego Valdez-Zamudio; Peter F. Ffolliot
2000-01-01
The Sonora River watershed is located in the central part of the state of Sonora,Mexico, and is one of the most important watersheds in the region. Much of the state's economy depends on the natural resources, products, and productive activities developed in this watershed. Many natural areas along the river and its tributaries have been converted to a large...
USDA-ARS?s Scientific Manuscript database
The Dehesa, the most widespread agroforestry land-use system in Europe (˜ 3 million ha), is recognized as an example of sustainable land use and for its importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). It consists of widely-spaced oak forest (mostly Quercus Ilex L....
USDA-ARS?s Scientific Manuscript database
In the last few decades, there has been a marked reduction in the number of family and small agricultural enterprises in this country. Unfortunately, high startup costs, high costs of inputs and the lack of training tend to reduce the appeal of farming as a career. To help address this situation, we...
Model Optimization Planting Pattern Agroforestry Forest Land Based on Pine Tree
ERIC Educational Resources Information Center
Rajati, Tati
2015-01-01
This study aims to determine cropping patterns in class slopes 0 - <15% and the grade slope slopes 15% - <30% and the slopes> 30%. The method used in this study is a description of the dynamic system approach using a software power sim. Forest areas where the research, which is a type of plant that is cultivated by the people in the study…
Ethnoagroforestry: integration of biocultural diversity for food sovereignty in Mexico.
Moreno-Calles, Ana Isabel; Casas, Alejandro; Rivero-Romero, Alexis Daniela; Romero-Bautista, Yessica Angélica; Rangel-Landa, Selene; Fisher-Ortíz, Roberto Alexander; Alvarado-Ramos, Fernando; Vallejo-Ramos, Mariana; Santos-Fita, Dídac
2016-11-23
Documenting the spectrum of ecosystem management, the roles of forestry and agricultural biodiversity, TEK, and human culture for food sovereignty, are all priority challenges for contemporary science and society. Ethnoagroforestry is a research approach that provides a theoretical framework integrating socio-ecological disciplines and TEK. We analyze in this study general types of Agroforestry Systems of México, in which peasants, small agriculturalist, and indigenous people are the main drivers of AFS and planning of landscape diversity use. We analyzed the actual and potential contribution of ethnoagroforestry for maintaining diversity of wild and domesticated plants and animals, ecosystems, and landscapes, hypothesizing that ethnoagroforestry management forms may be the basis for food sufficiency and sovereignty in Mexican communities, regions and the whole nation. We conducted research and systematization of information on Mexican AFS, traditional agriculture, and topics related to food sovereignty from August 2011 to May 2015. We constructed the database Ethnoagroforestry based on information from our own studies, other databases, Mexican and international specialized journals in agroforestry and ethnoecology, catalogues and libraries of universities and research centers, online information, and unpublished theses. We analyzed through descriptive statistical approaches information on agroforestry systems of México including 148 reports on use of plants and 44 reports on use of animals. Maize, beans, squashes and chili peppers are staple Mesoamerican food and principal crops in ethnoagroforestry systems practiced by 21 cultural groups throughout Mexico (19 indigenous people) We recorded on average 121 ± 108 (SD) wild and domesticated plant species, 55 ± 27% (SD) of them being native species; 44 ± 23% of the plant species recorded provide food, some of them having also medicinal, firewood and fodder uses. A total of 684 animal species has been recorded (17 domestic and 667 wild species), mainly used as food (34%). Ethnoagroforestry an emergent research approach aspiring to establish bases for integrate forestry and agricultural diversity, soil, water, and cultural richness. Its main premise is that ethnoagroforestry may provide the bases for food sovereignty and sustainable ecosystem management.
Fonte, Steven J; Six, Johan
2010-06-01
The development of sustainable agricultural systems depends in part upon improved management of non-crop species to enhance the overall functioning and provision of services by agroecosystems. To address this need, our research examined the role of earthworms and litter management on nutrient dynamics, soil organic matter (SOM) stabilization, and crop growth in the Quesungual agroforestry system of western Honduras. Field mesocosms were established with two earthworm treatments (0 vs. 8 Pontoscolex corethrurus individuals per mesocosm) and four litter quality treatments: (1) low-quality Zea mays, (2) high-quality Diphysa robinioides, (3) a mixture of low- and high-quality litters, and (4) a control with no organic residues applied. Mesocosms included a single Z. mays plant and additions of 15N-labeled inorganic nitrogen. At maize harvest, surface soils (0-15 cm) in the mesocosms were sampled to determine total and available P as well as the distribution of C, N, and 15N among different aggregate-associated SOM pools. Maize plants were divided into grain and non-grain components and analyzed for total P, N, and 15N. Earthworm additions improved soil structure as demonstrated by a 10% increase in mean weight diameter and higher C and N storage within large macro-aggregates (>2000 microm). A corresponding 17% increase in C contained in micro-aggregates within the macro-aggregates indicates that earthworms enhance the stabilization of SOM in these soils; however, this effect only occurred when organic residues were applied. Earthworms also decreased available P and total soil P, indicating that earthworms may facilitate the loss of labile P added to this system. Earthworms decreased the recovery of fertilizer-derived N in the soil but increased the uptake of 15N by maize by 7%. Litter treatments yielded minimal effects on soil properties and plant growth. Our results indicate that the application of litter inputs and proper management of earthworm populations can have important implications for the provision of ecosystem services (e.g., C sequestration, soil fertility, and plant production) by tropical agroforestry systems.
Vallejo, Mariana; Casas, Alejandro; Pérez-Negrón, Edgar; Moreno-Calles, Ana I; Hernández-Ordoñez, Omar; Tellez, Oswaldo; Dávila, Patricia
2015-02-19
Agroforestry systems (AFS) are valuable production systems that allow concealing benefits provision with conservation of biodiversity and ecosystem services. We analysed AFS of the zone of alluvial valleys of the Tehuacán-Cuicatlán Valley (TCV), Mexico, the most intensive agricultural systems within a region recognized for harbouring one of the most ancient agricultural experience of the New World. We hypothesized that the biodiversity conservation capacity of AFS would be directly related to traditional agricultural features and inversely related to management intensity. Agricultural practices, use frequency of machinery and chemical inputs, and proportion of forest and cultivated areas were described in 15 AFS plots in alluvial valleys of the Salado River in three villages of the region. With the information, we constructed a management intensity index and compared among plots and villages. We documented the reasons why people maintain wild plant species and traditional practices. Perennial plant species were sampled in vegetation of AFS (15 plots) and unmanaged forests (12 plots 500 m(2)) in order to compare richness, diversity and other ecological indicators in AFS and forest. In all studied sites, people combine traditional and intensive agricultural practices. Main agroforestry practices are ground terraces and borders surrounding AFS plots where people maintain vegetation. According to people, the reasons for maintaining shrubs and trees in AFS were in order of importance are: Beauty and shade provision (14% of people), fruit provision (7%), protection against strong wind, and favouring water and soil retention. We recorded 66 species of trees and shrubs in the AFS studied, 81% of them being native species that represent 38% of the perennial plant species recorded in forests sampled. Land tenure and institutions vary among sites but not influenced the actions for maintaining the vegetation cover in AFS. Plant diversity decreased with increasing agricultural intensity. Maintenance of vegetation cover did not confront markedly with the intensive agricultural practices. It is possible the expansion and enrichment of vegetation in terraces and borders of AFS. Information available on plant species and local techniques is potentially useful for a regional program of biodiversity conservation considering AFS as keystones.
Kejia Pang; J.W. Van Sambeek; Nadia E. Navarrete-Tindall; Chung-Ho Lin; Shibu Jose; H. E. Garrett
2017-01-01
Annual screenings of forage grasses and legumes for shade tolerance were conducted from 1996 to 2001 in the outdoor Shade Tolerance Screening Laboratory at the Horticulture and Agroforestry Research Center, University of Missouri. Forty-three forages were grown under non-shade (100% of full sunlight), moderate shade (45%), and dense shade (20%) without competition for...
NASA Astrophysics Data System (ADS)
Choliq, M. B. S.; Kaswanto, R. L.
2017-10-01
Pekarangan is part of a complex of small-scale agroforestry landscape. Pekarangan have 3 functions i.e. ecological, economic, and social. ecological function, for providing landscape services such as carbon stock and biodiversity; economic function, can supplies foods and nutrition; and social function, for building low carbon communities and increasing the environmental awareness. Therefore, this research aims to correlate carbon stocks and biodiversity index of Pekarangan in Ciliwung Watershed. This study has measured 48 samples which were divided in three stream, namely upstream, midstream, and downstream. The samples were divided into four groups, G1 (pekarangan size less than 120 m2 and doesn’t have other agricultural land (no other agricultural land - OAL), G2 (<120 m2 with OAL < 1000 m2), G3 (120-400 m2 with no OAL) and G4 (120-400 m2 with OAL < 1000 m2). The results show that correlation between carbon stock and biodiversity index value is R2 = 0.05. The results showed no correlation between carbon stocks and biodiversity index could be due to the amount of Pekarangan owners who prefer potted plants than plant a tree, so that the carbon sequestered in the Pekarangan only slightly.
NASA Astrophysics Data System (ADS)
Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa
2017-12-01
Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.
Incorporating Agroforestry Approaches into Commodity Value Chains
NASA Astrophysics Data System (ADS)
Millard, Edward
2011-08-01
The productivity of tropical agricultural commodities is affected by the health of the ecosystem. Shade tolerant crops such as coffee and cocoa benefit from environmental services provided by forested landscapes, enabling landscape design that meets biodiversity conservation and economic needs. What can motivate farmers to apply and maintain such landscape approaches? Rather than rely on a proliferation of externally funded projects new opportunities are emerging through the international market that buys these commodities. As part of their growing commitment to sustainable supply chains, major companies are supporting agroforestry approaches and requiring producers and traders to demonstrate that the source of their commodities complies with a set of principles that conserves forested landscapes and improves local livelihoods. The paper presents examples of international companies that are moving in this direction, analyzes why and how they are doing it and discusses the impact that has been measured in coffee and cocoa communities in Latin America and Africa. It particularly considers the role of standards and certification systems as a driver of this commitment to promote profitable operations, environmental conservation and social responsibility throughout the coffee and cocoa value chains. Such approaches are already being taken to scale and are no longer operating only in small niches of the market but the paper also considers the limitations to growth in this market-based approach.
NASA Astrophysics Data System (ADS)
Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.
2015-10-01
Litterfall is one of the major pathways connecting above- and below-ground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) ecosystems was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.
NASA Astrophysics Data System (ADS)
Parwi; Pudjiasmanto, B.; Purnomo, D.; Cahyani, VR
2017-11-01
This study investigated the diversity of arbuscular mycorrhiza in rhizosphere of cajeput with different fertilizer management of maize. This research was conducted by observation on cajeput agroforestry system in Ponorogo that have different fertilizer management of maize: conventional management (CM), universal management (UM) and alternative management (AM1, AM2, and AM3). The result showed that the highest infection of arbuscular mycorrhiza was observed in the plot of AM3, while the lowest colonization was observed in the plot of CM. Infection of arbuscular mycorrhiza in roots cajeput from five fertilizer management, ranging from 32.64% - 63.33%. In all fertilizer management, there were eight species of arbuscular mycorrhiza which five species were Glomus genus, one species was Acaulospora genus and two species were Gigaspora genus. Glomus constrictum was the dominant species in all fertilizer management. Acaulospora favoeta was found only in the plot of AM3. Spore density varies between 150-594 / 100g of soil. The highest spore density was observed in the plot of AM3, while the lowest spore density was observed in the plot of AM1. The highest diversity index value of arbuscular mycorrhiza (Species richness and Shannon-Wiener) was observed in the plot of AM3.
Geoffroy, Alexandre; Sanguin, Hervé; Galiana, Antoine; Bâ, Amadou
2017-01-01
Pterocarpus officinalis (Jacq.) is a leguminous forestry tree species endemic to Caribbean swamp forests. In Guadeloupe, smallholder farmers traditionally cultivate flooded taro ( Colocasia esculenta ) cultures under the canopy of P. officinalis stands. The role of arbuscular mycorrhizal (AM) fungi in the sustainability of this traditional agroforestry system has been suggested but the composition and distribution of AM fungi colonizing the leguminous tree and/or taro are poorly characterized. An in-depth characterization of root-associated AM fungal communities from P. officinalis adult trees and seedlings and taro cultures, sampled in two localities of Guadeloupe, was performed by pyrosequencing (GS FLX+) of partial 18S rRNA gene. The AM fungal community was composed of 215 operational taxonomic units (OTUs), belonging to eight fungal families dominated by Glomeraceae, Acaulosporaceae, and Gigasporaceae. Results revealed a low AM fungal community membership between P. officinalis and C. esculenta . However, certain AM fungal community taxa (10% of total community) overlapped between P. officinalis and C. esculenta , notably predominant Funneliformis OTUs. These findings provide new perspectives in deciphering the significance of Funneliformis in nutrient exchange between P. officinalis and C. esculenta by forming a potential mycorrhizal network.
Incorporating agroforestry approaches into commodity value chains.
Millard, Edward
2011-08-01
The productivity of tropical agricultural commodities is affected by the health of the ecosystem. Shade tolerant crops such as coffee and cocoa benefit from environmental services provided by forested landscapes, enabling landscape design that meets biodiversity conservation and economic needs. What can motivate farmers to apply and maintain such landscape approaches? Rather than rely on a proliferation of externally funded projects new opportunities are emerging through the international market that buys these commodities. As part of their growing commitment to sustainable supply chains, major companies are supporting agroforestry approaches and requiring producers and traders to demonstrate that the source of their commodities complies with a set of principles that conserves forested landscapes and improves local livelihoods. The paper presents examples of international companies that are moving in this direction, analyzes why and how they are doing it and discusses the impact that has been measured in coffee and cocoa communities in Latin America and Africa. It particularly considers the role of standards and certification systems as a driver of this commitment to promote profitable operations, environmental conservation and social responsibility throughout the coffee and cocoa value chains. Such approaches are already being taken to scale and are no longer operating only in small niches of the market but the paper also considers the limitations to growth in this market-based approach.
Kyndt, Tina; Assogbadjo, Achille E; Hardy, Olivier J; Glele Kakaï, Romain; Sinsin, Brice; Van Damme, Patrick; Gheysen, Godelieve
2009-05-01
This study evaluates the spatial genetic structure of baobab (Adansonia digitata) populations from West African agroforestry systems at different geographical scales using AFLP fingerprints. Eleven populations from four countries (Benin, Ghana, Burkina Faso, and Senegal) had comparable levels of genetic diversity, although the two populations in the extreme west (Senegal) had less diversity. Pairwise F(ST) ranged from 0.02 to 0.28 and increased with geographic distance, even at a regional scale. Gene pools detected by Bayesian clustering seem to be a byproduct of the isolation-by-distance pattern rather than representing actual discrete entities. The organization of genetic diversity appears to result essentially from spatially restricted gene flow, with some influences of human seed exchange. Despite the potential for relatively long-distance pollen and seed dispersal by bats within populations, statistically significant spatial genetic structuring within populations (SGS) was detected and gave a mean indirect estimate of neighborhood size of ca. 45. This study demonstrated that relatively high levels of genetic structuring are present in baobab at both large and within-population level, which was unexpected in regard to its dispersal by bats and the influence of human exchange of seeds. Implications of these results for the conservation of baobab populations are discussed.
Geoffroy, Alexandre; Sanguin, Hervé; Galiana, Antoine; Bâ, Amadou
2017-01-01
Pterocarpus officinalis (Jacq.) is a leguminous forestry tree species endemic to Caribbean swamp forests. In Guadeloupe, smallholder farmers traditionally cultivate flooded taro (Colocasia esculenta) cultures under the canopy of P. officinalis stands. The role of arbuscular mycorrhizal (AM) fungi in the sustainability of this traditional agroforestry system has been suggested but the composition and distribution of AM fungi colonizing the leguminous tree and/or taro are poorly characterized. An in-depth characterization of root-associated AM fungal communities from P. officinalis adult trees and seedlings and taro cultures, sampled in two localities of Guadeloupe, was performed by pyrosequencing (GS FLX+) of partial 18S rRNA gene. The AM fungal community was composed of 215 operational taxonomic units (OTUs), belonging to eight fungal families dominated by Glomeraceae, Acaulosporaceae, and Gigasporaceae. Results revealed a low AM fungal community membership between P. officinalis and C. esculenta. However, certain AM fungal community taxa (10% of total community) overlapped between P. officinalis and C. esculenta, notably predominant Funneliformis OTUs. These findings provide new perspectives in deciphering the significance of Funneliformis in nutrient exchange between P. officinalis and C. esculenta by forming a potential mycorrhizal network. PMID:28804479
Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng
2016-07-20
Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.
Re, Giovanni Antonio; Piluzza, Giovanna; Sanna, Federico; Molinu, Maria Giovanna; Sulas, Leonardo
2018-06-01
In Mediterranean grazed woodlands, microclimate changes induced by trees influence the growth and development of the understory, but very little is known about its polyphenolic composition in relation to light intensity. We investigated the bioactive compounds and antioxidant capacity of different legume-based swards and variations due to full sunlight and partial shade. The research was carried out in a cork oak agrosilvopastoral system in Sardinia. The highest values of DPPH reached 7 mmol TEAC 100 g -1 DW, total phenolics 67.1 g GAE kg -1 DW and total flavonoids 7.5 g CE kg -1 DW. Compared to full sunlight, partial shade reduced DPPH values by 29 and 42%, and the total phenolic content by 23 and 53% in 100% legume mixture and semi natural pasture. Twelve phenolic compounds were detected: chlorogenic acid in 80% legume mixture (partial shade) and verbascoside in pure sward of bladder clover (full sunlight) were the most abundant. Light intensity significantly affected antioxidant capacity, composition and levels of phenolic compounds. Our results provide new insights into the effects of light intensity on plant secondary metabolites from legume based swards, underlining the important functions provided by agroforestry systems. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Mentler, Axel; Wriessnig, Karin; Ottner, Franz; Schomakers, Jasmin; Benavides González, Álvaro; Cisne Contreras, José Dolores; Querol Lipcovich, Daniel
2013-04-01
Cerro el Castillo is located in the NW of Nicaragua, Central America, close to the border of Honduras (Provincia Central de las Cordilleras) at 1000-1200m above sea level. In this region, small and medium-sized farms are agroforestry systems with mangos, avocados, coffee, papayas, bananas, strawberries, maize, pumpkins, beans and other vegetables. The production systems are strongly linked to facilities for raising small domestic animals and cows. Main regional agricultural production problems are steep slopes, soil erosion, varying precipitation and distribution, water management and the unstable family income. An investigation of topsoil properties with comparable management systems showed on small scales significant differences in key values of soil chemistry and mineralogy. The outline of the analytical parameters included determination of pH, electrical conductivity (EC), cation exchange capacity (CEC), organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN) and dissolved nitrogen (DN) in soil solution, and plant available nutrients (P and K). The soil's mineralogical composition was determined by X-ray diffraction analysis. The area is a highly weathered karst landscape within a tropical limestone region displaying different amounts of volcanic pyroclastic parent material. The dominant Nitisoils and Andosols show degraded argic and andic horizons along the upper half of the mountainside. The pH values in the topsoil are moderate from pH 5.0 to 5.6. The upland topsoil is decalcified and the amount of plant available phosphorous is very low with significant low Ca concentration at the sorption complex. The mineralogical composition points to the high weathering intensity of this area (high content of kaolinite and a lower concentration of potassium and plagioclase feldspars and andesite). Along the upper half of the mountain, the soil profiles show wider C:N ratios and lower amounts of organic matter. Topsoil at lower altitude and with a lower slope is influenced by accumulation of pyroclastic material. Theses soils can be characterized through a closer C:N ratio, higher pH (5.7-6.2) values, and plant available phosphorus reach values of 23 mg/kg. The mineralogical analyses illustrated less weathered volcanic material here and in the investigated samples zeolithe, smectite and a higher amount of plagioclase could be found. Cristobalite und pyroxene could be detected in all samples and indicate the influence of volcanic activity. Smectite und zeolithe are reason for the higher CEC values of these soils. Erosion and intensive tropical weathering processes including solutional weathering of limestones decline production potential at higher altitudes. Agroforestry systems are the most adapted systems for sustainable plant production systems in this area. Phosphorus release of soil is strongly influenced by the geomorphology of this landscape. Limiting parameters of this production system is the amount and the distribution of precipitation. The impact of global change to this specific area of Nicaragua will lead to extreme values of local precipitation events and an increase in temperature. If these events continue important production areas for optimum coffee production in agroforestry systems in Central America will be lost. Acknowledgement: This project was financed through the Austrian APPEAR program (OEAD).
Gregory E. Frey; D. Evan Mercer; Frederick W. Cubbage; Robert C. Abt
2010-01-01
The Lower Mississippi River Alluvial Valley (LMAV), once was the largest forested bottom-land area in the continental United States, but has undergone widespread loss of forest through conversion to farmland. Restoration of forest functions and values has been a key conservation goal in the LMAV since the 1970s. This study utilizes a partial differential real options...
USDA-ARS?s Scientific Manuscript database
Watershed models such as the Soil and Water Assessment Tool (SWAT) have been widely used to simulate watershed hydrologic processes and the effect of management, such as agroforestry, on soil and water resources. In order to use model outputs for tasks ranging from aiding policy decision making to r...
Agroforestry: Conifers. (Latest citations from the Cab Abstracts database). NewSearch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The bibliography contains citations concerning the use of lands forested with conifers for crop and livestock production. Citations cover the grazing of livestock and the production of crops, including tomatoes, soybeans, lespedeza, wheat, rape, taro, cotton, cabbages, ginger, watermelons, and strawberries. Livestock discussed include cattle, sheep, geese, and horses. Economic analyses and economic models are presented. (Contains a minimum of 147 citations and includes a subject term index and title list.)
Agricultural practices that store organic carbon in soils: is it only a matter of inputs ?
NASA Astrophysics Data System (ADS)
Chenu, Claire; Cardinael, Rémi; Autret, Bénédicte; Chevallier, Tiphaine; Girardin, Cyril; Mary, Bruno
2016-04-01
Increasing the world soils carbon stocks by a factor of 4 per mil annually would compensate the annual net increase of CO2 concentration in the atmosphere. This statement is the core of an initiative launched by the French government at the recent COP21, followed by many countries and international bodies, which attracts political attention to the storage potential of C in soils. Compared to forest and pasture soils, agricultural soils have a higher C storage potential, because they are often characterized by low C contents, and increasing their C content is associated with benefits in terms of soil properties and ecosystem services. Here we quantified, under temperate conditions, the additional C storage related to the implementation of two set of practices that are recognized to be in the framework of agroecology: conservation tillage on the one hand and agroforestry on the other hand. These studies were based on long-term experiments, a 16-years comparison on cropping systems on luvisols in the Paris area and a 18-year-old silvoarable agroforestry trial, on fluvisols in southern France, the main crops being cereals in both cases. C stocks were measured on an equivalent soil mass basis. Both systems allowed for a net storage of C in soils, which are, for the equivalent of the 0-30 cm tilled layer, of 0.55 ± 0.16 t ha- 1 yr- 1 for conservation agriculture (i.e. no tillage with permanent soil coverage with an associated plant, fescue or alfalfa) and of 0.25 ± 0.03 t ha-1 yr-1 for the agroforestry system. These results are in line with estimates proposed in a recent French national assessment concerning the potential of agricultural practices to reduce greenhouse gas emissions. Compared to recent literature, they further show that practices that increase C inputs to soil through additional biomass production would be more effective to store C in soil (tree rows, cover crops in conservation agriculture) than practices, such as no-tillage, that are assumed to reduce soil organic matter mineralisation rates. This questions our understanding of the stabilization processes of organic matter in soils and especially that of physical protection. The conditions and scale, both spatial and temporal, of physical protection of organic matter are discussed in light of recent literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykstra, D.P.
1983-01-01
Forest types and plantations, and associated forest industries are described. Forests occupy 47% of the total land area, mostly open miombo woodland dominated by Julbernardia and Brachystegia, with small areas of tropical high forest, mangroves and plantations. About 97% of the total roundwood consumed is used as fuelwood or for charcoal. Early results from village forestry programmes (partially financed by SIDA), the less successful communal village plantations, and agroforestry practices are described briefly. Education, training and the importance of wildlife are discussed.
Estimating carbon storage in windbreak trees on U.S. agricultural lands
William Ballesteros Possu; James R. Brandle; Grant M. Domke; Michele Schoeneberger; Erin Blankenship
2016-01-01
Assessing carbon (C) capture and storage potential by the agroforestry practice of windbreaks has been limited. This is due, in part, to a lack of suitable data and associated models for estimating tree biomass and C for species growing under more opengrown conditions such as windbreaks in the Central Plains region of the United States (U.S.). We evaluated 15...
Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico
NASA Astrophysics Data System (ADS)
Morales-Linares, Jonas; García-Franco, José G.; Flores-Palacios, Alejandro; Valenzuela-González, Jorge E.; Mata-Rosas, Martín; Díaz-Castelazo, Cecilia
2016-12-01
Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.
Aulen, Maurice; Shipley, Bill; Bradley, Robert
2012-01-01
Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237
NASA Astrophysics Data System (ADS)
Becker, J.; Pabst, H.; Mnyonga, J.; Kuzyakov, Y.
2015-07-01
Litterfall is one of the major pathways connecting above- and belowground processes. The effects of climate and land-use change on carbon (C) and nutrient inputs by litterfall are poorly known. We quantified and analyzed annual patterns of C and nutrient deposition via litterfall in natural forests and agroforestry systems along the unique elevation gradient of Mt. Kilimanjaro. Tree litter in three natural (lower montane, Ocotea and Podocarpus forests), two sustainably used (homegardens) and one intensively managed (shaded coffee plantation) was collected on a biweekly basis from May 2012 to July 2013. Leaves, branches and remaining residues were separated and analyzed for C and nutrient contents. The annual pattern of litterfall was closely related to rainfall seasonality, exhibiting a large peak towards the end of the dry season (August-October). This peak decreased at higher elevations with decreasing rainfall seasonality. Macronutrients (N, P, K) in leaf litter increased at mid elevation (2100 m a.s.l.) and with land-use intensity. Carbon content and micronutrients (Al, Fe, Mn, Na) however, were unaffected or decreased with land-use intensity. On the southern slope of Mt. Kilimanjaro, the annual pattern of litterfall depends on seasonal climatic conditions. While leaf litterfall decreased with elevation, total annual input was independent of climate. Compared to natural forests, the nutrient cycles in agroforestry ecosystems were accelerated by fertilization and the associated changes in dominant tree species.
Comparative study on growth performance of two shade trees in tea agroforestry system.
Kalita, Rinku Moni; Das, Ashesh Kumar; Nath, Arun Jyoti
2014-07-01
An attempt was made to study the stem growth of two native dominant shade tree species in terms of annual girth increment in three dominant girth size categories for two years in tea agroforestry system of Barak Valley, Assam. Fifty two sampling plots of 0.1 ha size were established and all trees exceeding 10 cm girth over bark at breast height (1.37 m) were uniquely identified, tagged, and annually measured for girth increment, using metal tape during December 2010-12. Albizia lebbeck and A. odoratissima were dominant shade tree species registering 82% of appearance of the individuals studied. The girth class was categorized into six different categories where 30-50 cm, 50-70 cm and 70-90 cm were dominating girth classes and selected for increment study. Mean annual girth increment ranged from 1.41 cm in Albizia odoratissima (50-70 cm girth class) to 2.97 cm in Albizia lebbeck (70-90 cm girth class) for the first year and 1.70 cm in Albizia odoratissima (50-70 cm girth class) to 3.09 cm in Albizia lebbeck (70-90 cm girth class) for the second year. Albizia lebbeck exhibited better growth in all prominent girth classes as compared to Albizia odoratissima during the observation period. The two shade tree species showed similar trend of growth in both the years of observation and significant difference in girth increment.
Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng
2016-01-01
Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha−1. Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases. PMID:27435095
NASA Astrophysics Data System (ADS)
Rai, S. C.; Sharma, E.
1998-10-01
Large quantities of sediments leave the Himalaya through its rivers. These rivers are charged with sediments depending on the types of land use in the watersheds. Land use/cover change and hydrology was studied in a watershed in the Sikkim Himalaya. The land use change from forest and agroforestry to open agriculture has increased by 11% from 1988 to 1992. During the same period substantial areas of dense mixed forests have been converted to open mixed and degraded forests as a result of high pressure on natural resources. Stream flow was highest in the rainy season and lowest in summer season in all the streams and all the three years (1994-1997) of the study. The water quality of streams from different microwatersheds varied significantly between seasons and streams. Sediment and nutrient loss was estimated in microwatersheds and soil loss from the total watershed ranged from 4·18 to 8·82 t ha-1 yr-1 during the three-year period of study. The annual total nitrogen loss estimated at the watershed outlet was at a rate of 33 kg ha-1, organic carbon 267 kg ha-1 and total phosphorus 5 kg ha-1. This study suggests that the upland microwatersheds can be hydroecologically sustainable only if good forest cover and dense forests with large cardamom-based agroforestry are maintained.
Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico.
Morales-Linares, Jonas; García-Franco, José G; Flores-Palacios, Alejandro; Valenzuela-González, Jorge E; Mata-Rosas, Martín; Díaz-Castelazo, Cecilia
2016-12-01
Ant-gardens (AGs) are considered one of the most complex mutualist systems between ants and plants, since interactions involving dispersal, protection, and nutrition occur simultaneously in them; however, little is known about the effects of the transformation of ecosystems on their diversity and interactions. In five environments with different land use within an anthropic landscape in southeastern Mexico, we investigated the diversity and composition of epiphytes and host trees of AGs built by Azteca gnava. A total of 10,871 individuals of 26 epiphytic species, associating with 859 AGs located in 161 host trees, were recorded. The diversity and composition of epiphytes tended to be different between environments; however, Aechmea tillandsioides and Codonanthe uleana were the most important species and considered true AG epiphytes, because they were the most frequent, abundant, and occurred exclusively in AGs. Other important species were the orchids Epidendrum flexuosum, Coryanthes picturata, and Epidendrum pachyrachis, and should also be considered true AG epiphytes, because they occurred almost exclusively in the AGs. The AG abundance in agroforestry plantations was similar or even greater than in riparian vegetation (natural habitat). The AGs were registered in 37 host species but were more frequent in Mangifera indica and Citrus sinensis. We conclude that true epiphytes of A. gnava AGs persist in different environments and host trees, and even these AGs could proliferate in agroforestry plantations of anthropic landscapes.
NASA Astrophysics Data System (ADS)
Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain
2014-05-01
Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when associated with vineyards. Hedges (i.e 60 m ha-1) stored 0.15 (0.05-0.26) Mg C ha-1 y-1. Very few estimates were available for temperate agroforestry system, and we proposed a value of 1.01 (0.11-1.36) Mg C ha-1 y-1for C stored in soil and in the tree biomass for systems comprising 30-50 trees ha-1. Increasing the life time of temporary sown grassland increased C stocls by 0.11 (0.07-0.22) Mg C ha-1 y-1. In general, practices with increased C inputs to soil through additional plant biomass (agroforestry, hedges and cover crops) resulted in higher additional C storage rates, while the reduction of soil organic matter mineralisation through reduced tillage seemed less effective. When applied to the French agricultural sector, excluding areas with soils with major technical constraints or negative environmental consequences (e.g. poorly aerated soils with high N2O emissions), the measures considered here allowed to increase French soil C stocks by 0 to more than 1 Tg C y-1. However, our estimates are associated with high uncertainties, due to the high variability in soil C storage associated with pedo-climatic conditions and cropping systems, and on the very few studies available for some practices such as agroforestry under temperate conditions.
NASA Astrophysics Data System (ADS)
Terêncio, D. P. S.; Sanches Fernandes, L. F.; Cortes, R. M. V.; Pacheco, F. A. L.
2017-07-01
This study introduces an improved rainwater harvesting (RWH) suitability model to help the implementation of agro-forestry projects (irrigation, wildfire combat) in catchments. The model combines a planning workflow to define suitability of catchments based on physical, socio-economic and ecologic variables, with an allocation workflow to constrain suitable RWH sites as function of project specific features (e.g., distance from rainfall collection to application area). The planning workflow comprises a Multi Criteria Analysis (MCA) implemented on a Geographic Information System (GIS), whereas the allocation workflow is based on a multiple-parameter ranking analysis. When compared to other similar models, improvement comes with the flexible weights of MCA and the entire allocation workflow. The method is tested in a contaminated watershed (the Ave River basin) located in Portugal. The pilot project encompasses the irrigation of a 400 ha crop land that consumes 2.69 Mm3 of water per year. The application of harvested water in the irrigation replaces the use of stream water with excessive anthropogenic nutrients that may raise nitrosamines in the food and accumulation in the food chain, with severe consequences to human health (cancer). The selected rainfall collection catchment is capable to harvest 12 Mm3·yr-1 (≈ 4.5 × the requirement) and is roughly 3 km far from the application area assuring crop irrigation by gravity flow with modest transport costs. The RWH system is an 8-meter high that can be built in earth with reduced costs.
NASA Astrophysics Data System (ADS)
Khamzina, Asia; Kumar, Navneet; Heng, Lee
2017-04-01
In the lower Amu Darya River Basin, the decades of intensive irrigation led to elevated groundwater tables, resulting in ubiquitous soil salinization and adverse impact on crop production. Field-scale afforestation trials and farm-scale economic analyses in the Khorezm region have determined that afforestation can be an environmentally and financially attractive land-use option for degraded croplands because it combines a diversified agricultural production, carbon sequestration, an improved soil health and minimizes the use of irrigation water. We examined prospects for upscaling afforestation activity for regional land-use planning considering prevailing constraints in irrigated agriculture landscape. Assessment of salinity-induced cropland productivity decline using satellite imagery of multiple spatial and temporal resolution revealed that 18-38% of the marginally productive or abandoned cropland might be considered for conversion to agroforestry. Furthermore, a regional-scale water balance suggests that most of these marginal croplands are characterized by sufficient surface water supplies for irrigating the newly planted saplings, before they are able to rely on the groundwater alone. However, the 10-year monitoring of soil salt dynamics in the afforestation trials reveals increasing salinity levels due to the salt exclusion from the root water uptake by the trees. Further study focuses on enhancing long-term sustainability of afforestation as a management option for highly saline lands by examining salt tolerance of candidate species using 13C isotopic signature as the indicator of water and salt stress, salt leaching needs and implications for regional scale planning.
NASA Astrophysics Data System (ADS)
Vinson, Ted S.; Kolchugina, Tatyana P.; Andrasko, Kenneth A.
1996-01-01
Greenhouse gas (GHG) mitigation options in the Russian forest sector include: afforestation and reforestation of unforested/degraded land area; enhanced forest productivity; incorporation of nondestructive methods of wood harvesting in the forest industry; establishment of land protective forest stands; increase in stand age of final harvest in the European part of Russia; increased fire control; increased disease and pest control; and preservation of old growth forests in the Russian Far-East, which are presently threatened. Considering the implementation of all of the options presented, the GHG mitigation potential within the forest and agroforestry sectors of Russia is approximately 0.6 0.7 Pg C/yr or one half of the industrial carbon emissions of the United States. The difference between the GHG mitigation potential and the actual level of GHGs mitigated in the Russian forest sector will depend to a great degree on external financing that may be available. One possibility for external financing is through joint implementation (JI). However, under the JI process, each project will be evaluated by considering a number of criteria including also the difference between the carbon emissions or sequestration for the baseline (or reference) and the project case, the permanence of the project, and leakage. Consequently, a project level assessment must appreciate the near-term constraints that will face practitioners who attempt to realize the GHG mitigation potential in the forest and agroforestry sectors of their countries.
Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing
2010-11-01
By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.
NASA Astrophysics Data System (ADS)
Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.
2011-07-01
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.
Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C
2011-07-01
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.
[Soil mesofauna in differents systems of land use soil in Upper River Solimões, AM, Brazil].
Morais, José W De; Oliveira, Viviane Dos S; Dambros, Cristian De S; Tapia-Coral, Sandra C; Acioli, Agno N S
2010-01-01
The mesofauna has an important function in the soil and it is represented mainly by Acari Oribatida and Collembola. We report the first data on the density and diversity of the soil mesofauna in Benjamin Constant, Amazonas State, Brazil. The following systems were evaluated: primary forest, secondary forest, agroforestry system, cultivated areas and pastures. A total of 101 samples were collected 100 m apart from each other and specimens were collected by using Berlese-Tullgren method. The highest density was registered in secondary forest (29,776 specimens.m-2). Acari Oribatida was the dominant group (7.072 specimens.m-2) in the pasture, suggesting that mites show higher capacity of adaptation to disturbed environments and/or due to the presence of gregarious species. The density of Collembola (5,632 specimens.m-2) was higher in secondary forest. Formicidae was the dominant group (27,824 specimens.m-2) and its highest density occurred in the secondary forest (12,336 specimens.m-2). Seven species and ten morphospecies of Isoptera and three species of Symphyla were identified. The highest density and diversity were found in secondary forest. One supposes that the low density of mesofauna found in all of the studied systems is being influenced by soil structure and composition as well as litter volume. For SUT, the composition of taxonomic groups in the cultivated areas is similar to the one found in primary forest, while the groups found in the agroforestry system are similar to those in the pasture, which may help to decide on land use strategies.
Abdulai, Issaka; Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe
2018-01-01
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers' livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers' coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific.
NASA Astrophysics Data System (ADS)
Bal, P.; Nath, C. D.; Nanaya, K. M.; Kushalappa, C. G.; Garcia, C.
2011-05-01
Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant ( Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.
NASA Astrophysics Data System (ADS)
Bal, P.; Nath, C. D.; Nanaya, K. M.; Kushalappa, C. G.; Garcia, C.
2011-08-01
Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant ( Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.
Rai, Prabhat Kumar
2012-01-01
The present article provides a multifaceted critical research review on environmental issues intimately related with the socio-economy of North East India (NE), a part of Indo-Burma hotspot. Further, the article addresses the issue of sustainable development of NE India through diverse ecological practices inextricably linked with traditional ecological knowledge (TEK). The biodiversity of NE India comprises endemic floral diversity, particularly medicinal plants of importance to pharmaceutical industry, and unique faunal diversity. Nevertheless, it is very unfortunate that this great land of biodiversity is least explored taxonomically as well as biotechnologically, probably due to geographical and political constraints. Different anthropogenic and socio-economic factors have perturbed the pristine ecology of this region, leading to environmental degradation. Also, the practice of unregulated shifting cultivation (jhooming), bamboo flowering, biological invasions and anthropogenic perturbations to biodiversity exacerbate the gloomy situation. Instead of a plethora of policies, the TEK of NE people may be integrated with modern scientific knowledge in order to conserve the environment which is the strong pillar for socio-economic sector here. The aforesaid approach can be practiced in NE India through the broad implementation and extension of agroforestry practices. Further, case studies on Apatanis, ethnomedicinal plants use by indigenous tribal groups and sacred forests are particularly relevant in the context of conservation of environmental health in totality while addressing the socioeconomic impact as well. In context with the prevailing scenarios in this region, we developed an eco-sustainable model for natural resource management through agroforestry practices in order to uplift the social as well as environmental framework.
Sharma, Udit; Kataria, Vinod; Shekhawat, N S
2018-02-01
Tamarix aphylla (L.) Karst., a drought resistant halophyte tree, is an agroforestry species which can be used for reclamation of waterlogged saline and marginal lands. Due to very low seed viability and unsuitable conditions for seed germination, the tree is becoming rare in Indian Thar desert. Present study concerns the evaluation of aeroponics technique for vegetative propagation of T. aphylla . Effect of various exogenous auxins (indole-3-acetic acid, indole-3-butyric acid, naphthalene acetic acid) at different concentrations (0.0, 1.0, 2.0, 3.0, 5.0, 10.0 mg l -1 ) was examined for induction of adventitious rooting and other morphological features. Among all three auxins tested individually, maximum rooting response (79%) was observed with IBA 2.0 mg l -1 . However, stem cuttings treated with a combination of auxins (2.0 mg l -1 IBA and 1.0 mg l -1 IAA) for 15 min resulted in 87% of rooting response. Among three types of stem cuttings (apical shoot, newly sprouted cuttings, mature stem cuttings), maximum rooting (~ 90%) was observed on mature stem cuttings. Number of roots and root length were significantly higher in aeroponically rooted stem cuttings as compared to stem cuttings rooted in soil conditions. Successfully rooted and sprouted plants were transferred to polybags with 95% survival rate. This is the first report on aeroponic culture of Tamarix aphylla which can be utilized in agroforestry practices, marginal land reclamation and physiological studies.
Land use and nutrient inputs affect priming in Andosols of Mt. Kilimanjaro
NASA Astrophysics Data System (ADS)
Mganga, Kevin; Kuzyakov, Yakov
2015-04-01
Organic C and nutrients additions in soil can accelerate mineralisation of soil organic matter i.e. priming effects. However, only very few studies have been conducted to investigate the priming effects phenomenon in tropical Andosols. Nutrients (N, P, N+P) and 14C labelled glucose were added to Andosols from six natural and intensively used ecosystems at Mt. Kilimanjaro i.e. (1) savannah, (2) maize fields, (3) lower montane forest, (4) coffee plantation, (5) grasslands and (6) Chagga homegardens. Carbon-dioxide emissions were monitored over a 60 days incubation period. Mineralisation of glucose to 14CO2 was highest in coffee plantation and lowest in Chagga homegarden soils. Maximal and minimal mineralisation rates immediately after glucose additions were observed in lower montane forest with N+P fertilisation (9.1% ± 0.83 d -1) and in savannah with N fertilisation (0.9% ± 0.17 d -1), respectively. Glucose and nutrient additions accelerated native soil organic matter mineralisation i.e. positive priming. Chagga homegarden soils had the lowest 14CO2 emissions and incorporated the highest percent of glucose into microbial biomass. 50-60% of the 14C input was retained in soil. We attribute this mainly to the high surface area of non-crystalline constituents i.e. allophanes, present in Andosols and having very high sorption capacity for organic C. The allophanic nature of Andosols of Mt. Kilimanjaro especially under traditional Chagga homegarden agroforestry system shows great potential for providing essential environmental services, notably C sequestration. Key words: Priming Effects, Andosols, Land Use Changes, Mt. Kilimanjaro, Allophanes, Tropical Agroforestry
NASA Astrophysics Data System (ADS)
Bargués Tobella, A.; Reese, H.; Almaw, A.; Bayala, J.; Malmer, A.; Laudon, H.; Ilstedt, U.
2014-04-01
Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands.
Bal, P; Nath, C D; Nanaya, K M; Kushalappa, C G; Garcia, C
2011-05-01
Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant (Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.
Bird and bat predation services in tropical forests and agroforestry landscapes.
Maas, Bea; Karp, Daniel S; Bumrungsri, Sara; Darras, Kevin; Gonthier, David; Huang, Joe C-C; Lindell, Catherine A; Maine, Josiah J; Mestre, Laia; Michel, Nicole L; Morrison, Emily B; Perfecto, Ivette; Philpott, Stacy M; Şekercioğlu, Çagan H; Silva, Roberta M; Taylor, Peter J; Tscharntke, Teja; Van Bael, Sunshine A; Whelan, Christopher J; Williams-Guillén, Kimberly
2016-11-01
Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed. © 2015 Cambridge Philosophical Society.
Bal, P; Nath, C D; Nanaya, K M; Kushalappa, C G; Garcia, C
2011-08-01
Kodagu district produces 2% of the world's coffee, in complex, multistoried agroforestry systems. The forests of the district harbour a large population of the Asian elephant (Elephas maximus). The combined effects of high elephant density and major landscape changes due to the expansion of coffee cultivation are the cause of human-elephant conflicts (HEC). Mitigation strategies, including electric fences and compensation schemes implemented by the Forest Department have met with limited success. Building on previous studies in the area, we assessed current spatial and temporal trends of conflict, analysed local stakeholders' perceptions and identified factors driving elephants into the estates. Our study, initiated in May 2007, shows that the intensity of HEC has increased over the last 10 years, exhibiting new seasonal patterns. Conflict maps and the lack of correlation between physical features of the coffee plantations and elephant visits suggest elephants move along corridors between the eastern and western forests of the district, opportunistically foraging when crossing the plantations. Dung analyses indicate elephants have selectively included ripe coffee berries in their diet. This is, to our knowledge, the first report of wild elephants feeding on coffee berries. If this new behaviour spreads through the population, it will compound an already severe conflict situation. The behavioural plasticity, the multiplicity of stakeholders involved, the difficulty in defining the problem and the limits of technical solutions already proposed suggest that HEC in Kodagu has the ingredients of a "wicked" problem whose resolution will require more shared understanding and problem solving work amongst the stakeholders.
Imron, Muhammad Ali; Herzog, Sven; Berger, Uta
2011-08-01
The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)--an individual-based model--to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.
Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe
2018-01-01
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers’ livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers’ coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific. PMID:29659629
Williams-Guillén, Kimberly; Perfecto, Ivette
2011-01-26
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.
Daghela Bisseleua, Hervé Bertin; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan
2013-01-01
Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451
Low black carbon concentration in agricultural soils of central and northern Ethiopia.
Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena
2018-08-01
Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.
Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System
NASA Astrophysics Data System (ADS)
Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.
2014-12-01
A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.
van Straaten, Oliver; Corre, Marife D.; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B.; Veldkamp, Edzo
2015-01-01
Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses. PMID:26217000
van Straaten, Oliver; Corre, Marife D; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B; Veldkamp, Edzo
2015-08-11
Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion--the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.
Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U
2014-04-01
Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow.
NASA Astrophysics Data System (ADS)
Imron, Muhammad Ali; Herzog, Sven; Berger, Uta
2011-08-01
The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)—an individual-based model—to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.
Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti
2017-08-01
Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.
Dawoe, Evans; Asante, Winston; Acheampong, Emmanuel; Bosu, Paul
2016-12-01
The promotion of cacao agroforestry is one of the ways of diversifying farmer income and creating incentives through their inclusion in REDD+ interventions. We estimated the aboveground carbon stocks in cacao and shade trees, determined the floristic diversity of shade trees and explored the possibility of implementing REDD+ interventions in cacao landscapes. Using replicated multi-site transect approach, data were collected from nine 1-ha plots established on 5 km long transects in ten cacao growing districts in Ghana West Africa. Biomass of cacao and shade trees was determined using allometric equations. One thousand four hundred and one (1401) shade trees comprising 109 species from 33 families were recorded. Total number of species ranged from 34 to 49. Newbouldia laevis (Bignoniacea) was the most frequently occurring specie and constituted 43.2 % of all shade trees. The most predominant families were Sterculiaceae and Moraceae (10 species each), followed by Meliaceae and Mimosaceae (8 species each) and Caesalpiniacaea (6 species). Shannon diversity indices (H', H max and J') and species richness were low compared to other similar studies. Shade tree densities ranged from 16.2 ± 3.0 to 22.8 ± 1.7 stems ha -1 and differed significantly between sites. Carbon stocks of shade trees differed between sites but were similar in cacao trees. The average C stock in cacao trees was 7.45 ± 0.41 Mg C ha -1 compared with 8.32 ± 1.15 Mg C ha -1 in the shade trees. Cacao landscapes in Ghana have the potential of contributing to forest carbon stocks enhancement by increasing the stocking density of shade trees to recommended levels.
Bargués Tobella, A; Reese, H; Almaw, A; Bayala, J; Malmer, A; Laudon, H; Ilstedt, U
2014-01-01
Water scarcity constrains the livelihoods of millions of people in tropical drylands. Tree planting in these environments is generally discouraged due to the large water consumption by trees, but this view may neglect their potential positive impacts on water availability. The effect of trees on soil hydraulic properties linked to groundwater recharge is poorly understood. In this study, we performed 18 rainfall simulations and tracer experiments in an agroforestry parkland in Burkina Faso to investigate the effect of trees and associated termite mounds on soil infiltrability and preferential flow. The sampling points were distributed in transects each consisting of three positions: (i) under a single tree, (ii) in the middle of an open area, and (iii) under a tree associated with a termite mound. The degree of preferential flow was quantified through parameters based on the dye infiltration patterns, which were analyzed using image analysis of photographs. Our results show that the degree of preferential flow was highest under trees associated with termite mounds, intermediate under single trees, and minimal in the open areas. Tree density also had an influence on the degree of preferential flow, with small open areas having more preferential flow than large ones. Soil infiltrability was higher under single trees than in the open areas or under trees associated with a termite mound. The findings from this study demonstrate that trees have a positive impact on soil hydraulic properties influencing groundwater recharge, and thus such effects must be considered when evaluating the impact of trees on water resources in drylands. Key Points Trees in dryland landscapes increase soil infiltrability and preferential flow Termite mounds in association with trees further enhance preferential flow PMID:25641996
Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica
NASA Astrophysics Data System (ADS)
Welsh Unwala, K.; Boll, J.; Roupsard, O.
2014-12-01
Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (<1 km2) coffee agroforestry watershed located in central Costa Rica on the Caribbean side. Samples were collected in precipitation, groundwater, and stream water for more than two years, across seasons and at an hourly frequency during storm events to better characterize spatial and temporal variations of the isotopic composition and of the respective contribution of surface and deeper groundwater to streamflow in the watershed. Isotope composition in precipitation ranged from -18.5 to -0.3‰ (∂18O) and -136.4 to 13.7‰ (∂D), and data indicate that atmospheric moisture cycling plays an important role in this region. A distinct seasonality was observed in monthly-averaged data between enriched dry season events as compared with the rainy season events. Streamflow data indicate that a deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.
Assessing Conservation Values: Biodiversity and Endemicity in Tropical Land Use Systems
Waltert, Matthias; Bobo, Kadiri Serge; Kaupa, Stefanie; Montoya, Marcela Leija; Nsanyi, Moses Sainge; Fermon, Heleen
2011-01-01
Despite an increasing amount of data on the effects of tropical land use on continental forest fauna and flora, it is debatable whether the choice of the indicator variables allows for a proper evaluation of the role of modified habitats in mitigating the global biodiversity crisis. While many single-taxon studies have highlighted that species with narrow geographic ranges especially suffer from habitat modification, there is no multi-taxa study available which consistently focuses on geographic range composition of the studied indicator groups. We compiled geographic range data for 180 bird, 119 butterfly, 204 tree and 219 understorey plant species sampled along a gradient of habitat modification ranging from near-primary forest through young secondary forest and agroforestry systems to annual crops in the southwestern lowlands of Cameroon. We found very similar patterns of declining species richness with increasing habitat modification between taxon-specific groups of similar geographic range categories. At the 8 km2 spatial level, estimated richness of endemic species declined in all groups by 21% (birds) to 91% (trees) from forests to annual crops, while estimated richness of widespread species increased by +101% (trees) to +275% (understorey plants), or remained stable (- 2%, butterflies). Even traditional agroforestry systems lost estimated endemic species richness by - 18% (birds) to - 90% (understorey plants). Endemic species richness of one taxon explained between 37% and 57% of others (positive correlations) and taxon-specific richness in widespread species explained up to 76% of variation in richness of endemic species (negative correlations). The key implication of this study is that the range size aspect is fundamental in assessments of conservation value via species inventory data from modified habitats. The study also suggests that even ecologically friendly agricultural matrices may be of much lower value for tropical conservation than indicated by mere biodiversity value. PMID:21298054
Trees' role in nitrogen leaching after organic, mineral fertilization: a greenhouse experiment.
López-Díaz, M L; Rolo, V; Moreno, G
2011-01-01
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Mapping Tropical Forest Mosaics with C- and L-band SAR: First Results from Osa Peninsula, Costa Rica
NASA Astrophysics Data System (ADS)
Pinto, N.; Hensley, S.; Aguilar-Amuchastegui, N.; Broadbent, E. N.; Ahmed, R.
2016-12-01
In tropical countries, economic incentives and improved infrastructure are creating forest mosaics where small-scale farming and industrial plantations are embedded within and potentially replacing native ecosystems. Practices such as agroforestry, slash-and-burn cultivation, and oil palm monocultures bring widely different impacts on carbon stocks. Characterizing these production systems is not only critical to ascribe deforestation to particular drivers, but also essential to understand the impact of macroeconomic scenarios, national policies, and land tenure schemes on carbon fluxes. The last decade has experienced a dramatic improvement in the extent and consistency of tree cover and gross deforestation products from optical imagery. At the same time, recent work shows that Synthetic Aperture Radar (SAR) can complement optical data and reveal structural types that cannot be easily resolved with reflectance measurements alone. While these results demonstrate the validity of sensor fusion methodologies, they typically rely on local classifications or even manual delineation and as such they cannot support large-scale investigations. Furthermore, there have been few attempts to exploit PolInSAR or multiple wavelengths that can provide critical information to resolve natural and anthropogenic land cover types. We report results from our research at Costa Rica's Osa Peninsula. This site is ideal for algorithm development as it includes a highly diverse tropical forest within Corcovado National Park, as well as agroforestry zones, mangroves, and palm plantations. We first integrate SAR backscatter and coherence data from NASA's L-band UAVSAR, JAXA's ALOS/PALSAR, and ESA's Sentinel to produce a map of structural types. Second, we assess whether coherence measurements and PolInSAR retrievals can be used to resolve forest stand differences at 30m resolution and disitinguish between primary and secondary forest sites.
Ziegler, Alan D; Phelps, Jacob; Yuen, Jia Qi; Webb, Edward L; Lawrence, Deborah; Fox, Jeff M; Bruun, Thilde B; Leisz, Stephen J; Ryan, Casey M; Dressler, Wolfram; Mertz, Ole; Pascual, Unai; Padoch, Christine; Koh, Lian Pin
2012-10-01
Policy makers across the tropics propose that carbon finance could provide incentives for forest frontier communities to transition away from swidden agriculture (slash-and-burn or shifting cultivation) to other systems that potentially reduce emissions and/or increase carbon sequestration. However, there is little certainty regarding the carbon outcomes of many key land-use transitions at the center of current policy debates. Our meta-analysis of over 250 studies reporting above- and below-ground carbon estimates for different land-use types indicates great uncertainty in the net total ecosystem carbon changes that can be expected from many transitions, including the replacement of various types of swidden agriculture with oil palm, rubber, or some other types of agroforestry systems. These transitions are underway throughout Southeast Asia, and are at the heart of REDD+ debates. Exceptions of unambiguous carbon outcomes are the abandonment of any type of agriculture to allow forest regeneration (a certain positive carbon outcome) and expansion of agriculture into mature forest (a certain negative carbon outcome). With respect to swiddening, our meta-analysis supports a reassessment of policies that encourage land-cover conversion away from these [especially long-fallow] systems to other more cash-crop-oriented systems producing ambiguous carbon stock changes - including oil palm and rubber. In some instances, lengthening fallow periods of an existing swidden system may produce substantial carbon benefits, as would conversion from intensely cultivated lands to high-biomass plantations and some other types of agroforestry. More field studies are needed to provide better data of above- and below-ground carbon stocks before informed recommendations or policy decisions can be made regarding which land-use regimes optimize or increase carbon sequestration. As some transitions may negatively impact other ecosystem services, food security, and local livelihoods, the entire carbon and noncarbon benefit stream should also be taken into account before prescribing transitions with ambiguous carbon benefits. © 2012 Blackwell Publishing Ltd.
Soil cover by natural trees in agroforestry systems
NASA Astrophysics Data System (ADS)
Diaz-Ambrona, C. G. H.; Almoguera Millán, C.; Tarquis Alfonso, A.
2009-04-01
The dehesa is common agroforestry system in the Iberian Peninsula. These open oak parklands with silvo-pastoral use cover about two million hectares. Traditionally annual pastures have been grazed by cows, sheep and also goats while acorns feed Iberian pig diet. Evergreen oak (Quercus ilex L.) has other uses as fuelwood collection and folder after tree pruning. The hypothesis of this work is that tree density and canopy depend on soil types. We using the spanish GIS called SIGPAC to download the images of dehesa in areas with different soil types. True colour images were restoring to a binary code, previously canopy colour range was selected. Soil cover by tree canopy was calculated and number of trees. Processing result was comparable to real data. With these data we have applied a dynamic simulation model Dehesa to determine evergreen oak acorn and annual pasture production. The model Dehesa is divided into five submodels: Climate, Soil, Evergreen oak, Pasture and Grazing. The first three require the inputs: (i) daily weather data (maximum and minimum temperatures, precipitation and solar radiation); (ii) the soil input parameters for three horizons (thickness, field capacity, permanent wilting point, and bulk density); and (iii) the tree characterization of the dehesa (tree density, canopy diameter and height, and diameter of the trunk). The influence of tree on pasture potential production is inversely proportional to the canopy cover. Acorn production increase with tree canopy cover until stabilizing itself, and will decrease if density becomes too high (more than 80% soil tree cover) at that point there is competition between the trees. Main driving force for dehesa productivity is soil type for pasture, and tree cover for acorn production. Highest pasture productivity was obtained on soil Dystric Planosol (Alfisol), Dystric Cambisol and Chromo-calcic-luvisol, these soils only cover 22.4% of southwest of the Iberian peninssula. Lowest productivity was obtained on Dystric Lithosol.
Vallejo-Ramos, Mariana; Moreno-Calles, Ana I; Casas, Alejandro
2016-07-22
Transformation of natural ecosystems into intensive agriculture is a main factor causing biodiversity loss worldwide. Agroforestry systems (AFS) may maintain biodiversity, ecosystem benefits and human wellbeing, they have therefore high potential for concealing production and conservation. However, promotion of intensive agriculture and disparagement of TEK endanger their permanence. A high diversity of AFS still exist in the world and their potentialities vary with the socio-ecological contexts. We analysed AFS in tropical, temperate, and arid environments, of the Tehuacan Valley, Mexico, to investigate how their capacity varies to conserve biodiversity and role of TEK influencing differences in those contexts. We hypothesized that biodiversity in AFS is related to that of forests types associated and the vigour of TEK and management. We conducted studies in a matrix of environments and human cultures in the Tehuacán Valley. In addition, we reviewed, systematized and compared information from other regions of Mexico and the world with comparable socio-ecological contexts in order to explore possible general patterns. Our study found from 26 % to nearly 90 % of wild plants species richness conserved in AFS, the decreasing proportion mainly associated to pressures for intensifying agricultural production and abandoning traditional techniques. Native species richness preserved in AFS is influenced by richness existing in the associated forests, but the main driver is how people preserve benefits of components and functions of ecosystems. Elements of modern agricultural production may coexist with traditional management patterns, but imposition of modern models may break possible balances. TEK influences decisions on what and how modern techniques may be advantageous for preserving biodiversity, ecosystem integrity in AFS and people's wellbeing. TEK, agroecology and other sciences may interact for maintaining and improving traditional AFS to increase biodiversity and ecosystem integrity while improving quality of life of people managing the AFS.
NASA Astrophysics Data System (ADS)
van Straaten, O.; Veldkamp, E.; Köhler, M.; Anas, I.
2009-12-01
Climate change induced droughts pose a serious threat to ecosystems across the tropics and sub-tropics, particularly to those areas not adapted to natural dry periods. In order to study the vulnerability of cacao (Theobroma cacao) - Gliricidia sepium agroforestry plantations to droughts a large scale throughfall displacement roof was built in Central Sulawesi, Indonesia. In this 19-month replicated experiment, we measured soil surface CO2 efflux (soil respiration) in three simulated drought plots compared with three adjacent control plots. Soil respiration rates peaked at intermediate soil moisture and decreased under increasingly dry conditions (drought induced), but also decreased when soils became water saturated, as evidenced in control plots. The simulated drought plots exhibited a slight decrease in soil respiration compared to the control plots (average 13% decrease). The strength of the drought effect was spatially variable - while some measurement chamber sites reacted strongly ("responsive") to the decrease in soil water content (up to R2=0.70) (n=11), others did not react at all ("non-responsive") (n=7). The degree of soil CO2 respiration drought response was highest around cacao tree stems and decreased with distance from the stem (R2=0.22). A significant correlation was measured between "responsive" soil respiration chamber sites and sap flux density ratios of cacao (R=0.61) and Gliricidia (R=0.65). Leaf litter CO2 respiration decreased as conditions became drier. During dry periods the litter layer contributed approximately 3-4% of the total CO2 efflux and up to 40% during wet periods. A CO2 flush was recorded during the rewetting phase that lasted for approximately two weeks, during which time accumulated labile carbon stocks mineralized. The net effect on soil CO2 emissions over the duration of the experiment was neutral, control plots respired 11.1±0.5 Mg C ha-1 yr-1, while roof plots respired 10.5±0.5 Mg C ha-1 yr-1.
Ali, Arshad; Mattsson, Eskil
2017-11-15
The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and hence, support the niche complementarity mechanism via plant-plant interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John
2008-02-01
Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.
Effects of different agricultural systems on soil quality in Northern Limón province, Costa Rica.
Cornwell, Emma
2014-09-01
Conversion of native rainforest ecosystems in Limón Province of Costa Rica to banana and pineapple monoculture has led to reductions in biodiversity and soil quality. Agroforestry management of cacao (Theobroma cacao) is an alternative system that may maintain the agricultural livelihood of the region while more closely mimicking native ecosystems. This study compared physical, biological and chemical soil quality indicators of a cacao plantation under organic agroforestry management with banana, pineapple, and pasture systems; a native forest nearby served as a control. For bulk density and earthworm analysis, 18 samples were collected between March and April 2012 from each ecosystem paired with 18 samples from the cacao. Cacao had a lower bulk density than banana and pineapple monocultures, but greater than the forest (p < 0.05). Cacao also hosted a greater number and mass of earthworms than banana and pineapple (p < 0.05), but similar to forest and pasture. For soil chemical characteristics, three composite samples were collected in March 2012 from each agroecosystem paired with three samples from the cacao plantation. Forest and pineapple ecosystems had the lowest pH, cation exchange capacity, and exchangeable nutrient cations, while cacao had the greatest (p < 0.05). Total nutrient levels of P and N were slightly greater in banana, pineapple and pasture than in cacao; probably related to addition of chemical fertilizer and manure from cattle grazing. Forest and cacao also had greater %C, than other ecosystems, which is directly related to soil organic matter content (p < 0.0001). Overall, cacao had more favorable physical, biological and chemical soil characteristics than banana and pineapple monocultures, while trends were less conclusive compared to the pastureland. While organic cacao was inferior to native forest in some soil characteristics such as bulk density and organic carbon, its soil quality did best mimic that of the native forest. This supports the organic cultivation of cacao as a desirable alternative to banana and pineapple monoculture.
Africa's Great Green Wall Initiative: a model for restoration success
NASA Astrophysics Data System (ADS)
Berrahmouni, Nora; Sacande, Moctar
2014-05-01
The Great Green Wall for the Sahara and the Sahel Initiative was launched to address the increasing challenges of land degradation, desertification and drought, climate change, food insecurity and poverty in more than 20 countries. Restoration of agro-sylvo-pastoral landscapes and degraded lands is one of the priority interventions initiated, enabling the springing up of green nests of life. When complete, the Great Green Wall of Africa will reverse the seemingly unstoppable desertification and address the development of its drylands' inhabitant rural communities. Today's planting of modest seedlings will grow into vast mosaics of forest and agroforestry landscapes and grasslands, which will provide essential ecosystem goods and services, restore lost livelihoods and create new wealth. The ambition of reforestation efforts within this initiative - the like of which the world has never seen before - sounds like an impossible dream. However, learning from past mistakes and capitalising on current advancement in science and technology, it is a reality that is taking root. Following a successful restoration model that RBG Kew experts have devised, we are helping to mobilise, train and support communities in four border regions in Burkina Faso, Mali and Niger. In collaboration with FAO, the Millennium Seed Bank Partnership is using its unique expertise to ensure that seeds of environmentally well-adapted and economically useful local species are collected and planted in communal gardens and village agroforestry systems managed by the communities themselves. In our first year, an estimated total of 162,000 seedlings and 61 kg of seeds from 40 useful native species, including grasses for livestock, have been planted to cover 237 ha of farmer-managed land in 19 villages. The keen interest it has created has indicated that these figures will rise five-fold in the second year. These green bricks are the foundations of the living wall that will eventually reach across the Sahel and beyond. Keywords: restoration, seed germination, Sahel, plantation, native species, local communities, Great Green Wall
Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia.
Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry
2016-01-01
Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to reconsider their views on this land use.
Forests, Trees, and Micronutrient-Rich Food Consumption in Indonesia
Ickowitz, Amy; Rowland, Dominic; Powell, Bronwen; Salim, Mohammad Agus; Sunderland, Terry
2016-01-01
Micronutrient deficiency remains a serious problem in Indonesia with approximately 100 million people, or 40% of the population, suffering from one or more micronutrient deficiencies. In rural areas with poor market access, forests and trees may provide an essential source of nutritious food. This is especially important to understand at a time when forests and other tree-based systems in Indonesia are being lost at unprecedented rates. We use food consumption data from the 2003 Indonesia Demographic Health Survey for children between the ages of one and five years and data on vegetation cover from the Indonesian Ministry of Forestry to examine whether there is a relationship between different tree-dominated land classes and consumption of micronutrient-rich foods across the archipelago. We run our models on the aggregate sample which includes over 3000 observations from 25 provinces across Indonesia as well as on sub-samples from different provinces chosen to represent the different land classes. The results show that different tree-dominated land classes were associated with the dietary quality of people living within them in the provinces where they were dominant. Areas of swidden/agroforestry, natural forest, timber and agricultural tree crop plantations were all associated with more frequent consumption of food groups rich in micronutrients in the areas where these were important land classes. The swidden/agroforestry land class was the landscape associated with more frequent consumption of the largest number of micronutrient rich food groups. Further research needs to be done to establish what the mechanisms are that underlie these associations. Swidden cultivation in is often viewed as a backward practice that is an impediment to food security in Indonesia and destructive of the environment. If further research corroborates that swidden farming actually results in better nutrition than the practices that replace it, Indonesian policy makers may need to reconsider their views on this land use. PMID:27186884
NASA Astrophysics Data System (ADS)
Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro
2014-05-01
The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.
Bittencourt, Flora; Alves, Jackeline S; Gaiotto, Fernanda A
2015-12-01
We developed microsatellite markers for Carpotroche brasiliensis (Flacourtiaceae), a dioecious tree that is used as a food resource by midsize animals of the Brazilian fauna. We designed 30 primer pairs using next-generation sequencing and classified 25 pairs as polymorphic. Observed heterozygosity ranged from 0.5 to 1.0, and expected heterozygosity ranged from 0.418 to 0.907. The combined probability of exclusion was greater than 0.999 and the combined probability of identity was less than 0.001, indicating that these microsatellites are appropriate for investigations of genetic structure, individual identification, and paternity testing. The developed molecular tools may contribute to future studies of population genetics, answering ecological and evolutionary questions regarding efficient conservation strategies for C. brasiliensis.
Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R
2008-11-01
A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds are faster than when the wind blows perpendicular to the row direction.
Liu, Chenggang; Jin, Yanqiang; Liu, Changan; Tang, Jianwei; Wang, Qingwei; Xu, Mingxi
2018-03-01
Rubber-based agroforestry system is a vital management practice and its productivity is often controlled by soil phosphorus (P) nutrient, but little information is available on P fractions dynamics in such system. The aim of this study was to examine the seasonal, management and stand age effects on P fractions, acid phosphatase activity, microbial biomass P, other physical-chemical properties and litter and roots in four systems: 10-year-old rubber mono- (YM) and intercropping (YI) with N-fixing species (NFS), 22-year-old mono- (MM) and intercropping (MI) in Xishuangbanna, Southwestern China. Most P fractions varied seasonally at different depths, with highest values in the fog-cool season (i.e. labile P at 5-60cm, non-labile P and total P at 30-60cm). By contrast, moderately labile P varied little over time, except in MI that had lower values in the rainy season. Compared with their monoculture counterparts, YI doubled resin-P i concentration but decreased NaHCO 3 -extractable P, HCl-P i and residual-P o at the 0-30cm depth, whereas MI had hardly any changes in P species at the 60-cm depth. Surprisingly, residual-P o was enriched down to the deepest soil (30-60cm) in both YI and MI in the fog-cool season. All P fractions, except NaOH 0.1 -P i , were greatly reduced with increasing stand age. In addition to plants uptake, these changes can be explained by seasonality in soil environments (e.g. moisture, temperature, pH and microbial activity) and decomposition of litter and roots. Moreover, YI decreased labile P o stock, but MI increased moderately labile P i at the 60-cm depth across seasons. The results imply that a large amount of residual-P o exists in acidic Oxisol from China and that they can be reasonably exploited to reduce the application of P fertilizers, highlighting the importance of P o pool. Taken together, intercropping mature rubber plantation with NFS appears to be an effective way to enhance productivity while maintaining adequate soil P concentration over the long run. Copyright © 2017 Elsevier B.V. All rights reserved.
Ranking agricultural practices on soil water improvements: a meta-analysis
NASA Astrophysics Data System (ADS)
Basche, A.; DeLonge, M. S.; Gonzalez, J.
2016-12-01
Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta-analysis improves understanding of how alternative management, notably the use of continuous cover in agricultural systems, improves water dynamics. Policies should be designed in a way that allows agricultural producers to prioritize and implement practices that offer greater water conservation while maintaining crop productivity.
NASA Astrophysics Data System (ADS)
Rojas, M.; Malard, J. J.; Adamowski, J. F.; Tuy, H.
2016-12-01
Climate variability impacts agricultural processes through many mechanisms. For example, the proliferation of pests and diseases increases with warmer climate and alternated wind patterns, as longer growing seasons allow pest species to complete more reproductive cycles and changes in the weather patterns alter the stages and rates of development of pests and pathogens. Several studies suggest that enhancing plant diversity and complexity in farming systems, such as in agroforestry systems, reduces the vulnerability of farms to extreme climatic events. On the other hand, other authors have argued that vegetation diversity does not necessarily reduce the incidence of pests and diseases, highlighting the importance of understanding how, where and when it is recommendable to diversify vegetation to improve pest and disease control, and emphasising the need for tools to develop, monitor and evaluate agroecosystems. In order to understand how biodiversity can enhance ecosystem services provided by the agroecosystem in the context of climatic variability, it is important to develop comprehensive models that include the role of trophic chains in the regulation of pests, which can be achieved by integrating crop models with pest-predator models, also known as agroecosystem network (AEN) models. Here we present a methodology for the participatory data collection and monitoring necessary for running Tiko'n, an AEN model that can also be coupled to a crop model such as DSSAT. This methodology aims to combine the local and practical knowledge of farmers with the scientific knowledge of entomologists and agronomists, allowing for the simplification of complex ecological networks of plant and insect interactions. This also increases the acceptability, credibility, and comprehension of the model by farmers, allowing them to understand their relationship with the local agroecosystem and their potential to use key agroecosystem principles such as functional diversity to mitigate climate variability impacts. Preliminary results of a study currently being conducted in a coffee agroforestry system in El Quebracho, Guatemala, will be presented, where the data was directly collected by farmers during eight consecutive months. Finally, future recommendations from lessons learnt during this study will be discussed.
Chappell, M Jahi; Wittman, Hannah; Bacon, Christopher M; Ferguson, Bruce G; Barrios, Luis García; Barrios, Raúl García; Jaffee, Daniel; Lima, Jefferson; Méndez, V Ernesto; Morales, Helda; Soto-Pinto, Lorena; Vandermeer, John; Perfecto, Ivette
2013-01-01
Strong feedback between global biodiversity loss and persistent, extreme rural poverty are major challenges in the face of concurrent food, energy, and environmental crises. This paper examines the role of industrial agricultural intensification and market integration as exogenous socio-ecological drivers of biodiversity loss and poverty traps in Latin America. We then analyze the potential of a food sovereignty framework, based on protecting the viability of a diverse agroecological matrix while supporting rural livelihoods and global food production. We review several successful examples of this approach, including ecological land reform in Brazil, agroforestry, milpa, and the uses of wild varieties in smallholder systems in Mexico and Central America. We highlight emergent research directions that will be necessary to assess the potential of the food sovereignty model to promote both biodiversity conservation and poverty reduction.
Forest farming of shiitake mushrooms: aspects of forced fruiting.
Bruhn, J N; Mihail, J D
2009-12-01
Three outdoor shiitake (Lentinula edodes (Berk.) Pegler) cultivation experiments were established during 2002-2004 at the University of Missouri Horticulture and Agroforestry Research Center, in central Missouri. Over three complete years following a year of spawn run, we examined shiitake mushroom production in response to the temperature of forcing water, inoculum strain, substrate host species and physical orientation of the log during fruiting. Forcing compressed the period of most productive fruiting to the two years following spawn run. Further, chilled forcing water, 10-12 degrees C, significantly enhanced yield, particularly when ambient air temperatures were favorable for the selected mushroom strain. The temperature of water available for force-fruiting shiitake logs depends on geographic location (latitude) and source (i.e., farm pond vs. spring or well water). Prospective growers should be aware of this effect when designing their management and business plans.
Analysis And Assistant Planning System Ofregional Agricultural Economic Inform
NASA Astrophysics Data System (ADS)
Han, Jie; Zhang, Junfeng
For the common problems existed in regional development and planning, we try to design a decision support system for assisting regional agricultural development and alignment as a decision-making tool for local government and decision maker. The analysis methods of forecast, comparative advantage, liner programming and statistical analysis are adopted. According to comparative advantage theory, the regional advantage can be determined by calculating and comparing yield advantage index (YAI), Scale advantage index (SAI), Complicated advantage index (CAI). Combining with GIS, agricultural data are presented as a form of graph such as area, bar and pie to uncover the principle and trend for decision-making which can't be found in data table. This system provides assistant decisions for agricultural structure adjustment, agro-forestry development and planning, and can be integrated to information technologies such as RS, AI and so on.
Chappell, M Jahi
2013-01-01
Strong feedback between global biodiversity loss and persistent, extreme rural poverty are major challenges in the face of concurrent food, energy, and environmental crises. This paper examines the role of industrial agricultural intensification and market integration as exogenous socio-ecological drivers of biodiversity loss and poverty traps in Latin America. We then analyze the potential of a food sovereignty framework, based on protecting the viability of a diverse agroecological matrix while supporting rural livelihoods and global food production. We review several successful examples of this approach, including ecological land reform in Brazil, agroforestry, milpa, and the uses of wild varieties in smallholder systems in Mexico and Central America. We highlight emergent research directions that will be necessary to assess the potential of the food sovereignty model to promote both biodiversity conservation and poverty reduction. PMID:24555109
The role of trees in agroecology and sustainable agriculture in the tropics.
Leakey, Roger R B
2014-01-01
Shifting agriculture in the tropics has been replaced by sedentary smallholder farming on a few hectares of degraded land. To address low yields and low income both, the soil fertility, the agroecosystem functions, and the source of income can be restored by diversification with nitrogen-fixing trees and the cultivation of indigenous tree species that produce nutritious and marketable products. Biodiversity conservation studies indicate that mature cash crop systems, such as cacao and coffee with shade trees, provide wildlife habitat that supports natural predators, which, in turn, reduce the numbers of herbivores and pathogens. This review offers suggestions on how to examine these agroecological processes in more detail for the most effective rehabilitation of degraded land. Evidence from agroforestry indicates that in this way, productive and environmentally friendly farming systems that provide food and nutritional security, as well as poverty alleviation, can be achieved in harmony with wildlife.
Adapting agriculture to climate change in Kenya: household strategies and determinants.
Bryan, Elizabeth; Ringler, Claudia; Okoba, Barrack; Roncoli, Carla; Silvestri, Silvia; Herrero, Mario
2013-01-15
Countries in Sub-Saharan Africa are particularly vulnerable to climate change, given dependence on agricultural production and limited adaptive capacity. Based on farm household and Participatory Rural Appraisal data collected from districts in various agroecological zones in Kenya, this paper examines farmers' perceptions of climate change, ongoing adaptation measures, and factors influencing farmers' decisions to adapt. The results show that households face considerable challenges in adapting to climate change. While many households have made small adjustments to their farming practices in response to climate change (in particular, changing planting decisions), few households are able to make more costly investments, for example in agroforestry or irrigation, although there is a desire to invest in such measures. This emphasizes the need for greater investments in rural and agricultural development to support the ability of households to make strategic, long-term decisions that affect their future well-being. Copyright © 2012 Elsevier Ltd. All rights reserved.
Vaz-Silva, W; Oliveira, R M; Gonzaga, A F N; Pinto, K C; Poli, F C; Bilce, T M; Penhacek, M; Wronski, L; Martins, J X; Junqueira, T G; Cesca, L C C; Guimarães, V Y; Pinheiro, R D
2015-08-01
The region of Volta Grande do Xingu River, in the state of Pará, presents several kinds of land use ranging from extensive cattle farming to agroforestry, and deforestation. Currently, the Belo Monte Hydroelectric Power Plant affects the region. We present a checklist of amphibians and reptiles of the region and discuss information regarding the spatial distribution of the assemblies based on results of Environmental Programmes conducted in the area. We listed 109 amphibian (Anura, Caudata, and Gymnophiona) and 150 reptile (Squamata, Testudines, and Crocodylia) species. The regional species richness is still considered underestimated, considering the taxonomic uncertainty, complexity and cryptic diversity of various species, as observed in other regions of the Amazon biome. Efforts for scientific collection and studies related to integrative taxonomy are needed to elucidate uncertainties and increase levels of knowledge of the local diversity.
Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J.; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe
2016-01-01
Background and Aims In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Methods Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Key Results Annual ring width at the stem base increased up to 2·5 mm yr−1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha−1 and NPP of perennial roots was 1·3 t ha−1 yr−1. Fine root biomass (0–30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha−1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha−1 yr−1 (69 % of total root NPP). Fine root turnover was 1·3 yr−1 and lifespan was 0·8 years. Conclusions Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. PMID:27551026
NASA Astrophysics Data System (ADS)
Bogie, N. A.; Bayala, R.; Diedhiou, I.; Dick, R.; Ghezzehei, T. A.
2016-12-01
A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Large differences in crop success have been observed even during drough stress in peanut and millet grown in association with two native evergreen shrubs, Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively. We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Research plots at Keur Matar Arame and Nioro du Rip with no fertilizer added were monitored from 2012-2015 using two soil moisture sensor networks at depths of 10, 20, 40, 60, 100, 200, and 300cm. Our data show that there is more water available to crops in the shallow soil layers as a result of a temporal and spatial shift of shrub soil moisture use to deeper layers and the presence of hydraulic redistribution. At the beginning of the dry season just after the crop harvest, maximum weekly transpirational water use descends from 100 to 300cm over the course of one to two months. We hypothesize that after early February, 2-3 months into the dry season, the majority of water use by shrubs comes from below 3m depth. As the first rains come in June-July, the shrubs continue to use deep soil moisture until a significant portion of the soil profile undergoes infiltration. It is during this time that a large difference in hydraulic head can drive hydraulic redistribution, which, in addition to surface shading by the shrub canopy, can help to maintain higher soil moisture in the shallow soil layers near the shrubs. This builds on previous work at the site investigating growing season water balance, transfer of hydraulic lift water between crops and shrubs, and the alteration of soil physical properties by shrubs. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.
Re-greening the Sahel: farmer-led innovation in Burkina Faso and Niger
Reij, Chris; Smale, Melinda; Tappan, G. Gray; Spielman, David J.; Pandya-Lorch, Rajul
2009-01-01
The Sahel—the belt of land that stretches across Africa on the southern edge of the Sahara—has always been a tough place to farm. Rainfall is low and droughts are frequent. The crust of hard soil is, at times, almost impermeable, and harsh winds threaten to sweep away everything in their path. Over the past three decades, however, hundreds of thousands of farmers in Burkina Faso and Niger have transformed large swaths of the region’s arid landscape into productive agricultural land, improving food security for about 3 million people. Once-denuded landscapes are now home to abundant trees, crops, and livestock. Although rainfall has improved slightly from the mid-1990s relative to earlier decades, indications are that farmer management is a stronger determinant of land and agroforestry regeneration. Sahelian farmers achieved their success by ingeniously modifying traditional agroforestry, water, and soil-management practices. To improve water availability and soil fertility in Burkina Faso’s Central Plateau, farmers have sown crops in planting pits and built stone contour bunds, which are stones piled up in long narrow rows that follow the contours of the land in order to capture rainwater runoff and soil. These practices have helped rehabilitate between 200,000 and 300,000 hectares of land and produce an additional 80,000 tons of food per year. In southern Niger, farmers have developed innovative ways of regenerating and multiplying valuable trees whose roots already lay underneath their land, thus improving about 5 million hectares of land and producing more than 500,000 additional tons of food per year. While the specific calculations of farm-level benefits are subject to various methodological and data limitations, the order of magnitude of these benefits is high, as evidenced by the wide-scale adoption of the improved practices by large numbers of farmers. Today, the agricultural landscapes of southern Niger have considerably more tree cover than they did 30 years ago. These findings suggest a human and environmental success story at a scale not seen anywhere else in Africa. The re-greening of the Sahel began when local farmers’ practices were rediscovered and enhanced in simple, low-cost ways by innovative farmers and nongovernmental organizations. An evolving coalition of local, national, and international actors then enabled large-scale diffusion and continued use of these improved practices where they benefited farmers.
Greenhouse gas exchange in tropical mountain ecosystems in Tanzania
NASA Astrophysics Data System (ADS)
Gerschlauer, Friederike; Kikoti, Imani; Kiese, Ralf
2014-05-01
Tropical mountain ecosystems with their mostly immense biodiversity are important regions for natural resources but also for agricultural production. Their supportive ecosystem processes are particularly vulnerable to the combined impacts of global warming and the conversion of natural to human-modified landscapes. Data of impacts of climate and land use change on soil-atmosphere interactions due to GHG (CO2, CH4, and N2O) exchange from these ecosystems are still scarce, in particular for Africa. Tropical forest soils are underestimated as sinks for atmospheric CH4 with regard to worldwide GHG budgets (Werner et al. 2007, J GEOPHYS RES Vol. 112). Even though these soils are an important source for the atmospheric N2O budget, N2O emissions from tropical forest ecosystems are still poorly characterized (Castaldi et al. 2013, Biogeosciences 10). To obtain an insight of GHG balances of selected ecosystems soil-atmosphere exchange of N2O, CH4 and CO2 was investigated along the southern slope of Mt. Kilimanjaro, Tanzania. We will present results for tropical forests in three different altitudes (lower montane, Ocotea, and Podocarpus forest), home garden (extensive agro-forestry), and coffee plantation (intensive agro-forestry). Therefore we used a combined approach consisting of a laboratory parameterization experiment (3 temperature and 2 moisture levels) and in situ static chamber measurements for GHG exchange. Field measurements were conducted during different hygric seasons throughout two years. Seasonal variation of temperature and especially of soil moisture across the different ecosystems resulted in distinct differences in GHG exchange. In addition environmental parameters like soil bulk density and substrate availability varying in space strongly influenced the GHG fluxes within sites. The results from parameterization experiments and in situ measurements show that natural forest ecosystems and extensive land use had higher uptakes of CH4. For the investigated forest ecosystems we found considerable differences in soil sink strength for CH4. N2O emissions were highest in natural forest ecosystems even though N input in the intensively managed system was considerably higher. Highest N2O efflux rates were identified in the region of highest mean annual precipitation. CO2 emissions reduced from managed to natural ecosystems. In general an increase in temperature as well as in soil moisture caused higher GHG fluxes throughout all investigated natural and managed ecosystems. With increasing altitude of the investigated forests GHG emissions reduced overall.
NASA Astrophysics Data System (ADS)
Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.
2010-12-01
Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the watershed. This research will both contribute to scientific understanding of West African vegetation and inform local reforestation and agricultural management. Concurrent to this scientific research, the community is improving natural resource management efforts including reforestation, a botanical garden and environmental education. Our hope is that the results of our evaporation modeling will inform local farmers and thus help improve their adaption to changing weather patterns and land cover.
NASA Astrophysics Data System (ADS)
Horwath, W. R.; Lal, R.
2016-12-01
Agriculture is a source or sink of greenhouse gases depending on land use and management. Diverse activities of agroecosystems include croplands, grazing lands, forestlands, integration among these three land use systems (e.g., agroforestry, agro-pastoral, silvo-pastoral, and agro-silvo-pastoral systems), and urban and degraded lands. Conversion of natural to agroecosystems leads to decline in soil organic carbon (SOC) pool because of reduction in input of biomass-C (Ci) and increase in losses (Cl) by mineralization, erosion and leaching (Cil) through changes in micro-climate, components of the hydrologic cycle and energy budgets, and alterations in biogeochemical cycles. Historic loss from soils of agroecosystems may range from 25 to 50% in temperate regions and 50 to 75% in the tropics. The magnitude of SOC depletion is aggravated by soil degradation caused by erosion, salinization, etc. Thus, there exists a soil/ecosystem C sink which can be refilled through best management practices which create a positive C budget (Ci>Cl) and lead to recarbonization. The average rate of SOC sequestration is 0-250 kg C/ha•yr for warm and dry regions vs. 250-500 kgC/ha•yr for cool and moist climates. The potential of C sequestration is estimated at 0.4-1.2 Pg C/yr for cropland; 0.3-0.5 PgC/yr savanna and grasslands; 1.2-1.4 PgC/yr for afforestation, agroforestry, forest succession and peatlands; 0.2-0.5 PgC/yr for forest plantations; 0.3-0.7 PgC/yr for restoration of salt affected soils, and 0.2-0.7 PgC/yr for erosion and desertification control. There is an emission-avoidance by enhancing eco-efficiency of farm operations (e.g., plowing, irrigation, and input of herbicides and pesticides). These strategies are in accord with the implementation of "4 per Thousand" initiative proposed at the COP21 and COP22 Summits in Paris and Marrakech, respectively. Payments to land managers for ecosystem services, based on societal value of soil C, can promote adoption of BMPs, advance Sustainable Development Goals of the U.N., and achieve food security while improving the environment. Recarbonization of soil and ecosystems is a win-win option, and a bridge to the future until low-C or no-C fuel sources take effect.
NASA Astrophysics Data System (ADS)
Nunes, J. P.; Lima, J. C.; Bernard-Jannin, L.; Veiga, S.; Rodríguez-Blanco, M. L.; Sampaio, E.; Batista, D. P.; Zhang, R.; Rial-Rivas, M. E.; Moreira, M.; Santos, J. M.; Keizer, J. J.; Corte-Real, J.
2012-04-01
Climate change in Mediterranean regions could lead to higher winter rainfall intensity and, due to higher climatic aridity, lower vegetation cover. This could lead to increasing soil erosion rates, accelerating ongoing soil degradation and desertification processes. Adaptation to these scenarios would have costs and benefits associated with soil protection but also agroforestry production and water usage. This presentation will cover project ERLAND, which is studying these impacts for two headwater catchments (<1000 ha) in Portugal, located in distinct climatic conditions within the Mediterranean climate area, and their land-use practices are adapted to these conditions. The Macieira de Alcoba catchment in northern Portugal has a wet Mediterranean climate (1800 mm/yr, but with a dry summer season). The high rainfall allows the plantation of fast growing tree species (pine and eucalypt) in the higher slopes, and the irrigation of corn in the lower slopes. Forest fires are a recurring problem, linked with the high biomass growth and the occurrence of a dry season. Potential impacts of climate change include less favorable conditions for eucalypt growth, higher incidence of wildfires, and less available water for summer irrigation, all of which could lead to lower vegetation cover. The Guadalupe catchment in southern Portugal has a dry Mediterranean climate (700 mm/yr, falling mostly in winter). The land-use is montado, an association between sclerophyllous oaks (cork and holm oaks) and annual herbaceous plans (winter wheat or pasture). The region suffers occasional severe droughts; climate change has the potential to increase the frequency and severity of these droughts, leading to lower vegetation cover and, potentially, limiting the conditions for cork and holm oak growth. Each catchment has been instrumented with erosion measurement plots and flow and turbidity measurements at the outlet, together with surveys of vegetation and soil properties; measurements in Macieira began in 2010 and in Guadalupe they began in 2011. These datasets will be used to parameterize, calibrate and validate the SWAT ecohydrological model, in order to ensure the appropriate simulation of the most important hydrological, vegetation growth and erosion processes which could be impacted upon by climate change. The model will, in turn, be the main tool to study future climate and land-use scenarios. The presentation will focus on the data collected so far, the modeling structure, and preliminary results coming for the work.
Assessment of Agroforestry Trees in Dry-land Savanna Supports Ecohydrologic Separation
NASA Astrophysics Data System (ADS)
Ceperley, Natalie; Mande, Theophile; Van de Giesen, Nick; Tyler, Scott; Parlange, Marc
2016-04-01
We use stable isotopes of water to demonstrate the ecohydrologic separation, or the plant controlled compartmentalization, of different water sources in a catchment in South Eastern Burkina Faso. We analyze water extracted from the groundwater, stream water, precipitation, perched aquifer, xylem water of agroforestry trees, and sub-canopy soil water over a 6 year period to explore how the separation affects different components of the system over time. The ratio between deuterium and O18 allows us to assess whether the water that plants use is the same as the water that recharges the aquifer and runs off in the stream. Water extracted from the tree at leaf out in February corresponded to deuterium and O18 concentrations of the groundwater, a drop from its dry season, enriched, levels which mimicked the soil water. Examination of the isotopic signature suggests that the size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Dates of leaf out were confirmed by analyzing sub-canopy radiation and photographs. Water extracted from roots suggests that the trees are performing hydraulic redistribution, or lifting the ground water and 'sharing it' with the rooting zone soil during the dry season. The enriched level of xylem, in this case, is a product of water loss and enrichment along the travel path of the water from the roots to the tip of the branch, as evidenced by the variation according to size of tree. Vapor pressure deficit, sap flow, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in the tree. A second round of sampling focused on the leaf out period by extracting and analyzing stem water from throughout the canopy during the leaf out. Simultaneous large eddy correlation revealed high levels of latent energy flux, even during the dry season. Our isotope analysis allowed us to conclude that tree level transpiration explains this discrepancy since it does not access the same reservoirs of water as the rest of the catchment. Most current land surface models do not differentiate between different reservoirs of water.
NASA Astrophysics Data System (ADS)
Some, T. E.; Barbier, B.
2015-12-01
Climate changes talks regularly underline that developing countries' agriculture could play a stronger role in GHGs mitigation strategies and benefit from the Kyoto Protocol program of subsidies. Scientists explain that agriculture can contribute to carbon mitigation by storing more carbon in the soil through greener cropping systems. In this context, a growing number of research projects have started to investigate how developing countries agriculture can contribute to these objectives. The clean development mechanism (CDM) proposed in the Kyoto protocol is one particular policy instrument that can incite farmers to mitigate the GHG balance towards more sequestration and less emission. Some economists such as Michael Porter think that environmental regulation lead to a win-win outcome, in which case subsidies are not necessary. If it is a trade-off between incomes and the environment, subsidies are required. CDM can be mobilized to support the mitigation strategy. Agriculture implies the use of inputs. Reducing the emission implies the reduction of those inputs which will in turn imply a yield decrease. The study aims to assess whether this measure will imply a trade-off between environmental and economic objectives or a win-win situation. I apply this study to the case of small farmers in Burkina Faso through environmental instruments such as the emissions limits and agroforestry using a bioeconomic model, in which the farmers maximize their utility subject to constraints. The study finds that the limitation of emissions in annual crops production involves a trade-off. by impacting negatively their net cash come. By integrating perennial crops in the farming system, the farmers' utility increases. Around 6,118 kg are sequestrated individually. By computing the value on this carbon balance, farmers' net cash incomes go better. Then practicing agroforestry is a win-win situation, as they reach a higher level of income, and reduce emissions. Policymakers must encourage small farmers to integrate perennial crops in their annual crops system. Most of small farmers are living below the poverty line. Limiting emissions will get worse their life conditions. To reach the emission reduction objective in the annual crops system, subsidies are needed in order to compensate the income lost through the CDM.
NASA Astrophysics Data System (ADS)
Munson, A. D.; Marone, D.; Olivier, A.
2017-12-01
Traditional agroforestry systems have been used for generations in the Sahel region of Africa to assure local food security. However, an understanding of the functional ecology of these systems is lacking, which would contribute to assessing both the provision of current ecological services, and the potential for adaptation to global change. We have studied five native tree and shrub species across a transect of different soil types in the semi-arid zone of the Niayes region of Senegal, to document changes in above and belowground traits in response to soil and land use change. Root traits in particular influence access to limiting resources such as water and nutrients. We studied fine root depth distribution and specific root length (SRL) with soil depth of Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Faidherbia albida, Neocarya macrophylla, on three different soil textures for three systems (fallow, parkland and rangeland), in order to understand potential exploitation of soil resources and potential contribution of roots to soil carbon stocks at different depths. The maximum root biomass of four of the species (Acacia raddiana, Balanites aegyptiaca, Euphorbia balsamifera, Neocarya macrophylla) occurred in the 40-60 cm layer, where the two evergreen species (A. raddiana, N. macrophylla) developed the most biomass. Root biomass decreased for all species except F. albida, after 60 cm depth. The Mimosaceae species (A. raddiana, F. albida) developed the most root biomass within the 100 cm sampling depth. The maximum fine root biomass was found in fallow lands and clay soils. For all species, the highest SRL was observed during the hot dry season, in sandy or sandy loam soil. The SRL was lowest in the rainy season on clay soil. Evergreens had higher SRL than deciduous species, regardless of soil texture and growing season conditions. Parkland and rangelands exhibited higher SRL than fallow land, most likely due to higher soil fertility. Differences between evergreen and deciduous SRL relied on adaptive strategies that seem to be conditioned by season, soil and land use. We also examined intraspecific variability of above and belowground traits to assess plasticity in response to environment. Evergreen species showed more variability in response to soil and to seasonal changes in temperature and moisture.
NASA Astrophysics Data System (ADS)
Vishnudas, Subha; Savenije, Hubert H. G.; Zaag, Pieter Van der
Attappady is a rural area in Kerala, South India, that has suffered from severe land degradation and which is inhabited by a poor and predominantly tribal population. The combination of severe land degradation, poverty and a tribal population make Attappady hydrologically and socially unique. Ecological degradation and deforestation followed the gradual building up of land pressure resulting from immigration by more wealthy outsiders. The hills of Attappady were once the forest land of Kerala. Recently it was on the verge of complete degradation. This paper explains how an ecorestoration project involving soil and water conservation interventions, the introduction of agro-forestry, nutritional diversification, income generation activities and training was implemented in a participatory manner. The project had positive impacts on both the environment and the livelihoods of the people living in the watershed, but it also suffered from drawbacks. This paper reports on the successes as well as the lessons learned from this unique ecorestoration project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasco, Rodel D.; Pulhin, Florencia B.; Sales, Renezita F.
2007-06-01
The role of forestry projects in carbon conservation andsequestration is receiving much attention because of their role in themitigation of climate change. The main objective of the study is toanalyze the potential of the Upper Magat Watershed for a carbonsequestration project. The three main development components of theproject are forest conservation, tree plantations, and agroforestry farmdevelopment. At Year 30, the watershed can attain a net carbon benefit of19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the projectis estimated using historical experience in technology adoption inwatershed areas in the Philippines and a high adoption rate.more » Two leakagescenarios were used: baseline and project leakage scenarios. Most of theleakage occurs in the first 10 years of the project as displacement oflivelihood occurs during this time. The carbon lost via leakage isestimated to be 3.7 M tC in the historical adoption scenario, and 8.1 MtC under the enhanced adoption scenario.« less
Pinheiro, Marcos Paulo Gomes; Silva, José Hilário Tavares; Cavalcanti, Katrine Bezerra; de Azevedo, Paulo Roberto Medeiros; de Melo Ximenes, Maria de Fátima Freire
2013-12-01
Phlebotomine vectors transmit parasites and can cause visceral leishmaniasis (VL) or cutaneous leishmaniasis (TL). Phlebotomine females are hematophagous but need to ingest carbohydrates, possibly promoting the development of protozoan parasites in their digestive tract. The present study evaluated the species composition and abundance across several habitats in a metropolitan landscape, as well as associations among phlebotomines, plants, and local climatic parameters. Three consecutive monthly collections were carried out in an Atlantic Forest fragment, using CDC light traps in peridomestic areas and cashew, coconut, and mango tree. plantations. Eight species of phlebotomine were captured: Evandromyia evandroi, Lutzomyia longipalpis, Psathyromyia shannoni, Sciopemyia sordellii, Evandromyia walkeri, Psychodopygus wellcomei, Nyssomyia whitmani, and Nyssomyia intermedia, primarily from the forest environment. L. longipalpis was confirmed as a species adapted to anthropic environments, while P. wellcomei was shown to be predominately forest-dwelling. Phlebotomines exhibited diversified food consumption patterns in relation to carbohydrate sources. They fed on both native and exotic species of arboreal and shrubby vegetables and gramineous plants. © 2013 The Society for Vector Ecology.
Role of litter turnover in soil quality in tropical degraded lands of Colombia.
León, Juan D; Osorio, Nelson W
2014-01-01
Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6-13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.
Balima, Larba Hubert; Nacoulma, Blandine Marie Ivette; Ekué, Marius Rodrigue Mensah; Kouamé, François N'Guessan; Thiombiano, Adjima
2018-03-27
The lack of literature on the interactions between indigenous people and the valuable agroforestry trees hinder the promotion of sustainable management of plant resources in West African Sahel. This study aimed at assessing local uses and management of Afzelia africana Sm. in Burkina Faso, as a prerequisite to address issues of domestication and sustainable conservation. One thousand forty-four peoples of seven dominant ethnic groups were questioned in 11 villages through 221 semi-structured focus group interviews. The surveys encompassed several rural communities living around six protected areas along the species distribution range. Questions refer mainly to vernacular names of A. africana, locals' motivations to conserve the species, the uses, management practices and local ecological knowledge on the species. Citation frequency was calculated for each response item of each questionnaire section to obtain quantitative data. The quantitative data were then submitted to comparison tests and multivariate statistics in R program. A. africana is a locally well-known tree described as a refuge of invisible spirits. Due to this mystery and its multipurpose uses, A. africana is conserved within the agroforestry systems. The species is widely and mostly used as fodder (87.55%), drugs (75.93%), fetish or sanctuary (70.95%), food (41.49%), and raw material for carpentry (36.19%) and construction (7.05%). While the uses as fodder, food and construction involved one organ, the leaves and wood respectively, the medicinal use was the most diversified. All tree organs were traditionally used in 10 medical prescriptions to cure about 20 diseases. The species use values differed between ethnic groups with lower values within the Dagara and Fulani. The findings reveal a total absence of specific management practices such as assisted natural regeneration, seeding, or transplantation of A. africana sapling. However, trees were permanently pruned and debarked by local people. Harvesting of barks mostly contributed to the decline of the species populations. Local people acknowledged declining populations of A. africana with lower densities within the agroecosystems. They also perceived between individuals, variations in the traits of barks, leaves, fruits and seeds. Significant differences were found between ethnic groups and gender regarding the species uses. Local knowledge on the species distribution differed between ethnic groups. This study showed the multipurpose uses of A. africana throughout Burkina Faso. The results provide relevant social and ecological indicators to all stakeholders and constitute a springboard towards the species domestication and the elaboration of efficient sustainable conservation plans.
Defrenet, Elsa; Roupsard, Olivier; Van den Meersche, Karel; Charbonnier, Fabien; Pastor Pérez-Molina, Junior; Khac, Emmanuelle; Prieto, Iván; Stokes, Alexia; Roumet, Catherine; Rapidel, Bruno; de Melo Virginio Filho, Elias; Vargas, Victor J; Robelo, Diego; Barquero, Alejandra; Jourdan, Christophe
2016-08-21
In Costa Rica, coffee (Coffea arabica) plants are often grown in agroforests. However, it is not known if shade-inducing trees reduce coffee plant biomass through root competition, and hence alter overall net primary productivity (NPP). We estimated biomass and NPP at the stand level, taking into account deep roots and the position of plants with regard to trees. Stem growth and root biomass, turnover and decomposition were measured in mixed coffee/tree (Erythrina poeppigiana) plantations. Growth ring width and number at the stem base were estimated along with stem basal area on a range of plant sizes. Root biomass and fine root density were measured in trenches to a depth of 4 m. To take into account the below-ground heterogeneity of the agroforestry system, fine root turnover was measured by sequential soil coring (to a depth of 30 cm) over 1 year and at different locations (in full sun or under trees and in rows/inter-rows). Allometric relationships were used to calculate NPP of perennial components, which was then scaled up to the stand level. Annual ring width at the stem base increased up to 2·5 mm yr -1 with plant age (over a 44-year period). Nearly all (92 %) coffee root biomass was located in the top 1·5 m, and only 8 % from 1·5 m to a depth of 4 m. Perennial woody root biomass was 16 t ha -1 and NPP of perennial roots was 1·3 t ha -1 yr -1 Fine root biomass (0-30 cm) was two-fold higher in the row compared with between rows. Fine root biomass was 2·29 t ha -1 (12 % of total root biomass) and NPP of fine roots was 2·96 t ha -1 yr -1 (69 % of total root NPP). Fine root turnover was 1·3 yr -1 and lifespan was 0·8 years. Coffee root systems comprised 49 % of the total plant biomass; such a high ratio is possibly a consequence of shoot pruning. There was no significant effect of trees on coffee fine root biomass, suggesting that coffee root systems are very competitive in the topsoil. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd
2016-04-01
The Kilimanjaro region in Tanzania constitutes a particularity compared to other areas in the country. Because enough water is available the population grows rapidly and large areas are converted from natural ecosystems to agricultural areas. Therefore, the southern slopes of Mt. Kilimanjaro encompass a complex mosaic of different land uses like coffee plantations, maize, agroforestry or natural savannah. Coffee is an important cash crop in the region and is owned mostly by large companies. In contrast, the agroforestry is a traditional way of agriculture and has been sustained by the Chagga tribe for centuries. These so called homegardens are organised as multi-level systems and contain a mixture of different crops. Correlations in soil and vegetation data may serve as indicators for crop and management impacts associated to different types of land use. We hypothesize that Chagga homegardens, for example, show a more pronounced spatial autocorrelation compared to coffee plantations due to manifold above and belowground crop structures, whereas the degree of anisotropy is assumed to be higher in the coffee sites due to linear elements in management. Furthermore, we hypothesize that the overall diversity of soil parameters in homegardens on a larger scale is higher, as individual owners manage their field differently, whereas coffee plantation management often follows general rules. From these general hypotheses we derive two specific research questions: a) Are there characteristic differences in the spatial organisation of soil physical parameters of different land uses? b) Is there a recognizable relationship between vegetation structure and soil physical parameters of topsoils? We measured soil physical parameters in the topsoil (bulk density, stone content, texture, soil moisture and penetration resistance). Additionally, we took spectra of soil samples with a portable VIS-NIR spectrometer to determine C and N and measured leaf area index and troughfall as an indicator of vegetation patterns. First results support our general hypotheses. In the coffee plantation anisotropic variation of soil parameters clearly showed the anthropogenic influence like compaction due to agricultural machinery. However, soil bulk density and penetration resistance in the homegarden were also quite variable at the sites. The larger variability of throughfall in the homegarden is reflected in the patterns of soil moisture. Regarding the larger scale, where we compared different homegardens and coffee plantations along the southern slope of the mountain, soil parameters of the coffee plots were less diverse than those of the homegardens.
Carbon dynamics under a maize-Faidherbia albida agroforestry system in Zambia
NASA Astrophysics Data System (ADS)
Yengwe, Jones; Chipatela, Floyd; Amalia, Okky; Lungu, Obed; De Neve, Stefaan
2017-04-01
Continued crop residue removal for other competing uses such as livestock or household has exacerbated the decline of soil organic matter. Foliar litter from indigenous agroforestry trees such as Faidherbia albida (F. albida) can be a source of organic matter input in resource constrained farmers' fields to mitigate the declining fertility status of many Zambian soils. A controlled incubation study was conducted to evaluate the short term degradability of F. albida litter and maize plant residue. Further, we assessed the effect of F. albida litter and maize residue amendments on microbial biomass carbon (MBC) and enzyme activity. Soils were collected from outside and under the canopies of F. albida trees from six sites with 8, 9, 11, 15, and two sites with > 35-year old trees. Soils from under the canopies were amended with F. albida+maize residue (FMU), F. albida litter (FU), maize residue (MU) and controls were not amended (CTRU). The soils from outside the canopy were amended with maize residue (MO) and controls were not amended (CTRO). These were adjusted to 50% WFPS and incubated for twelve weeks at 27°C to assess C mineralization, microbial biomass carbon (MBC) and enzyme activity (Dehydrogenase, β-glucosidase and β-glucosaminidase activity). The material used as amendment in the incubation experiment had two pools of carbon: a labile and a recalcitrant pool. The mixed amendment FMU had a significantly (p<0.05) higher C mineralization compared to the other amendments for all incubated soils. The treatment MU had a higher net C mineralized than FU. However, C mineralization from FU treatment was generally higher in the first 20 days of the incubation period but declined thereafter for all the soils. The net C mineralized from MU did not significantly differ with MO in all except soil from 11-year old trees. Enzyme activity and MBC consistently increased due to amendments for all soils. Enzyme activity was significantly (p<0.05) positively correlated with MBC in amended soils. Net C mineralized and microbial activity were high in FMU because of large C substrate added. Indicating a high C mineralization potential, MBC and enzyme activity for soils under the canopy compared with soils outside the canopy. F. albida trees therefore could be a source of labile C in F. albida-Maize systems nevertheless, in the long term, input from other crop residue such as maize and savanna grasses which have a large recalcitrant pool of C are important in sustaining SOC on these fields.
Parra, Fabiola; Blancas, José Juan; Casas, Alejandro
2012-08-14
Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations. Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies. People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed. Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people.
Agroecology of corn production in Tlaxcala, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altieri, M.A.; Trujillo, J.
1987-06-01
The primary components of Tlaxcalan corn agriculture are described, including cropping patterns employed, resource management strategies, and interactions of human and biological factors. Tlaxcalan farmers grow corn in an array of polyculture and agroforestry designs that result in a series of ecological processes important for insect pest and soil fertility management. Measurements derived from a few selected fields show that trees integrated into cropping systems modify the aerial and soil environment of associated understory corn plants, influencing their growth and yields. With decreasing distance from trees, surface concentrations of most soil nutrients increase. Certain tree species affect corn yields moremore » than others. Arthropod abundance also varies depending on their degree of association with one or more of the vegetational components of the system. Densities of predators and the corn pest Macrodactylus sp. depend greatly on the presence and phenology of adjacent alfalfa strips. Although the data were derived from nonreplicated fields, they nevertheless point out some important trends, information that can be used to design new crop association that will achieve sustained soil fertility and low pest potentials.« less
Classen, Alice; Peters, Marcell K.; Ferger, Stefan W.; Helbig-Bonitz, Maria; Schmack, Julia M.; Maassen, Genevieve; Schleuning, Matthias; Kalko, Elisabeth K. V.; Böhning-Gaese, Katrin; Steffan-Dewenter, Ingolf
2014-01-01
Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro. PMID:24500173
Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna
2015-12-01
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
Sanchez-Lucas, Rosa; Mehta, Angela; Valledor, Luis; Cabello-Hurtado, Francisco; Romero-Rodrıguez, M Cristina; Simova-Stoilova, Lyudmila; Demir, Sekvan; Rodriguez-de-Francisco, Luis E; Maldonado-Alconada, Ana M; Jorrin-Prieto, Ana L; Jorrín-Novo, Jesus V
2016-03-01
The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Classen, Alice; Peters, Marcell K; Ferger, Stefan W; Helbig-Bonitz, Maria; Schmack, Julia M; Maassen, Genevieve; Schleuning, Matthias; Kalko, Elisabeth K V; Böhning-Gaese, Katrin; Steffan-Dewenter, Ingolf
2014-03-22
Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro.
Toward a whole-landscape approach for sustainable land use in the tropics.
DeFries, R; Rosenzweig, C
2010-11-16
Increasing food production and mitigating climate change are two primary but seemingly contradictory objectives for tropical landscapes. This special feature examines synergies and trade-offs among these objectives. Four themes emerge from the papers: the important roles of both forest and agriculture sectors for climate mitigation in tropical countries; the minor contribution from deforestation-related agricultural expansion to overall food production at global and continental scales; the opportunities for synergies between improved food production and reductions in greenhouse gas emissions through diversion of agricultural expansion to already-cleared lands, improved soil, crop, and livestock management, and agroforestry; and the need for targeted policy and management interventions to make these synergistic opportunities a reality. We conclude that agricultural intensification is a key factor to meet dual objectives of food production and climate mitigation, but there is no single panacea for balancing these objectives in all tropical landscapes. Place-specific strategies for sustainable land use emerge from assessments of current land use, demographics, and other biophysical and socioeconomic characteristics, using a whole-landscape, multisector perspective.
Human-induced climate change: the impact of land-use change
NASA Astrophysics Data System (ADS)
Gries, Thomas; Redlin, Margarete; Ugarte, Juliette Espinosa
2018-02-01
For hundreds of years, human activity has modified the planet's surface through land-use practices. Policies and decisions on how land is managed and land-use changes due to replacement of forests by agricultural cropping and grazing lands affect greenhouse gas emissions. Agricultural management and agroforestry and the resulting changes to the land surface alter the global carbon cycle as well as the Earth's surface albedo, both of which in turn change the Earth's radiation balance. This makes land-use change the second anthropogenic source of climate change after fossil fuel burning. However, the scientific research community has so far not been able to identify the direction and magnitude of the global impact of land-use change. This paper examines the effects of net carbon flux from land-use change on temperature by applying Granger causality and error correction models. The results reveal a significant positive long-run equilibrium relationship between land-use change and the temperature series as well as an opposing short-term effect such that land-use change tends to lead to global warming; however, a rise in temperature causes a decline in land-use change.
Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia
León, Juan D.; Osorio, Nelson W.
2014-01-01
Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6–13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems. PMID:24696656
NASA Astrophysics Data System (ADS)
Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna
2015-12-01
Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.
2012-01-01
Background Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations. Methods Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies. Results People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed. Conclusions Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people. PMID:22891978
Putting the rise of the Inca Empire within a climatic and land management context
NASA Astrophysics Data System (ADS)
Chepstow-Lusty, A. J.; Frogley, M. R.; Bauer, B. S.; Leng, M. J.; Boessenkool, K. P.; Carcaillet, C.; Ali, A. A.; Gioda, A.
2009-03-01
The rapid expansion of the Inca from the Cuzco area of highland Peru produced the largest empire in the New World between ca. AD 1400-1532. Although this meteoric rise may in part be due to the adoption of innovative societal strategies, supported by a large labour force and standing army, we argue that this would not have been possible without increased crop productivity, which was linked to more favourable climatic conditions. A multi-proxy, high-resolution 1200-year lake sediment record was analysed at Marcacocha, 12 km north of Ollantaytambo, in the heartland of the Inca Empire. This record reveals a period of sustained aridity that began from AD 880, followed by increased warming from AD 1100 that lasted beyond the arrival of the Spanish in AD 1532. These increasingly warmer conditions allowed the Inca and their predecessors the opportunity to exploit higher altitudes from AD 1150, by constructing agricultural terraces that employed glacial-fed irrigation, in combination with deliberate agroforestry techniques. There may be some important lessons to be learnt today from these strategies for sustainable rural development in the Andes in the light of future climate uncertainty.
Putting the rise of the Inca Empire within a climatic and land management context
NASA Astrophysics Data System (ADS)
Chepstow-Lusty, A. J.; Frogley, M. R.; Bauer, B. S.; Leng, M. J.; Boessenkool, K. P.; Carcaillet, C.; Ali, A. A.; Gioda, A.
2009-07-01
The rapid expansion of the Inca from the Cuzco area of highland Peru (ca. AD 1400-1532) produced the largest empire in the New World. Although this meteoric growth may in part be due to the adoption of innovative societal strategies, supported by a large labour force and a standing army, we argue that it would not have been possible without increased crop productivity, which was linked to more favourable climatic conditions. Here we present a multi-proxy, high-resolution 1200-year lake sediment record from Marcacocha, located 12 km north of Ollantaytambo, in the heartland of the Inca Empire. This record reveals a period of sustained aridity that began from AD 880, followed by increased warming from AD 1100 that lasted beyond the arrival of the Spanish in AD 1532. These increasingly warmer conditions would have allowed the Inca and their immediate predecessors the opportunity to exploit higher altitudes (post-AD 1150) by constructing agricultural terraces that employed glacial-fed irrigation, in combination with deliberate agroforestry techniques. There may be some important lessons to be learnt today from these strategies for sustainable rural development in the Andes in the light of future climate uncertainty.
The response of the soil microbial food web to extreme rainfall under different plant systems
NASA Astrophysics Data System (ADS)
Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun
2016-11-01
An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors.
NASA Astrophysics Data System (ADS)
Chapman, S. K.; Shaw, R.; Langley, A.
2008-12-01
Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.
Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs
NASA Astrophysics Data System (ADS)
Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie
2016-04-01
Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.
Homestead tree planting in two rural Swazi communities
Allen, James A.
1990-01-01
Tree planting practices were investigated on a total of 95 homesteads in two communities in rural Swaziland. Information was also collected on socioeconomic characteristics of the homesteads. In both the study areas, Sigombeni and Bhekinkosi, there was considerable variation amongst individual homesteads in size, relative wealth (as indicated by cattle and motor vehicle ownership), and amount and types of trees planted. Eighty-five percent of all homesteads in Sigombeni and 73% in Bhekinkosi had planted at least one tree. Common forms of planting included small woodlots, fruit trees, and ornamentals. Virtually all the woodlots consisted of two introduced wattle species (Acacia mearnsii and A. decurrens). The most commonly planted fruit trees were avocados, bananas, and peaches. No complex or labor-intensive agroforestry practices (such as maize/leucaena intercropping) were observed. There was some evidence that the poorest and newest homesteads were the least likely to have planted any trees and that the richest homesteads were the most likely to have planted woodlots. The results indicate that forestry research and extension efforts should take into account homestead characteristics, and strive to offer a range of tree planting options that vary in input requirements, labor needs, and complexity.
Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry
Wilson, Alphus D.
2013-01-01
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191
Diverse applications of electronic-nose technologies in agriculture and forestry.
Wilson, Alphus D
2013-02-08
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs
Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie
2016-01-01
Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604
The response of the soil microbial food web to extreme rainfall under different plant systems
Sun, Feng; Pan, Kaiwen; Tariq, Akash; Zhang, Lin; Sun, Xiaoming; Li, Zilong; Wang, Sizhong; Xiong, Qinli; Song, Dagang; Olatunji, Olusanya Abiodun
2016-01-01
An agroforestry experiment was conducted that involved four planting systems: monoculture of the focal species Zanthoxylum bungeanum and mixed cultures of Z. bungeanum and Capsicum annuum, Z. bungeanum and Medicago sativa and Z. bungeanum and Glycine max. Soil microbial food web (microorganisms and nematodes) was investigated under manipulated extreme rainfall in the four planting systems to assess whether presence of neighbor species alleviated the magnitude of extreme rainfall on nutrient uptake of the focal species by increasing the stability of soil food web. Our results indicate that in the focal species and G. max mixed culture, leaf nitrogen contents of the focal species were higher than in the monoculture and in the other mixed cultures under extreme rainfall. This result was mainly due to the significant increase under extreme rainfall of G. max species root biomass, resulting in enhanced microbial resistance and subsequent net nitrogen mineralization rate and leaf nitrogen uptake for the focal species. Differences in functional traits of neighbors had additive effects and led to a marked divergence of soil food-web resistance and nutrient uptake of the focal species. Climate change can indirectly alleviate focal species via its influence on their neighbors. PMID:27874081
Cellulase recycling in biorefineries--is it possible?
Gomes, Daniel; Rodrigues, Ana Cristina; Domingues, Lucília; Gama, Miguel
2015-05-01
On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.
Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs.
Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie
2016-04-04
Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.
Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults.
Milligan, Christine; Bingley, Amanda
2007-12-01
In recent years, there has been a substantial increase in mental health problems amongst young adults in the UK, prompting the British Government to seek to identify services and preventative measures to combat the problem. At the same time, the policy agenda around woodland has shifted away from the agro-forestry agenda that dominated much of the late 20th century toward the development of 'social forestry', defined in terms of multi-purpose, multi-benefit woodland that can contribute to an enhanced quality of life and well-being. Against this background of change and policy response, this paper examines the extent to which childhood experiences of play--particularly in wooded landscapes--may influence access to woodland in young adulthood, and the potential implications for their health and mental well-being. Engaging with notions of restoration and therapeutic landscapes literatures, the paper maintains that we cannot accept uncritically the notion that the natural environment is therapeutic. Indeed, from this paper it is clear that a range of influences acts to shape young people's relationship with woodland environments, but not all of these influences do so in positive ways.
Land use and rainfall effect on soil CO2 fluxes in a Mediterranean agroforestry system
NASA Astrophysics Data System (ADS)
Quijano, Laura; Álvaro-Fuentes, Jorge; Lizaga, Iván; Navas, Ana
2017-04-01
Soils are the largest C reservoir of terrestrial ecosystems and play an important role in regulating the concentration of CO2 in the atmosphere. The exchange of CO2 between the atmosphere and soil controls the balance of C in soils. The CO2 fluxes may be influenced by climate conditions and land use and cover change especially in the upper soil organic layer. Understanding C dynamics is important for maintaining C stocks to sustain and improve soil quality and to enhance sink C capacity of soils. This study focuses on the response of the CO2 emitted to rainfall events from different land uses (i.e. forest, abandoned cultivated soils and winter cereal cultivated soils) in a representative Mediterranean agroforestry ecosystem in the central part of the Ebro basin, NE Spain (30T 4698723N 646424E). A total of 30 measurement points with the same soil type (classified as Calcisols) were selected. Soil CO2 flux was measured in situ using a portable EGM-4 CO2 analyzer PPSystems connected to a dynamic chamber system (model CFX-1, PPSystems) weekly during autumn 2016. Eleven different rainfall events were measured at least 24 hours before (n=7) and after the rainfall event (n=4). Soil water content and temperature were measured at each sampling point within the first 5 cm. Soil samples were taken at the beginning of the experiment to determine soil organic carbon (SOC) content using a LECO RC-612. The mean SOC for forest, abandoned and cultivated soils were 2.5, 2.7 and 0.6 %, respectively. The results indicated differences in soil CO2 fluxes between land uses. The field measurements of CO2 flux show that before cereal sowing the highest values were recorded in the abandoned soils varying from 56.1 to 171.9 mg CO2-C m-2 h-1 whereas after cereal sowing the highest values were recorded in cultivated soils ranged between 37.8 and 116.2 mg CO2-C m-2 h-1 indicating the agricultural impact on CO2 fluxes. In cultivated soils, lower mean CO2 fluxes were measured after direct seeding (60.8 mg CO2-C m-2 h-1) than before (65.4 mg CO2-C m-2 h-1). The mean of topsoil water content before rainfall events was 19.7% and after was 28.9%. Soil CO2 fluxes increased on the following days after the rainfall event as the soil dried out but with lower emissions just after the events. This pattern was attributed to the control of soil moisture on microbial activity that affects CO2 production via soil respiration. CO2 measurements from soil surface are useful to evaluate the potential for soil respiration and soil carbon dioxide production capacity under different land use and environmental conditions for a better understanding of C cycling.
NASA Astrophysics Data System (ADS)
Cicuéndez, Víctor; Huesca, Margarita; Rodriguez-Rastrero, Manuel; Litago, Javier; Recuero, Laura; Merino de Miguel, Silvia; Palacios Orueta, Alicia
2014-05-01
Agroforestry ecosystems have a significant social, economic and environmental impact on the development of many regions of the world. In the Iberian Peninsula the agroforestry oak forest called "Dehesa" or "Montado" is considered as the extreme case of transformation of a Mediterranean forest by the management of human to provide a wide range of natural resources. The high variability of the Mediterranean climate and the different extensive management practices which human realized on the Dehesa result in a high spatial and temporal dynamics of the ecosystem. This leads to a complex pattern in CO2 exchange between the atmosphere and the ecosystem, i.e. in ecosystem's production. Thus, it is essential to assess Dehesa's carbon cycle to reach maximum economic benefits ensuring environmental sustainability. In this sense, the availability of high frequency Remote Sensing (RS) time series allows the assessment of ecosystem evolution at different temporal and spatial scales. Extensive research has been conducted to estimate production from RS data in different ecosystems. However, there are few studies on the Dehesa type ecosystems, probably due to their complexity in terms of spatial arrangement and temporal dynamics. In this study our overall objective is to assess the Gross Primary Production (GPP) dynamics of a Dehesa ecosystem situated in Central Spain by analyzing time series (2004-2008) of two models: (1) GPP provided by Remote Sensing Images of sensor MODIS (MOD17A2 product) and (2) GPP estimated by the implementation of a Site Specific Light Use Efficiency model based as MODIS model on Monteith equation (1972), but taking into account local ecological and meteorological parameters. Both models have been compared with the Production provided by an Eddy Covariance (EC) flux Tower that is located in our study area. In addition, dynamic relationships between models of GPP with Precipitation and Soil Water Content have been investigated by means of cross-correlations and Granger causality tests. Results have indicated that both models of GPP have shown a typical dynamic of the Dehesa in a Mediterranean climate in which there are primarily two layers, the arboreal and the herbaceous strata. However, MODIS underestimates the production of the Dehesa while our Site specific model has given more similar values and dynamics to those from the EC tower. Additionally, the analysis of the dynamic relationships has corroborated the strong dynamic link between GPP and available water for plant growth. In conclusion, we have managed to avoid the main sources of underestimation that has MODIS model with the implementation of a Site specific model. Thus, it seems that the different ecological and meteorological parameters used in MODIS model are the principally responsible for this underestimation. Finally, the Granger causality tests indicate that the prediction of GPP can improve if Precipitation or Soil Water is included in the models. References Monteith, J.L., 1972. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 9, 747-766.
NASA Astrophysics Data System (ADS)
Gomboso, J.; Ghassemi, F.; Appleyard, S. J.
1997-01-01
The North Stirling Land Conservation District consists of approximately 100,000 hectares north of the Stirling Range National Park, Western Australia. Clearing of land for agriculture occurred in the 1960's and early 1970's. The groundwater is highly saline, and, since clearing, the water table has risen by as much as 12 m; it is now generally less than 3 m below ground level throughout the area. The rise in groundwater levels following clearing and the use of crops and pastures requiring low water use have caused dramatic secondary salinisation over a short period of time. Groundwater flow was simulated with models of steady-state and transient groundwater flow. By incorporating economic simulations with the calibrated transient hydrogeological model, estimates of the expected gross margin losses were made. Three salinity-management strategies were simulated. Results indicate that 1) under the `do-nothing' strategy, future gross margins are expected to decline; 2) under the agronomic strategy, the rate of water-table rise would be reduced and foregone agricultural production losses would be less than the `do-nothing' strategy; and 3) under the agroforestry strategy, the water table is expected to decline in the long term, which would increase future agricultural production levels and, hence, profitability.
NASA Astrophysics Data System (ADS)
Dahlan, M. Z.; Nurhayati, H. S. A.; Mugnisjah, W. Q.
2017-10-01
This study was an explorative study of the various forms of traditional ecological knowledge (TEK) of Sundanese people in the context of sustainable agriculture. The qualitative method was used to identify SundaParahiyangan landscape by using Rapid Participatory Rural Appraisal throughsemi-structured interviews, focus group discussions, and field survey. The Landscape Characteristic Assessment and Community Sustainability Assessment were used to analyze the characteristic of landscape to achieve the sustainable agricultural landscape criteria proposed by US Department of Agriculture. The results revealed that the SundaParahiyangan agricultural landscape has a unique characteristic as a result of the long-term adaptation of agricultural society to theirlandscape through a learning process for generations. In general, this character was reflected in the typical of Sundanese’s agroecosystems such as forest garden, mixed garden, paddy field, and home garden. In addition, concept of kabuyutan is one of the TEKs related to understanding and utilization of landscape has been adapted on revitalizing the role of landscape surrounding the agroecosystem as the buffer zone by calculating and designating protected areas. To support the sustainability of production area, integrated practices of agroforestry with low-external-input and sustainable agriculture (LEISA) system can be applied in utilizing and managing agricultural resources.
Who Benefits from Ecosystem Services? A Case Study for Central Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Suwarno, Aritta; Hein, Lars; Sumarga, Elham
2016-02-01
There is increasing experience with the valuation of ecosystem services. However, to date, less attention has been devoted to who is actually benefiting from ecosystem services. This nevertheless is a key issue, in particular, if ecosystem services analysis and valuation is used to support environmental management. This study assesses and analyzes how the monetary benefits of seven ecosystem services are generated in Central Kalimantan Province, Indonesia, are distributed to different types of beneficiaries. We analyze the following ecosystem services: (1) timber production; (2) rattan collection; (3) jelutong resin collection; (4) rubber production (based on permanent agroforestry systems); (5) oil palm production on three management scales (company, plasma farmer, and independent smallholder); (6) paddy production; and (7) carbon sequestration. Our study shows that the benefits generated from these services differ markedly between the stakeholders, which we grouped into private, public, and household entities. The distribution of these benefits is strongly influenced by government policies and in particular benefit sharing mechanisms. Hence, land-use change and policies influencing land-use change can be expected to have different impacts on different stakeholders. Our study also shows that the benefits generated by oil palm conversion, a main driver for land-use change in the province, are almost exclusively accrued by companies and at this point in time are shared unequally with local stakeholders.
Chirima, George Johannes
2016-01-01
Restoration of polycyclic aromatic hydrocarbon- (PAH-) polluted sites is presently a major challenge in agroforestry. Consequently, microorganisms with PAH-degradation ability and soil fertility improvement attributes are sought after in order to achieve sustainable remediation of polluted sites. This study isolated PAH-degrading bacteria from enriched cultures of spent automobile engine-oil polluted soil. Isolates' partial 16S rRNA genes were sequenced and taxonomically classified. Isolates were further screened for their soil fertility attributes such as phosphate solubilization, atmospheric nitrogen fixation, and indoleacetic acid (IAA) production. A total of 44 isolates were obtained and belong to the genera Acinetobacter, Arthrobacter, Bacillus, Flavobacterium, Microbacterium, Ochrobactrum, Pseudomonas, Pseudoxanthomonas, Rhodococcus, and Stenotrophomonas. Data analysed by principal component analysis showed the Bacillus and Ochrobactrum isolates displayed outstanding IAA production. Generalized linear modelling statistical approaches were applied to evaluate the contribution of the four most represented genera (Pseudomonas, Acinetobacter, Arthrobacter, and Rhodococcus) to soil fertility. The Pseudomonas isolates were the most promising in all three soil fertility enhancement traits evaluated and all isolates showed potential for one or more of the attributes evaluated. These findings demonstrate a clear potential of the isolates to participate in restorative bioremediation of polluted soil, which will enhance sustainable agricultural production and environmental protection. PMID:27774456
Biomass Change of the Landless Peasants' Settlements in Lower Amazon
NASA Astrophysics Data System (ADS)
Yoshikawa, S.; Ishimaru, K.
2014-12-01
Land use/land cover (LU/LC) changes have been reported to occur over large areas in Legal Amazon due to the introduction of large-scale mechanized agriculture, extensive cattle ranching and uncontrolled slash-and-burn cultivation since the 1980s. Around the same time, movements which poor peoples or landless peasants settle into abandoned land have been very active in Brazil. In many cases, these people lack agricultural experiences to yield sufficient production for livelihoods. Thus, it leads to abandon the land and repeat forest clearance. In recent year, education by NGOs to these people encourage spreading of agroforestry which is a land use management system in which trees are grown around or among crops or pasture land. In this study, we specifically aimed at clarifying changes in LULC and these biomass using ground observation data, remotely-sensed LANDSAT data and GIS techniques. We focus on four different settlements: old-established settlement (around 30 years), established settlement (around 20 years), productive settlement (7 year) and unproductive settlement (7 years). These four settelements were located at Santa Barbará province, about 40 km northeast from the center of Belém, the Pará state capital, in the northern part of Brazil. We clarify that the biomass change varied according to whether the settlement are productive or not.
tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species
Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.
2014-01-01
The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376
de la Fuente, Marie Ann S; Marquis, Robert J
1999-02-01
One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack.
Devaraju, N; Bala, G; Nemani, R
2015-09-01
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.
Pan, Guangbo; Xu, Youpeng; Yu, Zhihui; Song, Song; Zhang, Yuan
2015-05-01
Maintaining the health of the river ecosystem is an essential ecological and environmental guarantee for regional sustainable development and one of the basic objectives in water resource management. With the rapid development of urbanization, the river health situation is deteriorating, especially in urban areas. The river health evaluation is a complex process that involves various natural and social components; eight eco-hydrological indicators were selected to establish an evaluation system, and the variation of river health status under the background of urbanization was explored based on entropy weight and matter-element model. The comprehensive correlative degrees of urban river health of Huzhou City in 2001, 2006 and 2010 were then calculated. The results indicated that river health status of the study area was in the direction of pathological trend, and the impact of limiting factors (such as Shannon's diversity index and agroforestry output growth rate) played an important role in river health. The variation of maximum correlative degree could be classified into stationary status, deterioration status, deterioration-to-improvement status, and improvement-to-deterioration status. There was a severe deterioration situation of river health under the background of urbanization. Copyright © 2015 Elsevier Inc. All rights reserved.
Who Benefits from Ecosystem Services? A Case Study for Central Kalimantan, Indonesia.
Suwarno, Aritta; Hein, Lars; Sumarga, Elham
2016-02-01
There is increasing experience with the valuation of ecosystem services. However, to date, less attention has been devoted to who is actually benefiting from ecosystem services. This nevertheless is a key issue, in particular, if ecosystem services analysis and valuation is used to support environmental management. This study assesses and analyzes how the monetary benefits of seven ecosystem services are generated in Central Kalimantan Province, Indonesia, are distributed to different types of beneficiaries. We analyze the following ecosystem services: (1) timber production; (2) rattan collection; (3) jelutong resin collection; (4) rubber production (based on permanent agroforestry systems); (5) oil palm production on three management scales (company, plasma farmer, and independent smallholder); (6) paddy production; and (7) carbon sequestration. Our study shows that the benefits generated from these services differ markedly between the stakeholders, which we grouped into private, public, and household entities. The distribution of these benefits is strongly influenced by government policies and in particular benefit sharing mechanisms. Hence, land-use change and policies influencing land-use change can be expected to have different impacts on different stakeholders. Our study also shows that the benefits generated by oil palm conversion, a main driver for land-use change in the province, are almost exclusively accrued by companies and at this point in time are shared unequally with local stakeholders.
Population structure of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) in Asia
Misra, Raj Shekhar; Boonkorkaew, Patchareeya; Thanomchit, Kanokwan
2017-01-01
The corms and leaves of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) are important foods in the local diet in many Asian regions. The crop has high productivity and wide agroecological adaptation and exhibits suitability for the agroforestry system. Although the plant is assumed to reproduce via panmixia, a comprehensive study on the genetic background across regions to enhance wider consumer palatability is still lacking. Here, ten informative microsatellites were analyzed in 29 populations across regions in India, Indonesia and Thailand to understand the genetic diversity, population structure and distribution to improve breeding and conservation programs. The genetic diversity was high among and within regions. Some populations exhibited excess heterozygosity and bottlenecking. Pairwise FST indicated very high genetic differentiation across regions (FST = 0.274), and the Asian population was unlikely to be panmictic. Phylogenetic tree construction grouped the populations according to country of origin with the exception of the Medan population from Indonesia. The current gene flow was apparent within the regions but was restricted among the regions. The present study revealed that Indonesia and Thailand populations could be alternative centers of the gene pool, together with India. Consequently, regional action should be incorporated in genetic conservation and breeding efforts to develop new varieties with global acceptance. PMID:28658282
Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed
NASA Astrophysics Data System (ADS)
Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.
2015-04-01
The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this end, three areas representative of different land uses (agroforestry grassland, lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while the K factor increased with intensive cultivation. The HJ-Biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. The K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.
Spatial variability of soil properties and soil erodibility in the Alqueva dam watershed, Portugal
NASA Astrophysics Data System (ADS)
Ferreira, V.; Panagopoulos, T.; Andrade, R.; Guerrero, C.; Loures, L.
2015-01-01
The aim of this work is to investigate how the spatial variability of soil properties and soil erodibility (K factor) were affected by the changes in land use allowed by irrigation with water from a reservoir in a semiarid area. To this, three areas representative of different land uses (agroforestry grassland, Lucerne crop and olive orchard) were studied within a 900 ha farm. The interrelationships between variables were analyzed by multivariate techniques and extrapolated using geostatistics. The results confirmed differences between land uses for all properties analyzed, which was explained mainly by the existence of diverse management practices (tillage, fertilization and irrigation), vegetation cover and local soil characteristics. Soil organic matter, clay and nitrogen content decreased significantly, while K factor increased with intensive cultivation. The HJ-biplot methodology was used to represent the variation of soil erodibility properties grouped in land uses. Native grassland was the least correlated with the other land uses. K factor demonstrated high correlation mainly with very fine sand and silt. The maps produced with geostatistics were crucial to understand the current spatial variability in the Alqueva region. Facing the intensification of land-use conversion, a sustainable management is needed to introduce protective measures to control soil erosion.
Cornille, Amandine; Feurtey, Alice; Gélin, Uriel; Ropars, Jeanne; Misvanderbrugge, Kristine; Gladieux, Pierre; Giraud, Tatiana
2015-01-01
Gene flow is an essential component of population adaptation and species evolution. Understanding of the natural and anthropogenic factors affecting gene flow is also critical for the development of appropriate management, breeding, and conservation programs. Here, we explored the natural and anthropogenic factors impacting crop-to-wild and within wild gene flow in apples in Europe using an unprecedented dense sampling of 1889 wild apple (Malus sylvestris) from European forests and 339 apple cultivars (Malus domestica). We made use of genetic, environmental, and ecological data (microsatellite markers, apple production across landscapes and records of apple flower visitors, respectively). We provide the first evidence that both human activities, through apple production, and human disturbance, through modifications of apple flower visitor diversity, have had a significant impact on crop-to-wild interspecific introgression rates. Our analysis also revealed the impact of previous natural climate change on historical gene flow in the nonintrogressed wild apple M. sylvestris, by identifying five distinct genetic groups in Europe and a north–south gradient of genetic diversity. These findings identify human activities and climate as key drivers of gene flow in a wild temperate fruit tree and provide a practical basis for conservation, agroforestry, and breeding programs for apples in Europe. PMID:25926882
Karlson, Martin; Reese, Heather; Ostwald, Madelene
2014-11-28
Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35-100 m(2)) and large (≥100 m(2)) trees compared to small (<35 m(2)) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas.
Karlson, Martin; Reese, Heather; Ostwald, Madelene
2014-01-01
Detailed information on tree cover structure is critical for research and monitoring programs targeting African woodlands, including agroforestry parklands. High spatial resolution satellite imagery represents a potentially effective alternative to field-based surveys, but requires the development of accurate methods to automate information extraction. This study presents a method for tree crown mapping based on Geographic Object Based Image Analysis (GEOBIA) that use spectral and geometric information to detect and delineate individual tree crowns and crown clusters. The method was implemented on a WorldView-2 image acquired over the parklands of Saponé, Burkina Faso, and rigorously evaluated against field reference data. The overall detection rate was 85.4% for individual tree crowns and crown clusters, with lower accuracies in areas with high tree density and dense understory vegetation. The overall delineation error (expressed as the difference between area of delineated object and crown area measured in the field) was 45.6% for individual tree crowns and 61.5% for crown clusters. Delineation accuracies were higher for medium (35–100 m2) and large (≥100 m2) trees compared to small (<35 m2) trees. The results indicate potential of GEOBIA and WorldView-2 imagery for tree crown mapping in parkland landscapes and similar woodland areas. PMID:25460815
Choi, Soo Im; Kang, Hag Mo; Kim, Hyun; Lee, Chang Heon; Lee, Chong Kyu
2016-01-01
Although South Korean mountain villages occupy 44 and 55 % of land and forest areas, respectively, these villages account for only 3 % of the national population and they suffer from a declining workforce owing to aging, wage inflation, and low forestry productivity. As a result, the South Korean government implemented a mountain ecological village development project from 1995 to 2013 in 312 of the 4972 mountain villages and investigated project performance in 2014. The present study establishes a measure for the promotion of mountain ecological villages by comparing the situation before and after the project. The analysis found a threefold increase in the inflow of farm/rural-returning and multicultural households compared with before the project, while the average income per farm, local product sales, and experience tourism revenue also grew remarkably every year. In addition, households utilizing forest resources increased by about 30 %, but 45.8 % of the 312 villages had no long-term plan for village development and villagers experienced low satisfaction with job creation and village income. A systematic revision of agroforestry production and forest administration is needed to define the characteristics of farm/rural-returning populations clearly, reorganize urban-rural exchange and experience programs, and reinforce tangible/intangible cultural assets and religious traditions.
NASA Astrophysics Data System (ADS)
Evrard, O.; Ribolzi, O.; Huon, S.; de Rouw, A.; Silvera, N.; Latsachack, K. O.; Soulileuth, B.; Lefèvre, I.; Pierret, A.; Lacombe, G.; Sengtaheuanghoung, O.; Valentin, C.
2017-12-01
Soil erosion delivers an excessive quantity of sediment to rivers of Southeastern Asia. Land use is rapidly changing in this region of the world, and these modifications may further accelerate soil erosion in this area. Although the conversion of forests into cropland has often been investigated, much fewer studies have addressed the replacement of traditional slash-and-burn cultivation systems with commercial perennial monocultures such as teak plantations. The current research investigated the impact of this land use change on the hydrological response and the sediment yields from a representative catchment of Northern Laos (Houay Pano, 0.6 km²) where long-term monitoring (2002-2014) was conducted (http://msec.obs-mip.fr/). The results showed a significant growth in the overland flow contribution to stream flow (from 16 to 31%). Furthermore, sediment yields strongly increased from 98 to 609 Mg km-2. These changes illustrate the severity of soil erosion processes occurring under teak plantations characterized by the virtual absence of understorey vegetation to dissipate raindrop energy, which facilitates the formation of an impermeable surface crust. This counter-intuitive increase of soil erosion generated by afforestation reflects the difficulty to find sustainable production solutions for the local populations of Southeastern Asia. To reduce soil loss under teak plantations, the development of extensive agro-forestry practices could be promoted.
Water, Forests, People: The Swedish Experience in Building Resilient Landscapes.
Eriksson, Mats; Samuelson, Lotta; Jägrud, Linnéa; Mattsson, Eskil; Celander, Thorsten; Malmer, Anders; Bengtsson, Klas; Johansson, Olof; Schaaf, Nicolai; Svending, Ola; Tengberg, Anna
2018-07-01
A growing world population and rapid expansion of cities increase the pressure on basic resources such as water, food and energy. To safeguard the provision of these resources, restoration and sustainable management of landscapes is pivotal, including sustainable forest and water management. Sustainable forest management includes forest conservation, restoration, forestry and agroforestry practices. Interlinkages between forests and water are fundamental to moderate water budgets, stabilize runoff, reduce erosion and improve biodiversity and water quality. Sweden has gained substantial experience in sustainable forest management in the past century. Through significant restoration efforts, a largely depleted Swedish forest has transformed into a well-managed production forest within a century, leading to sustainable economic growth through the provision of forest products. More recently, ecosystem services are also included in management decisions. Such a transformation depends on broad stakeholder dialog, combined with an enabling institutional and policy environment. Based on seminars and workshops with a wide range of key stakeholders managing Sweden's forests and waters, this article draws lessons from the history of forest management in Sweden. These lessons are particularly relevant for countries in the Global South that currently experience similar challenges in forest and landscape management. The authors argue that an integrated landscape approach involving a broad array of sectors and stakeholders is needed to achieve sustainable forest and water management. Sustainable landscape management-integrating water, agriculture and forests-is imperative to achieving resilient socio-economic systems and landscapes.
High Bee and Wasp Diversity in a Heterogeneous Tropical Farming System Compared to Protected Forest
Schüepp, Christof; Rittiner, Sarah; Entling, Martin H.
2012-01-01
It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems. PMID:23300598
Feurtey, Alice; Cornille, Amandine; Shykoff, Jacqui A; Snirc, Alodie; Giraud, Tatiana
2017-02-01
Crop-to-wild gene flow can reduce the fitness and genetic integrity of wild species. Malus sylvestris , the European crab-apple fruit tree in particular, is threatened by the disappearance of its habitat and by gene flow from its domesticated relative , Malus domestica . With the aims of evaluating threats for M. sylvestris and of formulating recommendations for its conservation, we studied here, using microsatellite markers and growth experiments: (i) hybridization rates in seeds and trees from a French forest and in seeds used for replanting crab apples in agrosystems and in forests, (ii) the impact of the level of M. domestica ancestry on individual tree fitness and (iii) pollen dispersal abilities in relation to crop-to-wild gene flow. We found substantial contemporary crop-to-wild gene flow in crab-apple tree populations and superior fitness of hybrids compared to wild seeds and seedlings. Using paternity analyses, we showed that pollen dispersal could occur up to 4 km and decreased with tree density. The seed network furnishing the wild apple reintroduction agroforestry programmes was found to suffer from poor genetic diversity, introgressions and species misidentification. Overall, our findings indicate supported threats for the European wild apple steering us to provide precise recommendations for its conservation.
NASA Astrophysics Data System (ADS)
Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier
2015-02-01
Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.
Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury
2013-05-21
Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.
The impact of soil redistribution on SOC pools in a Mediterranean agroforestry catchment
NASA Astrophysics Data System (ADS)
Quijano, Laura; Gaspar, Leticia; Lizaga, Iván; Navas, Ana
2017-04-01
Soil redistribution processes play an important role influencing the spatial distribution patterns of soil and associated soil organic carbon (SOC) at landscape scale. Information on drivers of SOC dynamics is key for evaluating both soil degradation and SOC stability that can affect soil quality and sustainability. 137Cs measurements provide a very effective tool to infer spatial patterns of soil redistribution and quantify soil redistribution rates in different landscapes, but to date these data are scarce in mountain Mediterranean agroecosystems. We evaluate the effect of soil redistribution on SOC and SOC pools in relation to land use in a Mediterranean mountain catchment (246 ha). To this purpose, two hundred and four soil bulk cores were collected on a 100 m grid in the Estaña lakes catchment located in the central sector of the Spanish Pyrenees (31T 4656250N 295152E). The study area is an agroforestry and endorheic catchment characterized by the presence of evaporite dissolution induced dolines, some of which host permanent lakes. The selected landscape is representative of rainfed areas of Mediterranean continental climate with erodible lithology and shallow soils, and characterized by an intense anthropogenic activity through cultivation and water management. The cultivated and uncultivated areas are heterogeneously distributed. SOC and SOC pools (the active and decomposable fraction, ACF and the stable carbon fraction SCF) were measured by the dry combustion method and soil redistribution rates were derived from 137Cs measurements. The results showed that erosion predominated in the catchment, most of soil samples were identified as eroded sites (n=114) with an average erosion rate of 26.9±51.4 Mg ha-1 y-1 whereas the mean deposition rate was 13.0±24.2 Mg ha-1 y-1. In cultivated soils (n=54) the average of soil erosion rate was significantly higher (78.5±74.4 Mg ha-1 y-1) than in uncultivated soils (6.8±10.4 Mg ha-1 y-1). Similarly, the mean of soil deposition rate in cultivated soils (n=22) was significantly higher (42.6±35.1 Mg ha-1 y-1) than in uncultivated soils (3.4±3.2 Mg ha-1 y-1). The mean SOC content for all soil samples was 2.5±2.0%. In uncultivated soils, significantly higher (P<0.01) amounts of SOC (3.0±2.6%), ACF (2.1±0.7%) and SCF (0.9±0.4%) were found compared to cultivated soils where the means were 1.1±0.7%, 0.7±0.5% and 0.4±0.3%, respectively. Significant (P<0.05) correlations between SOC, SOC pools and soil redistribution rates indicate that the distribution of SOC pools were significantly affected by soil redistribution in the study area. SOC and SOC pools were significantly higher at depositional (n=90, 2.8±1.8%) than at eroded sampling points (2.2±2.1%). ACF shows greater differences at eroding sites and at depositional sites than SCF reflecting that ACF is more sensitive to soil redistribution processes. Our findings emphasize the role of soil redistribution and land use in influencing the dynamics of SOC, information that can be also relevant in soil management. Improving the knowledge on the relationships between land use, soil redistribution processes and SOC fractions is of interest, especially in these Mediterranean rapidly changing landscapes.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
NASA Astrophysics Data System (ADS)
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-11-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.
Aitkenhead, Matt J; Black, Helaina I J
2018-02-01
Using the International Centre for Research in Agroforestry-International Soil Reference and Information Centre (ICRAF-ISRIC) global soil spectroscopy database, models were developed to estimate a number of soil variables using different input data types. These input types included: (1) site data only; (2) visible-near-infrared (Vis-NIR) diffuse reflectance spectroscopy only; (3) combined site and Vis-NIR data; (4) red-green-blue (RGB) color data only; and (5) combined site and RGB color data. The models produced variable estimation accuracy, with RGB only being generally worst and spectroscopy plus site being best. However, we showed that for certain variables, estimation accuracy levels achieved with the "site plus RGB input data" were sufficiently good to provide useful estimates (r 2 > 0.7). These included major elements (Ca, Si, Al, Fe), organic carbon, and cation exchange capacity. Estimates for bulk density, contrast-to-noise (C/N), and P were moderately good, but K was not well estimated using this model type. For the "spectra plus site" model, many more variables were well estimated, including many that are important indicators for agricultural productivity and soil health. Sum of cation, electrical conductivity, Si, Ca, and Al oxides, and C/N ratio were estimated using this approach with r 2 values > 0.9. This work provides a mechanism for identifying the cost-effectiveness of using different model input data, with associated costs, for estimating soil variables to required levels of accuracy.
NASA Astrophysics Data System (ADS)
Djuwendah, E.; Priyatna, T.; Kusno, K.; Deliana, Y.; Wulandari, E.
2018-03-01
Building agribusiness model of LEISA is needed as a prototype of sustainable regional and economic development (SRRED) in the watersheds (DAS) of West Java Province. Agribusiness model of LEISA is a sustainable agribusiness system applying low external input. The system was developed in the framework of optimizing local-based productive resources including soil, water, vegetation, microclimate, renewable energy, appropriate technology, social capital, environment and human resources by combining various subsystems including integrated production subsystems of crops, livestock and fish to provide a maximum synergy effect, post-harvest subsystem and processing of results, marketing subsystems and supporting subsystems. In this study, the ecological boundary of Cipunegara sub-watershed ecosystem, administrative boundaries are Surian Subdistricts in Sumedang. The purpose of this study are to identify the potency of natural resources and local agricultural technologies that could support the LEISA model in Surian and to identify the potency of internal and external inputs in the LEISA model. The research used qualitative descriptive method and technical action research. Data were obtained through interviews, documentation, and observation. The results showed that natural resources in the form of agricultural land, water resources, livestock resources, and human labor are sufficient to support agribusiness model of LEISA. LEISA agribusiness model that has been applied in the research location is the integration of beef cattle, agroforestry, and agrosilvopasture. By building LEISA model, agribusiness can optimize the utilization of locally based productive resources, reduce dependence on external resources, and support sustainable food security.
Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury
2013-01-01
Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073
Farmer-Managed Natural Regeneration Enhances Rural Livelihoods in Dryland West Africa
NASA Astrophysics Data System (ADS)
Weston, Peter; Hong, Reaksmey; Kaboré, Carolyn; Kull, Christian A.
2015-06-01
Declining agricultural productivity, land clearance and climate change are compounding the vulnerability of already marginal rural populations in West Africa. `Farmer-Managed Natural Regeneration' (FMNR) is an approach to arable land restoration and reforestation that seeks to reconcile sustained food production, conservation of soils, and protection of biodiversity. It involves selecting and protecting the most vigorous stems regrowing from live stumps of felled trees, pruning off all other stems, and pollarding the chosen stems to grow into straight trunks. Despite widespread enthusiasm and application of FMNR by environmental management and development projects, to date, no research has provided a measure of the aggregate livelihood impact of community adoption of FMNR. This paper places FMNR in the context of other agroforestry initiatives, then seeks to quantify the value of livelihood outcomes of FMNR. We review published and unpublished evidence about the impacts of FMNR, and present a new case study that addresses gaps in the evidence-base. The case study focuses on a FMNR project in the district of Talensi in the semi-arid Upper East Region in Ghana. The case study employs a social return on investment analysis, which identifies proxy financial values for non-economic as well as economic benefits. The results demonstrate income and agricultural benefits, but also show that asset creation, increased consumption of wild resources, health improvements, and psycho-social benefits created more value in FMNR-adopting households during the period of the study than increases in income and agricultural yields.
Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014
NASA Astrophysics Data System (ADS)
Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.
2017-10-01
A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.
Farmer-managed natural regeneration enhances rural livelihoods in dryland west Africa.
Weston, Peter; Hong, Reaksmey; Kaboré, Carolyn; Kull, Christian A
2015-06-01
Declining agricultural productivity, land clearance and climate change are compounding the vulnerability of already marginal rural populations in West Africa. 'Farmer-Managed Natural Regeneration' (FMNR) is an approach to arable land restoration and reforestation that seeks to reconcile sustained food production, conservation of soils, and protection of biodiversity. It involves selecting and protecting the most vigorous stems regrowing from live stumps of felled trees, pruning off all other stems, and pollarding the chosen stems to grow into straight trunks. Despite widespread enthusiasm and application of FMNR by environmental management and development projects, to date, no research has provided a measure of the aggregate livelihood impact of community adoption of FMNR. This paper places FMNR in the context of other agroforestry initiatives, then seeks to quantify the value of livelihood outcomes of FMNR. We review published and unpublished evidence about the impacts of FMNR, and present a new case study that addresses gaps in the evidence-base. The case study focuses on a FMNR project in the district of Talensi in the semi-arid Upper East Region in Ghana. The case study employs a social return on investment analysis, which identifies proxy financial values for non-economic as well as economic benefits. The results demonstrate income and agricultural benefits, but also show that asset creation, increased consumption of wild resources, health improvements, and psycho-social benefits created more value in FMNR-adopting households during the period of the study than increases in income and agricultural yields.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
NASA Astrophysics Data System (ADS)
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-06-01
Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.
Chemical warfare in Colombia, evidentiary ecologies and senti-actuando practices of justice.
Lyons, Kristina
2018-03-01
Between 1994 and 2015, militarized aerial fumigation was a central component of US-Colombia antidrug policy. Crop duster planes sprayed a concentrated formula of Monsanto's herbicide, glyphosate, over illicit crops, and also forests, soils, pastures, livestock, watersheds, subsistence food and human bodies. Given that a national peace agreement was signed in 2016 between FARC-EP guerrillas and the state to end Colombia's over five decades of war, certain government officials are quick to proclaim aerial fumigation of glyphosate an issue of the past. Rural communities, however, file quejas (complaints or grievances) seeking compensation from the state for the ongoing effects of the destruction of their licit agro-forestry. At the interfaces of feminist science and technology studies and anthropology, this article examines how evidentiary claims are mobilized when war deeply politicizes and moralizes technoscientific knowledge production. By ethnographically tracking the grievances filed by small farmers, I reveal the extent to which evidence circulating in zones of war - tree seedlings, subsistence crops, GPS coordinates and bureaucratic documents - retains (or not) the imprints of violence and toxicity. Given the systematic rejection of compensation claims, farmers engage in everyday material practices that attempt to transform chemically degraded ecologies. These everyday actualizations of justice exist both alongside and outside contestation over the geopolitically backed violence of state law. Rather than simply contrasting everyday acts of justice with denunciatory claims made against the state, farmers' reparative practices produce an evidentiary ecology that holds the state accountable while also ' senti-actuando' (feel-acting) alternative forms of justice.
NASA Astrophysics Data System (ADS)
Nóbrega, Cristina; Pereira, Fernando L.; Valente, Fernanda
2015-04-01
Water losses associated to the rainfall interception process by trees can be an important component of the local hydrologic balance and must be accounted for when implementing any sustainable water management programme. In many dry areas of the Mediterranean region where agro-forestry systems are common, those programmes are crucial to foster adequate water conservation measures. Recent studies have shown that the evaluation of interception loss in sparse forests or tree plantations should be made for individual trees, being the total value determined as the sum of the individual contributions. Following this approach, rainfall interception was measured and modelled over two years, in an isolated Olea europeaea L. tree, in a traditional low-density olive grove in Castelo Branco, central Portugal. Total interception loss over the experimental period was 243.5 mm, on a tree crown projected area basis, corresponding to 18.0% of gross rainfall (Pg). Modelling made for each rainfall event using the sparse version of the Gash model, slightly underestimated interception loss with a value of 240.5 mm, i.e., 17.8 % ofPg. Modelling quality, evaluated according to a number of criteria, was good, allowing the conclusion that the methodology used was adequate. Modelling was also made on a daily basis, i.e., assuming a single storm per rainday. In this case, interception loss was overestimated by 12%, mostly because 72% of all rainfall events lasted for more than a day.
Participation in social forestry re-examined: a case-study from Bangladesh.
Khan, N A; Begum, S A
1997-08-01
Bangladesh has enthusiastically launched social forestry projects that make grandiose promises of seeking local community involvement and participation in the management of forest resources. This study examines the functioning of the Chandra Agroforestry Research and Demonstration Project to evaluate the actual extent and nature of popular participation it entails. After discussing the project and its locale, the methodology of the study is described as an analysis of qualitative and quantitative data collected in the period February-August 1994. The theoretical framework was based on a modified version of Zaman's framework that uses prevalence and opportunity as the indicators of participation. Analysis of prevalence indicators reveals that professional foresters make all major decisions for the project without consulting the farmers involved. The government also has sole responsibility for monitoring and evaluating the project, and the farmers are skeptical that the government will allow them to profit from the benefits arising from the project. Analysis of opportunity indicators shows that the project is not decentralized, cooperative and collaborative linkages have not been made, project flexibility has been sacrificed to bureaucracy, and the incentives promised to the farmers have not materialized. It is concluded that the participation of local residents in the Chandra project has been insignificant but that the project has succeeded in reducing 1) the historical distrust and conflict between forestry officials and local farmers, 2) encroachment on government lands, and 3) the rate of deforestation. In addition, the project has given participating farmers a sense of security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mwangi, A.M.
This study focuses on wood-energy production and consumption strategies among small-scale farm households in central Kenya. The specific objective were: (1) to determine how households had responded to specific wood-energy policies; (2) to identify factors associated with household adoption or non-adoption of the strategies. Different programs aimed at addressing wood-energy shortages in Kenya were initiated or strengthened during the 1980s: fuelwood or multipurpose tree planting; development and dissemination of improved stoves and fireplaces; promotion of increased accessibility to wood-energy substitutes. Household adoption levels for policy-supported strategies have remained low despite promotion. Survey data from two villages in Nyeri district weremore » collected to determine the factors associated with adoption of the Kenya Ceramic Jiko, the [open quotes]Kuni Mbili[close quotes] stove/fireplace, kerosene stoves, electric cookers, and fuelwood or multipurpose tree planting. Adoption rates varied from as low as 1 percent for electricity to 43 percent for the Kenya Ceramic Jiko. Important policy variables included extension visits per year, income levels, years of formal education received by head of household, access to different fuels, area of farm-land owned, household size, and locational characteristics of the villages. Policy recommendations included: use of research results to direct policy; improvement of information flows between policy makers, extension agents, and technology-users; increased support of agroforestry; and better program coordination. Recommendations for further research included: examining more areas where efficiency gains in energy production and consumption can be made, extending the study to cover the drier parts of central Kenya, and conducting regular case studies in order to better understand the adoption process over time.« less
Effective Management of Trans boundary Landscapes - Geospatial Applications
NASA Astrophysics Data System (ADS)
Kotru, R.; Rawal, R. S.; Mathur, P. K.; Chettri, N.; Chaudhari, S. A.; Uddin, K.; Murthy, M. S. R.; Singh, S.
2014-11-01
The Convention on Biological Diversity advocates the use of landscape and ecosystem approaches for managing biodiversity, in recognition of the need for increased regional cooperation. In this context, ICIMOD and regional partners have evolved Transboundary Landscape concept to address the issues of conservation and sustainable use of natural resources and systems (e.g., biodiversity, rangelands, farming systems, forests, wetlands, and watersheds, etc.). This concept defines the landscapes by ecosystems rather than political/administrative boundaries. The Hindu Kush Himalayan (HKH) region is extremely heterogeneous, with complex inter linkages of biomes and habitats as well as strong upstream-downstream linkages related to the provisioning of ecosystem services. Seven such transboundary landscapes, identified across west to east extent of HKH, have been considered for programmatic cooperation, include: Wakhan, Karakoram-Pamir, Kailash, Everest, Kangchenjunga, Brahmaputra-Salween, and Cherrapunjee- Chittagong. The approach is people centered and considers the cultural conservation as an essential first step towards resource conservation efforts in the region. Considering the multi-scale requirements of study, the geospatial technology has been effectively adopted towards: (i) understanding temporal changes in landscapes, (ii) long term ecological and social monitoring, (ii) identifying potential bio corridors, (iii) assessing landscape level vulnerability due to climatic and non-climatic drivers, and (iv) developing local plans on extractions of high value economic species supporting livelihoods, agroforestry system and ecotourism, etc. We present here our recent experiences across different landscapes on assessment of three decadal changes, vegetation type mapping, assessment of socio-ecological drivers, corridor assessment, ecosystem services assessment, models for optimal natural resource use systems and long term socio-ecological monitoring.
Forests, fields, and the edge of sustainability at the ancient Maya city of Tikal.
Lentz, David L; Dunning, Nicholas P; Scarborough, Vernon L; Magee, Kevin S; Thompson, Kim M; Weaver, Eric; Carr, Christopher; Terry, Richard E; Islebe, Gerald; Tankersley, Kenneth B; Grazioso Sierra, Liwy; Jones, John G; Buttles, Palma; Valdez, Fred; Ramos Hernandez, Carmen E
2014-12-30
Tikal has long been viewed as one of the leading polities of the ancient Maya realm, yet how the city was able to maintain its substantial population in the midst of a tropical forest environment has been a topic of unresolved debate among researchers for decades. We present ecological, paleoethnobotanical, hydraulic, remote sensing, edaphic, and isotopic evidence that reveals how the Late Classic Maya at Tikal practiced intensive forms of agriculture (including irrigation, terrace construction, arboriculture, household gardens, and short fallow swidden) coupled with carefully controlled agroforestry and a complex system of water retention and redistribution. Empirical evidence is presented to demonstrate that this assiduously managed anthropogenic ecosystem of the Classic period Maya was a landscape optimized in a way that provided sustenance to a relatively large population in a preindustrial, low-density urban community. This landscape productivity optimization, however, came with a heavy cost of reduced environmental resiliency and a complete reliance on consistent annual rainfall. Recent speleothem data collected from regional caves showed that persistent episodes of unusually low rainfall were prevalent in the mid-9th century A.D., a time period that coincides strikingly with the abandonment of Tikal and the erection of its last dated monument in A.D. 869. The intensified resource management strategy used at Tikal-already operating at the landscape's carrying capacity-ceased to provide adequate food, fuel, and drinking water for the Late Classic populace in the face of extended periods of drought. As a result, social disorder and abandonment ensued.
Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther
2009-01-01
In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale. PMID:22399948
Migliavacca, Mirco; Meroni, Michele; Busetto, Lorenzo; Colombo, Roberto; Zenone, Terenzio; Matteucci, Giorgio; Manca, Giovanni; Seufert, Guenther
2009-01-01
In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.
Chen, Yi; Chen, Wei; Lin, Ye-chun; Cheng, Jian-zhong; Pan, Wen-jie
2015-12-01
Biochar is one of the research hotspots in the field of the agroforestry waste utilization. A field experiment was carried out to investigate the effects of different amounts of tobacco stem biochar (0, 1, 10, 50 t · hm⁻²) on soil micro-ecology and physiological properties of flue-cured tobacco. The results showed that soil water content (SWC) increased at all tobacco growth stages as the amounts of biochar applications increased. There were significant differences of SWC between the treatment of 50 t · hm⁻² and other treatments at the period of tobacco vigorous growth. As the application of biochar increased, the total soil porosity and capillary porosity increased, while soil bacteria, actinomyces, fungi amount increased firstly and then decreased. The amount of soil bacteria, actinomyces, fungi reached the maximum at the treatment of 10 t · hm⁻². Soil respiration rate (SRR) at earlier stage increased with the increase of biochar application. Compared with the control, SSR under biochar treatments increased by 7.9%-36.9%, and there were significant differences of SRR between high biochar application treatments (50 t · hm⁻² and 10 t · hm⁻²) and the control. Biochar improved leaf water potential, carotenoid and chlorophyll contents. Meanwhile, the dry mass of root, shoot and total dry mass under biochar application were higher than that of the control. These results indicated that the biochar played active roles in improving tobacco-planting soil micro-ecology and regulating physiological properties of flue-cured tobacco.
NASA Astrophysics Data System (ADS)
Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen
2014-09-01
Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.
Integrated Food-Energy Systems: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Gerst, M.; Cox, M. E.; Locke, K. A.; Laser, M.; Raker, M.; Gooch, C.; Kapuscinski, A. R.
2015-12-01
Predominant forms of food and energy systems pose multiple challenges to the environment as current configurations tend to be structured around centralized one-way through-put of materials and energy. One proposed form of system transformation involves locally integrating "unclosed" material and energy loops from food and energy systems. Such systems, which have been termed integrated food-energy systems (IFES), have existed in diverse niche forms but have not been systematically studied with respect to technological, governance, and environmental differences. This is likely because IFES can have widely different configurations, from co-located renewable energy production on cropland to agroforestry. As a first step in creating a synthesis of IFES, our research team constructed a taxonomy using exploratory data analysis of diverse IFES cases (Gerst et al., 2015, ES&T 49:734-741). It was found that IFES may be categorized by type of primary product produced (plant- or animal-based food or energy) and the degree and direction of vertical supply chain coordination. To further explore these implications, we have begun a study of a highly-coordinated, animal-driven IFES: dairy farms with biogas production from anaerobic digestion of manure. The objectives of the research are to understand the barriers to adoption and the potential benefits to the farms financial resilience and to the environment. To address these objectives, we are interviewing 50 farms across New York and Vermont, collecting information on farmer decision-making and farm operation. These results will be used to calibrate biophysical and economic models of the farm in order understand the future conditions under which adoption of an IFES is beneficial.
Long-term effect of rice-based farming systems on soil health.
Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S
2015-05-01
Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.
JOHNS
1999-01-01
/ In southern Bahia, Brazil, the traditional cocoa agroecosystem with a dense shade canopy of native trees is now recognized as a secondary conservation route for highly endangered Atlantic Rainforest species. This "chocolate forest" of the densely shaded farms persists despite a massive 20-year Brazilian government modernization program in which shade was seen as a chief impediment to raising cocoa production. The objective of this study was to determine how this traditional agroecosystem endured. Although dense shade limits cocoa yield, it provides several agroecological benefits: control of insect pests and weeds, microclimate stability, and soil fertility maintenance. A keycomponent of modernization efforts was a shade-tree removal program designed to maximize cocoa production by using low shade and fertilizer while substituting agrochemicals for many beneficial roles of the overhead trees. This research found that many farmers rejected, or only partially accepted, the shade reduction process although it promised much higher cocoa yield and profit. Farmers employing a wide range of shading were interviewed, and it was found that decisions to remove or maintain the shade trees were linked to both agroecological and risk-minimization factors. Farmers' perceptions of the agroecological functions of the shade trees and individual willingness to entertain the economic risk associated with substituting agrochemicals for these were important. A less-profitable, but lower-risk approach of occasional fertilizer and agrochemical use with the traditional shade intact was a rational and widespread choice. Policies designed to maintain the traditional agroecosystem through the current economic crisis should heed the multiple functions of the overhead trees. KEY WORDS: Conservation; Brazil; Atlantic Rainforest; Cocoa; Agroecology; Risk; Agroforestry
NASA Astrophysics Data System (ADS)
Pfund, Jean-Laurent; Watts, John Daniel; Boissière, Manuel; Boucard, Amandine; Bullock, Renee Marie; Ekadinata, Andree; Dewi, Sonya; Feintrenie, Laurène; Levang, Patrice; Rantala, Salla; Sheil, Douglas; Sunderland, Terence Clarence Heethom; Urech, Zora Lea
2011-08-01
We examine five forested landscapes in Africa (Cameroon, Madagascar, and Tanzania) and Asia (Indonesia and Laos) at different stages of landscape change. In all five areas, forest cover (outside of protected areas) continues to decrease despite local people's recognition of the importance of forest products and services. After forest conversion, agroforestry systems and fallows provide multiple functions and valued products, and retain significant biodiversity. But there are indications that such land use is transitory, with gradual simplification and loss of complex agroforests and fallows as land use becomes increasingly individualistic and profit driven. In Indonesia and Tanzania, farmers favor monocultures (rubber and oil palm, and sugarcane, respectively) for their high financial returns, with these systems replacing existing complex agroforests. In the study sites in Madagascar and Laos, investments in agroforests and new crops remain rare, despite government attempts to eradicate swidden systems and their multifunctional fallows. We discuss approaches to assessing local values related to landscape cover and associated goods and services. We highlight discrepancies between individual and collective responses in characterizing land use tendencies, and discuss the effects of accessibility on land management. We conclude that a combination of social, economic, and spatially explicit assessment methods is necessary to inform land use planning. Furthermore, any efforts to modify current trends will require clear incentives, such as through carbon finance. We speculate on the nature of such incentive schemes and the possibility of rewarding the provision of ecosystem services at a landscape scale and in a socially equitable manner.
Forests, fields, and the edge of sustainability at the ancient Maya city of Tikal
Lentz, David L.; Dunning, Nicholas P.; Scarborough, Vernon L.; Magee, Kevin S.; Thompson, Kim M.; Weaver, Eric; Terry, Richard E.; Islebe, Gerald; Tankersley, Kenneth B.; Grazioso Sierra, Liwy; Jones, John G.; Buttles, Palma; Valdez, Fred; Ramos Hernandez, Carmen E.
2014-01-01
Tikal has long been viewed as one of the leading polities of the ancient Maya realm, yet how the city was able to maintain its substantial population in the midst of a tropical forest environment has been a topic of unresolved debate among researchers for decades. We present ecological, paleoethnobotanical, hydraulic, remote sensing, edaphic, and isotopic evidence that reveals how the Late Classic Maya at Tikal practiced intensive forms of agriculture (including irrigation, terrace construction, arboriculture, household gardens, and short fallow swidden) coupled with carefully controlled agroforestry and a complex system of water retention and redistribution. Empirical evidence is presented to demonstrate that this assiduously managed anthropogenic ecosystem of the Classic period Maya was a landscape optimized in a way that provided sustenance to a relatively large population in a preindustrial, low-density urban community. This landscape productivity optimization, however, came with a heavy cost of reduced environmental resiliency and a complete reliance on consistent annual rainfall. Recent speleothem data collected from regional caves showed that persistent episodes of unusually low rainfall were prevalent in the mid-9th century A.D., a time period that coincides strikingly with the abandonment of Tikal and the erection of its last dated monument in A.D. 869. The intensified resource management strategy used at Tikal—already operating at the landscape’s carrying capacity—ceased to provide adequate food, fuel, and drinking water for the Late Classic populace in the face of extended periods of drought. As a result, social disorder and abandonment ensued. PMID:25512500
Hobbs, Trevor J; Neumann, Craig R; Meyer, Wayne S; Moon, Travis; Bryan, Brett A
2016-10-01
Environmental management and regional land use planning has become more complex in recent years as growing world population, climate change, carbon markets and government policies for sustainability have emerged. Reforestation and agroforestry options for environmental benefits, carbon sequestration, economic development and biodiversity conservation are now important considerations of land use planners. New information has been collected and regionally-calibrated models have been developed to facilitate better regional land use planning decisions and counter the limitations of currently available models of reforestation productivity and carbon sequestration. Surveys of above-ground biomass of 264 reforestation sites (132 woodlots, 132 environmental plantings) within the agricultural regions of South Australia were conducted, and combined with spatial information on climate and soils, to develop new spatial and temporal models of plant density and above-ground biomass productivity from reforestation. The models can be used to estimate productivity and total carbon sequestration (i.e. above-ground + below-ground biomass) under a continuous range of planting designs (e.g. variable proportions of trees and shrubs or plant densities), timeframes and future climate scenarios. Representative spatial models (1 ha resolution) for 3 reforestation designs (i.e. woodlots, typical environmental planting, biodiverse environmental plantings) × 3 timeframes (i.e. 25, 45, 65 years) × 4 possible climates (i.e. no change, mild, moderate, severe warming and drying) were generated (i.e. 36 scenarios) for use within land use planning tools. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nygren, Pekka; Leblanc, Humberto A
2015-02-01
Natural abundance of (15)N (δ (15)N) was determined in bulk soil, rhizospheric soil and vegetation in an organically managed cacao (Theobroma cacao L.) plantation with Inga edulis Mart. legume trees (inga) as the principal shade for studying the nitrogen (N) cycle in the system. Cacao without contact with legumes in an adjacent plantation was used as the reference for N2 fixation and direct N transfer calculations. Bulk and rhizospheric soils contained 72 and 20%, respectively, of whole- system N. No vegetation effect on δ (15)N in rhizospheric soil was detected, probably due to the high native soil N pool. Fine roots of the cacaos associated with inga contained ∼35% of N fixed from the atmosphere (Nf) out of the total N. Leaves of all species had significantly higher δ (15)N than fine roots. Twenty percent of system Nf was found in cacao suggesting direct N transfer from inga via a common mycelial network of mycorrhizal fungi or recycling of N-rich root exudates of inga. Inga had accumulated 98 kg [Nf] ha(-1) during the 14-year history of the plantation. The conservative estimate of current N2 fixation rate was 41 kg [Nf] ha(-1) year(-1) based on inga biomass only and 50 kg [Nf] ha(-1) year(-1) based on inga and associated trees. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Semiarid ethnoagroforestry management: Tajos in the Sierra Gorda, Guanajuato, Mexico.
Hoogesteger van Dijk, Vincent M; Casas, Alejandro; Moreno-Calles, Ana Isabel
2017-06-12
The semi-arid environments harbor nearly 40% of biodiversity, and half of indigenous cultures of Mexico. Thousands of communities settled in these areas depend on agriculture and using wild biodiversity for their subsistence. Water, soil, and biodiversity management strategies are therefore crucial for people's life. The tajos, from Sierra Gorda, are important, poorly studied, biocultural systems established in narrow, arid alluvial valleys. The systems are constructed with stone-walls for capturing sediments, gradually creating fertile soils in terraces suitable for agriculture in places where it would not be possible. We analyzed biocultural, ecological, economic and technological relevance of the artificial oasis-like tajos, hypothesizing their high capacity for maintaining agricultural and wild biodiversity while providing resources to people. We conducted our research in three sections of the Mezquital-Xichú River, in three communities of Guanajuato, Mexico. Agroforestry management practices were documented through semi-structured and in-depth qualitative interviews. Vegetation composition of local forests and that maintained in tajos was sampled and compared. Tajos harbor high agrobiodiversity, including native varieties of maize and beans, seven secondary crops, 47 native and 25 introduced perennial plant species. Perennial plants cover on average 26.8% of the total surface of plots. Tajos provide nearly 70% of the products required by households' subsistence and are part of their cultural identity. Tajos are heritage of TEK and land management forms of pre-Columbian Mexican and Mediterranean agricultural techniques, adapting and integrating modern agricultural practices. Tajos are valuable biocultural systems adapted to local semiarid conditions and sources of technology for similar areas of the World.
NASA Astrophysics Data System (ADS)
Siregar, P. G.; Supriatna, J.; Koestoer, R. H.; Harmantyo, D.
2017-07-01
This study aims to analyse trade-offs among 6 (six) types of dominant land uses to consider Orangutan livelihood and landscape sustainability. The results of this study assists landscape's planners and policy makers for selecting development scenarios as well as policy within the landscape, especially to reduce human and wildlife conflict as impact of development. This study was conducted in Orangutan sub species Pongo pygmeus pygmeus habitat in West Kalimantan, Indonesia. Net present value analysis was applied to identify economic profit of land uses and also perspective of expert judgment was applied to identify suitability of the land uses to Orangutan livelihood. The study shows that palm oil plantation was the dominant land use type in non-forest area category and natural forest is in forest area category within the site. Palm oil contributed highest economic profit (average IDR 11 Million per year) compared to other land use types, and thus the worst land use type for supporting Orangutan conservation; index suitability for Orangutan achieved only 21.8. The development of agroforestry which planted more than 3 valuable economic commodities is used as an alternative in forest buffer area development that can provide better gain for economic and Orangutan conservation with index suitability for Orangutan was 43.5. In achieving sustainability at the landscape level, it needs to consider the sustainability of the umbrella species, such as Orangutan. The existence of the umbrella species would also protect other biodiversity, forest and its environmental services.
NASA Astrophysics Data System (ADS)
Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.
2015-12-01
Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.
Mganga, K Z; Musimba, N K R; Nyariki, D M
2015-12-01
Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.
Biogas Technology Application in Western Kenya-A Field Investigation in Nandi and Bomet Counties
NASA Astrophysics Data System (ADS)
Venort, Taisha
The integration of biogas technology into Kenyan farming systems is becoming more common since the launch of the Kenya National Biogas Programme (KENDBIP). A comprehensive assessment of the status, operation of biogas plants constructed through KENDBIP, and their role within rural farming systems, is undertaken in two important dairy herds of Kenya (i.e., Nandi and Bomet counties), towards understanding factors affecting applications, for energy and agronomic use. Data on farming systems, operation and application were collected from 242 farm households in both counties. A Binary Linear Regression model was developed to pinpoint constraint factors most influential to plants operation. Descriptive statistics were used to compare users' experiences, and capture farm households' trends in energy and fertilizer use. Higher operational rate in Bomet (77%) than Nandi (59%), reveal that plants' viability are impacted by subsidies 'liability schemes of local supporting programs. Records of partial substitution to biogas and bio-slurry seem to contribute to the reinforcement of local agro-forestry traditions through an increase in the adoption of zero-grazing practices, wood/tree lots retention, and more efficient agricultural land attribution in the smallholder context. These changes are all having a positive impact on farm households' livelihoods and food security. Key recommendations to biogas programs stakeholders are that local subsidy schemes take better account of liability towards local technicians, Quality Control responsibilities are decentralized to local enterprises, and Research & Development strategies further investigate biogas technology application in agriculture, and its role in directly impacted value chains (i.e., Dairy, African Leafy vegetables, Feed & Fodder), for better experiences by farmers.
Fujii, Yoshiharu
2003-06-01
We have studied on allelopathy of plants and developed methods to identify the effective substances in root exudates, leaf leacheate, and volatile chemicals emitted from plants. We found traditional cover plants that show allelopathic activity are useful for weed control. It could eliminate the use of synthetic chemicals for this purpose. Allelopathy is a natural power of plants to protect themselves by producing natural organic chemicals. Some endemic plants in Asia, already known by farmers in the region, as either cover crops used in intercropping, hedgerow, or agroforestry, were found to possess strong allelopathic abilities. Our group identified several allelochemicals from these plants. These allelopathic cover crops, mostly leguminous plants, provide protein rich food, and grow easily without artificial fertilizers, herbicides, insecticides and fungicides. In this regards, these allelopathic cover crops could save food shortage in rural area, and are useful for environmental conservation. Screenings of allelopathic plants by specific bioassays and field tests have been conducted. Hairy vetch (Vicia villosa) and Velvet bean (Mucuna pruriens) are two promising species for the practical application of allelopathy. An amino acid, L-DOPA, unusual in plants, plays an important role as allelochemical in Velvet bean (Mucuna pruriens). Hairy vetch is the most promising cover plant for the weed control in orchard, vegetable and rice production and even for landscape amendment in abandoned field in Japan. We have isolated "cyanamide", a well known nitrogen fertilizer, from Hairy vetch. This is the first finding of naturally produced cyanamide in the world.
Coffee Agroforests Remain Beneficial for Neotropical Bird Community Conservation across Seasons
Peters, Valerie E.; Cooper, Robert J.; Carroll, C. Ron
2013-01-01
Coffee agroforestry systems and secondary forests have been shown to support similar bird communities but comparing these habitat types are challenged by potential biases due to differences in detectability between habitats. Furthermore, seasonal dynamics may influence bird communities differently in different habitat types and therefore seasonal effects should be considered in comparisons. To address these issues, we incorporated seasonal effects and factors potentially affecting bird detectability into models to compare avian community composition and dynamics between coffee agroforests and secondary forest fragments. In particular, we modeled community composition and community dynamics of bird functional groups based on habitat type (coffee agroforest vs. secondary forest) and season while accounting for variation in capture probability (i.e. detectability). The models we used estimated capture probability to be similar between habitat types for each dietary guild, but omnivores had a lower capture probability than frugivores and insectivores. Although apparent species richness was higher in coffee agroforest than secondary forest, model results indicated that omnivores and insectivores were more common in secondary forest when accounting for heterogeneity in capture probability. Our results largely support the notion that shade-coffee can serve as a surrogate habitat for secondary forest with respect to avian communities. Small coffee agroforests embedded within the typical tropical countryside matrix of secondary forest patches and small-scale agriculture, therefore, may host avian communities that resemble those of surrounding secondary forest, and may serve as viable corridors linking patches of forest within these landscapes. This information is an important step toward effective landscape-scale conservation in Neotropical agricultural landscapes. PMID:24058437
Bose, Arshiya; Vira, Bhaskar; Garcia, Claude
2016-12-01
Conservation initiatives are designed to address threats to forests and biodiversity, often through partnerships with natural-resource users who are incentivized to change their land-use and livelihood practices to avoid further biodiversity loss. In particular, direct incentives programmes that provide monetary benefits are commended for being effective in achieving conservation across short timescales. In biodiversity-rich areas, outside protected areas, such as coffee agroforestry systems, direct incentives, such as certification schemes, are used to motivate coffee producers to maintain native tree species, natural vegetation, restrict wildlife hunting, and conserve soil and water, in addition to encouraging welfare of workers. However, despite these claims, there is a lack of strong evidence of the on-ground impact of such schemes. To assess the conservation importance of certification, we describe a case study in the Western Ghats biodiversity hotspot of India, in which coffee growers are provided price incentives to adopt Rainforest Alliance certification standards. We analyse the conservation and social outcomes of this programme by studying peoples' experiences of participating in certification. Despite high compliance and effective implementation, we find a strong case for the endorsement of 'business as usual' with no changes in farm management as a result of certification. We find that such 'business as usual' participation in certification creates grounds for diminishing credibility and local support for conservation efforts. Working towards locally relevant conservation interventions, rather than implementing global blueprints, may lead to more meaningful biodiversity conservation and increased community support for conservation initiatives in coffee landscapes.
A survey of entomopathogenic nematode species in continental Portugal.
Valadas, V; Laranjo, M; Mota, M; Oliveira, S
2014-09-01
Entomopathogenic nematodes (EPN) are lethal parasites of insects, used as biocontrol agents. The objectives of this work were to survey the presence of EPN in continental Portugal and to characterize the different species. Of the 791 soil samples collected throughout continental Portugal, 53 were positive for EPN. Steinernema feltiae and Heterorhabditis bacteriophora were the two most abundant species. Analysis of EPN geographical distribution revealed an association between nematode species and vegetation type. Heterorhabditis bacteriophora was mostly found in the Alentejo region while S. feltiae was present in land occupied by agriculture with natural vegetation, broadleaved forest, mixed forest and transitional woodland-shrub, agro-forestry areas, complex cultivated patterns and non-irrigated arable land. Although no clear association was found between species and soil type, S. feltiae was typically recovered from cambisols and H. bacteriophora was more abundant in lithosols. Sequencing of the internal transcribed spacer (ITS) region indicated that S. feltiae was the most abundant species, followed by H. bacteriophora. Steinernema intermedium and S. kraussei were each isolated from one site and Steinernema sp. from two sites. Phylogenetic analyses of ITS, D2D3 expansion region of the 28S rRNA gene, as well as mitochondrial cytochrome c oxidase subunit I (COXI) and cytochrome b (cytb) genes, was performed to evaluate the genetic diversity of S. feltiae and H. bacteriophora. No significant genetic diversity was found among H. bacteriophora isolates. However, COXI seems to be the best marker to study genetic diversity of S. feltiae. This survey contributes to the understanding of EPN distribution in Europe.
NASA Astrophysics Data System (ADS)
Brown, Douglas R.; Dettmann, Paul; Rinaudo, Tony; Tefera, Hailu; Tofu, Assefa
2011-08-01
Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation—the Ethiopian organization's first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits—facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project—empowering the community to more sustainably manage their communal lands.
Brown, Douglas R; Dettmann, Paul; Rinaudo, Tony; Tefera, Hailu; Tofu, Assefa
2011-08-01
Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation--the Ethiopian organization's first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits--facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project--empowering the community to more sustainably manage their communal lands.
USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda
Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin
2016-01-01
Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km2 (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km2) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha−1·y−1 (i.e., 32.67 mm·y−1). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha−1·y−1 (i.e., 41.20 mm·y−1) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha−1·y−1 (i.e., 148.13 mm·y−1) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems. PMID:27556474
USLE-Based Assessment of Soil Erosion by Water in the Nyabarongo River Catchment, Rwanda.
Karamage, Fidele; Zhang, Chi; Kayiranga, Alphonse; Shao, Hua; Fang, Xia; Ndayisaba, Felix; Nahayo, Lamek; Mupenzi, Christophe; Tian, Guangjin
2016-08-20
Soil erosion has become a serious problem in recent decades due to unhalted trends of unsustainable land use practices. Assessment of soil erosion is a prominent tool in planning and conservation of soil and water resource ecosystems. The Universal Soil Loss Equation (USLE) was applied to Nyabarongo River Catchment that drains about 8413.75 km² (33%) of the total Rwanda coverage and a small part of the Southern Uganda (about 64.50 km²) using Geographic Information Systems (GIS) and Remote Sensing technologies. The estimated total annual actual soil loss was approximately estimated at 409 million tons with a mean erosion rate of 490 t·ha(-1)·y(-1) (i.e., 32.67 mm·y(-1)). The cropland that occupied 74.85% of the total catchment presented a mean erosion rate of 618 t·ha(-1)·y(-1) (i.e., 41.20 mm·y(-1)) and was responsible for 95.8% of total annual soil loss. Emergency soil erosion control is required with a priority accorded to cropland area of 173,244 ha, which is extremely exposed to actual soil erosion rate of 2222 t·ha(-1)·y(-1) (i.e., 148.13 mm·y(-1)) and contributed to 96.2% of the total extreme soil loss in the catchment. According to this study, terracing cultivation method could reduce the current erosion rate in cropland areas by about 78%. Therefore, the present study suggests the catchment management by constructing check dams, terracing, agroforestry and reforestation of highly exposed areas as suitable measures for erosion and water pollution control within the Nyabarongo River Catchment and in other regions facing the same problems.
Is the WBE model appropriate for semi-arid shrubs subjected to clear cutting?
Issoufou, Hassane Bil-Assanou; Rambal, Serge; Le Dantec, Valérie; Oï, Monique; Laurent, Jean-Paul; Saadou, Mahamane; Seghieri, Josiane
2015-02-01
It is crucial to understand the adaptive mechanisms of woody plants facing periodic drought to assess their vulnerability to the increasing climate variability predicted in the Sahel. Guiera senegalensis J.F.Gmel is a semi-evergreen Combretaceae commonly found in Sahelian rangelands, fallows and crop fields because of its value as an agroforestry species. We compared canopy leafing, and allometric measurements of leaf area, stem area and stem length and their relationships with leaf water potential, stomatal conductance (gs) and soil-to-leaf hydraulic conductance (KS-L), in mature and current-year resprouts of G. senegalensis in Sahelian Niger. In mature shrubs, seasonal drought reduced the ratio of leaf area to cross-sectional stem area (AL : AS), mainly due to leaf shedding. The canopy of the current-year resprouts remained permanently leafed as the shrubs produced leaves and stems continuously, and their AL : AS ratio increased throughout the dry season. Their KS-L increased, whereas gs decreased. West, Brown and Enquist's (WBE) model can thus describe allometric trends in the seasonal life cycle of undisturbed mature shrubs, but not that of resprouts. Annual clear cutting drives allometric scaling relationships away from theoretical WBE predictions in the current-year resprouts, with scaling exponents 2.5 times greater than those of mature shrubs. High KS-L (twice that of mature shrubs) supports this intensive regeneration process. The adaptive strategy described here is probably common to many woody species that have to cope with both severe seasonal drought and regular disturbance over the long term. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Podadera, Diego S; Engel, Vera L; Parrotta, John A; Machado, Deivid L; Sato, Luciane M; Durigan, Giselda
2015-11-01
Exotic species are used to trigger facilitation in restoration plantings, but this positive effect may not be permanent and these species may have negative effects later on. Since such species can provide a marketable product (firewood), their harvest may represent an advantageous strategy to achieve both ecological and economic benefits. In this study, we looked at the effect of removal of a non-native tree species (Mimosa caesalpiniifolia) on the understory of a semideciduous forest undergoing restoration. We assessed two 14-year-old plantation systems (modified "taungya" agroforestry system; and mixed plantation using commercial timber and firewood tree species) established at two sites with contrasting soil properties in São Paulo state, Brazil. The experimental design included randomized blocks with split plots. The natural regeneration of woody species (height ≥0.2 m) was compared between managed (all M. caesalpiniifolia trees removed) and unmanaged plots during the first year after the intervention. The removal of M. caesalpiniifolia increased species diversity but decreased stand basal area. Nevertheless, the basal area loss was recovered after 1 year. The management treatment affected tree species regeneration differently between species groups. The results of this study suggest that removal of M. caesalpiniifolia benefited the understory and possibly accelerated the succession process. Further monitoring studies are needed to evaluate the longer term effects on stand structure and composition. The lack of negative effects of tree removal on the natural regeneration indicates that such interventions can be recommended, especially considering the expectations of economic revenues from tree harvesting in restoration plantings.
Abundance of large old trees in wood-pastures of Transylvania (Romania).
Hartel, Tibor; Hanspach, Jan; Moga, Cosmin I; Holban, Lucian; Szapanyos, Árpád; Tamás, Réka; Hováth, Csaba; Réti, Kinga-Olga
2018-02-01
Wood-pastures are special types of agroforestry systems that integrate trees with livestock grazing. Wood pastures can be hotspots for large old tree abundance and have exceptional natural values; but they are declining all over Europe. While presence of large old trees in wood-pastures can provide arguments for their maintenance, actual data on their distribution and abundance are sparse. Our study is the first to survey large old trees in Eastern Europe over such a large area. We surveyed 97 wood-pastures in Transylvania (Romania) in order to (i) provide a descriptive overview of the large old tree abundance; and (ii) to explore the environmental determinants of the abundance and persistence of large old trees in wood-pastures. We identified 2520 large old trees belonging to 16 taxonomic groups. Oak was present in 66% of the wood-pastures, followed by beech (33%), hornbeam (24%) and pear (22%). For each of these four species we constructed a generalized linear model with quasi-Poisson error distribution to explain individual tree abundance. Oak trees were most abundant in large wood-pastures and in wood-pastures from the Saxon cultural region of Transylvania. Beech abundance related positively to elevation and to proximity of human settlements. Abundance of hornbeam was highest in large wood-pastures, in wood-pastures from the Saxon cultural region, and in places with high cover of adjacent forest and a low human population density. Large old pear trees were most abundant in large wood-pastures that were close to paved roads. The maintenance of large old trees in production landscapes is a challenge for science, policy and local people, but it also can serve as an impetus for integrating economic, ecological and social goals within a landscape. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Erickson, J. D.; Gross, L.; Agosto Filion, N.; Bagstad, K.; Voigt, B. G.; Johnson, G.
2010-12-01
The modification of hydrologic systems in coffee-dominated landscapes varies widely according to the degree of shade trees incorporated in coffee farms. Compared to mono-cropping systems, shade coffee can produce both on- and off-farm benefits in the form of soil retention, moderation of sediment transport, and lower hydropower generating costs. The Pico Duarte Coffee Region and surrounding Madres de Las Aguas (Mother of Waters) Conservation Area in the Dominican Republic is emblematic of the challenges and opportunities of ecosystem service management in coffee landscapes. Shade coffee poly-cultures in the region play an essential role in ensuring ecosystem function to conserve water resources, as well as provide habitat for birds, sequester carbon, and provide consumptive resources to households. To model the provision, use, and flow of ecosystem services from coffee farms in the region, an application of the Artificial Intelligence for Ecosystem Services (ARIES) model was developed with particular focus on sediment regulation. ARIES incorporates an array of techniques from data mining, image analysis, neural networks, Bayesian statistics, information theory, and expert systems to model the production, delivery, and demand for ecosystem services. Geospatial data on slope, soils, and vegetation cover is combined with on-farm data collection of coffee production, tree diversity, and intercropping of household food. Given hydropower production and river recreation in the region, the management of sedimentation through on-farm practices has substantial, currently uncompensated value that has received recent attention as the foundation for a payment for ecosystem services system. Scenario analysis of the implications of agro-forestry management choices on farmer livelihoods and the multiple beneficiaries of farm-provided hydrological services provide a foundation for ongoing discussions in the region between local, national, and international interests.
K P, Sangeeth; R, Suseela Bhai
2016-05-01
Integrated Plant Nutrition System (IPNS) as a concept and farm management strategy embraces and transcends from single season crop fertilization efforts to planning and management of plant nutrients in crop rotations and farming systems on a long-term basis for enhanced productivity, profitability and sustainability. It is estimated that about two-thirds of the required increase in crop production in developing countries will have to come from yield increases from lands already under cultivation. IPNS enhances soil productivity through a balanced use of soil nutrients, chemical fertilizers, combined with organic sources of plant nutrients, including bio-inoculants and nutrient transfer through agro-forestry systems and has adaptation to farming systems in both irrigated and rainfed agriculture. Horticultural crops, mainly plantation crops, management practices include application of fertilizers and pesticides which become inevitable due to the depletion of soil organic matter and incidence of pests and diseases. The extensive use of chemical fertilizers in these crops deteriorated soil health that in turn affected the productivity. To revitalize soil health and to enhance productivity, it is inexorable to enrich the soil using microorganisms. The lacunae observed here is the lack of exploitation of indigenous microbes having the potential to fix atmospheric nitrogen (N) and to solubilize Phosphorus (P) and Potassium (K). The concept of biofertilizer application appears to be technically simple and financially feasible, but the task of developing biofertilizers with efficient strains in appropriate combinations in a consortia mode is not easier. More than developing consortia, a suitable delivery system to discharge the microbial inoculants warranted much effort. This review focuses on the integrated plant nutrition system incorporating biofertilizer with special emphasis on developing and formulating biofertilizer consortium.
Zhang, Meng-Meng; Wang, Ning; Hu, Yan-Bo; Sun, Guang-Yu
2018-04-01
A better understanding of tree-based intercropping effects on soil physicochemical properties and bacterial community has a potential contribution to improvement of agroforestry productivity and sustainability. In this study, we investigated the effects of mulberry/alfalfa intercropping on soil physicochemical properties and soil bacterial community by MiSeq sequencing of bacterial 16S rRNA gene. The results showed a significant increase in the contents of available nitrogen, available phosphate, available potassium, and total carbon in the rhizosphere soil of the intercropped alfalfa. Sequencing results showed that intercropping improved bacterial richness and diversity of mulberry and alfalfa based on richness estimates and diversity indices. The relative abundances of Proteobacteria, Actinobacteria, and Firmicutes were significantly higher in intercropping mulberry than in monoculture mulberry; and the abundances of Proteobacteria, Bacteroidetes, and Gemmatimonadetes in the intercropping alfalfa were markedly higher than that in monoculture alfalfa. Bacterial taxa with soil nutrients cycling were enriched in the intercropping system. There were higher relative abundances of Bacillus (0.32%), Pseudomonas (0.14%), and Microbacterium (0.07%) in intercropping mulberry soil, and Bradyrhizobium (1.0%), Sphingomonas (0.56%), Pseudomonas (0.18%), Microbacterium (0.15%), Rhizobium (0.09%), Neorhizobium (0.08%), Rhodococcus (0.06%), and Burkholderia (0.04%) in intercropping alfalfa soil. Variance partition analysis showed that planting pattern contributed 26.7% of the total variation of bacterial community, and soil environmental factors explained approximately 56.5% of the total variation. This result indicated that the soil environmental factors were more important than the planting pattern in shaping the bacterial community in the field soil. Overall, mulberry/alfalfa intercropping changed soil bacterial community, which was related to changes in soil total carbon, available phosphate, and available potassium. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Multifunctional Dryland Forestry: Accumulating Experience From the East-Mediterranean
NASA Astrophysics Data System (ADS)
Osem, Y.; Shachack, M.; Moshe, I.
2014-12-01
Although small in size the landscapes of East Mediterranean Israel extend over a wide geo-climatic gradient ranging from dry sub-humid to hyper-arid lands. Thousands of years under intense human exploitation in this region, involving cutting, livestock grazing, agricultural practice and fire have resulted in severe degradation of these water limited ecosystems. The highly degraded state of the native vegetation as found by the new settlers coming to Israel in the beginning of the previous century, has provided the basic motivation for an extensive afforestation enterprise carried out during the last 100 years. This talk will present an overview on the accumulating experience in establishing and managing multifunctional forests in this dryland region. Given their very limited timber value, dryland forests are designed and managed under various goals the important of which are landscape aesthetics, recreation opportunities, grazing land, ecosystem restoration and soil conservation. Being subjected to water scarcity of high temporal and spatial variation, these manmade systems are managed to withstand water deficiency of unpredictable magnitude through the manipulation of both water input and water consumption. In the dry subhumid regions, forest management focuses mainly on controlling water consumption through the manipulation of vegetation structure using thinning and livestock grazing as primary silvicultural tools. Going into the semiarid zone, practices of rainfall redistribution and runoff harvesting become crucial for tree establishment and growth. The implementation of these practices varies depending on topography, rainfall amount and forest goals. The talk will provide a brief description of these unique silvicultural systems, review some of the recent scientific work in them and refer to critical gaps in knowledge. The relevancy to intercrop agroforestry in rainfed ecosystems will be discussed.
Rives, Jesús; Fernandez-Rodriguez, Ivan; Rieradevall, Joan; Gabarrell, Xavier
2012-11-15
Cork oak grows endemically in a narrow region bordering the western Mediterranean, and especially in the Iberian Peninsula. The importance of cork agro-forestry systems lies in the fact that a natural and renewable raw material - cork - can be extracted sustainably without endangering the tree or affecting biodiversity. This paper describes an environmental analysis of the extraction of raw cork in cork oak forests in Catalonia, using data from five representative local forest exploitations. The evaluation was carried out using life cycle assessment (LCA) methodology, and all the forestry management required to obtain a tonne of raw cork was included. The aim of the study was to evaluate the environmental impacts - in terms of global warming, acidification, eutrophication, human toxicity, and so on - caused by cork extraction and determine the carbon dioxide balance of these forestry systems, with a tree lifespan of about 200 years. During the life cycle extraction of cork in Catalonia, 0.2 kg of CO(2) eq. was emitted per kg of raw cork extracted. Moreover, cork cannot be extracted without the tree, which will be fixing carbon dioxide throughout its technological useful life (200 years), despite the fact that the bark is removed periodically: every 13-14 years. If the emission from extraction and the carbon contained in the material is discounted, the carbon dioxide balance indicates that 18 kg of CO(2) are fixed per kg of raw cork extracted. Therefore, cork is a natural, renewable and local material that can replace other non-renewable materials, at local level, to reduce the environmental impacts of products, and particularly to reduce their carbon footprint. Copyright © 2012 Elsevier Ltd. All rights reserved.
Adin, A; Weber, J C; Sotelo Montes, C; Vidaurre, H; Vosman, B; Smulders, M J M
2004-05-01
Peach palm ( Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations ( G(st)) was 0.0377-0.0416 ( P<0.01) among populations along both rivers. There was no relation between genetic differentiation and the geographical location of populations along the rivers. Since natural seed dispersal by birds and rodents is thought to occur only across relatively short distances (100-200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the 'long-distance' (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers' fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers ( G(st)=0.0249, P<0.01). A comparison with samples from other landraces in Peru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.
Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen
2014-01-01
The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.
Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.
Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N
2013-01-01
Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.